Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Sebastian Bindgen
pystencils
Commits
8bc8b39a
Commit
8bc8b39a
authored
Aug 07, 2020
by
Markus Holzer
Browse files
added test cases for sympyextensions
parent
fb85c0b7
Changes
2
Hide whitespace changes
Inline
Side-by-side
pystencils/sympyextensions.py
View file @
8bc8b39a
...
...
@@ -272,7 +272,7 @@ def subs_additive(expr: sp.Expr, replacement: sp.Expr, subexpression: sp.Expr,
def
replace_second_order_products
(
expr
:
sp
.
Expr
,
search_symbols
:
Iterable
[
sp
.
Symbol
],
positive
:
Optional
[
bool
]
=
None
,
replace_mixed
:
Optional
[
List
[
Assignment
]]
=
None
)
->
sp
.
Expr
:
"""Replaces second order mixed terms like x*y by 2*( (x+y)**2 - x**2 - y**2 ).
"""Replaces second order mixed terms like
4*
x*y by 2*( (x+y)**2 - x**2 - y**2 ).
This makes the term longer - simplify usually is undoing these - however this
transformation can be done to find more common sub-expressions
...
...
@@ -293,7 +293,7 @@ def replace_second_order_products(expr: sp.Expr, search_symbols: Iterable[sp.Sym
if
expr
.
is_Mul
:
distinct_search_symbols
=
set
()
nr_of_search_terms
=
0
other_factors
=
1
other_factors
=
sp
.
Integer
(
1
)
for
t
in
expr
.
args
:
if
t
in
search_symbols
:
nr_of_search_terms
+=
1
...
...
@@ -481,7 +481,7 @@ def count_operations(term: Union[sp.Expr, List[sp.Expr]],
pass
elif
t
.
func
is
sp
.
Mul
:
if
check_type
(
t
):
result
[
'muls'
]
+=
len
(
t
.
args
)
-
1
result
[
'muls'
]
+=
len
(
t
.
args
)
for
a
in
t
.
args
:
if
a
==
1
or
a
==
-
1
:
result
[
'muls'
]
-=
1
...
...
@@ -515,7 +515,7 @@ def count_operations(term: Union[sp.Expr, List[sp.Expr]],
elif
sp
.
nsimplify
(
t
.
exp
)
==
sp
.
Rational
(
1
,
2
):
result
[
'sqrts'
]
+=
1
else
:
warnings
.
warn
(
"Cannot handle exponent
"
,
t
.
exp
,
"
of sp.Pow node"
)
warnings
.
warn
(
f
"Cannot handle exponent
{
t
.
exp
}
of sp.Pow node"
)
else
:
warnings
.
warn
(
"Counting operations: only integer exponents are supported in Pow, "
"counting will be inaccurate"
)
...
...
@@ -526,7 +526,7 @@ def count_operations(term: Union[sp.Expr, List[sp.Expr]],
elif
isinstance
(
t
,
sp
.
Rel
):
pass
else
:
warnings
.
warn
(
"Unknown sympy node of type
"
+
str
(
t
.
func
)
+
"
counting will be inaccurate"
)
warnings
.
warn
(
f
"Unknown sympy node of type
{
str
(
t
.
func
)
}
counting will be inaccurate"
)
if
visit_children
:
for
a
in
t
.
args
:
...
...
pystencils_tests/test_sympyextensions.py
0 → 100644
View file @
8bc8b39a
import
sympy
import
pystencils
from
pystencils.sympyextensions
import
replace_second_order_products
from
pystencils.sympyextensions
import
remove_higher_order_terms
from
pystencils.sympyextensions
import
complete_the_squares_in_exp
from
pystencils.sympyextensions
import
extract_most_common_factor
from
pystencils.sympyextensions
import
count_operations
from
pystencils.sympyextensions
import
common_denominator
from
pystencils.sympyextensions
import
get_symmetric_part
from
pystencils
import
Assignment
from
pystencils.fast_approximation
import
(
fast_division
,
fast_inv_sqrt
,
fast_sqrt
,
insert_fast_divisions
,
insert_fast_sqrts
)
def
test_replace_second_order_products
():
x
,
y
=
sympy
.
symbols
(
'x y'
)
expr
=
4
*
x
*
y
expected_expr_positive
=
2
*
((
x
+
y
)
**
2
-
x
**
2
-
y
**
2
)
expected_expr_negative
=
2
*
(
-
(
x
-
y
)
**
2
+
x
**
2
+
y
**
2
)
result
=
replace_second_order_products
(
expr
,
search_symbols
=
[
x
,
y
],
positive
=
True
)
assert
result
==
expected_expr_positive
assert
(
result
-
expected_expr_positive
).
simplify
()
==
0
result
=
replace_second_order_products
(
expr
,
search_symbols
=
[
x
,
y
],
positive
=
False
)
assert
result
==
expected_expr_negative
assert
(
result
-
expected_expr_negative
).
simplify
()
==
0
result
=
replace_second_order_products
(
expr
,
search_symbols
=
[
x
,
y
],
positive
=
None
)
assert
result
==
expected_expr_positive
a
=
[
Assignment
(
sympy
.
symbols
(
'z'
),
x
+
y
)]
replace_second_order_products
(
expr
,
search_symbols
=
[
x
,
y
],
positive
=
True
,
replace_mixed
=
a
)
assert
len
(
a
)
==
2
def
test_remove_higher_order_terms
():
x
,
y
=
sympy
.
symbols
(
'x y'
)
expr
=
sympy
.
Mul
(
x
,
y
)
result
=
remove_higher_order_terms
(
expr
,
order
=
1
,
symbols
=
[
x
,
y
])
assert
result
==
0
result
=
remove_higher_order_terms
(
expr
,
order
=
2
,
symbols
=
[
x
,
y
])
assert
result
==
expr
expr
=
sympy
.
Pow
(
x
,
3
)
result
=
remove_higher_order_terms
(
expr
,
order
=
2
,
symbols
=
[
x
,
y
])
assert
result
==
0
result
=
remove_higher_order_terms
(
expr
,
order
=
3
,
symbols
=
[
x
,
y
])
assert
result
==
expr
def
test_complete_the_squares_in_exp
():
a
,
b
,
c
,
s
,
n
=
sympy
.
symbols
(
'a b c s n'
)
expr
=
a
*
s
**
2
+
b
*
s
+
c
result
=
complete_the_squares_in_exp
(
expr
,
symbols_to_complete
=
[
s
])
assert
result
==
expr
expr
=
sympy
.
exp
(
a
*
s
**
2
+
b
*
s
+
c
)
expected_result
=
sympy
.
exp
(
a
*
s
**
2
+
c
-
b
**
2
/
(
4
*
a
))
result
=
complete_the_squares_in_exp
(
expr
,
symbols_to_complete
=
[
s
])
assert
result
==
expected_result
def
test_extract_most_common_factor
():
x
,
y
=
sympy
.
symbols
(
'x y'
)
expr
=
1
/
(
x
+
y
)
+
3
/
(
x
+
y
)
+
3
/
(
x
+
y
)
most_common_factor
=
extract_most_common_factor
(
expr
)
assert
most_common_factor
[
0
]
==
7
assert
sympy
.
prod
(
most_common_factor
)
==
expr
expr
=
1
/
x
+
3
/
(
x
+
y
)
+
3
/
y
most_common_factor
=
extract_most_common_factor
(
expr
)
assert
most_common_factor
[
0
]
==
3
assert
sympy
.
prod
(
most_common_factor
)
==
expr
expr
=
1
/
x
most_common_factor
=
extract_most_common_factor
(
expr
)
assert
most_common_factor
[
0
]
==
1
assert
sympy
.
prod
(
most_common_factor
)
==
expr
assert
most_common_factor
[
1
]
==
expr
def
test_count_operations
():
x
,
y
,
z
=
sympy
.
symbols
(
'x y z'
)
expr
=
1
/
x
+
y
*
sympy
.
sqrt
(
z
)
ops
=
count_operations
(
expr
,
only_type
=
None
)
assert
ops
[
'adds'
]
==
1
assert
ops
[
'muls'
]
==
1
assert
ops
[
'divs'
]
==
1
assert
ops
[
'sqrts'
]
==
1
expr
=
sympy
.
sqrt
(
x
+
y
)
expr
=
insert_fast_sqrts
(
expr
).
atoms
(
fast_sqrt
)
ops
=
count_operations
(
*
expr
,
only_type
=
None
)
assert
ops
[
'fast_sqrts'
]
==
1
expr
=
sympy
.
sqrt
(
x
/
y
)
expr
=
insert_fast_divisions
(
expr
).
atoms
(
fast_division
)
ops
=
count_operations
(
*
expr
,
only_type
=
None
)
assert
ops
[
'fast_div'
]
==
1
expr
=
pystencils
.
Assignment
(
sympy
.
Symbol
(
'tmp'
),
3
/
sympy
.
sqrt
(
x
+
y
))
expr
=
insert_fast_sqrts
(
expr
).
atoms
(
fast_inv_sqrt
)
ops
=
count_operations
(
*
expr
,
only_type
=
None
)
assert
ops
[
'fast_inv_sqrts'
]
==
1
expr
=
sympy
.
Piecewise
((
1.0
,
x
>
0
),
(
0.0
,
True
))
+
y
*
z
ops
=
count_operations
(
expr
,
only_type
=
None
)
assert
ops
[
'adds'
]
==
1
expr
=
sympy
.
Pow
(
1
/
x
+
y
*
sympy
.
sqrt
(
z
),
100
)
ops
=
count_operations
(
expr
,
only_type
=
None
)
assert
ops
[
'adds'
]
==
1
assert
ops
[
'muls'
]
==
100
assert
ops
[
'divs'
]
==
1
assert
ops
[
'sqrts'
]
==
1
def
test_common_denominator
():
x
=
sympy
.
symbols
(
'x'
)
expr
=
sympy
.
Rational
(
1
,
2
)
+
x
*
sympy
.
Rational
(
2
,
3
)
cm
=
common_denominator
(
expr
)
assert
cm
==
6
def
test_get_symmetric_part
():
x
,
y
,
z
=
sympy
.
symbols
(
'x y z'
)
expr
=
x
/
9
-
y
**
2
/
6
+
z
**
2
/
3
+
z
/
3
expected_result
=
x
/
9
-
y
**
2
/
6
+
z
**
2
/
3
sym_part
=
get_symmetric_part
(
expr
,
sympy
.
symbols
(
f
'y z'
))
assert
sym_part
==
expected_result
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment