field.py 32 KB
Newer Older
1
from enum import Enum
2
from itertools import chain
Martin Bauer's avatar
Martin Bauer committed
3
from typing import Tuple, Sequence, Optional, List, Set
4
5
import numpy as np
import sympy as sp
6
import re
7
from sympy.core.cache import cacheit
8
from pystencils.alignedarray import aligned_empty
Martin Bauer's avatar
Martin Bauer committed
9
from pystencils.data_types import create_type, StructType
10
from pystencils.kernelparameters import FieldShapeSymbol, FieldStrideSymbol
11
from pystencils.stencils import offset_to_direction_string, direction_string_to_offset
Martin Bauer's avatar
Martin Bauer committed
12
from pystencils.sympyextensions import is_integer_sequence
13
14
import pickle
import hashlib
15

Martin Bauer's avatar
Martin Bauer committed
16
17
__all__ = ['Field', 'fields', 'FieldType']

18

19
20
21
22
def fields(description=None, index_dimensions=0, layout=None, **kwargs):
    """Creates pystencils fields from a string description.

    Examples:
Martin Bauer's avatar
Martin Bauer committed
23
24
25
26
        Create a 2D scalar and vector field:
            >>> s, v = fields("s, v(2): double[2D]")
            >>> assert s.spatial_dimensions == 2 and s.index_dimensions == 0
            >>> assert (v.spatial_dimensions, v.index_dimensions, v.index_shape) == (2, 1, (2,))
27

Martin Bauer's avatar
Martin Bauer committed
28
29
30
31
        Create an integer field of shape (10, 20):
            >>> f = fields("f : int32[10, 20]")
            >>> f.has_fixed_shape, f.shape
            (True, (10, 20))
32

Martin Bauer's avatar
Martin Bauer committed
33
34
35
36
37
        Numpy arrays can be used as template for shape and data type of field:
            >>> arr_s, arr_v = np.zeros([20, 20]), np.zeros([20, 20, 2])
            >>> s, v = fields("s, v(2)", s=arr_s, v=arr_v)
            >>> assert s.index_dimensions == 0 and s.dtype.numpy_dtype == arr_s.dtype
            >>> assert v.index_shape == (2,)
38
39


Martin Bauer's avatar
Martin Bauer committed
40
41
42
43
44
45
46
47
48
49
        Format string can be left out, field names are taken from keyword arguments.
            >>> fields(f1=arr_s, f2=arr_s)
            [f1, f2]

        The keyword names ``index_dimension`` and ``layout`` have special meaning, don't use them for field names
            >>> f = fields(f=arr_v, index_dimensions=1)
            >>> assert f.index_dimensions == 1
            >>> f = fields("pdfs(19) : float32[3D]", layout='fzyx')
            >>> f.layout
            (2, 1, 0)
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    """
    result = []
    if description:
        field_descriptions, dtype, shape = _parse_description(description)
        layout = 'numpy' if layout is None else layout
        for field_name, idx_shape in field_descriptions:
            if field_name in kwargs:
                arr = kwargs[field_name]
                idx_shape_of_arr = () if not len(idx_shape) else arr.shape[-len(idx_shape):]
                assert idx_shape_of_arr == idx_shape
                f = Field.create_from_numpy_array(field_name, kwargs[field_name], index_dimensions=len(idx_shape))
            elif isinstance(shape, tuple):
                f = Field.create_fixed_size(field_name, shape + idx_shape, dtype=dtype,
                                            index_dimensions=len(idx_shape), layout=layout)
            elif isinstance(shape, int):
                f = Field.create_generic(field_name, spatial_dimensions=shape, dtype=dtype,
                                         index_shape=idx_shape, layout=layout)
            elif shape is None:
                f = Field.create_generic(field_name, spatial_dimensions=2, dtype=dtype,
                                         index_shape=idx_shape, layout=layout)
            else:
                assert False
            result.append(f)
    else:
        assert layout is None, "Layout can not be specified when creating Field from numpy array"
        for field_name, arr in kwargs.items():
            result.append(Field.create_from_numpy_array(field_name, arr, index_dimensions=index_dimensions))

    if len(result) == 0:
        return None
    elif len(result) == 1:
        return result[0]
    else:
        return result


86
87
88
89
90
91
92
93
class FieldType(Enum):
    # generic fields
    GENERIC = 0
    # index fields are currently only used for boundary handling
    # the coordinates are not the loop counters in that case, but are read from this index field
    INDEXED = 1
    # communication buffer, used for (un)packing data in communication.
    BUFFER = 2
Martin Bauer's avatar
Martin Bauer committed
94
95
96
    # unsafe fields may be accessed in an absolute fashion - the index depends on the data
    # and thus may lead to out-of-bounds accesses
    CUSTOM = 3
97
98

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
99
    def is_generic(field):
100
        assert isinstance(field, Field)
Martin Bauer's avatar
Martin Bauer committed
101
        return field.field_type == FieldType.GENERIC
102
103

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
104
    def is_indexed(field):
105
        assert isinstance(field, Field)
Martin Bauer's avatar
Martin Bauer committed
106
        return field.field_type == FieldType.INDEXED
107
108

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
109
    def is_buffer(field):
110
        assert isinstance(field, Field)
Martin Bauer's avatar
Martin Bauer committed
111
        return field.field_type == FieldType.BUFFER
112

Martin Bauer's avatar
Martin Bauer committed
113
114
115
116
117
    @staticmethod
    def is_custom(field):
        assert isinstance(field, Field)
        return field.field_type == FieldType.CUSTOM

118

119
class Field:
120
121
122
123
    """
    With fields one can formulate stencil-like update rules on structured grids.
    This Field class knows about the dimension, memory layout (strides) and optionally about the size of an array.

Martin Bauer's avatar
Martin Bauer committed
124
    Creating Fields:
Martin Bauer's avatar
Martin Bauer committed
125
126
        The preferred method to create fields is the `fields` function.
        Alternatively one can use one of the static functions `Field.create_generic`, `Field.create_from_numpy_array`
127
        and `Field.create_fixed_size`. Don't instantiate the Field directly!
Martin Bauer's avatar
Martin Bauer committed
128
129
130
131
132
        Fields can be created with known or unknown shapes:

        1. If you want to create a kernel with fixed loop sizes i.e. the shape of the array is already known.
           This is usually the case if just-in-time compilation directly from Python is done.
           (see `Field.create_from_numpy_array`
133
        2. create a more general kernel that works for variable array sizes. This can be used to create kernels
Martin Bauer's avatar
Martin Bauer committed
134
           beforehand for a library. (see `Field.create_generic`)
135

Martin Bauer's avatar
Martin Bauer committed
136
    Dimensions and Indexing:
137
138
        A field has spatial and index dimensions, where the spatial dimensions come first.
        The interpretation is that the field has multiple cells in (usually) two or three dimensional space which are
Martin Bauer's avatar
Martin Bauer committed
139
        looped over. Additionally N values are stored per cell. In this case spatial_dimensions is two or three,
Martin Bauer's avatar
Martin Bauer committed
140
        and index_dimensions equals N. If you want to store a matrix on each point in a two dimensional grid, there
Martin Bauer's avatar
Martin Bauer committed
141
        are four dimensions, two spatial and two index dimensions: ``len(arr.shape) == spatial_dims + index_dims``
142

Martin Bauer's avatar
Martin Bauer committed
143
144
145
146
147
        The shape of the index dimension does not have to be specified. Just use the 'index_dimensions' parameter.
        However, it is good practice to define the shape, since out of bounds accesses can be directly detected in this
        case. The shape can be passed with the 'index_shape' parameter of the field creation functions.

        When accessing (indexing) a field the result is a `Field.Access` which is derived from sympy Symbol.
Martin Bauer's avatar
Martin Bauer committed
148
        First specify the spatial offsets in [], then in case index_dimension>0 the indices in ()
Martin Bauer's avatar
Martin Bauer committed
149
        e.g. ``f[-1,0,0](7)``
150

Martin Bauer's avatar
Martin Bauer committed
151
    Example using no index dimensions:
152
        >>> a = np.zeros([10, 10])
Martin Bauer's avatar
Martin Bauer committed
153
        >>> f = Field.create_from_numpy_array("f", a, index_dimensions=0)
Martin Bauer's avatar
Martin Bauer committed
154
        >>> jacobi = (f[-1,0] + f[1,0] + f[0,-1] + f[0,1]) / 4
155

Martin Bauer's avatar
Martin Bauer committed
156
    Examples for index dimensions to create LB field and implement stream pull:
Martin Bauer's avatar
Martin Bauer committed
157
        >>> from pystencils import Assignment
158
        >>> stencil = np.array([[0,0], [0,1], [0,-1]])
Martin Bauer's avatar
Martin Bauer committed
159
        >>> src, dst = fields("src(3), dst(3) : double[2D]")
160
        >>> assignments = [Assignment(dst[0,0](i), src[-offset](i)) for i, offset in enumerate(stencil)];
161
    """
162
163

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
164
165
    def create_generic(field_name, spatial_dimensions, dtype=np.float64, index_dimensions=0, layout='numpy',
                       index_shape=None, field_type=FieldType.GENERIC) -> 'Field':
166
167
168
        """
        Creates a generic field where the field size is not fixed i.e. can be called with arrays of different sizes

Martin Bauer's avatar
Martin Bauer committed
169
170
171
172
173
174
175
        Args:
            field_name: symbolic name for the field
            dtype: numpy data type of the array the kernel is called with later
            spatial_dimensions: see documentation of Field
            index_dimensions: see documentation of Field
            layout: tuple specifying the loop ordering of the spatial dimensions e.g. (2, 1, 0 ) means that
                    the outer loop loops over dimension 2, the second outer over dimension 1, and the inner loop
Martin Bauer's avatar
Martin Bauer committed
176
                    over dimension 0. Also allowed: the strings 'numpy' (0,1,..d) or 'reverse_numpy' (d, ..., 1, 0)
Martin Bauer's avatar
Martin Bauer committed
177
178
179
180
181
            index_shape: optional shape of the index dimensions i.e. maximum values allowed for each index dimension,
                        has to be a list or tuple
            field_type: besides the normal GENERIC fields, there are INDEXED fields that store indices of the domain
                        that should be iterated over, and BUFFER fields that are used to generate
                        communication packing/unpacking kernels
182
        """
183
184
185
        if index_shape is not None:
            assert index_dimensions == 0 or index_dimensions == len(index_shape)
            index_dimensions = len(index_shape)
186
        if isinstance(layout, str):
Martin Bauer's avatar
Martin Bauer committed
187
            layout = spatial_layout_string_to_tuple(layout, dim=spatial_dimensions)
188

Martin Bauer's avatar
Martin Bauer committed
189
190
        total_dimensions = spatial_dimensions + index_dimensions
        if index_shape is None or len(index_shape) == 0:
191
            shape = tuple([FieldShapeSymbol([field_name], i) for i in range(total_dimensions)])
192
        else:
193
            shape = tuple([FieldShapeSymbol([field_name], i) for i in range(spatial_dimensions)] + list(index_shape))
194

195
        strides = tuple([FieldStrideSymbol(field_name, i) for i in range(total_dimensions)])
196

Martin Bauer's avatar
Martin Bauer committed
197
198
199
        np_data_type = np.dtype(dtype)
        if np_data_type.fields is not None:
            if index_dimensions != 0:
200
201
202
203
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)

Martin Bauer's avatar
Martin Bauer committed
204
        return Field(field_name, field_type, dtype, layout, shape, strides)
205

206
    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
207
208
209
    def create_from_numpy_array(field_name: str, array: np.ndarray, index_dimensions: int = 0) -> 'Field':
        """Creates a field based on the layout, data type, and shape of a given numpy array.

210
        Kernels created for these kind of fields can only be called with arrays of the same layout, shape and type.
Martin Bauer's avatar
Martin Bauer committed
211
212
213
214
215

        Args:
            field_name: symbolic name for the field
            array: numpy array
            index_dimensions: see documentation of Field
216
        """
Martin Bauer's avatar
Martin Bauer committed
217
218
        spatial_dimensions = len(array.shape) - index_dimensions
        if spatial_dimensions < 1:
219
220
            raise ValueError("Too many index dimensions. At least one spatial dimension required")

Martin Bauer's avatar
Martin Bauer committed
221
222
223
        full_layout = get_layout_of_array(array)
        spatial_layout = tuple([i for i in full_layout if i < spatial_dimensions])
        assert len(spatial_layout) == spatial_dimensions
224

Martin Bauer's avatar
Martin Bauer committed
225
226
        strides = tuple([s // np.dtype(array.dtype).itemsize for s in array.strides])
        shape = tuple(int(s) for s in array.shape)
227

Martin Bauer's avatar
Martin Bauer committed
228
229
230
        numpy_dtype = np.dtype(array.dtype)
        if numpy_dtype.fields is not None:
            if index_dimensions != 0:
231
232
233
234
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)

Martin Bauer's avatar
Martin Bauer committed
235
        return Field(field_name, FieldType.GENERIC, array.dtype, spatial_layout, shape, strides)
236
237

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
238
    def create_fixed_size(field_name: str, shape: Tuple[int, ...], index_dimensions: int = 0,
239
                          dtype=np.float64, layout: str = 'numpy', strides: Optional[Sequence[int]] = None) -> 'Field':
240
        """
241
        Creates a field with fixed sizes i.e. can be called only with arrays of the same size and layout
242

Martin Bauer's avatar
Martin Bauer committed
243
244
245
246
247
248
249
        Args:
            field_name: symbolic name for the field
            shape: overall shape of the array
            index_dimensions: how many of the trailing dimensions are interpreted as index (as opposed to spatial)
            dtype: numpy data type of the array the kernel is called with later
            layout: full layout of array, not only spatial dimensions
            strides: strides in bytes or None to automatically compute them from shape (assuming no padding)
250
        """
Martin Bauer's avatar
Martin Bauer committed
251
252
        spatial_dimensions = len(shape) - index_dimensions
        assert spatial_dimensions >= 1
253

254
        if isinstance(layout, str):
Martin Bauer's avatar
Martin Bauer committed
255
            layout = layout_string_to_tuple(layout, spatial_dimensions + index_dimensions)
256
257

        shape = tuple(int(s) for s in shape)
258
        if strides is None:
Martin Bauer's avatar
Martin Bauer committed
259
            strides = compute_strides(shape, layout)
260
261
262
        else:
            assert len(strides) == len(shape)
            strides = tuple([s // np.dtype(dtype).itemsize for s in strides])
263

Martin Bauer's avatar
Martin Bauer committed
264
265
266
        numpy_dtype = np.dtype(dtype)
        if numpy_dtype.fields is not None:
            if index_dimensions != 0:
267
268
269
270
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)

Martin Bauer's avatar
Martin Bauer committed
271
272
273
274
        spatial_layout = list(layout)
        for i in range(spatial_dimensions, len(layout)):
            spatial_layout.remove(i)
        return Field(field_name, FieldType.GENERIC, dtype, tuple(spatial_layout), shape, strides)
275

Martin Bauer's avatar
Martin Bauer committed
276
    def __init__(self, field_name, field_type, dtype, layout, shape, strides):
277
        """Do not use directly. Use static create* methods"""
278
        self._field_name = field_name
Martin Bauer's avatar
Martin Bauer committed
279
        assert isinstance(field_type, FieldType)
280
        assert len(shape) == len(strides)
Martin Bauer's avatar
Martin Bauer committed
281
        self.field_type = field_type
Martin Bauer's avatar
Martin Bauer committed
282
        self._dtype = create_type(dtype)
Martin Bauer's avatar
Martin Bauer committed
283
        self._layout = normalize_layout(layout)
284
285
        self.shape = shape
        self.strides = strides
286
        self.latex_name = None  # type: Optional[str]
287

Martin Bauer's avatar
Martin Bauer committed
288
    def new_field_with_different_name(self, new_name):
Martin Bauer's avatar
Martin Bauer committed
289
        return Field(new_name, self.field_type, self._dtype, self._layout, self.shape, self.strides)
290

291
    @property
Martin Bauer's avatar
Martin Bauer committed
292
    def spatial_dimensions(self) -> int:
293
294
295
        return len(self._layout)

    @property
Martin Bauer's avatar
Martin Bauer committed
296
    def index_dimensions(self) -> int:
297
        return len(self.shape) - len(self._layout)
298
299
300
301
302
303

    @property
    def layout(self):
        return self._layout

    @property
Martin Bauer's avatar
Martin Bauer committed
304
    def name(self) -> str:
305
        return self._field_name
306
307

    @property
Martin Bauer's avatar
Martin Bauer committed
308
309
    def spatial_shape(self) -> Tuple[int, ...]:
        return self.shape[:self.spatial_dimensions]
310

311
    @property
Martin Bauer's avatar
Martin Bauer committed
312
    def has_fixed_shape(self):
Martin Bauer's avatar
Martin Bauer committed
313
        return is_integer_sequence(self.shape)
314

315
    @property
Martin Bauer's avatar
Martin Bauer committed
316
317
    def index_shape(self):
        return self.shape[self.spatial_dimensions:]
318

319
    @property
Martin Bauer's avatar
Martin Bauer committed
320
321
    def has_fixed_index_shape(self):
        return is_integer_sequence(self.index_shape)
322

323
    @property
Martin Bauer's avatar
Martin Bauer committed
324
325
    def spatial_strides(self):
        return self.strides[:self.spatial_dimensions]
326
327

    @property
Martin Bauer's avatar
Martin Bauer committed
328
329
    def index_strides(self):
        return self.strides[self.spatial_dimensions:]
330
331
332
333
334
335

    @property
    def dtype(self):
        return self._dtype

    def __repr__(self):
336
        return self._field_name
337

Martin Bauer's avatar
Martin Bauer committed
338
339
340
341
    def neighbor(self, coord_id, offset):
        offset_list = [0] * self.spatial_dimensions
        offset_list[coord_id] = offset
        return Field.Access(self, tuple(offset_list))
342

343
    def neighbors(self, stencil):
344
        return [self.__getitem__(s) for s in stencil]
345

346
    @property
Martin Bauer's avatar
Martin Bauer committed
347
348
349
    def center_vector(self):
        index_shape = self.index_shape
        if len(index_shape) == 0:
350
351
            return sp.Matrix([self.center])
        if len(index_shape) == 1:
Martin Bauer's avatar
Martin Bauer committed
352
353
            return sp.Matrix([self(i) for i in range(index_shape[0])])
        elif len(index_shape) == 2:
354
355
356
            def cb(*args):
                r = self.__call__(*args)
                return r
Martin Bauer's avatar
Martin Bauer committed
357
            return sp.Matrix(*index_shape, cb)
358

359
    @property
360
    def center(self):
Martin Bauer's avatar
Martin Bauer committed
361
        center = tuple([0] * self.spatial_dimensions)
362
363
        return Field.Access(self, center)

364
365
366
367
    def __getitem__(self, offset):
        if type(offset) is np.ndarray:
            offset = tuple(offset)
        if type(offset) is str:
Martin Bauer's avatar
Martin Bauer committed
368
            offset = tuple(direction_string_to_offset(offset, self.spatial_dimensions))
369
370
        if type(offset) is not tuple:
            offset = (offset,)
Martin Bauer's avatar
Martin Bauer committed
371
        if len(offset) != self.spatial_dimensions:
372
            raise ValueError("Wrong number of spatial indices: "
Martin Bauer's avatar
Martin Bauer committed
373
                             "Got %d, expected %d" % (len(offset), self.spatial_dimensions))
374
375
        return Field.Access(self, offset)

Martin Bauer's avatar
Martin Bauer committed
376
    def absolute_access(self, offset, index):
Martin Bauer's avatar
Martin Bauer committed
377
        assert FieldType.is_custom(self)
Martin Bauer's avatar
Martin Bauer committed
378
379
        return Field.Access(self, offset, index, is_absolute_access=True)

380
    def __call__(self, *args, **kwargs):
Martin Bauer's avatar
Martin Bauer committed
381
        center = tuple([0] * self.spatial_dimensions)
382
383
        return Field.Access(self, center)(*args, **kwargs)

384
    def hashable_contents(self):
385
386
        dth = hash(self._dtype)
        return self._layout, self.shape, self.strides, dth, self.field_type, self._field_name, self.latex_name
387

388
    def __hash__(self):
389
        return hash(self.hashable_contents())
390
391

    def __eq__(self, other):
392
393
        if not isinstance(other, Field):
            return False
394
        return self.hashable_contents() == other.hashable_contents()
395

Martin Bauer's avatar
Martin Bauer committed
396
    # noinspection PyAttributeOutsideInit,PyUnresolvedReferences
397
    class Access(sp.Symbol):
Martin Bauer's avatar
Martin Bauer committed
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
        """Class representing a relative access into a `Field`.

        This class behaves like a normal sympy Symbol, it is actually derived from it. One can built up
        sympy expressions using field accesses, solve for them, etc.

        Examples:
            >>> vector_field_2d = fields("v(2): double[2D]")  # create a 2D vector field
            >>> northern_neighbor_y_component = vector_field_2d[0, 1](1)
            >>> northern_neighbor_y_component
            v_N^1
            >>> central_y_component = vector_field_2d(1)
            >>> central_y_component
            v_C^1
            >>> central_y_component.get_shifted(1, 0)  # move the existing access
            v_E^1
            >>> central_y_component.at_index(0)  # change component
            v_C^0
        """
416
417
418
419
        def __new__(cls, name, *args, **kwargs):
            obj = Field.Access.__xnew_cached_(cls, name, *args, **kwargs)
            return obj

Martin Bauer's avatar
Martin Bauer committed
420
        def __new_stage2__(self, field, offsets=(0, 0, 0), idx=None, is_absolute_access=False):
Martin Bauer's avatar
Martin Bauer committed
421
            field_name = field.name
Martin Bauer's avatar
Martin Bauer committed
422
            offsets_and_index = (*offsets, *idx) if idx is not None else offsets
Martin Bauer's avatar
Martin Bauer committed
423
            constant_offsets = not any([isinstance(o, sp.Basic) and not o.is_Integer for o in offsets_and_index])
424
425

            if not idx:
Martin Bauer's avatar
Martin Bauer committed
426
                idx = tuple([0] * field.index_dimensions)
427

Martin Bauer's avatar
Martin Bauer committed
428
429
430
            if constant_offsets:
                offset_name = offset_to_direction_string(offsets)
                if field.index_dimensions == 0:
431
                    superscript = None
Martin Bauer's avatar
Martin Bauer committed
432
                elif field.index_dimensions == 1:
433
                    superscript = str(idx[0])
434
                else:
Martin Bauer's avatar
Martin Bauer committed
435
436
437
438
                    idx_str = ",".join([str(e) for e in idx])
                    superscript = idx_str
                if field.has_fixed_index_shape and not isinstance(field.dtype, StructType):
                    for i, bound in zip(idx, field.index_shape):
439
440
                        if i >= bound:
                            raise ValueError("Field index out of bounds")
441
            else:
442
                offset_name = hashlib.md5(pickle.dumps(offsets_and_index)).hexdigest()[:12]
443
                superscript = None
444

Martin Bauer's avatar
Martin Bauer committed
445
            symbol_name = "%s_%s" % (field_name, offset_name)
446
            if superscript is not None:
Martin Bauer's avatar
Martin Bauer committed
447
                symbol_name += "^" + superscript
448

Martin Bauer's avatar
Martin Bauer committed
449
            obj = super(Field.Access, self).__xnew__(self, symbol_name)
450
451
452
453
454
455
456
            obj._field = field
            obj._offsets = []
            for o in offsets:
                if isinstance(o, sp.Basic):
                    obj._offsets.append(o)
                else:
                    obj._offsets.append(int(o))
457
            obj._offsets = tuple(obj._offsets)
Martin Bauer's avatar
Martin Bauer committed
458
            obj._offsetName = offset_name
459
            obj._superscript = superscript
460
461
            obj._index = idx

Martin Bauer's avatar
Martin Bauer committed
462
463
464
465
466
467
            obj._indirect_addressing_fields = set()
            for e in chain(obj._offsets, obj._index):
                if isinstance(e, sp.Basic):
                    obj._indirect_addressing_fields.update(a.field for a in e.atoms(Field.Access))

            obj._is_absolute_access = is_absolute_access
468
469
            return obj

470
        def __getnewargs__(self):
Martin Bauer's avatar
Martin Bauer committed
471
            return self.field, self.offsets, self.index, self.is_absolute_access
472

Martin Bauer's avatar
Martin Bauer committed
473
        # noinspection SpellCheckingInspection
474
        __xnew__ = staticmethod(__new_stage2__)
Martin Bauer's avatar
Martin Bauer committed
475
        # noinspection SpellCheckingInspection
476
477
478
        __xnew_cached_ = staticmethod(cacheit(__new_stage2__))

        def __call__(self, *idx):
Martin Bauer's avatar
Martin Bauer committed
479
            if self._index != tuple([0] * self.field.index_dimensions):
480
481
482
                raise ValueError("Indexing an already indexed Field.Access")

            idx = tuple(idx)
483

Martin Bauer's avatar
Martin Bauer committed
484
            if self.field.index_dimensions == 0 and idx == (0,):
485
486
                idx = ()

Martin Bauer's avatar
Martin Bauer committed
487
            if len(idx) != self.field.index_dimensions:
488
                raise ValueError("Wrong number of indices: "
Martin Bauer's avatar
Martin Bauer committed
489
                                 "Got %d, expected %d" % (len(idx), self.field.index_dimensions))
490
491
            return Field.Access(self.field, self._offsets, idx)

Martin Bauer's avatar
Martin Bauer committed
492
493
494
        def __getitem__(self, *idx):
            return self.__call__(*idx)

Martin Bauer's avatar
Martin Bauer committed
495
496
497
498
499
        def __iter__(self):
            """This is necessary to work with parts of sympy that test if an object is iterable (e.g. simplify).
            The __getitem__ would make it iterable"""
            raise TypeError("Field access is not iterable")

500
        @property
Martin Bauer's avatar
Martin Bauer committed
501
502
        def field(self) -> 'Field':
            """Field that the Access points to"""
503
504
505
            return self._field

        @property
Martin Bauer's avatar
Martin Bauer committed
506
507
        def offsets(self) -> Tuple:
            """Spatial offset as tuple"""
508
            return self._offsets
509

510
        @property
Martin Bauer's avatar
Martin Bauer committed
511
512
        def required_ghost_layers(self) -> int:
            """Largest spatial distance that is accessed."""
513
514
515
            return int(np.max(np.abs(self._offsets)))

        @property
Martin Bauer's avatar
Martin Bauer committed
516
        def nr_of_coordinates(self):
517
518
519
            return len(self._offsets)

        @property
Martin Bauer's avatar
Martin Bauer committed
520
        def offset_name(self) -> str:
Martin Bauer's avatar
Martin Bauer committed
521
522
523
524
525
526
527
            """Spatial offset as string, East-West for x, North-South for y and Top-Bottom for z coordinate.

            Example:
                >>> f = fields("f: double[2D]")
                >>> f[1, 1].offset_name  # north-east
                'NE'
            """
528
529
530
531
            return self._offsetName

        @property
        def index(self):
Martin Bauer's avatar
Martin Bauer committed
532
            """Value of index coordinates as tuple."""
533
534
            return self._index

Martin Bauer's avatar
Martin Bauer committed
535
        def neighbor(self, coord_id: int, offset: Sequence[int]) -> 'Field.Access':
Martin Bauer's avatar
Martin Bauer committed
536
537
538
539
540
541
542
543
544
545
546
            """Returns a new Access with changed spatial coordinates.

            Args:
                coord_id: index of the coordinate to change (0 for x, 1 for y,...)
                offset: incremental change of this coordinate

            Example:
                >>> f = fields('f: [2D]')
                >>> f[0,0].neighbor(coord_id=1, offset=-1)
                f_S
            """
Martin Bauer's avatar
Martin Bauer committed
547
548
549
            offset_list = list(self.offsets)
            offset_list[coord_id] += offset
            return Field.Access(self.field, tuple(offset_list), self.index)
550

Martin Bauer's avatar
Martin Bauer committed
551
        def get_shifted(self, *shift)-> 'Field.Access':
Martin Bauer's avatar
Martin Bauer committed
552
553
554
555
556
557
558
            """Returns a new Access with changed spatial coordinates

            Example:
                >>> f = fields("f: [2D]")
                >>> f[0,0].get_shifted(1, 1)
                f_NE
            """
559
560
            return Field.Access(self.field, tuple(a + b for a, b in zip(shift, self.offsets)), self.index)

Martin Bauer's avatar
Martin Bauer committed
561
562
563
564
565
566
567
568
        def at_index(self, *idx_tuple) -> 'Field.Access':
            """Returns new Access with changed index.

            Example:
                >>> f = fields("f(9): [2D]")
                >>> f(0).at_index(8)
                f_C^8
            """
569
570
            return Field.Access(self.field, self.offsets, idx_tuple)

Martin Bauer's avatar
Martin Bauer committed
571
572
573
574
575
576
577
578
579
580
581
582
583
        @property
        def is_absolute_access(self) -> bool:
            """Indicates if a field access is relative to the loop counters (this is the default) or absolute"""
            return self._is_absolute_access

        @property
        def indirect_addressing_fields(self) -> Set['Field']:
            """Returns a set of fields that the access depends on.

             e.g. f[index_field[1, 0]], the outer access to f depends on index_field
             """
            return self._indirect_addressing_fields

584
        def _hashable_content(self):
585
586
            super_class_contents = super(Field.Access, self)._hashable_content()
            return (super_class_contents, self._field.hashable_contents(), *self._index, *self._offsets)
Martin Bauer's avatar
Martin Bauer committed
587

Martin Bauer's avatar
Martin Bauer committed
588
        def _latex(self, _):
589
            n = self._field.latex_name if self._field.latex_name else self._field.name
Martin Bauer's avatar
Martin Bauer committed
590
591
592
593
594
595
596
597
            offset_str = ",".join([sp.latex(o) for o in self.offsets])
            if self.is_absolute_access:
                offset_str = "\\mathbf{}".format(offset_str)
            elif self.field.spatial_dimensions > 1:
                offset_str = "({})".format(offset_str)

            if self.index and self.index != (0,):
                return "{{%s}_{%s}^{%s}}" % (n, offset_str, self.index if len(self.index) > 1 else self.index[0])
Martin Bauer's avatar
Martin Bauer committed
598
            else:
Martin Bauer's avatar
Martin Bauer committed
599
                return "{{%s}_{%s}}" % (n, offset_str)
Martin Bauer's avatar
Martin Bauer committed
600

601
602
603
604
605
606
607
608
609
610
        def __str__(self):
            n = self._field.latex_name if self._field.latex_name else self._field.name
            offset_str = ",".join([sp.latex(o) for o in self.offsets])
            if self.is_absolute_access:
                offset_str = "[abs]{}".format(offset_str)
            if self.index and self.index != (0,):
                return "%s[%s](%s)" % (n, offset_str, self.index if len(self.index) > 1 else self.index[0])
            else:
                return "%s[%s]" % (n, offset_str)

Martin Bauer's avatar
Martin Bauer committed
611

Martin Bauer's avatar
Martin Bauer committed
612
613
def get_layout_from_strides(strides: Sequence[int], index_dimension_ids: Optional[List[int]] = None):
    index_dimension_ids = [] if index_dimension_ids is None else index_dimension_ids
614
    coordinates = list(range(len(strides)))
Martin Bauer's avatar
Martin Bauer committed
615
    relevant_strides = [stride for i, stride in enumerate(strides) if i not in index_dimension_ids]
616
    result = [x for (y, x) in sorted(zip(relevant_strides, coordinates), key=lambda pair: pair[0], reverse=True)]
Martin Bauer's avatar
Martin Bauer committed
617
    return normalize_layout(result)
618
619


Martin Bauer's avatar
Martin Bauer committed
620
621
622
623
624
625
def get_layout_of_array(arr: np.ndarray, index_dimension_ids: Optional[List[int]] = None):
    """ Returns a list indicating the memory layout (linearization order) of the numpy array.

    Examples:
        >>> get_layout_of_array(np.zeros([3,3,3]))
        (0, 1, 2)
Martin Bauer's avatar
Martin Bauer committed
626
627
628
629
630

    In this example the loop over the zeroth coordinate should be the outermost loop,
    followed by the first and second. Elements arr[x,y,0] and arr[x,y,1] are adjacent in memory.
    Normally constructed numpy arrays have this order, however by stride tricks or other frameworks, arrays
    with different memory layout can be created.
Martin Bauer's avatar
Martin Bauer committed
631

Martin Bauer's avatar
Martin Bauer committed
632
    The index_dimension_ids parameter leaves specifies which coordinates should not be
Martin Bauer's avatar
Martin Bauer committed
633
    """
Martin Bauer's avatar
Martin Bauer committed
634
635
    index_dimension_ids = [] if index_dimension_ids is None else index_dimension_ids
    return get_layout_from_strides(arr.strides, index_dimension_ids)
636
637


Martin Bauer's avatar
Martin Bauer committed
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
def create_numpy_array_with_layout(shape, layout, alignment=False, byte_offset=0, **kwargs):
    """Creates numpy array with given memory layout.

    Args:
        shape: shape of the resulting array
        layout: layout as tuple, where the coordinates are ordered from slow to fast
        alignment: number of bytes to align the beginning and the innermost coordinate to, or False for no alignment
        byte_offset: only used when alignment is specified, align not beginning but address at this offset
                     mostly used to align first inner cell, not ghost cells

    Example:
        >>> res = create_numpy_array_with_layout(shape=(2, 3, 4, 5), layout=(3, 2, 0, 1))
        >>> res.shape
        (2, 3, 4, 5)
        >>> get_layout_of_array(res)
        (3, 2, 0, 1)
654
655
    """
    assert set(layout) == set(range(len(shape))), "Wrong layout descriptor"
Martin Bauer's avatar
Martin Bauer committed
656
    cur_layout = list(range(len(shape)))
657
658
    swaps = []
    for i in range(len(layout)):
Martin Bauer's avatar
Martin Bauer committed
659
660
661
662
663
        if cur_layout[i] != layout[i]:
            index_to_swap_with = cur_layout.index(layout[i])
            swaps.append((i, index_to_swap_with))
            cur_layout[i], cur_layout[index_to_swap_with] = cur_layout[index_to_swap_with], cur_layout[i]
    assert tuple(cur_layout) == tuple(layout)
664
665
666
667
668

    shape = list(shape)
    for a, b in swaps:
        shape[a], shape[b] = shape[b], shape[a]

669
670
671
672
673
    if not alignment:
        res = np.empty(shape, order='c', **kwargs)
    else:
        if alignment is True:
            alignment = 8 * 4
Martin Bauer's avatar
Martin Bauer committed
674
        res = aligned_empty(shape, alignment, byte_offset=byte_offset, **kwargs)
675

676
677
678
679
680
    for a, b in reversed(swaps):
        res = res.swapaxes(a, b)
    return res


Martin Bauer's avatar
Martin Bauer committed
681
682
def spatial_layout_string_to_tuple(layout_str: str, dim: int) -> Tuple[int, ...]:
    if layout_str in ('fzyx', 'zyxf'):
683
684
        assert dim <= 3
        return tuple(reversed(range(dim)))
685

Martin Bauer's avatar
Martin Bauer committed
686
    if layout_str in ('fzyx', 'f', 'reverse_numpy', 'SoA'):
687
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
688
    elif layout_str in ('c', 'numpy', 'AoS'):
689
        return tuple(range(dim))
Martin Bauer's avatar
Martin Bauer committed
690
    raise ValueError("Unknown layout descriptor " + layout_str)
691
692


Martin Bauer's avatar
Martin Bauer committed
693
694
695
def layout_string_to_tuple(layout_str, dim):
    layout_str = layout_str.lower()
    if layout_str == 'fzyx' or layout_str == 'soa':
696
697
        assert dim <= 4
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
698
    elif layout_str == 'zyxf' or layout_str == 'aos':
699
        assert dim <= 4
Martin Bauer's avatar
Martin Bauer committed
700
        return tuple(reversed(range(dim - 1))) + (dim - 1,)
Martin Bauer's avatar
Martin Bauer committed
701
    elif layout_str == 'f' or layout_str == 'reverse_numpy':
702
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
703
    elif layout_str == 'c' or layout_str == 'numpy':
704
        return tuple(range(dim))
Martin Bauer's avatar
Martin Bauer committed
705
    raise ValueError("Unknown layout descriptor " + layout_str)
706
707


Martin Bauer's avatar
Martin Bauer committed
708
def normalize_layout(layout):
709
    """Takes a layout tuple and subtracts the minimum from all entries"""
Martin Bauer's avatar
Martin Bauer committed
710
711
    min_entry = min(layout)
    return tuple(i - min_entry for i in layout)
712
713


Martin Bauer's avatar
Martin Bauer committed
714
def compute_strides(shape, layout):
715
716
    """
    Computes strides assuming no padding exists
Martin Bauer's avatar
Martin Bauer committed
717
718
719
720
721
722
723

    Args:
        shape: shape (size) of array
        layout: layout specification as tuple

    Returns:
        strides in elements, not in bytes
724
    """
Martin Bauer's avatar
Martin Bauer committed
725
726
727
728
    dim = len(shape)
    assert len(layout) == dim
    assert len(set(layout)) == dim
    strides = [0] * dim
729
    product = 1
730
    for j in reversed(layout):
731
732
733
        strides[j] = product
        product *= shape[j]
    return tuple(strides)
Martin Bauer's avatar
Martin Bauer committed
734
735


736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
# ---------------------------------------- Parsing of string in fields() function --------------------------------------

field_description_regex = re.compile(r"""
    \s*                 # ignore leading white spaces
    (\w+)               # identifier is a sequence of alphanumeric characters, is stored in first group
    (?:                 # optional index specification e.g. (1, 4, 2)
        \s*
        \(
            ([^\)]+)    # read everything up to closing bracket
        \)
        \s*
    )?
    \s*,?\s*             # ignore trailing white spaces and comma
""", re.VERBOSE)

type_description_regex = re.compile(r"""
    \s*
    (\w+)?       # optional dtype
    \s*
    \[
        ([^\]]+)
    \]
    \s*
""", re.VERBOSE | re.IGNORECASE)
760
761
762


def _parse_description(description):
763
764
765
    def parse_part1(d):
        result = field_description_regex.match(d)
        while result:
766
            name, index_str = result.group(1), result.group(2)
767
768
769
770
771
772
773
774
            index = tuple(int(e) for e in index_str.split(",")) if index_str else ()
            yield name, index
            d = d[result.end():]
            result = field_description_regex.match(d)

    def parse_part2(d):
        result = type_description_regex.match(d)
        if result:
775
            data_type_str, size_info = result.group(1), result.group(2).strip().lower()
776
777
778
779
780
781
782
783
784
785
786
787
788
789
            if data_type_str is None:
                data_type_str = 'float64'
            data_type_str = data_type_str.lower().strip()

            if not data_type_str:
                data_type_str = 'float64'
            if size_info.endswith('d'):
                size_info = int(size_info[:-1])
            else:
                size_info = tuple(int(e) for e in size_info.split(","))
            return data_type_str, size_info
        else:
            raise ValueError("Could not parse field description")

790
    if ':' in description:
791
        field_description, field_info = description.split(':')
792
    else:
793
794
795
796
797
        field_description, field_info = description, 'float64[2D]'

    fields_info = [e for e in parse_part1(field_description)]
    if not field_info:
        raise ValueError("Could not parse field description")
798

799
800
    data_type, size = parse_part2(field_info)
    return fields_info, data_type, size