field.py 35.6 KB
Newer Older
1
import functools
Martin Bauer's avatar
Martin Bauer committed
2
import hashlib
3
import operator
Martin Bauer's avatar
Martin Bauer committed
4
5
import pickle
import re
6
from enum import Enum
7
from itertools import chain
Martin Bauer's avatar
Martin Bauer committed
8
9
from typing import List, Optional, Sequence, Set, Tuple

10
11
12
import numpy as np
import sympy as sp
from sympy.core.cache import cacheit
Martin Bauer's avatar
Martin Bauer committed
13

14
import pystencils
15
from pystencils.alignedarray import aligned_empty
16
from pystencils.data_types import StructType, TypedSymbol, create_type
17
from pystencils.kernelparameters import FieldShapeSymbol, FieldStrideSymbol
Martin Bauer's avatar
Martin Bauer committed
18
from pystencils.stencil import direction_string_to_offset, offset_to_direction_string
Martin Bauer's avatar
Martin Bauer committed
19
from pystencils.sympyextensions import is_integer_sequence
20

21
__all__ = ['Field', 'fields', 'FieldType', 'AbstractField']
Martin Bauer's avatar
Martin Bauer committed
22

23

24
25
26
27
def fields(description=None, index_dimensions=0, layout=None, **kwargs):
    """Creates pystencils fields from a string description.

    Examples:
Martin Bauer's avatar
Martin Bauer committed
28
29
30
31
        Create a 2D scalar and vector field:
            >>> s, v = fields("s, v(2): double[2D]")
            >>> assert s.spatial_dimensions == 2 and s.index_dimensions == 0
            >>> assert (v.spatial_dimensions, v.index_dimensions, v.index_shape) == (2, 1, (2,))
32

Martin Bauer's avatar
Martin Bauer committed
33
34
35
36
        Create an integer field of shape (10, 20):
            >>> f = fields("f : int32[10, 20]")
            >>> f.has_fixed_shape, f.shape
            (True, (10, 20))
37

Martin Bauer's avatar
Martin Bauer committed
38
39
40
41
42
        Numpy arrays can be used as template for shape and data type of field:
            >>> arr_s, arr_v = np.zeros([20, 20]), np.zeros([20, 20, 2])
            >>> s, v = fields("s, v(2)", s=arr_s, v=arr_v)
            >>> assert s.index_dimensions == 0 and s.dtype.numpy_dtype == arr_s.dtype
            >>> assert v.index_shape == (2,)
43

Martin Bauer's avatar
Martin Bauer committed
44
45
46
47
48
49
50
51
52
53
        Format string can be left out, field names are taken from keyword arguments.
            >>> fields(f1=arr_s, f2=arr_s)
            [f1, f2]

        The keyword names ``index_dimension`` and ``layout`` have special meaning, don't use them for field names
            >>> f = fields(f=arr_v, index_dimensions=1)
            >>> assert f.index_dimensions == 1
            >>> f = fields("pdfs(19) : float32[3D]", layout='fzyx')
            >>> f.layout
            (2, 1, 0)
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    """
    result = []
    if description:
        field_descriptions, dtype, shape = _parse_description(description)
        layout = 'numpy' if layout is None else layout
        for field_name, idx_shape in field_descriptions:
            if field_name in kwargs:
                arr = kwargs[field_name]
                idx_shape_of_arr = () if not len(idx_shape) else arr.shape[-len(idx_shape):]
                assert idx_shape_of_arr == idx_shape
                f = Field.create_from_numpy_array(field_name, kwargs[field_name], index_dimensions=len(idx_shape))
            elif isinstance(shape, tuple):
                f = Field.create_fixed_size(field_name, shape + idx_shape, dtype=dtype,
                                            index_dimensions=len(idx_shape), layout=layout)
            elif isinstance(shape, int):
                f = Field.create_generic(field_name, spatial_dimensions=shape, dtype=dtype,
                                         index_shape=idx_shape, layout=layout)
            elif shape is None:
                f = Field.create_generic(field_name, spatial_dimensions=2, dtype=dtype,
                                         index_shape=idx_shape, layout=layout)
            else:
                assert False
            result.append(f)
    else:
        assert layout is None, "Layout can not be specified when creating Field from numpy array"
        for field_name, arr in kwargs.items():
            result.append(Field.create_from_numpy_array(field_name, arr, index_dimensions=index_dimensions))

    if len(result) == 0:
        return None
    elif len(result) == 1:
        return result[0]
    else:
        return result


90
91
92
93
94
95
96
97
class FieldType(Enum):
    # generic fields
    GENERIC = 0
    # index fields are currently only used for boundary handling
    # the coordinates are not the loop counters in that case, but are read from this index field
    INDEXED = 1
    # communication buffer, used for (un)packing data in communication.
    BUFFER = 2
Martin Bauer's avatar
Martin Bauer committed
98
99
100
    # unsafe fields may be accessed in an absolute fashion - the index depends on the data
    # and thus may lead to out-of-bounds accesses
    CUSTOM = 3
101
102

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
103
    def is_generic(field):
104
        assert isinstance(field, Field)
Martin Bauer's avatar
Martin Bauer committed
105
        return field.field_type == FieldType.GENERIC
106
107

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
108
    def is_indexed(field):
109
        assert isinstance(field, Field)
Martin Bauer's avatar
Martin Bauer committed
110
        return field.field_type == FieldType.INDEXED
111
112

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
113
    def is_buffer(field):
114
        assert isinstance(field, Field)
Martin Bauer's avatar
Martin Bauer committed
115
        return field.field_type == FieldType.BUFFER
116

Martin Bauer's avatar
Martin Bauer committed
117
118
119
120
121
    @staticmethod
    def is_custom(field):
        assert isinstance(field, Field)
        return field.field_type == FieldType.CUSTOM

122

123
124
125
126
127
128
129
class AbstractField:

    class AbstractAccess:
        pass


class Field(AbstractField):
130
131
132
133
    """
    With fields one can formulate stencil-like update rules on structured grids.
    This Field class knows about the dimension, memory layout (strides) and optionally about the size of an array.

Martin Bauer's avatar
Martin Bauer committed
134
    Creating Fields:
Martin Bauer's avatar
Martin Bauer committed
135
136
        The preferred method to create fields is the `fields` function.
        Alternatively one can use one of the static functions `Field.create_generic`, `Field.create_from_numpy_array`
137
        and `Field.create_fixed_size`. Don't instantiate the Field directly!
Martin Bauer's avatar
Martin Bauer committed
138
139
140
141
142
        Fields can be created with known or unknown shapes:

        1. If you want to create a kernel with fixed loop sizes i.e. the shape of the array is already known.
           This is usually the case if just-in-time compilation directly from Python is done.
           (see `Field.create_from_numpy_array`
143
        2. create a more general kernel that works for variable array sizes. This can be used to create kernels
Martin Bauer's avatar
Martin Bauer committed
144
           beforehand for a library. (see `Field.create_generic`)
145

Martin Bauer's avatar
Martin Bauer committed
146
    Dimensions and Indexing:
147
148
        A field has spatial and index dimensions, where the spatial dimensions come first.
        The interpretation is that the field has multiple cells in (usually) two or three dimensional space which are
Martin Bauer's avatar
Martin Bauer committed
149
        looped over. Additionally N values are stored per cell. In this case spatial_dimensions is two or three,
Martin Bauer's avatar
Martin Bauer committed
150
        and index_dimensions equals N. If you want to store a matrix on each point in a two dimensional grid, there
Martin Bauer's avatar
Martin Bauer committed
151
        are four dimensions, two spatial and two index dimensions: ``len(arr.shape) == spatial_dims + index_dims``
152

Martin Bauer's avatar
Martin Bauer committed
153
154
155
156
157
        The shape of the index dimension does not have to be specified. Just use the 'index_dimensions' parameter.
        However, it is good practice to define the shape, since out of bounds accesses can be directly detected in this
        case. The shape can be passed with the 'index_shape' parameter of the field creation functions.

        When accessing (indexing) a field the result is a `Field.Access` which is derived from sympy Symbol.
Martin Bauer's avatar
Martin Bauer committed
158
        First specify the spatial offsets in [], then in case index_dimension>0 the indices in ()
Martin Bauer's avatar
Martin Bauer committed
159
        e.g. ``f[-1,0,0](7)``
160

Martin Bauer's avatar
Martin Bauer committed
161
    Example using no index dimensions:
162
        >>> a = np.zeros([10, 10])
Martin Bauer's avatar
Martin Bauer committed
163
        >>> f = Field.create_from_numpy_array("f", a, index_dimensions=0)
Martin Bauer's avatar
Martin Bauer committed
164
        >>> jacobi = (f[-1,0] + f[1,0] + f[0,-1] + f[0,1]) / 4
165

Martin Bauer's avatar
Martin Bauer committed
166
    Examples for index dimensions to create LB field and implement stream pull:
Martin Bauer's avatar
Martin Bauer committed
167
        >>> from pystencils import Assignment
168
        >>> stencil = np.array([[0,0], [0,1], [0,-1]])
Martin Bauer's avatar
Martin Bauer committed
169
        >>> src, dst = fields("src(3), dst(3) : double[2D]")
170
        >>> assignments = [Assignment(dst[0,0](i), src[-offset](i)) for i, offset in enumerate(stencil)];
171
    """
172
173

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
174
175
    def create_generic(field_name, spatial_dimensions, dtype=np.float64, index_dimensions=0, layout='numpy',
                       index_shape=None, field_type=FieldType.GENERIC) -> 'Field':
176
177
178
        """
        Creates a generic field where the field size is not fixed i.e. can be called with arrays of different sizes

Martin Bauer's avatar
Martin Bauer committed
179
180
181
182
183
184
185
        Args:
            field_name: symbolic name for the field
            dtype: numpy data type of the array the kernel is called with later
            spatial_dimensions: see documentation of Field
            index_dimensions: see documentation of Field
            layout: tuple specifying the loop ordering of the spatial dimensions e.g. (2, 1, 0 ) means that
                    the outer loop loops over dimension 2, the second outer over dimension 1, and the inner loop
Martin Bauer's avatar
Martin Bauer committed
186
                    over dimension 0. Also allowed: the strings 'numpy' (0,1,..d) or 'reverse_numpy' (d, ..., 1, 0)
Martin Bauer's avatar
Martin Bauer committed
187
188
189
190
191
            index_shape: optional shape of the index dimensions i.e. maximum values allowed for each index dimension,
                        has to be a list or tuple
            field_type: besides the normal GENERIC fields, there are INDEXED fields that store indices of the domain
                        that should be iterated over, and BUFFER fields that are used to generate
                        communication packing/unpacking kernels
192
        """
193
194
195
        if index_shape is not None:
            assert index_dimensions == 0 or index_dimensions == len(index_shape)
            index_dimensions = len(index_shape)
196
        if isinstance(layout, str):
Martin Bauer's avatar
Martin Bauer committed
197
            layout = spatial_layout_string_to_tuple(layout, dim=spatial_dimensions)
198

Martin Bauer's avatar
Martin Bauer committed
199
200
        total_dimensions = spatial_dimensions + index_dimensions
        if index_shape is None or len(index_shape) == 0:
201
            shape = tuple([FieldShapeSymbol([field_name], i) for i in range(total_dimensions)])
202
        else:
203
            shape = tuple([FieldShapeSymbol([field_name], i) for i in range(spatial_dimensions)] + list(index_shape))
204

205
        strides = tuple([FieldStrideSymbol(field_name, i) for i in range(total_dimensions)])
206

Martin Bauer's avatar
Martin Bauer committed
207
208
209
        np_data_type = np.dtype(dtype)
        if np_data_type.fields is not None:
            if index_dimensions != 0:
210
211
212
213
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)

Martin Bauer's avatar
Martin Bauer committed
214
        return Field(field_name, field_type, dtype, layout, shape, strides)
215

216
    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
217
218
219
    def create_from_numpy_array(field_name: str, array: np.ndarray, index_dimensions: int = 0) -> 'Field':
        """Creates a field based on the layout, data type, and shape of a given numpy array.

220
        Kernels created for these kind of fields can only be called with arrays of the same layout, shape and type.
Martin Bauer's avatar
Martin Bauer committed
221
222
223
224
225

        Args:
            field_name: symbolic name for the field
            array: numpy array
            index_dimensions: see documentation of Field
226
        """
Martin Bauer's avatar
Martin Bauer committed
227
228
        spatial_dimensions = len(array.shape) - index_dimensions
        if spatial_dimensions < 1:
229
230
            raise ValueError("Too many index dimensions. At least one spatial dimension required")

Martin Bauer's avatar
Martin Bauer committed
231
232
233
        full_layout = get_layout_of_array(array)
        spatial_layout = tuple([i for i in full_layout if i < spatial_dimensions])
        assert len(spatial_layout) == spatial_dimensions
234

Martin Bauer's avatar
Martin Bauer committed
235
236
        strides = tuple([s // np.dtype(array.dtype).itemsize for s in array.strides])
        shape = tuple(int(s) for s in array.shape)
237

Martin Bauer's avatar
Martin Bauer committed
238
239
240
        numpy_dtype = np.dtype(array.dtype)
        if numpy_dtype.fields is not None:
            if index_dimensions != 0:
241
242
243
244
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)

Martin Bauer's avatar
Martin Bauer committed
245
        return Field(field_name, FieldType.GENERIC, array.dtype, spatial_layout, shape, strides)
246
247

    @staticmethod
Martin Bauer's avatar
Martin Bauer committed
248
    def create_fixed_size(field_name: str, shape: Tuple[int, ...], index_dimensions: int = 0,
249
                          dtype=np.float64, layout: str = 'numpy', strides: Optional[Sequence[int]] = None) -> 'Field':
250
        """
251
        Creates a field with fixed sizes i.e. can be called only with arrays of the same size and layout
252

Martin Bauer's avatar
Martin Bauer committed
253
254
255
256
257
258
259
        Args:
            field_name: symbolic name for the field
            shape: overall shape of the array
            index_dimensions: how many of the trailing dimensions are interpreted as index (as opposed to spatial)
            dtype: numpy data type of the array the kernel is called with later
            layout: full layout of array, not only spatial dimensions
            strides: strides in bytes or None to automatically compute them from shape (assuming no padding)
260
        """
Martin Bauer's avatar
Martin Bauer committed
261
262
        spatial_dimensions = len(shape) - index_dimensions
        assert spatial_dimensions >= 1
263

264
        if isinstance(layout, str):
Martin Bauer's avatar
Martin Bauer committed
265
            layout = layout_string_to_tuple(layout, spatial_dimensions + index_dimensions)
266
267

        shape = tuple(int(s) for s in shape)
268
        if strides is None:
Martin Bauer's avatar
Martin Bauer committed
269
            strides = compute_strides(shape, layout)
270
271
272
        else:
            assert len(strides) == len(shape)
            strides = tuple([s // np.dtype(dtype).itemsize for s in strides])
273

Martin Bauer's avatar
Martin Bauer committed
274
275
276
        numpy_dtype = np.dtype(dtype)
        if numpy_dtype.fields is not None:
            if index_dimensions != 0:
277
278
279
280
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)

Martin Bauer's avatar
Martin Bauer committed
281
282
283
284
        spatial_layout = list(layout)
        for i in range(spatial_dimensions, len(layout)):
            spatial_layout.remove(i)
        return Field(field_name, FieldType.GENERIC, dtype, tuple(spatial_layout), shape, strides)
285

Martin Bauer's avatar
Martin Bauer committed
286
    def __init__(self, field_name, field_type, dtype, layout, shape, strides):
287
        """Do not use directly. Use static create* methods"""
288
        self._field_name = field_name
Martin Bauer's avatar
Martin Bauer committed
289
        assert isinstance(field_type, FieldType)
290
        assert len(shape) == len(strides)
Martin Bauer's avatar
Martin Bauer committed
291
        self.field_type = field_type
Martin Bauer's avatar
Martin Bauer committed
292
        self._dtype = create_type(dtype)
Martin Bauer's avatar
Martin Bauer committed
293
        self._layout = normalize_layout(layout)
294
295
        self.shape = shape
        self.strides = strides
296
        self.latex_name = None  # type: Optional[str]
297
298
299
300
        self.coordinate_origin = sp.Matrix(tuple(
            0 for _ in range(self.spatial_dimensions)
        ))  # type: tuple[float,sp.Symbol]
        self.coordinate_transform = sp.eye(self.spatial_dimensions)
301

Martin Bauer's avatar
Martin Bauer committed
302
    def new_field_with_different_name(self, new_name):
303
304
305
306
307
        if self.has_fixed_shape:
            return Field(new_name, self.field_type, self._dtype, self._layout, self.shape, self.strides)
        else:
            return Field.create_generic(new_name, self.spatial_dimensions, self.dtype.numpy_dtype,
                                        self.index_dimensions, self._layout, self.index_shape, self.field_type)
308

309
    @property
Martin Bauer's avatar
Martin Bauer committed
310
    def spatial_dimensions(self) -> int:
311
312
313
        return len(self._layout)

    @property
Martin Bauer's avatar
Martin Bauer committed
314
    def index_dimensions(self) -> int:
315
        return len(self.shape) - len(self._layout)
316

317
318
319
320
    @property
    def ndim(self) -> int:
        return len(self.shape)

321
322
323
    def values_per_cell(self) -> int:
        return functools.reduce(operator.mul, self.index_shape, 1)

324
325
326
327
328
    @property
    def layout(self):
        return self._layout

    @property
Martin Bauer's avatar
Martin Bauer committed
329
    def name(self) -> str:
330
        return self._field_name
331
332

    @property
Martin Bauer's avatar
Martin Bauer committed
333
334
    def spatial_shape(self) -> Tuple[int, ...]:
        return self.shape[:self.spatial_dimensions]
335

336
    @property
Martin Bauer's avatar
Martin Bauer committed
337
    def has_fixed_shape(self):
Martin Bauer's avatar
Martin Bauer committed
338
        return is_integer_sequence(self.shape)
339

340
    @property
Martin Bauer's avatar
Martin Bauer committed
341
342
    def index_shape(self):
        return self.shape[self.spatial_dimensions:]
343

344
    @property
Martin Bauer's avatar
Martin Bauer committed
345
346
    def has_fixed_index_shape(self):
        return is_integer_sequence(self.index_shape)
347

348
    @property
Martin Bauer's avatar
Martin Bauer committed
349
350
    def spatial_strides(self):
        return self.strides[:self.spatial_dimensions]
351
352

    @property
Martin Bauer's avatar
Martin Bauer committed
353
354
    def index_strides(self):
        return self.strides[self.spatial_dimensions:]
355
356
357
358
359
360

    @property
    def dtype(self):
        return self._dtype

    def __repr__(self):
361
        return self._field_name
362

Martin Bauer's avatar
Martin Bauer committed
363
364
365
366
    def neighbor(self, coord_id, offset):
        offset_list = [0] * self.spatial_dimensions
        offset_list[coord_id] = offset
        return Field.Access(self, tuple(offset_list))
367

368
    def neighbors(self, stencil):
369
        return [self.__getitem__(s) for s in stencil]
370

371
    @property
Martin Bauer's avatar
Martin Bauer committed
372
373
374
    def center_vector(self):
        index_shape = self.index_shape
        if len(index_shape) == 0:
375
376
            return sp.Matrix([self.center])
        if len(index_shape) == 1:
Martin Bauer's avatar
Martin Bauer committed
377
378
            return sp.Matrix([self(i) for i in range(index_shape[0])])
        elif len(index_shape) == 2:
379
380
381
            def cb(*args):
                r = self.__call__(*args)
                return r
Martin Bauer's avatar
Martin Bauer committed
382
            return sp.Matrix(*index_shape, cb)
383

384
    @property
385
    def center(self):
Martin Bauer's avatar
Martin Bauer committed
386
        center = tuple([0] * self.spatial_dimensions)
387
388
        return Field.Access(self, center)

389
390
391
392
    def __getitem__(self, offset):
        if type(offset) is np.ndarray:
            offset = tuple(offset)
        if type(offset) is str:
Martin Bauer's avatar
Martin Bauer committed
393
            offset = tuple(direction_string_to_offset(offset, self.spatial_dimensions))
394
395
        if type(offset) is not tuple:
            offset = (offset,)
Martin Bauer's avatar
Martin Bauer committed
396
        if len(offset) != self.spatial_dimensions:
397
            raise ValueError("Wrong number of spatial indices: "
Martin Bauer's avatar
Martin Bauer committed
398
                             "Got %d, expected %d" % (len(offset), self.spatial_dimensions))
399
400
        return Field.Access(self, offset)

Martin Bauer's avatar
Martin Bauer committed
401
    def absolute_access(self, offset, index):
Martin Bauer's avatar
Martin Bauer committed
402
        assert FieldType.is_custom(self)
Martin Bauer's avatar
Martin Bauer committed
403
404
        return Field.Access(self, offset, index, is_absolute_access=True)

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
    def interpolated_access(self,
                            offset: Tuple,
                            interpolation_mode='linear',
                            address_mode='BORDER',
                            allow_textures=True):
        """Provides access to field values at non-integer positions

        ``interpolated_access`` is similar to :func:`Field.absolute_access` except that
        it allows non-integer offsets and automatic handling of out-of-bound accesses.

        :param offset:              Tuple of spatial coordinates (can be floats)
        :param interpolation_mode:  One of :class:`pystencils.interpolation_astnodes.InterpolationMode`
        :param address_mode:        How boundaries are handled can be 'border', 'wrap', 'mirror', 'clamp'
        :param allow_textures:      Allow implementation by texture accesses on GPUs
        """
        from pystencils.interpolation_astnodes import Interpolator
        return Interpolator(self,
                            interpolation_mode,
                            address_mode,
                            allow_textures=allow_textures).at(offset)

426
    def __call__(self, *args, **kwargs):
Martin Bauer's avatar
Martin Bauer committed
427
        center = tuple([0] * self.spatial_dimensions)
428
429
        return Field.Access(self, center)(*args, **kwargs)

430
    def hashable_contents(self):
431
432
        dth = hash(self._dtype)
        return self._layout, self.shape, self.strides, dth, self.field_type, self._field_name, self.latex_name
433

434
    def __hash__(self):
435
        return hash(self.hashable_contents())
436
437

    def __eq__(self, other):
438
439
        if not isinstance(other, Field):
            return False
440
        return self.hashable_contents() == other.hashable_contents()
441

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
    @property
    def physical_coordinates(self):
        return self.coordinate_transform @ (self.coordinate_origin + pystencils.x_vector(self.spatial_dimensions))

    @property
    def physical_coordinates_staggered(self):
        return self.coordinate_transform @ \
            (self.coordinate_origin + pystencils.x_staggered_vector(self.spatial_dimensions))

    def index_to_physical(self, index_coordinates, staggered=False):
        if staggered:
            index_coordinates = sp.Matrix([i + 0.5 for i in index_coordinates])
        return self.coordinate_transform @ (self.coordinate_origin + index_coordinates)

    def physical_to_index(self, physical_coordinates, staggered=False):
        rtn = self.coordinate_transform.inv() @ physical_coordinates - self.coordinate_origin
        if staggered:
            rtn = sp.Matrix([i - 0.5 for i in rtn])

        return rtn

    def index_to_staggered_physical_coordinates(self, symbol_vector):
        symbol_vector += sp.Matrix([0.5] * self.spatial_dimensions)
        return self.create_physical_coordinates(symbol_vector)

    def set_coordinate_origin_to_field_center(self):
        self.coordinate_origin = -sp.Matrix([i / 2 for i in self.spatial_shape])

Martin Bauer's avatar
Martin Bauer committed
470
    # noinspection PyAttributeOutsideInit,PyUnresolvedReferences
471
    class Access(TypedSymbol, AbstractField.AbstractAccess):
Martin Bauer's avatar
Martin Bauer committed
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
        """Class representing a relative access into a `Field`.

        This class behaves like a normal sympy Symbol, it is actually derived from it. One can built up
        sympy expressions using field accesses, solve for them, etc.

        Examples:
            >>> vector_field_2d = fields("v(2): double[2D]")  # create a 2D vector field
            >>> northern_neighbor_y_component = vector_field_2d[0, 1](1)
            >>> northern_neighbor_y_component
            v_N^1
            >>> central_y_component = vector_field_2d(1)
            >>> central_y_component
            v_C^1
            >>> central_y_component.get_shifted(1, 0)  # move the existing access
            v_E^1
            >>> central_y_component.at_index(0)  # change component
            v_C^0
        """
490

491
492
493
494
        def __new__(cls, name, *args, **kwargs):
            obj = Field.Access.__xnew_cached_(cls, name, *args, **kwargs)
            return obj

495
        def __new_stage2__(self, field, offsets=(0, 0, 0), idx=None, is_absolute_access=False, dtype=None):
Martin Bauer's avatar
Martin Bauer committed
496
            field_name = field.name
Martin Bauer's avatar
Martin Bauer committed
497
            offsets_and_index = (*offsets, *idx) if idx is not None else offsets
Martin Bauer's avatar
Martin Bauer committed
498
            constant_offsets = not any([isinstance(o, sp.Basic) and not o.is_Integer for o in offsets_and_index])
499
500

            if not idx:
Martin Bauer's avatar
Martin Bauer committed
501
                idx = tuple([0] * field.index_dimensions)
502

Martin Bauer's avatar
Martin Bauer committed
503
504
505
            if constant_offsets:
                offset_name = offset_to_direction_string(offsets)
                if field.index_dimensions == 0:
506
                    superscript = None
Martin Bauer's avatar
Martin Bauer committed
507
                elif field.index_dimensions == 1:
508
                    superscript = str(idx[0])
509
                else:
Martin Bauer's avatar
Martin Bauer committed
510
511
512
513
                    idx_str = ",".join([str(e) for e in idx])
                    superscript = idx_str
                if field.has_fixed_index_shape and not isinstance(field.dtype, StructType):
                    for i, bound in zip(idx, field.index_shape):
514
515
                        if i >= bound:
                            raise ValueError("Field index out of bounds")
516
            else:
517
                offset_name = hashlib.md5(pickle.dumps(offsets_and_index)).hexdigest()[:12]
518
                superscript = None
519

Martin Bauer's avatar
Martin Bauer committed
520
            symbol_name = "%s_%s" % (field_name, offset_name)
521
            if superscript is not None:
Martin Bauer's avatar
Martin Bauer committed
522
                symbol_name += "^" + superscript
523

524
            obj = super(Field.Access, self).__xnew__(self, symbol_name, field.dtype)
525
526
527
528
529
530
531
            obj._field = field
            obj._offsets = []
            for o in offsets:
                if isinstance(o, sp.Basic):
                    obj._offsets.append(o)
                else:
                    obj._offsets.append(int(o))
532
            obj._offsets = tuple(obj._offsets)
Martin Bauer's avatar
Martin Bauer committed
533
            obj._offsetName = offset_name
534
            obj._superscript = superscript
535
536
            obj._index = idx

Martin Bauer's avatar
Martin Bauer committed
537
538
539
540
541
542
            obj._indirect_addressing_fields = set()
            for e in chain(obj._offsets, obj._index):
                if isinstance(e, sp.Basic):
                    obj._indirect_addressing_fields.update(a.field for a in e.atoms(Field.Access))

            obj._is_absolute_access = is_absolute_access
543
544
            return obj

545
        def __getnewargs__(self):
546
            return self.field, self.offsets, self.index, self.is_absolute_access, self.dtype
547

Martin Bauer's avatar
Martin Bauer committed
548
        # noinspection SpellCheckingInspection
549
        __xnew__ = staticmethod(__new_stage2__)
Martin Bauer's avatar
Martin Bauer committed
550
        # noinspection SpellCheckingInspection
551
552
553
        __xnew_cached_ = staticmethod(cacheit(__new_stage2__))

        def __call__(self, *idx):
Martin Bauer's avatar
Martin Bauer committed
554
            if self._index != tuple([0] * self.field.index_dimensions):
555
556
557
                raise ValueError("Indexing an already indexed Field.Access")

            idx = tuple(idx)
558

Martin Bauer's avatar
Martin Bauer committed
559
            if self.field.index_dimensions == 0 and idx == (0,):
560
561
                idx = ()

Martin Bauer's avatar
Martin Bauer committed
562
            if len(idx) != self.field.index_dimensions:
563
                raise ValueError("Wrong number of indices: "
Martin Bauer's avatar
Martin Bauer committed
564
                                 "Got %d, expected %d" % (len(idx), self.field.index_dimensions))
565
            return Field.Access(self.field, self._offsets, idx, dtype=self.dtype)
566

Martin Bauer's avatar
Martin Bauer committed
567
568
569
        def __getitem__(self, *idx):
            return self.__call__(*idx)

Martin Bauer's avatar
Martin Bauer committed
570
571
572
573
574
        def __iter__(self):
            """This is necessary to work with parts of sympy that test if an object is iterable (e.g. simplify).
            The __getitem__ would make it iterable"""
            raise TypeError("Field access is not iterable")

575
        @property
Martin Bauer's avatar
Martin Bauer committed
576
577
        def field(self) -> 'Field':
            """Field that the Access points to"""
578
579
580
            return self._field

        @property
Martin Bauer's avatar
Martin Bauer committed
581
582
        def offsets(self) -> Tuple:
            """Spatial offset as tuple"""
583
            return self._offsets
584

585
        @property
Martin Bauer's avatar
Martin Bauer committed
586
587
        def required_ghost_layers(self) -> int:
            """Largest spatial distance that is accessed."""
588
589
590
            return int(np.max(np.abs(self._offsets)))

        @property
Martin Bauer's avatar
Martin Bauer committed
591
        def nr_of_coordinates(self):
592
593
594
            return len(self._offsets)

        @property
Martin Bauer's avatar
Martin Bauer committed
595
        def offset_name(self) -> str:
Martin Bauer's avatar
Martin Bauer committed
596
597
598
599
600
601
602
            """Spatial offset as string, East-West for x, North-South for y and Top-Bottom for z coordinate.

            Example:
                >>> f = fields("f: double[2D]")
                >>> f[1, 1].offset_name  # north-east
                'NE'
            """
603
604
605
606
            return self._offsetName

        @property
        def index(self):
Martin Bauer's avatar
Martin Bauer committed
607
            """Value of index coordinates as tuple."""
608
609
            return self._index

610
        def neighbor(self, coord_id: int, offset: int) -> 'Field.Access':
Martin Bauer's avatar
Martin Bauer committed
611
612
613
614
615
616
617
618
619
620
621
            """Returns a new Access with changed spatial coordinates.

            Args:
                coord_id: index of the coordinate to change (0 for x, 1 for y,...)
                offset: incremental change of this coordinate

            Example:
                >>> f = fields('f: [2D]')
                >>> f[0,0].neighbor(coord_id=1, offset=-1)
                f_S
            """
Martin Bauer's avatar
Martin Bauer committed
622
623
            offset_list = list(self.offsets)
            offset_list[coord_id] += offset
624
            return Field.Access(self.field, tuple(offset_list), self.index, dtype=self.dtype)
625

626
        def get_shifted(self, *shift) -> 'Field.Access':
Martin Bauer's avatar
Martin Bauer committed
627
628
629
630
631
632
633
            """Returns a new Access with changed spatial coordinates

            Example:
                >>> f = fields("f: [2D]")
                >>> f[0,0].get_shifted(1, 1)
                f_NE
            """
634
635
636
637
            return Field.Access(self.field,
                                tuple(a + b for a, b in zip(shift, self.offsets)),
                                self.index,
                                dtype=self.dtype)
638

Martin Bauer's avatar
Martin Bauer committed
639
640
641
642
643
644
645
646
        def at_index(self, *idx_tuple) -> 'Field.Access':
            """Returns new Access with changed index.

            Example:
                >>> f = fields("f(9): [2D]")
                >>> f(0).at_index(8)
                f_C^8
            """
647
            return Field.Access(self.field, self.offsets, idx_tuple, dtype=self.dtype)
648

649
650
651
652
653
654
        def _eval_subs(self, old, new):
            return Field.Access(self.field,
                                tuple(sp.sympify(a).subs(old, new) for a in self.offsets),
                                tuple(sp.sympify(a).subs(old, new) for a in self.index),
                                dtype=self.dtype)

Martin Bauer's avatar
Martin Bauer committed
655
656
657
658
659
660
661
662
663
664
665
666
667
        @property
        def is_absolute_access(self) -> bool:
            """Indicates if a field access is relative to the loop counters (this is the default) or absolute"""
            return self._is_absolute_access

        @property
        def indirect_addressing_fields(self) -> Set['Field']:
            """Returns a set of fields that the access depends on.

             e.g. f[index_field[1, 0]], the outer access to f depends on index_field
             """
            return self._indirect_addressing_fields

668
        def _hashable_content(self):
669
670
            super_class_contents = super(Field.Access, self)._hashable_content()
            return (super_class_contents, self._field.hashable_contents(), *self._index, *self._offsets)
Martin Bauer's avatar
Martin Bauer committed
671

Martin Bauer's avatar
Martin Bauer committed
672
        def _latex(self, _):
673
            n = self._field.latex_name if self._field.latex_name else self._field.name
Martin Bauer's avatar
Martin Bauer committed
674
675
676
677
678
679
680
681
            offset_str = ",".join([sp.latex(o) for o in self.offsets])
            if self.is_absolute_access:
                offset_str = "\\mathbf{}".format(offset_str)
            elif self.field.spatial_dimensions > 1:
                offset_str = "({})".format(offset_str)

            if self.index and self.index != (0,):
                return "{{%s}_{%s}^{%s}}" % (n, offset_str, self.index if len(self.index) > 1 else self.index[0])
Martin Bauer's avatar
Martin Bauer committed
682
            else:
Martin Bauer's avatar
Martin Bauer committed
683
                return "{{%s}_{%s}}" % (n, offset_str)
Martin Bauer's avatar
Martin Bauer committed
684

685
686
687
688
689
690
691
692
693
694
        def __str__(self):
            n = self._field.latex_name if self._field.latex_name else self._field.name
            offset_str = ",".join([sp.latex(o) for o in self.offsets])
            if self.is_absolute_access:
                offset_str = "[abs]{}".format(offset_str)
            if self.index and self.index != (0,):
                return "%s[%s](%s)" % (n, offset_str, self.index if len(self.index) > 1 else self.index[0])
            else:
                return "%s[%s]" % (n, offset_str)

Martin Bauer's avatar
Martin Bauer committed
695

Martin Bauer's avatar
Martin Bauer committed
696
697
def get_layout_from_strides(strides: Sequence[int], index_dimension_ids: Optional[List[int]] = None):
    index_dimension_ids = [] if index_dimension_ids is None else index_dimension_ids
698
    coordinates = list(range(len(strides)))
Martin Bauer's avatar
Martin Bauer committed
699
    relevant_strides = [stride for i, stride in enumerate(strides) if i not in index_dimension_ids]
700
    result = [x for (y, x) in sorted(zip(relevant_strides, coordinates), key=lambda pair: pair[0], reverse=True)]
Martin Bauer's avatar
Martin Bauer committed
701
    return normalize_layout(result)
702
703


Martin Bauer's avatar
Martin Bauer committed
704
705
706
707
708
709
def get_layout_of_array(arr: np.ndarray, index_dimension_ids: Optional[List[int]] = None):
    """ Returns a list indicating the memory layout (linearization order) of the numpy array.

    Examples:
        >>> get_layout_of_array(np.zeros([3,3,3]))
        (0, 1, 2)
Martin Bauer's avatar
Martin Bauer committed
710
711
712
713
714

    In this example the loop over the zeroth coordinate should be the outermost loop,
    followed by the first and second. Elements arr[x,y,0] and arr[x,y,1] are adjacent in memory.
    Normally constructed numpy arrays have this order, however by stride tricks or other frameworks, arrays
    with different memory layout can be created.
Martin Bauer's avatar
Martin Bauer committed
715

Martin Bauer's avatar
Martin Bauer committed
716
    The index_dimension_ids parameter leaves specifies which coordinates should not be
Martin Bauer's avatar
Martin Bauer committed
717
    """
Martin Bauer's avatar
Martin Bauer committed
718
719
    index_dimension_ids = [] if index_dimension_ids is None else index_dimension_ids
    return get_layout_from_strides(arr.strides, index_dimension_ids)
720
721


Martin Bauer's avatar
Martin Bauer committed
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
def create_numpy_array_with_layout(shape, layout, alignment=False, byte_offset=0, **kwargs):
    """Creates numpy array with given memory layout.

    Args:
        shape: shape of the resulting array
        layout: layout as tuple, where the coordinates are ordered from slow to fast
        alignment: number of bytes to align the beginning and the innermost coordinate to, or False for no alignment
        byte_offset: only used when alignment is specified, align not beginning but address at this offset
                     mostly used to align first inner cell, not ghost cells

    Example:
        >>> res = create_numpy_array_with_layout(shape=(2, 3, 4, 5), layout=(3, 2, 0, 1))
        >>> res.shape
        (2, 3, 4, 5)
        >>> get_layout_of_array(res)
        (3, 2, 0, 1)
738
739
    """
    assert set(layout) == set(range(len(shape))), "Wrong layout descriptor"
Martin Bauer's avatar
Martin Bauer committed
740
    cur_layout = list(range(len(shape)))
741
742
    swaps = []
    for i in range(len(layout)):
Martin Bauer's avatar
Martin Bauer committed
743
744
745
746
747
        if cur_layout[i] != layout[i]:
            index_to_swap_with = cur_layout.index(layout[i])
            swaps.append((i, index_to_swap_with))
            cur_layout[i], cur_layout[index_to_swap_with] = cur_layout[index_to_swap_with], cur_layout[i]
    assert tuple(cur_layout) == tuple(layout)
748
749
750
751
752

    shape = list(shape)
    for a, b in swaps:
        shape[a], shape[b] = shape[b], shape[a]

753
754
755
756
757
    if not alignment:
        res = np.empty(shape, order='c', **kwargs)
    else:
        if alignment is True:
            alignment = 8 * 4
Martin Bauer's avatar
Martin Bauer committed
758
        res = aligned_empty(shape, alignment, byte_offset=byte_offset, **kwargs)
759

760
761
762
763
764
    for a, b in reversed(swaps):
        res = res.swapaxes(a, b)
    return res


Martin Bauer's avatar
Martin Bauer committed
765
766
def spatial_layout_string_to_tuple(layout_str: str, dim: int) -> Tuple[int, ...]:
    if layout_str in ('fzyx', 'zyxf'):
767
768
        assert dim <= 3
        return tuple(reversed(range(dim)))
769

Martin Bauer's avatar
Martin Bauer committed
770
    if layout_str in ('fzyx', 'f', 'reverse_numpy', 'SoA'):
771
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
772
    elif layout_str in ('c', 'numpy', 'AoS'):
773
        return tuple(range(dim))
Martin Bauer's avatar
Martin Bauer committed
774
    raise ValueError("Unknown layout descriptor " + layout_str)
775
776


Martin Bauer's avatar
Martin Bauer committed
777
778
779
def layout_string_to_tuple(layout_str, dim):
    layout_str = layout_str.lower()
    if layout_str == 'fzyx' or layout_str == 'soa':
780
781
        assert dim <= 4
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
782
    elif layout_str == 'zyxf' or layout_str == 'aos':
783
        assert dim <= 4
Martin Bauer's avatar
Martin Bauer committed
784
        return tuple(reversed(range(dim - 1))) + (dim - 1,)
Martin Bauer's avatar
Martin Bauer committed
785
    elif layout_str == 'f' or layout_str == 'reverse_numpy':
786
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
787
    elif layout_str == 'c' or layout_str == 'numpy':
788
        return tuple(range(dim))
Martin Bauer's avatar
Martin Bauer committed
789
    raise ValueError("Unknown layout descriptor " + layout_str)
790
791


Martin Bauer's avatar
Martin Bauer committed
792
def normalize_layout(layout):
793
    """Takes a layout tuple and subtracts the minimum from all entries"""
Martin Bauer's avatar
Martin Bauer committed
794
795
    min_entry = min(layout)
    return tuple(i - min_entry for i in layout)
796
797


Martin Bauer's avatar
Martin Bauer committed
798
def compute_strides(shape, layout):
799
800
    """
    Computes strides assuming no padding exists
Martin Bauer's avatar
Martin Bauer committed
801
802
803
804
805
806
807

    Args:
        shape: shape (size) of array
        layout: layout specification as tuple

    Returns:
        strides in elements, not in bytes
808
    """
Martin Bauer's avatar
Martin Bauer committed
809
810
811
812
    dim = len(shape)
    assert len(layout) == dim
    assert len(set(layout)) == dim
    strides = [0] * dim
813
    product = 1
814
    for j in reversed(layout):
815
816
817
        strides[j] = product
        product *= shape[j]
    return tuple(strides)
Martin Bauer's avatar
Martin Bauer committed
818
819


820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
# ---------------------------------------- Parsing of string in fields() function --------------------------------------

field_description_regex = re.compile(r"""
    \s*                 # ignore leading white spaces
    (\w+)               # identifier is a sequence of alphanumeric characters, is stored in first group
    (?:                 # optional index specification e.g. (1, 4, 2)
        \s*
        \(
            ([^\)]+)    # read everything up to closing bracket
        \)
        \s*
    )?
    \s*,?\s*             # ignore trailing white spaces and comma
""", re.VERBOSE)

type_description_regex = re.compile(r"""
    \s*
    (\w+)?       # optional dtype
    \s*
    \[
        ([^\]]+)
    \]
    \s*
""", re.VERBOSE | re.IGNORECASE)
844
845
846


def _parse_description(description):
847
848
849
    def parse_part1(d):
        result = field_description_regex.match(d)
        while result:
850
            name, index_str = result.group(1), result.group(2)
851
852
853
854
855
856
857
858
            index = tuple(int(e) for e in index_str.split(",")) if index_str else ()
            yield name, index
            d = d[result.end():]
            result = field_description_regex.match(d)

    def parse_part2(d):
        result = type_description_regex.match(d)
        if result:
859
            data_type_str, size_info = result.group(1), result.group(2).strip().lower()
860
861
862
863
864
865
866
867
868
869
870
871
872
873
            if data_type_str is None:
                data_type_str = 'float64'
            data_type_str = data_type_str.lower().strip()

            if not data_type_str:
                data_type_str = 'float64'
            if size_info.endswith('d'):
                size_info = int(size_info[:-1])
            else:
                size_info = tuple(int(e) for e in size_info.split(","))
            return data_type_str, size_info
        else:
            raise ValueError("Could not parse field description")

874
    if ':' in description:
875
        field_description, field_info = description.split(':')
876
    else:
877
878
879
880
881
        field_description, field_info = description, 'float64[2D]'

    fields_info = [e for e in parse_part1(field_description)]
    if not field_info:
        raise ValueError("Could not parse field description")
882

883
884
    data_type, size = parse_part2(field_info)
    return fields_info, data_type, size