field.py 31.4 KB
Newer Older
1
from enum import Enum
2
from itertools import chain
Martin Bauer's avatar
Martin Bauer committed
3
from typing import Tuple, Sequence, Optional, List, Set
4
5
6
import numpy as np
import sympy as sp
from sympy.core.cache import cacheit
7
from pystencils.alignedarray import aligned_empty
Martin Bauer's avatar
Martin Bauer committed
8
from pystencils.data_types import create_type, StructType
9
from pystencils.kernelparameters import FieldShapeSymbol, FieldStrideSymbol
10
from pystencils.stencils import offset_to_direction_string, direction_string_to_offset
Martin Bauer's avatar
Martin Bauer committed
11
from pystencils.sympyextensions import is_integer_sequence
12

Martin Bauer's avatar
Martin Bauer committed
13
14
__all__ = ['Field', 'fields', 'FieldType']

15

16
17
18
19
def fields(description=None, index_dimensions=0, layout=None, **kwargs):
    """Creates pystencils fields from a string description.

    Examples:
Martin Bauer's avatar
Martin Bauer committed
20
21
22
23
        Create a 2D scalar and vector field:
            >>> s, v = fields("s, v(2): double[2D]")
            >>> assert s.spatial_dimensions == 2 and s.index_dimensions == 0
            >>> assert (v.spatial_dimensions, v.index_dimensions, v.index_shape) == (2, 1, (2,))
24

Martin Bauer's avatar
Martin Bauer committed
25
26
27
28
        Create an integer field of shape (10, 20):
            >>> f = fields("f : int32[10, 20]")
            >>> f.has_fixed_shape, f.shape
            (True, (10, 20))
29

Martin Bauer's avatar
Martin Bauer committed
30
31
32
33
34
        Numpy arrays can be used as template for shape and data type of field:
            >>> arr_s, arr_v = np.zeros([20, 20]), np.zeros([20, 20, 2])
            >>> s, v = fields("s, v(2)", s=arr_s, v=arr_v)
            >>> assert s.index_dimensions == 0 and s.dtype.numpy_dtype == arr_s.dtype
            >>> assert v.index_shape == (2,)
35
36


Martin Bauer's avatar
Martin Bauer committed
37
38
39
40
41
42
43
44
45
46
        Format string can be left out, field names are taken from keyword arguments.
            >>> fields(f1=arr_s, f2=arr_s)
            [f1, f2]

        The keyword names ``index_dimension`` and ``layout`` have special meaning, don't use them for field names
            >>> f = fields(f=arr_v, index_dimensions=1)
            >>> assert f.index_dimensions == 1
            >>> f = fields("pdfs(19) : float32[3D]", layout='fzyx')
            >>> f.layout
            (2, 1, 0)
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    """
    result = []
    if description:
        field_descriptions, dtype, shape = _parse_description(description)
        layout = 'numpy' if layout is None else layout
        for field_name, idx_shape in field_descriptions:
            if field_name in kwargs:
                arr = kwargs[field_name]
                idx_shape_of_arr = () if not len(idx_shape) else arr.shape[-len(idx_shape):]
                assert idx_shape_of_arr == idx_shape
                f = Field.create_from_numpy_array(field_name, kwargs[field_name], index_dimensions=len(idx_shape))
            elif isinstance(shape, tuple):
                f = Field.create_fixed_size(field_name, shape + idx_shape, dtype=dtype,
                                            index_dimensions=len(idx_shape), layout=layout)
            elif isinstance(shape, int):
                f = Field.create_generic(field_name, spatial_dimensions=shape, dtype=dtype,
                                         index_shape=idx_shape, layout=layout)
            elif shape is None:
                f = Field.create_generic(field_name, spatial_dimensions=2, dtype=dtype,
                                         index_shape=idx_shape, layout=layout)
            else:
                assert False
            result.append(f)
    else:
        assert layout is None, "Layout can not be specified when creating Field from numpy array"
        for field_name, arr in kwargs.items():
            result.append(Field.create_from_numpy_array(field_name, arr, index_dimensions=index_dimensions))

    if len(result) == 0:
        return None
    elif len(result) == 1:
        return result[0]
    else:
        return result


83
84
85
86
87
88
89
90
class FieldType(Enum):
    # generic fields
    GENERIC = 0
    # index fields are currently only used for boundary handling
    # the coordinates are not the loop counters in that case, but are read from this index field
    INDEXED = 1
    # communication buffer, used for (un)packing data in communication.
    BUFFER = 2
Martin Bauer's avatar
Martin Bauer committed
91
92
93
    # unsafe fields may be accessed in an absolute fashion - the index depends on the data
    # and thus may lead to out-of-bounds accesses
    CUSTOM = 3
94
95

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
96
    def is_generic(field):
97
        assert isinstance(field, Field)
Martin Bauer's avatar
Martin Bauer committed
98
        return field.field_type == FieldType.GENERIC
99
100

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
101
    def is_indexed(field):
102
        assert isinstance(field, Field)
Martin Bauer's avatar
Martin Bauer committed
103
        return field.field_type == FieldType.INDEXED
104
105

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
106
    def is_buffer(field):
107
        assert isinstance(field, Field)
Martin Bauer's avatar
Martin Bauer committed
108
        return field.field_type == FieldType.BUFFER
109

Martin Bauer's avatar
Martin Bauer committed
110
111
112
113
114
    @staticmethod
    def is_custom(field):
        assert isinstance(field, Field)
        return field.field_type == FieldType.CUSTOM

115

116
class Field:
117
118
119
120
    """
    With fields one can formulate stencil-like update rules on structured grids.
    This Field class knows about the dimension, memory layout (strides) and optionally about the size of an array.

Martin Bauer's avatar
Martin Bauer committed
121
    Creating Fields:
Martin Bauer's avatar
Martin Bauer committed
122
123
        The preferred method to create fields is the `fields` function.
        Alternatively one can use one of the static functions `Field.create_generic`, `Field.create_from_numpy_array`
124
        and `Field.create_fixed_size`. Don't instantiate the Field directly!
Martin Bauer's avatar
Martin Bauer committed
125
126
127
128
129
        Fields can be created with known or unknown shapes:

        1. If you want to create a kernel with fixed loop sizes i.e. the shape of the array is already known.
           This is usually the case if just-in-time compilation directly from Python is done.
           (see `Field.create_from_numpy_array`
130
        2. create a more general kernel that works for variable array sizes. This can be used to create kernels
Martin Bauer's avatar
Martin Bauer committed
131
           beforehand for a library. (see `Field.create_generic`)
132

Martin Bauer's avatar
Martin Bauer committed
133
    Dimensions and Indexing:
134
135
        A field has spatial and index dimensions, where the spatial dimensions come first.
        The interpretation is that the field has multiple cells in (usually) two or three dimensional space which are
Martin Bauer's avatar
Martin Bauer committed
136
        looped over. Additionally N values are stored per cell. In this case spatial_dimensions is two or three,
Martin Bauer's avatar
Martin Bauer committed
137
        and index_dimensions equals N. If you want to store a matrix on each point in a two dimensional grid, there
Martin Bauer's avatar
Martin Bauer committed
138
        are four dimensions, two spatial and two index dimensions: ``len(arr.shape) == spatial_dims + index_dims``
139

Martin Bauer's avatar
Martin Bauer committed
140
141
142
143
144
        The shape of the index dimension does not have to be specified. Just use the 'index_dimensions' parameter.
        However, it is good practice to define the shape, since out of bounds accesses can be directly detected in this
        case. The shape can be passed with the 'index_shape' parameter of the field creation functions.

        When accessing (indexing) a field the result is a `Field.Access` which is derived from sympy Symbol.
Martin Bauer's avatar
Martin Bauer committed
145
        First specify the spatial offsets in [], then in case index_dimension>0 the indices in ()
Martin Bauer's avatar
Martin Bauer committed
146
        e.g. ``f[-1,0,0](7)``
147

Martin Bauer's avatar
Martin Bauer committed
148
    Example using no index dimensions:
149
        >>> a = np.zeros([10, 10])
Martin Bauer's avatar
Martin Bauer committed
150
        >>> f = Field.create_from_numpy_array("f", a, index_dimensions=0)
Martin Bauer's avatar
Martin Bauer committed
151
        >>> jacobi = (f[-1,0] + f[1,0] + f[0,-1] + f[0,1]) / 4
152

Martin Bauer's avatar
Martin Bauer committed
153
    Examples for index dimensions to create LB field and implement stream pull:
Martin Bauer's avatar
Martin Bauer committed
154
        >>> from pystencils import Assignment
155
        >>> stencil = np.array([[0,0], [0,1], [0,-1]])
Martin Bauer's avatar
Martin Bauer committed
156
        >>> src, dst = fields("src(3), dst(3) : double[2D]")
157
        >>> assignments = [Assignment(dst[0,0](i), src[-offset](i)) for i, offset in enumerate(stencil)];
158
    """
159
160

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
161
162
    def create_generic(field_name, spatial_dimensions, dtype=np.float64, index_dimensions=0, layout='numpy',
                       index_shape=None, field_type=FieldType.GENERIC) -> 'Field':
163
164
165
        """
        Creates a generic field where the field size is not fixed i.e. can be called with arrays of different sizes

Martin Bauer's avatar
Martin Bauer committed
166
167
168
169
170
171
172
        Args:
            field_name: symbolic name for the field
            dtype: numpy data type of the array the kernel is called with later
            spatial_dimensions: see documentation of Field
            index_dimensions: see documentation of Field
            layout: tuple specifying the loop ordering of the spatial dimensions e.g. (2, 1, 0 ) means that
                    the outer loop loops over dimension 2, the second outer over dimension 1, and the inner loop
Martin Bauer's avatar
Martin Bauer committed
173
                    over dimension 0. Also allowed: the strings 'numpy' (0,1,..d) or 'reverse_numpy' (d, ..., 1, 0)
Martin Bauer's avatar
Martin Bauer committed
174
175
176
177
178
            index_shape: optional shape of the index dimensions i.e. maximum values allowed for each index dimension,
                        has to be a list or tuple
            field_type: besides the normal GENERIC fields, there are INDEXED fields that store indices of the domain
                        that should be iterated over, and BUFFER fields that are used to generate
                        communication packing/unpacking kernels
179
        """
180
181
182
        if index_shape is not None:
            assert index_dimensions == 0 or index_dimensions == len(index_shape)
            index_dimensions = len(index_shape)
183
        if isinstance(layout, str):
Martin Bauer's avatar
Martin Bauer committed
184
            layout = spatial_layout_string_to_tuple(layout, dim=spatial_dimensions)
185

Martin Bauer's avatar
Martin Bauer committed
186
187
        total_dimensions = spatial_dimensions + index_dimensions
        if index_shape is None or len(index_shape) == 0:
188
            shape = tuple([FieldShapeSymbol([field_name], i) for i in range(total_dimensions)])
189
        else:
190
            shape = tuple([FieldShapeSymbol([field_name], i) for i in range(spatial_dimensions)] + list(index_shape))
191

192
        strides = tuple([FieldStrideSymbol(field_name, i) for i in range(total_dimensions)])
193

Martin Bauer's avatar
Martin Bauer committed
194
195
196
        np_data_type = np.dtype(dtype)
        if np_data_type.fields is not None:
            if index_dimensions != 0:
197
198
199
200
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)

Martin Bauer's avatar
Martin Bauer committed
201
        return Field(field_name, field_type, dtype, layout, shape, strides)
202

203
    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
204
205
206
    def create_from_numpy_array(field_name: str, array: np.ndarray, index_dimensions: int = 0) -> 'Field':
        """Creates a field based on the layout, data type, and shape of a given numpy array.

207
        Kernels created for these kind of fields can only be called with arrays of the same layout, shape and type.
Martin Bauer's avatar
Martin Bauer committed
208
209
210
211
212

        Args:
            field_name: symbolic name for the field
            array: numpy array
            index_dimensions: see documentation of Field
213
        """
Martin Bauer's avatar
Martin Bauer committed
214
215
        spatial_dimensions = len(array.shape) - index_dimensions
        if spatial_dimensions < 1:
216
217
            raise ValueError("Too many index dimensions. At least one spatial dimension required")

Martin Bauer's avatar
Martin Bauer committed
218
219
220
        full_layout = get_layout_of_array(array)
        spatial_layout = tuple([i for i in full_layout if i < spatial_dimensions])
        assert len(spatial_layout) == spatial_dimensions
221

Martin Bauer's avatar
Martin Bauer committed
222
223
        strides = tuple([s // np.dtype(array.dtype).itemsize for s in array.strides])
        shape = tuple(int(s) for s in array.shape)
224

Martin Bauer's avatar
Martin Bauer committed
225
226
227
        numpy_dtype = np.dtype(array.dtype)
        if numpy_dtype.fields is not None:
            if index_dimensions != 0:
228
229
230
231
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)

Martin Bauer's avatar
Martin Bauer committed
232
        return Field(field_name, FieldType.GENERIC, array.dtype, spatial_layout, shape, strides)
233
234

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
235
    def create_fixed_size(field_name: str, shape: Tuple[int, ...], index_dimensions: int = 0,
236
                          dtype=np.float64, layout: str = 'numpy', strides: Optional[Sequence[int]] = None) -> 'Field':
237
        """
238
        Creates a field with fixed sizes i.e. can be called only with arrays of the same size and layout
239

Martin Bauer's avatar
Martin Bauer committed
240
241
242
243
244
245
246
        Args:
            field_name: symbolic name for the field
            shape: overall shape of the array
            index_dimensions: how many of the trailing dimensions are interpreted as index (as opposed to spatial)
            dtype: numpy data type of the array the kernel is called with later
            layout: full layout of array, not only spatial dimensions
            strides: strides in bytes or None to automatically compute them from shape (assuming no padding)
247
        """
Martin Bauer's avatar
Martin Bauer committed
248
249
        spatial_dimensions = len(shape) - index_dimensions
        assert spatial_dimensions >= 1
250

251
        if isinstance(layout, str):
Martin Bauer's avatar
Martin Bauer committed
252
            layout = layout_string_to_tuple(layout, spatial_dimensions + index_dimensions)
253
254

        shape = tuple(int(s) for s in shape)
255
        if strides is None:
Martin Bauer's avatar
Martin Bauer committed
256
            strides = compute_strides(shape, layout)
257
258
259
        else:
            assert len(strides) == len(shape)
            strides = tuple([s // np.dtype(dtype).itemsize for s in strides])
260

Martin Bauer's avatar
Martin Bauer committed
261
262
263
        numpy_dtype = np.dtype(dtype)
        if numpy_dtype.fields is not None:
            if index_dimensions != 0:
264
265
266
267
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)

Martin Bauer's avatar
Martin Bauer committed
268
269
270
271
        spatial_layout = list(layout)
        for i in range(spatial_dimensions, len(layout)):
            spatial_layout.remove(i)
        return Field(field_name, FieldType.GENERIC, dtype, tuple(spatial_layout), shape, strides)
272

Martin Bauer's avatar
Martin Bauer committed
273
    def __init__(self, field_name, field_type, dtype, layout, shape, strides):
274
        """Do not use directly. Use static create* methods"""
275
        self._field_name = field_name
Martin Bauer's avatar
Martin Bauer committed
276
        assert isinstance(field_type, FieldType)
277
        assert len(shape) == len(strides)
Martin Bauer's avatar
Martin Bauer committed
278
        self.field_type = field_type
Martin Bauer's avatar
Martin Bauer committed
279
        self._dtype = create_type(dtype)
Martin Bauer's avatar
Martin Bauer committed
280
        self._layout = normalize_layout(layout)
281
282
        self.shape = shape
        self.strides = strides
283
        self.latex_name = None  # type: Optional[str]
284

Martin Bauer's avatar
Martin Bauer committed
285
    def new_field_with_different_name(self, new_name):
Martin Bauer's avatar
Martin Bauer committed
286
        return Field(new_name, self.field_type, self._dtype, self._layout, self.shape, self.strides)
287

288
    @property
Martin Bauer's avatar
Martin Bauer committed
289
    def spatial_dimensions(self) -> int:
290
291
292
        return len(self._layout)

    @property
Martin Bauer's avatar
Martin Bauer committed
293
    def index_dimensions(self) -> int:
294
        return len(self.shape) - len(self._layout)
295
296
297
298
299
300

    @property
    def layout(self):
        return self._layout

    @property
Martin Bauer's avatar
Martin Bauer committed
301
    def name(self) -> str:
302
        return self._field_name
303
304

    @property
Martin Bauer's avatar
Martin Bauer committed
305
306
    def spatial_shape(self) -> Tuple[int, ...]:
        return self.shape[:self.spatial_dimensions]
307

308
    @property
Martin Bauer's avatar
Martin Bauer committed
309
    def has_fixed_shape(self):
Martin Bauer's avatar
Martin Bauer committed
310
        return is_integer_sequence(self.shape)
311

312
    @property
Martin Bauer's avatar
Martin Bauer committed
313
314
    def index_shape(self):
        return self.shape[self.spatial_dimensions:]
315

316
    @property
Martin Bauer's avatar
Martin Bauer committed
317
318
    def has_fixed_index_shape(self):
        return is_integer_sequence(self.index_shape)
319

320
    @property
Martin Bauer's avatar
Martin Bauer committed
321
322
    def spatial_strides(self):
        return self.strides[:self.spatial_dimensions]
323
324

    @property
Martin Bauer's avatar
Martin Bauer committed
325
326
    def index_strides(self):
        return self.strides[self.spatial_dimensions:]
327
328
329
330
331
332

    @property
    def dtype(self):
        return self._dtype

    def __repr__(self):
333
        return self._field_name
334

Martin Bauer's avatar
Martin Bauer committed
335
336
337
338
    def neighbor(self, coord_id, offset):
        offset_list = [0] * self.spatial_dimensions
        offset_list[coord_id] = offset
        return Field.Access(self, tuple(offset_list))
339

340
    def neighbors(self, stencil):
341
        return [self.__getitem__(s) for s in stencil]
342

343
    @property
Martin Bauer's avatar
Martin Bauer committed
344
345
346
    def center_vector(self):
        index_shape = self.index_shape
        if len(index_shape) == 0:
347
            return self.center
Martin Bauer's avatar
Martin Bauer committed
348
349
350
        elif len(index_shape) == 1:
            return sp.Matrix([self(i) for i in range(index_shape[0])])
        elif len(index_shape) == 2:
351
352
353
            def cb(*args):
                r = self.__call__(*args)
                return r
Martin Bauer's avatar
Martin Bauer committed
354
            return sp.Matrix(*index_shape, cb)
355

356
    @property
357
    def center(self):
Martin Bauer's avatar
Martin Bauer committed
358
        center = tuple([0] * self.spatial_dimensions)
359
360
        return Field.Access(self, center)

361
362
363
364
    def __getitem__(self, offset):
        if type(offset) is np.ndarray:
            offset = tuple(offset)
        if type(offset) is str:
Martin Bauer's avatar
Martin Bauer committed
365
            offset = tuple(direction_string_to_offset(offset, self.spatial_dimensions))
366
367
        if type(offset) is not tuple:
            offset = (offset,)
Martin Bauer's avatar
Martin Bauer committed
368
        if len(offset) != self.spatial_dimensions:
369
            raise ValueError("Wrong number of spatial indices: "
Martin Bauer's avatar
Martin Bauer committed
370
                             "Got %d, expected %d" % (len(offset), self.spatial_dimensions))
371
372
        return Field.Access(self, offset)

Martin Bauer's avatar
Martin Bauer committed
373
    def absolute_access(self, offset, index):
Martin Bauer's avatar
Martin Bauer committed
374
        assert FieldType.is_custom(self)
Martin Bauer's avatar
Martin Bauer committed
375
376
        return Field.Access(self, offset, index, is_absolute_access=True)

377
    def __call__(self, *args, **kwargs):
Martin Bauer's avatar
Martin Bauer committed
378
        center = tuple([0] * self.spatial_dimensions)
379
380
        return Field.Access(self, center)(*args, **kwargs)

381
382
383
    def hashable_contents(self):
        return self._layout, self.shape, self.strides, hash(self._dtype), self.field_type, self._field_name

384
    def __hash__(self):
385
        return hash(self.hashable_contents())
386
387

    def __eq__(self, other):
388
389
        if not isinstance(other, Field):
            return False
390
        return self.hashable_contents() == other.hashable_contents()
391

Martin Bauer's avatar
Martin Bauer committed
392
    # noinspection PyAttributeOutsideInit,PyUnresolvedReferences
393
    class Access(sp.Symbol):
Martin Bauer's avatar
Martin Bauer committed
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
        """Class representing a relative access into a `Field`.

        This class behaves like a normal sympy Symbol, it is actually derived from it. One can built up
        sympy expressions using field accesses, solve for them, etc.

        Examples:
            >>> vector_field_2d = fields("v(2): double[2D]")  # create a 2D vector field
            >>> northern_neighbor_y_component = vector_field_2d[0, 1](1)
            >>> northern_neighbor_y_component
            v_N^1
            >>> central_y_component = vector_field_2d(1)
            >>> central_y_component
            v_C^1
            >>> central_y_component.get_shifted(1, 0)  # move the existing access
            v_E^1
            >>> central_y_component.at_index(0)  # change component
            v_C^0
        """
412
413
414
415
        def __new__(cls, name, *args, **kwargs):
            obj = Field.Access.__xnew_cached_(cls, name, *args, **kwargs)
            return obj

Martin Bauer's avatar
Martin Bauer committed
416
        def __new_stage2__(self, field, offsets=(0, 0, 0), idx=None, is_absolute_access=False):
Martin Bauer's avatar
Martin Bauer committed
417
418
419
            field_name = field.name
            offsets_and_index = chain(offsets, idx) if idx is not None else offsets
            constant_offsets = not any([isinstance(o, sp.Basic) and not o.is_Integer for o in offsets_and_index])
420
421

            if not idx:
Martin Bauer's avatar
Martin Bauer committed
422
                idx = tuple([0] * field.index_dimensions)
423

Martin Bauer's avatar
Martin Bauer committed
424
425
426
            if constant_offsets:
                offset_name = offset_to_direction_string(offsets)
                if field.index_dimensions == 0:
427
                    superscript = None
Martin Bauer's avatar
Martin Bauer committed
428
                elif field.index_dimensions == 1:
429
                    superscript = str(idx[0])
430
                else:
Martin Bauer's avatar
Martin Bauer committed
431
432
433
434
                    idx_str = ",".join([str(e) for e in idx])
                    superscript = idx_str
                if field.has_fixed_index_shape and not isinstance(field.dtype, StructType):
                    for i, bound in zip(idx, field.index_shape):
435
436
                        if i >= bound:
                            raise ValueError("Field index out of bounds")
437
            else:
Martin Bauer's avatar
Martin Bauer committed
438
                offset_name = "%0.10X" % (abs(hash(tuple(offsets_and_index))))
439
                superscript = None
440

Martin Bauer's avatar
Martin Bauer committed
441
            symbol_name = "%s_%s" % (field_name, offset_name)
442
            if superscript is not None:
Martin Bauer's avatar
Martin Bauer committed
443
                symbol_name += "^" + superscript
444

Martin Bauer's avatar
Martin Bauer committed
445
            obj = super(Field.Access, self).__xnew__(self, symbol_name)
446
447
448
449
450
451
452
            obj._field = field
            obj._offsets = []
            for o in offsets:
                if isinstance(o, sp.Basic):
                    obj._offsets.append(o)
                else:
                    obj._offsets.append(int(o))
453
            obj._offsets = tuple(obj._offsets)
Martin Bauer's avatar
Martin Bauer committed
454
            obj._offsetName = offset_name
455
            obj._superscript = superscript
456
457
            obj._index = idx

Martin Bauer's avatar
Martin Bauer committed
458
459
460
461
462
463
            obj._indirect_addressing_fields = set()
            for e in chain(obj._offsets, obj._index):
                if isinstance(e, sp.Basic):
                    obj._indirect_addressing_fields.update(a.field for a in e.atoms(Field.Access))

            obj._is_absolute_access = is_absolute_access
464
465
            return obj

466
        def __getnewargs__(self):
Martin Bauer's avatar
Martin Bauer committed
467
            return self.field, self.offsets, self.index, self.is_absolute_access
468

Martin Bauer's avatar
Martin Bauer committed
469
        # noinspection SpellCheckingInspection
470
        __xnew__ = staticmethod(__new_stage2__)
Martin Bauer's avatar
Martin Bauer committed
471
        # noinspection SpellCheckingInspection
472
473
474
        __xnew_cached_ = staticmethod(cacheit(__new_stage2__))

        def __call__(self, *idx):
Martin Bauer's avatar
Martin Bauer committed
475
            if self._index != tuple([0] * self.field.index_dimensions):
476
477
478
                raise ValueError("Indexing an already indexed Field.Access")

            idx = tuple(idx)
479

Martin Bauer's avatar
Martin Bauer committed
480
            if self.field.index_dimensions == 0 and idx == (0,):
481
482
                idx = ()

Martin Bauer's avatar
Martin Bauer committed
483
            if len(idx) != self.field.index_dimensions:
484
                raise ValueError("Wrong number of indices: "
Martin Bauer's avatar
Martin Bauer committed
485
                                 "Got %d, expected %d" % (len(idx), self.field.index_dimensions))
486
487
            return Field.Access(self.field, self._offsets, idx)

Martin Bauer's avatar
Martin Bauer committed
488
489
490
        def __getitem__(self, *idx):
            return self.__call__(*idx)

Martin Bauer's avatar
Martin Bauer committed
491
492
493
494
495
        def __iter__(self):
            """This is necessary to work with parts of sympy that test if an object is iterable (e.g. simplify).
            The __getitem__ would make it iterable"""
            raise TypeError("Field access is not iterable")

496
        @property
Martin Bauer's avatar
Martin Bauer committed
497
498
        def field(self) -> 'Field':
            """Field that the Access points to"""
499
500
501
            return self._field

        @property
Martin Bauer's avatar
Martin Bauer committed
502
503
        def offsets(self) -> Tuple:
            """Spatial offset as tuple"""
504
            return self._offsets
505

506
        @property
Martin Bauer's avatar
Martin Bauer committed
507
508
        def required_ghost_layers(self) -> int:
            """Largest spatial distance that is accessed."""
509
510
511
            return int(np.max(np.abs(self._offsets)))

        @property
Martin Bauer's avatar
Martin Bauer committed
512
        def nr_of_coordinates(self):
513
514
515
            return len(self._offsets)

        @property
Martin Bauer's avatar
Martin Bauer committed
516
        def offset_name(self) -> str:
Martin Bauer's avatar
Martin Bauer committed
517
518
519
520
521
522
523
            """Spatial offset as string, East-West for x, North-South for y and Top-Bottom for z coordinate.

            Example:
                >>> f = fields("f: double[2D]")
                >>> f[1, 1].offset_name  # north-east
                'NE'
            """
524
525
526
527
            return self._offsetName

        @property
        def index(self):
Martin Bauer's avatar
Martin Bauer committed
528
            """Value of index coordinates as tuple."""
529
530
            return self._index

Martin Bauer's avatar
Martin Bauer committed
531
        def neighbor(self, coord_id: int, offset: Sequence[int]) -> 'Field.Access':
Martin Bauer's avatar
Martin Bauer committed
532
533
534
535
536
537
538
539
540
541
542
            """Returns a new Access with changed spatial coordinates.

            Args:
                coord_id: index of the coordinate to change (0 for x, 1 for y,...)
                offset: incremental change of this coordinate

            Example:
                >>> f = fields('f: [2D]')
                >>> f[0,0].neighbor(coord_id=1, offset=-1)
                f_S
            """
Martin Bauer's avatar
Martin Bauer committed
543
544
545
            offset_list = list(self.offsets)
            offset_list[coord_id] += offset
            return Field.Access(self.field, tuple(offset_list), self.index)
546

Martin Bauer's avatar
Martin Bauer committed
547
        def get_shifted(self, *shift)-> 'Field.Access':
Martin Bauer's avatar
Martin Bauer committed
548
549
550
551
552
553
554
            """Returns a new Access with changed spatial coordinates

            Example:
                >>> f = fields("f: [2D]")
                >>> f[0,0].get_shifted(1, 1)
                f_NE
            """
555
556
            return Field.Access(self.field, tuple(a + b for a, b in zip(shift, self.offsets)), self.index)

Martin Bauer's avatar
Martin Bauer committed
557
558
559
560
561
562
563
564
        def at_index(self, *idx_tuple) -> 'Field.Access':
            """Returns new Access with changed index.

            Example:
                >>> f = fields("f(9): [2D]")
                >>> f(0).at_index(8)
                f_C^8
            """
565
566
            return Field.Access(self.field, self.offsets, idx_tuple)

Martin Bauer's avatar
Martin Bauer committed
567
568
569
570
571
572
573
574
575
576
577
578
579
        @property
        def is_absolute_access(self) -> bool:
            """Indicates if a field access is relative to the loop counters (this is the default) or absolute"""
            return self._is_absolute_access

        @property
        def indirect_addressing_fields(self) -> Set['Field']:
            """Returns a set of fields that the access depends on.

             e.g. f[index_field[1, 0]], the outer access to f depends on index_field
             """
            return self._indirect_addressing_fields

580
        def _hashable_content(self):
581
582
            super_class_contents = super(Field.Access, self)._hashable_content()
            return (super_class_contents, self._field.hashable_contents(), *self._index, *self._offsets)
Martin Bauer's avatar
Martin Bauer committed
583

Martin Bauer's avatar
Martin Bauer committed
584
        def _latex(self, _):
585
            n = self._field.latex_name if self._field.latex_name else self._field.name
Martin Bauer's avatar
Martin Bauer committed
586
587
588
589
590
591
592
593
            offset_str = ",".join([sp.latex(o) for o in self.offsets])
            if self.is_absolute_access:
                offset_str = "\\mathbf{}".format(offset_str)
            elif self.field.spatial_dimensions > 1:
                offset_str = "({})".format(offset_str)

            if self.index and self.index != (0,):
                return "{{%s}_{%s}^{%s}}" % (n, offset_str, self.index if len(self.index) > 1 else self.index[0])
Martin Bauer's avatar
Martin Bauer committed
594
            else:
Martin Bauer's avatar
Martin Bauer committed
595
                return "{{%s}_{%s}}" % (n, offset_str)
Martin Bauer's avatar
Martin Bauer committed
596

597
598
599
600
601
602
603
604
605
606
        def __str__(self):
            n = self._field.latex_name if self._field.latex_name else self._field.name
            offset_str = ",".join([sp.latex(o) for o in self.offsets])
            if self.is_absolute_access:
                offset_str = "[abs]{}".format(offset_str)
            if self.index and self.index != (0,):
                return "%s[%s](%s)" % (n, offset_str, self.index if len(self.index) > 1 else self.index[0])
            else:
                return "%s[%s]" % (n, offset_str)

Martin Bauer's avatar
Martin Bauer committed
607

Martin Bauer's avatar
Martin Bauer committed
608
609
def get_layout_from_strides(strides: Sequence[int], index_dimension_ids: Optional[List[int]] = None):
    index_dimension_ids = [] if index_dimension_ids is None else index_dimension_ids
610
    coordinates = list(range(len(strides)))
Martin Bauer's avatar
Martin Bauer committed
611
    relevant_strides = [stride for i, stride in enumerate(strides) if i not in index_dimension_ids]
612
    result = [x for (y, x) in sorted(zip(relevant_strides, coordinates), key=lambda pair: pair[0], reverse=True)]
Martin Bauer's avatar
Martin Bauer committed
613
    return normalize_layout(result)
614
615


Martin Bauer's avatar
Martin Bauer committed
616
617
618
619
620
621
def get_layout_of_array(arr: np.ndarray, index_dimension_ids: Optional[List[int]] = None):
    """ Returns a list indicating the memory layout (linearization order) of the numpy array.

    Examples:
        >>> get_layout_of_array(np.zeros([3,3,3]))
        (0, 1, 2)
Martin Bauer's avatar
Martin Bauer committed
622
623
624
625
626

    In this example the loop over the zeroth coordinate should be the outermost loop,
    followed by the first and second. Elements arr[x,y,0] and arr[x,y,1] are adjacent in memory.
    Normally constructed numpy arrays have this order, however by stride tricks or other frameworks, arrays
    with different memory layout can be created.
Martin Bauer's avatar
Martin Bauer committed
627

Martin Bauer's avatar
Martin Bauer committed
628
    The index_dimension_ids parameter leaves specifies which coordinates should not be
Martin Bauer's avatar
Martin Bauer committed
629
    """
Martin Bauer's avatar
Martin Bauer committed
630
631
    index_dimension_ids = [] if index_dimension_ids is None else index_dimension_ids
    return get_layout_from_strides(arr.strides, index_dimension_ids)
632
633


Martin Bauer's avatar
Martin Bauer committed
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
def create_numpy_array_with_layout(shape, layout, alignment=False, byte_offset=0, **kwargs):
    """Creates numpy array with given memory layout.

    Args:
        shape: shape of the resulting array
        layout: layout as tuple, where the coordinates are ordered from slow to fast
        alignment: number of bytes to align the beginning and the innermost coordinate to, or False for no alignment
        byte_offset: only used when alignment is specified, align not beginning but address at this offset
                     mostly used to align first inner cell, not ghost cells

    Example:
        >>> res = create_numpy_array_with_layout(shape=(2, 3, 4, 5), layout=(3, 2, 0, 1))
        >>> res.shape
        (2, 3, 4, 5)
        >>> get_layout_of_array(res)
        (3, 2, 0, 1)
650
651
    """
    assert set(layout) == set(range(len(shape))), "Wrong layout descriptor"
Martin Bauer's avatar
Martin Bauer committed
652
    cur_layout = list(range(len(shape)))
653
654
    swaps = []
    for i in range(len(layout)):
Martin Bauer's avatar
Martin Bauer committed
655
656
657
658
659
        if cur_layout[i] != layout[i]:
            index_to_swap_with = cur_layout.index(layout[i])
            swaps.append((i, index_to_swap_with))
            cur_layout[i], cur_layout[index_to_swap_with] = cur_layout[index_to_swap_with], cur_layout[i]
    assert tuple(cur_layout) == tuple(layout)
660
661
662
663
664

    shape = list(shape)
    for a, b in swaps:
        shape[a], shape[b] = shape[b], shape[a]

665
666
667
668
669
    if not alignment:
        res = np.empty(shape, order='c', **kwargs)
    else:
        if alignment is True:
            alignment = 8 * 4
Martin Bauer's avatar
Martin Bauer committed
670
        res = aligned_empty(shape, alignment, byte_offset=byte_offset, **kwargs)
671

672
673
674
675
676
    for a, b in reversed(swaps):
        res = res.swapaxes(a, b)
    return res


Martin Bauer's avatar
Martin Bauer committed
677
678
def spatial_layout_string_to_tuple(layout_str: str, dim: int) -> Tuple[int, ...]:
    if layout_str in ('fzyx', 'zyxf'):
679
680
        assert dim <= 3
        return tuple(reversed(range(dim)))
681

Martin Bauer's avatar
Martin Bauer committed
682
    if layout_str in ('fzyx', 'f', 'reverse_numpy', 'SoA'):
683
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
684
    elif layout_str in ('c', 'numpy', 'AoS'):
685
        return tuple(range(dim))
Martin Bauer's avatar
Martin Bauer committed
686
    raise ValueError("Unknown layout descriptor " + layout_str)
687
688


Martin Bauer's avatar
Martin Bauer committed
689
690
691
def layout_string_to_tuple(layout_str, dim):
    layout_str = layout_str.lower()
    if layout_str == 'fzyx' or layout_str == 'soa':
692
693
        assert dim <= 4
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
694
    elif layout_str == 'zyxf' or layout_str == 'aos':
695
        assert dim <= 4
Martin Bauer's avatar
Martin Bauer committed
696
        return tuple(reversed(range(dim - 1))) + (dim - 1,)
Martin Bauer's avatar
Martin Bauer committed
697
    elif layout_str == 'f' or layout_str == 'reverse_numpy':
698
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
699
    elif layout_str == 'c' or layout_str == 'numpy':
700
        return tuple(range(dim))
Martin Bauer's avatar
Martin Bauer committed
701
    raise ValueError("Unknown layout descriptor " + layout_str)
702
703


Martin Bauer's avatar
Martin Bauer committed
704
def normalize_layout(layout):
705
    """Takes a layout tuple and subtracts the minimum from all entries"""
Martin Bauer's avatar
Martin Bauer committed
706
707
    min_entry = min(layout)
    return tuple(i - min_entry for i in layout)
708
709


Martin Bauer's avatar
Martin Bauer committed
710
def compute_strides(shape, layout):
711
712
    """
    Computes strides assuming no padding exists
Martin Bauer's avatar
Martin Bauer committed
713
714
715
716
717
718
719

    Args:
        shape: shape (size) of array
        layout: layout specification as tuple

    Returns:
        strides in elements, not in bytes
720
    """
Martin Bauer's avatar
Martin Bauer committed
721
722
723
724
    dim = len(shape)
    assert len(layout) == dim
    assert len(set(layout)) == dim
    strides = [0] * dim
725
    product = 1
726
    for j in reversed(layout):
727
728
729
        strides[j] = product
        product *= shape[j]
    return tuple(strides)
Martin Bauer's avatar
Martin Bauer committed
730
731


732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
def _parse_type_description(type_description):
    if not type_description:
        return np.float64, None
    elif '[' in type_description:
        assert type_description[-1] == ']'
        type_part, size_part = type_description[:-1].split("[", )
        if not type_part:
            type_part = "float64"
        if size_part.lower()[-1] == 'd':
            size_part = int(size_part[:-1])
        else:
            size_part = tuple(int(i) for i in size_part.split(','))
    else:
        type_part, size_part = type_description, None

    dtype = np.dtype(type_part).type
    return dtype, size_part


def _parse_field_description(description):
    if '(' not in description:
        return description, ()
    assert description[-1] == ')'
    name, index_shape = description[:-1].split('(')
    index_shape = tuple(int(i) for i in index_shape.split(','))
    return name, index_shape


def _parse_description(description):
    description = description.replace(' ', '')
    if ':' in description:
        name_descr, type_descr = description.split(':')
    else:
        name_descr, type_descr = description, ''

    # correct ',' splits inside brackets
    field_names = name_descr.split(',')
    cleaned_field_names = []
    prefix = ''
    for field_name in field_names:
        full_field_name = prefix + field_name
        if '(' in full_field_name and ')' not in full_field_name:
            prefix += field_name + ','
        else:
            prefix = ''
            cleaned_field_names.append(full_field_name)

    dtype, size = _parse_type_description(type_descr)
    fields_info = tuple(_parse_field_description(fd) for fd in cleaned_field_names)
    return fields_info, dtype, size