field.py 40.7 KB
Newer Older
1
import functools
Martin Bauer's avatar
Martin Bauer committed
2
import hashlib
3
import operator
Martin Bauer's avatar
Martin Bauer committed
4
5
import pickle
import re
6
from enum import Enum
7
from itertools import chain
Martin Bauer's avatar
Martin Bauer committed
8
9
from typing import List, Optional, Sequence, Set, Tuple

10
11
12
import numpy as np
import sympy as sp
from sympy.core.cache import cacheit
Martin Bauer's avatar
Martin Bauer committed
13

14
import pystencils
15
from pystencils.alignedarray import aligned_empty
16
from pystencils.data_types import StructType, TypedSymbol, create_type
17
from pystencils.kernelparameters import FieldShapeSymbol, FieldStrideSymbol
Martin Bauer's avatar
Martin Bauer committed
18
from pystencils.stencil import direction_string_to_offset, offset_to_direction_string
Martin Bauer's avatar
Martin Bauer committed
19
from pystencils.sympyextensions import is_integer_sequence
20

21
__all__ = ['Field', 'fields', 'FieldType', 'AbstractField']
Martin Bauer's avatar
Martin Bauer committed
22

23

Michael Kuron's avatar
Michael Kuron committed
24
def fields(description=None, index_dimensions=0, layout=None, staggered=False, **kwargs):
25
26
27
    """Creates pystencils fields from a string description.

    Examples:
Martin Bauer's avatar
Martin Bauer committed
28
29
30
31
        Create a 2D scalar and vector field:
            >>> s, v = fields("s, v(2): double[2D]")
            >>> assert s.spatial_dimensions == 2 and s.index_dimensions == 0
            >>> assert (v.spatial_dimensions, v.index_dimensions, v.index_shape) == (2, 1, (2,))
32

Martin Bauer's avatar
Martin Bauer committed
33
34
35
36
        Create an integer field of shape (10, 20):
            >>> f = fields("f : int32[10, 20]")
            >>> f.has_fixed_shape, f.shape
            (True, (10, 20))
37

Martin Bauer's avatar
Martin Bauer committed
38
39
40
41
42
        Numpy arrays can be used as template for shape and data type of field:
            >>> arr_s, arr_v = np.zeros([20, 20]), np.zeros([20, 20, 2])
            >>> s, v = fields("s, v(2)", s=arr_s, v=arr_v)
            >>> assert s.index_dimensions == 0 and s.dtype.numpy_dtype == arr_s.dtype
            >>> assert v.index_shape == (2,)
43

Martin Bauer's avatar
Martin Bauer committed
44
45
46
47
48
49
50
51
52
53
        Format string can be left out, field names are taken from keyword arguments.
            >>> fields(f1=arr_s, f2=arr_s)
            [f1, f2]

        The keyword names ``index_dimension`` and ``layout`` have special meaning, don't use them for field names
            >>> f = fields(f=arr_v, index_dimensions=1)
            >>> assert f.index_dimensions == 1
            >>> f = fields("pdfs(19) : float32[3D]", layout='fzyx')
            >>> f.layout
            (2, 1, 0)
54
55
56
57
58
59
60
61
62
63
    """
    result = []
    if description:
        field_descriptions, dtype, shape = _parse_description(description)
        layout = 'numpy' if layout is None else layout
        for field_name, idx_shape in field_descriptions:
            if field_name in kwargs:
                arr = kwargs[field_name]
                idx_shape_of_arr = () if not len(idx_shape) else arr.shape[-len(idx_shape):]
                assert idx_shape_of_arr == idx_shape
Michael Kuron's avatar
Michael Kuron committed
64
65
                f = Field.create_from_numpy_array(field_name, kwargs[field_name], index_dimensions=len(idx_shape),
                                                  staggered=staggered)
66
67
            elif isinstance(shape, tuple):
                f = Field.create_fixed_size(field_name, shape + idx_shape, dtype=dtype,
Michael Kuron's avatar
Michael Kuron committed
68
                                            index_dimensions=len(idx_shape), layout=layout, staggered=staggered)
69
70
            elif isinstance(shape, int):
                f = Field.create_generic(field_name, spatial_dimensions=shape, dtype=dtype,
Michael Kuron's avatar
Michael Kuron committed
71
                                         index_shape=idx_shape, layout=layout, staggered=staggered)
72
73
            elif shape is None:
                f = Field.create_generic(field_name, spatial_dimensions=2, dtype=dtype,
Michael Kuron's avatar
Michael Kuron committed
74
                                         index_shape=idx_shape, layout=layout, staggered=staggered)
75
76
77
78
79
80
            else:
                assert False
            result.append(f)
    else:
        assert layout is None, "Layout can not be specified when creating Field from numpy array"
        for field_name, arr in kwargs.items():
Michael Kuron's avatar
Michael Kuron committed
81
82
            result.append(Field.create_from_numpy_array(field_name, arr, index_dimensions=index_dimensions,
                                                        staggered=staggered))
83
84
85
86
87
88
89
90
91

    if len(result) == 0:
        return None
    elif len(result) == 1:
        return result[0]
    else:
        return result


92
93
94
95
96
97
98
99
class FieldType(Enum):
    # generic fields
    GENERIC = 0
    # index fields are currently only used for boundary handling
    # the coordinates are not the loop counters in that case, but are read from this index field
    INDEXED = 1
    # communication buffer, used for (un)packing data in communication.
    BUFFER = 2
Martin Bauer's avatar
Martin Bauer committed
100
101
102
    # unsafe fields may be accessed in an absolute fashion - the index depends on the data
    # and thus may lead to out-of-bounds accesses
    CUSTOM = 3
103
104

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
105
    def is_generic(field):
106
        assert isinstance(field, Field)
Martin Bauer's avatar
Martin Bauer committed
107
        return field.field_type == FieldType.GENERIC
108
109

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
110
    def is_indexed(field):
111
        assert isinstance(field, Field)
Martin Bauer's avatar
Martin Bauer committed
112
        return field.field_type == FieldType.INDEXED
113
114

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
115
    def is_buffer(field):
116
        assert isinstance(field, Field)
Martin Bauer's avatar
Martin Bauer committed
117
        return field.field_type == FieldType.BUFFER
118

Martin Bauer's avatar
Martin Bauer committed
119
120
121
122
123
    @staticmethod
    def is_custom(field):
        assert isinstance(field, Field)
        return field.field_type == FieldType.CUSTOM

124

125
126
127
128
129
130
131
class AbstractField:

    class AbstractAccess:
        pass


class Field(AbstractField):
132
133
134
135
    """
    With fields one can formulate stencil-like update rules on structured grids.
    This Field class knows about the dimension, memory layout (strides) and optionally about the size of an array.

Martin Bauer's avatar
Martin Bauer committed
136
    Creating Fields:
Martin Bauer's avatar
Martin Bauer committed
137
138
        The preferred method to create fields is the `fields` function.
        Alternatively one can use one of the static functions `Field.create_generic`, `Field.create_from_numpy_array`
139
        and `Field.create_fixed_size`. Don't instantiate the Field directly!
Martin Bauer's avatar
Martin Bauer committed
140
141
142
143
144
        Fields can be created with known or unknown shapes:

        1. If you want to create a kernel with fixed loop sizes i.e. the shape of the array is already known.
           This is usually the case if just-in-time compilation directly from Python is done.
           (see `Field.create_from_numpy_array`
145
        2. create a more general kernel that works for variable array sizes. This can be used to create kernels
Martin Bauer's avatar
Martin Bauer committed
146
           beforehand for a library. (see `Field.create_generic`)
147

Martin Bauer's avatar
Martin Bauer committed
148
    Dimensions and Indexing:
149
150
        A field has spatial and index dimensions, where the spatial dimensions come first.
        The interpretation is that the field has multiple cells in (usually) two or three dimensional space which are
Martin Bauer's avatar
Martin Bauer committed
151
        looped over. Additionally N values are stored per cell. In this case spatial_dimensions is two or three,
Martin Bauer's avatar
Martin Bauer committed
152
        and index_dimensions equals N. If you want to store a matrix on each point in a two dimensional grid, there
Martin Bauer's avatar
Martin Bauer committed
153
        are four dimensions, two spatial and two index dimensions: ``len(arr.shape) == spatial_dims + index_dims``
154

Martin Bauer's avatar
Martin Bauer committed
155
156
157
158
159
        The shape of the index dimension does not have to be specified. Just use the 'index_dimensions' parameter.
        However, it is good practice to define the shape, since out of bounds accesses can be directly detected in this
        case. The shape can be passed with the 'index_shape' parameter of the field creation functions.

        When accessing (indexing) a field the result is a `Field.Access` which is derived from sympy Symbol.
Martin Bauer's avatar
Martin Bauer committed
160
        First specify the spatial offsets in [], then in case index_dimension>0 the indices in ()
Martin Bauer's avatar
Martin Bauer committed
161
        e.g. ``f[-1,0,0](7)``
162

Michael Kuron's avatar
Michael Kuron committed
163
164
165
166
167
168
169
170
    Staggered Fields:
        Staggered fields are used to store a value on a second grid shifted by half a cell with respect to the usual
        grid.

        The first index dimension is used to specify the position on the staggered grid (e.g. 0 means half-way to the
        eastern neighbor, 1 is half-way to the northern neighbor, etc.), while additional indices can be used to store
        multiple values at each position.

Martin Bauer's avatar
Martin Bauer committed
171
    Example using no index dimensions:
172
        >>> a = np.zeros([10, 10])
Martin Bauer's avatar
Martin Bauer committed
173
        >>> f = Field.create_from_numpy_array("f", a, index_dimensions=0)
Martin Bauer's avatar
Martin Bauer committed
174
        >>> jacobi = (f[-1,0] + f[1,0] + f[0,-1] + f[0,1]) / 4
175

Martin Bauer's avatar
Martin Bauer committed
176
    Examples for index dimensions to create LB field and implement stream pull:
Martin Bauer's avatar
Martin Bauer committed
177
        >>> from pystencils import Assignment
178
        >>> stencil = np.array([[0,0], [0,1], [0,-1]])
Martin Bauer's avatar
Martin Bauer committed
179
        >>> src, dst = fields("src(3), dst(3) : double[2D]")
180
        >>> assignments = [Assignment(dst[0,0](i), src[-offset](i)) for i, offset in enumerate(stencil)];
181
    """
182
183

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
184
    def create_generic(field_name, spatial_dimensions, dtype=np.float64, index_dimensions=0, layout='numpy',
Michael Kuron's avatar
Michael Kuron committed
185
                       index_shape=None, field_type=FieldType.GENERIC, staggered=False) -> 'Field':
186
187
188
        """
        Creates a generic field where the field size is not fixed i.e. can be called with arrays of different sizes

Martin Bauer's avatar
Martin Bauer committed
189
190
191
192
193
194
195
        Args:
            field_name: symbolic name for the field
            dtype: numpy data type of the array the kernel is called with later
            spatial_dimensions: see documentation of Field
            index_dimensions: see documentation of Field
            layout: tuple specifying the loop ordering of the spatial dimensions e.g. (2, 1, 0 ) means that
                    the outer loop loops over dimension 2, the second outer over dimension 1, and the inner loop
Martin Bauer's avatar
Martin Bauer committed
196
                    over dimension 0. Also allowed: the strings 'numpy' (0,1,..d) or 'reverse_numpy' (d, ..., 1, 0)
Martin Bauer's avatar
Martin Bauer committed
197
198
199
200
201
            index_shape: optional shape of the index dimensions i.e. maximum values allowed for each index dimension,
                        has to be a list or tuple
            field_type: besides the normal GENERIC fields, there are INDEXED fields that store indices of the domain
                        that should be iterated over, and BUFFER fields that are used to generate
                        communication packing/unpacking kernels
Michael Kuron's avatar
Michael Kuron committed
202
            staggered: enables staggered access (with half-integer offsets) and corresponding printing
203
        """
204
205
206
        if index_shape is not None:
            assert index_dimensions == 0 or index_dimensions == len(index_shape)
            index_dimensions = len(index_shape)
207
        if isinstance(layout, str):
Martin Bauer's avatar
Martin Bauer committed
208
            layout = spatial_layout_string_to_tuple(layout, dim=spatial_dimensions)
209

Martin Bauer's avatar
Martin Bauer committed
210
211
        total_dimensions = spatial_dimensions + index_dimensions
        if index_shape is None or len(index_shape) == 0:
212
            shape = tuple([FieldShapeSymbol([field_name], i) for i in range(total_dimensions)])
213
        else:
214
            shape = tuple([FieldShapeSymbol([field_name], i) for i in range(spatial_dimensions)] + list(index_shape))
215

216
        strides = tuple([FieldStrideSymbol(field_name, i) for i in range(total_dimensions)])
217

Martin Bauer's avatar
Martin Bauer committed
218
219
220
        np_data_type = np.dtype(dtype)
        if np_data_type.fields is not None:
            if index_dimensions != 0:
221
222
223
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)
Michael Kuron's avatar
Michael Kuron committed
224
225
        if staggered and index_dimensions == 0:
            raise ValueError("A staggered field needs at least one index dimension")
226

Michael Kuron's avatar
Michael Kuron committed
227
        return Field(field_name, field_type, dtype, layout, shape, strides, staggered)
228

229
    @staticmethod
Michael Kuron's avatar
Michael Kuron committed
230
231
    def create_from_numpy_array(field_name: str, array: np.ndarray, index_dimensions: int = 0,
                                staggered=False) -> 'Field':
Martin Bauer's avatar
Martin Bauer committed
232
233
        """Creates a field based on the layout, data type, and shape of a given numpy array.

234
        Kernels created for these kind of fields can only be called with arrays of the same layout, shape and type.
Martin Bauer's avatar
Martin Bauer committed
235
236
237
238
239

        Args:
            field_name: symbolic name for the field
            array: numpy array
            index_dimensions: see documentation of Field
Michael Kuron's avatar
Michael Kuron committed
240
            staggered: enables staggered access (with half-integer offsets) and corresponding printing
241
        """
Martin Bauer's avatar
Martin Bauer committed
242
243
        spatial_dimensions = len(array.shape) - index_dimensions
        if spatial_dimensions < 1:
244
245
            raise ValueError("Too many index dimensions. At least one spatial dimension required")

Martin Bauer's avatar
Martin Bauer committed
246
247
248
        full_layout = get_layout_of_array(array)
        spatial_layout = tuple([i for i in full_layout if i < spatial_dimensions])
        assert len(spatial_layout) == spatial_dimensions
249

Martin Bauer's avatar
Martin Bauer committed
250
251
        strides = tuple([s // np.dtype(array.dtype).itemsize for s in array.strides])
        shape = tuple(int(s) for s in array.shape)
252

Martin Bauer's avatar
Martin Bauer committed
253
254
255
        numpy_dtype = np.dtype(array.dtype)
        if numpy_dtype.fields is not None:
            if index_dimensions != 0:
256
257
258
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)
Michael Kuron's avatar
Michael Kuron committed
259
260
        if staggered and index_dimensions == 0:
            raise ValueError("A staggered field needs at least one index dimension")
261

Michael Kuron's avatar
Michael Kuron committed
262
        return Field(field_name, FieldType.GENERIC, array.dtype, spatial_layout, shape, strides, staggered)
263
264

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
265
    def create_fixed_size(field_name: str, shape: Tuple[int, ...], index_dimensions: int = 0,
Michael Kuron's avatar
Michael Kuron committed
266
267
                          dtype=np.float64, layout: str = 'numpy', strides: Optional[Sequence[int]] = None,
                          staggered=False) -> 'Field':
268
        """
269
        Creates a field with fixed sizes i.e. can be called only with arrays of the same size and layout
270

Martin Bauer's avatar
Martin Bauer committed
271
272
273
274
275
276
277
        Args:
            field_name: symbolic name for the field
            shape: overall shape of the array
            index_dimensions: how many of the trailing dimensions are interpreted as index (as opposed to spatial)
            dtype: numpy data type of the array the kernel is called with later
            layout: full layout of array, not only spatial dimensions
            strides: strides in bytes or None to automatically compute them from shape (assuming no padding)
Michael Kuron's avatar
Michael Kuron committed
278
            staggered: enables staggered access (with half-integer offsets) and corresponding printing
279
        """
Martin Bauer's avatar
Martin Bauer committed
280
281
        spatial_dimensions = len(shape) - index_dimensions
        assert spatial_dimensions >= 1
282

283
        if isinstance(layout, str):
Martin Bauer's avatar
Martin Bauer committed
284
            layout = layout_string_to_tuple(layout, spatial_dimensions + index_dimensions)
285
286

        shape = tuple(int(s) for s in shape)
287
        if strides is None:
Martin Bauer's avatar
Martin Bauer committed
288
            strides = compute_strides(shape, layout)
289
290
291
        else:
            assert len(strides) == len(shape)
            strides = tuple([s // np.dtype(dtype).itemsize for s in strides])
292

Martin Bauer's avatar
Martin Bauer committed
293
294
295
        numpy_dtype = np.dtype(dtype)
        if numpy_dtype.fields is not None:
            if index_dimensions != 0:
296
297
298
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)
Michael Kuron's avatar
Michael Kuron committed
299
300
        if staggered and index_dimensions == 0:
            raise ValueError("A staggered field needs at least one index dimension")
301

Martin Bauer's avatar
Martin Bauer committed
302
303
304
        spatial_layout = list(layout)
        for i in range(spatial_dimensions, len(layout)):
            spatial_layout.remove(i)
Michael Kuron's avatar
Michael Kuron committed
305
        return Field(field_name, FieldType.GENERIC, dtype, tuple(spatial_layout), shape, strides, staggered)
306

Michael Kuron's avatar
Michael Kuron committed
307
    def __init__(self, field_name, field_type, dtype, layout, shape, strides, staggered):
308
        """Do not use directly. Use static create* methods"""
309
        self._field_name = field_name
Martin Bauer's avatar
Martin Bauer committed
310
        assert isinstance(field_type, FieldType)
311
        assert len(shape) == len(strides)
Martin Bauer's avatar
Martin Bauer committed
312
        self.field_type = field_type
Martin Bauer's avatar
Martin Bauer committed
313
        self._dtype = create_type(dtype)
Martin Bauer's avatar
Martin Bauer committed
314
        self._layout = normalize_layout(layout)
315
316
        self.shape = shape
        self.strides = strides
317
        self.latex_name = None  # type: Optional[str]
318
319
320
321
        self.coordinate_origin = sp.Matrix(tuple(
            0 for _ in range(self.spatial_dimensions)
        ))  # type: tuple[float,sp.Symbol]
        self.coordinate_transform = sp.eye(self.spatial_dimensions)
Michael Kuron's avatar
Michael Kuron committed
322
        self.is_staggered = staggered
323

Martin Bauer's avatar
Martin Bauer committed
324
    def new_field_with_different_name(self, new_name):
325
326
327
328
329
        if self.has_fixed_shape:
            return Field(new_name, self.field_type, self._dtype, self._layout, self.shape, self.strides)
        else:
            return Field.create_generic(new_name, self.spatial_dimensions, self.dtype.numpy_dtype,
                                        self.index_dimensions, self._layout, self.index_shape, self.field_type)
330

331
    @property
Martin Bauer's avatar
Martin Bauer committed
332
    def spatial_dimensions(self) -> int:
333
334
335
        return len(self._layout)

    @property
Martin Bauer's avatar
Martin Bauer committed
336
    def index_dimensions(self) -> int:
337
        return len(self.shape) - len(self._layout)
338

339
340
341
342
    @property
    def ndim(self) -> int:
        return len(self.shape)

343
344
345
    def values_per_cell(self) -> int:
        return functools.reduce(operator.mul, self.index_shape, 1)

346
347
348
349
350
    @property
    def layout(self):
        return self._layout

    @property
Martin Bauer's avatar
Martin Bauer committed
351
    def name(self) -> str:
352
        return self._field_name
353
354

    @property
Martin Bauer's avatar
Martin Bauer committed
355
356
    def spatial_shape(self) -> Tuple[int, ...]:
        return self.shape[:self.spatial_dimensions]
357

358
    @property
Martin Bauer's avatar
Martin Bauer committed
359
    def has_fixed_shape(self):
Martin Bauer's avatar
Martin Bauer committed
360
        return is_integer_sequence(self.shape)
361

362
    @property
Martin Bauer's avatar
Martin Bauer committed
363
364
    def index_shape(self):
        return self.shape[self.spatial_dimensions:]
365

366
    @property
Martin Bauer's avatar
Martin Bauer committed
367
368
    def has_fixed_index_shape(self):
        return is_integer_sequence(self.index_shape)
369

370
    @property
Martin Bauer's avatar
Martin Bauer committed
371
372
    def spatial_strides(self):
        return self.strides[:self.spatial_dimensions]
373
374

    @property
Martin Bauer's avatar
Martin Bauer committed
375
376
    def index_strides(self):
        return self.strides[self.spatial_dimensions:]
377
378
379
380
381

    @property
    def dtype(self):
        return self._dtype

382
383
384
385
    @property
    def itemsize(self):
        return self.dtype.numpy_dtype.itemsize

386
    def __repr__(self):
387
        return self._field_name
388

Martin Bauer's avatar
Martin Bauer committed
389
390
391
392
    def neighbor(self, coord_id, offset):
        offset_list = [0] * self.spatial_dimensions
        offset_list[coord_id] = offset
        return Field.Access(self, tuple(offset_list))
393

394
    def neighbors(self, stencil):
395
        return [self.__getitem__(s) for s in stencil]
396

397
    @property
Martin Bauer's avatar
Martin Bauer committed
398
399
400
    def center_vector(self):
        index_shape = self.index_shape
        if len(index_shape) == 0:
401
402
            return sp.Matrix([self.center])
        if len(index_shape) == 1:
Martin Bauer's avatar
Martin Bauer committed
403
404
            return sp.Matrix([self(i) for i in range(index_shape[0])])
        elif len(index_shape) == 2:
405
406
407
            def cb(*args):
                r = self.__call__(*args)
                return r
Martin Bauer's avatar
Martin Bauer committed
408
            return sp.Matrix(*index_shape, cb)
409

410
    @property
411
    def center(self):
Martin Bauer's avatar
Martin Bauer committed
412
        center = tuple([0] * self.spatial_dimensions)
413
414
        return Field.Access(self, center)

415
416
417
418
    def __getitem__(self, offset):
        if type(offset) is np.ndarray:
            offset = tuple(offset)
        if type(offset) is str:
Martin Bauer's avatar
Martin Bauer committed
419
            offset = tuple(direction_string_to_offset(offset, self.spatial_dimensions))
420
421
        if type(offset) is not tuple:
            offset = (offset,)
Martin Bauer's avatar
Martin Bauer committed
422
        if len(offset) != self.spatial_dimensions:
423
            raise ValueError("Wrong number of spatial indices: "
Martin Bauer's avatar
Martin Bauer committed
424
                             "Got %d, expected %d" % (len(offset), self.spatial_dimensions))
425
426
        return Field.Access(self, offset)

Martin Bauer's avatar
Martin Bauer committed
427
    def absolute_access(self, offset, index):
Martin Bauer's avatar
Martin Bauer committed
428
        assert FieldType.is_custom(self)
Martin Bauer's avatar
Martin Bauer committed
429
430
        return Field.Access(self, offset, index, is_absolute_access=True)

431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
    def interpolated_access(self,
                            offset: Tuple,
                            interpolation_mode='linear',
                            address_mode='BORDER',
                            allow_textures=True):
        """Provides access to field values at non-integer positions

        ``interpolated_access`` is similar to :func:`Field.absolute_access` except that
        it allows non-integer offsets and automatic handling of out-of-bound accesses.

        :param offset:              Tuple of spatial coordinates (can be floats)
        :param interpolation_mode:  One of :class:`pystencils.interpolation_astnodes.InterpolationMode`
        :param address_mode:        How boundaries are handled can be 'border', 'wrap', 'mirror', 'clamp'
        :param allow_textures:      Allow implementation by texture accesses on GPUs
        """
        from pystencils.interpolation_astnodes import Interpolator
        return Interpolator(self,
                            interpolation_mode,
                            address_mode,
                            allow_textures=allow_textures).at(offset)

Michael Kuron's avatar
Michael Kuron committed
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
    def staggered_access(self, offset, index=None):
        """If this field is a staggered field, it can be accessed using half-integer offsets.
        For example, an offset of ``(0, sp.Rational(1,2))`` or ``"E"`` corresponds to the staggered point to the east
        of the cell center, i.e. half-way to the eastern-next cell.
        If the field stores more than one value per staggered point (e.g. a vector or a tensor), the index (integer or
        tuple of integers) refers to which of these values to access.
        """
        assert self.is_staggered

        if type(offset) is np.ndarray:
            offset = tuple(offset)
        if type(offset) is str:
            offset = tuple(direction_string_to_offset(offset, self.spatial_dimensions))
            offset = tuple([o * sp.Rational(1, 2) for o in offset])
        if type(offset) is not tuple:
            offset = (offset,)
        if len(offset) != self.spatial_dimensions:
            raise ValueError("Wrong number of spatial indices: "
                             "Got %d, expected %d" % (len(offset), self.spatial_dimensions))

        offset = list(offset)
        for i, o in enumerate(offset):
            if (o + sp.Rational(1, 2)).is_Integer:
                offset[i] += sp.Rational(1, 2)
                idx = i
        offset = tuple(offset)

        if self.index_dimensions == 1:  # this field stores a scalar value at each staggered position
            if index is not None:
                raise ValueError("Cannot specify an index for a scalar staggered field")
            return Field.Access(self, offset, (idx,))
        else:  # this field stores a vector or tensor at each staggered position
            if index is None:
                raise ValueError("Wrong number of indices: "
                                 "Got %d, expected %d" % (0, self.index_dimensions - 1))
            if type(index) is np.ndarray:
                index = tuple(index)
            if type(index) is not tuple:
                index = (index,)
            if self.index_dimensions != len(index) + 1:
                raise ValueError("Wrong number of indices: "
                                 "Got %d, expected %d" % (len(index), self.index_dimensions - 1))

            return Field.Access(self, offset, (idx, *index))

497
    def __call__(self, *args, **kwargs):
Martin Bauer's avatar
Martin Bauer committed
498
        center = tuple([0] * self.spatial_dimensions)
499
500
        return Field.Access(self, center)(*args, **kwargs)

501
    def hashable_contents(self):
502
503
        dth = hash(self._dtype)
        return self._layout, self.shape, self.strides, dth, self.field_type, self._field_name, self.latex_name
504

505
    def __hash__(self):
506
        return hash(self.hashable_contents())
507
508

    def __eq__(self, other):
509
510
        if not isinstance(other, Field):
            return False
511
        return self.hashable_contents() == other.hashable_contents()
512

513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
    @property
    def physical_coordinates(self):
        return self.coordinate_transform @ (self.coordinate_origin + pystencils.x_vector(self.spatial_dimensions))

    @property
    def physical_coordinates_staggered(self):
        return self.coordinate_transform @ \
            (self.coordinate_origin + pystencils.x_staggered_vector(self.spatial_dimensions))

    def index_to_physical(self, index_coordinates, staggered=False):
        if staggered:
            index_coordinates = sp.Matrix([i + 0.5 for i in index_coordinates])
        return self.coordinate_transform @ (self.coordinate_origin + index_coordinates)

    def physical_to_index(self, physical_coordinates, staggered=False):
        rtn = self.coordinate_transform.inv() @ physical_coordinates - self.coordinate_origin
        if staggered:
            rtn = sp.Matrix([i - 0.5 for i in rtn])

        return rtn

    def index_to_staggered_physical_coordinates(self, symbol_vector):
        symbol_vector += sp.Matrix([0.5] * self.spatial_dimensions)
        return self.create_physical_coordinates(symbol_vector)

    def set_coordinate_origin_to_field_center(self):
        self.coordinate_origin = -sp.Matrix([i / 2 for i in self.spatial_shape])

Martin Bauer's avatar
Martin Bauer committed
541
    # noinspection PyAttributeOutsideInit,PyUnresolvedReferences
542
    class Access(TypedSymbol, AbstractField.AbstractAccess):
Martin Bauer's avatar
Martin Bauer committed
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
        """Class representing a relative access into a `Field`.

        This class behaves like a normal sympy Symbol, it is actually derived from it. One can built up
        sympy expressions using field accesses, solve for them, etc.

        Examples:
            >>> vector_field_2d = fields("v(2): double[2D]")  # create a 2D vector field
            >>> northern_neighbor_y_component = vector_field_2d[0, 1](1)
            >>> northern_neighbor_y_component
            v_N^1
            >>> central_y_component = vector_field_2d(1)
            >>> central_y_component
            v_C^1
            >>> central_y_component.get_shifted(1, 0)  # move the existing access
            v_E^1
            >>> central_y_component.at_index(0)  # change component
            v_C^0
        """
561

562
563
564
565
        def __new__(cls, name, *args, **kwargs):
            obj = Field.Access.__xnew_cached_(cls, name, *args, **kwargs)
            return obj

566
        def __new_stage2__(self, field, offsets=(0, 0, 0), idx=None, is_absolute_access=False, dtype=None):
Martin Bauer's avatar
Martin Bauer committed
567
            field_name = field.name
Martin Bauer's avatar
Martin Bauer committed
568
            offsets_and_index = (*offsets, *idx) if idx is not None else offsets
Martin Bauer's avatar
Martin Bauer committed
569
            constant_offsets = not any([isinstance(o, sp.Basic) and not o.is_Integer for o in offsets_and_index])
570
571

            if not idx:
Martin Bauer's avatar
Martin Bauer committed
572
                idx = tuple([0] * field.index_dimensions)
573

Martin Bauer's avatar
Martin Bauer committed
574
575
576
            if constant_offsets:
                offset_name = offset_to_direction_string(offsets)
                if field.index_dimensions == 0:
577
                    superscript = None
Martin Bauer's avatar
Martin Bauer committed
578
                elif field.index_dimensions == 1:
579
                    superscript = str(idx[0])
580
                else:
Martin Bauer's avatar
Martin Bauer committed
581
582
583
584
                    idx_str = ",".join([str(e) for e in idx])
                    superscript = idx_str
                if field.has_fixed_index_shape and not isinstance(field.dtype, StructType):
                    for i, bound in zip(idx, field.index_shape):
585
586
                        if i >= bound:
                            raise ValueError("Field index out of bounds")
587
            else:
588
                offset_name = hashlib.md5(pickle.dumps(offsets_and_index)).hexdigest()[:12]
589
                superscript = None
590

Martin Bauer's avatar
Martin Bauer committed
591
            symbol_name = "%s_%s" % (field_name, offset_name)
592
            if superscript is not None:
Martin Bauer's avatar
Martin Bauer committed
593
                symbol_name += "^" + superscript
594

595
            obj = super(Field.Access, self).__xnew__(self, symbol_name, field.dtype)
596
597
598
599
600
601
602
            obj._field = field
            obj._offsets = []
            for o in offsets:
                if isinstance(o, sp.Basic):
                    obj._offsets.append(o)
                else:
                    obj._offsets.append(int(o))
603
            obj._offsets = tuple(obj._offsets)
Martin Bauer's avatar
Martin Bauer committed
604
            obj._offsetName = offset_name
605
            obj._superscript = superscript
606
607
            obj._index = idx

Martin Bauer's avatar
Martin Bauer committed
608
609
610
611
612
613
            obj._indirect_addressing_fields = set()
            for e in chain(obj._offsets, obj._index):
                if isinstance(e, sp.Basic):
                    obj._indirect_addressing_fields.update(a.field for a in e.atoms(Field.Access))

            obj._is_absolute_access = is_absolute_access
Michael Kuron's avatar
Michael Kuron committed
614
            obj.is_staggered = field.is_staggered
615
616
            return obj

617
        def __getnewargs__(self):
618
            return self.field, self.offsets, self.index, self.is_absolute_access, self.dtype
619

Martin Bauer's avatar
Martin Bauer committed
620
        # noinspection SpellCheckingInspection
621
        __xnew__ = staticmethod(__new_stage2__)
Martin Bauer's avatar
Martin Bauer committed
622
        # noinspection SpellCheckingInspection
623
624
625
        __xnew_cached_ = staticmethod(cacheit(__new_stage2__))

        def __call__(self, *idx):
Martin Bauer's avatar
Martin Bauer committed
626
            if self._index != tuple([0] * self.field.index_dimensions):
627
628
629
                raise ValueError("Indexing an already indexed Field.Access")

            idx = tuple(idx)
630

Martin Bauer's avatar
Martin Bauer committed
631
            if self.field.index_dimensions == 0 and idx == (0,):
632
633
                idx = ()

Martin Bauer's avatar
Martin Bauer committed
634
            if len(idx) != self.field.index_dimensions:
635
                raise ValueError("Wrong number of indices: "
Martin Bauer's avatar
Martin Bauer committed
636
                                 "Got %d, expected %d" % (len(idx), self.field.index_dimensions))
637
            return Field.Access(self.field, self._offsets, idx, dtype=self.dtype)
638

Martin Bauer's avatar
Martin Bauer committed
639
640
641
        def __getitem__(self, *idx):
            return self.__call__(*idx)

Martin Bauer's avatar
Martin Bauer committed
642
643
644
645
646
        def __iter__(self):
            """This is necessary to work with parts of sympy that test if an object is iterable (e.g. simplify).
            The __getitem__ would make it iterable"""
            raise TypeError("Field access is not iterable")

647
        @property
Martin Bauer's avatar
Martin Bauer committed
648
649
        def field(self) -> 'Field':
            """Field that the Access points to"""
650
651
652
            return self._field

        @property
Martin Bauer's avatar
Martin Bauer committed
653
654
        def offsets(self) -> Tuple:
            """Spatial offset as tuple"""
655
            return self._offsets
656

657
        @property
Martin Bauer's avatar
Martin Bauer committed
658
659
        def required_ghost_layers(self) -> int:
            """Largest spatial distance that is accessed."""
660
661
662
            return int(np.max(np.abs(self._offsets)))

        @property
Martin Bauer's avatar
Martin Bauer committed
663
        def nr_of_coordinates(self):
664
665
666
            return len(self._offsets)

        @property
Martin Bauer's avatar
Martin Bauer committed
667
        def offset_name(self) -> str:
Martin Bauer's avatar
Martin Bauer committed
668
669
670
671
672
673
674
            """Spatial offset as string, East-West for x, North-South for y and Top-Bottom for z coordinate.

            Example:
                >>> f = fields("f: double[2D]")
                >>> f[1, 1].offset_name  # north-east
                'NE'
            """
675
676
677
678
            return self._offsetName

        @property
        def index(self):
Martin Bauer's avatar
Martin Bauer committed
679
            """Value of index coordinates as tuple."""
680
681
            return self._index

682
        def neighbor(self, coord_id: int, offset: int) -> 'Field.Access':
Martin Bauer's avatar
Martin Bauer committed
683
684
685
686
687
688
689
690
691
692
693
            """Returns a new Access with changed spatial coordinates.

            Args:
                coord_id: index of the coordinate to change (0 for x, 1 for y,...)
                offset: incremental change of this coordinate

            Example:
                >>> f = fields('f: [2D]')
                >>> f[0,0].neighbor(coord_id=1, offset=-1)
                f_S
            """
Martin Bauer's avatar
Martin Bauer committed
694
695
            offset_list = list(self.offsets)
            offset_list[coord_id] += offset
696
            return Field.Access(self.field, tuple(offset_list), self.index, dtype=self.dtype)
697

698
        def get_shifted(self, *shift) -> 'Field.Access':
Martin Bauer's avatar
Martin Bauer committed
699
700
701
702
703
704
705
            """Returns a new Access with changed spatial coordinates

            Example:
                >>> f = fields("f: [2D]")
                >>> f[0,0].get_shifted(1, 1)
                f_NE
            """
706
707
708
709
            return Field.Access(self.field,
                                tuple(a + b for a, b in zip(shift, self.offsets)),
                                self.index,
                                dtype=self.dtype)
710

Martin Bauer's avatar
Martin Bauer committed
711
712
713
714
715
716
717
718
        def at_index(self, *idx_tuple) -> 'Field.Access':
            """Returns new Access with changed index.

            Example:
                >>> f = fields("f(9): [2D]")
                >>> f(0).at_index(8)
                f_C^8
            """
719
            return Field.Access(self.field, self.offsets, idx_tuple, dtype=self.dtype)
720

721
722
723
724
725
726
        def _eval_subs(self, old, new):
            return Field.Access(self.field,
                                tuple(sp.sympify(a).subs(old, new) for a in self.offsets),
                                tuple(sp.sympify(a).subs(old, new) for a in self.index),
                                dtype=self.dtype)

Martin Bauer's avatar
Martin Bauer committed
727
728
729
730
731
732
733
734
735
736
737
738
739
        @property
        def is_absolute_access(self) -> bool:
            """Indicates if a field access is relative to the loop counters (this is the default) or absolute"""
            return self._is_absolute_access

        @property
        def indirect_addressing_fields(self) -> Set['Field']:
            """Returns a set of fields that the access depends on.

             e.g. f[index_field[1, 0]], the outer access to f depends on index_field
             """
            return self._indirect_addressing_fields

740
        def _hashable_content(self):
741
742
            super_class_contents = super(Field.Access, self)._hashable_content()
            return (super_class_contents, self._field.hashable_contents(), *self._index, *self._offsets)
Martin Bauer's avatar
Martin Bauer committed
743

Martin Bauer's avatar
Martin Bauer committed
744
        def _latex(self, _):
745
            n = self._field.latex_name if self._field.latex_name else self._field.name
Martin Bauer's avatar
Martin Bauer committed
746
            offset_str = ",".join([sp.latex(o) for o in self.offsets])
Michael Kuron's avatar
Michael Kuron committed
747
748
749
            if self.is_staggered:
                offset_str = ",".join([sp.latex(o - sp.Rational(int(i == self.index[0]), 2))
                                       for i, o in enumerate(self.offsets)])
Martin Bauer's avatar
Martin Bauer committed
750
751
752
753
754
            if self.is_absolute_access:
                offset_str = "\\mathbf{}".format(offset_str)
            elif self.field.spatial_dimensions > 1:
                offset_str = "({})".format(offset_str)

Michael Kuron's avatar
Michael Kuron committed
755
756
757
758
759
760
            if self.is_staggered:
                if self.index and self.field.index_dimensions > 1:
                    return "{{%s}_{%s}^{%s}}" % (n, offset_str, self.index[1:]
                                                 if len(self.index) > 2 else self.index[1])
                else:
                    return "{{%s}_{%s}}" % (n, offset_str)
Martin Bauer's avatar
Martin Bauer committed
761
            else:
Michael Kuron's avatar
Michael Kuron committed
762
763
764
765
                if self.index and self.field.index_dimensions > 0:
                    return "{{%s}_{%s}^{%s}}" % (n, offset_str, self.index if len(self.index) > 1 else self.index[0])
                else:
                    return "{{%s}_{%s}}" % (n, offset_str)
Martin Bauer's avatar
Martin Bauer committed
766

767
768
769
        def __str__(self):
            n = self._field.latex_name if self._field.latex_name else self._field.name
            offset_str = ",".join([sp.latex(o) for o in self.offsets])
Michael Kuron's avatar
Michael Kuron committed
770
771
772
            if self.is_staggered:
                offset_str = ",".join([sp.latex(o - sp.Rational(int(i == self.index[0]), 2))
                                       for i, o in enumerate(self.offsets)])
773
774
            if self.is_absolute_access:
                offset_str = "[abs]{}".format(offset_str)
Michael Kuron's avatar
Michael Kuron committed
775
776
777
778
779
780

            if self.is_staggered:
                if self.index and self.field.index_dimensions > 1:
                    return "%s[%s](%s)" % (n, offset_str, self.index[1:] if len(self.index) > 2 else self.index[1])
                else:
                    return "%s[%s]" % (n, offset_str)
781
            else:
Michael Kuron's avatar
Michael Kuron committed
782
783
784
785
                if self.index and self.field.index_dimensions > 0:
                    return "%s[%s](%s)" % (n, offset_str, self.index if len(self.index) > 1 else self.index[0])
                else:
                    return "%s[%s]" % (n, offset_str)
786

Martin Bauer's avatar
Martin Bauer committed
787

Martin Bauer's avatar
Martin Bauer committed
788
789
def get_layout_from_strides(strides: Sequence[int], index_dimension_ids: Optional[List[int]] = None):
    index_dimension_ids = [] if index_dimension_ids is None else index_dimension_ids
790
    coordinates = list(range(len(strides)))
Martin Bauer's avatar
Martin Bauer committed
791
    relevant_strides = [stride for i, stride in enumerate(strides) if i not in index_dimension_ids]
792
    result = [x for (y, x) in sorted(zip(relevant_strides, coordinates), key=lambda pair: pair[0], reverse=True)]
Martin Bauer's avatar
Martin Bauer committed
793
    return normalize_layout(result)
794
795


Martin Bauer's avatar
Martin Bauer committed
796
797
798
799
800
801
def get_layout_of_array(arr: np.ndarray, index_dimension_ids: Optional[List[int]] = None):
    """ Returns a list indicating the memory layout (linearization order) of the numpy array.

    Examples:
        >>> get_layout_of_array(np.zeros([3,3,3]))
        (0, 1, 2)
Martin Bauer's avatar
Martin Bauer committed
802
803
804
805
806

    In this example the loop over the zeroth coordinate should be the outermost loop,
    followed by the first and second. Elements arr[x,y,0] and arr[x,y,1] are adjacent in memory.
    Normally constructed numpy arrays have this order, however by stride tricks or other frameworks, arrays
    with different memory layout can be created.
Martin Bauer's avatar
Martin Bauer committed
807

Martin Bauer's avatar
Martin Bauer committed
808
    The index_dimension_ids parameter leaves specifies which coordinates should not be
Martin Bauer's avatar
Martin Bauer committed
809
    """
Martin Bauer's avatar
Martin Bauer committed
810
811
    index_dimension_ids = [] if index_dimension_ids is None else index_dimension_ids
    return get_layout_from_strides(arr.strides, index_dimension_ids)
812
813


Martin Bauer's avatar
Martin Bauer committed
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
def create_numpy_array_with_layout(shape, layout, alignment=False, byte_offset=0, **kwargs):
    """Creates numpy array with given memory layout.

    Args:
        shape: shape of the resulting array
        layout: layout as tuple, where the coordinates are ordered from slow to fast
        alignment: number of bytes to align the beginning and the innermost coordinate to, or False for no alignment
        byte_offset: only used when alignment is specified, align not beginning but address at this offset
                     mostly used to align first inner cell, not ghost cells

    Example:
        >>> res = create_numpy_array_with_layout(shape=(2, 3, 4, 5), layout=(3, 2, 0, 1))
        >>> res.shape
        (2, 3, 4, 5)
        >>> get_layout_of_array(res)
        (3, 2, 0, 1)
830
831
    """
    assert set(layout) == set(range(len(shape))), "Wrong layout descriptor"
Martin Bauer's avatar
Martin Bauer committed
832
    cur_layout = list(range(len(shape)))
833
834
    swaps = []
    for i in range(len(layout)):
Martin Bauer's avatar
Martin Bauer committed
835
836
837
838
839
        if cur_layout[i] != layout[i]:
            index_to_swap_with = cur_layout.index(layout[i])
            swaps.append((i, index_to_swap_with))
            cur_layout[i], cur_layout[index_to_swap_with] = cur_layout[index_to_swap_with], cur_layout[i]
    assert tuple(cur_layout) == tuple(layout)
840
841
842
843
844

    shape = list(shape)
    for a, b in swaps:
        shape[a], shape[b] = shape[b], shape[a]

845
846
847
848
849
    if not alignment:
        res = np.empty(shape, order='c', **kwargs)
    else:
        if alignment is True:
            alignment = 8 * 4
Martin Bauer's avatar
Martin Bauer committed
850
        res = aligned_empty(shape, alignment, byte_offset=byte_offset, **kwargs)
851

852
853
854
855
856
    for a, b in reversed(swaps):
        res = res.swapaxes(a, b)
    return res


Martin Bauer's avatar
Martin Bauer committed
857
858
def spatial_layout_string_to_tuple(layout_str: str, dim: int) -> Tuple[int, ...]:
    if layout_str in ('fzyx', 'zyxf'):
859
860
        assert dim <= 3
        return tuple(reversed(range(dim)))
861

Martin Bauer's avatar
Martin Bauer committed
862
    if layout_str in ('fzyx', 'f', 'reverse_numpy', 'SoA'):
863
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
864
    elif layout_str in ('c', 'numpy', 'AoS'):
865
        return tuple(range(dim))
Martin Bauer's avatar
Martin Bauer committed
866
    raise ValueError("Unknown layout descriptor " + layout_str)
867
868


Martin Bauer's avatar
Martin Bauer committed
869
870
871
def layout_string_to_tuple(layout_str, dim):
    layout_str = layout_str.lower()
    if layout_str == 'fzyx' or layout_str == 'soa':
872
873
        assert dim <= 4
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
874
    elif layout_str == 'zyxf' or layout_str == 'aos':
875
        assert dim <= 4
Martin Bauer's avatar
Martin Bauer committed
876
        return tuple(reversed(range(dim - 1))) + (dim - 1,)
Martin Bauer's avatar
Martin Bauer committed
877
    elif layout_str == 'f' or layout_str == 'reverse_numpy':
878
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
879
    elif layout_str == 'c' or layout_str == 'numpy':
880
        return tuple(range(dim))
Martin Bauer's avatar
Martin Bauer committed
881
    raise ValueError("Unknown layout descriptor " + layout_str)
882
883


Martin Bauer's avatar
Martin Bauer committed
884
def normalize_layout(layout):
885
    """Takes a layout tuple and subtracts the minimum from all entries"""
Martin Bauer's avatar
Martin Bauer committed
886
887
    min_entry = min(layout)
    return tuple(i - min_entry for i in layout)
888
889


Martin Bauer's avatar
Martin Bauer committed
890
def compute_strides(shape, layout):
891
892
    """
    Computes strides assuming no padding exists
Martin Bauer's avatar
Martin Bauer committed
893
894
895
896
897
898
899

    Args:
        shape: shape (size) of array
        layout: layout specification as tuple

    Returns:
        strides in elements, not in bytes
900
    """
Martin Bauer's avatar
Martin Bauer committed
901
902
903
904
    dim = len(shape)
    assert len(layout) == dim
    assert len(set(layout)) == dim
    strides = [0] * dim
905
    product = 1
906
    for j in reversed(layout):
907
908
909
        strides[j] = product
        product *= shape[j]
    return tuple(strides)
Martin Bauer's avatar
Martin Bauer committed
910
911


912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
# ---------------------------------------- Parsing of string in fields() function --------------------------------------

field_description_regex = re.compile(r"""
    \s*                 # ignore leading white spaces
    (\w+)               # identifier is a sequence of alphanumeric characters, is stored in first group
    (?:                 # optional index specification e.g. (1, 4, 2)
        \s*
        \(
            ([^\)]+)    # read everything up to closing bracket
        \)
        \s*
    )?
    \s*,?\s*             # ignore trailing white spaces and comma
""", re.VERBOSE)

type_description_regex = re.compile(r"""
    \s*
    (\w+)?       # optional dtype
    \s*
    \[
        ([^\]]+)
    \]
    \s*
""", re.VERBOSE | re.IGNORECASE)
936
937
938


def _parse_description(description):
939
940
941
    def parse_part1(d):
        result = field_description_regex.match(d)
        while result:
942
            name, index_str = result.group(1), result.group(2)
943
944
945
946
947
948
949
950
            index = tuple(int(e) for e in index_str.split(",")) if index_str else ()
            yield name, index
            d = d[result.end():]
            result = field_description_regex.match(d)

    def parse_part2(d):
        result = type_description_regex.match(d)
        if result:
951
            data_type_str, size_info = result.group(1), result.group(2).strip().lower()
952
953
954
955
956
957
958
959
960
961
962
963
964
965
            if data_type_str is None:
                data_type_str = 'float64'
            data_type_str = data_type_str.lower().strip()

            if not data_type_str:
                data_type_str = 'float64'
            if size_info.endswith('d'):
                size_info = int(size_info[:-1])
            else:
                size_info = tuple(int(e) for e in size_info.split(","))
            return data_type_str, size_info
        else:
            raise ValueError("Could not parse field description")

966
    if ':' in description:
967
        field_description, field_info = description.split(':')
968
    else:
969
970
971
972
973
        field_description, field_info = description, 'float64[2D]'

    fields_info = [e for e in parse_part1(field_description)]
    if not field_info:
        raise ValueError("Could not parse field description")
974

975
976
    data_type, size = parse_part2(field_info)
    return fields_info, data_type, size