field.py 32.5 KB
Newer Older
Martin Bauer's avatar
Martin Bauer committed
1
2
3
import hashlib
import pickle
import re
4
from enum import Enum
5
from itertools import chain
Martin Bauer's avatar
Martin Bauer committed
6
7
from typing import List, Optional, Sequence, Set, Tuple

8
9
10
import numpy as np
import sympy as sp
from sympy.core.cache import cacheit
Martin Bauer's avatar
Martin Bauer committed
11

12
from pystencils.alignedarray import aligned_empty
Martin Bauer's avatar
Martin Bauer committed
13
from pystencils.data_types import StructType, create_type
14
from pystencils.kernelparameters import FieldShapeSymbol, FieldStrideSymbol
Martin Bauer's avatar
Martin Bauer committed
15
from pystencils.stencil import direction_string_to_offset, offset_to_direction_string
Martin Bauer's avatar
Martin Bauer committed
16
from pystencils.sympyextensions import is_integer_sequence
17

18
__all__ = ['Field', 'fields', 'FieldType', 'AbstractField']
Martin Bauer's avatar
Martin Bauer committed
19

20

21
22
23
24
def fields(description=None, index_dimensions=0, layout=None, **kwargs):
    """Creates pystencils fields from a string description.

    Examples:
Martin Bauer's avatar
Martin Bauer committed
25
26
27
28
        Create a 2D scalar and vector field:
            >>> s, v = fields("s, v(2): double[2D]")
            >>> assert s.spatial_dimensions == 2 and s.index_dimensions == 0
            >>> assert (v.spatial_dimensions, v.index_dimensions, v.index_shape) == (2, 1, (2,))
29

Martin Bauer's avatar
Martin Bauer committed
30
31
32
33
        Create an integer field of shape (10, 20):
            >>> f = fields("f : int32[10, 20]")
            >>> f.has_fixed_shape, f.shape
            (True, (10, 20))
34

Martin Bauer's avatar
Martin Bauer committed
35
36
37
38
39
        Numpy arrays can be used as template for shape and data type of field:
            >>> arr_s, arr_v = np.zeros([20, 20]), np.zeros([20, 20, 2])
            >>> s, v = fields("s, v(2)", s=arr_s, v=arr_v)
            >>> assert s.index_dimensions == 0 and s.dtype.numpy_dtype == arr_s.dtype
            >>> assert v.index_shape == (2,)
40
41


Martin Bauer's avatar
Martin Bauer committed
42
43
44
45
46
47
48
49
50
51
        Format string can be left out, field names are taken from keyword arguments.
            >>> fields(f1=arr_s, f2=arr_s)
            [f1, f2]

        The keyword names ``index_dimension`` and ``layout`` have special meaning, don't use them for field names
            >>> f = fields(f=arr_v, index_dimensions=1)
            >>> assert f.index_dimensions == 1
            >>> f = fields("pdfs(19) : float32[3D]", layout='fzyx')
            >>> f.layout
            (2, 1, 0)
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    """
    result = []
    if description:
        field_descriptions, dtype, shape = _parse_description(description)
        layout = 'numpy' if layout is None else layout
        for field_name, idx_shape in field_descriptions:
            if field_name in kwargs:
                arr = kwargs[field_name]
                idx_shape_of_arr = () if not len(idx_shape) else arr.shape[-len(idx_shape):]
                assert idx_shape_of_arr == idx_shape
                f = Field.create_from_numpy_array(field_name, kwargs[field_name], index_dimensions=len(idx_shape))
            elif isinstance(shape, tuple):
                f = Field.create_fixed_size(field_name, shape + idx_shape, dtype=dtype,
                                            index_dimensions=len(idx_shape), layout=layout)
            elif isinstance(shape, int):
                f = Field.create_generic(field_name, spatial_dimensions=shape, dtype=dtype,
                                         index_shape=idx_shape, layout=layout)
            elif shape is None:
                f = Field.create_generic(field_name, spatial_dimensions=2, dtype=dtype,
                                         index_shape=idx_shape, layout=layout)
            else:
                assert False
            result.append(f)
    else:
        assert layout is None, "Layout can not be specified when creating Field from numpy array"
        for field_name, arr in kwargs.items():
            result.append(Field.create_from_numpy_array(field_name, arr, index_dimensions=index_dimensions))

    if len(result) == 0:
        return None
    elif len(result) == 1:
        return result[0]
    else:
        return result


88
89
90
91
92
93
94
95
class FieldType(Enum):
    # generic fields
    GENERIC = 0
    # index fields are currently only used for boundary handling
    # the coordinates are not the loop counters in that case, but are read from this index field
    INDEXED = 1
    # communication buffer, used for (un)packing data in communication.
    BUFFER = 2
Martin Bauer's avatar
Martin Bauer committed
96
97
98
    # unsafe fields may be accessed in an absolute fashion - the index depends on the data
    # and thus may lead to out-of-bounds accesses
    CUSTOM = 3
99
100

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
101
    def is_generic(field):
102
        assert isinstance(field, Field)
Martin Bauer's avatar
Martin Bauer committed
103
        return field.field_type == FieldType.GENERIC
104
105

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
106
    def is_indexed(field):
107
        assert isinstance(field, Field)
Martin Bauer's avatar
Martin Bauer committed
108
        return field.field_type == FieldType.INDEXED
109
110

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
111
    def is_buffer(field):
112
        assert isinstance(field, Field)
Martin Bauer's avatar
Martin Bauer committed
113
        return field.field_type == FieldType.BUFFER
114

Martin Bauer's avatar
Martin Bauer committed
115
116
117
118
119
    @staticmethod
    def is_custom(field):
        assert isinstance(field, Field)
        return field.field_type == FieldType.CUSTOM

120

121
122
123
124
125
126
127
class AbstractField:

    class AbstractAccess:
        pass


class Field(AbstractField):
128
129
130
131
    """
    With fields one can formulate stencil-like update rules on structured grids.
    This Field class knows about the dimension, memory layout (strides) and optionally about the size of an array.

Martin Bauer's avatar
Martin Bauer committed
132
    Creating Fields:
Martin Bauer's avatar
Martin Bauer committed
133
134
        The preferred method to create fields is the `fields` function.
        Alternatively one can use one of the static functions `Field.create_generic`, `Field.create_from_numpy_array`
135
        and `Field.create_fixed_size`. Don't instantiate the Field directly!
Martin Bauer's avatar
Martin Bauer committed
136
137
138
139
140
        Fields can be created with known or unknown shapes:

        1. If you want to create a kernel with fixed loop sizes i.e. the shape of the array is already known.
           This is usually the case if just-in-time compilation directly from Python is done.
           (see `Field.create_from_numpy_array`
141
        2. create a more general kernel that works for variable array sizes. This can be used to create kernels
Martin Bauer's avatar
Martin Bauer committed
142
           beforehand for a library. (see `Field.create_generic`)
143

Martin Bauer's avatar
Martin Bauer committed
144
    Dimensions and Indexing:
145
146
        A field has spatial and index dimensions, where the spatial dimensions come first.
        The interpretation is that the field has multiple cells in (usually) two or three dimensional space which are
Martin Bauer's avatar
Martin Bauer committed
147
        looped over. Additionally N values are stored per cell. In this case spatial_dimensions is two or three,
Martin Bauer's avatar
Martin Bauer committed
148
        and index_dimensions equals N. If you want to store a matrix on each point in a two dimensional grid, there
Martin Bauer's avatar
Martin Bauer committed
149
        are four dimensions, two spatial and two index dimensions: ``len(arr.shape) == spatial_dims + index_dims``
150

Martin Bauer's avatar
Martin Bauer committed
151
152
153
154
155
        The shape of the index dimension does not have to be specified. Just use the 'index_dimensions' parameter.
        However, it is good practice to define the shape, since out of bounds accesses can be directly detected in this
        case. The shape can be passed with the 'index_shape' parameter of the field creation functions.

        When accessing (indexing) a field the result is a `Field.Access` which is derived from sympy Symbol.
Martin Bauer's avatar
Martin Bauer committed
156
        First specify the spatial offsets in [], then in case index_dimension>0 the indices in ()
Martin Bauer's avatar
Martin Bauer committed
157
        e.g. ``f[-1,0,0](7)``
158

Martin Bauer's avatar
Martin Bauer committed
159
    Example using no index dimensions:
160
        >>> a = np.zeros([10, 10])
Martin Bauer's avatar
Martin Bauer committed
161
        >>> f = Field.create_from_numpy_array("f", a, index_dimensions=0)
Martin Bauer's avatar
Martin Bauer committed
162
        >>> jacobi = (f[-1,0] + f[1,0] + f[0,-1] + f[0,1]) / 4
163

Martin Bauer's avatar
Martin Bauer committed
164
    Examples for index dimensions to create LB field and implement stream pull:
Martin Bauer's avatar
Martin Bauer committed
165
        >>> from pystencils import Assignment
166
        >>> stencil = np.array([[0,0], [0,1], [0,-1]])
Martin Bauer's avatar
Martin Bauer committed
167
        >>> src, dst = fields("src(3), dst(3) : double[2D]")
168
        >>> assignments = [Assignment(dst[0,0](i), src[-offset](i)) for i, offset in enumerate(stencil)];
169
    """
170
171

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
172
173
    def create_generic(field_name, spatial_dimensions, dtype=np.float64, index_dimensions=0, layout='numpy',
                       index_shape=None, field_type=FieldType.GENERIC) -> 'Field':
174
175
176
        """
        Creates a generic field where the field size is not fixed i.e. can be called with arrays of different sizes

Martin Bauer's avatar
Martin Bauer committed
177
178
179
180
181
182
183
        Args:
            field_name: symbolic name for the field
            dtype: numpy data type of the array the kernel is called with later
            spatial_dimensions: see documentation of Field
            index_dimensions: see documentation of Field
            layout: tuple specifying the loop ordering of the spatial dimensions e.g. (2, 1, 0 ) means that
                    the outer loop loops over dimension 2, the second outer over dimension 1, and the inner loop
Martin Bauer's avatar
Martin Bauer committed
184
                    over dimension 0. Also allowed: the strings 'numpy' (0,1,..d) or 'reverse_numpy' (d, ..., 1, 0)
Martin Bauer's avatar
Martin Bauer committed
185
186
187
188
189
            index_shape: optional shape of the index dimensions i.e. maximum values allowed for each index dimension,
                        has to be a list or tuple
            field_type: besides the normal GENERIC fields, there are INDEXED fields that store indices of the domain
                        that should be iterated over, and BUFFER fields that are used to generate
                        communication packing/unpacking kernels
190
        """
191
192
193
        if index_shape is not None:
            assert index_dimensions == 0 or index_dimensions == len(index_shape)
            index_dimensions = len(index_shape)
194
        if isinstance(layout, str):
Martin Bauer's avatar
Martin Bauer committed
195
            layout = spatial_layout_string_to_tuple(layout, dim=spatial_dimensions)
196

Martin Bauer's avatar
Martin Bauer committed
197
198
        total_dimensions = spatial_dimensions + index_dimensions
        if index_shape is None or len(index_shape) == 0:
199
            shape = tuple([FieldShapeSymbol([field_name], i) for i in range(total_dimensions)])
200
        else:
201
            shape = tuple([FieldShapeSymbol([field_name], i) for i in range(spatial_dimensions)] + list(index_shape))
202

203
        strides = tuple([FieldStrideSymbol(field_name, i) for i in range(total_dimensions)])
204

Martin Bauer's avatar
Martin Bauer committed
205
206
207
        np_data_type = np.dtype(dtype)
        if np_data_type.fields is not None:
            if index_dimensions != 0:
208
209
210
211
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)

Martin Bauer's avatar
Martin Bauer committed
212
        return Field(field_name, field_type, dtype, layout, shape, strides)
213

214
    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
215
216
217
    def create_from_numpy_array(field_name: str, array: np.ndarray, index_dimensions: int = 0) -> 'Field':
        """Creates a field based on the layout, data type, and shape of a given numpy array.

218
        Kernels created for these kind of fields can only be called with arrays of the same layout, shape and type.
Martin Bauer's avatar
Martin Bauer committed
219
220
221
222
223

        Args:
            field_name: symbolic name for the field
            array: numpy array
            index_dimensions: see documentation of Field
224
        """
Martin Bauer's avatar
Martin Bauer committed
225
226
        spatial_dimensions = len(array.shape) - index_dimensions
        if spatial_dimensions < 1:
227
228
            raise ValueError("Too many index dimensions. At least one spatial dimension required")

Martin Bauer's avatar
Martin Bauer committed
229
230
231
        full_layout = get_layout_of_array(array)
        spatial_layout = tuple([i for i in full_layout if i < spatial_dimensions])
        assert len(spatial_layout) == spatial_dimensions
232

Martin Bauer's avatar
Martin Bauer committed
233
234
        strides = tuple([s // np.dtype(array.dtype).itemsize for s in array.strides])
        shape = tuple(int(s) for s in array.shape)
235

Martin Bauer's avatar
Martin Bauer committed
236
237
238
        numpy_dtype = np.dtype(array.dtype)
        if numpy_dtype.fields is not None:
            if index_dimensions != 0:
239
240
241
242
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)

Martin Bauer's avatar
Martin Bauer committed
243
        return Field(field_name, FieldType.GENERIC, array.dtype, spatial_layout, shape, strides)
244
245

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
246
    def create_fixed_size(field_name: str, shape: Tuple[int, ...], index_dimensions: int = 0,
247
                          dtype=np.float64, layout: str = 'numpy', strides: Optional[Sequence[int]] = None) -> 'Field':
248
        """
249
        Creates a field with fixed sizes i.e. can be called only with arrays of the same size and layout
250

Martin Bauer's avatar
Martin Bauer committed
251
252
253
254
255
256
257
        Args:
            field_name: symbolic name for the field
            shape: overall shape of the array
            index_dimensions: how many of the trailing dimensions are interpreted as index (as opposed to spatial)
            dtype: numpy data type of the array the kernel is called with later
            layout: full layout of array, not only spatial dimensions
            strides: strides in bytes or None to automatically compute them from shape (assuming no padding)
258
        """
Martin Bauer's avatar
Martin Bauer committed
259
260
        spatial_dimensions = len(shape) - index_dimensions
        assert spatial_dimensions >= 1
261

262
        if isinstance(layout, str):
Martin Bauer's avatar
Martin Bauer committed
263
            layout = layout_string_to_tuple(layout, spatial_dimensions + index_dimensions)
264
265

        shape = tuple(int(s) for s in shape)
266
        if strides is None:
Martin Bauer's avatar
Martin Bauer committed
267
            strides = compute_strides(shape, layout)
268
269
270
        else:
            assert len(strides) == len(shape)
            strides = tuple([s // np.dtype(dtype).itemsize for s in strides])
271

Martin Bauer's avatar
Martin Bauer committed
272
273
274
        numpy_dtype = np.dtype(dtype)
        if numpy_dtype.fields is not None:
            if index_dimensions != 0:
275
276
277
278
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)

Martin Bauer's avatar
Martin Bauer committed
279
280
281
282
        spatial_layout = list(layout)
        for i in range(spatial_dimensions, len(layout)):
            spatial_layout.remove(i)
        return Field(field_name, FieldType.GENERIC, dtype, tuple(spatial_layout), shape, strides)
283

Martin Bauer's avatar
Martin Bauer committed
284
    def __init__(self, field_name, field_type, dtype, layout, shape, strides):
285
        """Do not use directly. Use static create* methods"""
286
        self._field_name = field_name
Martin Bauer's avatar
Martin Bauer committed
287
        assert isinstance(field_type, FieldType)
288
        assert len(shape) == len(strides)
Martin Bauer's avatar
Martin Bauer committed
289
        self.field_type = field_type
Martin Bauer's avatar
Martin Bauer committed
290
        self._dtype = create_type(dtype)
Martin Bauer's avatar
Martin Bauer committed
291
        self._layout = normalize_layout(layout)
292
293
        self.shape = shape
        self.strides = strides
294
        self.latex_name = None  # type: Optional[str]
295

Martin Bauer's avatar
Martin Bauer committed
296
    def new_field_with_different_name(self, new_name):
297
298
299
300
301
        if self.has_fixed_shape:
            return Field(new_name, self.field_type, self._dtype, self._layout, self.shape, self.strides)
        else:
            return Field.create_generic(new_name, self.spatial_dimensions, self.dtype.numpy_dtype,
                                        self.index_dimensions, self._layout, self.index_shape, self.field_type)
302

303
    @property
Martin Bauer's avatar
Martin Bauer committed
304
    def spatial_dimensions(self) -> int:
305
306
307
        return len(self._layout)

    @property
Martin Bauer's avatar
Martin Bauer committed
308
    def index_dimensions(self) -> int:
309
        return len(self.shape) - len(self._layout)
310

311
312
313
314
    @property
    def ndim(self) -> int:
        return len(self.shape)

315
316
317
318
319
    @property
    def layout(self):
        return self._layout

    @property
Martin Bauer's avatar
Martin Bauer committed
320
    def name(self) -> str:
321
        return self._field_name
322
323

    @property
Martin Bauer's avatar
Martin Bauer committed
324
325
    def spatial_shape(self) -> Tuple[int, ...]:
        return self.shape[:self.spatial_dimensions]
326

327
    @property
Martin Bauer's avatar
Martin Bauer committed
328
    def has_fixed_shape(self):
Martin Bauer's avatar
Martin Bauer committed
329
        return is_integer_sequence(self.shape)
330

331
    @property
Martin Bauer's avatar
Martin Bauer committed
332
333
    def index_shape(self):
        return self.shape[self.spatial_dimensions:]
334

335
    @property
Martin Bauer's avatar
Martin Bauer committed
336
337
    def has_fixed_index_shape(self):
        return is_integer_sequence(self.index_shape)
338

339
    @property
Martin Bauer's avatar
Martin Bauer committed
340
341
    def spatial_strides(self):
        return self.strides[:self.spatial_dimensions]
342
343

    @property
Martin Bauer's avatar
Martin Bauer committed
344
345
    def index_strides(self):
        return self.strides[self.spatial_dimensions:]
346
347
348
349
350
351

    @property
    def dtype(self):
        return self._dtype

    def __repr__(self):
352
        return self._field_name
353

Martin Bauer's avatar
Martin Bauer committed
354
355
356
357
    def neighbor(self, coord_id, offset):
        offset_list = [0] * self.spatial_dimensions
        offset_list[coord_id] = offset
        return Field.Access(self, tuple(offset_list))
358

359
    def neighbors(self, stencil):
360
        return [self.__getitem__(s) for s in stencil]
361

362
    @property
Martin Bauer's avatar
Martin Bauer committed
363
364
365
    def center_vector(self):
        index_shape = self.index_shape
        if len(index_shape) == 0:
366
367
            return sp.Matrix([self.center])
        if len(index_shape) == 1:
Martin Bauer's avatar
Martin Bauer committed
368
369
            return sp.Matrix([self(i) for i in range(index_shape[0])])
        elif len(index_shape) == 2:
370
371
372
            def cb(*args):
                r = self.__call__(*args)
                return r
Martin Bauer's avatar
Martin Bauer committed
373
            return sp.Matrix(*index_shape, cb)
374

375
    @property
376
    def center(self):
Martin Bauer's avatar
Martin Bauer committed
377
        center = tuple([0] * self.spatial_dimensions)
378
379
        return Field.Access(self, center)

380
381
382
383
    def __getitem__(self, offset):
        if type(offset) is np.ndarray:
            offset = tuple(offset)
        if type(offset) is str:
Martin Bauer's avatar
Martin Bauer committed
384
            offset = tuple(direction_string_to_offset(offset, self.spatial_dimensions))
385
386
        if type(offset) is not tuple:
            offset = (offset,)
Martin Bauer's avatar
Martin Bauer committed
387
        if len(offset) != self.spatial_dimensions:
388
            raise ValueError("Wrong number of spatial indices: "
Martin Bauer's avatar
Martin Bauer committed
389
                             "Got %d, expected %d" % (len(offset), self.spatial_dimensions))
390
391
        return Field.Access(self, offset)

Martin Bauer's avatar
Martin Bauer committed
392
    def absolute_access(self, offset, index):
Martin Bauer's avatar
Martin Bauer committed
393
        assert FieldType.is_custom(self)
Martin Bauer's avatar
Martin Bauer committed
394
395
        return Field.Access(self, offset, index, is_absolute_access=True)

396
    def __call__(self, *args, **kwargs):
Martin Bauer's avatar
Martin Bauer committed
397
        center = tuple([0] * self.spatial_dimensions)
398
399
        return Field.Access(self, center)(*args, **kwargs)

400
    def hashable_contents(self):
401
402
        dth = hash(self._dtype)
        return self._layout, self.shape, self.strides, dth, self.field_type, self._field_name, self.latex_name
403

404
    def __hash__(self):
405
        return hash(self.hashable_contents())
406
407

    def __eq__(self, other):
408
409
        if not isinstance(other, Field):
            return False
410
        return self.hashable_contents() == other.hashable_contents()
411

Martin Bauer's avatar
Martin Bauer committed
412
    # noinspection PyAttributeOutsideInit,PyUnresolvedReferences
413
    class Access(sp.Symbol, AbstractField.AbstractAccess):
Martin Bauer's avatar
Martin Bauer committed
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
        """Class representing a relative access into a `Field`.

        This class behaves like a normal sympy Symbol, it is actually derived from it. One can built up
        sympy expressions using field accesses, solve for them, etc.

        Examples:
            >>> vector_field_2d = fields("v(2): double[2D]")  # create a 2D vector field
            >>> northern_neighbor_y_component = vector_field_2d[0, 1](1)
            >>> northern_neighbor_y_component
            v_N^1
            >>> central_y_component = vector_field_2d(1)
            >>> central_y_component
            v_C^1
            >>> central_y_component.get_shifted(1, 0)  # move the existing access
            v_E^1
            >>> central_y_component.at_index(0)  # change component
            v_C^0
        """
432
433
434
435
        def __new__(cls, name, *args, **kwargs):
            obj = Field.Access.__xnew_cached_(cls, name, *args, **kwargs)
            return obj

Martin Bauer's avatar
Martin Bauer committed
436
        def __new_stage2__(self, field, offsets=(0, 0, 0), idx=None, is_absolute_access=False):
Martin Bauer's avatar
Martin Bauer committed
437
            field_name = field.name
Martin Bauer's avatar
Martin Bauer committed
438
            offsets_and_index = (*offsets, *idx) if idx is not None else offsets
Martin Bauer's avatar
Martin Bauer committed
439
            constant_offsets = not any([isinstance(o, sp.Basic) and not o.is_Integer for o in offsets_and_index])
440
441

            if not idx:
Martin Bauer's avatar
Martin Bauer committed
442
                idx = tuple([0] * field.index_dimensions)
443

Martin Bauer's avatar
Martin Bauer committed
444
445
446
            if constant_offsets:
                offset_name = offset_to_direction_string(offsets)
                if field.index_dimensions == 0:
447
                    superscript = None
Martin Bauer's avatar
Martin Bauer committed
448
                elif field.index_dimensions == 1:
449
                    superscript = str(idx[0])
450
                else:
Martin Bauer's avatar
Martin Bauer committed
451
452
453
454
                    idx_str = ",".join([str(e) for e in idx])
                    superscript = idx_str
                if field.has_fixed_index_shape and not isinstance(field.dtype, StructType):
                    for i, bound in zip(idx, field.index_shape):
455
456
                        if i >= bound:
                            raise ValueError("Field index out of bounds")
457
            else:
458
                offset_name = hashlib.md5(pickle.dumps(offsets_and_index)).hexdigest()[:12]
459
                superscript = None
460

Martin Bauer's avatar
Martin Bauer committed
461
            symbol_name = "%s_%s" % (field_name, offset_name)
462
            if superscript is not None:
Martin Bauer's avatar
Martin Bauer committed
463
                symbol_name += "^" + superscript
464

Martin Bauer's avatar
Martin Bauer committed
465
            obj = super(Field.Access, self).__xnew__(self, symbol_name)
466
467
468
469
470
471
472
            obj._field = field
            obj._offsets = []
            for o in offsets:
                if isinstance(o, sp.Basic):
                    obj._offsets.append(o)
                else:
                    obj._offsets.append(int(o))
473
            obj._offsets = tuple(obj._offsets)
Martin Bauer's avatar
Martin Bauer committed
474
            obj._offsetName = offset_name
475
            obj._superscript = superscript
476
477
            obj._index = idx

Martin Bauer's avatar
Martin Bauer committed
478
479
480
481
482
483
            obj._indirect_addressing_fields = set()
            for e in chain(obj._offsets, obj._index):
                if isinstance(e, sp.Basic):
                    obj._indirect_addressing_fields.update(a.field for a in e.atoms(Field.Access))

            obj._is_absolute_access = is_absolute_access
484
485
            return obj

486
        def __getnewargs__(self):
Martin Bauer's avatar
Martin Bauer committed
487
            return self.field, self.offsets, self.index, self.is_absolute_access
488

Martin Bauer's avatar
Martin Bauer committed
489
        # noinspection SpellCheckingInspection
490
        __xnew__ = staticmethod(__new_stage2__)
Martin Bauer's avatar
Martin Bauer committed
491
        # noinspection SpellCheckingInspection
492
493
494
        __xnew_cached_ = staticmethod(cacheit(__new_stage2__))

        def __call__(self, *idx):
Martin Bauer's avatar
Martin Bauer committed
495
            if self._index != tuple([0] * self.field.index_dimensions):
496
497
498
                raise ValueError("Indexing an already indexed Field.Access")

            idx = tuple(idx)
499

Martin Bauer's avatar
Martin Bauer committed
500
            if self.field.index_dimensions == 0 and idx == (0,):
501
502
                idx = ()

Martin Bauer's avatar
Martin Bauer committed
503
            if len(idx) != self.field.index_dimensions:
504
                raise ValueError("Wrong number of indices: "
Martin Bauer's avatar
Martin Bauer committed
505
                                 "Got %d, expected %d" % (len(idx), self.field.index_dimensions))
506
507
            return Field.Access(self.field, self._offsets, idx)

Martin Bauer's avatar
Martin Bauer committed
508
509
510
        def __getitem__(self, *idx):
            return self.__call__(*idx)

Martin Bauer's avatar
Martin Bauer committed
511
512
513
514
515
        def __iter__(self):
            """This is necessary to work with parts of sympy that test if an object is iterable (e.g. simplify).
            The __getitem__ would make it iterable"""
            raise TypeError("Field access is not iterable")

516
        @property
Martin Bauer's avatar
Martin Bauer committed
517
518
        def field(self) -> 'Field':
            """Field that the Access points to"""
519
520
521
            return self._field

        @property
Martin Bauer's avatar
Martin Bauer committed
522
523
        def offsets(self) -> Tuple:
            """Spatial offset as tuple"""
524
            return self._offsets
525

526
        @property
Martin Bauer's avatar
Martin Bauer committed
527
528
        def required_ghost_layers(self) -> int:
            """Largest spatial distance that is accessed."""
529
530
531
            return int(np.max(np.abs(self._offsets)))

        @property
Martin Bauer's avatar
Martin Bauer committed
532
        def nr_of_coordinates(self):
533
534
535
            return len(self._offsets)

        @property
Martin Bauer's avatar
Martin Bauer committed
536
        def offset_name(self) -> str:
Martin Bauer's avatar
Martin Bauer committed
537
538
539
540
541
542
543
            """Spatial offset as string, East-West for x, North-South for y and Top-Bottom for z coordinate.

            Example:
                >>> f = fields("f: double[2D]")
                >>> f[1, 1].offset_name  # north-east
                'NE'
            """
544
545
546
547
            return self._offsetName

        @property
        def index(self):
Martin Bauer's avatar
Martin Bauer committed
548
            """Value of index coordinates as tuple."""
549
550
            return self._index

551
        def neighbor(self, coord_id: int, offset: int) -> 'Field.Access':
Martin Bauer's avatar
Martin Bauer committed
552
553
554
555
556
557
558
559
560
561
562
            """Returns a new Access with changed spatial coordinates.

            Args:
                coord_id: index of the coordinate to change (0 for x, 1 for y,...)
                offset: incremental change of this coordinate

            Example:
                >>> f = fields('f: [2D]')
                >>> f[0,0].neighbor(coord_id=1, offset=-1)
                f_S
            """
Martin Bauer's avatar
Martin Bauer committed
563
564
565
            offset_list = list(self.offsets)
            offset_list[coord_id] += offset
            return Field.Access(self.field, tuple(offset_list), self.index)
566

567
        def get_shifted(self, *shift) -> 'Field.Access':
Martin Bauer's avatar
Martin Bauer committed
568
569
570
571
572
573
574
            """Returns a new Access with changed spatial coordinates

            Example:
                >>> f = fields("f: [2D]")
                >>> f[0,0].get_shifted(1, 1)
                f_NE
            """
575
576
            return Field.Access(self.field, tuple(a + b for a, b in zip(shift, self.offsets)), self.index)

Martin Bauer's avatar
Martin Bauer committed
577
578
579
580
581
582
583
584
        def at_index(self, *idx_tuple) -> 'Field.Access':
            """Returns new Access with changed index.

            Example:
                >>> f = fields("f(9): [2D]")
                >>> f(0).at_index(8)
                f_C^8
            """
585
586
            return Field.Access(self.field, self.offsets, idx_tuple)

Martin Bauer's avatar
Martin Bauer committed
587
588
589
590
591
592
593
594
595
596
597
598
599
        @property
        def is_absolute_access(self) -> bool:
            """Indicates if a field access is relative to the loop counters (this is the default) or absolute"""
            return self._is_absolute_access

        @property
        def indirect_addressing_fields(self) -> Set['Field']:
            """Returns a set of fields that the access depends on.

             e.g. f[index_field[1, 0]], the outer access to f depends on index_field
             """
            return self._indirect_addressing_fields

600
        def _hashable_content(self):
601
602
            super_class_contents = super(Field.Access, self)._hashable_content()
            return (super_class_contents, self._field.hashable_contents(), *self._index, *self._offsets)
Martin Bauer's avatar
Martin Bauer committed
603

Martin Bauer's avatar
Martin Bauer committed
604
        def _latex(self, _):
605
            n = self._field.latex_name if self._field.latex_name else self._field.name
Martin Bauer's avatar
Martin Bauer committed
606
607
608
609
610
611
612
613
            offset_str = ",".join([sp.latex(o) for o in self.offsets])
            if self.is_absolute_access:
                offset_str = "\\mathbf{}".format(offset_str)
            elif self.field.spatial_dimensions > 1:
                offset_str = "({})".format(offset_str)

            if self.index and self.index != (0,):
                return "{{%s}_{%s}^{%s}}" % (n, offset_str, self.index if len(self.index) > 1 else self.index[0])
Martin Bauer's avatar
Martin Bauer committed
614
            else:
Martin Bauer's avatar
Martin Bauer committed
615
                return "{{%s}_{%s}}" % (n, offset_str)
Martin Bauer's avatar
Martin Bauer committed
616

617
618
619
620
621
622
623
624
625
626
        def __str__(self):
            n = self._field.latex_name if self._field.latex_name else self._field.name
            offset_str = ",".join([sp.latex(o) for o in self.offsets])
            if self.is_absolute_access:
                offset_str = "[abs]{}".format(offset_str)
            if self.index and self.index != (0,):
                return "%s[%s](%s)" % (n, offset_str, self.index if len(self.index) > 1 else self.index[0])
            else:
                return "%s[%s]" % (n, offset_str)

Martin Bauer's avatar
Martin Bauer committed
627

Martin Bauer's avatar
Martin Bauer committed
628
629
def get_layout_from_strides(strides: Sequence[int], index_dimension_ids: Optional[List[int]] = None):
    index_dimension_ids = [] if index_dimension_ids is None else index_dimension_ids
630
    coordinates = list(range(len(strides)))
Martin Bauer's avatar
Martin Bauer committed
631
    relevant_strides = [stride for i, stride in enumerate(strides) if i not in index_dimension_ids]
632
    result = [x for (y, x) in sorted(zip(relevant_strides, coordinates), key=lambda pair: pair[0], reverse=True)]
Martin Bauer's avatar
Martin Bauer committed
633
    return normalize_layout(result)
634
635


Martin Bauer's avatar
Martin Bauer committed
636
637
638
639
640
641
def get_layout_of_array(arr: np.ndarray, index_dimension_ids: Optional[List[int]] = None):
    """ Returns a list indicating the memory layout (linearization order) of the numpy array.

    Examples:
        >>> get_layout_of_array(np.zeros([3,3,3]))
        (0, 1, 2)
Martin Bauer's avatar
Martin Bauer committed
642
643
644
645
646

    In this example the loop over the zeroth coordinate should be the outermost loop,
    followed by the first and second. Elements arr[x,y,0] and arr[x,y,1] are adjacent in memory.
    Normally constructed numpy arrays have this order, however by stride tricks or other frameworks, arrays
    with different memory layout can be created.
Martin Bauer's avatar
Martin Bauer committed
647

Martin Bauer's avatar
Martin Bauer committed
648
    The index_dimension_ids parameter leaves specifies which coordinates should not be
Martin Bauer's avatar
Martin Bauer committed
649
    """
Martin Bauer's avatar
Martin Bauer committed
650
651
    index_dimension_ids = [] if index_dimension_ids is None else index_dimension_ids
    return get_layout_from_strides(arr.strides, index_dimension_ids)
652
653


Martin Bauer's avatar
Martin Bauer committed
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
def create_numpy_array_with_layout(shape, layout, alignment=False, byte_offset=0, **kwargs):
    """Creates numpy array with given memory layout.

    Args:
        shape: shape of the resulting array
        layout: layout as tuple, where the coordinates are ordered from slow to fast
        alignment: number of bytes to align the beginning and the innermost coordinate to, or False for no alignment
        byte_offset: only used when alignment is specified, align not beginning but address at this offset
                     mostly used to align first inner cell, not ghost cells

    Example:
        >>> res = create_numpy_array_with_layout(shape=(2, 3, 4, 5), layout=(3, 2, 0, 1))
        >>> res.shape
        (2, 3, 4, 5)
        >>> get_layout_of_array(res)
        (3, 2, 0, 1)
670
671
    """
    assert set(layout) == set(range(len(shape))), "Wrong layout descriptor"
Martin Bauer's avatar
Martin Bauer committed
672
    cur_layout = list(range(len(shape)))
673
674
    swaps = []
    for i in range(len(layout)):
Martin Bauer's avatar
Martin Bauer committed
675
676
677
678
679
        if cur_layout[i] != layout[i]:
            index_to_swap_with = cur_layout.index(layout[i])
            swaps.append((i, index_to_swap_with))
            cur_layout[i], cur_layout[index_to_swap_with] = cur_layout[index_to_swap_with], cur_layout[i]
    assert tuple(cur_layout) == tuple(layout)
680
681
682
683
684

    shape = list(shape)
    for a, b in swaps:
        shape[a], shape[b] = shape[b], shape[a]

685
686
687
688
689
    if not alignment:
        res = np.empty(shape, order='c', **kwargs)
    else:
        if alignment is True:
            alignment = 8 * 4
Martin Bauer's avatar
Martin Bauer committed
690
        res = aligned_empty(shape, alignment, byte_offset=byte_offset, **kwargs)
691

692
693
694
695
696
    for a, b in reversed(swaps):
        res = res.swapaxes(a, b)
    return res


Martin Bauer's avatar
Martin Bauer committed
697
698
def spatial_layout_string_to_tuple(layout_str: str, dim: int) -> Tuple[int, ...]:
    if layout_str in ('fzyx', 'zyxf'):
699
700
        assert dim <= 3
        return tuple(reversed(range(dim)))
701

Martin Bauer's avatar
Martin Bauer committed
702
    if layout_str in ('fzyx', 'f', 'reverse_numpy', 'SoA'):
703
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
704
    elif layout_str in ('c', 'numpy', 'AoS'):
705
        return tuple(range(dim))
Martin Bauer's avatar
Martin Bauer committed
706
    raise ValueError("Unknown layout descriptor " + layout_str)
707
708


Martin Bauer's avatar
Martin Bauer committed
709
710
711
def layout_string_to_tuple(layout_str, dim):
    layout_str = layout_str.lower()
    if layout_str == 'fzyx' or layout_str == 'soa':
712
713
        assert dim <= 4
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
714
    elif layout_str == 'zyxf' or layout_str == 'aos':
715
        assert dim <= 4
Martin Bauer's avatar
Martin Bauer committed
716
        return tuple(reversed(range(dim - 1))) + (dim - 1,)
Martin Bauer's avatar
Martin Bauer committed
717
    elif layout_str == 'f' or layout_str == 'reverse_numpy':
718
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
719
    elif layout_str == 'c' or layout_str == 'numpy':
720
        return tuple(range(dim))
Martin Bauer's avatar
Martin Bauer committed
721
    raise ValueError("Unknown layout descriptor " + layout_str)
722
723


Martin Bauer's avatar
Martin Bauer committed
724
def normalize_layout(layout):
725
    """Takes a layout tuple and subtracts the minimum from all entries"""
Martin Bauer's avatar
Martin Bauer committed
726
727
    min_entry = min(layout)
    return tuple(i - min_entry for i in layout)
728
729


Martin Bauer's avatar
Martin Bauer committed
730
def compute_strides(shape, layout):
731
732
    """
    Computes strides assuming no padding exists
Martin Bauer's avatar
Martin Bauer committed
733
734
735
736
737
738
739

    Args:
        shape: shape (size) of array
        layout: layout specification as tuple

    Returns:
        strides in elements, not in bytes
740
    """
Martin Bauer's avatar
Martin Bauer committed
741
742
743
744
    dim = len(shape)
    assert len(layout) == dim
    assert len(set(layout)) == dim
    strides = [0] * dim
745
    product = 1
746
    for j in reversed(layout):
747
748
749
        strides[j] = product
        product *= shape[j]
    return tuple(strides)
Martin Bauer's avatar
Martin Bauer committed
750
751


752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
# ---------------------------------------- Parsing of string in fields() function --------------------------------------

field_description_regex = re.compile(r"""
    \s*                 # ignore leading white spaces
    (\w+)               # identifier is a sequence of alphanumeric characters, is stored in first group
    (?:                 # optional index specification e.g. (1, 4, 2)
        \s*
        \(
            ([^\)]+)    # read everything up to closing bracket
        \)
        \s*
    )?
    \s*,?\s*             # ignore trailing white spaces and comma
""", re.VERBOSE)

type_description_regex = re.compile(r"""
    \s*
    (\w+)?       # optional dtype
    \s*
    \[
        ([^\]]+)
    \]
    \s*
""", re.VERBOSE | re.IGNORECASE)
776
777
778


def _parse_description(description):
779
780
781
    def parse_part1(d):
        result = field_description_regex.match(d)
        while result:
782
            name, index_str = result.group(1), result.group(2)
783
784
785
786
787
788
789
790
            index = tuple(int(e) for e in index_str.split(",")) if index_str else ()
            yield name, index
            d = d[result.end():]
            result = field_description_regex.match(d)

    def parse_part2(d):
        result = type_description_regex.match(d)
        if result:
791
            data_type_str, size_info = result.group(1), result.group(2).strip().lower()
792
793
794
795
796
797
798
799
800
801
802
803
804
805
            if data_type_str is None:
                data_type_str = 'float64'
            data_type_str = data_type_str.lower().strip()

            if not data_type_str:
                data_type_str = 'float64'
            if size_info.endswith('d'):
                size_info = int(size_info[:-1])
            else:
                size_info = tuple(int(e) for e in size_info.split(","))
            return data_type_str, size_info
        else:
            raise ValueError("Could not parse field description")

806
    if ':' in description:
807
        field_description, field_info = description.split(':')
808
    else:
809
810
811
812
813
        field_description, field_info = description, 'float64[2D]'

    fields_info = [e for e in parse_part1(field_description)]
    if not field_info:
        raise ValueError("Could not parse field description")
814

815
816
    data_type, size = parse_part2(field_info)
    return fields_info, data_type, size