Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Tom Harke
pystencils
Commits
77087e9e
Commit
77087e9e
authored
Apr 24, 2018
by
Martin Bauer
Browse files
Added convenience function to create pystencils fields
parent
362b4611
Changes
1
Hide whitespace changes
Inline
Side-by-side
field.py
View file @
77087e9e
...
...
@@ -10,6 +10,73 @@ from pystencils.data_types import TypedSymbol, create_type, create_composite_typ
from
pystencils.sympyextensions
import
is_integer_sequence
def
fields
(
description
=
None
,
index_dimensions
=
0
,
layout
=
None
,
**
kwargs
):
"""Creates pystencils fields from a string description.
Examples:
Create a 2D scalar and vector field
>>> s, v = fields("s, v(2): double[2D]")
>>> assert s.spatial_dimensions == 2 and s.index_dimensions == 0
>>> assert v.spatial_dimensions == 2 and v.index_dimensions == 1 and v.index_shape == (2,)
Create an integer field of shape (10, 20)
>>> f = fields("f : int32[10, 20]")
>>> f.has_fixed_shape, f.shape
(True, (10, 20))
Numpy arrays can be used as template for shape and data type of field
>>> arr_s, arr_v = np.zeros([20, 20]), np.zeros([20, 20, 2])
>>> s, v = fields("s, v(2)", s=arr_s, v=arr_v)
>>> assert s.index_dimensions == 0 and v.index_shape == (2,) and s.dtype.numpy_dtype == arr_s.dtype
Format string can be left out, field names are taken from keyword arguments.
>>> fields(f1=arr_s, f2=arr_s)
[f1, f2]
The keyword names 'index_dimension' and 'layout' have special meaning and thus can not be used to pass
numpy arrays:
>>> f = fields(f=arr_v, index_dimensions=1)
>>> assert f.index_dimensions == 1
>>> f = fields("pdfs(19) : float32[3D]", layout='fzyx')
>>> f.layout
(2, 1, 0)
"""
result
=
[]
if
description
:
field_descriptions
,
dtype
,
shape
=
_parse_description
(
description
)
layout
=
'numpy'
if
layout
is
None
else
layout
for
field_name
,
idx_shape
in
field_descriptions
:
if
field_name
in
kwargs
:
arr
=
kwargs
[
field_name
]
idx_shape_of_arr
=
()
if
not
len
(
idx_shape
)
else
arr
.
shape
[
-
len
(
idx_shape
):]
assert
idx_shape_of_arr
==
idx_shape
f
=
Field
.
create_from_numpy_array
(
field_name
,
kwargs
[
field_name
],
index_dimensions
=
len
(
idx_shape
))
elif
isinstance
(
shape
,
tuple
):
f
=
Field
.
create_fixed_size
(
field_name
,
shape
+
idx_shape
,
dtype
=
dtype
,
index_dimensions
=
len
(
idx_shape
),
layout
=
layout
)
elif
isinstance
(
shape
,
int
):
f
=
Field
.
create_generic
(
field_name
,
spatial_dimensions
=
shape
,
dtype
=
dtype
,
index_shape
=
idx_shape
,
layout
=
layout
)
elif
shape
is
None
:
f
=
Field
.
create_generic
(
field_name
,
spatial_dimensions
=
2
,
dtype
=
dtype
,
index_shape
=
idx_shape
,
layout
=
layout
)
else
:
assert
False
result
.
append
(
f
)
else
:
assert
layout
is
None
,
"Layout can not be specified when creating Field from numpy array"
for
field_name
,
arr
in
kwargs
.
items
():
result
.
append
(
Field
.
create_from_numpy_array
(
field_name
,
arr
,
index_dimensions
=
index_dimensions
))
if
len
(
result
)
==
0
:
return
None
elif
len
(
result
)
==
1
:
return
result
[
0
]
else
:
return
result
class
FieldType
(
Enum
):
# generic fields
GENERIC
=
0
...
...
@@ -418,6 +485,9 @@ class Field:
def
get_shifted
(
self
,
*
shift
)
->
'Field.Access'
:
return
Field
.
Access
(
self
.
field
,
tuple
(
a
+
b
for
a
,
b
in
zip
(
shift
,
self
.
offsets
)),
self
.
index
)
def
at_index
(
self
,
*
idx_tuple
):
return
Field
.
Access
(
self
.
field
,
self
.
offsets
,
idx_tuple
)
def
_hashable_content
(
self
):
super_class_contents
=
list
(
super
(
Field
.
Access
,
self
).
_hashable_content
())
t
=
tuple
(
super_class_contents
+
[
hash
(
self
.
_field
),
self
.
_index
]
+
self
.
_offsets
)
...
...
@@ -654,3 +724,55 @@ def direction_string_to_offset(direction: str, dim: int = 3):
offset
+=
factor
*
cur_offset
direction
=
direction
[
1
:]
return
offset
[:
dim
]
def
_parse_type_description
(
type_description
):
if
not
type_description
:
return
np
.
float64
,
None
elif
'['
in
type_description
:
assert
type_description
[
-
1
]
==
']'
splitted
=
type_description
[:
-
1
].
split
(
"["
,
)
type_part
,
size_part
=
type_description
[:
-
1
].
split
(
"["
,
)
if
not
type_part
:
type_part
=
"float64"
if
size_part
.
lower
()[
-
1
]
==
'd'
:
size_part
=
int
(
size_part
[:
-
1
])
else
:
size_part
=
tuple
(
int
(
i
)
for
i
in
size_part
.
split
(
','
))
else
:
type_part
,
size_part
=
type_description
,
None
dtype
=
np
.
dtype
(
type_part
).
type
return
dtype
,
size_part
def
_parse_field_description
(
description
):
if
'('
not
in
description
:
return
description
,
()
assert
description
[
-
1
]
==
')'
name
,
index_shape
=
description
[:
-
1
].
split
(
'('
)
index_shape
=
tuple
(
int
(
i
)
for
i
in
index_shape
.
split
(
','
))
return
name
,
index_shape
def
_parse_description
(
description
):
description
=
description
.
replace
(
' '
,
''
)
if
':'
in
description
:
name_descr
,
type_descr
=
description
.
split
(
':'
)
else
:
name_descr
,
type_descr
=
description
,
''
# correct ',' splits inside brackets
field_names
=
name_descr
.
split
(
','
)
cleaned_field_names
=
[]
prefix
=
''
for
field_name
in
field_names
:
full_field_name
=
prefix
+
field_name
if
'('
in
full_field_name
and
')'
not
in
full_field_name
:
prefix
+=
field_name
+
','
else
:
prefix
=
''
cleaned_field_names
.
append
(
full_field_name
)
dtype
,
size
=
_parse_type_description
(
type_descr
)
fields_info
=
tuple
(
_parse_field_description
(
fd
)
for
fd
in
cleaned_field_names
)
return
fields_info
,
dtype
,
size
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment