field.py 43.8 KB
Newer Older
1
import functools
Martin Bauer's avatar
Martin Bauer committed
2
import hashlib
3
import operator
Martin Bauer's avatar
Martin Bauer committed
4
5
import pickle
import re
6
from enum import Enum
7
from itertools import chain
Martin Bauer's avatar
Martin Bauer committed
8
9
from typing import List, Optional, Sequence, Set, Tuple

10
11
12
import numpy as np
import sympy as sp
from sympy.core.cache import cacheit
Martin Bauer's avatar
Martin Bauer committed
13

14
import pystencils
15
from pystencils.alignedarray import aligned_empty
16
from pystencils.data_types import StructType, TypedSymbol, create_type
17
from pystencils.kernelparameters import FieldShapeSymbol, FieldStrideSymbol
18
from pystencils.stencil import direction_string_to_offset, offset_to_direction_string, inverse_direction
Martin Bauer's avatar
Martin Bauer committed
19
from pystencils.sympyextensions import is_integer_sequence
20

21
__all__ = ['Field', 'fields', 'FieldType', 'AbstractField']
Martin Bauer's avatar
Martin Bauer committed
22

23

24
25
26
27
28
29
30
31
32
33
34
35
36
class FieldType(Enum):
    # generic fields
    GENERIC = 0
    # index fields are currently only used for boundary handling
    # the coordinates are not the loop counters in that case, but are read from this index field
    INDEXED = 1
    # communication buffer, used for (un)packing data in communication.
    BUFFER = 2
    # unsafe fields may be accessed in an absolute fashion - the index depends on the data
    # and thus may lead to out-of-bounds accesses
    CUSTOM = 3
    # staggered field
    STAGGERED = 4
37
38
    # staggered field that reverses sign when accessed via opposite direction
    STAGGERED_FLUX = 5
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

    @staticmethod
    def is_generic(field):
        assert isinstance(field, Field)
        return field.field_type == FieldType.GENERIC

    @staticmethod
    def is_indexed(field):
        assert isinstance(field, Field)
        return field.field_type == FieldType.INDEXED

    @staticmethod
    def is_buffer(field):
        assert isinstance(field, Field)
        return field.field_type == FieldType.BUFFER

    @staticmethod
    def is_custom(field):
        assert isinstance(field, Field)
        return field.field_type == FieldType.CUSTOM

    @staticmethod
    def is_staggered(field):
        assert isinstance(field, Field)
63
64
65
66
67
68
        return field.field_type == FieldType.STAGGERED or field.field_type == FieldType.STAGGERED_FLUX

    @staticmethod
    def is_staggered_flux(field):
        assert isinstance(field, Field)
        return field.field_type == FieldType.STAGGERED_FLUX
69
70
71


def fields(description=None, index_dimensions=0, layout=None, field_type=FieldType.GENERIC, **kwargs):
72
73
74
    """Creates pystencils fields from a string description.

    Examples:
Martin Bauer's avatar
Martin Bauer committed
75
76
77
78
        Create a 2D scalar and vector field:
            >>> s, v = fields("s, v(2): double[2D]")
            >>> assert s.spatial_dimensions == 2 and s.index_dimensions == 0
            >>> assert (v.spatial_dimensions, v.index_dimensions, v.index_shape) == (2, 1, (2,))
79

Martin Bauer's avatar
Martin Bauer committed
80
81
82
83
        Create an integer field of shape (10, 20):
            >>> f = fields("f : int32[10, 20]")
            >>> f.has_fixed_shape, f.shape
            (True, (10, 20))
84

Martin Bauer's avatar
Martin Bauer committed
85
86
87
88
89
        Numpy arrays can be used as template for shape and data type of field:
            >>> arr_s, arr_v = np.zeros([20, 20]), np.zeros([20, 20, 2])
            >>> s, v = fields("s, v(2)", s=arr_s, v=arr_v)
            >>> assert s.index_dimensions == 0 and s.dtype.numpy_dtype == arr_s.dtype
            >>> assert v.index_shape == (2,)
90

Martin Bauer's avatar
Martin Bauer committed
91
92
        Format string can be left out, field names are taken from keyword arguments.
            >>> fields(f1=arr_s, f2=arr_s)
93
            [f1: double[20,20], f2: double[20,20]]
Martin Bauer's avatar
Martin Bauer committed
94
95
96
97
98
99
100

        The keyword names ``index_dimension`` and ``layout`` have special meaning, don't use them for field names
            >>> f = fields(f=arr_v, index_dimensions=1)
            >>> assert f.index_dimensions == 1
            >>> f = fields("pdfs(19) : float32[3D]", layout='fzyx')
            >>> f.layout
            (2, 1, 0)
101
102
103
104
105
106
107
108
109
110
    """
    result = []
    if description:
        field_descriptions, dtype, shape = _parse_description(description)
        layout = 'numpy' if layout is None else layout
        for field_name, idx_shape in field_descriptions:
            if field_name in kwargs:
                arr = kwargs[field_name]
                idx_shape_of_arr = () if not len(idx_shape) else arr.shape[-len(idx_shape):]
                assert idx_shape_of_arr == idx_shape
Michael Kuron's avatar
Michael Kuron committed
111
                f = Field.create_from_numpy_array(field_name, kwargs[field_name], index_dimensions=len(idx_shape),
112
                                                  field_type=field_type)
113
114
            elif isinstance(shape, tuple):
                f = Field.create_fixed_size(field_name, shape + idx_shape, dtype=dtype,
115
                                            index_dimensions=len(idx_shape), layout=layout, field_type=field_type)
116
117
            elif isinstance(shape, int):
                f = Field.create_generic(field_name, spatial_dimensions=shape, dtype=dtype,
118
                                         index_shape=idx_shape, layout=layout, field_type=field_type)
119
120
            elif shape is None:
                f = Field.create_generic(field_name, spatial_dimensions=2, dtype=dtype,
121
                                         index_shape=idx_shape, layout=layout, field_type=field_type)
122
123
124
125
126
127
            else:
                assert False
            result.append(f)
    else:
        assert layout is None, "Layout can not be specified when creating Field from numpy array"
        for field_name, arr in kwargs.items():
Michael Kuron's avatar
Michael Kuron committed
128
            result.append(Field.create_from_numpy_array(field_name, arr, index_dimensions=index_dimensions,
129
                                                        field_type=field_type))
130
131
132
133
134
135
136
137
138

    if len(result) == 0:
        return None
    elif len(result) == 1:
        return result[0]
    else:
        return result


139
140
141
142
143
144
145
class AbstractField:

    class AbstractAccess:
        pass


class Field(AbstractField):
146
147
148
149
    """
    With fields one can formulate stencil-like update rules on structured grids.
    This Field class knows about the dimension, memory layout (strides) and optionally about the size of an array.

Martin Bauer's avatar
Martin Bauer committed
150
    Creating Fields:
Martin Bauer's avatar
Martin Bauer committed
151
152
        The preferred method to create fields is the `fields` function.
        Alternatively one can use one of the static functions `Field.create_generic`, `Field.create_from_numpy_array`
153
        and `Field.create_fixed_size`. Don't instantiate the Field directly!
Martin Bauer's avatar
Martin Bauer committed
154
155
156
157
158
        Fields can be created with known or unknown shapes:

        1. If you want to create a kernel with fixed loop sizes i.e. the shape of the array is already known.
           This is usually the case if just-in-time compilation directly from Python is done.
           (see `Field.create_from_numpy_array`
159
        2. create a more general kernel that works for variable array sizes. This can be used to create kernels
Martin Bauer's avatar
Martin Bauer committed
160
           beforehand for a library. (see `Field.create_generic`)
161

Martin Bauer's avatar
Martin Bauer committed
162
    Dimensions and Indexing:
163
164
        A field has spatial and index dimensions, where the spatial dimensions come first.
        The interpretation is that the field has multiple cells in (usually) two or three dimensional space which are
Martin Bauer's avatar
Martin Bauer committed
165
        looped over. Additionally N values are stored per cell. In this case spatial_dimensions is two or three,
Martin Bauer's avatar
Martin Bauer committed
166
        and index_dimensions equals N. If you want to store a matrix on each point in a two dimensional grid, there
Martin Bauer's avatar
Martin Bauer committed
167
        are four dimensions, two spatial and two index dimensions: ``len(arr.shape) == spatial_dims + index_dims``
168

Martin Bauer's avatar
Martin Bauer committed
169
170
171
172
173
        The shape of the index dimension does not have to be specified. Just use the 'index_dimensions' parameter.
        However, it is good practice to define the shape, since out of bounds accesses can be directly detected in this
        case. The shape can be passed with the 'index_shape' parameter of the field creation functions.

        When accessing (indexing) a field the result is a `Field.Access` which is derived from sympy Symbol.
Martin Bauer's avatar
Martin Bauer committed
174
        First specify the spatial offsets in [], then in case index_dimension>0 the indices in ()
Martin Bauer's avatar
Martin Bauer committed
175
        e.g. ``f[-1,0,0](7)``
176

Michael Kuron's avatar
Michael Kuron committed
177
178
179
180
181
182
183
184
    Staggered Fields:
        Staggered fields are used to store a value on a second grid shifted by half a cell with respect to the usual
        grid.

        The first index dimension is used to specify the position on the staggered grid (e.g. 0 means half-way to the
        eastern neighbor, 1 is half-way to the northern neighbor, etc.), while additional indices can be used to store
        multiple values at each position.

Martin Bauer's avatar
Martin Bauer committed
185
    Example using no index dimensions:
186
        >>> a = np.zeros([10, 10])
Martin Bauer's avatar
Martin Bauer committed
187
        >>> f = Field.create_from_numpy_array("f", a, index_dimensions=0)
Martin Bauer's avatar
Martin Bauer committed
188
        >>> jacobi = (f[-1,0] + f[1,0] + f[0,-1] + f[0,1]) / 4
189

Martin Bauer's avatar
Martin Bauer committed
190
    Examples for index dimensions to create LB field and implement stream pull:
Martin Bauer's avatar
Martin Bauer committed
191
        >>> from pystencils import Assignment
192
        >>> stencil = np.array([[0,0], [0,1], [0,-1]])
Martin Bauer's avatar
Martin Bauer committed
193
        >>> src, dst = fields("src(3), dst(3) : double[2D]")
194
        >>> assignments = [Assignment(dst[0,0](i), src[-offset](i)) for i, offset in enumerate(stencil)];
195
    """
196
197

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
198
    def create_generic(field_name, spatial_dimensions, dtype=np.float64, index_dimensions=0, layout='numpy',
199
                       index_shape=None, field_type=FieldType.GENERIC) -> 'Field':
200
201
202
        """
        Creates a generic field where the field size is not fixed i.e. can be called with arrays of different sizes

Martin Bauer's avatar
Martin Bauer committed
203
204
205
206
207
208
209
        Args:
            field_name: symbolic name for the field
            dtype: numpy data type of the array the kernel is called with later
            spatial_dimensions: see documentation of Field
            index_dimensions: see documentation of Field
            layout: tuple specifying the loop ordering of the spatial dimensions e.g. (2, 1, 0 ) means that
                    the outer loop loops over dimension 2, the second outer over dimension 1, and the inner loop
Martin Bauer's avatar
Martin Bauer committed
210
                    over dimension 0. Also allowed: the strings 'numpy' (0,1,..d) or 'reverse_numpy' (d, ..., 1, 0)
Martin Bauer's avatar
Martin Bauer committed
211
212
213
            index_shape: optional shape of the index dimensions i.e. maximum values allowed for each index dimension,
                        has to be a list or tuple
            field_type: besides the normal GENERIC fields, there are INDEXED fields that store indices of the domain
214
215
216
                        that should be iterated over, BUFFER fields that are used to generate communication
                        packing/unpacking kernels, and STAGGERED fields, which store values half-way to the next
                        cell
217
        """
218
219
220
        if index_shape is not None:
            assert index_dimensions == 0 or index_dimensions == len(index_shape)
            index_dimensions = len(index_shape)
221
        if isinstance(layout, str):
Martin Bauer's avatar
Martin Bauer committed
222
            layout = spatial_layout_string_to_tuple(layout, dim=spatial_dimensions)
223

Martin Bauer's avatar
Martin Bauer committed
224
225
        total_dimensions = spatial_dimensions + index_dimensions
        if index_shape is None or len(index_shape) == 0:
226
            shape = tuple([FieldShapeSymbol([field_name], i) for i in range(total_dimensions)])
227
        else:
228
            shape = tuple([FieldShapeSymbol([field_name], i) for i in range(spatial_dimensions)] + list(index_shape))
229

230
        strides = tuple([FieldStrideSymbol(field_name, i) for i in range(total_dimensions)])
231

Martin Bauer's avatar
Martin Bauer committed
232
233
234
        np_data_type = np.dtype(dtype)
        if np_data_type.fields is not None:
            if index_dimensions != 0:
235
236
237
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)
238
        if field_type == FieldType.STAGGERED and index_dimensions == 0:
Michael Kuron's avatar
Michael Kuron committed
239
            raise ValueError("A staggered field needs at least one index dimension")
240

241
        return Field(field_name, field_type, dtype, layout, shape, strides)
242

243
    @staticmethod
Michael Kuron's avatar
Michael Kuron committed
244
    def create_from_numpy_array(field_name: str, array: np.ndarray, index_dimensions: int = 0,
245
                                field_type=FieldType.GENERIC) -> 'Field':
Martin Bauer's avatar
Martin Bauer committed
246
247
        """Creates a field based on the layout, data type, and shape of a given numpy array.

248
        Kernels created for these kind of fields can only be called with arrays of the same layout, shape and type.
Martin Bauer's avatar
Martin Bauer committed
249
250
251
252
253

        Args:
            field_name: symbolic name for the field
            array: numpy array
            index_dimensions: see documentation of Field
254
            field_type: kind of field
255
        """
Martin Bauer's avatar
Martin Bauer committed
256
257
        spatial_dimensions = len(array.shape) - index_dimensions
        if spatial_dimensions < 1:
258
259
            raise ValueError("Too many index dimensions. At least one spatial dimension required")

Martin Bauer's avatar
Martin Bauer committed
260
261
262
        full_layout = get_layout_of_array(array)
        spatial_layout = tuple([i for i in full_layout if i < spatial_dimensions])
        assert len(spatial_layout) == spatial_dimensions
263

Martin Bauer's avatar
Martin Bauer committed
264
265
        strides = tuple([s // np.dtype(array.dtype).itemsize for s in array.strides])
        shape = tuple(int(s) for s in array.shape)
266

Martin Bauer's avatar
Martin Bauer committed
267
268
269
        numpy_dtype = np.dtype(array.dtype)
        if numpy_dtype.fields is not None:
            if index_dimensions != 0:
270
271
272
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)
273
        if field_type == FieldType.STAGGERED and index_dimensions == 0:
Michael Kuron's avatar
Michael Kuron committed
274
            raise ValueError("A staggered field needs at least one index dimension")
275

276
        return Field(field_name, field_type, array.dtype, spatial_layout, shape, strides)
277
278

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
279
    def create_fixed_size(field_name: str, shape: Tuple[int, ...], index_dimensions: int = 0,
Michael Kuron's avatar
Michael Kuron committed
280
                          dtype=np.float64, layout: str = 'numpy', strides: Optional[Sequence[int]] = None,
281
                          field_type=FieldType.GENERIC) -> 'Field':
282
        """
283
        Creates a field with fixed sizes i.e. can be called only with arrays of the same size and layout
284

Martin Bauer's avatar
Martin Bauer committed
285
286
287
288
289
290
291
        Args:
            field_name: symbolic name for the field
            shape: overall shape of the array
            index_dimensions: how many of the trailing dimensions are interpreted as index (as opposed to spatial)
            dtype: numpy data type of the array the kernel is called with later
            layout: full layout of array, not only spatial dimensions
            strides: strides in bytes or None to automatically compute them from shape (assuming no padding)
292
            field_type: kind of field
293
        """
Martin Bauer's avatar
Martin Bauer committed
294
295
        spatial_dimensions = len(shape) - index_dimensions
        assert spatial_dimensions >= 1
296

297
        if isinstance(layout, str):
Martin Bauer's avatar
Martin Bauer committed
298
            layout = layout_string_to_tuple(layout, spatial_dimensions + index_dimensions)
299
300

        shape = tuple(int(s) for s in shape)
301
        if strides is None:
Martin Bauer's avatar
Martin Bauer committed
302
            strides = compute_strides(shape, layout)
303
304
305
        else:
            assert len(strides) == len(shape)
            strides = tuple([s // np.dtype(dtype).itemsize for s in strides])
306

Martin Bauer's avatar
Martin Bauer committed
307
308
309
        numpy_dtype = np.dtype(dtype)
        if numpy_dtype.fields is not None:
            if index_dimensions != 0:
310
311
312
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)
313
        if field_type == FieldType.STAGGERED and index_dimensions == 0:
Michael Kuron's avatar
Michael Kuron committed
314
            raise ValueError("A staggered field needs at least one index dimension")
315

Martin Bauer's avatar
Martin Bauer committed
316
317
318
        spatial_layout = list(layout)
        for i in range(spatial_dimensions, len(layout)):
            spatial_layout.remove(i)
319
        return Field(field_name, field_type, dtype, tuple(spatial_layout), shape, strides)
320

321
    def __init__(self, field_name, field_type, dtype, layout, shape, strides):
322
        """Do not use directly. Use static create* methods"""
323
        self._field_name = field_name
Martin Bauer's avatar
Martin Bauer committed
324
        assert isinstance(field_type, FieldType)
325
        assert len(shape) == len(strides)
Martin Bauer's avatar
Martin Bauer committed
326
        self.field_type = field_type
Martin Bauer's avatar
Martin Bauer committed
327
        self._dtype = create_type(dtype)
Martin Bauer's avatar
Martin Bauer committed
328
        self._layout = normalize_layout(layout)
329
330
        self.shape = shape
        self.strides = strides
331
        self.latex_name = None  # type: Optional[str]
332
333
334
335
        self.coordinate_origin = sp.Matrix(tuple(
            0 for _ in range(self.spatial_dimensions)
        ))  # type: tuple[float,sp.Symbol]
        self.coordinate_transform = sp.eye(self.spatial_dimensions)
336
337
        if field_type == FieldType.STAGGERED:
            assert self.staggered_stencil
338

Martin Bauer's avatar
Martin Bauer committed
339
    def new_field_with_different_name(self, new_name):
340
341
342
343
344
        if self.has_fixed_shape:
            return Field(new_name, self.field_type, self._dtype, self._layout, self.shape, self.strides)
        else:
            return Field.create_generic(new_name, self.spatial_dimensions, self.dtype.numpy_dtype,
                                        self.index_dimensions, self._layout, self.index_shape, self.field_type)
345

346
    @property
Martin Bauer's avatar
Martin Bauer committed
347
    def spatial_dimensions(self) -> int:
348
349
350
        return len(self._layout)

    @property
Martin Bauer's avatar
Martin Bauer committed
351
    def index_dimensions(self) -> int:
352
        return len(self.shape) - len(self._layout)
353

354
355
356
357
    @property
    def ndim(self) -> int:
        return len(self.shape)

358
359
360
    def values_per_cell(self) -> int:
        return functools.reduce(operator.mul, self.index_shape, 1)

361
362
363
364
365
    @property
    def layout(self):
        return self._layout

    @property
Martin Bauer's avatar
Martin Bauer committed
366
    def name(self) -> str:
367
        return self._field_name
368
369

    @property
Martin Bauer's avatar
Martin Bauer committed
370
371
    def spatial_shape(self) -> Tuple[int, ...]:
        return self.shape[:self.spatial_dimensions]
372

373
    @property
Martin Bauer's avatar
Martin Bauer committed
374
    def has_fixed_shape(self):
Martin Bauer's avatar
Martin Bauer committed
375
        return is_integer_sequence(self.shape)
376

377
    @property
Martin Bauer's avatar
Martin Bauer committed
378
379
    def index_shape(self):
        return self.shape[self.spatial_dimensions:]
380

381
    @property
Martin Bauer's avatar
Martin Bauer committed
382
383
    def has_fixed_index_shape(self):
        return is_integer_sequence(self.index_shape)
384

385
    @property
Martin Bauer's avatar
Martin Bauer committed
386
387
    def spatial_strides(self):
        return self.strides[:self.spatial_dimensions]
388
389

    @property
Martin Bauer's avatar
Martin Bauer committed
390
391
    def index_strides(self):
        return self.strides[self.spatial_dimensions:]
392
393
394
395
396

    @property
    def dtype(self):
        return self._dtype

397
398
399
400
    @property
    def itemsize(self):
        return self.dtype.numpy_dtype.itemsize

401
    def __repr__(self):
402
403
404
405
406
407
408
409
410
411
412
413
414
        if any(isinstance(s, sp.Symbol) for s in self.spatial_shape):
            spatial_shape_str = f'{self.spatial_dimensions}d'
        else:
            spatial_shape_str = ','.join(str(i) for i in self.spatial_shape)
        index_shape_str = ','.join(str(i) for i in self.index_shape)

        if self.index_shape:
            return f'{self._field_name}({index_shape_str}): {self.dtype}[{spatial_shape_str}]'
        else:
            return f'{self._field_name}: {self.dtype}[{spatial_shape_str}]'

    def __str__(self):
        return self.name
415

Martin Bauer's avatar
Martin Bauer committed
416
417
418
419
    def neighbor(self, coord_id, offset):
        offset_list = [0] * self.spatial_dimensions
        offset_list[coord_id] = offset
        return Field.Access(self, tuple(offset_list))
420

421
    def neighbors(self, stencil):
422
        return [self.__getitem__(s) for s in stencil]
423

424
    @property
Martin Bauer's avatar
Martin Bauer committed
425
426
427
    def center_vector(self):
        index_shape = self.index_shape
        if len(index_shape) == 0:
428
429
            return sp.Matrix([self.center])
        if len(index_shape) == 1:
Martin Bauer's avatar
Martin Bauer committed
430
431
            return sp.Matrix([self(i) for i in range(index_shape[0])])
        elif len(index_shape) == 2:
432
433
434
            def cb(*args):
                r = self.__call__(*args)
                return r
Martin Bauer's avatar
Martin Bauer committed
435
            return sp.Matrix(*index_shape, cb)
436

437
    @property
438
    def center(self):
Martin Bauer's avatar
Martin Bauer committed
439
        center = tuple([0] * self.spatial_dimensions)
440
441
        return Field.Access(self, center)

442
443
444
445
    def __getitem__(self, offset):
        if type(offset) is np.ndarray:
            offset = tuple(offset)
        if type(offset) is str:
Martin Bauer's avatar
Martin Bauer committed
446
            offset = tuple(direction_string_to_offset(offset, self.spatial_dimensions))
447
448
        if type(offset) is not tuple:
            offset = (offset,)
Martin Bauer's avatar
Martin Bauer committed
449
        if len(offset) != self.spatial_dimensions:
450
            raise ValueError("Wrong number of spatial indices: "
Martin Bauer's avatar
Martin Bauer committed
451
                             "Got %d, expected %d" % (len(offset), self.spatial_dimensions))
452
453
        return Field.Access(self, offset)

Martin Bauer's avatar
Martin Bauer committed
454
    def absolute_access(self, offset, index):
Martin Bauer's avatar
Martin Bauer committed
455
        assert FieldType.is_custom(self)
Martin Bauer's avatar
Martin Bauer committed
456
457
        return Field.Access(self, offset, index, is_absolute_access=True)

458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
    def interpolated_access(self,
                            offset: Tuple,
                            interpolation_mode='linear',
                            address_mode='BORDER',
                            allow_textures=True):
        """Provides access to field values at non-integer positions

        ``interpolated_access`` is similar to :func:`Field.absolute_access` except that
        it allows non-integer offsets and automatic handling of out-of-bound accesses.

        :param offset:              Tuple of spatial coordinates (can be floats)
        :param interpolation_mode:  One of :class:`pystencils.interpolation_astnodes.InterpolationMode`
        :param address_mode:        How boundaries are handled can be 'border', 'wrap', 'mirror', 'clamp'
        :param allow_textures:      Allow implementation by texture accesses on GPUs
        """
        from pystencils.interpolation_astnodes import Interpolator
        return Interpolator(self,
                            interpolation_mode,
                            address_mode,
                            allow_textures=allow_textures).at(offset)

Michael Kuron's avatar
Michael Kuron committed
479
480
481
482
483
484
485
    def staggered_access(self, offset, index=None):
        """If this field is a staggered field, it can be accessed using half-integer offsets.
        For example, an offset of ``(0, sp.Rational(1,2))`` or ``"E"`` corresponds to the staggered point to the east
        of the cell center, i.e. half-way to the eastern-next cell.
        If the field stores more than one value per staggered point (e.g. a vector or a tensor), the index (integer or
        tuple of integers) refers to which of these values to access.
        """
486
        assert FieldType.is_staggered(self)
Michael Kuron's avatar
Michael Kuron committed
487

488
        offset_orig = offset
Michael Kuron's avatar
Michael Kuron committed
489
490
491
492
493
494
495
496
497
498
499
        if type(offset) is np.ndarray:
            offset = tuple(offset)
        if type(offset) is str:
            offset = tuple(direction_string_to_offset(offset, self.spatial_dimensions))
            offset = tuple([o * sp.Rational(1, 2) for o in offset])
        if type(offset) is not tuple:
            offset = (offset,)
        if len(offset) != self.spatial_dimensions:
            raise ValueError("Wrong number of spatial indices: "
                             "Got %d, expected %d" % (len(offset), self.spatial_dimensions))

500
        prefactor = 1
501
502
503
504
505
506
507
508
        neighbor_vec = [0] * len(offset)
        for i in range(self.spatial_dimensions):
            if (offset[i] + sp.Rational(1, 2)).is_Integer:
                neighbor_vec[i] = sp.sign(offset[i])
        neighbor = offset_to_direction_string(neighbor_vec)
        if neighbor not in self.staggered_stencil:
            neighbor_vec = inverse_direction(neighbor_vec)
            neighbor = offset_to_direction_string(neighbor_vec)
509
510
            if FieldType.is_staggered_flux(self):
                prefactor = -1
511
        if neighbor not in self.staggered_stencil:
512
513
            raise ValueError("{} is not a valid neighbor for the {} stencil".format(offset_orig,
                             self.staggered_stencil_name))
514
515
516
517

        offset = tuple(sp.Matrix(offset) - sp.Rational(1, 2) * sp.Matrix(neighbor_vec))

        idx = self.staggered_stencil.index(neighbor)
Michael Kuron's avatar
Michael Kuron committed
518
519
520
521

        if self.index_dimensions == 1:  # this field stores a scalar value at each staggered position
            if index is not None:
                raise ValueError("Cannot specify an index for a scalar staggered field")
522
            return prefactor * Field.Access(self, offset, (idx,))
Michael Kuron's avatar
Michael Kuron committed
523
524
525
526
527
528
529
530
531
532
533
534
        else:  # this field stores a vector or tensor at each staggered position
            if index is None:
                raise ValueError("Wrong number of indices: "
                                 "Got %d, expected %d" % (0, self.index_dimensions - 1))
            if type(index) is np.ndarray:
                index = tuple(index)
            if type(index) is not tuple:
                index = (index,)
            if self.index_dimensions != len(index) + 1:
                raise ValueError("Wrong number of indices: "
                                 "Got %d, expected %d" % (len(index), self.index_dimensions - 1))

535
            return prefactor * Field.Access(self, offset, (idx, *index))
Michael Kuron's avatar
Michael Kuron committed
536

537
538
539
540
541
    @property
    def staggered_stencil(self):
        assert FieldType.is_staggered(self)
        stencils = {
            2: {
542
543
                2: ["W", "S"],  # D2Q5
                4: ["W", "S", "SW", "NW"]  # D2Q9
544
545
            },
            3: {
546
547
548
549
                3: ["W", "S", "B"],  # D3Q7
                7: ["W", "S", "B", "BSW", "TSW", "BNW", "TNW"],  # D3Q15
                9: ["W", "S", "B", "SW", "NW", "BW", "TW", "BS", "TS"],  # D3Q19
                13: ["W", "S", "B", "SW", "NW", "BW", "TW", "BS", "TS", "BSW", "TSW", "BNW", "TNW"]  # D3Q27
550
551
552
553
554
555
            }
        }
        if not self.index_shape[0] in stencils[self.spatial_dimensions]:
            raise ValueError("No known stencil has {} staggered points".format(self.index_shape[0]))
        return stencils[self.spatial_dimensions][self.index_shape[0]]

556
557
558
559
560
    @property
    def staggered_stencil_name(self):
        assert FieldType.is_staggered(self)
        return "D%dQ%d" % (self.spatial_dimensions, self.index_shape[0] * 2 + 1)

561
    def __call__(self, *args, **kwargs):
Martin Bauer's avatar
Martin Bauer committed
562
        center = tuple([0] * self.spatial_dimensions)
563
564
        return Field.Access(self, center)(*args, **kwargs)

565
    def hashable_contents(self):
566
567
568
569
570
571
572
        return (self._layout,
                self.shape,
                self.strides,
                self.field_type,
                self._field_name,
                self.latex_name,
                self._dtype)
573

574
    def __hash__(self):
575
        return hash(self.hashable_contents())
576
577

    def __eq__(self, other):
578
579
        if not isinstance(other, Field):
            return False
580
        return self.hashable_contents() == other.hashable_contents()
581

582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
    @property
    def physical_coordinates(self):
        return self.coordinate_transform @ (self.coordinate_origin + pystencils.x_vector(self.spatial_dimensions))

    @property
    def physical_coordinates_staggered(self):
        return self.coordinate_transform @ \
            (self.coordinate_origin + pystencils.x_staggered_vector(self.spatial_dimensions))

    def index_to_physical(self, index_coordinates, staggered=False):
        if staggered:
            index_coordinates = sp.Matrix([i + 0.5 for i in index_coordinates])
        return self.coordinate_transform @ (self.coordinate_origin + index_coordinates)

    def physical_to_index(self, physical_coordinates, staggered=False):
        rtn = self.coordinate_transform.inv() @ physical_coordinates - self.coordinate_origin
        if staggered:
            rtn = sp.Matrix([i - 0.5 for i in rtn])

        return rtn

    def index_to_staggered_physical_coordinates(self, symbol_vector):
        symbol_vector += sp.Matrix([0.5] * self.spatial_dimensions)
        return self.create_physical_coordinates(symbol_vector)

    def set_coordinate_origin_to_field_center(self):
        self.coordinate_origin = -sp.Matrix([i / 2 for i in self.spatial_shape])

Martin Bauer's avatar
Martin Bauer committed
610
    # noinspection PyAttributeOutsideInit,PyUnresolvedReferences
611
    class Access(TypedSymbol, AbstractField.AbstractAccess):
Martin Bauer's avatar
Martin Bauer committed
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
        """Class representing a relative access into a `Field`.

        This class behaves like a normal sympy Symbol, it is actually derived from it. One can built up
        sympy expressions using field accesses, solve for them, etc.

        Examples:
            >>> vector_field_2d = fields("v(2): double[2D]")  # create a 2D vector field
            >>> northern_neighbor_y_component = vector_field_2d[0, 1](1)
            >>> northern_neighbor_y_component
            v_N^1
            >>> central_y_component = vector_field_2d(1)
            >>> central_y_component
            v_C^1
            >>> central_y_component.get_shifted(1, 0)  # move the existing access
            v_E^1
            >>> central_y_component.at_index(0)  # change component
            v_C^0
        """
630

631
632
633
634
        def __new__(cls, name, *args, **kwargs):
            obj = Field.Access.__xnew_cached_(cls, name, *args, **kwargs)
            return obj

635
        def __new_stage2__(self, field, offsets=(0, 0, 0), idx=None, is_absolute_access=False, dtype=None):
Martin Bauer's avatar
Martin Bauer committed
636
            field_name = field.name
Martin Bauer's avatar
Martin Bauer committed
637
            offsets_and_index = (*offsets, *idx) if idx is not None else offsets
Martin Bauer's avatar
Martin Bauer committed
638
            constant_offsets = not any([isinstance(o, sp.Basic) and not o.is_Integer for o in offsets_and_index])
639
640

            if not idx:
Martin Bauer's avatar
Martin Bauer committed
641
                idx = tuple([0] * field.index_dimensions)
642

Martin Bauer's avatar
Martin Bauer committed
643
644
645
            if constant_offsets:
                offset_name = offset_to_direction_string(offsets)
                if field.index_dimensions == 0:
646
                    superscript = None
Martin Bauer's avatar
Martin Bauer committed
647
                elif field.index_dimensions == 1:
648
                    superscript = str(idx[0])
649
                else:
Martin Bauer's avatar
Martin Bauer committed
650
651
652
653
                    idx_str = ",".join([str(e) for e in idx])
                    superscript = idx_str
                if field.has_fixed_index_shape and not isinstance(field.dtype, StructType):
                    for i, bound in zip(idx, field.index_shape):
654
655
                        if i >= bound:
                            raise ValueError("Field index out of bounds")
656
            else:
657
                offset_name = hashlib.md5(pickle.dumps(offsets_and_index)).hexdigest()[:12]
658
                superscript = None
659

Martin Bauer's avatar
Martin Bauer committed
660
            symbol_name = "%s_%s" % (field_name, offset_name)
661
            if superscript is not None:
Martin Bauer's avatar
Martin Bauer committed
662
                symbol_name += "^" + superscript
663

664
            obj = super(Field.Access, self).__xnew__(self, symbol_name, field.dtype)
665
666
667
668
669
670
671
            obj._field = field
            obj._offsets = []
            for o in offsets:
                if isinstance(o, sp.Basic):
                    obj._offsets.append(o)
                else:
                    obj._offsets.append(int(o))
672
            obj._offsets = tuple(obj._offsets)
Martin Bauer's avatar
Martin Bauer committed
673
            obj._offsetName = offset_name
674
            obj._superscript = superscript
675
676
            obj._index = idx

Martin Bauer's avatar
Martin Bauer committed
677
678
679
680
681
682
            obj._indirect_addressing_fields = set()
            for e in chain(obj._offsets, obj._index):
                if isinstance(e, sp.Basic):
                    obj._indirect_addressing_fields.update(a.field for a in e.atoms(Field.Access))

            obj._is_absolute_access = is_absolute_access
683
684
            return obj

685
        def __getnewargs__(self):
686
            return self.field, self.offsets, self.index, self.is_absolute_access, self.dtype
687

Martin Bauer's avatar
Martin Bauer committed
688
        # noinspection SpellCheckingInspection
689
        __xnew__ = staticmethod(__new_stage2__)
Martin Bauer's avatar
Martin Bauer committed
690
        # noinspection SpellCheckingInspection
691
692
693
        __xnew_cached_ = staticmethod(cacheit(__new_stage2__))

        def __call__(self, *idx):
Martin Bauer's avatar
Martin Bauer committed
694
            if self._index != tuple([0] * self.field.index_dimensions):
695
696
697
                raise ValueError("Indexing an already indexed Field.Access")

            idx = tuple(idx)
698

Martin Bauer's avatar
Martin Bauer committed
699
            if self.field.index_dimensions == 0 and idx == (0,):
700
701
                idx = ()

Martin Bauer's avatar
Martin Bauer committed
702
            if len(idx) != self.field.index_dimensions:
703
                raise ValueError("Wrong number of indices: "
Martin Bauer's avatar
Martin Bauer committed
704
                                 "Got %d, expected %d" % (len(idx), self.field.index_dimensions))
705
            return Field.Access(self.field, self._offsets, idx, dtype=self.dtype)
706

Martin Bauer's avatar
Martin Bauer committed
707
708
709
        def __getitem__(self, *idx):
            return self.__call__(*idx)

Martin Bauer's avatar
Martin Bauer committed
710
711
712
713
714
        def __iter__(self):
            """This is necessary to work with parts of sympy that test if an object is iterable (e.g. simplify).
            The __getitem__ would make it iterable"""
            raise TypeError("Field access is not iterable")

715
        @property
Martin Bauer's avatar
Martin Bauer committed
716
717
        def field(self) -> 'Field':
            """Field that the Access points to"""
718
719
720
            return self._field

        @property
Martin Bauer's avatar
Martin Bauer committed
721
722
        def offsets(self) -> Tuple:
            """Spatial offset as tuple"""
723
            return self._offsets
724

725
        @property
Martin Bauer's avatar
Martin Bauer committed
726
727
        def required_ghost_layers(self) -> int:
            """Largest spatial distance that is accessed."""
728
729
730
            return int(np.max(np.abs(self._offsets)))

        @property
Martin Bauer's avatar
Martin Bauer committed
731
        def nr_of_coordinates(self):
732
733
734
            return len(self._offsets)

        @property
Martin Bauer's avatar
Martin Bauer committed
735
        def offset_name(self) -> str:
Martin Bauer's avatar
Martin Bauer committed
736
737
738
739
740
741
742
            """Spatial offset as string, East-West for x, North-South for y and Top-Bottom for z coordinate.

            Example:
                >>> f = fields("f: double[2D]")
                >>> f[1, 1].offset_name  # north-east
                'NE'
            """
743
744
745
746
            return self._offsetName

        @property
        def index(self):
Martin Bauer's avatar
Martin Bauer committed
747
            """Value of index coordinates as tuple."""
748
749
            return self._index

750
        def neighbor(self, coord_id: int, offset: int) -> 'Field.Access':
Martin Bauer's avatar
Martin Bauer committed
751
752
753
754
755
756
757
758
759
760
761
            """Returns a new Access with changed spatial coordinates.

            Args:
                coord_id: index of the coordinate to change (0 for x, 1 for y,...)
                offset: incremental change of this coordinate

            Example:
                >>> f = fields('f: [2D]')
                >>> f[0,0].neighbor(coord_id=1, offset=-1)
                f_S
            """
Martin Bauer's avatar
Martin Bauer committed
762
763
            offset_list = list(self.offsets)
            offset_list[coord_id] += offset
764
            return Field.Access(self.field, tuple(offset_list), self.index, dtype=self.dtype)
765

766
        def get_shifted(self, *shift) -> 'Field.Access':
Martin Bauer's avatar
Martin Bauer committed
767
768
769
770
771
772
773
            """Returns a new Access with changed spatial coordinates

            Example:
                >>> f = fields("f: [2D]")
                >>> f[0,0].get_shifted(1, 1)
                f_NE
            """
774
775
776
777
            return Field.Access(self.field,
                                tuple(a + b for a, b in zip(shift, self.offsets)),
                                self.index,
                                dtype=self.dtype)
778

Martin Bauer's avatar
Martin Bauer committed
779
780
781
782
783
784
785
786
        def at_index(self, *idx_tuple) -> 'Field.Access':
            """Returns new Access with changed index.

            Example:
                >>> f = fields("f(9): [2D]")
                >>> f(0).at_index(8)
                f_C^8
            """
787
            return Field.Access(self.field, self.offsets, idx_tuple, dtype=self.dtype)
788

789
790
791
792
793
794
        def _eval_subs(self, old, new):
            return Field.Access(self.field,
                                tuple(sp.sympify(a).subs(old, new) for a in self.offsets),
                                tuple(sp.sympify(a).subs(old, new) for a in self.index),
                                dtype=self.dtype)

Martin Bauer's avatar
Martin Bauer committed
795
796
797
798
799
800
801
802
803
804
805
806
807
        @property
        def is_absolute_access(self) -> bool:
            """Indicates if a field access is relative to the loop counters (this is the default) or absolute"""
            return self._is_absolute_access

        @property
        def indirect_addressing_fields(self) -> Set['Field']:
            """Returns a set of fields that the access depends on.

             e.g. f[index_field[1, 0]], the outer access to f depends on index_field
             """
            return self._indirect_addressing_fields

808
        def _hashable_content(self):
809
810
            super_class_contents = super(Field.Access, self)._hashable_content()
            return (super_class_contents, self._field.hashable_contents(), *self._index, *self._offsets)
Martin Bauer's avatar
Martin Bauer committed
811

812
813
814
815
        def _staggered_offset(self, offsets, index):
            assert FieldType.is_staggered(self._field)
            neighbor = self._field.staggered_stencil[index]
            neighbor = direction_string_to_offset(neighbor, self._field.spatial_dimensions)
816
            return [(o - sp.Rational(int(neighbor[i]), 2)) for i, o in enumerate(offsets)]
817

Martin Bauer's avatar
Martin Bauer committed
818
        def _latex(self, _):
819
            n = self._field.latex_name if self._field.latex_name else self._field.name
Martin Bauer's avatar
Martin Bauer committed
820
            offset_str = ",".join([sp.latex(o) for o in self.offsets])
821
            if FieldType.is_staggered(self._field):
822
823
                offset_str = ",".join([sp.latex(self._staggered_offset(self.offsets, self.index[0])[i])
                                       for i in range(len(self.offsets))])
Martin Bauer's avatar
Martin Bauer committed
824
825
826
827
828
            if self.is_absolute_access:
                offset_str = "\\mathbf{}".format(offset_str)
            elif self.field.spatial_dimensions > 1:
                offset_str = "({})".format(offset_str)

829
            if FieldType.is_staggered(self._field):
Michael Kuron's avatar
Michael Kuron committed
830
831
832
833
834
                if self.index and self.field.index_dimensions > 1:
                    return "{{%s}_{%s}^{%s}}" % (n, offset_str, self.index[1:]
                                                 if len(self.index) > 2 else self.index[1])
                else:
                    return "{{%s}_{%s}}" % (n, offset_str)
Martin Bauer's avatar
Martin Bauer committed
835
            else:
Michael Kuron's avatar
Michael Kuron committed
836
837
838
839
                if self.index and self.field.index_dimensions > 0:
                    return "{{%s}_{%s}^{%s}}" % (n, offset_str, self.index if len(self.index) > 1 else self.index[0])
                else:
                    return "{{%s}_{%s}}" % (n, offset_str)
Martin Bauer's avatar
Martin Bauer committed
840

841
842
843
        def __str__(self):
            n = self._field.latex_name if self._field.latex_name else self._field.name
            offset_str = ",".join([sp.latex(o) for o in self.offsets])
844
            if FieldType.is_staggered(self._field):
845
846
                offset_str = ",".join([sp.latex(self._staggered_offset(self.offsets, self.index[0])[i])
                                       for i in range(len(self.offsets))])
847
848
            if self.is_absolute_access:
                offset_str = "[abs]{}".format(offset_str)
Michael Kuron's avatar
Michael Kuron committed
849

850
            if FieldType.is_staggered(self._field):
Michael Kuron's avatar
Michael Kuron committed
851
852
853
854
                if self.index and self.field.index_dimensions > 1:
                    return "%s[%s](%s)" % (n, offset_str, self.index[1:] if len(self.index) > 2 else self.index[1])
                else:
                    return "%s[%s]" % (n, offset_str)
855
            else:
Michael Kuron's avatar
Michael Kuron committed
856
857
858
859
                if self.index and self.field.index_dimensions > 0:
                    return "%s[%s](%s)" % (n, offset_str, self.index if len(self.index) > 1 else self.index[0])
                else:
                    return "%s[%s]" % (n, offset_str)
860

Martin Bauer's avatar
Martin Bauer committed
861

Martin Bauer's avatar
Martin Bauer committed
862
863
def get_layout_from_strides(strides: Sequence[int], index_dimension_ids: Optional[List[int]] = None):
    index_dimension_ids = [] if index_dimension_ids is None else index_dimension_ids
864
    coordinates = list(range(len(strides)))
Martin Bauer's avatar
Martin Bauer committed
865
    relevant_strides = [stride for i, stride in enumerate(strides) if i not in index_dimension_ids]
866
    result = [x for (y, x) in sorted(zip(relevant_strides, coordinates), key=lambda pair: pair[0], reverse=True)]
Martin Bauer's avatar
Martin Bauer committed
867
    return normalize_layout(result)
868
869


Martin Bauer's avatar
Martin Bauer committed
870
871
872
873
874
875
def get_layout_of_array(arr: np.ndarray, index_dimension_ids: Optional[List[int]] = None):
    """ Returns a list indicating the memory layout (linearization order) of the numpy array.

    Examples:
        >>> get_layout_of_array(np.zeros([3,3,3]))
        (0, 1, 2)
Martin Bauer's avatar
Martin Bauer committed
876
877
878
879
880

    In this example the loop over the zeroth coordinate should be the outermost loop,
    followed by the first and second. Elements arr[x,y,0] and arr[x,y,1] are adjacent in memory.
    Normally constructed numpy arrays have this order, however by stride tricks or other frameworks, arrays
    with different memory layout can be created.
Martin Bauer's avatar
Martin Bauer committed
881

Martin Bauer's avatar
Martin Bauer committed
882
    The index_dimension_ids parameter leaves specifies which coordinates should not be
Martin Bauer's avatar
Martin Bauer committed
883
    """
Martin Bauer's avatar
Martin Bauer committed
884
885
    index_dimension_ids = [] if index_dimension_ids is None else index_dimension_ids
    return get_layout_from_strides(arr.strides, index_dimension_ids)
886
887


Martin Bauer's avatar
Martin Bauer committed
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
def create_numpy_array_with_layout(shape, layout, alignment=False, byte_offset=0, **kwargs):
    """Creates numpy array with given memory layout.

    Args:
        shape: shape of the resulting array
        layout: layout as tuple, where the coordinates are ordered from slow to fast
        alignment: number of bytes to align the beginning and the innermost coordinate to, or False for no alignment
        byte_offset: only used when alignment is specified, align not beginning but address at this offset
                     mostly used to align first inner cell, not ghost cells

    Example:
        >>> res = create_numpy_array_with_layout(shape=(2, 3, 4, 5), layout=(3, 2, 0, 1))
        >>> res.shape
        (2, 3, 4, 5)
        >>> get_layout_of_array(res)
        (3, 2, 0, 1)
904
905
    """
    assert set(layout) == set(range(len(shape))), "Wrong layout descriptor"
Martin Bauer's avatar
Martin Bauer committed
906
    cur_layout = list(range(len(shape)))
907
908
    swaps = []
    for i in range(len(layout)):
Martin Bauer's avatar
Martin Bauer committed
909
910
911
912
913
        if cur_layout[i] != layout[i]:
            index_to_swap_with = cur_layout.index(layout[i])
            swaps.append((i, index_to_swap_with))
            cur_layout[i], cur_layout[index_to_swap_with] = cur_layout[index_to_swap_with], cur_layout[i]
    assert tuple(cur_layout) == tuple(layout)
914
915
916
917
918

    shape = list(shape)
    for a, b in swaps:
        shape[a], shape[b] = shape[b], shape[a]

919
920
921
922
923
    if not alignment:
        res = np.empty(shape, order='c', **kwargs)
    else:
        if alignment is True:
            alignment = 8 * 4
Martin Bauer's avatar
Martin Bauer committed
924
        res = aligned_empty(shape, alignment, byte_offset=byte_offset, **kwargs)
925

926
927
928
929
930
    for a, b in reversed(swaps):
        res = res.swapaxes(a, b)
    return res


Martin Bauer's avatar
Martin Bauer committed
931
932
def spatial_layout_string_to_tuple(layout_str: str, dim: int) -> Tuple[int, ...]:
    if layout_str in ('fzyx', 'zyxf'):
933
934
        assert dim <= 3
        return tuple(reversed(range(dim)))
935

Martin Bauer's avatar
Martin Bauer committed
936
    if layout_str in ('fzyx', 'f', 'reverse_numpy', 'SoA'):
937
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
938
    elif layout_str in ('c', 'numpy', 'AoS'):
939
        return tuple(range(dim))
Martin Bauer's avatar
Martin Bauer committed
940
    raise ValueError("Unknown layout descriptor " + layout_str)
941
942


Martin Bauer's avatar
Martin Bauer committed
943
944
945
def layout_string_to_tuple(layout_str, dim):
    layout_str = layout_str.lower()
    if layout_str == 'fzyx' or layout_str == 'soa':
946
947
        assert dim <= 4
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
948
    elif layout_str == 'zyxf' or layout_str == 'aos':
949
        assert dim <= 4
Martin Bauer's avatar
Martin Bauer committed
950
        return tuple(reversed(range(dim - 1))) + (dim - 1,)
Martin Bauer's avatar
Martin Bauer committed
951
    elif layout_str == 'f' or layout_str == 'reverse_numpy':
952
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
953
    elif layout_str == 'c' or layout_str == 'numpy':
954
        return tuple(range(dim))
Martin Bauer's avatar
Martin Bauer committed
955
    raise ValueError("Unknown layout descriptor " + layout_str)
956
957


Martin Bauer's avatar
Martin Bauer committed
958
def normalize_layout(layout):
959
    """Takes a layout tuple and subtracts the minimum from all entries"""
Martin Bauer's avatar
Martin Bauer committed
960
961
    min_entry = min(layout)
    return tuple(i - min_entry for i in layout)
962
963


Martin Bauer's avatar
Martin Bauer committed
964
def compute_strides(shape, layout):
965
966
    """
    Computes strides assuming no padding exists
Martin Bauer's avatar
Martin Bauer committed
967
968
969
970
971
972
973

    Args:
        shape: shape (size) of array
        layout: layout specification as tuple

    Returns:
        strides in elements, not in bytes
974
    """
Martin Bauer's avatar
Martin Bauer committed
975
976
977
978
    dim = len(shape)
    assert len(layout) == dim
    assert len(set(layout)) == dim
    strides = [0] * dim
979
    product = 1
980
    for j in reversed(layout):
981
982
983
        strides[j] = product
        product *= shape[j]
    return tuple(strides)
Martin Bauer's avatar
Martin Bauer committed
984
985


986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
# ---------------------------------------- Parsing of string in fields() function --------------------------------------

field_description_regex = re.compile(r"""
    \s*                 # ignore leading white spaces
    (\w+)               # identifier is a sequence of alphanumeric characters, is stored in first group
    (?:                 # optional index specification e.g. (1, 4, 2)
        \s*
        \(
            ([^\)]+)    # read everything up to closing bracket
        \)
        \s*
    )?
    \s*,?\s*             # ignore trailing white spaces and comma
""", re.VERBOSE)

type_description_regex = re.compile(r"""
    \s*
    (\w+)?       # optional dtype
    \s*
    \[
        ([^\]]+)
    \]
    \s*
""", re.VERBOSE | re.IGNORECASE)
1010
1011
1012


def _parse_description(description):