field.py 24.8 KB
Newer Older
1
from enum import Enum
2
3
4
5
6
from itertools import chain
import numpy as np
import sympy as sp
from sympy.core.cache import cacheit
from sympy.tensor import IndexedBase
7
8

from pystencils.alignedarray import aligned_empty
9
from pystencils.data_types import TypedSymbol, createType, createCompositeTypeFromString, StructType
10
from pystencils.sympyextensions import isIntegerSequence
11
12


13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
class FieldType(Enum):
    # generic fields
    GENERIC = 0
    # index fields are currently only used for boundary handling
    # the coordinates are not the loop counters in that case, but are read from this index field
    INDEXED = 1
    # communication buffer, used for (un)packing data in communication.
    BUFFER = 2

    @staticmethod
    def isGeneric(field):
        assert isinstance(field, Field)
        return field.fieldType == FieldType.GENERIC

    @staticmethod
    def isIndexed(field):
        assert isinstance(field, Field)
        return field.fieldType == FieldType.INDEXED

    @staticmethod
    def isBuffer(field):
        assert isinstance(field, Field)
        return field.fieldType == FieldType.BUFFER


Michael Kuron's avatar
Michael Kuron committed
38
class Field(object):
39
40
41
42
    """
    With fields one can formulate stencil-like update rules on structured grids.
    This Field class knows about the dimension, memory layout (strides) and optionally about the size of an array.

Martin Bauer's avatar
Martin Bauer committed
43
44
45
46
    Creating Fields:

        To create a field use one of the static create* members. There are two options:

47
        1. create a kernel with fixed loop sizes i.e. the shape of the array is already known. This is usually the
Martin Bauer's avatar
Martin Bauer committed
48
           case if just-in-time compilation directly from Python is done. (see :func:`Field.createFromNumpyArray`)
49
        2. create a more general kernel that works for variable array sizes. This can be used to create kernels
Martin Bauer's avatar
Martin Bauer committed
50
           beforehand for a library. (see :func:`Field.createGeneric`)
51
52
53
54
55
56

    Dimensions:
        A field has spatial and index dimensions, where the spatial dimensions come first.
        The interpretation is that the field has multiple cells in (usually) two or three dimensional space which are
        looped over. Additionally  N values are stored per cell. In this case spatialDimensions is two or three,
        and indexDimensions equals N. If you want to store a matrix on each point in a two dimensional grid, there
Martin Bauer's avatar
Martin Bauer committed
57
        are four dimensions, two spatial and two index dimensions: ``len(arr.shape) == spatialDims + indexDims``
58
59
60
61

    Indexing:
        When accessing (indexing) a field the result is a FieldAccess which is derived from sympy Symbol.
        First specify the spatial offsets in [], then in case indexDimension>0 the indices in ()
Martin Bauer's avatar
Martin Bauer committed
62
        e.g. ``f[-1,0,0](7)``
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

    Example without index dimensions:
        >>> a = np.zeros([10, 10])
        >>> f = Field.createFromNumpyArray("f", a, indexDimensions=0)
        >>> jacobi = ( f[-1,0] + f[1,0] + f[0,-1] + f[0,1] ) / 4

    Example with index dimensions: LBM D2Q9 stream pull
        >>> stencil = np.array([[0,0], [0,1], [0,-1]])
        >>> src = Field.createGeneric("src", spatialDimensions=2, indexDimensions=1)
        >>> dst = Field.createGeneric("dst", spatialDimensions=2, indexDimensions=1)
        >>> for i, offset in enumerate(stencil):
        ...     sp.Eq(dst[0,0](i), src[-offset](i))
        Eq(dst_C^0, src_C^0)
        Eq(dst_C^1, src_S^1)
        Eq(dst_C^2, src_N^2)
    """
79
80

    @staticmethod
81
    def createGeneric(fieldName, spatialDimensions, dtype=np.float64, indexDimensions=0, layout='numpy',
82
                      indexShape=None, fieldType=FieldType.GENERIC):
83
84
85
86
87
88
89
90
91
92
        """
        Creates a generic field where the field size is not fixed i.e. can be called with arrays of different sizes

        :param fieldName: symbolic name for the field
        :param dtype: numpy data type of the array the kernel is called with later
        :param spatialDimensions: see documentation of Field
        :param indexDimensions: see documentation of Field
        :param layout: tuple specifying the loop ordering of the spatial dimensions e.g. (2, 1, 0 ) means that
                       the outer loop loops over dimension 2, the second outer over dimension 1, and the inner loop
                       over dimension 0. Also allowed: the strings 'numpy' (0,1,..d) or 'reverseNumpy' (d, ..., 1, 0)
93
94
        :param indexShape: optional shape of the index dimensions i.e. maximum values allowed for each index dimension,
                           has to be a list or tuple
95
        """
96
        if isinstance(layout, str):
97
            layout = spatialLayoutStringToTuple(layout, dim=spatialDimensions)
98
99
100
        shapeSymbol = IndexedBase(TypedSymbol(Field.SHAPE_PREFIX + fieldName, Field.SHAPE_DTYPE), shape=(1,))
        strideSymbol = IndexedBase(TypedSymbol(Field.STRIDE_PREFIX + fieldName, Field.STRIDE_DTYPE), shape=(1,))
        totalDimensions = spatialDimensions + indexDimensions
101
102
103
104
105
        if indexShape is None or len(indexShape) == 0:
            shape = tuple([shapeSymbol[i] for i in range(totalDimensions)])
        else:
            shape = tuple([shapeSymbol[i] for i in range(spatialDimensions)] + list(indexShape))

106
        strides = tuple([strideSymbol[i] for i in range(totalDimensions)])
107
108
109
110
111
112
113
114

        npDataType = np.dtype(dtype)
        if npDataType.fields is not None:
            if indexDimensions != 0:
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)

115
        return Field(fieldName, fieldType, dtype, layout, shape, strides)
116

117
118
119
120
121
122
123
124
125
126
127
128
129
    @staticmethod
    def createFromNumpyArray(fieldName, npArray, indexDimensions=0):
        """
        Creates a field based on the layout, data type, and shape of a given numpy array.
        Kernels created for these kind of fields can only be called with arrays of the same layout, shape and type.
        :param fieldName: symbolic name for the field
        :param npArray: numpy array
        :param indexDimensions: see documentation of Field
        """
        spatialDimensions = len(npArray.shape) - indexDimensions
        if spatialDimensions < 1:
            raise ValueError("Too many index dimensions. At least one spatial dimension required")

130
        fullLayout = getLayoutOfArray(npArray)
131
132
133
134
        spatialLayout = tuple([i for i in fullLayout if i < spatialDimensions])
        assert len(spatialLayout) == spatialDimensions

        strides = tuple([s // np.dtype(npArray.dtype).itemsize for s in npArray.strides])
135
        shape = tuple(int(s) for s in npArray.shape)
136

137
138
139
140
141
142
143
        npDataType = np.dtype(npArray.dtype)
        if npDataType.fields is not None:
            if indexDimensions != 0:
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)

144
        return Field(fieldName, FieldType.GENERIC, npArray.dtype, spatialLayout, shape, strides)
145
146

    @staticmethod
147
    def createFixedSize(fieldName, shape, indexDimensions=0, dtype=np.float64, layout='numpy', strides=None):
148
        """
149
        Creates a field with fixed sizes i.e. can be called only with arrays of the same size and layout
150

151
        :param fieldName: symbolic name for the field
152
153
        :param shape: overall shape of the array
        :param indexDimensions: how many of the trailing dimensions are interpreted as index (as opposed to spatial)
154
        :param dtype: numpy data type of the array the kernel is called with later
155
        :param layout: full layout of array, not only spatial dimensions
156
        :param strides: strides in bytes or None to automatically compute them from shape (assuming no padding)
157
        """
158
159
160
        spatialDimensions = len(shape) - indexDimensions
        assert spatialDimensions >= 1

161
162
        if isinstance(layout, str):
            layout = layoutStringToTuple(layout, spatialDimensions + indexDimensions)
163
164

        shape = tuple(int(s) for s in shape)
165
166
167
168
169
        if strides is None:
            strides = computeStrides(shape, layout)
        else:
            assert len(strides) == len(shape)
            strides = tuple([s // np.dtype(dtype).itemsize for s in strides])
170
171
172
173
174
175
176
177

        npDataType = np.dtype(dtype)
        if npDataType.fields is not None:
            if indexDimensions != 0:
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)

178
179
180
        spatialLayout = list(layout)
        for i in range(spatialDimensions, len(layout)):
            spatialLayout.remove(i)
181
        return Field(fieldName, FieldType.GENERIC, dtype, tuple(spatialLayout), shape, strides)
182

183
    def __init__(self, fieldName, fieldType, dtype, layout, shape, strides):
184
185
        """Do not use directly. Use static create* methods"""
        self._fieldName = fieldName
186
187
        assert isinstance(fieldType, FieldType)
        self.fieldType = fieldType
188
        self._dtype = createType(dtype)
189
        self._layout = normalizeLayout(layout)
190
191
        self.shape = shape
        self.strides = strides
Martin Bauer's avatar
Martin Bauer committed
192
        self.latexName = None
193

194
    def newFieldWithDifferentName(self, newName):
195
        return Field(newName, self.fieldType, self._dtype, self._layout, self.shape, self.strides)
196

197
198
199
200
201
202
    @property
    def spatialDimensions(self):
        return len(self._layout)

    @property
    def indexDimensions(self):
203
        return len(self.shape) - len(self._layout)
204
205
206
207
208
209
210
211
212
213
214

    @property
    def layout(self):
        return self._layout

    @property
    def name(self):
        return self._fieldName

    @property
    def spatialShape(self):
215
        return self.shape[:self.spatialDimensions]
216

217
218
219
220
    @property
    def indexShape(self):
        return self.shape[self.spatialDimensions:]

221
222
    @property
    def hasFixedShape(self):
223
        return isIntegerSequence(self.shape)
224

225
226
    @property
    def indexShape(self):
227
        return self.shape[self.spatialDimensions:]
228

229
230
231
232
    @property
    def hasFixedIndexShape(self):
        return isIntegerSequence(self.indexShape)

233
234
    @property
    def spatialStrides(self):
235
        return self.strides[:self.spatialDimensions]
236
237
238

    @property
    def indexStrides(self):
239
        return self.strides[self.spatialDimensions:]
240
241
242
243
244
245
246
247

    @property
    def dtype(self):
        return self._dtype

    def __repr__(self):
        return self._fieldName

248
249
250
251
252
    def neighbor(self, coordId, offset):
        offsetList = [0] * self.spatialDimensions
        offsetList[coordId] = offset
        return Field.Access(self, tuple(offsetList))

253
    def neighbors(self, stencil):
254
        return [self.__getitem__(s) for s in stencil]
255

256
257
258
259
260
261
262
263
264
265
266
267
268
    @property
    def vecCenter(self):
        indexShape = self.indexShape
        if len(indexShape) == 0:
            return self.center
        elif len(indexShape) == 1:
            return sp.Matrix([self(i) for i in range(indexShape[0])])
        elif len(indexShape) == 2:
            def cb(*args):
                r = self.__call__(*args)
                return r
            return sp.Matrix(*indexShape, cb)

269
    @property
270
271
272
273
    def center(self):
        center = tuple([0] * self.spatialDimensions)
        return Field.Access(self, center)

274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
    def __getitem__(self, offset):
        if type(offset) is np.ndarray:
            offset = tuple(offset)
        if type(offset) is str:
            offset = tuple(directionStringToOffset(offset, self.spatialDimensions))
        if type(offset) is not tuple:
            offset = (offset,)
        if len(offset) != self.spatialDimensions:
            raise ValueError("Wrong number of spatial indices: "
                             "Got %d, expected %d" % (len(offset), self.spatialDimensions))
        return Field.Access(self, offset)

    def __call__(self, *args, **kwargs):
        center = tuple([0]*self.spatialDimensions)
        return Field.Access(self, center)(*args, **kwargs)

    def __hash__(self):
291
        return hash((self._layout, self.shape, self.strides, self._dtype, self.fieldType, self._fieldName))
292
293

    def __eq__(self, other):
294
295
        selfTuple = (self.shape, self.strides, self.name, self.dtype, self.fieldType)
        otherTuple = (other.shape, other.strides, other.name, other.dtype, other.fieldType)
296
297
        return selfTuple == otherTuple

298

299
300
301
    PREFIX = "f"
    STRIDE_PREFIX = PREFIX + "stride_"
    SHAPE_PREFIX = PREFIX + "shape_"
Martin Bauer's avatar
Martin Bauer committed
302
303
    STRIDE_DTYPE = createCompositeTypeFromString("const int *")
    SHAPE_DTYPE = createCompositeTypeFromString("const int *")
304
    DATA_PREFIX = PREFIX + "d_"
305
306
307
308
309
310
311
312
313

    class Access(sp.Symbol):
        def __new__(cls, name, *args, **kwargs):
            obj = Field.Access.__xnew_cached_(cls, name, *args, **kwargs)
            return obj

        def __new_stage2__(self, field, offsets=(0, 0, 0), idx=None):
            fieldName = field.name
            offsetsAndIndex = chain(offsets, idx) if idx is not None else offsets
314
            constantOffsets = not any([isinstance(o, sp.Basic) and not o.is_Integer for o in offsetsAndIndex])
315
316
317
318
319
320
321

            if not idx:
                idx = tuple([0] * field.indexDimensions)

            if constantOffsets:
                offsetName = offsetToDirectionString(offsets)
                if field.indexDimensions == 0:
322
                    superscript = None
323
                elif field.indexDimensions == 1:
324
                    superscript = str(idx[0])
325
326
                else:
                    idxStr = ",".join([str(e) for e in idx])
327
                    superscript = idxStr
328
329
330
331
                if field.hasFixedIndexShape and not isinstance(field.dtype, StructType):
                    for i, bound in zip(idx, field.indexShape):
                        if i >= bound:
                            raise ValueError("Field index out of bounds")
332
333
            else:
                offsetName = "%0.10X" % (abs(hash(tuple(offsetsAndIndex))))
334
                superscript = None
335

336
337
338
339
340
            symbolName = "%s_%s" % (fieldName, offsetName)
            if superscript is not None:
                symbolName += "^" + superscript

            obj = super(Field.Access, self).__xnew__(self, symbolName)
341
342
343
344
345
346
347
348
            obj._field = field
            obj._offsets = []
            for o in offsets:
                if isinstance(o, sp.Basic):
                    obj._offsets.append(o)
                else:
                    obj._offsets.append(int(o))
            obj._offsetName = offsetName
349
            obj._superscript = superscript
350
351
352
353
            obj._index = idx

            return obj

354
        def __getnewargs__(self):
355
            return self.field, self.offsets, self.index
356

357
358
359
360
361
362
363
364
        __xnew__ = staticmethod(__new_stage2__)
        __xnew_cached_ = staticmethod(cacheit(__new_stage2__))

        def __call__(self, *idx):
            if self._index != tuple([0]*self.field.indexDimensions):
                raise ValueError("Indexing an already indexed Field.Access")

            idx = tuple(idx)
365
366
367
368
369

            if self.field.indexDimensions == 0 and idx == (0,):
                idx = ()

            if len(idx) != self.field.indexDimensions:
370
371
372
373
                raise ValueError("Wrong number of indices: "
                                 "Got %d, expected %d" % (len(idx), self.field.indexDimensions))
            return Field.Access(self.field, self._offsets, idx)

Martin Bauer's avatar
Martin Bauer committed
374
375
376
        def __getitem__(self, *idx):
            return self.__call__(*idx)

Martin Bauer's avatar
Martin Bauer committed
377
378
379
380
381
        def __iter__(self):
            """This is necessary to work with parts of sympy that test if an object is iterable (e.g. simplify).
            The __getitem__ would make it iterable"""
            raise TypeError("Field access is not iterable")

382
383
384
385
386
387
388
389
        @property
        def field(self):
            return self._field

        @property
        def offsets(self):
            return self._offsets

390
391
392
393
        @offsets.setter
        def offsets(self, value):
            self._offsets = value

394
395
396
397
398
399
400
401
402
403
404
405
        @property
        def requiredGhostLayers(self):
            return int(np.max(np.abs(self._offsets)))

        @property
        def nrOfCoordinates(self):
            return len(self._offsets)

        @property
        def offsetName(self):
            return self._offsetName

406
        def _latex(self, arg):
Martin Bauer's avatar
Martin Bauer committed
407
            n = self._field.latexName if self._field.latexName else self._field.name
408
            if self._superscript:
Martin Bauer's avatar
Martin Bauer committed
409
                return "{{%s}_{%s}^{%s}}" % (n, self._offsetName, self._superscript)
410
            else:
Martin Bauer's avatar
Martin Bauer committed
411
                return "{{%s}_{%s}}" % (n, self._offsetName)
412

413
414
415
416
        @property
        def index(self):
            return self._index

417
418
419
        def getNeighbor(self, *offsets):
            return Field.Access(self.field, offsets, self.index)

420
421
422
423
424
        def neighbor(self, coordId, offset):
            offsetList = list(self.offsets)
            offsetList[coordId] += offset
            return Field.Access(self.field, tuple(offsetList), self.index)

425
426
427
        def getShifted(self, *shift):
            return Field.Access(self.field, tuple(a + b for a, b in zip(shift, self.offsets)), self.index)

428
429
        def _hashable_content(self):
            superClassContents = list(super(Field.Access, self)._hashable_content())
Martin Bauer's avatar
Martin Bauer committed
430
            t = tuple(superClassContents + [hash(self._field), self._index] + self._offsets)
431
            return t
Martin Bauer's avatar
Martin Bauer committed
432
433
434
435
436
437
438
439
440


def extractCommonSubexpressions(equations):
    """
    Uses sympy to find common subexpressions in equations and returns
    them in a topologically sorted order, ready for evaluation.
    Usually called before list of equations is passed to :func:`createKernel`
    """
    replacements, newEq = sp.cse(equations)
Martin Bauer's avatar
Martin Bauer committed
441
442
443
444
445
    # Workaround for older sympy versions: here subexpressions (temporary = True) are extracted
    # which leads to problems in Piecewise functions which have to a default case indicated by True
    symbolsEqualToTrue = {r[0]: True for r in replacements if r[1] is sp.true}

    replacementEqs = [sp.Eq(*r) for r in replacements if r[1] is not sp.true]
Martin Bauer's avatar
Martin Bauer committed
446
447
    equations = replacementEqs + newEq
    topologicallySortedPairs = sp.cse_main.reps_toposort([[e.lhs, e.rhs] for e in equations])
Martin Bauer's avatar
Martin Bauer committed
448
    equations = [sp.Eq(a[0], a[1].subs(symbolsEqualToTrue)) for a in topologicallySortedPairs]
Martin Bauer's avatar
Martin Bauer committed
449
450
451
    return equations


452
453
454
455
456
457
458
def getLayoutFromStrides(strides, indexDimensionIds=[]):
    coordinates = list(range(len(strides)))
    relevantStrides = [stride for i, stride in enumerate(strides) if i not in indexDimensionIds]
    result = [x for (y, x) in sorted(zip(relevantStrides, coordinates), key=lambda pair: pair[0], reverse=True)]
    return normalizeLayout(result)


459
def getLayoutOfArray(arr, indexDimensionIds=[]):
Martin Bauer's avatar
Martin Bauer committed
460
461
462
    """
    Returns a list indicating the memory layout (linearization order) of the numpy array.
    Example:
463
    >>> getLayoutOfArray(np.zeros([3,3,3]))
Martin Bauer's avatar
Martin Bauer committed
464
    (0, 1, 2)
Martin Bauer's avatar
Martin Bauer committed
465
466
467
468
469

    In this example the loop over the zeroth coordinate should be the outermost loop,
    followed by the first and second. Elements arr[x,y,0] and arr[x,y,1] are adjacent in memory.
    Normally constructed numpy arrays have this order, however by stride tricks or other frameworks, arrays
    with different memory layout can be created.
Martin Bauer's avatar
Martin Bauer committed
470
471

    The indexDimensionIds parameter leaves specifies which coordinates should not be
Martin Bauer's avatar
Martin Bauer committed
472
    """
473
    return getLayoutFromStrides(arr.strides, indexDimensionIds)
474
475


476
def createNumpyArrayWithLayout(shape, layout, alignment=False, byteOffset=0, **kwargs):
477
478
479
480
    """
    Creates a numpy array with
    :param shape: shape of the resulting array
    :param layout: layout as tuple, where the coordinates are ordered from slow to fast
481
482
483
    :param alignment: number of bytes to align the beginning and the innermost coordinate to, or False for no alignment
    :param byteOffset: only used when alignment is specified, align not beginning but address at this offset
                       mostly used to align first inner cell, not ghost cells
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
    >>> res = createNumpyArrayWithLayout(shape=(2, 3, 4, 5), layout=(3, 2, 0, 1))
    >>> res.shape
    (2, 3, 4, 5)
    >>> getLayoutOfArray(res)
    (3, 2, 0, 1)
    """
    assert set(layout) == set(range(len(shape))), "Wrong layout descriptor"
    currentLayout = list(range(len(shape)))
    swaps = []
    for i in range(len(layout)):
        if currentLayout[i] != layout[i]:
            indexToSwapWith = currentLayout.index(layout[i])
            swaps.append((i, indexToSwapWith))
            currentLayout[i], currentLayout[indexToSwapWith] = currentLayout[indexToSwapWith], currentLayout[i]
    assert tuple(currentLayout) == tuple(layout)

    shape = list(shape)
    for a, b in swaps:
        shape[a], shape[b] = shape[b], shape[a]

504
505
506
507
508
    if not alignment:
        res = np.empty(shape, order='c', **kwargs)
    else:
        if alignment is True:
            alignment = 8 * 4
Martin Bauer's avatar
Martin Bauer committed
509
        res = aligned_empty(shape, alignment, byteOffset=byteOffset, **kwargs)
510

511
512
513
514
515
    for a, b in reversed(swaps):
        res = res.swapaxes(a, b)
    return res


516
517
518
519
def spatialLayoutStringToTuple(layoutStr, dim):
    if layoutStr in ('fzyx', 'zyxf'):
        assert dim <= 3
        return tuple(reversed(range(dim)))
520

Martin Bauer's avatar
Martin Bauer committed
521
    if layoutStr in ('fzyx', 'f', 'reverseNumpy', 'SoA'):
522
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
523
    elif layoutStr in ('c', 'numpy', 'AoS'):
524
        return tuple(range(dim))
525
526
527
528
    raise ValueError("Unknown layout descriptor " + layoutStr)


def layoutStringToTuple(layoutStr, dim):
529
530
    layoutStr = layoutStr.lower()
    if layoutStr == 'fzyx' or layoutStr == 'soa':
531
532
        assert dim <= 4
        return tuple(reversed(range(dim)))
533
    elif layoutStr == 'zyxf' or layoutStr == 'aos':
534
535
        assert dim <= 4
        return tuple(reversed(range(dim - 1))) + (dim-1,)
Martin Bauer's avatar
Martin Bauer committed
536
    elif layoutStr == 'f' or layoutStr == 'reversenumpy':
537
538
539
        return tuple(reversed(range(dim)))
    elif layoutStr == 'c' or layoutStr == 'numpy':
        return tuple(range(dim))
540
541
542
    raise ValueError("Unknown layout descriptor " + layoutStr)


543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
def normalizeLayout(layout):
    """Takes a layout tuple and subtracts the minimum from all entries"""
    minEntry = min(layout)
    return tuple(i - minEntry for i in layout)


def computeStrides(shape, layout):
    """
    Computes strides assuming no padding exists
    :param shape: shape (size) of array
    :param layout: layout specification as tuple
    :return: strides in elements, not in bytes
    """
    N = len(shape)
    assert len(layout) == N
    assert len(set(layout)) == N
    strides = [0] * N
    product = 1
561
    for j in reversed(layout):
562
563
564
        strides[j] = product
        product *= shape[j]
    return tuple(strides)
Martin Bauer's avatar
Martin Bauer committed
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657


def offsetComponentToDirectionString(coordinateId, value):
    """
    Translates numerical offset to string notation.
    x offsets are labeled with east 'E' and 'W',
    y offsets with north 'N' and 'S' and
    z offsets with top 'T' and bottom 'B'
    If the absolute value of the offset is bigger than 1, this number is prefixed.
    :param coordinateId: integer 0, 1 or 2 standing for x,y and z
    :param value: integer offset

    Example:
    >>> offsetComponentToDirectionString(0, 1)
    'E'
    >>> offsetComponentToDirectionString(1, 2)
    '2N'
    """
    nameComponents = (('W', 'E'),  # west, east
                      ('S', 'N'),  # south, north
                      ('B', 'T'),  # bottom, top
                      )
    if value == 0:
        result = ""
    elif value < 0:
        result = nameComponents[coordinateId][0]
    else:
        result = nameComponents[coordinateId][1]
    if abs(value) > 1:
        result = "%d%s" % (abs(value), result)
    return result


def offsetToDirectionString(offsetTuple):
    """
    Translates numerical offset to string notation.
    For details see :func:`offsetComponentToDirectionString`
    :param offsetTuple: 3-tuple with x,y,z offset

    Example:
    >>> offsetToDirectionString([1, -1, 0])
    'SE'
    >>> offsetToDirectionString(([-3, 0, -2]))
    '2B3W'
    """
    names = ["", "", ""]
    for i in range(len(offsetTuple)):
        names[i] = offsetComponentToDirectionString(i, offsetTuple[i])
    name = "".join(reversed(names))
    if name == "":
        name = "C"
    return name


def directionStringToOffset(directionStr, dim=3):
    """
    Reverse mapping of :func:`offsetToDirectionString`
    :param directionStr: string representation of offset
    :param dim: dimension of offset, i.e the length of the returned list

    >>> directionStringToOffset('NW', dim=3)
    array([-1,  1,  0])
    >>> directionStringToOffset('NW', dim=2)
    array([-1,  1])
    >>> directionStringToOffset(offsetToDirectionString([3,-2,1]))
    array([ 3, -2,  1])
    """
    offsetMap = {
        'C': np.array([0, 0, 0]),

        'W': np.array([-1, 0, 0]),
        'E': np.array([1, 0, 0]),

        'S': np.array([0, -1, 0]),
        'N': np.array([0, 1, 0]),

        'B': np.array([0, 0, -1]),
        'T': np.array([0, 0, 1]),
    }
    offset = np.array([0, 0, 0])

    while len(directionStr) > 0:
        factor = 1
        firstNonDigit = 0
        while directionStr[firstNonDigit].isdigit():
            firstNonDigit += 1
        if firstNonDigit > 0:
            factor = int(directionStr[:firstNonDigit])
            directionStr = directionStr[firstNonDigit:]
        curOffset = offsetMap[directionStr[0]]
        offset += factor * curOffset
        directionStr = directionStr[1:]
    return offset[:dim]
658
659
660


if __name__ == '__main__':
661
662
    f = Field.createGeneric('f', spatialDimensions=2, indexShape=(2,4))
    f(2, 0)
663
664
665
    fa = f[0, 1](4) ** 2
    print(fa)
    print(sp.latex(fa))