field.py 34.8 KB
Newer Older
1
from enum import Enum
2
from itertools import chain
Martin Bauer's avatar
Martin Bauer committed
3
from typing import Tuple, Sequence, Optional, List, Set
4
5
6
7
import numpy as np
import sympy as sp
from sympy.core.cache import cacheit
from sympy.tensor import IndexedBase
8
from pystencils.alignedarray import aligned_empty
Martin Bauer's avatar
Martin Bauer committed
9
from pystencils.data_types import TypedSymbol, create_type, create_composite_type_from_string, StructType
Martin Bauer's avatar
Martin Bauer committed
10
from pystencils.sympyextensions import is_integer_sequence
11

Martin Bauer's avatar
Martin Bauer committed
12
13
__all__ = ['Field', 'fields', 'FieldType']

14

15
16
17
18
def fields(description=None, index_dimensions=0, layout=None, **kwargs):
    """Creates pystencils fields from a string description.

    Examples:
Martin Bauer's avatar
Martin Bauer committed
19
20
21
22
        Create a 2D scalar and vector field:
            >>> s, v = fields("s, v(2): double[2D]")
            >>> assert s.spatial_dimensions == 2 and s.index_dimensions == 0
            >>> assert (v.spatial_dimensions, v.index_dimensions, v.index_shape) == (2, 1, (2,))
23

Martin Bauer's avatar
Martin Bauer committed
24
25
26
27
        Create an integer field of shape (10, 20):
            >>> f = fields("f : int32[10, 20]")
            >>> f.has_fixed_shape, f.shape
            (True, (10, 20))
28

Martin Bauer's avatar
Martin Bauer committed
29
30
31
32
33
        Numpy arrays can be used as template for shape and data type of field:
            >>> arr_s, arr_v = np.zeros([20, 20]), np.zeros([20, 20, 2])
            >>> s, v = fields("s, v(2)", s=arr_s, v=arr_v)
            >>> assert s.index_dimensions == 0 and s.dtype.numpy_dtype == arr_s.dtype
            >>> assert v.index_shape == (2,)
34
35


Martin Bauer's avatar
Martin Bauer committed
36
37
38
39
40
41
42
43
44
45
        Format string can be left out, field names are taken from keyword arguments.
            >>> fields(f1=arr_s, f2=arr_s)
            [f1, f2]

        The keyword names ``index_dimension`` and ``layout`` have special meaning, don't use them for field names
            >>> f = fields(f=arr_v, index_dimensions=1)
            >>> assert f.index_dimensions == 1
            >>> f = fields("pdfs(19) : float32[3D]", layout='fzyx')
            >>> f.layout
            (2, 1, 0)
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    """
    result = []
    if description:
        field_descriptions, dtype, shape = _parse_description(description)
        layout = 'numpy' if layout is None else layout
        for field_name, idx_shape in field_descriptions:
            if field_name in kwargs:
                arr = kwargs[field_name]
                idx_shape_of_arr = () if not len(idx_shape) else arr.shape[-len(idx_shape):]
                assert idx_shape_of_arr == idx_shape
                f = Field.create_from_numpy_array(field_name, kwargs[field_name], index_dimensions=len(idx_shape))
            elif isinstance(shape, tuple):
                f = Field.create_fixed_size(field_name, shape + idx_shape, dtype=dtype,
                                            index_dimensions=len(idx_shape), layout=layout)
            elif isinstance(shape, int):
                f = Field.create_generic(field_name, spatial_dimensions=shape, dtype=dtype,
                                         index_shape=idx_shape, layout=layout)
            elif shape is None:
                f = Field.create_generic(field_name, spatial_dimensions=2, dtype=dtype,
                                         index_shape=idx_shape, layout=layout)
            else:
                assert False
            result.append(f)
    else:
        assert layout is None, "Layout can not be specified when creating Field from numpy array"
        for field_name, arr in kwargs.items():
            result.append(Field.create_from_numpy_array(field_name, arr, index_dimensions=index_dimensions))

    if len(result) == 0:
        return None
    elif len(result) == 1:
        return result[0]
    else:
        return result


82
83
84
85
86
87
88
89
class FieldType(Enum):
    # generic fields
    GENERIC = 0
    # index fields are currently only used for boundary handling
    # the coordinates are not the loop counters in that case, but are read from this index field
    INDEXED = 1
    # communication buffer, used for (un)packing data in communication.
    BUFFER = 2
Martin Bauer's avatar
Martin Bauer committed
90
91
92
    # unsafe fields may be accessed in an absolute fashion - the index depends on the data
    # and thus may lead to out-of-bounds accesses
    CUSTOM = 3
93
94

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
95
    def is_generic(field):
96
        assert isinstance(field, Field)
Martin Bauer's avatar
Martin Bauer committed
97
        return field.field_type == FieldType.GENERIC
98
99

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
100
    def is_indexed(field):
101
        assert isinstance(field, Field)
Martin Bauer's avatar
Martin Bauer committed
102
        return field.field_type == FieldType.INDEXED
103
104

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
105
    def is_buffer(field):
106
        assert isinstance(field, Field)
Martin Bauer's avatar
Martin Bauer committed
107
        return field.field_type == FieldType.BUFFER
108

Martin Bauer's avatar
Martin Bauer committed
109
110
111
112
113
    @staticmethod
    def is_custom(field):
        assert isinstance(field, Field)
        return field.field_type == FieldType.CUSTOM

114

115
class Field:
116
117
118
119
    """
    With fields one can formulate stencil-like update rules on structured grids.
    This Field class knows about the dimension, memory layout (strides) and optionally about the size of an array.

Martin Bauer's avatar
Martin Bauer committed
120
    Creating Fields:
Martin Bauer's avatar
Martin Bauer committed
121
122
        The preferred method to create fields is the `fields` function.
        Alternatively one can use one of the static functions `Field.create_generic`, `Field.create_from_numpy_array`
123
        and `Field.create_fixed_size`. Don't instantiate the Field directly!
Martin Bauer's avatar
Martin Bauer committed
124
125
126
127
128
        Fields can be created with known or unknown shapes:

        1. If you want to create a kernel with fixed loop sizes i.e. the shape of the array is already known.
           This is usually the case if just-in-time compilation directly from Python is done.
           (see `Field.create_from_numpy_array`
129
        2. create a more general kernel that works for variable array sizes. This can be used to create kernels
Martin Bauer's avatar
Martin Bauer committed
130
           beforehand for a library. (see `Field.create_generic`)
131

Martin Bauer's avatar
Martin Bauer committed
132
    Dimensions and Indexing:
133
134
        A field has spatial and index dimensions, where the spatial dimensions come first.
        The interpretation is that the field has multiple cells in (usually) two or three dimensional space which are
Martin Bauer's avatar
Martin Bauer committed
135
        looped over. Additionally N values are stored per cell. In this case spatial_dimensions is two or three,
Martin Bauer's avatar
Martin Bauer committed
136
        and index_dimensions equals N. If you want to store a matrix on each point in a two dimensional grid, there
Martin Bauer's avatar
Martin Bauer committed
137
        are four dimensions, two spatial and two index dimensions: ``len(arr.shape) == spatial_dims + index_dims``
138

Martin Bauer's avatar
Martin Bauer committed
139
140
141
142
143
        The shape of the index dimension does not have to be specified. Just use the 'index_dimensions' parameter.
        However, it is good practice to define the shape, since out of bounds accesses can be directly detected in this
        case. The shape can be passed with the 'index_shape' parameter of the field creation functions.

        When accessing (indexing) a field the result is a `Field.Access` which is derived from sympy Symbol.
Martin Bauer's avatar
Martin Bauer committed
144
        First specify the spatial offsets in [], then in case index_dimension>0 the indices in ()
Martin Bauer's avatar
Martin Bauer committed
145
        e.g. ``f[-1,0,0](7)``
146

Martin Bauer's avatar
Martin Bauer committed
147
    Example using no index dimensions:
148
        >>> a = np.zeros([10, 10])
Martin Bauer's avatar
Martin Bauer committed
149
        >>> f = Field.create_from_numpy_array("f", a, index_dimensions=0)
Martin Bauer's avatar
Martin Bauer committed
150
        >>> jacobi = (f[-1,0] + f[1,0] + f[0,-1] + f[0,1]) / 4
151

Martin Bauer's avatar
Martin Bauer committed
152
    Examples for index dimensions to create LB field and implement stream pull:
Martin Bauer's avatar
Martin Bauer committed
153
        >>> from pystencils import Assignment
154
        >>> stencil = np.array([[0,0], [0,1], [0,-1]])
Martin Bauer's avatar
Martin Bauer committed
155
        >>> src, dst = fields("src(3), dst(3) : double[2D]")
156
        >>> assignments = [Assignment(dst[0,0](i), src[-offset](i)) for i, offset in enumerate(stencil)];
157
    """
158
159

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
160
161
    def create_generic(field_name, spatial_dimensions, dtype=np.float64, index_dimensions=0, layout='numpy',
                       index_shape=None, field_type=FieldType.GENERIC) -> 'Field':
162
163
164
        """
        Creates a generic field where the field size is not fixed i.e. can be called with arrays of different sizes

Martin Bauer's avatar
Martin Bauer committed
165
166
167
168
169
170
171
        Args:
            field_name: symbolic name for the field
            dtype: numpy data type of the array the kernel is called with later
            spatial_dimensions: see documentation of Field
            index_dimensions: see documentation of Field
            layout: tuple specifying the loop ordering of the spatial dimensions e.g. (2, 1, 0 ) means that
                    the outer loop loops over dimension 2, the second outer over dimension 1, and the inner loop
Martin Bauer's avatar
Martin Bauer committed
172
                    over dimension 0. Also allowed: the strings 'numpy' (0,1,..d) or 'reverse_numpy' (d, ..., 1, 0)
Martin Bauer's avatar
Martin Bauer committed
173
174
175
176
177
            index_shape: optional shape of the index dimensions i.e. maximum values allowed for each index dimension,
                        has to be a list or tuple
            field_type: besides the normal GENERIC fields, there are INDEXED fields that store indices of the domain
                        that should be iterated over, and BUFFER fields that are used to generate
                        communication packing/unpacking kernels
178
        """
179
180
181
        if index_shape is not None:
            assert index_dimensions == 0 or index_dimensions == len(index_shape)
            index_dimensions = len(index_shape)
182
        if isinstance(layout, str):
Martin Bauer's avatar
Martin Bauer committed
183
184
185
186
187
188
            layout = spatial_layout_string_to_tuple(layout, dim=spatial_dimensions)
        shape_symbol = IndexedBase(TypedSymbol(Field.SHAPE_PREFIX + field_name, Field.SHAPE_DTYPE), shape=(1,))
        stride_symbol = IndexedBase(TypedSymbol(Field.STRIDE_PREFIX + field_name, Field.STRIDE_DTYPE), shape=(1,))
        total_dimensions = spatial_dimensions + index_dimensions
        if index_shape is None or len(index_shape) == 0:
            shape = tuple([shape_symbol[i] for i in range(total_dimensions)])
189
        else:
Martin Bauer's avatar
Martin Bauer committed
190
            shape = tuple([shape_symbol[i] for i in range(spatial_dimensions)] + list(index_shape))
191

Martin Bauer's avatar
Martin Bauer committed
192
        strides = tuple([stride_symbol[i] for i in range(total_dimensions)])
193

Martin Bauer's avatar
Martin Bauer committed
194
195
196
        np_data_type = np.dtype(dtype)
        if np_data_type.fields is not None:
            if index_dimensions != 0:
197
198
199
200
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)

Martin Bauer's avatar
Martin Bauer committed
201
        return Field(field_name, field_type, dtype, layout, shape, strides)
202

203
    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
204
205
206
    def create_from_numpy_array(field_name: str, array: np.ndarray, index_dimensions: int = 0) -> 'Field':
        """Creates a field based on the layout, data type, and shape of a given numpy array.

207
        Kernels created for these kind of fields can only be called with arrays of the same layout, shape and type.
Martin Bauer's avatar
Martin Bauer committed
208
209
210
211
212

        Args:
            field_name: symbolic name for the field
            array: numpy array
            index_dimensions: see documentation of Field
213
        """
Martin Bauer's avatar
Martin Bauer committed
214
215
        spatial_dimensions = len(array.shape) - index_dimensions
        if spatial_dimensions < 1:
216
217
            raise ValueError("Too many index dimensions. At least one spatial dimension required")

Martin Bauer's avatar
Martin Bauer committed
218
219
220
        full_layout = get_layout_of_array(array)
        spatial_layout = tuple([i for i in full_layout if i < spatial_dimensions])
        assert len(spatial_layout) == spatial_dimensions
221

Martin Bauer's avatar
Martin Bauer committed
222
223
        strides = tuple([s // np.dtype(array.dtype).itemsize for s in array.strides])
        shape = tuple(int(s) for s in array.shape)
224

Martin Bauer's avatar
Martin Bauer committed
225
226
227
        numpy_dtype = np.dtype(array.dtype)
        if numpy_dtype.fields is not None:
            if index_dimensions != 0:
228
229
230
231
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)

Martin Bauer's avatar
Martin Bauer committed
232
        return Field(field_name, FieldType.GENERIC, array.dtype, spatial_layout, shape, strides)
233
234

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
235
    def create_fixed_size(field_name: str, shape: Tuple[int, ...], index_dimensions: int = 0,
236
                          dtype=np.float64, layout: str = 'numpy', strides: Optional[Sequence[int]] = None) -> 'Field':
237
        """
238
        Creates a field with fixed sizes i.e. can be called only with arrays of the same size and layout
239

Martin Bauer's avatar
Martin Bauer committed
240
241
242
243
244
245
246
        Args:
            field_name: symbolic name for the field
            shape: overall shape of the array
            index_dimensions: how many of the trailing dimensions are interpreted as index (as opposed to spatial)
            dtype: numpy data type of the array the kernel is called with later
            layout: full layout of array, not only spatial dimensions
            strides: strides in bytes or None to automatically compute them from shape (assuming no padding)
247
        """
Martin Bauer's avatar
Martin Bauer committed
248
249
        spatial_dimensions = len(shape) - index_dimensions
        assert spatial_dimensions >= 1
250

251
        if isinstance(layout, str):
Martin Bauer's avatar
Martin Bauer committed
252
            layout = layout_string_to_tuple(layout, spatial_dimensions + index_dimensions)
253
254

        shape = tuple(int(s) for s in shape)
255
        if strides is None:
Martin Bauer's avatar
Martin Bauer committed
256
            strides = compute_strides(shape, layout)
257
258
259
        else:
            assert len(strides) == len(shape)
            strides = tuple([s // np.dtype(dtype).itemsize for s in strides])
260

Martin Bauer's avatar
Martin Bauer committed
261
262
263
        numpy_dtype = np.dtype(dtype)
        if numpy_dtype.fields is not None:
            if index_dimensions != 0:
264
265
266
267
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)

Martin Bauer's avatar
Martin Bauer committed
268
269
270
271
        spatial_layout = list(layout)
        for i in range(spatial_dimensions, len(layout)):
            spatial_layout.remove(i)
        return Field(field_name, FieldType.GENERIC, dtype, tuple(spatial_layout), shape, strides)
272

Martin Bauer's avatar
Martin Bauer committed
273
    def __init__(self, field_name, field_type, dtype, layout, shape, strides):
274
        """Do not use directly. Use static create* methods"""
275
        self._field_name = field_name
Martin Bauer's avatar
Martin Bauer committed
276
        assert isinstance(field_type, FieldType)
277
        assert len(shape) == len(strides)
Martin Bauer's avatar
Martin Bauer committed
278
        self.field_type = field_type
Martin Bauer's avatar
Martin Bauer committed
279
        self._dtype = create_type(dtype)
Martin Bauer's avatar
Martin Bauer committed
280
        self._layout = normalize_layout(layout)
281
282
        self.shape = shape
        self.strides = strides
283
        self.latex_name = None  # type: Optional[str]
284

Martin Bauer's avatar
Martin Bauer committed
285
    def new_field_with_different_name(self, new_name):
Martin Bauer's avatar
Martin Bauer committed
286
        return Field(new_name, self.field_type, self._dtype, self._layout, self.shape, self.strides)
287

288
    @property
Martin Bauer's avatar
Martin Bauer committed
289
    def spatial_dimensions(self) -> int:
290
291
292
        return len(self._layout)

    @property
Martin Bauer's avatar
Martin Bauer committed
293
    def index_dimensions(self) -> int:
294
        return len(self.shape) - len(self._layout)
295
296
297
298
299
300

    @property
    def layout(self):
        return self._layout

    @property
Martin Bauer's avatar
Martin Bauer committed
301
    def name(self) -> str:
302
        return self._field_name
303
304

    @property
Martin Bauer's avatar
Martin Bauer committed
305
306
    def spatial_shape(self) -> Tuple[int, ...]:
        return self.shape[:self.spatial_dimensions]
307

308
    @property
Martin Bauer's avatar
Martin Bauer committed
309
    def has_fixed_shape(self):
Martin Bauer's avatar
Martin Bauer committed
310
        return is_integer_sequence(self.shape)
311

312
    @property
Martin Bauer's avatar
Martin Bauer committed
313
314
    def index_shape(self):
        return self.shape[self.spatial_dimensions:]
315

316
    @property
Martin Bauer's avatar
Martin Bauer committed
317
318
    def has_fixed_index_shape(self):
        return is_integer_sequence(self.index_shape)
319

320
    @property
Martin Bauer's avatar
Martin Bauer committed
321
322
    def spatial_strides(self):
        return self.strides[:self.spatial_dimensions]
323
324

    @property
Martin Bauer's avatar
Martin Bauer committed
325
326
    def index_strides(self):
        return self.strides[self.spatial_dimensions:]
327
328
329
330
331
332

    @property
    def dtype(self):
        return self._dtype

    def __repr__(self):
333
        return self._field_name
334

Martin Bauer's avatar
Martin Bauer committed
335
336
337
338
    def neighbor(self, coord_id, offset):
        offset_list = [0] * self.spatial_dimensions
        offset_list[coord_id] = offset
        return Field.Access(self, tuple(offset_list))
339

340
    def neighbors(self, stencil):
341
        return [self.__getitem__(s) for s in stencil]
342

343
    @property
Martin Bauer's avatar
Martin Bauer committed
344
345
346
    def center_vector(self):
        index_shape = self.index_shape
        if len(index_shape) == 0:
347
            return self.center
Martin Bauer's avatar
Martin Bauer committed
348
349
350
        elif len(index_shape) == 1:
            return sp.Matrix([self(i) for i in range(index_shape[0])])
        elif len(index_shape) == 2:
351
352
353
            def cb(*args):
                r = self.__call__(*args)
                return r
Martin Bauer's avatar
Martin Bauer committed
354
            return sp.Matrix(*index_shape, cb)
355

356
    @property
357
    def center(self):
Martin Bauer's avatar
Martin Bauer committed
358
        center = tuple([0] * self.spatial_dimensions)
359
360
        return Field.Access(self, center)

361
362
363
364
    def __getitem__(self, offset):
        if type(offset) is np.ndarray:
            offset = tuple(offset)
        if type(offset) is str:
Martin Bauer's avatar
Martin Bauer committed
365
            offset = tuple(direction_string_to_offset(offset, self.spatial_dimensions))
366
367
        if type(offset) is not tuple:
            offset = (offset,)
Martin Bauer's avatar
Martin Bauer committed
368
        if len(offset) != self.spatial_dimensions:
369
            raise ValueError("Wrong number of spatial indices: "
Martin Bauer's avatar
Martin Bauer committed
370
                             "Got %d, expected %d" % (len(offset), self.spatial_dimensions))
371
372
        return Field.Access(self, offset)

Martin Bauer's avatar
Martin Bauer committed
373
    def absolute_access(self, offset, index):
Martin Bauer's avatar
Martin Bauer committed
374
        assert FieldType.is_custom(self)
Martin Bauer's avatar
Martin Bauer committed
375
376
        return Field.Access(self, offset, index, is_absolute_access=True)

377
    def __call__(self, *args, **kwargs):
Martin Bauer's avatar
Martin Bauer committed
378
        center = tuple([0] * self.spatial_dimensions)
379
380
381
        return Field.Access(self, center)(*args, **kwargs)

    def __hash__(self):
382
        return hash((self._layout, self.shape, self.strides, self._dtype, self.field_type, self._field_name))
383
384

    def __eq__(self, other):
385
386
        if not isinstance(other, Field):
            return False
Martin Bauer's avatar
Martin Bauer committed
387
388
        self_tuple = (self.shape, self.strides, self.name, self.dtype, self.field_type)
        other_tuple = (other.shape, other.strides, other.name, other.dtype, other.field_type)
Martin Bauer's avatar
Martin Bauer committed
389
        return self_tuple == other_tuple
390

391
392
393
    PREFIX = "f"
    STRIDE_PREFIX = PREFIX + "stride_"
    SHAPE_PREFIX = PREFIX + "shape_"
Martin Bauer's avatar
Martin Bauer committed
394
395
    STRIDE_DTYPE = create_composite_type_from_string("const int *")
    SHAPE_DTYPE = create_composite_type_from_string("const int *")
396
    DATA_PREFIX = PREFIX + "d_"
397

Martin Bauer's avatar
Martin Bauer committed
398
    # noinspection PyAttributeOutsideInit,PyUnresolvedReferences
399
    class Access(sp.Symbol):
Martin Bauer's avatar
Martin Bauer committed
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
        """Class representing a relative access into a `Field`.

        This class behaves like a normal sympy Symbol, it is actually derived from it. One can built up
        sympy expressions using field accesses, solve for them, etc.

        Examples:
            >>> vector_field_2d = fields("v(2): double[2D]")  # create a 2D vector field
            >>> northern_neighbor_y_component = vector_field_2d[0, 1](1)
            >>> northern_neighbor_y_component
            v_N^1
            >>> central_y_component = vector_field_2d(1)
            >>> central_y_component
            v_C^1
            >>> central_y_component.get_shifted(1, 0)  # move the existing access
            v_E^1
            >>> central_y_component.at_index(0)  # change component
            v_C^0
        """
418
419
420
421
        def __new__(cls, name, *args, **kwargs):
            obj = Field.Access.__xnew_cached_(cls, name, *args, **kwargs)
            return obj

Martin Bauer's avatar
Martin Bauer committed
422
        def __new_stage2__(self, field, offsets=(0, 0, 0), idx=None, is_absolute_access=False):
Martin Bauer's avatar
Martin Bauer committed
423
424
425
            field_name = field.name
            offsets_and_index = chain(offsets, idx) if idx is not None else offsets
            constant_offsets = not any([isinstance(o, sp.Basic) and not o.is_Integer for o in offsets_and_index])
426
427

            if not idx:
Martin Bauer's avatar
Martin Bauer committed
428
                idx = tuple([0] * field.index_dimensions)
429

Martin Bauer's avatar
Martin Bauer committed
430
431
432
            if constant_offsets:
                offset_name = offset_to_direction_string(offsets)
                if field.index_dimensions == 0:
433
                    superscript = None
Martin Bauer's avatar
Martin Bauer committed
434
                elif field.index_dimensions == 1:
435
                    superscript = str(idx[0])
436
                else:
Martin Bauer's avatar
Martin Bauer committed
437
438
439
440
                    idx_str = ",".join([str(e) for e in idx])
                    superscript = idx_str
                if field.has_fixed_index_shape and not isinstance(field.dtype, StructType):
                    for i, bound in zip(idx, field.index_shape):
441
442
                        if i >= bound:
                            raise ValueError("Field index out of bounds")
443
            else:
Martin Bauer's avatar
Martin Bauer committed
444
                offset_name = "%0.10X" % (abs(hash(tuple(offsets_and_index))))
445
                superscript = None
446

Martin Bauer's avatar
Martin Bauer committed
447
            symbol_name = "%s_%s" % (field_name, offset_name)
448
            if superscript is not None:
Martin Bauer's avatar
Martin Bauer committed
449
                symbol_name += "^" + superscript
450

Martin Bauer's avatar
Martin Bauer committed
451
            obj = super(Field.Access, self).__xnew__(self, symbol_name)
452
453
454
455
456
457
458
            obj._field = field
            obj._offsets = []
            for o in offsets:
                if isinstance(o, sp.Basic):
                    obj._offsets.append(o)
                else:
                    obj._offsets.append(int(o))
Martin Bauer's avatar
Martin Bauer committed
459
            obj._offsetName = offset_name
460
            obj._superscript = superscript
461
462
            obj._index = idx

Martin Bauer's avatar
Martin Bauer committed
463
464
465
466
467
468
            obj._indirect_addressing_fields = set()
            for e in chain(obj._offsets, obj._index):
                if isinstance(e, sp.Basic):
                    obj._indirect_addressing_fields.update(a.field for a in e.atoms(Field.Access))

            obj._is_absolute_access = is_absolute_access
469
470
            return obj

471
        def __getnewargs__(self):
Martin Bauer's avatar
Martin Bauer committed
472
            return self.field, self.offsets, self.index, self.is_absolute_access
473

Martin Bauer's avatar
Martin Bauer committed
474
        # noinspection SpellCheckingInspection
475
        __xnew__ = staticmethod(__new_stage2__)
Martin Bauer's avatar
Martin Bauer committed
476
        # noinspection SpellCheckingInspection
477
478
479
        __xnew_cached_ = staticmethod(cacheit(__new_stage2__))

        def __call__(self, *idx):
Martin Bauer's avatar
Martin Bauer committed
480
            if self._index != tuple([0] * self.field.index_dimensions):
481
482
483
                raise ValueError("Indexing an already indexed Field.Access")

            idx = tuple(idx)
484

Martin Bauer's avatar
Martin Bauer committed
485
            if self.field.index_dimensions == 0 and idx == (0,):
486
487
                idx = ()

Martin Bauer's avatar
Martin Bauer committed
488
            if len(idx) != self.field.index_dimensions:
489
                raise ValueError("Wrong number of indices: "
Martin Bauer's avatar
Martin Bauer committed
490
                                 "Got %d, expected %d" % (len(idx), self.field.index_dimensions))
491
492
            return Field.Access(self.field, self._offsets, idx)

Martin Bauer's avatar
Martin Bauer committed
493
494
495
        def __getitem__(self, *idx):
            return self.__call__(*idx)

Martin Bauer's avatar
Martin Bauer committed
496
497
498
499
500
        def __iter__(self):
            """This is necessary to work with parts of sympy that test if an object is iterable (e.g. simplify).
            The __getitem__ would make it iterable"""
            raise TypeError("Field access is not iterable")

501
        @property
Martin Bauer's avatar
Martin Bauer committed
502
503
        def field(self) -> 'Field':
            """Field that the Access points to"""
504
505
506
            return self._field

        @property
Martin Bauer's avatar
Martin Bauer committed
507
508
        def offsets(self) -> Tuple:
            """Spatial offset as tuple"""
509
            return tuple(self._offsets)
510

511
        @property
Martin Bauer's avatar
Martin Bauer committed
512
513
        def required_ghost_layers(self) -> int:
            """Largest spatial distance that is accessed."""
514
515
516
            return int(np.max(np.abs(self._offsets)))

        @property
Martin Bauer's avatar
Martin Bauer committed
517
        def nr_of_coordinates(self):
518
519
520
            return len(self._offsets)

        @property
Martin Bauer's avatar
Martin Bauer committed
521
        def offset_name(self) -> str:
Martin Bauer's avatar
Martin Bauer committed
522
523
524
525
526
527
528
            """Spatial offset as string, East-West for x, North-South for y and Top-Bottom for z coordinate.

            Example:
                >>> f = fields("f: double[2D]")
                >>> f[1, 1].offset_name  # north-east
                'NE'
            """
529
530
531
532
            return self._offsetName

        @property
        def index(self):
Martin Bauer's avatar
Martin Bauer committed
533
            """Value of index coordinates as tuple."""
534
535
            return self._index

Martin Bauer's avatar
Martin Bauer committed
536
        def neighbor(self, coord_id: int, offset: Sequence[int]) -> 'Field.Access':
Martin Bauer's avatar
Martin Bauer committed
537
538
539
540
541
542
543
544
545
546
547
            """Returns a new Access with changed spatial coordinates.

            Args:
                coord_id: index of the coordinate to change (0 for x, 1 for y,...)
                offset: incremental change of this coordinate

            Example:
                >>> f = fields('f: [2D]')
                >>> f[0,0].neighbor(coord_id=1, offset=-1)
                f_S
            """
Martin Bauer's avatar
Martin Bauer committed
548
549
550
            offset_list = list(self.offsets)
            offset_list[coord_id] += offset
            return Field.Access(self.field, tuple(offset_list), self.index)
551

Martin Bauer's avatar
Martin Bauer committed
552
        def get_shifted(self, *shift)-> 'Field.Access':
Martin Bauer's avatar
Martin Bauer committed
553
554
555
556
557
558
559
            """Returns a new Access with changed spatial coordinates

            Example:
                >>> f = fields("f: [2D]")
                >>> f[0,0].get_shifted(1, 1)
                f_NE
            """
560
561
            return Field.Access(self.field, tuple(a + b for a, b in zip(shift, self.offsets)), self.index)

Martin Bauer's avatar
Martin Bauer committed
562
563
564
565
566
567
568
569
        def at_index(self, *idx_tuple) -> 'Field.Access':
            """Returns new Access with changed index.

            Example:
                >>> f = fields("f(9): [2D]")
                >>> f(0).at_index(8)
                f_C^8
            """
570
571
            return Field.Access(self.field, self.offsets, idx_tuple)

Martin Bauer's avatar
Martin Bauer committed
572
573
574
575
576
577
578
579
580
581
582
583
584
        @property
        def is_absolute_access(self) -> bool:
            """Indicates if a field access is relative to the loop counters (this is the default) or absolute"""
            return self._is_absolute_access

        @property
        def indirect_addressing_fields(self) -> Set['Field']:
            """Returns a set of fields that the access depends on.

             e.g. f[index_field[1, 0]], the outer access to f depends on index_field
             """
            return self._indirect_addressing_fields

585
        def _hashable_content(self):
Martin Bauer's avatar
Martin Bauer committed
586
            super_class_contents = list(super(Field.Access, self)._hashable_content())
Martin Bauer's avatar
Martin Bauer committed
587
            t = tuple(super_class_contents + [id(self._field), self._index] + self._offsets)
588
            return t
Martin Bauer's avatar
Martin Bauer committed
589

Martin Bauer's avatar
Martin Bauer committed
590
        def _latex(self, _):
591
            n = self._field.latex_name if self._field.latex_name else self._field.name
Martin Bauer's avatar
Martin Bauer committed
592
593
594
595
596
597
598
599
            offset_str = ",".join([sp.latex(o) for o in self.offsets])
            if self.is_absolute_access:
                offset_str = "\\mathbf{}".format(offset_str)
            elif self.field.spatial_dimensions > 1:
                offset_str = "({})".format(offset_str)

            if self.index and self.index != (0,):
                return "{{%s}_{%s}^{%s}}" % (n, offset_str, self.index if len(self.index) > 1 else self.index[0])
Martin Bauer's avatar
Martin Bauer committed
600
            else:
Martin Bauer's avatar
Martin Bauer committed
601
                return "{{%s}_{%s}}" % (n, offset_str)
Martin Bauer's avatar
Martin Bauer committed
602

603
604
605
606
607
608
609
610
611
612
        def __str__(self):
            n = self._field.latex_name if self._field.latex_name else self._field.name
            offset_str = ",".join([sp.latex(o) for o in self.offsets])
            if self.is_absolute_access:
                offset_str = "[abs]{}".format(offset_str)
            if self.index and self.index != (0,):
                return "%s[%s](%s)" % (n, offset_str, self.index if len(self.index) > 1 else self.index[0])
            else:
                return "%s[%s]" % (n, offset_str)

Martin Bauer's avatar
Martin Bauer committed
613

Martin Bauer's avatar
Martin Bauer committed
614
615
def get_layout_from_strides(strides: Sequence[int], index_dimension_ids: Optional[List[int]] = None):
    index_dimension_ids = [] if index_dimension_ids is None else index_dimension_ids
616
    coordinates = list(range(len(strides)))
Martin Bauer's avatar
Martin Bauer committed
617
    relevant_strides = [stride for i, stride in enumerate(strides) if i not in index_dimension_ids]
618
    result = [x for (y, x) in sorted(zip(relevant_strides, coordinates), key=lambda pair: pair[0], reverse=True)]
Martin Bauer's avatar
Martin Bauer committed
619
    return normalize_layout(result)
620
621


Martin Bauer's avatar
Martin Bauer committed
622
623
624
625
626
627
def get_layout_of_array(arr: np.ndarray, index_dimension_ids: Optional[List[int]] = None):
    """ Returns a list indicating the memory layout (linearization order) of the numpy array.

    Examples:
        >>> get_layout_of_array(np.zeros([3,3,3]))
        (0, 1, 2)
Martin Bauer's avatar
Martin Bauer committed
628
629
630
631
632

    In this example the loop over the zeroth coordinate should be the outermost loop,
    followed by the first and second. Elements arr[x,y,0] and arr[x,y,1] are adjacent in memory.
    Normally constructed numpy arrays have this order, however by stride tricks or other frameworks, arrays
    with different memory layout can be created.
Martin Bauer's avatar
Martin Bauer committed
633

Martin Bauer's avatar
Martin Bauer committed
634
    The index_dimension_ids parameter leaves specifies which coordinates should not be
Martin Bauer's avatar
Martin Bauer committed
635
    """
Martin Bauer's avatar
Martin Bauer committed
636
637
    index_dimension_ids = [] if index_dimension_ids is None else index_dimension_ids
    return get_layout_from_strides(arr.strides, index_dimension_ids)
638
639


Martin Bauer's avatar
Martin Bauer committed
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
def create_numpy_array_with_layout(shape, layout, alignment=False, byte_offset=0, **kwargs):
    """Creates numpy array with given memory layout.

    Args:
        shape: shape of the resulting array
        layout: layout as tuple, where the coordinates are ordered from slow to fast
        alignment: number of bytes to align the beginning and the innermost coordinate to, or False for no alignment
        byte_offset: only used when alignment is specified, align not beginning but address at this offset
                     mostly used to align first inner cell, not ghost cells

    Example:
        >>> res = create_numpy_array_with_layout(shape=(2, 3, 4, 5), layout=(3, 2, 0, 1))
        >>> res.shape
        (2, 3, 4, 5)
        >>> get_layout_of_array(res)
        (3, 2, 0, 1)
656
657
    """
    assert set(layout) == set(range(len(shape))), "Wrong layout descriptor"
Martin Bauer's avatar
Martin Bauer committed
658
    cur_layout = list(range(len(shape)))
659
660
    swaps = []
    for i in range(len(layout)):
Martin Bauer's avatar
Martin Bauer committed
661
662
663
664
665
        if cur_layout[i] != layout[i]:
            index_to_swap_with = cur_layout.index(layout[i])
            swaps.append((i, index_to_swap_with))
            cur_layout[i], cur_layout[index_to_swap_with] = cur_layout[index_to_swap_with], cur_layout[i]
    assert tuple(cur_layout) == tuple(layout)
666
667
668
669
670

    shape = list(shape)
    for a, b in swaps:
        shape[a], shape[b] = shape[b], shape[a]

671
672
673
674
675
    if not alignment:
        res = np.empty(shape, order='c', **kwargs)
    else:
        if alignment is True:
            alignment = 8 * 4
Martin Bauer's avatar
Martin Bauer committed
676
        res = aligned_empty(shape, alignment, byte_offset=byte_offset, **kwargs)
677

678
679
680
681
682
    for a, b in reversed(swaps):
        res = res.swapaxes(a, b)
    return res


Martin Bauer's avatar
Martin Bauer committed
683
684
def spatial_layout_string_to_tuple(layout_str: str, dim: int) -> Tuple[int, ...]:
    if layout_str in ('fzyx', 'zyxf'):
685
686
        assert dim <= 3
        return tuple(reversed(range(dim)))
687

Martin Bauer's avatar
Martin Bauer committed
688
    if layout_str in ('fzyx', 'f', 'reverse_numpy', 'SoA'):
689
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
690
    elif layout_str in ('c', 'numpy', 'AoS'):
691
        return tuple(range(dim))
Martin Bauer's avatar
Martin Bauer committed
692
    raise ValueError("Unknown layout descriptor " + layout_str)
693
694


Martin Bauer's avatar
Martin Bauer committed
695
696
697
def layout_string_to_tuple(layout_str, dim):
    layout_str = layout_str.lower()
    if layout_str == 'fzyx' or layout_str == 'soa':
698
699
        assert dim <= 4
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
700
    elif layout_str == 'zyxf' or layout_str == 'aos':
701
        assert dim <= 4
Martin Bauer's avatar
Martin Bauer committed
702
        return tuple(reversed(range(dim - 1))) + (dim - 1,)
Martin Bauer's avatar
Martin Bauer committed
703
    elif layout_str == 'f' or layout_str == 'reverse_numpy':
704
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
705
    elif layout_str == 'c' or layout_str == 'numpy':
706
        return tuple(range(dim))
Martin Bauer's avatar
Martin Bauer committed
707
    raise ValueError("Unknown layout descriptor " + layout_str)
708
709


Martin Bauer's avatar
Martin Bauer committed
710
def normalize_layout(layout):
711
    """Takes a layout tuple and subtracts the minimum from all entries"""
Martin Bauer's avatar
Martin Bauer committed
712
713
    min_entry = min(layout)
    return tuple(i - min_entry for i in layout)
714
715


Martin Bauer's avatar
Martin Bauer committed
716
def compute_strides(shape, layout):
717
718
    """
    Computes strides assuming no padding exists
Martin Bauer's avatar
Martin Bauer committed
719
720
721
722
723
724
725

    Args:
        shape: shape (size) of array
        layout: layout specification as tuple

    Returns:
        strides in elements, not in bytes
726
    """
Martin Bauer's avatar
Martin Bauer committed
727
728
729
730
    dim = len(shape)
    assert len(layout) == dim
    assert len(set(layout)) == dim
    strides = [0] * dim
731
    product = 1
732
    for j in reversed(layout):
733
734
735
        strides[j] = product
        product *= shape[j]
    return tuple(strides)
Martin Bauer's avatar
Martin Bauer committed
736
737


Martin Bauer's avatar
Martin Bauer committed
738
739
740
def offset_component_to_direction_string(coordinate_id: int, value: int) -> str:
    """Translates numerical offset to string notation.

Martin Bauer's avatar
Martin Bauer committed
741
742
743
744
745
    x offsets are labeled with east 'E' and 'W',
    y offsets with north 'N' and 'S' and
    z offsets with top 'T' and bottom 'B'
    If the absolute value of the offset is bigger than 1, this number is prefixed.

Martin Bauer's avatar
Martin Bauer committed
746
747
748
749
750
751
752
753
754
    Args:
        coordinate_id: integer 0, 1 or 2 standing for x,y and z
        value: integer offset

    Examples:
        >>> offset_component_to_direction_string(0, 1)
        'E'
        >>> offset_component_to_direction_string(1, 2)
        '2N'
Martin Bauer's avatar
Martin Bauer committed
755
    """
756
    assert 0 <= coordinate_id < 3, "Works only for at most 3D arrays"
Martin Bauer's avatar
Martin Bauer committed
757
758
    name_components = (('W', 'E'),  # west, east
                       ('S', 'N'),  # south, north
759
                       ('B', 'T'))  # bottom, top
Martin Bauer's avatar
Martin Bauer committed
760
761
762
    if value == 0:
        result = ""
    elif value < 0:
Martin Bauer's avatar
Martin Bauer committed
763
        result = name_components[coordinate_id][0]
Martin Bauer's avatar
Martin Bauer committed
764
    else:
Martin Bauer's avatar
Martin Bauer committed
765
        result = name_components[coordinate_id][1]
Martin Bauer's avatar
Martin Bauer committed
766
767
768
769
770
    if abs(value) > 1:
        result = "%d%s" % (abs(value), result)
    return result


Martin Bauer's avatar
Martin Bauer committed
771
def offset_to_direction_string(offsets: Sequence[int]) -> str:
Martin Bauer's avatar
Martin Bauer committed
772
773
    """
    Translates numerical offset to string notation.
Martin Bauer's avatar
Martin Bauer committed
774
775
776
777
778
779
780
781
782
    For details see :func:`offset_component_to_direction_string`
    Args:
        offsets: 3-tuple with x,y,z offset

    Examples:
        >>> offset_to_direction_string([1, -1, 0])
        'SE'
        >>> offset_to_direction_string(([-3, 0, -2]))
        '2B3W'
Martin Bauer's avatar
Martin Bauer committed
783
    """
784
785
    if len(offsets) > 3:
        return str(offsets)
Martin Bauer's avatar
Martin Bauer committed
786
    names = ["", "", ""]
Martin Bauer's avatar
Martin Bauer committed
787
788
    for i in range(len(offsets)):
        names[i] = offset_component_to_direction_string(i, offsets[i])
Martin Bauer's avatar
Martin Bauer committed
789
790
791
792
793
794
    name = "".join(reversed(names))
    if name == "":
        name = "C"
    return name


Martin Bauer's avatar
Martin Bauer committed
795
def direction_string_to_offset(direction: str, dim: int = 3):
Martin Bauer's avatar
Martin Bauer committed
796
    """
Martin Bauer's avatar
Martin Bauer committed
797
    Reverse mapping of :func:`offset_to_direction_string`
Martin Bauer's avatar
Martin Bauer committed
798
799
800
801
802
803
804
805
806
807
808
809

    Args:
        direction: string representation of offset
        dim: dimension of offset, i.e the length of the returned list

    Examples:
        >>> direction_string_to_offset('NW', dim=3)
        array([-1,  1,  0])
        >>> direction_string_to_offset('NW', dim=2)
        array([-1,  1])
        >>> direction_string_to_offset(offset_to_direction_string((3,-2,1)))
        array([ 3, -2,  1])
Martin Bauer's avatar
Martin Bauer committed
810
    """
Martin Bauer's avatar
Martin Bauer committed
811
    offset_dict = {
Martin Bauer's avatar
Martin Bauer committed
812
813
814
815
816
817
818
819
820
821
822
823
824
        'C': np.array([0, 0, 0]),

        'W': np.array([-1, 0, 0]),
        'E': np.array([1, 0, 0]),

        'S': np.array([0, -1, 0]),
        'N': np.array([0, 1, 0]),

        'B': np.array([0, 0, -1]),
        'T': np.array([0, 0, 1]),
    }
    offset = np.array([0, 0, 0])

Martin Bauer's avatar
Martin Bauer committed
825
    while len(direction) > 0:
Martin Bauer's avatar
Martin Bauer committed
826
        factor = 1
Martin Bauer's avatar
Martin Bauer committed
827
828
829
830
831
832
833
834
835
        first_non_digit = 0
        while direction[first_non_digit].isdigit():
            first_non_digit += 1
        if first_non_digit > 0:
            factor = int(direction[:first_non_digit])
            direction = direction[first_non_digit:]
        cur_offset = offset_dict[direction[0]]
        offset += factor * cur_offset
        direction = direction[1:]
Martin Bauer's avatar
Martin Bauer committed
836
    return offset[:dim]
837

Martin Bauer's avatar
Martin Bauer committed
838

839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
def _parse_type_description(type_description):
    if not type_description:
        return np.float64, None
    elif '[' in type_description:
        assert type_description[-1] == ']'
        type_part, size_part = type_description[:-1].split("[", )
        if not type_part:
            type_part = "float64"
        if size_part.lower()[-1] == 'd':
            size_part = int(size_part[:-1])
        else:
            size_part = tuple(int(i) for i in size_part.split(','))
    else:
        type_part, size_part = type_description, None

    dtype = np.dtype(type_part).type
    return dtype, size_part


def _parse_field_description(description):
    if '(' not in description:
        return description, ()
    assert description[-1] == ')'
    name, index_shape = description[:-1].split('(')
    index_shape = tuple(int(i) for i in index_shape.split(','))
    return name, index_shape


def _parse_description(description):
    description = description.replace(' ', '')
    if ':' in description:
        name_descr, type_descr = description.split(':')
    else:
        name_descr, type_descr = description, ''

    # correct ',' splits inside brackets
    field_names = name_descr.split(',')
    cleaned_field_names = []
    prefix = ''
    for field_name in field_names:
        full_field_name = prefix + field_name
        if '(' in full_field_name and ')' not in full_field_name:
            prefix += field_name + ','
        else:
            prefix = ''
            cleaned_field_names.append(full_field_name)

    dtype, size = _parse_type_description(type_descr)
    fields_info = tuple(_parse_field_description(fd) for fd in cleaned_field_names)
    return fields_info, dtype, size