field.py 34.8 KB
Newer Older
1
from enum import Enum
2
from itertools import chain
Martin Bauer's avatar
Martin Bauer committed
3
from typing import Tuple, Sequence, Optional, List, Set
4
5
6
7
import numpy as np
import sympy as sp
from sympy.core.cache import cacheit
from sympy.tensor import IndexedBase
8
from pystencils.alignedarray import aligned_empty
Martin Bauer's avatar
Martin Bauer committed
9
from pystencils.data_types import TypedSymbol, create_type, create_composite_type_from_string, StructType
Martin Bauer's avatar
Martin Bauer committed
10
from pystencils.sympyextensions import is_integer_sequence
11

Martin Bauer's avatar
Martin Bauer committed
12
13
__all__ = ['Field', 'fields', 'FieldType']

14

15
16
17
18
def fields(description=None, index_dimensions=0, layout=None, **kwargs):
    """Creates pystencils fields from a string description.

    Examples:
Martin Bauer's avatar
Martin Bauer committed
19
20
21
22
        Create a 2D scalar and vector field:
            >>> s, v = fields("s, v(2): double[2D]")
            >>> assert s.spatial_dimensions == 2 and s.index_dimensions == 0
            >>> assert (v.spatial_dimensions, v.index_dimensions, v.index_shape) == (2, 1, (2,))
23

Martin Bauer's avatar
Martin Bauer committed
24
25
26
27
        Create an integer field of shape (10, 20):
            >>> f = fields("f : int32[10, 20]")
            >>> f.has_fixed_shape, f.shape
            (True, (10, 20))
28

Martin Bauer's avatar
Martin Bauer committed
29
30
31
32
33
        Numpy arrays can be used as template for shape and data type of field:
            >>> arr_s, arr_v = np.zeros([20, 20]), np.zeros([20, 20, 2])
            >>> s, v = fields("s, v(2)", s=arr_s, v=arr_v)
            >>> assert s.index_dimensions == 0 and s.dtype.numpy_dtype == arr_s.dtype
            >>> assert v.index_shape == (2,)
34
35


Martin Bauer's avatar
Martin Bauer committed
36
37
38
39
40
41
42
43
44
45
        Format string can be left out, field names are taken from keyword arguments.
            >>> fields(f1=arr_s, f2=arr_s)
            [f1, f2]

        The keyword names ``index_dimension`` and ``layout`` have special meaning, don't use them for field names
            >>> f = fields(f=arr_v, index_dimensions=1)
            >>> assert f.index_dimensions == 1
            >>> f = fields("pdfs(19) : float32[3D]", layout='fzyx')
            >>> f.layout
            (2, 1, 0)
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    """
    result = []
    if description:
        field_descriptions, dtype, shape = _parse_description(description)
        layout = 'numpy' if layout is None else layout
        for field_name, idx_shape in field_descriptions:
            if field_name in kwargs:
                arr = kwargs[field_name]
                idx_shape_of_arr = () if not len(idx_shape) else arr.shape[-len(idx_shape):]
                assert idx_shape_of_arr == idx_shape
                f = Field.create_from_numpy_array(field_name, kwargs[field_name], index_dimensions=len(idx_shape))
            elif isinstance(shape, tuple):
                f = Field.create_fixed_size(field_name, shape + idx_shape, dtype=dtype,
                                            index_dimensions=len(idx_shape), layout=layout)
            elif isinstance(shape, int):
                f = Field.create_generic(field_name, spatial_dimensions=shape, dtype=dtype,
                                         index_shape=idx_shape, layout=layout)
            elif shape is None:
                f = Field.create_generic(field_name, spatial_dimensions=2, dtype=dtype,
                                         index_shape=idx_shape, layout=layout)
            else:
                assert False
            result.append(f)
    else:
        assert layout is None, "Layout can not be specified when creating Field from numpy array"
        for field_name, arr in kwargs.items():
            result.append(Field.create_from_numpy_array(field_name, arr, index_dimensions=index_dimensions))

    if len(result) == 0:
        return None
    elif len(result) == 1:
        return result[0]
    else:
        return result


82
83
84
85
86
87
88
89
class FieldType(Enum):
    # generic fields
    GENERIC = 0
    # index fields are currently only used for boundary handling
    # the coordinates are not the loop counters in that case, but are read from this index field
    INDEXED = 1
    # communication buffer, used for (un)packing data in communication.
    BUFFER = 2
Martin Bauer's avatar
Martin Bauer committed
90
91
92
    # unsafe fields may be accessed in an absolute fashion - the index depends on the data
    # and thus may lead to out-of-bounds accesses
    CUSTOM = 3
93
94

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
95
    def is_generic(field):
96
        assert isinstance(field, Field)
Martin Bauer's avatar
Martin Bauer committed
97
        return field.field_type == FieldType.GENERIC
98
99

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
100
    def is_indexed(field):
101
        assert isinstance(field, Field)
Martin Bauer's avatar
Martin Bauer committed
102
        return field.field_type == FieldType.INDEXED
103
104

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
105
    def is_buffer(field):
106
        assert isinstance(field, Field)
Martin Bauer's avatar
Martin Bauer committed
107
        return field.field_type == FieldType.BUFFER
108

Martin Bauer's avatar
Martin Bauer committed
109
110
111
112
113
    @staticmethod
    def is_custom(field):
        assert isinstance(field, Field)
        return field.field_type == FieldType.CUSTOM

114

115
class Field:
116
117
118
119
    """
    With fields one can formulate stencil-like update rules on structured grids.
    This Field class knows about the dimension, memory layout (strides) and optionally about the size of an array.

Martin Bauer's avatar
Martin Bauer committed
120
    Creating Fields:
Martin Bauer's avatar
Martin Bauer committed
121
122
        The preferred method to create fields is the `fields` function.
        Alternatively one can use one of the static functions `Field.create_generic`, `Field.create_from_numpy_array`
123
        and `Field.create_fixed_size`. Don't instantiate the Field directly!
Martin Bauer's avatar
Martin Bauer committed
124
125
126
127
128
        Fields can be created with known or unknown shapes:

        1. If you want to create a kernel with fixed loop sizes i.e. the shape of the array is already known.
           This is usually the case if just-in-time compilation directly from Python is done.
           (see `Field.create_from_numpy_array`
129
        2. create a more general kernel that works for variable array sizes. This can be used to create kernels
Martin Bauer's avatar
Martin Bauer committed
130
           beforehand for a library. (see `Field.create_generic`)
131

Martin Bauer's avatar
Martin Bauer committed
132
    Dimensions and Indexing:
133
134
        A field has spatial and index dimensions, where the spatial dimensions come first.
        The interpretation is that the field has multiple cells in (usually) two or three dimensional space which are
Martin Bauer's avatar
Martin Bauer committed
135
        looped over. Additionally N values are stored per cell. In this case spatial_dimensions is two or three,
Martin Bauer's avatar
Martin Bauer committed
136
        and index_dimensions equals N. If you want to store a matrix on each point in a two dimensional grid, there
Martin Bauer's avatar
Martin Bauer committed
137
        are four dimensions, two spatial and two index dimensions: ``len(arr.shape) == spatial_dims + index_dims``
138

Martin Bauer's avatar
Martin Bauer committed
139
140
141
142
143
        The shape of the index dimension does not have to be specified. Just use the 'index_dimensions' parameter.
        However, it is good practice to define the shape, since out of bounds accesses can be directly detected in this
        case. The shape can be passed with the 'index_shape' parameter of the field creation functions.

        When accessing (indexing) a field the result is a `Field.Access` which is derived from sympy Symbol.
Martin Bauer's avatar
Martin Bauer committed
144
        First specify the spatial offsets in [], then in case index_dimension>0 the indices in ()
Martin Bauer's avatar
Martin Bauer committed
145
        e.g. ``f[-1,0,0](7)``
146

Martin Bauer's avatar
Martin Bauer committed
147
    Example using no index dimensions:
148
        >>> a = np.zeros([10, 10])
Martin Bauer's avatar
Martin Bauer committed
149
        >>> f = Field.create_from_numpy_array("f", a, index_dimensions=0)
Martin Bauer's avatar
Martin Bauer committed
150
        >>> jacobi = (f[-1,0] + f[1,0] + f[0,-1] + f[0,1]) / 4
151

Martin Bauer's avatar
Martin Bauer committed
152
    Examples for index dimensions to create LB field and implement stream pull:
Martin Bauer's avatar
Martin Bauer committed
153
        >>> from pystencils import Assignment
154
        >>> stencil = np.array([[0,0], [0,1], [0,-1]])
Martin Bauer's avatar
Martin Bauer committed
155
        >>> src, dst = fields("src(3), dst(3) : double[2D]")
156
        >>> for i, offset in enumerate(stencil):
157
158
159
160
        ...     Assignment(dst[0,0](i), src[-offset](i))
        Assignment(dst_C^0, src_C^0)
        Assignment(dst_C^1, src_S^1)
        Assignment(dst_C^2, src_N^2)
161
    """
162
163

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
164
165
    def create_generic(field_name, spatial_dimensions, dtype=np.float64, index_dimensions=0, layout='numpy',
                       index_shape=None, field_type=FieldType.GENERIC) -> 'Field':
166
167
168
        """
        Creates a generic field where the field size is not fixed i.e. can be called with arrays of different sizes

Martin Bauer's avatar
Martin Bauer committed
169
170
171
172
173
174
175
        Args:
            field_name: symbolic name for the field
            dtype: numpy data type of the array the kernel is called with later
            spatial_dimensions: see documentation of Field
            index_dimensions: see documentation of Field
            layout: tuple specifying the loop ordering of the spatial dimensions e.g. (2, 1, 0 ) means that
                    the outer loop loops over dimension 2, the second outer over dimension 1, and the inner loop
Martin Bauer's avatar
Martin Bauer committed
176
                    over dimension 0. Also allowed: the strings 'numpy' (0,1,..d) or 'reverse_numpy' (d, ..., 1, 0)
Martin Bauer's avatar
Martin Bauer committed
177
178
179
180
181
            index_shape: optional shape of the index dimensions i.e. maximum values allowed for each index dimension,
                        has to be a list or tuple
            field_type: besides the normal GENERIC fields, there are INDEXED fields that store indices of the domain
                        that should be iterated over, and BUFFER fields that are used to generate
                        communication packing/unpacking kernels
182
        """
183
184
185
        if index_shape is not None:
            assert index_dimensions == 0 or index_dimensions == len(index_shape)
            index_dimensions = len(index_shape)
186
        if isinstance(layout, str):
Martin Bauer's avatar
Martin Bauer committed
187
188
189
190
191
192
            layout = spatial_layout_string_to_tuple(layout, dim=spatial_dimensions)
        shape_symbol = IndexedBase(TypedSymbol(Field.SHAPE_PREFIX + field_name, Field.SHAPE_DTYPE), shape=(1,))
        stride_symbol = IndexedBase(TypedSymbol(Field.STRIDE_PREFIX + field_name, Field.STRIDE_DTYPE), shape=(1,))
        total_dimensions = spatial_dimensions + index_dimensions
        if index_shape is None or len(index_shape) == 0:
            shape = tuple([shape_symbol[i] for i in range(total_dimensions)])
193
        else:
Martin Bauer's avatar
Martin Bauer committed
194
            shape = tuple([shape_symbol[i] for i in range(spatial_dimensions)] + list(index_shape))
195

Martin Bauer's avatar
Martin Bauer committed
196
        strides = tuple([stride_symbol[i] for i in range(total_dimensions)])
197

Martin Bauer's avatar
Martin Bauer committed
198
199
200
        np_data_type = np.dtype(dtype)
        if np_data_type.fields is not None:
            if index_dimensions != 0:
201
202
203
204
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)

Martin Bauer's avatar
Martin Bauer committed
205
        return Field(field_name, field_type, dtype, layout, shape, strides)
206

207
    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
208
209
210
    def create_from_numpy_array(field_name: str, array: np.ndarray, index_dimensions: int = 0) -> 'Field':
        """Creates a field based on the layout, data type, and shape of a given numpy array.

211
        Kernels created for these kind of fields can only be called with arrays of the same layout, shape and type.
Martin Bauer's avatar
Martin Bauer committed
212
213
214
215
216

        Args:
            field_name: symbolic name for the field
            array: numpy array
            index_dimensions: see documentation of Field
217
        """
Martin Bauer's avatar
Martin Bauer committed
218
219
        spatial_dimensions = len(array.shape) - index_dimensions
        if spatial_dimensions < 1:
220
221
            raise ValueError("Too many index dimensions. At least one spatial dimension required")

Martin Bauer's avatar
Martin Bauer committed
222
223
224
        full_layout = get_layout_of_array(array)
        spatial_layout = tuple([i for i in full_layout if i < spatial_dimensions])
        assert len(spatial_layout) == spatial_dimensions
225

Martin Bauer's avatar
Martin Bauer committed
226
227
        strides = tuple([s // np.dtype(array.dtype).itemsize for s in array.strides])
        shape = tuple(int(s) for s in array.shape)
228

Martin Bauer's avatar
Martin Bauer committed
229
230
231
        numpy_dtype = np.dtype(array.dtype)
        if numpy_dtype.fields is not None:
            if index_dimensions != 0:
232
233
234
235
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)

Martin Bauer's avatar
Martin Bauer committed
236
        return Field(field_name, FieldType.GENERIC, array.dtype, spatial_layout, shape, strides)
237
238

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
239
    def create_fixed_size(field_name: str, shape: Tuple[int, ...], index_dimensions: int = 0,
240
                          dtype=np.float64, layout: str = 'numpy', strides: Optional[Sequence[int]] = None) -> 'Field':
241
        """
242
        Creates a field with fixed sizes i.e. can be called only with arrays of the same size and layout
243

Martin Bauer's avatar
Martin Bauer committed
244
245
246
247
248
249
250
        Args:
            field_name: symbolic name for the field
            shape: overall shape of the array
            index_dimensions: how many of the trailing dimensions are interpreted as index (as opposed to spatial)
            dtype: numpy data type of the array the kernel is called with later
            layout: full layout of array, not only spatial dimensions
            strides: strides in bytes or None to automatically compute them from shape (assuming no padding)
251
        """
Martin Bauer's avatar
Martin Bauer committed
252
253
        spatial_dimensions = len(shape) - index_dimensions
        assert spatial_dimensions >= 1
254

255
        if isinstance(layout, str):
Martin Bauer's avatar
Martin Bauer committed
256
            layout = layout_string_to_tuple(layout, spatial_dimensions + index_dimensions)
257
258

        shape = tuple(int(s) for s in shape)
259
        if strides is None:
Martin Bauer's avatar
Martin Bauer committed
260
            strides = compute_strides(shape, layout)
261
262
263
        else:
            assert len(strides) == len(shape)
            strides = tuple([s // np.dtype(dtype).itemsize for s in strides])
264

Martin Bauer's avatar
Martin Bauer committed
265
266
267
        numpy_dtype = np.dtype(dtype)
        if numpy_dtype.fields is not None:
            if index_dimensions != 0:
268
269
270
271
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)

Martin Bauer's avatar
Martin Bauer committed
272
273
274
275
        spatial_layout = list(layout)
        for i in range(spatial_dimensions, len(layout)):
            spatial_layout.remove(i)
        return Field(field_name, FieldType.GENERIC, dtype, tuple(spatial_layout), shape, strides)
276

Martin Bauer's avatar
Martin Bauer committed
277
    def __init__(self, field_name, field_type, dtype, layout, shape, strides):
278
        """Do not use directly. Use static create* methods"""
279
        self._field_name = field_name
Martin Bauer's avatar
Martin Bauer committed
280
        assert isinstance(field_type, FieldType)
281
        assert len(shape) == len(strides)
Martin Bauer's avatar
Martin Bauer committed
282
        self.field_type = field_type
Martin Bauer's avatar
Martin Bauer committed
283
        self._dtype = create_type(dtype)
Martin Bauer's avatar
Martin Bauer committed
284
        self._layout = normalize_layout(layout)
285
286
        self.shape = shape
        self.strides = strides
287
        self.latex_name = None  # type: Optional[str]
288

Martin Bauer's avatar
Martin Bauer committed
289
    def new_field_with_different_name(self, new_name):
Martin Bauer's avatar
Martin Bauer committed
290
        return Field(new_name, self.field_type, self._dtype, self._layout, self.shape, self.strides)
291

292
    @property
Martin Bauer's avatar
Martin Bauer committed
293
    def spatial_dimensions(self) -> int:
294
295
296
        return len(self._layout)

    @property
Martin Bauer's avatar
Martin Bauer committed
297
    def index_dimensions(self) -> int:
298
        return len(self.shape) - len(self._layout)
299
300
301
302
303
304

    @property
    def layout(self):
        return self._layout

    @property
Martin Bauer's avatar
Martin Bauer committed
305
    def name(self) -> str:
306
        return self._field_name
307
308

    @property
Martin Bauer's avatar
Martin Bauer committed
309
310
    def spatial_shape(self) -> Tuple[int, ...]:
        return self.shape[:self.spatial_dimensions]
311

312
    @property
Martin Bauer's avatar
Martin Bauer committed
313
    def has_fixed_shape(self):
Martin Bauer's avatar
Martin Bauer committed
314
        return is_integer_sequence(self.shape)
315

316
    @property
Martin Bauer's avatar
Martin Bauer committed
317
318
    def index_shape(self):
        return self.shape[self.spatial_dimensions:]
319

320
    @property
Martin Bauer's avatar
Martin Bauer committed
321
322
    def has_fixed_index_shape(self):
        return is_integer_sequence(self.index_shape)
323

324
    @property
Martin Bauer's avatar
Martin Bauer committed
325
326
    def spatial_strides(self):
        return self.strides[:self.spatial_dimensions]
327
328

    @property
Martin Bauer's avatar
Martin Bauer committed
329
330
    def index_strides(self):
        return self.strides[self.spatial_dimensions:]
331
332
333
334
335
336

    @property
    def dtype(self):
        return self._dtype

    def __repr__(self):
337
        return self._field_name
338

Martin Bauer's avatar
Martin Bauer committed
339
340
341
342
    def neighbor(self, coord_id, offset):
        offset_list = [0] * self.spatial_dimensions
        offset_list[coord_id] = offset
        return Field.Access(self, tuple(offset_list))
343

344
    def neighbors(self, stencil):
345
        return [self.__getitem__(s) for s in stencil]
346

347
    @property
Martin Bauer's avatar
Martin Bauer committed
348
349
350
    def center_vector(self):
        index_shape = self.index_shape
        if len(index_shape) == 0:
351
            return self.center
Martin Bauer's avatar
Martin Bauer committed
352
353
354
        elif len(index_shape) == 1:
            return sp.Matrix([self(i) for i in range(index_shape[0])])
        elif len(index_shape) == 2:
355
356
357
            def cb(*args):
                r = self.__call__(*args)
                return r
Martin Bauer's avatar
Martin Bauer committed
358
            return sp.Matrix(*index_shape, cb)
359

360
    @property
361
    def center(self):
Martin Bauer's avatar
Martin Bauer committed
362
        center = tuple([0] * self.spatial_dimensions)
363
364
        return Field.Access(self, center)

365
366
367
368
    def __getitem__(self, offset):
        if type(offset) is np.ndarray:
            offset = tuple(offset)
        if type(offset) is str:
Martin Bauer's avatar
Martin Bauer committed
369
            offset = tuple(direction_string_to_offset(offset, self.spatial_dimensions))
370
371
        if type(offset) is not tuple:
            offset = (offset,)
Martin Bauer's avatar
Martin Bauer committed
372
        if len(offset) != self.spatial_dimensions:
373
            raise ValueError("Wrong number of spatial indices: "
Martin Bauer's avatar
Martin Bauer committed
374
                             "Got %d, expected %d" % (len(offset), self.spatial_dimensions))
375
376
        return Field.Access(self, offset)

Martin Bauer's avatar
Martin Bauer committed
377
    def absolute_access(self, offset, index):
Martin Bauer's avatar
Martin Bauer committed
378
        assert FieldType.is_custom(self)
Martin Bauer's avatar
Martin Bauer committed
379
380
        return Field.Access(self, offset, index, is_absolute_access=True)

381
    def __call__(self, *args, **kwargs):
Martin Bauer's avatar
Martin Bauer committed
382
        center = tuple([0] * self.spatial_dimensions)
383
384
385
        return Field.Access(self, center)(*args, **kwargs)

    def __hash__(self):
386
        return hash((self._layout, self.shape, self.strides, self._dtype, self.field_type, self._field_name))
387
388

    def __eq__(self, other):
Martin Bauer's avatar
Martin Bauer committed
389
390
        self_tuple = (self.shape, self.strides, self.name, self.dtype, self.field_type)
        other_tuple = (other.shape, other.strides, other.name, other.dtype, other.field_type)
Martin Bauer's avatar
Martin Bauer committed
391
        return self_tuple == other_tuple
392

393
394
395
    PREFIX = "f"
    STRIDE_PREFIX = PREFIX + "stride_"
    SHAPE_PREFIX = PREFIX + "shape_"
Martin Bauer's avatar
Martin Bauer committed
396
397
    STRIDE_DTYPE = create_composite_type_from_string("const int *")
    SHAPE_DTYPE = create_composite_type_from_string("const int *")
398
    DATA_PREFIX = PREFIX + "d_"
399

Martin Bauer's avatar
Martin Bauer committed
400
    # noinspection PyAttributeOutsideInit,PyUnresolvedReferences
401
    class Access(sp.Symbol):
Martin Bauer's avatar
Martin Bauer committed
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
        """Class representing a relative access into a `Field`.

        This class behaves like a normal sympy Symbol, it is actually derived from it. One can built up
        sympy expressions using field accesses, solve for them, etc.

        Examples:
            >>> vector_field_2d = fields("v(2): double[2D]")  # create a 2D vector field
            >>> northern_neighbor_y_component = vector_field_2d[0, 1](1)
            >>> northern_neighbor_y_component
            v_N^1
            >>> central_y_component = vector_field_2d(1)
            >>> central_y_component
            v_C^1
            >>> central_y_component.get_shifted(1, 0)  # move the existing access
            v_E^1
            >>> central_y_component.at_index(0)  # change component
            v_C^0
        """
420
421
422
423
        def __new__(cls, name, *args, **kwargs):
            obj = Field.Access.__xnew_cached_(cls, name, *args, **kwargs)
            return obj

Martin Bauer's avatar
Martin Bauer committed
424
        def __new_stage2__(self, field, offsets=(0, 0, 0), idx=None, is_absolute_access=False):
Martin Bauer's avatar
Martin Bauer committed
425
426
427
            field_name = field.name
            offsets_and_index = chain(offsets, idx) if idx is not None else offsets
            constant_offsets = not any([isinstance(o, sp.Basic) and not o.is_Integer for o in offsets_and_index])
428
429

            if not idx:
Martin Bauer's avatar
Martin Bauer committed
430
                idx = tuple([0] * field.index_dimensions)
431

Martin Bauer's avatar
Martin Bauer committed
432
433
434
            if constant_offsets:
                offset_name = offset_to_direction_string(offsets)
                if field.index_dimensions == 0:
435
                    superscript = None
Martin Bauer's avatar
Martin Bauer committed
436
                elif field.index_dimensions == 1:
437
                    superscript = str(idx[0])
438
                else:
Martin Bauer's avatar
Martin Bauer committed
439
440
441
442
                    idx_str = ",".join([str(e) for e in idx])
                    superscript = idx_str
                if field.has_fixed_index_shape and not isinstance(field.dtype, StructType):
                    for i, bound in zip(idx, field.index_shape):
443
444
                        if i >= bound:
                            raise ValueError("Field index out of bounds")
445
            else:
Martin Bauer's avatar
Martin Bauer committed
446
                offset_name = "%0.10X" % (abs(hash(tuple(offsets_and_index))))
447
                superscript = None
448

Martin Bauer's avatar
Martin Bauer committed
449
            symbol_name = "%s_%s" % (field_name, offset_name)
450
            if superscript is not None:
Martin Bauer's avatar
Martin Bauer committed
451
                symbol_name += "^" + superscript
452

Martin Bauer's avatar
Martin Bauer committed
453
            obj = super(Field.Access, self).__xnew__(self, symbol_name)
454
455
456
457
458
459
460
            obj._field = field
            obj._offsets = []
            for o in offsets:
                if isinstance(o, sp.Basic):
                    obj._offsets.append(o)
                else:
                    obj._offsets.append(int(o))
Martin Bauer's avatar
Martin Bauer committed
461
            obj._offsetName = offset_name
462
            obj._superscript = superscript
463
464
            obj._index = idx

Martin Bauer's avatar
Martin Bauer committed
465
466
467
468
469
470
            obj._indirect_addressing_fields = set()
            for e in chain(obj._offsets, obj._index):
                if isinstance(e, sp.Basic):
                    obj._indirect_addressing_fields.update(a.field for a in e.atoms(Field.Access))

            obj._is_absolute_access = is_absolute_access
471
472
            return obj

473
        def __getnewargs__(self):
Martin Bauer's avatar
Martin Bauer committed
474
            return self.field, self.offsets, self.index, self.is_absolute_access
475

Martin Bauer's avatar
Martin Bauer committed
476
        # noinspection SpellCheckingInspection
477
        __xnew__ = staticmethod(__new_stage2__)
Martin Bauer's avatar
Martin Bauer committed
478
        # noinspection SpellCheckingInspection
479
480
481
        __xnew_cached_ = staticmethod(cacheit(__new_stage2__))

        def __call__(self, *idx):
Martin Bauer's avatar
Martin Bauer committed
482
            if self._index != tuple([0] * self.field.index_dimensions):
483
484
485
                raise ValueError("Indexing an already indexed Field.Access")

            idx = tuple(idx)
486

Martin Bauer's avatar
Martin Bauer committed
487
            if self.field.index_dimensions == 0 and idx == (0,):
488
489
                idx = ()

Martin Bauer's avatar
Martin Bauer committed
490
            if len(idx) != self.field.index_dimensions:
491
                raise ValueError("Wrong number of indices: "
Martin Bauer's avatar
Martin Bauer committed
492
                                 "Got %d, expected %d" % (len(idx), self.field.index_dimensions))
493
494
            return Field.Access(self.field, self._offsets, idx)

Martin Bauer's avatar
Martin Bauer committed
495
496
497
        def __getitem__(self, *idx):
            return self.__call__(*idx)

Martin Bauer's avatar
Martin Bauer committed
498
499
500
501
502
        def __iter__(self):
            """This is necessary to work with parts of sympy that test if an object is iterable (e.g. simplify).
            The __getitem__ would make it iterable"""
            raise TypeError("Field access is not iterable")

503
        @property
Martin Bauer's avatar
Martin Bauer committed
504
505
        def field(self) -> 'Field':
            """Field that the Access points to"""
506
507
508
            return self._field

        @property
Martin Bauer's avatar
Martin Bauer committed
509
510
        def offsets(self) -> Tuple:
            """Spatial offset as tuple"""
511
            return tuple(self._offsets)
512

513
        @property
Martin Bauer's avatar
Martin Bauer committed
514
515
        def required_ghost_layers(self) -> int:
            """Largest spatial distance that is accessed."""
516
517
518
            return int(np.max(np.abs(self._offsets)))

        @property
Martin Bauer's avatar
Martin Bauer committed
519
        def nr_of_coordinates(self):
520
521
522
            return len(self._offsets)

        @property
Martin Bauer's avatar
Martin Bauer committed
523
        def offset_name(self) -> str:
Martin Bauer's avatar
Martin Bauer committed
524
525
526
527
528
529
530
            """Spatial offset as string, East-West for x, North-South for y and Top-Bottom for z coordinate.

            Example:
                >>> f = fields("f: double[2D]")
                >>> f[1, 1].offset_name  # north-east
                'NE'
            """
531
532
533
534
            return self._offsetName

        @property
        def index(self):
Martin Bauer's avatar
Martin Bauer committed
535
            """Value of index coordinates as tuple."""
536
537
            return self._index

Martin Bauer's avatar
Martin Bauer committed
538
        def neighbor(self, coord_id: int, offset: Sequence[int]) -> 'Field.Access':
Martin Bauer's avatar
Martin Bauer committed
539
540
541
542
543
544
545
546
547
548
549
            """Returns a new Access with changed spatial coordinates.

            Args:
                coord_id: index of the coordinate to change (0 for x, 1 for y,...)
                offset: incremental change of this coordinate

            Example:
                >>> f = fields('f: [2D]')
                >>> f[0,0].neighbor(coord_id=1, offset=-1)
                f_S
            """
Martin Bauer's avatar
Martin Bauer committed
550
551
552
            offset_list = list(self.offsets)
            offset_list[coord_id] += offset
            return Field.Access(self.field, tuple(offset_list), self.index)
553

Martin Bauer's avatar
Martin Bauer committed
554
        def get_shifted(self, *shift)-> 'Field.Access':
Martin Bauer's avatar
Martin Bauer committed
555
556
557
558
559
560
561
            """Returns a new Access with changed spatial coordinates

            Example:
                >>> f = fields("f: [2D]")
                >>> f[0,0].get_shifted(1, 1)
                f_NE
            """
562
563
            return Field.Access(self.field, tuple(a + b for a, b in zip(shift, self.offsets)), self.index)

Martin Bauer's avatar
Martin Bauer committed
564
565
566
567
568
569
570
571
        def at_index(self, *idx_tuple) -> 'Field.Access':
            """Returns new Access with changed index.

            Example:
                >>> f = fields("f(9): [2D]")
                >>> f(0).at_index(8)
                f_C^8
            """
572
573
            return Field.Access(self.field, self.offsets, idx_tuple)

Martin Bauer's avatar
Martin Bauer committed
574
575
576
577
578
579
580
581
582
583
584
585
586
        @property
        def is_absolute_access(self) -> bool:
            """Indicates if a field access is relative to the loop counters (this is the default) or absolute"""
            return self._is_absolute_access

        @property
        def indirect_addressing_fields(self) -> Set['Field']:
            """Returns a set of fields that the access depends on.

             e.g. f[index_field[1, 0]], the outer access to f depends on index_field
             """
            return self._indirect_addressing_fields

587
        def _hashable_content(self):
Martin Bauer's avatar
Martin Bauer committed
588
            super_class_contents = list(super(Field.Access, self)._hashable_content())
Martin Bauer's avatar
Martin Bauer committed
589
            t = tuple(super_class_contents + [id(self._field), self._index] + self._offsets)
590
            return t
Martin Bauer's avatar
Martin Bauer committed
591

Martin Bauer's avatar
Martin Bauer committed
592
        def _latex(self, _):
593
            n = self._field.latex_name if self._field.latex_name else self._field.name
Martin Bauer's avatar
Martin Bauer committed
594
595
596
597
598
599
600
601
            offset_str = ",".join([sp.latex(o) for o in self.offsets])
            if self.is_absolute_access:
                offset_str = "\\mathbf{}".format(offset_str)
            elif self.field.spatial_dimensions > 1:
                offset_str = "({})".format(offset_str)

            if self.index and self.index != (0,):
                return "{{%s}_{%s}^{%s}}" % (n, offset_str, self.index if len(self.index) > 1 else self.index[0])
Martin Bauer's avatar
Martin Bauer committed
602
            else:
Martin Bauer's avatar
Martin Bauer committed
603
                return "{{%s}_{%s}}" % (n, offset_str)
Martin Bauer's avatar
Martin Bauer committed
604

605
606
607
608
609
610
611
612
613
614
        def __str__(self):
            n = self._field.latex_name if self._field.latex_name else self._field.name
            offset_str = ",".join([sp.latex(o) for o in self.offsets])
            if self.is_absolute_access:
                offset_str = "[abs]{}".format(offset_str)
            if self.index and self.index != (0,):
                return "%s[%s](%s)" % (n, offset_str, self.index if len(self.index) > 1 else self.index[0])
            else:
                return "%s[%s]" % (n, offset_str)

Martin Bauer's avatar
Martin Bauer committed
615

Martin Bauer's avatar
Martin Bauer committed
616
617
def get_layout_from_strides(strides: Sequence[int], index_dimension_ids: Optional[List[int]] = None):
    index_dimension_ids = [] if index_dimension_ids is None else index_dimension_ids
618
    coordinates = list(range(len(strides)))
Martin Bauer's avatar
Martin Bauer committed
619
    relevant_strides = [stride for i, stride in enumerate(strides) if i not in index_dimension_ids]
620
    result = [x for (y, x) in sorted(zip(relevant_strides, coordinates), key=lambda pair: pair[0], reverse=True)]
Martin Bauer's avatar
Martin Bauer committed
621
    return normalize_layout(result)
622
623


Martin Bauer's avatar
Martin Bauer committed
624
625
626
627
628
629
def get_layout_of_array(arr: np.ndarray, index_dimension_ids: Optional[List[int]] = None):
    """ Returns a list indicating the memory layout (linearization order) of the numpy array.

    Examples:
        >>> get_layout_of_array(np.zeros([3,3,3]))
        (0, 1, 2)
Martin Bauer's avatar
Martin Bauer committed
630
631
632
633
634

    In this example the loop over the zeroth coordinate should be the outermost loop,
    followed by the first and second. Elements arr[x,y,0] and arr[x,y,1] are adjacent in memory.
    Normally constructed numpy arrays have this order, however by stride tricks or other frameworks, arrays
    with different memory layout can be created.
Martin Bauer's avatar
Martin Bauer committed
635

Martin Bauer's avatar
Martin Bauer committed
636
    The index_dimension_ids parameter leaves specifies which coordinates should not be
Martin Bauer's avatar
Martin Bauer committed
637
    """
Martin Bauer's avatar
Martin Bauer committed
638
639
    index_dimension_ids = [] if index_dimension_ids is None else index_dimension_ids
    return get_layout_from_strides(arr.strides, index_dimension_ids)
640
641


Martin Bauer's avatar
Martin Bauer committed
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
def create_numpy_array_with_layout(shape, layout, alignment=False, byte_offset=0, **kwargs):
    """Creates numpy array with given memory layout.

    Args:
        shape: shape of the resulting array
        layout: layout as tuple, where the coordinates are ordered from slow to fast
        alignment: number of bytes to align the beginning and the innermost coordinate to, or False for no alignment
        byte_offset: only used when alignment is specified, align not beginning but address at this offset
                     mostly used to align first inner cell, not ghost cells

    Example:
        >>> res = create_numpy_array_with_layout(shape=(2, 3, 4, 5), layout=(3, 2, 0, 1))
        >>> res.shape
        (2, 3, 4, 5)
        >>> get_layout_of_array(res)
        (3, 2, 0, 1)
658
659
    """
    assert set(layout) == set(range(len(shape))), "Wrong layout descriptor"
Martin Bauer's avatar
Martin Bauer committed
660
    cur_layout = list(range(len(shape)))
661
662
    swaps = []
    for i in range(len(layout)):
Martin Bauer's avatar
Martin Bauer committed
663
664
665
666
667
        if cur_layout[i] != layout[i]:
            index_to_swap_with = cur_layout.index(layout[i])
            swaps.append((i, index_to_swap_with))
            cur_layout[i], cur_layout[index_to_swap_with] = cur_layout[index_to_swap_with], cur_layout[i]
    assert tuple(cur_layout) == tuple(layout)
668
669
670
671
672

    shape = list(shape)
    for a, b in swaps:
        shape[a], shape[b] = shape[b], shape[a]

673
674
675
676
677
    if not alignment:
        res = np.empty(shape, order='c', **kwargs)
    else:
        if alignment is True:
            alignment = 8 * 4
Martin Bauer's avatar
Martin Bauer committed
678
        res = aligned_empty(shape, alignment, byte_offset=byte_offset, **kwargs)
679

680
681
682
683
684
    for a, b in reversed(swaps):
        res = res.swapaxes(a, b)
    return res


Martin Bauer's avatar
Martin Bauer committed
685
686
def spatial_layout_string_to_tuple(layout_str: str, dim: int) -> Tuple[int, ...]:
    if layout_str in ('fzyx', 'zyxf'):
687
688
        assert dim <= 3
        return tuple(reversed(range(dim)))
689

Martin Bauer's avatar
Martin Bauer committed
690
    if layout_str in ('fzyx', 'f', 'reverse_numpy', 'SoA'):
691
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
692
    elif layout_str in ('c', 'numpy', 'AoS'):
693
        return tuple(range(dim))
Martin Bauer's avatar
Martin Bauer committed
694
    raise ValueError("Unknown layout descriptor " + layout_str)
695
696


Martin Bauer's avatar
Martin Bauer committed
697
698
699
def layout_string_to_tuple(layout_str, dim):
    layout_str = layout_str.lower()
    if layout_str == 'fzyx' or layout_str == 'soa':
700
701
        assert dim <= 4
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
702
    elif layout_str == 'zyxf' or layout_str == 'aos':
703
        assert dim <= 4
Martin Bauer's avatar
Martin Bauer committed
704
        return tuple(reversed(range(dim - 1))) + (dim - 1,)
Martin Bauer's avatar
Martin Bauer committed
705
    elif layout_str == 'f' or layout_str == 'reverse_numpy':
706
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
707
    elif layout_str == 'c' or layout_str == 'numpy':
708
        return tuple(range(dim))
Martin Bauer's avatar
Martin Bauer committed
709
    raise ValueError("Unknown layout descriptor " + layout_str)
710
711


Martin Bauer's avatar
Martin Bauer committed
712
def normalize_layout(layout):
713
    """Takes a layout tuple and subtracts the minimum from all entries"""
Martin Bauer's avatar
Martin Bauer committed
714
715
    min_entry = min(layout)
    return tuple(i - min_entry for i in layout)
716
717


Martin Bauer's avatar
Martin Bauer committed
718
def compute_strides(shape, layout):
719
720
    """
    Computes strides assuming no padding exists
Martin Bauer's avatar
Martin Bauer committed
721
722
723
724
725
726
727

    Args:
        shape: shape (size) of array
        layout: layout specification as tuple

    Returns:
        strides in elements, not in bytes
728
    """
Martin Bauer's avatar
Martin Bauer committed
729
730
731
732
    dim = len(shape)
    assert len(layout) == dim
    assert len(set(layout)) == dim
    strides = [0] * dim
733
    product = 1
734
    for j in reversed(layout):
735
736
737
        strides[j] = product
        product *= shape[j]
    return tuple(strides)
Martin Bauer's avatar
Martin Bauer committed
738
739


Martin Bauer's avatar
Martin Bauer committed
740
741
742
def offset_component_to_direction_string(coordinate_id: int, value: int) -> str:
    """Translates numerical offset to string notation.

Martin Bauer's avatar
Martin Bauer committed
743
744
745
746
747
    x offsets are labeled with east 'E' and 'W',
    y offsets with north 'N' and 'S' and
    z offsets with top 'T' and bottom 'B'
    If the absolute value of the offset is bigger than 1, this number is prefixed.

Martin Bauer's avatar
Martin Bauer committed
748
749
750
751
752
753
754
755
756
    Args:
        coordinate_id: integer 0, 1 or 2 standing for x,y and z
        value: integer offset

    Examples:
        >>> offset_component_to_direction_string(0, 1)
        'E'
        >>> offset_component_to_direction_string(1, 2)
        '2N'
Martin Bauer's avatar
Martin Bauer committed
757
    """
758
    assert 0 <= coordinate_id < 3, "Works only for at most 3D arrays"
Martin Bauer's avatar
Martin Bauer committed
759
760
    name_components = (('W', 'E'),  # west, east
                       ('S', 'N'),  # south, north
761
                       ('B', 'T'))  # bottom, top
Martin Bauer's avatar
Martin Bauer committed
762
763
764
    if value == 0:
        result = ""
    elif value < 0:
Martin Bauer's avatar
Martin Bauer committed
765
        result = name_components[coordinate_id][0]
Martin Bauer's avatar
Martin Bauer committed
766
    else:
Martin Bauer's avatar
Martin Bauer committed
767
        result = name_components[coordinate_id][1]
Martin Bauer's avatar
Martin Bauer committed
768
769
770
771
772
    if abs(value) > 1:
        result = "%d%s" % (abs(value), result)
    return result


Martin Bauer's avatar
Martin Bauer committed
773
def offset_to_direction_string(offsets: Sequence[int]) -> str:
Martin Bauer's avatar
Martin Bauer committed
774
775
    """
    Translates numerical offset to string notation.
Martin Bauer's avatar
Martin Bauer committed
776
777
778
779
780
781
782
783
784
    For details see :func:`offset_component_to_direction_string`
    Args:
        offsets: 3-tuple with x,y,z offset

    Examples:
        >>> offset_to_direction_string([1, -1, 0])
        'SE'
        >>> offset_to_direction_string(([-3, 0, -2]))
        '2B3W'
Martin Bauer's avatar
Martin Bauer committed
785
    """
786
787
    if len(offsets) > 3:
        return str(offsets)
Martin Bauer's avatar
Martin Bauer committed
788
    names = ["", "", ""]
Martin Bauer's avatar
Martin Bauer committed
789
790
    for i in range(len(offsets)):
        names[i] = offset_component_to_direction_string(i, offsets[i])
Martin Bauer's avatar
Martin Bauer committed
791
792
793
794
795
796
    name = "".join(reversed(names))
    if name == "":
        name = "C"
    return name


Martin Bauer's avatar
Martin Bauer committed
797
def direction_string_to_offset(direction: str, dim: int = 3):
Martin Bauer's avatar
Martin Bauer committed
798
    """
Martin Bauer's avatar
Martin Bauer committed
799
    Reverse mapping of :func:`offset_to_direction_string`
Martin Bauer's avatar
Martin Bauer committed
800
801
802
803
804
805
806
807
808
809
810
811

    Args:
        direction: string representation of offset
        dim: dimension of offset, i.e the length of the returned list

    Examples:
        >>> direction_string_to_offset('NW', dim=3)
        array([-1,  1,  0])
        >>> direction_string_to_offset('NW', dim=2)
        array([-1,  1])
        >>> direction_string_to_offset(offset_to_direction_string((3,-2,1)))
        array([ 3, -2,  1])
Martin Bauer's avatar
Martin Bauer committed
812
    """
Martin Bauer's avatar
Martin Bauer committed
813
    offset_dict = {
Martin Bauer's avatar
Martin Bauer committed
814
815
816
817
818
819
820
821
822
823
824
825
826
        'C': np.array([0, 0, 0]),

        'W': np.array([-1, 0, 0]),
        'E': np.array([1, 0, 0]),

        'S': np.array([0, -1, 0]),
        'N': np.array([0, 1, 0]),

        'B': np.array([0, 0, -1]),
        'T': np.array([0, 0, 1]),
    }
    offset = np.array([0, 0, 0])

Martin Bauer's avatar
Martin Bauer committed
827
    while len(direction) > 0:
Martin Bauer's avatar
Martin Bauer committed
828
        factor = 1
Martin Bauer's avatar
Martin Bauer committed
829
830
831
832
833
834
835
836
837
        first_non_digit = 0
        while direction[first_non_digit].isdigit():
            first_non_digit += 1
        if first_non_digit > 0:
            factor = int(direction[:first_non_digit])
            direction = direction[first_non_digit:]
        cur_offset = offset_dict[direction[0]]
        offset += factor * cur_offset
        direction = direction[1:]
Martin Bauer's avatar
Martin Bauer committed
838
    return offset[:dim]
839

Martin Bauer's avatar
Martin Bauer committed
840

841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
def _parse_type_description(type_description):
    if not type_description:
        return np.float64, None
    elif '[' in type_description:
        assert type_description[-1] == ']'
        type_part, size_part = type_description[:-1].split("[", )
        if not type_part:
            type_part = "float64"
        if size_part.lower()[-1] == 'd':
            size_part = int(size_part[:-1])
        else:
            size_part = tuple(int(i) for i in size_part.split(','))
    else:
        type_part, size_part = type_description, None

    dtype = np.dtype(type_part).type
    return dtype, size_part


def _parse_field_description(description):
    if '(' not in description:
        return description, ()
    assert description[-1] == ')'
    name, index_shape = description[:-1].split('(')
    index_shape = tuple(int(i) for i in index_shape.split(','))
    return name, index_shape


def _parse_description(description):
    description = description.replace(' ', '')
    if ':' in description:
        name_descr, type_descr = description.split(':')
    else:
        name_descr, type_descr = description, ''

    # correct ',' splits inside brackets
    field_names = name_descr.split(',')
    cleaned_field_names = []
    prefix = ''
    for field_name in field_names:
        full_field_name = prefix + field_name
        if '(' in full_field_name and ')' not in full_field_name:
            prefix += field_name + ','
        else:
            prefix = ''
            cleaned_field_names.append(full_field_name)

    dtype, size = _parse_type_description(type_descr)
    fields_info = tuple(_parse_field_description(fd) for fd in cleaned_field_names)
    return fields_info, dtype, size