from itertools import chain import numpy as np import sympy as sp from sympy.core.cache import cacheit from sympy.tensor import IndexedBase from pystencils.typedsymbol import TypedSymbol class Field: """ With fields one can formulate stencil-like update rules on structured grids. This Field class knows about the dimension, memory layout (strides) and optionally about the size of an array. Creating Fields: To create a field use one of the static create* members. There are two options: 1. create a kernel with fixed loop sizes i.e. the shape of the array is already known. This is usually the case if just-in-time compilation directly from Python is done. (see :func:`Field.createFromNumpyArray`) 2. create a more general kernel that works for variable array sizes. This can be used to create kernels beforehand for a library. (see :func:`Field.createGeneric`) Dimensions: A field has spatial and index dimensions, where the spatial dimensions come first. The interpretation is that the field has multiple cells in (usually) two or three dimensional space which are looped over. Additionally N values are stored per cell. In this case spatialDimensions is two or three, and indexDimensions equals N. If you want to store a matrix on each point in a two dimensional grid, there are four dimensions, two spatial and two index dimensions: ``len(arr.shape) == spatialDims + indexDims`` Indexing: When accessing (indexing) a field the result is a FieldAccess which is derived from sympy Symbol. First specify the spatial offsets in [], then in case indexDimension>0 the indices in () e.g. ``f[-1,0,0](7)`` Example without index dimensions: >>> a = np.zeros([10, 10]) >>> f = Field.createFromNumpyArray("f", a, indexDimensions=0) >>> jacobi = ( f[-1,0] + f[1,0] + f[0,-1] + f[0,1] ) / 4 Example with index dimensions: LBM D2Q9 stream pull >>> stencil = np.array([[0,0], [0,1], [0,-1]]) >>> src = Field.createGeneric("src", spatialDimensions=2, indexDimensions=1) >>> dst = Field.createGeneric("dst", spatialDimensions=2, indexDimensions=1) >>> for i, offset in enumerate(stencil): ... sp.Eq(dst[0,0](i), src[-offset](i)) Eq(dst_C^0, src_C^0) Eq(dst_C^1, src_S^1) Eq(dst_C^2, src_N^2) """ @staticmethod def createFromNumpyArray(fieldName, npArray, indexDimensions=0): """ Creates a field based on the layout, data type, and shape of a given numpy array. Kernels created for these kind of fields can only be called with arrays of the same layout, shape and type. :param fieldName: symbolic name for the field :param npArray: numpy array :param indexDimensions: see documentation of Field """ spatialDimensions = len(npArray.shape) - indexDimensions if spatialDimensions < 1: raise ValueError("Too many index dimensions. At least one spatial dimension required") fullLayout = getLayoutFromNumpyArray(npArray) spatialLayout = tuple([i for i in fullLayout if i < spatialDimensions]) assert len(spatialLayout) == spatialDimensions strides = tuple([s // np.dtype(npArray.dtype).itemsize for s in npArray.strides]) shape = tuple([int(s) for s in npArray.shape]) return Field(fieldName, npArray.dtype, spatialLayout, shape, strides) @staticmethod def createGeneric(fieldName, spatialDimensions, dtype=np.float64, indexDimensions=0, layout='numpy'): """ Creates a generic field where the field size is not fixed i.e. can be called with arrays of different sizes :param fieldName: symbolic name for the field :param dtype: numpy data type of the array the kernel is called with later :param spatialDimensions: see documentation of Field :param indexDimensions: see documentation of Field :param layout: tuple specifying the loop ordering of the spatial dimensions e.g. (2, 1, 0 ) means that the outer loop loops over dimension 2, the second outer over dimension 1, and the inner loop over dimension 0. Also allowed: the strings 'numpy' (0,1,..d) or 'reverseNumpy' (d, ..., 1, 0) """ if layout == 'numpy': layout = tuple(range(spatialDimensions)) elif layout == 'reverseNumpy': layout = tuple(reversed(range(spatialDimensions))) if len(layout) != spatialDimensions: raise ValueError("Layout") shapeSymbol = IndexedBase(TypedSymbol(Field.SHAPE_PREFIX + fieldName, Field.SHAPE_DTYPE), shape=(1,)) strideSymbol = IndexedBase(TypedSymbol(Field.STRIDE_PREFIX + fieldName, Field.STRIDE_DTYPE), shape=(1,)) totalDimensions = spatialDimensions + indexDimensions shape = tuple([shapeSymbol[i] for i in range(totalDimensions)]) strides = tuple([strideSymbol[i] for i in range(totalDimensions)]) return Field(fieldName, dtype, layout, shape, strides) def __init__(self, fieldName, dtype, layout, shape, strides): """Do not use directly. Use static create* methods""" self._fieldName = fieldName self._dtype = numpyDataTypeToC(dtype) self._layout = layout self._shape = shape self._strides = strides @property def spatialDimensions(self): return len(self._layout) @property def indexDimensions(self): return len(self._shape) - len(self._layout) @property def layout(self): return self._layout @property def name(self): return self._fieldName @property def shape(self): return self._shape @property def spatialShape(self): return self._shape[:self.spatialDimensions] @property def indexShape(self): return self._shape[self.spatialDimensions:] @property def spatialStrides(self): return self._strides[:self.spatialDimensions] @property def indexStrides(self): return self._strides[self.spatialDimensions:] @property def strides(self): return self._strides @property def dtype(self): return self._dtype def __repr__(self): return self._fieldName def neighbor(self, coordId, offset): offsetList = [0] * self.spatialDimensions offsetList[coordId] = offset return Field.Access(self, tuple(offsetList)) def __getitem__(self, offset): if type(offset) is np.ndarray: offset = tuple(offset) if type(offset) is str: offset = tuple(directionStringToOffset(offset, self.spatialDimensions)) if type(offset) is not tuple: offset = (offset,) if len(offset) != self.spatialDimensions: raise ValueError("Wrong number of spatial indices: " "Got %d, expected %d" % (len(offset), self.spatialDimensions)) return Field.Access(self, offset) def __call__(self, *args, **kwargs): center = tuple([0]*self.spatialDimensions) return Field.Access(self, center)(*args, **kwargs) def __hash__(self): return hash((self._layout, self._shape, self._strides, self._dtype, self._fieldName)) def __eq__(self, other): selfTuple = (self.shape, self.strides, self.name, self.dtype) otherTuple = (other.shape, other.strides, other.name, other.dtype) return selfTuple == otherTuple PREFIX = "f" STRIDE_PREFIX = PREFIX + "stride_" SHAPE_PREFIX = PREFIX + "shape_" STRIDE_DTYPE = "const int *" SHAPE_DTYPE = "const int *" DATA_PREFIX = PREFIX + "d_" class Access(sp.Symbol): def __new__(cls, name, *args, **kwargs): obj = Field.Access.__xnew_cached_(cls, name, *args, **kwargs) return obj def __new_stage2__(self, field, offsets=(0, 0, 0), idx=None): fieldName = field.name offsetsAndIndex = chain(offsets, idx) if idx is not None else offsets constantOffsets = not any([isinstance(o, sp.Basic) for o in offsetsAndIndex]) if not idx: idx = tuple([0] * field.indexDimensions) if constantOffsets: offsetName = offsetToDirectionString(offsets) if field.indexDimensions == 0: obj = super(Field.Access, self).__xnew__(self, fieldName + "_" + offsetName) elif field.indexDimensions == 1: obj = super(Field.Access, self).__xnew__(self, fieldName + "_" + offsetName + "^" + str(idx[0])) else: idxStr = ",".join([str(e) for e in idx]) obj = super(Field.Access, self).__xnew__(self, fieldName + "_" + offsetName + "^" + idxStr) else: offsetName = "%0.10X" % (abs(hash(tuple(offsetsAndIndex)))) obj = super(Field.Access, self).__xnew__(self, fieldName + "_" + offsetName) obj._field = field obj._offsets = [] for o in offsets: if isinstance(o, sp.Basic): obj._offsets.append(o) else: obj._offsets.append(int(o)) obj._offsetName = offsetName obj._index = idx return obj __xnew__ = staticmethod(__new_stage2__) __xnew_cached_ = staticmethod(cacheit(__new_stage2__)) def __call__(self, *idx): if self._index != tuple([0]*self.field.indexDimensions): print(self._index, tuple([0]*self.field.indexDimensions)) raise ValueError("Indexing an already indexed Field.Access") idx = tuple(idx) if len(idx) != self.field.indexDimensions and idx != (0,): raise ValueError("Wrong number of indices: " "Got %d, expected %d" % (len(idx), self.field.indexDimensions)) return Field.Access(self.field, self._offsets, idx) @property def field(self): return self._field @property def offsets(self): return self._offsets @property def requiredGhostLayers(self): return int(np.max(np.abs(self._offsets))) @property def nrOfCoordinates(self): return len(self._offsets) @property def offsetName(self): return self._offsetName @property def index(self): return self._index def _hashable_content(self): superClassContents = list(super(Field.Access, self)._hashable_content()) t = tuple(superClassContents + [hash(self._field), self._index] + self._offsets) return t def extractCommonSubexpressions(equations): """ Uses sympy to find common subexpressions in equations and returns them in a topologically sorted order, ready for evaluation. Usually called before list of equations is passed to :func:`createKernel` """ replacements, newEq = sp.cse(equations) # Workaround for older sympy versions: here subexpressions (temporary = True) are extracted # which leads to problems in Piecewise functions which have to a default case indicated by True symbolsEqualToTrue = {r[0]: True for r in replacements if r[1] is sp.true} replacementEqs = [sp.Eq(*r) for r in replacements if r[1] is not sp.true] equations = replacementEqs + newEq topologicallySortedPairs = sp.cse_main.reps_toposort([[e.lhs, e.rhs] for e in equations]) equations = [sp.Eq(a[0], a[1].subs(symbolsEqualToTrue)) for a in topologicallySortedPairs] return equations def getLayoutFromNumpyArray(arr): """ Returns a list indicating the memory layout (linearization order) of the numpy array. Example: >>> getLayoutFromNumpyArray(np.zeros([3,3,3])) [0, 1, 2] In this example the loop over the zeroth coordinate should be the outermost loop, followed by the first and second. Elements arr[x,y,0] and arr[x,y,1] are adjacent in memory. Normally constructed numpy arrays have this order, however by stride tricks or other frameworks, arrays with different memory layout can be created. """ coordinates = list(range(len(arr.shape))) return [x for (y, x) in sorted(zip(arr.strides, coordinates), key=lambda pair: pair[0], reverse=True)] def numpyDataTypeToC(dtype): """Mapping numpy data types to C data types""" if dtype == np.float64: return "double" elif dtype == np.float32: return "float" elif dtype == np.int32: return "int" raise NotImplementedError() def offsetComponentToDirectionString(coordinateId, value): """ Translates numerical offset to string notation. x offsets are labeled with east 'E' and 'W', y offsets with north 'N' and 'S' and z offsets with top 'T' and bottom 'B' If the absolute value of the offset is bigger than 1, this number is prefixed. :param coordinateId: integer 0, 1 or 2 standing for x,y and z :param value: integer offset Example: >>> offsetComponentToDirectionString(0, 1) 'E' >>> offsetComponentToDirectionString(1, 2) '2N' """ nameComponents = (('W', 'E'), # west, east ('S', 'N'), # south, north ('B', 'T'), # bottom, top ) if value == 0: result = "" elif value < 0: result = nameComponents[coordinateId][0] else: result = nameComponents[coordinateId][1] if abs(value) > 1: result = "%d%s" % (abs(value), result) return result def offsetToDirectionString(offsetTuple): """ Translates numerical offset to string notation. For details see :func:`offsetComponentToDirectionString` :param offsetTuple: 3-tuple with x,y,z offset Example: >>> offsetToDirectionString([1, -1, 0]) 'SE' >>> offsetToDirectionString(([-3, 0, -2])) '2B3W' """ names = ["", "", ""] for i in range(len(offsetTuple)): names[i] = offsetComponentToDirectionString(i, offsetTuple[i]) name = "".join(reversed(names)) if name == "": name = "C" return name def directionStringToOffset(directionStr, dim=3): """ Reverse mapping of :func:`offsetToDirectionString` :param directionStr: string representation of offset :param dim: dimension of offset, i.e the length of the returned list >>> directionStringToOffset('NW', dim=3) array([-1, 1, 0]) >>> directionStringToOffset('NW', dim=2) array([-1, 1]) >>> directionStringToOffset(offsetToDirectionString([3,-2,1])) array([ 3, -2, 1]) """ offsetMap = { 'C': np.array([0, 0, 0]), 'W': np.array([-1, 0, 0]), 'E': np.array([1, 0, 0]), 'S': np.array([0, -1, 0]), 'N': np.array([0, 1, 0]), 'B': np.array([0, 0, -1]), 'T': np.array([0, 0, 1]), } offset = np.array([0, 0, 0]) while len(directionStr) > 0: factor = 1 firstNonDigit = 0 while directionStr[firstNonDigit].isdigit(): firstNonDigit += 1 if firstNonDigit > 0: factor = int(directionStr[:firstNonDigit]) directionStr = directionStr[firstNonDigit:] curOffset = offsetMap[directionStr[0]] offset += factor * curOffset directionStr = directionStr[1:] return offset[:dim]