field.py 32.4 KB
Newer Older
1
from enum import Enum
2
from itertools import chain
Martin Bauer's avatar
Martin Bauer committed
3
from typing import Tuple, Sequence, Optional, List, Set
4
5
import numpy as np
import sympy as sp
6
import re
7
from sympy.core.cache import cacheit
8
from pystencils.alignedarray import aligned_empty
Martin Bauer's avatar
Martin Bauer committed
9
from pystencils.data_types import create_type, StructType
10
from pystencils.kernelparameters import FieldShapeSymbol, FieldStrideSymbol
11
from pystencils.stencil import offset_to_direction_string, direction_string_to_offset
Martin Bauer's avatar
Martin Bauer committed
12
from pystencils.sympyextensions import is_integer_sequence
13
14
import pickle
import hashlib
15

16
__all__ = ['Field', 'fields', 'FieldType', 'AbstractField']
Martin Bauer's avatar
Martin Bauer committed
17

18

19
20
21
22
def fields(description=None, index_dimensions=0, layout=None, **kwargs):
    """Creates pystencils fields from a string description.

    Examples:
Martin Bauer's avatar
Martin Bauer committed
23
24
25
26
        Create a 2D scalar and vector field:
            >>> s, v = fields("s, v(2): double[2D]")
            >>> assert s.spatial_dimensions == 2 and s.index_dimensions == 0
            >>> assert (v.spatial_dimensions, v.index_dimensions, v.index_shape) == (2, 1, (2,))
27

Martin Bauer's avatar
Martin Bauer committed
28
29
30
31
        Create an integer field of shape (10, 20):
            >>> f = fields("f : int32[10, 20]")
            >>> f.has_fixed_shape, f.shape
            (True, (10, 20))
32

Martin Bauer's avatar
Martin Bauer committed
33
34
35
36
37
        Numpy arrays can be used as template for shape and data type of field:
            >>> arr_s, arr_v = np.zeros([20, 20]), np.zeros([20, 20, 2])
            >>> s, v = fields("s, v(2)", s=arr_s, v=arr_v)
            >>> assert s.index_dimensions == 0 and s.dtype.numpy_dtype == arr_s.dtype
            >>> assert v.index_shape == (2,)
38
39


Martin Bauer's avatar
Martin Bauer committed
40
41
42
43
44
45
46
47
48
49
        Format string can be left out, field names are taken from keyword arguments.
            >>> fields(f1=arr_s, f2=arr_s)
            [f1, f2]

        The keyword names ``index_dimension`` and ``layout`` have special meaning, don't use them for field names
            >>> f = fields(f=arr_v, index_dimensions=1)
            >>> assert f.index_dimensions == 1
            >>> f = fields("pdfs(19) : float32[3D]", layout='fzyx')
            >>> f.layout
            (2, 1, 0)
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    """
    result = []
    if description:
        field_descriptions, dtype, shape = _parse_description(description)
        layout = 'numpy' if layout is None else layout
        for field_name, idx_shape in field_descriptions:
            if field_name in kwargs:
                arr = kwargs[field_name]
                idx_shape_of_arr = () if not len(idx_shape) else arr.shape[-len(idx_shape):]
                assert idx_shape_of_arr == idx_shape
                f = Field.create_from_numpy_array(field_name, kwargs[field_name], index_dimensions=len(idx_shape))
            elif isinstance(shape, tuple):
                f = Field.create_fixed_size(field_name, shape + idx_shape, dtype=dtype,
                                            index_dimensions=len(idx_shape), layout=layout)
            elif isinstance(shape, int):
                f = Field.create_generic(field_name, spatial_dimensions=shape, dtype=dtype,
                                         index_shape=idx_shape, layout=layout)
            elif shape is None:
                f = Field.create_generic(field_name, spatial_dimensions=2, dtype=dtype,
                                         index_shape=idx_shape, layout=layout)
            else:
                assert False
            result.append(f)
    else:
        assert layout is None, "Layout can not be specified when creating Field from numpy array"
        for field_name, arr in kwargs.items():
            result.append(Field.create_from_numpy_array(field_name, arr, index_dimensions=index_dimensions))

    if len(result) == 0:
        return None
    elif len(result) == 1:
        return result[0]
    else:
        return result


86
87
88
89
90
91
92
93
class FieldType(Enum):
    # generic fields
    GENERIC = 0
    # index fields are currently only used for boundary handling
    # the coordinates are not the loop counters in that case, but are read from this index field
    INDEXED = 1
    # communication buffer, used for (un)packing data in communication.
    BUFFER = 2
Martin Bauer's avatar
Martin Bauer committed
94
95
96
    # unsafe fields may be accessed in an absolute fashion - the index depends on the data
    # and thus may lead to out-of-bounds accesses
    CUSTOM = 3
97
98

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
99
    def is_generic(field):
100
        assert isinstance(field, Field)
Martin Bauer's avatar
Martin Bauer committed
101
        return field.field_type == FieldType.GENERIC
102
103

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
104
    def is_indexed(field):
105
        assert isinstance(field, Field)
Martin Bauer's avatar
Martin Bauer committed
106
        return field.field_type == FieldType.INDEXED
107
108

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
109
    def is_buffer(field):
110
        assert isinstance(field, Field)
Martin Bauer's avatar
Martin Bauer committed
111
        return field.field_type == FieldType.BUFFER
112

Martin Bauer's avatar
Martin Bauer committed
113
114
115
116
117
    @staticmethod
    def is_custom(field):
        assert isinstance(field, Field)
        return field.field_type == FieldType.CUSTOM

118

119
120
121
122
123
124
125
class AbstractField:

    class AbstractAccess:
        pass


class Field(AbstractField):
126
127
128
129
    """
    With fields one can formulate stencil-like update rules on structured grids.
    This Field class knows about the dimension, memory layout (strides) and optionally about the size of an array.

Martin Bauer's avatar
Martin Bauer committed
130
    Creating Fields:
Martin Bauer's avatar
Martin Bauer committed
131
132
        The preferred method to create fields is the `fields` function.
        Alternatively one can use one of the static functions `Field.create_generic`, `Field.create_from_numpy_array`
133
        and `Field.create_fixed_size`. Don't instantiate the Field directly!
Martin Bauer's avatar
Martin Bauer committed
134
135
136
137
138
        Fields can be created with known or unknown shapes:

        1. If you want to create a kernel with fixed loop sizes i.e. the shape of the array is already known.
           This is usually the case if just-in-time compilation directly from Python is done.
           (see `Field.create_from_numpy_array`
139
        2. create a more general kernel that works for variable array sizes. This can be used to create kernels
Martin Bauer's avatar
Martin Bauer committed
140
           beforehand for a library. (see `Field.create_generic`)
141

Martin Bauer's avatar
Martin Bauer committed
142
    Dimensions and Indexing:
143
144
        A field has spatial and index dimensions, where the spatial dimensions come first.
        The interpretation is that the field has multiple cells in (usually) two or three dimensional space which are
Martin Bauer's avatar
Martin Bauer committed
145
        looped over. Additionally N values are stored per cell. In this case spatial_dimensions is two or three,
Martin Bauer's avatar
Martin Bauer committed
146
        and index_dimensions equals N. If you want to store a matrix on each point in a two dimensional grid, there
Martin Bauer's avatar
Martin Bauer committed
147
        are four dimensions, two spatial and two index dimensions: ``len(arr.shape) == spatial_dims + index_dims``
148

Martin Bauer's avatar
Martin Bauer committed
149
150
151
152
153
        The shape of the index dimension does not have to be specified. Just use the 'index_dimensions' parameter.
        However, it is good practice to define the shape, since out of bounds accesses can be directly detected in this
        case. The shape can be passed with the 'index_shape' parameter of the field creation functions.

        When accessing (indexing) a field the result is a `Field.Access` which is derived from sympy Symbol.
Martin Bauer's avatar
Martin Bauer committed
154
        First specify the spatial offsets in [], then in case index_dimension>0 the indices in ()
Martin Bauer's avatar
Martin Bauer committed
155
        e.g. ``f[-1,0,0](7)``
156

Martin Bauer's avatar
Martin Bauer committed
157
    Example using no index dimensions:
158
        >>> a = np.zeros([10, 10])
Martin Bauer's avatar
Martin Bauer committed
159
        >>> f = Field.create_from_numpy_array("f", a, index_dimensions=0)
Martin Bauer's avatar
Martin Bauer committed
160
        >>> jacobi = (f[-1,0] + f[1,0] + f[0,-1] + f[0,1]) / 4
161

Martin Bauer's avatar
Martin Bauer committed
162
    Examples for index dimensions to create LB field and implement stream pull:
Martin Bauer's avatar
Martin Bauer committed
163
        >>> from pystencils import Assignment
164
        >>> stencil = np.array([[0,0], [0,1], [0,-1]])
Martin Bauer's avatar
Martin Bauer committed
165
        >>> src, dst = fields("src(3), dst(3) : double[2D]")
166
        >>> assignments = [Assignment(dst[0,0](i), src[-offset](i)) for i, offset in enumerate(stencil)];
167
    """
168
169

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
170
171
    def create_generic(field_name, spatial_dimensions, dtype=np.float64, index_dimensions=0, layout='numpy',
                       index_shape=None, field_type=FieldType.GENERIC) -> 'Field':
172
173
174
        """
        Creates a generic field where the field size is not fixed i.e. can be called with arrays of different sizes

Martin Bauer's avatar
Martin Bauer committed
175
176
177
178
179
180
181
        Args:
            field_name: symbolic name for the field
            dtype: numpy data type of the array the kernel is called with later
            spatial_dimensions: see documentation of Field
            index_dimensions: see documentation of Field
            layout: tuple specifying the loop ordering of the spatial dimensions e.g. (2, 1, 0 ) means that
                    the outer loop loops over dimension 2, the second outer over dimension 1, and the inner loop
Martin Bauer's avatar
Martin Bauer committed
182
                    over dimension 0. Also allowed: the strings 'numpy' (0,1,..d) or 'reverse_numpy' (d, ..., 1, 0)
Martin Bauer's avatar
Martin Bauer committed
183
184
185
186
187
            index_shape: optional shape of the index dimensions i.e. maximum values allowed for each index dimension,
                        has to be a list or tuple
            field_type: besides the normal GENERIC fields, there are INDEXED fields that store indices of the domain
                        that should be iterated over, and BUFFER fields that are used to generate
                        communication packing/unpacking kernels
188
        """
189
190
191
        if index_shape is not None:
            assert index_dimensions == 0 or index_dimensions == len(index_shape)
            index_dimensions = len(index_shape)
192
        if isinstance(layout, str):
Martin Bauer's avatar
Martin Bauer committed
193
            layout = spatial_layout_string_to_tuple(layout, dim=spatial_dimensions)
194

Martin Bauer's avatar
Martin Bauer committed
195
196
        total_dimensions = spatial_dimensions + index_dimensions
        if index_shape is None or len(index_shape) == 0:
197
            shape = tuple([FieldShapeSymbol([field_name], i) for i in range(total_dimensions)])
198
        else:
199
            shape = tuple([FieldShapeSymbol([field_name], i) for i in range(spatial_dimensions)] + list(index_shape))
200

201
        strides = tuple([FieldStrideSymbol(field_name, i) for i in range(total_dimensions)])
202

Martin Bauer's avatar
Martin Bauer committed
203
204
205
        np_data_type = np.dtype(dtype)
        if np_data_type.fields is not None:
            if index_dimensions != 0:
206
207
208
209
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)

Martin Bauer's avatar
Martin Bauer committed
210
        return Field(field_name, field_type, dtype, layout, shape, strides)
211

212
    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
213
214
215
    def create_from_numpy_array(field_name: str, array: np.ndarray, index_dimensions: int = 0) -> 'Field':
        """Creates a field based on the layout, data type, and shape of a given numpy array.

216
        Kernels created for these kind of fields can only be called with arrays of the same layout, shape and type.
Martin Bauer's avatar
Martin Bauer committed
217
218
219
220
221

        Args:
            field_name: symbolic name for the field
            array: numpy array
            index_dimensions: see documentation of Field
222
        """
Martin Bauer's avatar
Martin Bauer committed
223
224
        spatial_dimensions = len(array.shape) - index_dimensions
        if spatial_dimensions < 1:
225
226
            raise ValueError("Too many index dimensions. At least one spatial dimension required")

Martin Bauer's avatar
Martin Bauer committed
227
228
229
        full_layout = get_layout_of_array(array)
        spatial_layout = tuple([i for i in full_layout if i < spatial_dimensions])
        assert len(spatial_layout) == spatial_dimensions
230

Martin Bauer's avatar
Martin Bauer committed
231
232
        strides = tuple([s // np.dtype(array.dtype).itemsize for s in array.strides])
        shape = tuple(int(s) for s in array.shape)
233

Martin Bauer's avatar
Martin Bauer committed
234
235
236
        numpy_dtype = np.dtype(array.dtype)
        if numpy_dtype.fields is not None:
            if index_dimensions != 0:
237
238
239
240
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)

Martin Bauer's avatar
Martin Bauer committed
241
        return Field(field_name, FieldType.GENERIC, array.dtype, spatial_layout, shape, strides)
242
243

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
244
    def create_fixed_size(field_name: str, shape: Tuple[int, ...], index_dimensions: int = 0,
245
                          dtype=np.float64, layout: str = 'numpy', strides: Optional[Sequence[int]] = None) -> 'Field':
246
        """
247
        Creates a field with fixed sizes i.e. can be called only with arrays of the same size and layout
248

Martin Bauer's avatar
Martin Bauer committed
249
250
251
252
253
254
255
        Args:
            field_name: symbolic name for the field
            shape: overall shape of the array
            index_dimensions: how many of the trailing dimensions are interpreted as index (as opposed to spatial)
            dtype: numpy data type of the array the kernel is called with later
            layout: full layout of array, not only spatial dimensions
            strides: strides in bytes or None to automatically compute them from shape (assuming no padding)
256
        """
Martin Bauer's avatar
Martin Bauer committed
257
258
        spatial_dimensions = len(shape) - index_dimensions
        assert spatial_dimensions >= 1
259

260
        if isinstance(layout, str):
Martin Bauer's avatar
Martin Bauer committed
261
            layout = layout_string_to_tuple(layout, spatial_dimensions + index_dimensions)
262
263

        shape = tuple(int(s) for s in shape)
264
        if strides is None:
Martin Bauer's avatar
Martin Bauer committed
265
            strides = compute_strides(shape, layout)
266
267
268
        else:
            assert len(strides) == len(shape)
            strides = tuple([s // np.dtype(dtype).itemsize for s in strides])
269

Martin Bauer's avatar
Martin Bauer committed
270
271
272
        numpy_dtype = np.dtype(dtype)
        if numpy_dtype.fields is not None:
            if index_dimensions != 0:
273
274
275
276
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)

Martin Bauer's avatar
Martin Bauer committed
277
278
279
280
        spatial_layout = list(layout)
        for i in range(spatial_dimensions, len(layout)):
            spatial_layout.remove(i)
        return Field(field_name, FieldType.GENERIC, dtype, tuple(spatial_layout), shape, strides)
281

Martin Bauer's avatar
Martin Bauer committed
282
    def __init__(self, field_name, field_type, dtype, layout, shape, strides):
283
        """Do not use directly. Use static create* methods"""
284
        self._field_name = field_name
Martin Bauer's avatar
Martin Bauer committed
285
        assert isinstance(field_type, FieldType)
286
        assert len(shape) == len(strides)
Martin Bauer's avatar
Martin Bauer committed
287
        self.field_type = field_type
Martin Bauer's avatar
Martin Bauer committed
288
        self._dtype = create_type(dtype)
Martin Bauer's avatar
Martin Bauer committed
289
        self._layout = normalize_layout(layout)
290
291
        self.shape = shape
        self.strides = strides
292
        self.latex_name = None  # type: Optional[str]
293

Martin Bauer's avatar
Martin Bauer committed
294
    def new_field_with_different_name(self, new_name):
295
296
297
298
299
        if self.has_fixed_shape:
            return Field(new_name, self.field_type, self._dtype, self._layout, self.shape, self.strides)
        else:
            return Field.create_generic(new_name, self.spatial_dimensions, self.dtype.numpy_dtype,
                                        self.index_dimensions, self._layout, self.index_shape, self.field_type)
300

301
    @property
Martin Bauer's avatar
Martin Bauer committed
302
    def spatial_dimensions(self) -> int:
303
304
305
        return len(self._layout)

    @property
Martin Bauer's avatar
Martin Bauer committed
306
    def index_dimensions(self) -> int:
307
        return len(self.shape) - len(self._layout)
308
309
310
311
312
313

    @property
    def layout(self):
        return self._layout

    @property
Martin Bauer's avatar
Martin Bauer committed
314
    def name(self) -> str:
315
        return self._field_name
316
317

    @property
Martin Bauer's avatar
Martin Bauer committed
318
319
    def spatial_shape(self) -> Tuple[int, ...]:
        return self.shape[:self.spatial_dimensions]
320

321
    @property
Martin Bauer's avatar
Martin Bauer committed
322
    def has_fixed_shape(self):
Martin Bauer's avatar
Martin Bauer committed
323
        return is_integer_sequence(self.shape)
324

325
    @property
Martin Bauer's avatar
Martin Bauer committed
326
327
    def index_shape(self):
        return self.shape[self.spatial_dimensions:]
328

329
    @property
Martin Bauer's avatar
Martin Bauer committed
330
331
    def has_fixed_index_shape(self):
        return is_integer_sequence(self.index_shape)
332

333
    @property
Martin Bauer's avatar
Martin Bauer committed
334
335
    def spatial_strides(self):
        return self.strides[:self.spatial_dimensions]
336
337

    @property
Martin Bauer's avatar
Martin Bauer committed
338
339
    def index_strides(self):
        return self.strides[self.spatial_dimensions:]
340
341
342
343
344
345

    @property
    def dtype(self):
        return self._dtype

    def __repr__(self):
346
        return self._field_name
347

Martin Bauer's avatar
Martin Bauer committed
348
349
350
351
    def neighbor(self, coord_id, offset):
        offset_list = [0] * self.spatial_dimensions
        offset_list[coord_id] = offset
        return Field.Access(self, tuple(offset_list))
352

353
    def neighbors(self, stencil):
354
        return [self.__getitem__(s) for s in stencil]
355

356
    @property
Martin Bauer's avatar
Martin Bauer committed
357
358
359
    def center_vector(self):
        index_shape = self.index_shape
        if len(index_shape) == 0:
360
361
            return sp.Matrix([self.center])
        if len(index_shape) == 1:
Martin Bauer's avatar
Martin Bauer committed
362
363
            return sp.Matrix([self(i) for i in range(index_shape[0])])
        elif len(index_shape) == 2:
364
365
366
            def cb(*args):
                r = self.__call__(*args)
                return r
Martin Bauer's avatar
Martin Bauer committed
367
            return sp.Matrix(*index_shape, cb)
368

369
    @property
370
    def center(self):
Martin Bauer's avatar
Martin Bauer committed
371
        center = tuple([0] * self.spatial_dimensions)
372
373
        return Field.Access(self, center)

374
375
376
377
    def __getitem__(self, offset):
        if type(offset) is np.ndarray:
            offset = tuple(offset)
        if type(offset) is str:
Martin Bauer's avatar
Martin Bauer committed
378
            offset = tuple(direction_string_to_offset(offset, self.spatial_dimensions))
379
380
        if type(offset) is not tuple:
            offset = (offset,)
Martin Bauer's avatar
Martin Bauer committed
381
        if len(offset) != self.spatial_dimensions:
382
            raise ValueError("Wrong number of spatial indices: "
Martin Bauer's avatar
Martin Bauer committed
383
                             "Got %d, expected %d" % (len(offset), self.spatial_dimensions))
384
385
        return Field.Access(self, offset)

Martin Bauer's avatar
Martin Bauer committed
386
    def absolute_access(self, offset, index):
Martin Bauer's avatar
Martin Bauer committed
387
        assert FieldType.is_custom(self)
Martin Bauer's avatar
Martin Bauer committed
388
389
        return Field.Access(self, offset, index, is_absolute_access=True)

390
    def __call__(self, *args, **kwargs):
Martin Bauer's avatar
Martin Bauer committed
391
        center = tuple([0] * self.spatial_dimensions)
392
393
        return Field.Access(self, center)(*args, **kwargs)

394
    def hashable_contents(self):
395
396
        dth = hash(self._dtype)
        return self._layout, self.shape, self.strides, dth, self.field_type, self._field_name, self.latex_name
397

398
    def __hash__(self):
399
        return hash(self.hashable_contents())
400
401

    def __eq__(self, other):
402
403
        if not isinstance(other, Field):
            return False
404
        return self.hashable_contents() == other.hashable_contents()
405

Martin Bauer's avatar
Martin Bauer committed
406
    # noinspection PyAttributeOutsideInit,PyUnresolvedReferences
407
    class Access(sp.Symbol, AbstractField.AbstractAccess):
Martin Bauer's avatar
Martin Bauer committed
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
        """Class representing a relative access into a `Field`.

        This class behaves like a normal sympy Symbol, it is actually derived from it. One can built up
        sympy expressions using field accesses, solve for them, etc.

        Examples:
            >>> vector_field_2d = fields("v(2): double[2D]")  # create a 2D vector field
            >>> northern_neighbor_y_component = vector_field_2d[0, 1](1)
            >>> northern_neighbor_y_component
            v_N^1
            >>> central_y_component = vector_field_2d(1)
            >>> central_y_component
            v_C^1
            >>> central_y_component.get_shifted(1, 0)  # move the existing access
            v_E^1
            >>> central_y_component.at_index(0)  # change component
            v_C^0
        """
426
427
428
429
        def __new__(cls, name, *args, **kwargs):
            obj = Field.Access.__xnew_cached_(cls, name, *args, **kwargs)
            return obj

Martin Bauer's avatar
Martin Bauer committed
430
        def __new_stage2__(self, field, offsets=(0, 0, 0), idx=None, is_absolute_access=False):
Martin Bauer's avatar
Martin Bauer committed
431
            field_name = field.name
Martin Bauer's avatar
Martin Bauer committed
432
            offsets_and_index = (*offsets, *idx) if idx is not None else offsets
Martin Bauer's avatar
Martin Bauer committed
433
            constant_offsets = not any([isinstance(o, sp.Basic) and not o.is_Integer for o in offsets_and_index])
434
435

            if not idx:
Martin Bauer's avatar
Martin Bauer committed
436
                idx = tuple([0] * field.index_dimensions)
437

Martin Bauer's avatar
Martin Bauer committed
438
439
440
            if constant_offsets:
                offset_name = offset_to_direction_string(offsets)
                if field.index_dimensions == 0:
441
                    superscript = None
Martin Bauer's avatar
Martin Bauer committed
442
                elif field.index_dimensions == 1:
443
                    superscript = str(idx[0])
444
                else:
Martin Bauer's avatar
Martin Bauer committed
445
446
447
448
                    idx_str = ",".join([str(e) for e in idx])
                    superscript = idx_str
                if field.has_fixed_index_shape and not isinstance(field.dtype, StructType):
                    for i, bound in zip(idx, field.index_shape):
449
450
                        if i >= bound:
                            raise ValueError("Field index out of bounds")
451
            else:
452
                offset_name = hashlib.md5(pickle.dumps(offsets_and_index)).hexdigest()[:12]
453
                superscript = None
454

Martin Bauer's avatar
Martin Bauer committed
455
            symbol_name = "%s_%s" % (field_name, offset_name)
456
            if superscript is not None:
Martin Bauer's avatar
Martin Bauer committed
457
                symbol_name += "^" + superscript
458

Martin Bauer's avatar
Martin Bauer committed
459
            obj = super(Field.Access, self).__xnew__(self, symbol_name)
460
461
462
463
464
465
466
            obj._field = field
            obj._offsets = []
            for o in offsets:
                if isinstance(o, sp.Basic):
                    obj._offsets.append(o)
                else:
                    obj._offsets.append(int(o))
467
            obj._offsets = tuple(obj._offsets)
Martin Bauer's avatar
Martin Bauer committed
468
            obj._offsetName = offset_name
469
            obj._superscript = superscript
470
471
            obj._index = idx

Martin Bauer's avatar
Martin Bauer committed
472
473
474
475
476
477
            obj._indirect_addressing_fields = set()
            for e in chain(obj._offsets, obj._index):
                if isinstance(e, sp.Basic):
                    obj._indirect_addressing_fields.update(a.field for a in e.atoms(Field.Access))

            obj._is_absolute_access = is_absolute_access
478
479
            return obj

480
        def __getnewargs__(self):
Martin Bauer's avatar
Martin Bauer committed
481
            return self.field, self.offsets, self.index, self.is_absolute_access
482

Martin Bauer's avatar
Martin Bauer committed
483
        # noinspection SpellCheckingInspection
484
        __xnew__ = staticmethod(__new_stage2__)
Martin Bauer's avatar
Martin Bauer committed
485
        # noinspection SpellCheckingInspection
486
487
488
        __xnew_cached_ = staticmethod(cacheit(__new_stage2__))

        def __call__(self, *idx):
Martin Bauer's avatar
Martin Bauer committed
489
            if self._index != tuple([0] * self.field.index_dimensions):
490
491
492
                raise ValueError("Indexing an already indexed Field.Access")

            idx = tuple(idx)
493

Martin Bauer's avatar
Martin Bauer committed
494
            if self.field.index_dimensions == 0 and idx == (0,):
495
496
                idx = ()

Martin Bauer's avatar
Martin Bauer committed
497
            if len(idx) != self.field.index_dimensions:
498
                raise ValueError("Wrong number of indices: "
Martin Bauer's avatar
Martin Bauer committed
499
                                 "Got %d, expected %d" % (len(idx), self.field.index_dimensions))
500
501
            return Field.Access(self.field, self._offsets, idx)

Martin Bauer's avatar
Martin Bauer committed
502
503
504
        def __getitem__(self, *idx):
            return self.__call__(*idx)

Martin Bauer's avatar
Martin Bauer committed
505
506
507
508
509
        def __iter__(self):
            """This is necessary to work with parts of sympy that test if an object is iterable (e.g. simplify).
            The __getitem__ would make it iterable"""
            raise TypeError("Field access is not iterable")

510
        @property
Martin Bauer's avatar
Martin Bauer committed
511
512
        def field(self) -> 'Field':
            """Field that the Access points to"""
513
514
515
            return self._field

        @property
Martin Bauer's avatar
Martin Bauer committed
516
517
        def offsets(self) -> Tuple:
            """Spatial offset as tuple"""
518
            return self._offsets
519

520
        @property
Martin Bauer's avatar
Martin Bauer committed
521
522
        def required_ghost_layers(self) -> int:
            """Largest spatial distance that is accessed."""
523
524
525
            return int(np.max(np.abs(self._offsets)))

        @property
Martin Bauer's avatar
Martin Bauer committed
526
        def nr_of_coordinates(self):
527
528
529
            return len(self._offsets)

        @property
Martin Bauer's avatar
Martin Bauer committed
530
        def offset_name(self) -> str:
Martin Bauer's avatar
Martin Bauer committed
531
532
533
534
535
536
537
            """Spatial offset as string, East-West for x, North-South for y and Top-Bottom for z coordinate.

            Example:
                >>> f = fields("f: double[2D]")
                >>> f[1, 1].offset_name  # north-east
                'NE'
            """
538
539
540
541
            return self._offsetName

        @property
        def index(self):
Martin Bauer's avatar
Martin Bauer committed
542
            """Value of index coordinates as tuple."""
543
544
            return self._index

545
        def neighbor(self, coord_id: int, offset: int) -> 'Field.Access':
Martin Bauer's avatar
Martin Bauer committed
546
547
548
549
550
551
552
553
554
555
556
            """Returns a new Access with changed spatial coordinates.

            Args:
                coord_id: index of the coordinate to change (0 for x, 1 for y,...)
                offset: incremental change of this coordinate

            Example:
                >>> f = fields('f: [2D]')
                >>> f[0,0].neighbor(coord_id=1, offset=-1)
                f_S
            """
Martin Bauer's avatar
Martin Bauer committed
557
558
559
            offset_list = list(self.offsets)
            offset_list[coord_id] += offset
            return Field.Access(self.field, tuple(offset_list), self.index)
560

561
        def get_shifted(self, *shift) -> 'Field.Access':
Martin Bauer's avatar
Martin Bauer committed
562
563
564
565
566
567
568
            """Returns a new Access with changed spatial coordinates

            Example:
                >>> f = fields("f: [2D]")
                >>> f[0,0].get_shifted(1, 1)
                f_NE
            """
569
570
            return Field.Access(self.field, tuple(a + b for a, b in zip(shift, self.offsets)), self.index)

Martin Bauer's avatar
Martin Bauer committed
571
572
573
574
575
576
577
578
        def at_index(self, *idx_tuple) -> 'Field.Access':
            """Returns new Access with changed index.

            Example:
                >>> f = fields("f(9): [2D]")
                >>> f(0).at_index(8)
                f_C^8
            """
579
580
            return Field.Access(self.field, self.offsets, idx_tuple)

Martin Bauer's avatar
Martin Bauer committed
581
582
583
584
585
586
587
588
589
590
591
592
593
        @property
        def is_absolute_access(self) -> bool:
            """Indicates if a field access is relative to the loop counters (this is the default) or absolute"""
            return self._is_absolute_access

        @property
        def indirect_addressing_fields(self) -> Set['Field']:
            """Returns a set of fields that the access depends on.

             e.g. f[index_field[1, 0]], the outer access to f depends on index_field
             """
            return self._indirect_addressing_fields

594
        def _hashable_content(self):
595
596
            super_class_contents = super(Field.Access, self)._hashable_content()
            return (super_class_contents, self._field.hashable_contents(), *self._index, *self._offsets)
Martin Bauer's avatar
Martin Bauer committed
597

Martin Bauer's avatar
Martin Bauer committed
598
        def _latex(self, _):
599
            n = self._field.latex_name if self._field.latex_name else self._field.name
Martin Bauer's avatar
Martin Bauer committed
600
601
602
603
604
605
606
607
            offset_str = ",".join([sp.latex(o) for o in self.offsets])
            if self.is_absolute_access:
                offset_str = "\\mathbf{}".format(offset_str)
            elif self.field.spatial_dimensions > 1:
                offset_str = "({})".format(offset_str)

            if self.index and self.index != (0,):
                return "{{%s}_{%s}^{%s}}" % (n, offset_str, self.index if len(self.index) > 1 else self.index[0])
Martin Bauer's avatar
Martin Bauer committed
608
            else:
Martin Bauer's avatar
Martin Bauer committed
609
                return "{{%s}_{%s}}" % (n, offset_str)
Martin Bauer's avatar
Martin Bauer committed
610

611
612
613
614
615
616
617
618
619
620
        def __str__(self):
            n = self._field.latex_name if self._field.latex_name else self._field.name
            offset_str = ",".join([sp.latex(o) for o in self.offsets])
            if self.is_absolute_access:
                offset_str = "[abs]{}".format(offset_str)
            if self.index and self.index != (0,):
                return "%s[%s](%s)" % (n, offset_str, self.index if len(self.index) > 1 else self.index[0])
            else:
                return "%s[%s]" % (n, offset_str)

Martin Bauer's avatar
Martin Bauer committed
621

Martin Bauer's avatar
Martin Bauer committed
622
623
def get_layout_from_strides(strides: Sequence[int], index_dimension_ids: Optional[List[int]] = None):
    index_dimension_ids = [] if index_dimension_ids is None else index_dimension_ids
624
    coordinates = list(range(len(strides)))
Martin Bauer's avatar
Martin Bauer committed
625
    relevant_strides = [stride for i, stride in enumerate(strides) if i not in index_dimension_ids]
626
    result = [x for (y, x) in sorted(zip(relevant_strides, coordinates), key=lambda pair: pair[0], reverse=True)]
Martin Bauer's avatar
Martin Bauer committed
627
    return normalize_layout(result)
628
629


Martin Bauer's avatar
Martin Bauer committed
630
631
632
633
634
635
def get_layout_of_array(arr: np.ndarray, index_dimension_ids: Optional[List[int]] = None):
    """ Returns a list indicating the memory layout (linearization order) of the numpy array.

    Examples:
        >>> get_layout_of_array(np.zeros([3,3,3]))
        (0, 1, 2)
Martin Bauer's avatar
Martin Bauer committed
636
637
638
639
640

    In this example the loop over the zeroth coordinate should be the outermost loop,
    followed by the first and second. Elements arr[x,y,0] and arr[x,y,1] are adjacent in memory.
    Normally constructed numpy arrays have this order, however by stride tricks or other frameworks, arrays
    with different memory layout can be created.
Martin Bauer's avatar
Martin Bauer committed
641

Martin Bauer's avatar
Martin Bauer committed
642
    The index_dimension_ids parameter leaves specifies which coordinates should not be
Martin Bauer's avatar
Martin Bauer committed
643
    """
Martin Bauer's avatar
Martin Bauer committed
644
645
    index_dimension_ids = [] if index_dimension_ids is None else index_dimension_ids
    return get_layout_from_strides(arr.strides, index_dimension_ids)
646
647


Martin Bauer's avatar
Martin Bauer committed
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
def create_numpy_array_with_layout(shape, layout, alignment=False, byte_offset=0, **kwargs):
    """Creates numpy array with given memory layout.

    Args:
        shape: shape of the resulting array
        layout: layout as tuple, where the coordinates are ordered from slow to fast
        alignment: number of bytes to align the beginning and the innermost coordinate to, or False for no alignment
        byte_offset: only used when alignment is specified, align not beginning but address at this offset
                     mostly used to align first inner cell, not ghost cells

    Example:
        >>> res = create_numpy_array_with_layout(shape=(2, 3, 4, 5), layout=(3, 2, 0, 1))
        >>> res.shape
        (2, 3, 4, 5)
        >>> get_layout_of_array(res)
        (3, 2, 0, 1)
664
665
    """
    assert set(layout) == set(range(len(shape))), "Wrong layout descriptor"
Martin Bauer's avatar
Martin Bauer committed
666
    cur_layout = list(range(len(shape)))
667
668
    swaps = []
    for i in range(len(layout)):
Martin Bauer's avatar
Martin Bauer committed
669
670
671
672
673
        if cur_layout[i] != layout[i]:
            index_to_swap_with = cur_layout.index(layout[i])
            swaps.append((i, index_to_swap_with))
            cur_layout[i], cur_layout[index_to_swap_with] = cur_layout[index_to_swap_with], cur_layout[i]
    assert tuple(cur_layout) == tuple(layout)
674
675
676
677
678

    shape = list(shape)
    for a, b in swaps:
        shape[a], shape[b] = shape[b], shape[a]

679
680
681
682
683
    if not alignment:
        res = np.empty(shape, order='c', **kwargs)
    else:
        if alignment is True:
            alignment = 8 * 4
Martin Bauer's avatar
Martin Bauer committed
684
        res = aligned_empty(shape, alignment, byte_offset=byte_offset, **kwargs)
685

686
687
688
689
690
    for a, b in reversed(swaps):
        res = res.swapaxes(a, b)
    return res


Martin Bauer's avatar
Martin Bauer committed
691
692
def spatial_layout_string_to_tuple(layout_str: str, dim: int) -> Tuple[int, ...]:
    if layout_str in ('fzyx', 'zyxf'):
693
694
        assert dim <= 3
        return tuple(reversed(range(dim)))
695

Martin Bauer's avatar
Martin Bauer committed
696
    if layout_str in ('fzyx', 'f', 'reverse_numpy', 'SoA'):
697
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
698
    elif layout_str in ('c', 'numpy', 'AoS'):
699
        return tuple(range(dim))
Martin Bauer's avatar
Martin Bauer committed
700
    raise ValueError("Unknown layout descriptor " + layout_str)
701
702


Martin Bauer's avatar
Martin Bauer committed
703
704
705
def layout_string_to_tuple(layout_str, dim):
    layout_str = layout_str.lower()
    if layout_str == 'fzyx' or layout_str == 'soa':
706
707
        assert dim <= 4
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
708
    elif layout_str == 'zyxf' or layout_str == 'aos':
709
        assert dim <= 4
Martin Bauer's avatar
Martin Bauer committed
710
        return tuple(reversed(range(dim - 1))) + (dim - 1,)
Martin Bauer's avatar
Martin Bauer committed
711
    elif layout_str == 'f' or layout_str == 'reverse_numpy':
712
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
713
    elif layout_str == 'c' or layout_str == 'numpy':
714
        return tuple(range(dim))
Martin Bauer's avatar
Martin Bauer committed
715
    raise ValueError("Unknown layout descriptor " + layout_str)
716
717


Martin Bauer's avatar
Martin Bauer committed
718
def normalize_layout(layout):
719
    """Takes a layout tuple and subtracts the minimum from all entries"""
Martin Bauer's avatar
Martin Bauer committed
720
721
    min_entry = min(layout)
    return tuple(i - min_entry for i in layout)
722
723


Martin Bauer's avatar
Martin Bauer committed
724
def compute_strides(shape, layout):
725
726
    """
    Computes strides assuming no padding exists
Martin Bauer's avatar
Martin Bauer committed
727
728
729
730
731
732
733

    Args:
        shape: shape (size) of array
        layout: layout specification as tuple

    Returns:
        strides in elements, not in bytes
734
    """
Martin Bauer's avatar
Martin Bauer committed
735
736
737
738
    dim = len(shape)
    assert len(layout) == dim
    assert len(set(layout)) == dim
    strides = [0] * dim
739
    product = 1
740
    for j in reversed(layout):
741
742
743
        strides[j] = product
        product *= shape[j]
    return tuple(strides)
Martin Bauer's avatar
Martin Bauer committed
744
745


746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
# ---------------------------------------- Parsing of string in fields() function --------------------------------------

field_description_regex = re.compile(r"""
    \s*                 # ignore leading white spaces
    (\w+)               # identifier is a sequence of alphanumeric characters, is stored in first group
    (?:                 # optional index specification e.g. (1, 4, 2)
        \s*
        \(
            ([^\)]+)    # read everything up to closing bracket
        \)
        \s*
    )?
    \s*,?\s*             # ignore trailing white spaces and comma
""", re.VERBOSE)

type_description_regex = re.compile(r"""
    \s*
    (\w+)?       # optional dtype
    \s*
    \[
        ([^\]]+)
    \]
    \s*
""", re.VERBOSE | re.IGNORECASE)
770
771
772


def _parse_description(description):
773
774
775
    def parse_part1(d):
        result = field_description_regex.match(d)
        while result:
776
            name, index_str = result.group(1), result.group(2)
777
778
779
780
781
782
783
784
            index = tuple(int(e) for e in index_str.split(",")) if index_str else ()
            yield name, index
            d = d[result.end():]
            result = field_description_regex.match(d)

    def parse_part2(d):
        result = type_description_regex.match(d)
        if result:
785
            data_type_str, size_info = result.group(1), result.group(2).strip().lower()
786
787
788
789
790
791
792
793
794
795
796
797
798
799
            if data_type_str is None:
                data_type_str = 'float64'
            data_type_str = data_type_str.lower().strip()

            if not data_type_str:
                data_type_str = 'float64'
            if size_info.endswith('d'):
                size_info = int(size_info[:-1])
            else:
                size_info = tuple(int(e) for e in size_info.split(","))
            return data_type_str, size_info
        else:
            raise ValueError("Could not parse field description")

800
    if ':' in description:
801
        field_description, field_info = description.split(':')
802
    else:
803
804
805
806
807
        field_description, field_info = description, 'float64[2D]'

    fields_info = [e for e in parse_part1(field_description)]
    if not field_info:
        raise ValueError("Could not parse field description")
808

809
810
    data_type, size = parse_part2(field_info)
    return fields_info, data_type, size