test_datahandling.py 7.13 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import numpy as np
import os
from tempfile import TemporaryDirectory

import pystencils as ps
from pystencils import create_kernel, create_data_handling


def basic_iteration(dh):
    dh.add_array('basic_iter_test_gl_default')
    dh.add_array('basic_iter_test_gl_3', ghost_layers=3)

    for b in dh.iterate():
        assert b.shape == b['basic_iter_test_gl_3'].shape
        assert b.shape == b['basic_iter_test_gl_default'].shape


def access_and_gather(dh, domain_size):
    dh.add_array('f1', dtype=np.dtype(np.int32))
    dh.add_array_like('f2', 'f1')
    dh.add_array('v1', values_per_cell=3, dtype=np.int64, ghost_layers=2)
    dh.add_array_like('v2', 'v1')

    dh.swap('f1', 'f2')
    dh.swap('v1', 'v2')

    # Check symbolic field properties
    assert dh.fields.f1.index_dimensions == 0
    assert dh.fields.f1.spatial_dimensions == len(domain_size)
    assert dh.fields.f1.dtype.numpy_dtype == np.int32

    assert dh.fields.v1.index_dimensions == 1
    assert dh.fields.v1.spatial_dimensions == len(domain_size)
    assert dh.fields.v1.dtype.numpy_dtype == np.int64

    for b in dh.iterate(ghost_layers=0):
        val = sum(b.cell_index_arrays)
        np.copyto(b['f1'], val)
        for i, coord_arr in enumerate(b.cell_index_arrays):
            np.copyto(b['v1'][..., i], coord_arr)

    full_arr = dh.gather_array('v1')
    if full_arr is not None:
        expected_shape = domain_size + (3,)
        assert full_arr.shape == expected_shape
        for x in range(full_arr.shape[0]):
            for y in range(full_arr.shape[1]):
                if len(domain_size) == 3:
                    for z in range(full_arr.shape[2]):
                        assert full_arr[x, y, z, 0] == x
                        assert full_arr[x, y, z, 1] == y
                        assert full_arr[x, y, z, 2] == z
                else:
                    assert len(domain_size) == 2
                    assert full_arr[x, y, 0] == x
                    assert full_arr[x, y, 1] == y

    full_arr = dh.gather_array('f1')
    if full_arr is not None:
        expected_shape = domain_size
        assert full_arr.shape == expected_shape
        for x in range(full_arr.shape[0]):
            for y in range(full_arr.shape[1]):
                if len(domain_size) == 3:
                    for z in range(full_arr.shape[2]):
                        assert full_arr[x, y, z] == x + y + z
                else:
                    assert len(domain_size) == 2
                    assert full_arr[x, y] == x + y


def synchronization(dh, test_gpu=False):
    field_name = 'comm_field_test'
    if test_gpu:
        try:
            from pycuda import driver
            import pycuda.autoinit
        except ImportError:
            return
        field_name += 'Gpu'

    dh.add_array(field_name, ghost_layers=1, dtype=np.int32, cpu=True, gpu=test_gpu)

    # initialize everything with 1
    for b in dh.iterate(ghost_layers=1):
        b[field_name].fill(1)
    for b in dh.iterate(ghost_layers=0):
        b[field_name].fill(42)

    if test_gpu:
        dh.to_gpu(field_name)

    dh.synchronization_function(field_name, target='gpu' if test_gpu else 'cpu')()

    if test_gpu:
        dh.to_cpu(field_name)

    for b in dh.iterate(ghost_layers=1):
        np.testing.assert_equal(42, b[field_name])


def kernel_execution_jacobi(dh, test_gpu=False):
    if test_gpu:
        try:
            from pycuda import driver
            import pycuda.autoinit
        except ImportError:
            print("Skipping kernel_execution_jacobi GPU version, because pycuda not available")
            return

    dh.add_array('f', gpu=test_gpu)
    dh.add_array('tmp', gpu=test_gpu)
    stencil_2d = [(1, 0), (-1, 0), (0, 1), (0, -1)]
    stencil_3d = [(1, 0, 0), (-1, 0, 0), (0, 1, 0), (0, -1, 0), (0, 0, 1), (0, 0, -1)]
    stencil = stencil_2d if dh.dim == 2 else stencil_3d

    @ps.kernel
    def jacobi():
        dh.fields.tmp.center @= sum(dh.fields.f.neighbors(stencil)) / len(stencil)

    kernel = create_kernel(jacobi, target='gpu' if test_gpu else 'cpu').compile()
    for b in dh.iterate(ghost_layers=1):
        b['f'].fill(42)
    dh.run_kernel(kernel)
    for b in dh.iterate(ghost_layers=0):
        np.testing.assert_equal(b['f'], 42)


def vtk_output(dh):
    dh.add_array('scalar_field')
    dh.add_array('vector_field', values_per_cell=dh.dim)
    dh.add_array('multiple_scalar_field', values_per_cell=9)
    dh.add_array('flag_field', dtype=np.uint16)

    fields_names = ['scalar_field', 'vector_field', 'multiple_scalar_field', 'flag_field']
    with TemporaryDirectory() as tmp_dir:
        writer1 = dh.create_vtk_writer(os.path.join(tmp_dir, "out1"), fields_names, ghost_layers=True)
        writer2 = dh.create_vtk_writer(os.path.join(tmp_dir, "out2"), fields_names, ghost_layers=False)
        masks_to_name = {1: 'flag1', 5: 'some_mask'}
        writer3 = dh.create_vtk_writer_for_flag_array(os.path.join(tmp_dir, "out3"), 'flag_field', masks_to_name)
        writer1(1)
        writer2(1)
        writer3(1)


def reduction(dh):
    float_seq = [1.0, 2.0, 3.0]
    int_seq = [1, 2, 3]
    for op in ('min', 'max', 'sum'):
        assert (dh.reduce_float_sequence(float_seq, op) == float_seq).all()
        assert (dh.reduce_int_sequence(int_seq, op) == int_seq).all()


def test_symbolic_fields():
    dh = create_data_handling(domain_size=(5, 7))
    dh.add_array('f1', values_per_cell=dh.dim)
    assert dh.fields['f1'].spatial_dimensions == dh.dim
    assert dh.fields['f1'].index_dimensions == 1

    dh.add_array_like("f_tmp", "f1", latex_name=r"f_{tmp}")
    assert dh.fields['f_tmp'].spatial_dimensions == dh.dim
    assert dh.fields['f_tmp'].index_dimensions == 1

    dh.swap('f1', 'f_tmp')


def test_access():
    for domain_shape in [(2, 3, 4), (2, 4)]:
        for f_size in (1, 4):
            dh = create_data_handling(domain_size=domain_shape)
            dh.add_array('f1', values_per_cell=f_size)
            assert dh.dim == len(domain_shape)

            for b in dh.iterate(ghost_layers=1):
                if f_size > 1:
                    assert b['f1'].shape == tuple(ds+2 for ds in domain_shape) + (f_size,)
                else:
                    assert b['f1'].shape == tuple(ds + 2 for ds in domain_shape)

            for b in dh.iterate(ghost_layers=0):
                if f_size > 1:
                    assert b['f1'].shape == domain_shape + (f_size,)
                else:
                    assert b['f1'].shape == domain_shape


def test_access_and_gather():
    for domain_shape in [(2, 2, 3), (2, 3)]:
        dh = create_data_handling(domain_size=domain_shape, periodicity=True)
        access_and_gather(dh, domain_shape)
        synchronization(dh, test_gpu=False)
        synchronization(dh, test_gpu=True)


def test_kernel():
    for domain_shape in [(4, 5), (3, 4, 5)]:
        dh = create_data_handling(domain_size=domain_shape, periodicity=True)
        kernel_execution_jacobi(dh, test_gpu=True)

        dh = create_data_handling(domain_size=domain_shape, periodicity=True)
        kernel_execution_jacobi(dh, test_gpu=False)
        reduction(dh)


def test_vtk_output():
    for domain_shape in [(4, 5), (3, 4, 5)]:
        dh = create_data_handling(domain_size=domain_shape, periodicity=True)
        vtk_output(dh)