field.py 23.4 KB
Newer Older
1
from enum import Enum
2
3
4
5
6
from itertools import chain
import numpy as np
import sympy as sp
from sympy.core.cache import cacheit
from sympy.tensor import IndexedBase
Martin Bauer's avatar
Martin Bauer committed
7
from pystencils.data_types import TypedSymbol, createType, createCompositeTypeFromString
8
from pystencils.sympyextensions import isIntegerSequence
9
10


11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
class FieldType(Enum):
    # generic fields
    GENERIC = 0
    # index fields are currently only used for boundary handling
    # the coordinates are not the loop counters in that case, but are read from this index field
    INDEXED = 1
    # communication buffer, used for (un)packing data in communication.
    BUFFER = 2

    @staticmethod
    def isGeneric(field):
        assert isinstance(field, Field)
        return field.fieldType == FieldType.GENERIC

    @staticmethod
    def isIndexed(field):
        assert isinstance(field, Field)
        return field.fieldType == FieldType.INDEXED

    @staticmethod
    def isBuffer(field):
        assert isinstance(field, Field)
        return field.fieldType == FieldType.BUFFER


Michael Kuron's avatar
Michael Kuron committed
36
class Field(object):
37
38
39
40
    """
    With fields one can formulate stencil-like update rules on structured grids.
    This Field class knows about the dimension, memory layout (strides) and optionally about the size of an array.

Martin Bauer's avatar
Martin Bauer committed
41
42
43
44
    Creating Fields:

        To create a field use one of the static create* members. There are two options:

45
        1. create a kernel with fixed loop sizes i.e. the shape of the array is already known. This is usually the
Martin Bauer's avatar
Martin Bauer committed
46
           case if just-in-time compilation directly from Python is done. (see :func:`Field.createFromNumpyArray`)
47
        2. create a more general kernel that works for variable array sizes. This can be used to create kernels
Martin Bauer's avatar
Martin Bauer committed
48
           beforehand for a library. (see :func:`Field.createGeneric`)
49
50
51
52
53
54

    Dimensions:
        A field has spatial and index dimensions, where the spatial dimensions come first.
        The interpretation is that the field has multiple cells in (usually) two or three dimensional space which are
        looped over. Additionally  N values are stored per cell. In this case spatialDimensions is two or three,
        and indexDimensions equals N. If you want to store a matrix on each point in a two dimensional grid, there
Martin Bauer's avatar
Martin Bauer committed
55
        are four dimensions, two spatial and two index dimensions: ``len(arr.shape) == spatialDims + indexDims``
56
57
58
59

    Indexing:
        When accessing (indexing) a field the result is a FieldAccess which is derived from sympy Symbol.
        First specify the spatial offsets in [], then in case indexDimension>0 the indices in ()
Martin Bauer's avatar
Martin Bauer committed
60
        e.g. ``f[-1,0,0](7)``
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

    Example without index dimensions:
        >>> a = np.zeros([10, 10])
        >>> f = Field.createFromNumpyArray("f", a, indexDimensions=0)
        >>> jacobi = ( f[-1,0] + f[1,0] + f[0,-1] + f[0,1] ) / 4

    Example with index dimensions: LBM D2Q9 stream pull
        >>> stencil = np.array([[0,0], [0,1], [0,-1]])
        >>> src = Field.createGeneric("src", spatialDimensions=2, indexDimensions=1)
        >>> dst = Field.createGeneric("dst", spatialDimensions=2, indexDimensions=1)
        >>> for i, offset in enumerate(stencil):
        ...     sp.Eq(dst[0,0](i), src[-offset](i))
        Eq(dst_C^0, src_C^0)
        Eq(dst_C^1, src_S^1)
        Eq(dst_C^2, src_N^2)
    """
77
78

    @staticmethod
79
    def createGeneric(fieldName, spatialDimensions, dtype=np.float64, indexDimensions=0, layout='numpy',
80
                      indexShape=None, fieldType=FieldType.GENERIC):
81
82
83
84
85
86
87
88
89
90
        """
        Creates a generic field where the field size is not fixed i.e. can be called with arrays of different sizes

        :param fieldName: symbolic name for the field
        :param dtype: numpy data type of the array the kernel is called with later
        :param spatialDimensions: see documentation of Field
        :param indexDimensions: see documentation of Field
        :param layout: tuple specifying the loop ordering of the spatial dimensions e.g. (2, 1, 0 ) means that
                       the outer loop loops over dimension 2, the second outer over dimension 1, and the inner loop
                       over dimension 0. Also allowed: the strings 'numpy' (0,1,..d) or 'reverseNumpy' (d, ..., 1, 0)
91
92
        :param indexShape: optional shape of the index dimensions i.e. maximum values allowed for each index dimension,
                           has to be a list or tuple
93
        """
94
        if isinstance(layout, str):
95
            layout = spatialLayoutStringToTuple(layout, dim=spatialDimensions)
96
97
98
        shapeSymbol = IndexedBase(TypedSymbol(Field.SHAPE_PREFIX + fieldName, Field.SHAPE_DTYPE), shape=(1,))
        strideSymbol = IndexedBase(TypedSymbol(Field.STRIDE_PREFIX + fieldName, Field.STRIDE_DTYPE), shape=(1,))
        totalDimensions = spatialDimensions + indexDimensions
99
100
101
102
103
104
        if indexShape is None or len(indexShape) == 0:
            shape = tuple([shapeSymbol[i] for i in range(totalDimensions)])
        else:
            shape = tuple([shapeSymbol[i] for i in range(spatialDimensions)] + list(indexShape))
            assert len(shape) == totalDimensions

105
        strides = tuple([strideSymbol[i] for i in range(totalDimensions)])
106
107
108
109
110
111
112
113

        npDataType = np.dtype(dtype)
        if npDataType.fields is not None:
            if indexDimensions != 0:
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)

114
        return Field(fieldName, fieldType, dtype, layout, shape, strides)
115

116
117
118
119
120
121
122
123
124
125
126
127
128
    @staticmethod
    def createFromNumpyArray(fieldName, npArray, indexDimensions=0):
        """
        Creates a field based on the layout, data type, and shape of a given numpy array.
        Kernels created for these kind of fields can only be called with arrays of the same layout, shape and type.
        :param fieldName: symbolic name for the field
        :param npArray: numpy array
        :param indexDimensions: see documentation of Field
        """
        spatialDimensions = len(npArray.shape) - indexDimensions
        if spatialDimensions < 1:
            raise ValueError("Too many index dimensions. At least one spatial dimension required")

129
        fullLayout = getLayoutOfArray(npArray)
130
131
132
133
        spatialLayout = tuple([i for i in fullLayout if i < spatialDimensions])
        assert len(spatialLayout) == spatialDimensions

        strides = tuple([s // np.dtype(npArray.dtype).itemsize for s in npArray.strides])
134
        shape = tuple(int(s) for s in npArray.shape)
135

136
137
138
139
140
141
142
        npDataType = np.dtype(npArray.dtype)
        if npDataType.fields is not None:
            if indexDimensions != 0:
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)

143
        return Field(fieldName, FieldType.GENERIC, npArray.dtype, spatialLayout, shape, strides)
144
145

    @staticmethod
146
    def createFixedSize(fieldName, shape, indexDimensions=0, dtype=np.float64, layout='numpy', strides=None):
147
        """
148
        Creates a field with fixed sizes i.e. can be called only with arrays of the same size and layout
149

150
        :param fieldName: symbolic name for the field
151
152
        :param shape: overall shape of the array
        :param indexDimensions: how many of the trailing dimensions are interpreted as index (as opposed to spatial)
153
        :param dtype: numpy data type of the array the kernel is called with later
154
        :param layout: full layout of array, not only spatial dimensions
155
        :param strides: strides in bytes or None to automatically compute them from shape (assuming no padding)
156
        """
157
158
159
        spatialDimensions = len(shape) - indexDimensions
        assert spatialDimensions >= 1

160
161
        if isinstance(layout, str):
            layout = layoutStringToTuple(layout, spatialDimensions + indexDimensions)
162
163

        shape = tuple(int(s) for s in shape)
164
165
166
167
168
        if strides is None:
            strides = computeStrides(shape, layout)
        else:
            assert len(strides) == len(shape)
            strides = tuple([s // np.dtype(dtype).itemsize for s in strides])
169
170
171
172
173
174
175
176

        npDataType = np.dtype(dtype)
        if npDataType.fields is not None:
            if indexDimensions != 0:
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)

177
178
179
        spatialLayout = list(layout)
        for i in range(spatialDimensions, len(layout)):
            spatialLayout.remove(i)
180
        return Field(fieldName, FieldType.GENERIC, dtype, tuple(spatialLayout), shape, strides)
181

182
    def __init__(self, fieldName, fieldType, dtype, layout, shape, strides):
183
184
        """Do not use directly. Use static create* methods"""
        self._fieldName = fieldName
185
186
        assert isinstance(fieldType, FieldType)
        self.fieldType = fieldType
187
        self._dtype = createType(dtype)
188
        self._layout = normalizeLayout(layout)
189
190
        self.shape = shape
        self.strides = strides
Martin Bauer's avatar
Martin Bauer committed
191
        self.latexName = None
192

193
    def newFieldWithDifferentName(self, newName):
194
        return Field(newName, self.fieldType, self._dtype, self._layout, self.shape, self.strides)
195

196
197
198
199
200
201
    @property
    def spatialDimensions(self):
        return len(self._layout)

    @property
    def indexDimensions(self):
202
        return len(self.shape) - len(self._layout)
203
204
205
206
207
208
209
210
211
212
213

    @property
    def layout(self):
        return self._layout

    @property
    def name(self):
        return self._fieldName

    @property
    def spatialShape(self):
214
        return self.shape[:self.spatialDimensions]
215

216
217
218
219
    @property
    def indexShape(self):
        return self.shape[self.spatialDimensions:]

220
221
    @property
    def hasFixedShape(self):
222
        return isIntegerSequence(self.shape)
223

224
225
    @property
    def indexShape(self):
226
        return self.shape[self.spatialDimensions:]
227

228
229
230
231
    @property
    def hasFixedIndexShape(self):
        return isIntegerSequence(self.indexShape)

232
233
    @property
    def spatialStrides(self):
234
        return self.strides[:self.spatialDimensions]
235
236
237

    @property
    def indexStrides(self):
238
        return self.strides[self.spatialDimensions:]
239
240
241
242
243
244
245
246

    @property
    def dtype(self):
        return self._dtype

    def __repr__(self):
        return self._fieldName

247
248
249
250
251
    def neighbor(self, coordId, offset):
        offsetList = [0] * self.spatialDimensions
        offsetList[coordId] = offset
        return Field.Access(self, tuple(offsetList))

252
    def neighbors(self, stencil):
253
        return [self.__getitem__(s) for s in stencil]
254
255

    @property
256
257
258
259
    def center(self):
        center = tuple([0] * self.spatialDimensions)
        return Field.Access(self, center)

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    def __getitem__(self, offset):
        if type(offset) is np.ndarray:
            offset = tuple(offset)
        if type(offset) is str:
            offset = tuple(directionStringToOffset(offset, self.spatialDimensions))
        if type(offset) is not tuple:
            offset = (offset,)
        if len(offset) != self.spatialDimensions:
            raise ValueError("Wrong number of spatial indices: "
                             "Got %d, expected %d" % (len(offset), self.spatialDimensions))
        return Field.Access(self, offset)

    def __call__(self, *args, **kwargs):
        center = tuple([0]*self.spatialDimensions)
        return Field.Access(self, center)(*args, **kwargs)

    def __hash__(self):
277
        return hash((self._layout, self.shape, self.strides, self._dtype, self.fieldType, self._fieldName))
278
279

    def __eq__(self, other):
280
281
        selfTuple = (self.shape, self.strides, self.name, self.dtype, self.fieldType)
        otherTuple = (other.shape, other.strides, other.name, other.dtype, other.fieldType)
282
283
284
285
286
        return selfTuple == otherTuple

    PREFIX = "f"
    STRIDE_PREFIX = PREFIX + "stride_"
    SHAPE_PREFIX = PREFIX + "shape_"
Martin Bauer's avatar
Martin Bauer committed
287
288
    STRIDE_DTYPE = createCompositeTypeFromString("const int *")
    SHAPE_DTYPE = createCompositeTypeFromString("const int *")
289
    DATA_PREFIX = PREFIX + "d_"
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306

    class Access(sp.Symbol):
        def __new__(cls, name, *args, **kwargs):
            obj = Field.Access.__xnew_cached_(cls, name, *args, **kwargs)
            return obj

        def __new_stage2__(self, field, offsets=(0, 0, 0), idx=None):
            fieldName = field.name
            offsetsAndIndex = chain(offsets, idx) if idx is not None else offsets
            constantOffsets = not any([isinstance(o, sp.Basic) for o in offsetsAndIndex])

            if not idx:
                idx = tuple([0] * field.indexDimensions)

            if constantOffsets:
                offsetName = offsetToDirectionString(offsets)
                if field.indexDimensions == 0:
307
                    superscript = None
308
                elif field.indexDimensions == 1:
309
                    superscript = str(idx[0])
310
311
                else:
                    idxStr = ",".join([str(e) for e in idx])
312
                    superscript = idxStr
313
314
            else:
                offsetName = "%0.10X" % (abs(hash(tuple(offsetsAndIndex))))
315
                superscript = None
316

317
318
319
320
321
            symbolName = "%s_%s" % (fieldName, offsetName)
            if superscript is not None:
                symbolName += "^" + superscript

            obj = super(Field.Access, self).__xnew__(self, symbolName)
322
323
324
325
326
327
328
329
            obj._field = field
            obj._offsets = []
            for o in offsets:
                if isinstance(o, sp.Basic):
                    obj._offsets.append(o)
                else:
                    obj._offsets.append(int(o))
            obj._offsetName = offsetName
330
            obj._superscript = superscript
331
332
333
334
            obj._index = idx

            return obj

335
        def __getnewargs__(self):
336
            return self.field, self.offsets, self.index
337

338
339
340
341
342
343
344
345
346
347
348
349
350
351
        __xnew__ = staticmethod(__new_stage2__)
        __xnew_cached_ = staticmethod(cacheit(__new_stage2__))

        def __call__(self, *idx):
            if self._index != tuple([0]*self.field.indexDimensions):
                print(self._index, tuple([0]*self.field.indexDimensions))
                raise ValueError("Indexing an already indexed Field.Access")

            idx = tuple(idx)
            if len(idx) != self.field.indexDimensions and idx != (0,):
                raise ValueError("Wrong number of indices: "
                                 "Got %d, expected %d" % (len(idx), self.field.indexDimensions))
            return Field.Access(self.field, self._offsets, idx)

Martin Bauer's avatar
Martin Bauer committed
352
353
354
        def __getitem__(self, *idx):
            return self.__call__(*idx)

Martin Bauer's avatar
Martin Bauer committed
355
356
357
358
359
        def __iter__(self):
            """This is necessary to work with parts of sympy that test if an object is iterable (e.g. simplify).
            The __getitem__ would make it iterable"""
            raise TypeError("Field access is not iterable")

360
361
362
363
364
365
366
367
        @property
        def field(self):
            return self._field

        @property
        def offsets(self):
            return self._offsets

368
369
370
371
        @offsets.setter
        def offsets(self, value):
            self._offsets = value

372
373
374
375
376
377
378
379
380
381
382
383
        @property
        def requiredGhostLayers(self):
            return int(np.max(np.abs(self._offsets)))

        @property
        def nrOfCoordinates(self):
            return len(self._offsets)

        @property
        def offsetName(self):
            return self._offsetName

384
        def _latex(self, arg):
Martin Bauer's avatar
Martin Bauer committed
385
            n = self._field.latexName if self._field.latexName else self._field.name
386
            if self._superscript:
Martin Bauer's avatar
Martin Bauer committed
387
                return "{{%s}_{%s}^{%s}}" % (n, self._offsetName, self._superscript)
388
            else:
Martin Bauer's avatar
Martin Bauer committed
389
                return "{{%s}_{%s}}" % (n, self._offsetName)
390

391
392
393
394
        @property
        def index(self):
            return self._index

395
396
397
398
399
400
        def getNeighbor(self, *offsets):
            return Field.Access(self.field, offsets, self.index)

        def getShifted(self, *shift):
            return Field.Access(self.field, tuple(a + b for a, b in zip(shift, self.offsets)), self.index)

401
402
        def _hashable_content(self):
            superClassContents = list(super(Field.Access, self)._hashable_content())
Martin Bauer's avatar
Martin Bauer committed
403
            t = tuple(superClassContents + [hash(self._field), self._index] + self._offsets)
404
            return t
Martin Bauer's avatar
Martin Bauer committed
405
406
407
408
409
410
411
412
413


def extractCommonSubexpressions(equations):
    """
    Uses sympy to find common subexpressions in equations and returns
    them in a topologically sorted order, ready for evaluation.
    Usually called before list of equations is passed to :func:`createKernel`
    """
    replacements, newEq = sp.cse(equations)
Martin Bauer's avatar
Martin Bauer committed
414
415
416
417
418
    # Workaround for older sympy versions: here subexpressions (temporary = True) are extracted
    # which leads to problems in Piecewise functions which have to a default case indicated by True
    symbolsEqualToTrue = {r[0]: True for r in replacements if r[1] is sp.true}

    replacementEqs = [sp.Eq(*r) for r in replacements if r[1] is not sp.true]
Martin Bauer's avatar
Martin Bauer committed
419
420
    equations = replacementEqs + newEq
    topologicallySortedPairs = sp.cse_main.reps_toposort([[e.lhs, e.rhs] for e in equations])
Martin Bauer's avatar
Martin Bauer committed
421
    equations = [sp.Eq(a[0], a[1].subs(symbolsEqualToTrue)) for a in topologicallySortedPairs]
Martin Bauer's avatar
Martin Bauer committed
422
423
424
    return equations


425
426
427
428
429
430
431
def getLayoutFromStrides(strides, indexDimensionIds=[]):
    coordinates = list(range(len(strides)))
    relevantStrides = [stride for i, stride in enumerate(strides) if i not in indexDimensionIds]
    result = [x for (y, x) in sorted(zip(relevantStrides, coordinates), key=lambda pair: pair[0], reverse=True)]
    return normalizeLayout(result)


432
def getLayoutOfArray(arr, indexDimensionIds=[]):
Martin Bauer's avatar
Martin Bauer committed
433
434
435
    """
    Returns a list indicating the memory layout (linearization order) of the numpy array.
    Example:
436
    >>> getLayoutOfArray(np.zeros([3,3,3]))
Martin Bauer's avatar
Martin Bauer committed
437
    (0, 1, 2)
Martin Bauer's avatar
Martin Bauer committed
438
439
440
441
442

    In this example the loop over the zeroth coordinate should be the outermost loop,
    followed by the first and second. Elements arr[x,y,0] and arr[x,y,1] are adjacent in memory.
    Normally constructed numpy arrays have this order, however by stride tricks or other frameworks, arrays
    with different memory layout can be created.
Martin Bauer's avatar
Martin Bauer committed
443
444

    The indexDimensionIds parameter leaves specifies which coordinates should not be
Martin Bauer's avatar
Martin Bauer committed
445
    """
446
    return getLayoutFromStrides(arr.strides, indexDimensionIds)
447
448


449
def createNumpyArrayWithLayout(shape, layout, **kwargs):
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
    """
    Creates a numpy array with
    :param shape: shape of the resulting array
    :param layout: layout as tuple, where the coordinates are ordered from slow to fast
    >>> res = createNumpyArrayWithLayout(shape=(2, 3, 4, 5), layout=(3, 2, 0, 1))
    >>> res.shape
    (2, 3, 4, 5)
    >>> getLayoutOfArray(res)
    (3, 2, 0, 1)
    """
    assert set(layout) == set(range(len(shape))), "Wrong layout descriptor"
    currentLayout = list(range(len(shape)))
    swaps = []
    for i in range(len(layout)):
        if currentLayout[i] != layout[i]:
            indexToSwapWith = currentLayout.index(layout[i])
            swaps.append((i, indexToSwapWith))
            currentLayout[i], currentLayout[indexToSwapWith] = currentLayout[indexToSwapWith], currentLayout[i]
    assert tuple(currentLayout) == tuple(layout)

    shape = list(shape)
    for a, b in swaps:
        shape[a], shape[b] = shape[b], shape[a]

474
    res = np.empty(shape, order='c', **kwargs)
475
476
477
478
479
    for a, b in reversed(swaps):
        res = res.swapaxes(a, b)
    return res


480
481
482
483
def spatialLayoutStringToTuple(layoutStr, dim):
    if layoutStr in ('fzyx', 'zyxf'):
        assert dim <= 3
        return tuple(reversed(range(dim)))
484

Martin Bauer's avatar
Martin Bauer committed
485
    if layoutStr in ('fzyx', 'f', 'reverseNumpy', 'SoA'):
486
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
487
    elif layoutStr in ('c', 'numpy', 'AoS'):
488
        return tuple(range(dim))
489
490
491
492
    raise ValueError("Unknown layout descriptor " + layoutStr)


def layoutStringToTuple(layoutStr, dim):
493
494
    layoutStr = layoutStr.lower()
    if layoutStr == 'fzyx' or layoutStr == 'soa':
495
496
        assert dim <= 4
        return tuple(reversed(range(dim)))
497
    elif layoutStr == 'zyxf' or layoutStr == 'aos':
498
499
        assert dim <= 4
        return tuple(reversed(range(dim - 1))) + (dim-1,)
Martin Bauer's avatar
Martin Bauer committed
500
    elif layoutStr == 'f' or layoutStr == 'reversenumpy':
501
502
503
        return tuple(reversed(range(dim)))
    elif layoutStr == 'c' or layoutStr == 'numpy':
        return tuple(range(dim))
504
505
506
    raise ValueError("Unknown layout descriptor " + layoutStr)


507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
def normalizeLayout(layout):
    """Takes a layout tuple and subtracts the minimum from all entries"""
    minEntry = min(layout)
    return tuple(i - minEntry for i in layout)


def computeStrides(shape, layout):
    """
    Computes strides assuming no padding exists
    :param shape: shape (size) of array
    :param layout: layout specification as tuple
    :return: strides in elements, not in bytes
    """
    N = len(shape)
    assert len(layout) == N
    assert len(set(layout)) == N
    strides = [0] * N
    product = 1
525
    for j in reversed(layout):
526
527
528
        strides[j] = product
        product *= shape[j]
    return tuple(strides)
Martin Bauer's avatar
Martin Bauer committed
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621


def offsetComponentToDirectionString(coordinateId, value):
    """
    Translates numerical offset to string notation.
    x offsets are labeled with east 'E' and 'W',
    y offsets with north 'N' and 'S' and
    z offsets with top 'T' and bottom 'B'
    If the absolute value of the offset is bigger than 1, this number is prefixed.
    :param coordinateId: integer 0, 1 or 2 standing for x,y and z
    :param value: integer offset

    Example:
    >>> offsetComponentToDirectionString(0, 1)
    'E'
    >>> offsetComponentToDirectionString(1, 2)
    '2N'
    """
    nameComponents = (('W', 'E'),  # west, east
                      ('S', 'N'),  # south, north
                      ('B', 'T'),  # bottom, top
                      )
    if value == 0:
        result = ""
    elif value < 0:
        result = nameComponents[coordinateId][0]
    else:
        result = nameComponents[coordinateId][1]
    if abs(value) > 1:
        result = "%d%s" % (abs(value), result)
    return result


def offsetToDirectionString(offsetTuple):
    """
    Translates numerical offset to string notation.
    For details see :func:`offsetComponentToDirectionString`
    :param offsetTuple: 3-tuple with x,y,z offset

    Example:
    >>> offsetToDirectionString([1, -1, 0])
    'SE'
    >>> offsetToDirectionString(([-3, 0, -2]))
    '2B3W'
    """
    names = ["", "", ""]
    for i in range(len(offsetTuple)):
        names[i] = offsetComponentToDirectionString(i, offsetTuple[i])
    name = "".join(reversed(names))
    if name == "":
        name = "C"
    return name


def directionStringToOffset(directionStr, dim=3):
    """
    Reverse mapping of :func:`offsetToDirectionString`
    :param directionStr: string representation of offset
    :param dim: dimension of offset, i.e the length of the returned list

    >>> directionStringToOffset('NW', dim=3)
    array([-1,  1,  0])
    >>> directionStringToOffset('NW', dim=2)
    array([-1,  1])
    >>> directionStringToOffset(offsetToDirectionString([3,-2,1]))
    array([ 3, -2,  1])
    """
    offsetMap = {
        'C': np.array([0, 0, 0]),

        'W': np.array([-1, 0, 0]),
        'E': np.array([1, 0, 0]),

        'S': np.array([0, -1, 0]),
        'N': np.array([0, 1, 0]),

        'B': np.array([0, 0, -1]),
        'T': np.array([0, 0, 1]),
    }
    offset = np.array([0, 0, 0])

    while len(directionStr) > 0:
        factor = 1
        firstNonDigit = 0
        while directionStr[firstNonDigit].isdigit():
            firstNonDigit += 1
        if firstNonDigit > 0:
            factor = int(directionStr[:firstNonDigit])
            directionStr = directionStr[firstNonDigit:]
        curOffset = offsetMap[directionStr[0]]
        offset += factor * curOffset
        directionStr = directionStr[1:]
    return offset[:dim]
622
623
624
625
626
627
628


if __name__ == '__main__':
    f = Field.createGeneric('f', spatialDimensions=2, indexDimensions=1)
    fa = f[0, 1](4) ** 2
    print(fa)
    print(sp.latex(fa))