field.py 32.5 KB
Newer Older
1
from enum import Enum
2
from itertools import chain
Martin Bauer's avatar
Martin Bauer committed
3
from typing import Tuple, Sequence, Optional, List, Set
4
5
import numpy as np
import sympy as sp
6
import re
7
from sympy.core.cache import cacheit
8
from pystencils.alignedarray import aligned_empty
Martin Bauer's avatar
Martin Bauer committed
9
from pystencils.data_types import create_type, StructType
10
from pystencils.kernelparameters import FieldShapeSymbol, FieldStrideSymbol
11
from pystencils.stencil import offset_to_direction_string, direction_string_to_offset
Martin Bauer's avatar
Martin Bauer committed
12
from pystencils.sympyextensions import is_integer_sequence
13
14
import pickle
import hashlib
15

16
__all__ = ['Field', 'fields', 'FieldType', 'AbstractField']
Martin Bauer's avatar
Martin Bauer committed
17

18

19
20
21
22
def fields(description=None, index_dimensions=0, layout=None, **kwargs):
    """Creates pystencils fields from a string description.

    Examples:
Martin Bauer's avatar
Martin Bauer committed
23
24
25
26
        Create a 2D scalar and vector field:
            >>> s, v = fields("s, v(2): double[2D]")
            >>> assert s.spatial_dimensions == 2 and s.index_dimensions == 0
            >>> assert (v.spatial_dimensions, v.index_dimensions, v.index_shape) == (2, 1, (2,))
27

Martin Bauer's avatar
Martin Bauer committed
28
29
30
31
        Create an integer field of shape (10, 20):
            >>> f = fields("f : int32[10, 20]")
            >>> f.has_fixed_shape, f.shape
            (True, (10, 20))
32

Martin Bauer's avatar
Martin Bauer committed
33
34
35
36
37
        Numpy arrays can be used as template for shape and data type of field:
            >>> arr_s, arr_v = np.zeros([20, 20]), np.zeros([20, 20, 2])
            >>> s, v = fields("s, v(2)", s=arr_s, v=arr_v)
            >>> assert s.index_dimensions == 0 and s.dtype.numpy_dtype == arr_s.dtype
            >>> assert v.index_shape == (2,)
38
39


Martin Bauer's avatar
Martin Bauer committed
40
41
42
43
44
45
46
47
48
49
        Format string can be left out, field names are taken from keyword arguments.
            >>> fields(f1=arr_s, f2=arr_s)
            [f1, f2]

        The keyword names ``index_dimension`` and ``layout`` have special meaning, don't use them for field names
            >>> f = fields(f=arr_v, index_dimensions=1)
            >>> assert f.index_dimensions == 1
            >>> f = fields("pdfs(19) : float32[3D]", layout='fzyx')
            >>> f.layout
            (2, 1, 0)
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    """
    result = []
    if description:
        field_descriptions, dtype, shape = _parse_description(description)
        layout = 'numpy' if layout is None else layout
        for field_name, idx_shape in field_descriptions:
            if field_name in kwargs:
                arr = kwargs[field_name]
                idx_shape_of_arr = () if not len(idx_shape) else arr.shape[-len(idx_shape):]
                assert idx_shape_of_arr == idx_shape
                f = Field.create_from_numpy_array(field_name, kwargs[field_name], index_dimensions=len(idx_shape))
            elif isinstance(shape, tuple):
                f = Field.create_fixed_size(field_name, shape + idx_shape, dtype=dtype,
                                            index_dimensions=len(idx_shape), layout=layout)
            elif isinstance(shape, int):
                f = Field.create_generic(field_name, spatial_dimensions=shape, dtype=dtype,
                                         index_shape=idx_shape, layout=layout)
            elif shape is None:
                f = Field.create_generic(field_name, spatial_dimensions=2, dtype=dtype,
                                         index_shape=idx_shape, layout=layout)
            else:
                assert False
            result.append(f)
    else:
        assert layout is None, "Layout can not be specified when creating Field from numpy array"
        for field_name, arr in kwargs.items():
            result.append(Field.create_from_numpy_array(field_name, arr, index_dimensions=index_dimensions))

    if len(result) == 0:
        return None
    elif len(result) == 1:
        return result[0]
    else:
        return result


86
87
88
89
90
91
92
93
class FieldType(Enum):
    # generic fields
    GENERIC = 0
    # index fields are currently only used for boundary handling
    # the coordinates are not the loop counters in that case, but are read from this index field
    INDEXED = 1
    # communication buffer, used for (un)packing data in communication.
    BUFFER = 2
Martin Bauer's avatar
Martin Bauer committed
94
95
96
    # unsafe fields may be accessed in an absolute fashion - the index depends on the data
    # and thus may lead to out-of-bounds accesses
    CUSTOM = 3
97
98

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
99
    def is_generic(field):
100
        assert isinstance(field, Field)
Martin Bauer's avatar
Martin Bauer committed
101
        return field.field_type == FieldType.GENERIC
102
103

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
104
    def is_indexed(field):
105
        assert isinstance(field, Field)
Martin Bauer's avatar
Martin Bauer committed
106
        return field.field_type == FieldType.INDEXED
107
108

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
109
    def is_buffer(field):
110
        assert isinstance(field, Field)
Martin Bauer's avatar
Martin Bauer committed
111
        return field.field_type == FieldType.BUFFER
112

Martin Bauer's avatar
Martin Bauer committed
113
114
115
116
117
    @staticmethod
    def is_custom(field):
        assert isinstance(field, Field)
        return field.field_type == FieldType.CUSTOM

118

119
120
121
122
123
124
125
class AbstractField:

    class AbstractAccess:
        pass


class Field(AbstractField):
126
127
128
129
    """
    With fields one can formulate stencil-like update rules on structured grids.
    This Field class knows about the dimension, memory layout (strides) and optionally about the size of an array.

Martin Bauer's avatar
Martin Bauer committed
130
    Creating Fields:
Martin Bauer's avatar
Martin Bauer committed
131
132
        The preferred method to create fields is the `fields` function.
        Alternatively one can use one of the static functions `Field.create_generic`, `Field.create_from_numpy_array`
133
        and `Field.create_fixed_size`. Don't instantiate the Field directly!
Martin Bauer's avatar
Martin Bauer committed
134
135
136
137
138
        Fields can be created with known or unknown shapes:

        1. If you want to create a kernel with fixed loop sizes i.e. the shape of the array is already known.
           This is usually the case if just-in-time compilation directly from Python is done.
           (see `Field.create_from_numpy_array`
139
        2. create a more general kernel that works for variable array sizes. This can be used to create kernels
Martin Bauer's avatar
Martin Bauer committed
140
           beforehand for a library. (see `Field.create_generic`)
141

Martin Bauer's avatar
Martin Bauer committed
142
    Dimensions and Indexing:
143
144
        A field has spatial and index dimensions, where the spatial dimensions come first.
        The interpretation is that the field has multiple cells in (usually) two or three dimensional space which are
Martin Bauer's avatar
Martin Bauer committed
145
        looped over. Additionally N values are stored per cell. In this case spatial_dimensions is two or three,
Martin Bauer's avatar
Martin Bauer committed
146
        and index_dimensions equals N. If you want to store a matrix on each point in a two dimensional grid, there
Martin Bauer's avatar
Martin Bauer committed
147
        are four dimensions, two spatial and two index dimensions: ``len(arr.shape) == spatial_dims + index_dims``
148

Martin Bauer's avatar
Martin Bauer committed
149
150
151
152
153
        The shape of the index dimension does not have to be specified. Just use the 'index_dimensions' parameter.
        However, it is good practice to define the shape, since out of bounds accesses can be directly detected in this
        case. The shape can be passed with the 'index_shape' parameter of the field creation functions.

        When accessing (indexing) a field the result is a `Field.Access` which is derived from sympy Symbol.
Martin Bauer's avatar
Martin Bauer committed
154
        First specify the spatial offsets in [], then in case index_dimension>0 the indices in ()
Martin Bauer's avatar
Martin Bauer committed
155
        e.g. ``f[-1,0,0](7)``
156

Martin Bauer's avatar
Martin Bauer committed
157
    Example using no index dimensions:
158
        >>> a = np.zeros([10, 10])
Martin Bauer's avatar
Martin Bauer committed
159
        >>> f = Field.create_from_numpy_array("f", a, index_dimensions=0)
Martin Bauer's avatar
Martin Bauer committed
160
        >>> jacobi = (f[-1,0] + f[1,0] + f[0,-1] + f[0,1]) / 4
161

Martin Bauer's avatar
Martin Bauer committed
162
    Examples for index dimensions to create LB field and implement stream pull:
Martin Bauer's avatar
Martin Bauer committed
163
        >>> from pystencils import Assignment
164
        >>> stencil = np.array([[0,0], [0,1], [0,-1]])
Martin Bauer's avatar
Martin Bauer committed
165
        >>> src, dst = fields("src(3), dst(3) : double[2D]")
166
        >>> assignments = [Assignment(dst[0,0](i), src[-offset](i)) for i, offset in enumerate(stencil)];
167
    """
168
169

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
170
171
    def create_generic(field_name, spatial_dimensions, dtype=np.float64, index_dimensions=0, layout='numpy',
                       index_shape=None, field_type=FieldType.GENERIC) -> 'Field':
172
173
174
        """
        Creates a generic field where the field size is not fixed i.e. can be called with arrays of different sizes

Martin Bauer's avatar
Martin Bauer committed
175
176
177
178
179
180
181
        Args:
            field_name: symbolic name for the field
            dtype: numpy data type of the array the kernel is called with later
            spatial_dimensions: see documentation of Field
            index_dimensions: see documentation of Field
            layout: tuple specifying the loop ordering of the spatial dimensions e.g. (2, 1, 0 ) means that
                    the outer loop loops over dimension 2, the second outer over dimension 1, and the inner loop
Martin Bauer's avatar
Martin Bauer committed
182
                    over dimension 0. Also allowed: the strings 'numpy' (0,1,..d) or 'reverse_numpy' (d, ..., 1, 0)
Martin Bauer's avatar
Martin Bauer committed
183
184
185
186
187
            index_shape: optional shape of the index dimensions i.e. maximum values allowed for each index dimension,
                        has to be a list or tuple
            field_type: besides the normal GENERIC fields, there are INDEXED fields that store indices of the domain
                        that should be iterated over, and BUFFER fields that are used to generate
                        communication packing/unpacking kernels
188
        """
189
190
191
        if index_shape is not None:
            assert index_dimensions == 0 or index_dimensions == len(index_shape)
            index_dimensions = len(index_shape)
192
        if isinstance(layout, str):
Martin Bauer's avatar
Martin Bauer committed
193
            layout = spatial_layout_string_to_tuple(layout, dim=spatial_dimensions)
194

Martin Bauer's avatar
Martin Bauer committed
195
196
        total_dimensions = spatial_dimensions + index_dimensions
        if index_shape is None or len(index_shape) == 0:
197
            shape = tuple([FieldShapeSymbol([field_name], i) for i in range(total_dimensions)])
198
        else:
199
            shape = tuple([FieldShapeSymbol([field_name], i) for i in range(spatial_dimensions)] + list(index_shape))
200

201
        strides = tuple([FieldStrideSymbol(field_name, i) for i in range(total_dimensions)])
202

Martin Bauer's avatar
Martin Bauer committed
203
204
205
        np_data_type = np.dtype(dtype)
        if np_data_type.fields is not None:
            if index_dimensions != 0:
206
207
208
209
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)

Martin Bauer's avatar
Martin Bauer committed
210
        return Field(field_name, field_type, dtype, layout, shape, strides)
211

212
    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
213
214
215
    def create_from_numpy_array(field_name: str, array: np.ndarray, index_dimensions: int = 0) -> 'Field':
        """Creates a field based on the layout, data type, and shape of a given numpy array.

216
        Kernels created for these kind of fields can only be called with arrays of the same layout, shape and type.
Martin Bauer's avatar
Martin Bauer committed
217
218
219
220
221

        Args:
            field_name: symbolic name for the field
            array: numpy array
            index_dimensions: see documentation of Field
222
        """
Martin Bauer's avatar
Martin Bauer committed
223
224
        spatial_dimensions = len(array.shape) - index_dimensions
        if spatial_dimensions < 1:
225
226
            raise ValueError("Too many index dimensions. At least one spatial dimension required")

Martin Bauer's avatar
Martin Bauer committed
227
228
229
        full_layout = get_layout_of_array(array)
        spatial_layout = tuple([i for i in full_layout if i < spatial_dimensions])
        assert len(spatial_layout) == spatial_dimensions
230

Martin Bauer's avatar
Martin Bauer committed
231
232
        strides = tuple([s // np.dtype(array.dtype).itemsize for s in array.strides])
        shape = tuple(int(s) for s in array.shape)
233

Martin Bauer's avatar
Martin Bauer committed
234
235
236
        numpy_dtype = np.dtype(array.dtype)
        if numpy_dtype.fields is not None:
            if index_dimensions != 0:
237
238
239
240
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)

Martin Bauer's avatar
Martin Bauer committed
241
        return Field(field_name, FieldType.GENERIC, array.dtype, spatial_layout, shape, strides)
242
243

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
244
    def create_fixed_size(field_name: str, shape: Tuple[int, ...], index_dimensions: int = 0,
245
                          dtype=np.float64, layout: str = 'numpy', strides: Optional[Sequence[int]] = None) -> 'Field':
246
        """
247
        Creates a field with fixed sizes i.e. can be called only with arrays of the same size and layout
248

Martin Bauer's avatar
Martin Bauer committed
249
250
251
252
253
254
255
        Args:
            field_name: symbolic name for the field
            shape: overall shape of the array
            index_dimensions: how many of the trailing dimensions are interpreted as index (as opposed to spatial)
            dtype: numpy data type of the array the kernel is called with later
            layout: full layout of array, not only spatial dimensions
            strides: strides in bytes or None to automatically compute them from shape (assuming no padding)
256
        """
Martin Bauer's avatar
Martin Bauer committed
257
258
        spatial_dimensions = len(shape) - index_dimensions
        assert spatial_dimensions >= 1
259

260
        if isinstance(layout, str):
Martin Bauer's avatar
Martin Bauer committed
261
            layout = layout_string_to_tuple(layout, spatial_dimensions + index_dimensions)
262
263

        shape = tuple(int(s) for s in shape)
264
        if strides is None:
Martin Bauer's avatar
Martin Bauer committed
265
            strides = compute_strides(shape, layout)
266
267
268
        else:
            assert len(strides) == len(shape)
            strides = tuple([s // np.dtype(dtype).itemsize for s in strides])
269

Martin Bauer's avatar
Martin Bauer committed
270
271
272
        numpy_dtype = np.dtype(dtype)
        if numpy_dtype.fields is not None:
            if index_dimensions != 0:
273
274
275
276
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)

Martin Bauer's avatar
Martin Bauer committed
277
278
279
280
        spatial_layout = list(layout)
        for i in range(spatial_dimensions, len(layout)):
            spatial_layout.remove(i)
        return Field(field_name, FieldType.GENERIC, dtype, tuple(spatial_layout), shape, strides)
281

Martin Bauer's avatar
Martin Bauer committed
282
    def __init__(self, field_name, field_type, dtype, layout, shape, strides):
283
        """Do not use directly. Use static create* methods"""
284
        self._field_name = field_name
Martin Bauer's avatar
Martin Bauer committed
285
        assert isinstance(field_type, FieldType)
286
        assert len(shape) == len(strides)
Martin Bauer's avatar
Martin Bauer committed
287
        self.field_type = field_type
Martin Bauer's avatar
Martin Bauer committed
288
        self._dtype = create_type(dtype)
Martin Bauer's avatar
Martin Bauer committed
289
        self._layout = normalize_layout(layout)
290
291
        self.shape = shape
        self.strides = strides
292
        self.latex_name = None  # type: Optional[str]
293

Martin Bauer's avatar
Martin Bauer committed
294
    def new_field_with_different_name(self, new_name):
295
296
297
298
299
        if self.has_fixed_shape:
            return Field(new_name, self.field_type, self._dtype, self._layout, self.shape, self.strides)
        else:
            return Field.create_generic(new_name, self.spatial_dimensions, self.dtype.numpy_dtype,
                                        self.index_dimensions, self._layout, self.index_shape, self.field_type)
300

301
    @property
Martin Bauer's avatar
Martin Bauer committed
302
    def spatial_dimensions(self) -> int:
303
304
305
        return len(self._layout)

    @property
Martin Bauer's avatar
Martin Bauer committed
306
    def index_dimensions(self) -> int:
307
        return len(self.shape) - len(self._layout)
308

309
310
311
312
    @property
    def ndim(self) -> int:
        return len(self.shape)

313
314
315
316
317
    @property
    def layout(self):
        return self._layout

    @property
Martin Bauer's avatar
Martin Bauer committed
318
    def name(self) -> str:
319
        return self._field_name
320
321

    @property
Martin Bauer's avatar
Martin Bauer committed
322
323
    def spatial_shape(self) -> Tuple[int, ...]:
        return self.shape[:self.spatial_dimensions]
324

325
    @property
Martin Bauer's avatar
Martin Bauer committed
326
    def has_fixed_shape(self):
Martin Bauer's avatar
Martin Bauer committed
327
        return is_integer_sequence(self.shape)
328

329
    @property
Martin Bauer's avatar
Martin Bauer committed
330
331
    def index_shape(self):
        return self.shape[self.spatial_dimensions:]
332

333
    @property
Martin Bauer's avatar
Martin Bauer committed
334
335
    def has_fixed_index_shape(self):
        return is_integer_sequence(self.index_shape)
336

337
    @property
Martin Bauer's avatar
Martin Bauer committed
338
339
    def spatial_strides(self):
        return self.strides[:self.spatial_dimensions]
340
341

    @property
Martin Bauer's avatar
Martin Bauer committed
342
343
    def index_strides(self):
        return self.strides[self.spatial_dimensions:]
344
345
346
347
348
349

    @property
    def dtype(self):
        return self._dtype

    def __repr__(self):
350
        return self._field_name
351

Martin Bauer's avatar
Martin Bauer committed
352
353
354
355
    def neighbor(self, coord_id, offset):
        offset_list = [0] * self.spatial_dimensions
        offset_list[coord_id] = offset
        return Field.Access(self, tuple(offset_list))
356

357
    def neighbors(self, stencil):
358
        return [self.__getitem__(s) for s in stencil]
359

360
    @property
Martin Bauer's avatar
Martin Bauer committed
361
362
363
    def center_vector(self):
        index_shape = self.index_shape
        if len(index_shape) == 0:
364
365
            return sp.Matrix([self.center])
        if len(index_shape) == 1:
Martin Bauer's avatar
Martin Bauer committed
366
367
            return sp.Matrix([self(i) for i in range(index_shape[0])])
        elif len(index_shape) == 2:
368
369
370
            def cb(*args):
                r = self.__call__(*args)
                return r
Martin Bauer's avatar
Martin Bauer committed
371
            return sp.Matrix(*index_shape, cb)
372

373
    @property
374
    def center(self):
Martin Bauer's avatar
Martin Bauer committed
375
        center = tuple([0] * self.spatial_dimensions)
376
377
        return Field.Access(self, center)

378
379
380
381
    def __getitem__(self, offset):
        if type(offset) is np.ndarray:
            offset = tuple(offset)
        if type(offset) is str:
Martin Bauer's avatar
Martin Bauer committed
382
            offset = tuple(direction_string_to_offset(offset, self.spatial_dimensions))
383
384
        if type(offset) is not tuple:
            offset = (offset,)
Martin Bauer's avatar
Martin Bauer committed
385
        if len(offset) != self.spatial_dimensions:
386
            raise ValueError("Wrong number of spatial indices: "
Martin Bauer's avatar
Martin Bauer committed
387
                             "Got %d, expected %d" % (len(offset), self.spatial_dimensions))
388
389
        return Field.Access(self, offset)

Martin Bauer's avatar
Martin Bauer committed
390
    def absolute_access(self, offset, index):
Martin Bauer's avatar
Martin Bauer committed
391
        assert FieldType.is_custom(self)
Martin Bauer's avatar
Martin Bauer committed
392
393
        return Field.Access(self, offset, index, is_absolute_access=True)

394
    def __call__(self, *args, **kwargs):
Martin Bauer's avatar
Martin Bauer committed
395
        center = tuple([0] * self.spatial_dimensions)
396
397
        return Field.Access(self, center)(*args, **kwargs)

398
    def hashable_contents(self):
399
400
        dth = hash(self._dtype)
        return self._layout, self.shape, self.strides, dth, self.field_type, self._field_name, self.latex_name
401

402
    def __hash__(self):
403
        return hash(self.hashable_contents())
404
405

    def __eq__(self, other):
406
407
        if not isinstance(other, Field):
            return False
408
        return self.hashable_contents() == other.hashable_contents()
409

Martin Bauer's avatar
Martin Bauer committed
410
    # noinspection PyAttributeOutsideInit,PyUnresolvedReferences
411
    class Access(sp.Symbol, AbstractField.AbstractAccess):
Martin Bauer's avatar
Martin Bauer committed
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
        """Class representing a relative access into a `Field`.

        This class behaves like a normal sympy Symbol, it is actually derived from it. One can built up
        sympy expressions using field accesses, solve for them, etc.

        Examples:
            >>> vector_field_2d = fields("v(2): double[2D]")  # create a 2D vector field
            >>> northern_neighbor_y_component = vector_field_2d[0, 1](1)
            >>> northern_neighbor_y_component
            v_N^1
            >>> central_y_component = vector_field_2d(1)
            >>> central_y_component
            v_C^1
            >>> central_y_component.get_shifted(1, 0)  # move the existing access
            v_E^1
            >>> central_y_component.at_index(0)  # change component
            v_C^0
        """
430
431
432
433
        def __new__(cls, name, *args, **kwargs):
            obj = Field.Access.__xnew_cached_(cls, name, *args, **kwargs)
            return obj

Martin Bauer's avatar
Martin Bauer committed
434
        def __new_stage2__(self, field, offsets=(0, 0, 0), idx=None, is_absolute_access=False):
Martin Bauer's avatar
Martin Bauer committed
435
            field_name = field.name
Martin Bauer's avatar
Martin Bauer committed
436
            offsets_and_index = (*offsets, *idx) if idx is not None else offsets
Martin Bauer's avatar
Martin Bauer committed
437
            constant_offsets = not any([isinstance(o, sp.Basic) and not o.is_Integer for o in offsets_and_index])
438
439

            if not idx:
Martin Bauer's avatar
Martin Bauer committed
440
                idx = tuple([0] * field.index_dimensions)
441

Martin Bauer's avatar
Martin Bauer committed
442
443
444
            if constant_offsets:
                offset_name = offset_to_direction_string(offsets)
                if field.index_dimensions == 0:
445
                    superscript = None
Martin Bauer's avatar
Martin Bauer committed
446
                elif field.index_dimensions == 1:
447
                    superscript = str(idx[0])
448
                else:
Martin Bauer's avatar
Martin Bauer committed
449
450
451
452
                    idx_str = ",".join([str(e) for e in idx])
                    superscript = idx_str
                if field.has_fixed_index_shape and not isinstance(field.dtype, StructType):
                    for i, bound in zip(idx, field.index_shape):
453
454
                        if i >= bound:
                            raise ValueError("Field index out of bounds")
455
            else:
456
                offset_name = hashlib.md5(pickle.dumps(offsets_and_index)).hexdigest()[:12]
457
                superscript = None
458

Martin Bauer's avatar
Martin Bauer committed
459
            symbol_name = "%s_%s" % (field_name, offset_name)
460
            if superscript is not None:
Martin Bauer's avatar
Martin Bauer committed
461
                symbol_name += "^" + superscript
462

Martin Bauer's avatar
Martin Bauer committed
463
            obj = super(Field.Access, self).__xnew__(self, symbol_name)
464
465
466
467
468
469
470
            obj._field = field
            obj._offsets = []
            for o in offsets:
                if isinstance(o, sp.Basic):
                    obj._offsets.append(o)
                else:
                    obj._offsets.append(int(o))
471
            obj._offsets = tuple(obj._offsets)
Martin Bauer's avatar
Martin Bauer committed
472
            obj._offsetName = offset_name
473
            obj._superscript = superscript
474
475
            obj._index = idx

Martin Bauer's avatar
Martin Bauer committed
476
477
478
479
480
481
            obj._indirect_addressing_fields = set()
            for e in chain(obj._offsets, obj._index):
                if isinstance(e, sp.Basic):
                    obj._indirect_addressing_fields.update(a.field for a in e.atoms(Field.Access))

            obj._is_absolute_access = is_absolute_access
482
483
            return obj

484
        def __getnewargs__(self):
Martin Bauer's avatar
Martin Bauer committed
485
            return self.field, self.offsets, self.index, self.is_absolute_access
486

Martin Bauer's avatar
Martin Bauer committed
487
        # noinspection SpellCheckingInspection
488
        __xnew__ = staticmethod(__new_stage2__)
Martin Bauer's avatar
Martin Bauer committed
489
        # noinspection SpellCheckingInspection
490
491
492
        __xnew_cached_ = staticmethod(cacheit(__new_stage2__))

        def __call__(self, *idx):
Martin Bauer's avatar
Martin Bauer committed
493
            if self._index != tuple([0] * self.field.index_dimensions):
494
495
496
                raise ValueError("Indexing an already indexed Field.Access")

            idx = tuple(idx)
497

Martin Bauer's avatar
Martin Bauer committed
498
            if self.field.index_dimensions == 0 and idx == (0,):
499
500
                idx = ()

Martin Bauer's avatar
Martin Bauer committed
501
            if len(idx) != self.field.index_dimensions:
502
                raise ValueError("Wrong number of indices: "
Martin Bauer's avatar
Martin Bauer committed
503
                                 "Got %d, expected %d" % (len(idx), self.field.index_dimensions))
504
505
            return Field.Access(self.field, self._offsets, idx)

Martin Bauer's avatar
Martin Bauer committed
506
507
508
        def __getitem__(self, *idx):
            return self.__call__(*idx)

Martin Bauer's avatar
Martin Bauer committed
509
510
511
512
513
        def __iter__(self):
            """This is necessary to work with parts of sympy that test if an object is iterable (e.g. simplify).
            The __getitem__ would make it iterable"""
            raise TypeError("Field access is not iterable")

514
        @property
Martin Bauer's avatar
Martin Bauer committed
515
516
        def field(self) -> 'Field':
            """Field that the Access points to"""
517
518
519
            return self._field

        @property
Martin Bauer's avatar
Martin Bauer committed
520
521
        def offsets(self) -> Tuple:
            """Spatial offset as tuple"""
522
            return self._offsets
523

524
        @property
Martin Bauer's avatar
Martin Bauer committed
525
526
        def required_ghost_layers(self) -> int:
            """Largest spatial distance that is accessed."""
527
528
529
            return int(np.max(np.abs(self._offsets)))

        @property
Martin Bauer's avatar
Martin Bauer committed
530
        def nr_of_coordinates(self):
531
532
533
            return len(self._offsets)

        @property
Martin Bauer's avatar
Martin Bauer committed
534
        def offset_name(self) -> str:
Martin Bauer's avatar
Martin Bauer committed
535
536
537
538
539
540
541
            """Spatial offset as string, East-West for x, North-South for y and Top-Bottom for z coordinate.

            Example:
                >>> f = fields("f: double[2D]")
                >>> f[1, 1].offset_name  # north-east
                'NE'
            """
542
543
544
545
            return self._offsetName

        @property
        def index(self):
Martin Bauer's avatar
Martin Bauer committed
546
            """Value of index coordinates as tuple."""
547
548
            return self._index

549
        def neighbor(self, coord_id: int, offset: int) -> 'Field.Access':
Martin Bauer's avatar
Martin Bauer committed
550
551
552
553
554
555
556
557
558
559
560
            """Returns a new Access with changed spatial coordinates.

            Args:
                coord_id: index of the coordinate to change (0 for x, 1 for y,...)
                offset: incremental change of this coordinate

            Example:
                >>> f = fields('f: [2D]')
                >>> f[0,0].neighbor(coord_id=1, offset=-1)
                f_S
            """
Martin Bauer's avatar
Martin Bauer committed
561
562
563
            offset_list = list(self.offsets)
            offset_list[coord_id] += offset
            return Field.Access(self.field, tuple(offset_list), self.index)
564

565
        def get_shifted(self, *shift) -> 'Field.Access':
Martin Bauer's avatar
Martin Bauer committed
566
567
568
569
570
571
572
            """Returns a new Access with changed spatial coordinates

            Example:
                >>> f = fields("f: [2D]")
                >>> f[0,0].get_shifted(1, 1)
                f_NE
            """
573
574
            return Field.Access(self.field, tuple(a + b for a, b in zip(shift, self.offsets)), self.index)

Martin Bauer's avatar
Martin Bauer committed
575
576
577
578
579
580
581
582
        def at_index(self, *idx_tuple) -> 'Field.Access':
            """Returns new Access with changed index.

            Example:
                >>> f = fields("f(9): [2D]")
                >>> f(0).at_index(8)
                f_C^8
            """
583
584
            return Field.Access(self.field, self.offsets, idx_tuple)

Martin Bauer's avatar
Martin Bauer committed
585
586
587
588
589
590
591
592
593
594
595
596
597
        @property
        def is_absolute_access(self) -> bool:
            """Indicates if a field access is relative to the loop counters (this is the default) or absolute"""
            return self._is_absolute_access

        @property
        def indirect_addressing_fields(self) -> Set['Field']:
            """Returns a set of fields that the access depends on.

             e.g. f[index_field[1, 0]], the outer access to f depends on index_field
             """
            return self._indirect_addressing_fields

598
        def _hashable_content(self):
599
600
            super_class_contents = super(Field.Access, self)._hashable_content()
            return (super_class_contents, self._field.hashable_contents(), *self._index, *self._offsets)
Martin Bauer's avatar
Martin Bauer committed
601

Martin Bauer's avatar
Martin Bauer committed
602
        def _latex(self, _):
603
            n = self._field.latex_name if self._field.latex_name else self._field.name
Martin Bauer's avatar
Martin Bauer committed
604
605
606
607
608
609
610
611
            offset_str = ",".join([sp.latex(o) for o in self.offsets])
            if self.is_absolute_access:
                offset_str = "\\mathbf{}".format(offset_str)
            elif self.field.spatial_dimensions > 1:
                offset_str = "({})".format(offset_str)

            if self.index and self.index != (0,):
                return "{{%s}_{%s}^{%s}}" % (n, offset_str, self.index if len(self.index) > 1 else self.index[0])
Martin Bauer's avatar
Martin Bauer committed
612
            else:
Martin Bauer's avatar
Martin Bauer committed
613
                return "{{%s}_{%s}}" % (n, offset_str)
Martin Bauer's avatar
Martin Bauer committed
614

615
616
617
618
619
620
621
622
623
624
        def __str__(self):
            n = self._field.latex_name if self._field.latex_name else self._field.name
            offset_str = ",".join([sp.latex(o) for o in self.offsets])
            if self.is_absolute_access:
                offset_str = "[abs]{}".format(offset_str)
            if self.index and self.index != (0,):
                return "%s[%s](%s)" % (n, offset_str, self.index if len(self.index) > 1 else self.index[0])
            else:
                return "%s[%s]" % (n, offset_str)

Martin Bauer's avatar
Martin Bauer committed
625

Martin Bauer's avatar
Martin Bauer committed
626
627
def get_layout_from_strides(strides: Sequence[int], index_dimension_ids: Optional[List[int]] = None):
    index_dimension_ids = [] if index_dimension_ids is None else index_dimension_ids
628
    coordinates = list(range(len(strides)))
Martin Bauer's avatar
Martin Bauer committed
629
    relevant_strides = [stride for i, stride in enumerate(strides) if i not in index_dimension_ids]
630
    result = [x for (y, x) in sorted(zip(relevant_strides, coordinates), key=lambda pair: pair[0], reverse=True)]
Martin Bauer's avatar
Martin Bauer committed
631
    return normalize_layout(result)
632
633


Martin Bauer's avatar
Martin Bauer committed
634
635
636
637
638
639
def get_layout_of_array(arr: np.ndarray, index_dimension_ids: Optional[List[int]] = None):
    """ Returns a list indicating the memory layout (linearization order) of the numpy array.

    Examples:
        >>> get_layout_of_array(np.zeros([3,3,3]))
        (0, 1, 2)
Martin Bauer's avatar
Martin Bauer committed
640
641
642
643
644

    In this example the loop over the zeroth coordinate should be the outermost loop,
    followed by the first and second. Elements arr[x,y,0] and arr[x,y,1] are adjacent in memory.
    Normally constructed numpy arrays have this order, however by stride tricks or other frameworks, arrays
    with different memory layout can be created.
Martin Bauer's avatar
Martin Bauer committed
645

Martin Bauer's avatar
Martin Bauer committed
646
    The index_dimension_ids parameter leaves specifies which coordinates should not be
Martin Bauer's avatar
Martin Bauer committed
647
    """
Martin Bauer's avatar
Martin Bauer committed
648
649
    index_dimension_ids = [] if index_dimension_ids is None else index_dimension_ids
    return get_layout_from_strides(arr.strides, index_dimension_ids)
650
651


Martin Bauer's avatar
Martin Bauer committed
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
def create_numpy_array_with_layout(shape, layout, alignment=False, byte_offset=0, **kwargs):
    """Creates numpy array with given memory layout.

    Args:
        shape: shape of the resulting array
        layout: layout as tuple, where the coordinates are ordered from slow to fast
        alignment: number of bytes to align the beginning and the innermost coordinate to, or False for no alignment
        byte_offset: only used when alignment is specified, align not beginning but address at this offset
                     mostly used to align first inner cell, not ghost cells

    Example:
        >>> res = create_numpy_array_with_layout(shape=(2, 3, 4, 5), layout=(3, 2, 0, 1))
        >>> res.shape
        (2, 3, 4, 5)
        >>> get_layout_of_array(res)
        (3, 2, 0, 1)
668
669
    """
    assert set(layout) == set(range(len(shape))), "Wrong layout descriptor"
Martin Bauer's avatar
Martin Bauer committed
670
    cur_layout = list(range(len(shape)))
671
672
    swaps = []
    for i in range(len(layout)):
Martin Bauer's avatar
Martin Bauer committed
673
674
675
676
677
        if cur_layout[i] != layout[i]:
            index_to_swap_with = cur_layout.index(layout[i])
            swaps.append((i, index_to_swap_with))
            cur_layout[i], cur_layout[index_to_swap_with] = cur_layout[index_to_swap_with], cur_layout[i]
    assert tuple(cur_layout) == tuple(layout)
678
679
680
681
682

    shape = list(shape)
    for a, b in swaps:
        shape[a], shape[b] = shape[b], shape[a]

683
684
685
686
687
    if not alignment:
        res = np.empty(shape, order='c', **kwargs)
    else:
        if alignment is True:
            alignment = 8 * 4
Martin Bauer's avatar
Martin Bauer committed
688
        res = aligned_empty(shape, alignment, byte_offset=byte_offset, **kwargs)
689

690
691
692
693
694
    for a, b in reversed(swaps):
        res = res.swapaxes(a, b)
    return res


Martin Bauer's avatar
Martin Bauer committed
695
696
def spatial_layout_string_to_tuple(layout_str: str, dim: int) -> Tuple[int, ...]:
    if layout_str in ('fzyx', 'zyxf'):
697
698
        assert dim <= 3
        return tuple(reversed(range(dim)))
699

Martin Bauer's avatar
Martin Bauer committed
700
    if layout_str in ('fzyx', 'f', 'reverse_numpy', 'SoA'):
701
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
702
    elif layout_str in ('c', 'numpy', 'AoS'):
703
        return tuple(range(dim))
Martin Bauer's avatar
Martin Bauer committed
704
    raise ValueError("Unknown layout descriptor " + layout_str)
705
706


Martin Bauer's avatar
Martin Bauer committed
707
708
709
def layout_string_to_tuple(layout_str, dim):
    layout_str = layout_str.lower()
    if layout_str == 'fzyx' or layout_str == 'soa':
710
711
        assert dim <= 4
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
712
    elif layout_str == 'zyxf' or layout_str == 'aos':
713
        assert dim <= 4
Martin Bauer's avatar
Martin Bauer committed
714
        return tuple(reversed(range(dim - 1))) + (dim - 1,)
Martin Bauer's avatar
Martin Bauer committed
715
    elif layout_str == 'f' or layout_str == 'reverse_numpy':
716
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
717
    elif layout_str == 'c' or layout_str == 'numpy':
718
        return tuple(range(dim))
Martin Bauer's avatar
Martin Bauer committed
719
    raise ValueError("Unknown layout descriptor " + layout_str)
720
721


Martin Bauer's avatar
Martin Bauer committed
722
def normalize_layout(layout):
723
    """Takes a layout tuple and subtracts the minimum from all entries"""
Martin Bauer's avatar
Martin Bauer committed
724
725
    min_entry = min(layout)
    return tuple(i - min_entry for i in layout)
726
727


Martin Bauer's avatar
Martin Bauer committed
728
def compute_strides(shape, layout):
729
730
    """
    Computes strides assuming no padding exists
Martin Bauer's avatar
Martin Bauer committed
731
732
733
734
735
736
737

    Args:
        shape: shape (size) of array
        layout: layout specification as tuple

    Returns:
        strides in elements, not in bytes
738
    """
Martin Bauer's avatar
Martin Bauer committed
739
740
741
742
    dim = len(shape)
    assert len(layout) == dim
    assert len(set(layout)) == dim
    strides = [0] * dim
743
    product = 1
744
    for j in reversed(layout):
745
746
747
        strides[j] = product
        product *= shape[j]
    return tuple(strides)
Martin Bauer's avatar
Martin Bauer committed
748
749


750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
# ---------------------------------------- Parsing of string in fields() function --------------------------------------

field_description_regex = re.compile(r"""
    \s*                 # ignore leading white spaces
    (\w+)               # identifier is a sequence of alphanumeric characters, is stored in first group
    (?:                 # optional index specification e.g. (1, 4, 2)
        \s*
        \(
            ([^\)]+)    # read everything up to closing bracket
        \)
        \s*
    )?
    \s*,?\s*             # ignore trailing white spaces and comma
""", re.VERBOSE)

type_description_regex = re.compile(r"""
    \s*
    (\w+)?       # optional dtype
    \s*
    \[
        ([^\]]+)
    \]
    \s*
""", re.VERBOSE | re.IGNORECASE)
774
775
776


def _parse_description(description):
777
778
779
    def parse_part1(d):
        result = field_description_regex.match(d)
        while result:
780
            name, index_str = result.group(1), result.group(2)
781
782
783
784
785
786
787
788
            index = tuple(int(e) for e in index_str.split(",")) if index_str else ()
            yield name, index
            d = d[result.end():]
            result = field_description_regex.match(d)

    def parse_part2(d):
        result = type_description_regex.match(d)
        if result:
789
            data_type_str, size_info = result.group(1), result.group(2).strip().lower()
790
791
792
793
794
795
796
797
798
799
800
801
802
803
            if data_type_str is None:
                data_type_str = 'float64'
            data_type_str = data_type_str.lower().strip()

            if not data_type_str:
                data_type_str = 'float64'
            if size_info.endswith('d'):
                size_info = int(size_info[:-1])
            else:
                size_info = tuple(int(e) for e in size_info.split(","))
            return data_type_str, size_info
        else:
            raise ValueError("Could not parse field description")

804
    if ':' in description:
805
        field_description, field_info = description.split(':')
806
    else:
807
808
809
810
811
        field_description, field_info = description, 'float64[2D]'

    fields_info = [e for e in parse_part1(field_description)]
    if not field_info:
        raise ValueError("Could not parse field description")
812

813
814
    data_type, size = parse_part2(field_info)
    return fields_info, data_type, size