diff --git a/src/lbm/SuViscoelasticity.h b/src/lbm/SuViscoelasticity.h new file mode 100644 index 0000000000000000000000000000000000000000..493a3fa4987fb27d911317e93ee7686d5d1142e3 --- /dev/null +++ b/src/lbm/SuViscoelasticity.h @@ -0,0 +1,267 @@ +//====================================================================================================================== +// +// This file is part of waLBerla. waLBerla is free software: you can +// redistribute it and/or modify it under the terms of the GNU General Public +// License as published by the Free Software Foundation, either version 3 of +// the License, or (at your option) any later version. +// +// waLBerla is distributed in the hope that it will be useful, but WITHOUT +// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +// for more details. +// +// You should have received a copy of the GNU General Public License along +// with waLBerla (see COPYING.txt). If not, see <http://www.gnu.org/licenses/>. +// +//! \file SuViscoelasticity.h +//! \ingroup lbm +//! \author Cameron Stewart <cstewart@icp.uni-stuttgart.de> +//! \brief Oldroyd-B viscoelasticity extended from Su et al. Phys. Rev. E, 2013 +// +//====================================================================================================================== + + +#include "blockforest/communication/UniformBufferedScheme.h" +#include "core/math/Matrix3.h" +#include <field/AddToStorage.h> +#include "field/GhostLayerField.h" +#include "field/communication/PackInfo.h" +#include "lbm/field/PdfField.h" + +namespace walberla { +namespace lbm { +namespace viscoelastic { + +template < typename LatticeModel_T , typename BoundaryHandling_T> +class Su { + +public: + + typedef GhostLayerField< Matrix3<real_t>, 1> StressField_T; + typedef GhostLayerField< Vector3<real_t>, 1> VelocityField_T; + typedef GhostLayerField< Vector3<real_t>, 1> ForceField_T; + typedef PdfField< LatticeModel_T > PdfField_T; + typedef shared_ptr< StructuredBlockForest > Blocks_T; + + + Su( Blocks_T blocks, BlockDataID force, BlockDataID pdfId, BlockDataID boundaryHandlingId, BlockDataID stressId, BlockDataID stressOldId, real_t lambda_p, real_t eta_p, + uint_t period = uint_c(1), bool compressibleFlag = false): blocks_( blocks ), forceId_( force ), pdfId_(pdfId), boundaryHandlingId_(boundaryHandlingId), stressId_(stressId), stressOldId_(stressOldId), + inv_lambda_p_( real_c(1.0)/lambda_p ), eta_p_( eta_p ), delta_t_( real_c(period) ), executionCount_( 0 ), communicateStress_(blocks), + communicateVelocities_(blocks), compressibleFlag_(compressibleFlag) + { + // create velocity fields + velocityId_ = walberla::field::addToStorage<VelocityField_T>( blocks_, "Velocity Field", Vector3<real_t>(0.0), field::zyxf, uint_c(1)); + + // stress and velocity communication scheme + communicateStress_.addPackInfo( make_shared< field::communication::PackInfo<StressField_T> >( stressId_ )); + communicateVelocities_.addPackInfo( make_shared< field::communication::PackInfo<VelocityField_T> >( velocityId_ )); + + WALBERLA_ASSERT_GREATER_EQUAL(delta_t_, real_c(1.0)); + } + + Su( Blocks_T blocks, BlockDataID force, BlockDataID pdfId, BlockDataID boundaryHandlingId, BlockDataID stressId, BlockDataID stressOldId, BlockDataID velocityId, real_t lambda_p, real_t eta_p, + uint_t period = uint_c(1), bool compressibleFlag = false): blocks_( blocks ), forceId_( force ), pdfId_(pdfId), boundaryHandlingId_(boundaryHandlingId), stressId_(stressId), stressOldId_(stressOldId), + velocityId_(velocityId), inv_lambda_p_( real_c(1.0)/lambda_p ), eta_p_( eta_p ), delta_t_( real_c(period) ), executionCount_( 0 ), communicateStress_(blocks), + communicateVelocities_(blocks), compressibleFlag_(compressibleFlag) + { + // stress and velocity communication scheme + communicateStress_.addPackInfo( make_shared< field::communication::PackInfo<StressField_T> >( stressId_ )); + communicateVelocities_.addPackInfo( make_shared< field::communication::PackInfo<VelocityField_T> >( velocityId_ )); + + WALBERLA_ASSERT_GREATER_EQUAL(delta_t_, real_c(1.0)); + } + + void calculateStresses(IBlock * block) { + StressField_T *stressNew = block->getData<StressField_T>(stressId_); + StressField_T *stressOld = block->getData<StressField_T>(stressOldId_); + VelocityField_T *velocity = block->getData<VelocityField_T>(velocityId_); + PdfField_T *pdf = block->getData<PdfField_T>(pdfId_); + BoundaryHandling_T * boundaryHandling = block->getData< BoundaryHandling_T >( boundaryHandlingId_ ); + + WALBERLA_ASSERT_GREATER_EQUAL(stressOld->nrOfGhostLayers(), 2); + WALBERLA_ASSERT_GREATER_EQUAL(velocity->nrOfGhostLayers(), 1); + + WALBERLA_FOR_ALL_CELLS_XYZ(stressNew, { + Cell cell(x,y,z); + Matrix3<real_t> stress1 = Matrix3<real_t>(0.0); + Matrix3<real_t> stress2 = Matrix3<real_t>(0.0); + Matrix3<real_t> stress3 = Matrix3<real_t>(0.0); + Matrix3<real_t> relstr = Matrix3<real_t>(0.0); + bool nearBoundaryFlag = false; + + // if cell is a fluid cell then calculate the stress tensor + if (boundaryHandling->isDomain(cell)) { + // check if near a wall + if (boundaryHandling->isNearBoundary(cell)) { + nearBoundaryFlag = true; + } + else { + for (auto d = LatticeModel_T::Stencil::beginNoCenter(); d != LatticeModel_T::Stencil::end(); ++d) { + Cell cell1 = cell - *d; + if (boundaryHandling->isNearBoundary(cell1)) { + nearBoundaryFlag = true; + } + } + } + for (auto d = LatticeModel_T::Stencil::beginNoCenter(); d != LatticeModel_T::Stencil::end(); ++d) { + Cell cell1 = cell - *d; + Cell cell2 = cell1 - *d; + Cell cell3 = cell + *d; + + // check if using compressible of incompressible algorithm + if (compressibleFlag_) { + if (nearBoundaryFlag) { + if (boundaryHandling->isDomain(cell1)) { + stress1 += (stressOld->get(cell1) * pdf->get(cell, d.toIdx())) * real_c(1 / 2.0); + } + if (boundaryHandling->isDomain(cell3)) { + stress2 += (stressOld->get(cell) * pdf->get(cell, d.toIdx())) * real_c(1 / 1.5); + } + } + else { + stress1 += stressOld->get(cell1) * pdf->get(cell, d.toIdx()); + stress2 += stressOld->get(cell) * pdf->get(cell, d.toIdx()); + stress3 += stressOld->get(cell2) * pdf->get(cell, d.toIdx()); + } + } + else { + if (nearBoundaryFlag) { + if (boundaryHandling->isDomain(cell1)) { + stress1 += (stressOld->get(cell1) * pdf->get(cell1, d.toIdx())) * real_c(1 / 2.0); + } + if (boundaryHandling->isDomain(cell3)) { + stress2 += (stressOld->get(cell) * pdf->get(cell, d.toIdx())) * real_c(1 / 1.5); + } + } + else { + stress1 += stressOld->get(cell1) * pdf->get(cell1, d.toIdx()); + stress2 += stressOld->get(cell) * pdf->get(cell, d.toIdx()); + stress3 += stressOld->get(cell2) * pdf->get(cell2, d.toIdx()); + } + } + } + Matrix3<real_t> gradu = Matrix3<real_t>(0.0); + + // compute velocity gradient + for (auto d = LatticeModel_T::Stencil::beginNoCenter(); d.direction() != stencil::NW; ++d) { + for (uint_t a = 0; a < LatticeModel_T::Stencil::D; ++a) { + for (uint_t b = 0; b < LatticeModel_T::Stencil::D; ++b) { + if(boundaryHandling->isDomain(cell + *d) ) { + gradu(b, a) += velocity->get(cell + *d)[a] * real_c(d.c(b)) * real_c(0.5); + } else if(boundaryHandling->isDomain(cell - *d)){ + gradu(b, a) += velocity->get(cell - *d)[a] * real_c(d.c(b)) * real_c(-0.5) + velocity->get(cell)[a] * real_c(d.c(b)); + } + } + } + } + auto graduT = gradu.getTranspose(); + + // equation 16 from Su 2013 + relstr = stressOld->get(cell) * gradu + graduT * stressOld->get(cell); + + if(eta_p_ > real_t(0)) { + relstr += ((gradu + graduT) * eta_p_ - stressOld->get(cell)) * inv_lambda_p_; + } + + // equation 23 from Su 2013 + stressNew->get(cell) = stressOld->get(cell) + (stress1 * real_c(2.0) - stress2 * real_c(1.5) - stress3 * real_c(0.5)) * delta_t_ * (real_c(1.0) / pdf->getDensity(cell)) + + relstr * delta_t_; + } + }) + } + + void swapStressBuffers( IBlock * block ){ + StressField_T * stressNew = block->getData< StressField_T >(stressId_); + StressField_T * stressOld = block->getData< StressField_T >(stressOldId_); + + // swap pointers to old and new stress fields + stressOld->swapDataPointers(stressNew); + } + + void cacheVelocity( IBlock * block ){ + VelocityField_T * velocity = block->getData< VelocityField_T >(velocityId_); + PdfField_T * pdf = block->getData< PdfField_T >(pdfId_); + BoundaryHandling_T * boundaryHandling = block->getData< BoundaryHandling_T >( boundaryHandlingId_ ); + + WALBERLA_ASSERT_GREATER_EQUAL( velocity->nrOfGhostLayers(), 1 ); + + // update velocity field for all fluid cells + WALBERLA_FOR_ALL_CELLS_XYZ(velocity,{ + Cell cell(x, y, z); + if( boundaryHandling->isDomain(cell) ) { + velocity->get( cell ) = pdf->getVelocity(x, y, z); + } + }) + } + + void calculateForces( IBlock * block ) { + using namespace stencil; + StressField_T * stress = block->getData< StressField_T >(stressId_); + ForceField_T * force = block->getData< ForceField_T >(forceId_); + BoundaryHandling_T * boundaryHandling = block->getData< BoundaryHandling_T >( boundaryHandlingId_ ); + + WALBERLA_ASSERT_GREATER_EQUAL( stress->nrOfGhostLayers(), 1); + + WALBERLA_FOR_ALL_CELLS_XYZ(force, { + Cell cell(x, y, z); + uint_t k = 0; + Vector3<real_t> f = Vector3<real_t>(0.0); + + // calculate force from finite difference divergence of extra stress in 3d or 2d + if (boundaryHandling->isDomain(cell)) { + for (auto d = LatticeModel_T::Stencil::beginNoCenter(); d.direction() != NW; ++d) { + for (uint_t i = 0; i < LatticeModel_T::Stencil::D; ++i) { + if (d.direction() == E || d.direction() == W) { + k = 0; + } else if (d.direction() == N || d.direction() == S) { + k = 1; + } else { + k = 2; + } + if (boundaryHandling->isDomain(cell + *d)) { + f[i] += stress->get(cell + *d)(k, i) * real_c(d.c(k)); + } else if(boundaryHandling->isDomain(cell - *d)){ + f[i] += -stress->get(cell - *d)(k, i) * real_c(d.c(k)) + stress->get(cell)(k, i) * real_c(d.c(k)) * real_c(2.0); + } + } + } + force->get(x, y, z) = f*real_c(0.5); + } + }) + } + + void operator()() { + for( auto it = blocks_->begin(); it != blocks_->end(); ++it ) { + auto block = it.get(); + if (executionCount_ % uint_c(delta_t_) == 0) { + swapStressBuffers(block); + cacheVelocity(block); + } + } + communicateVelocities_(); + for( auto it = blocks_->begin(); it != blocks_->end(); ++it ){ + auto block = it.get(); + if (executionCount_ % uint_c(delta_t_) == 0) + { + calculateStresses(block); + } + } + communicateStress_(); + for( auto it = blocks_->begin(); it != blocks_->end(); ++it ){ + auto block = it.get(); + calculateForces(block); + } + executionCount_++; + } +private: + Blocks_T blocks_; + BlockDataID forceId_, pdfId_, boundaryHandlingId_, stressId_, stressOldId_, velocityId_; + const real_t inv_lambda_p_, eta_p_, delta_t_; + uint_t executionCount_; + blockforest::communication::UniformBufferedScheme< typename LatticeModel_T::CommunicationStencil > communicateStress_, communicateVelocities_; + bool compressibleFlag_; +}; + +} // namespace viscoelastic +} // namespace lbm +} // namespace walberla diff --git a/tests/lbm/CMakeLists.txt b/tests/lbm/CMakeLists.txt index 795636733fa71b846d3e954429169e6f1e0c28a1..5a40bcfe181bc8d5400e9f1814e9b44e019f67be 100644 --- a/tests/lbm/CMakeLists.txt +++ b/tests/lbm/CMakeLists.txt @@ -62,6 +62,8 @@ waLBerla_execute_test( NAME PermeabilityTest_TRT_64_8 COMMAND $<TARGET_FILE:Perm waLBerla_compile_test( FILES initializer/PdfFieldInitializerTest.cpp ) waLBerla_execute_test( NAME PdfFieldInitializerTest COMMAND $<TARGET_FILE:PdfFieldInitializerTest> ${CMAKE_CURRENT_SOURCE_DIR}/PdfFieldInitializerTest.prm PROCESSES 4 CONFIGURATIONS Release RelWithDbgInfo ) +waLBerla_compile_test( FILES SuViscoelasticityTest.cpp DEPENDS field blockforest timeloop) +waLBerla_execute_test( NAME SuViscoelasticityTest COMMAND $<TARGET_FILE:SuViscoelasticityTest> ${CMAKE_CURRENT_SOURCE_DIR}/Su.prm ) # Code Generation waLBerla_python_file_generates(codegen/SrtWithForceFieldModel.py diff --git a/tests/lbm/Su.prm b/tests/lbm/Su.prm new file mode 100644 index 0000000000000000000000000000000000000000..88a9bfe3baaa384708a746f6ac8a98dd8aa42727 --- /dev/null +++ b/tests/lbm/Su.prm @@ -0,0 +1,26 @@ +Parameters +{ + eta_s 0.5; + timesteps 3000; + force 0.00001; + lambda_p 300.0; + eta_p 0.5; + period 1; + L 11; + H 33; + blockSize 11; + uMax 1.28737; + t0 370; + t1 326; +} + +DomainSetup +{ + blocks < 1,3,1 >; + cartesianSetup false; + cellsPerBlock < 11,11, 1 >; + periodic < 1, 0, 0 >; +} + + + diff --git a/tests/lbm/SuViscoelasticityTest.cpp b/tests/lbm/SuViscoelasticityTest.cpp new file mode 100644 index 0000000000000000000000000000000000000000..3952d7cb48a6faf2cc81c6d716c07bc5db54587a --- /dev/null +++ b/tests/lbm/SuViscoelasticityTest.cpp @@ -0,0 +1,320 @@ +//====================================================================================================================== +// +// This file is part of waLBerla. waLBerla is free software: you can +// redistribute it and/or modify it under the terms of the GNU General Public +// License as published by the Free Software Foundation, either version 3 of +// the License, or (at your option) any later version. +// +// waLBerla is distributed in the hope that it will be useful, but WITHOUT +// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +// for more details. +// +// You should have received a copy of the GNU General Public License along +// with waLBerla (see COPYING.txt). If not, see <http://www.gnu.org/licenses/>. +// +//! \file SuViscoelasticityTest.cpp +//! \ingroup lbm +//! \author Cameron Stewart <cstewart@icp.uni-stuttgart.de> +//! \brief D2Q9 Poiseuille flow simulation with Oldroyd-B viscoelasticity - Checks against analytical formula and +//! reference data +// +// +//====================================================================================================================== + +#include "blockforest/Initialization.h" +#include "blockforest/communication/UniformBufferedScheme.h" + +#include "boundary/BoundaryHandling.h" + +#include "core/Environment.h" +#include "core/SharedFunctor.h" + +#include "domain_decomposition/SharedSweep.h" + +#include "field/communication/PackInfo.h" + +#include "lbm/boundary/all.h" +#include "lbm/field/AddToStorage.h" +#include "lbm/lattice_model/D2Q9.h" +#include "lbm/lattice_model/ForceModel.h" +#include "lbm/SuViscoelasticity.h" +#include "lbm/sweeps/CellwiseSweep.h" + +#include "timeloop/SweepTimeloop.h" + +namespace walberla { + +////////////// +// TYPEDEFS // +////////////// + +typedef GhostLayerField< Vector3<real_t>, 1> ForceField_T; + +typedef lbm::collision_model::TRT CollisionModel_T; +typedef lbm::force_model::GuoField< ForceField_T > ForceModel_T; +typedef lbm::D2Q9< CollisionModel_T, false, ForceModel_T > LatticeModel_T; +typedef LatticeModel_T::Stencil Stencil_T; + +typedef GhostLayerField<Matrix3<real_t>, 1> StressField_T; +typedef GhostLayerField< Vector3<real_t>, 1> VelocityField_T; +typedef lbm::PdfField< LatticeModel_T > PdfField_T; +typedef walberla::uint8_t flag_t; +typedef FlagField< flag_t > FlagField_T; +const uint_t FieldGhostLayers = 2; + +typedef lbm::NoSlip< LatticeModel_T, flag_t> NoSlip_T; +typedef boost::tuples::tuple< NoSlip_T > BoundaryConditions_T; +typedef BoundaryHandling< FlagField_T, Stencil_T, BoundaryConditions_T> BoundaryHandling_T; + +/////////// +// FLAGS // +/////////// + +const FlagUID Fluid_Flag( "fluid" ); +const FlagUID NoSlip_Flag( "no slip" ); + +///////////////////////////////////// +// BOUNDARY HANDLING CUSTOMIZATION // +///////////////////////////////////// + +class MyBoundaryHandling +{ +public: + + MyBoundaryHandling( const BlockDataID & flagFieldID, const BlockDataID & pdfFieldID ) : flagFieldID_( flagFieldID ), pdfFieldID_( pdfFieldID ) {} + + BoundaryHandling_T * operator()( IBlock* const block, const StructuredBlockStorage* const storage ) const; + +private: + + const BlockDataID flagFieldID_; + const BlockDataID pdfFieldID_; + +}; // class MyBoundaryHandling + + +BoundaryHandling_T * MyBoundaryHandling::operator()( IBlock * const block, const StructuredBlockStorage * const storage ) const +{ + WALBERLA_ASSERT_NOT_NULLPTR( block ); + WALBERLA_ASSERT_NOT_NULLPTR( storage ); + + FlagField_T * flagField = block->getData< FlagField_T >( flagFieldID_ ); + PdfField_T * pdfField = block->getData< PdfField_T > ( pdfFieldID_ ); + + const auto fluid = flagField->flagExists( Fluid_Flag ) ? flagField->getFlag( Fluid_Flag ) : flagField->registerFlag( Fluid_Flag ); + + BoundaryHandling_T * handling = new BoundaryHandling_T( "moving obstacle boundary handling", flagField, fluid, + boost::tuples::make_tuple( NoSlip_T( "NoSlip", NoSlip_Flag, pdfField ) ) ); + + const auto noSlip = flagField->getFlag(NoSlip_Flag); + + CellInterval domainBB = storage->getDomainCellBB(); + domainBB.xMin() -= cell_idx_c( 1 ); + domainBB.xMax() += cell_idx_c( 1 ); + + domainBB.yMin() -= cell_idx_c( 1 ); + domainBB.yMax() += cell_idx_c( 1 ); + + // SOUTH + CellInterval south( domainBB.xMin(), domainBB.yMin(), domainBB.zMin(), domainBB.xMax(), domainBB.yMin(), domainBB.zMax() ); + storage->transformGlobalToBlockLocalCellInterval( south, *block ); + handling->forceBoundary( noSlip, south ); + + // NORTH + CellInterval north( domainBB.xMin(), domainBB.yMax(), domainBB.zMin(), domainBB.xMax(), domainBB.yMax(), domainBB.zMax() ); + storage->transformGlobalToBlockLocalCellInterval( north, *block ); + handling->forceBoundary( noSlip, north ); + + handling->fillWithDomain( FieldGhostLayers ); + + return handling; +} + +////////////////////// +// Poiseuille Force // +////////////////////// + +template < typename BoundaryHandling_T > +class ConstantForce +{ +public: + + ConstantForce( BlockDataID forceFieldId, BlockDataID boundaryHandlingId, real_t force) + : forceFieldId_( forceFieldId ), boundaryHandlingId_(boundaryHandlingId), force_(force) + {} + + void operator()( IBlock * block ) + { + ForceField_T *forceField = block->getData< ForceField_T >(forceFieldId_); + BoundaryHandling_T *boundaryHandling = block->getData< BoundaryHandling_T >( boundaryHandlingId_ ); + + WALBERLA_FOR_ALL_CELLS_XYZ(forceField, + { + Cell cell(x,y,z); + if (boundaryHandling->isDomain(cell)) { + forceField->get(cell)[0] += force_; + } + }) + } + +private: + + BlockDataID forceFieldId_, boundaryHandlingId_; + real_t force_; +}; + +//////////////////// +// Take Test Data // +//////////////////// + +class TestData +{ +public: + TestData(Timeloop & timeloop, shared_ptr< StructuredBlockForest > blocks, BlockDataID pdfFieldId, BlockDataID stressFieldId, uint_t timesteps, uint_t blockSize, real_t L, real_t H, real_t uExpected) + : timeloop_(timeloop), blocks_(blocks), pdfFieldId_(pdfFieldId), stressFieldId_(stressFieldId), timesteps_(timesteps), blockSize_(blockSize), t0_(0), t1_(0), L_(L), H_(H), uMax_(0.0), uPrev_(0.0), + uExpected_(uExpected), uSteady_(0.0) {} + + void operator()() { + for (auto blockIt = blocks_->begin(); blockIt != blocks_->end(); ++blockIt) { + PdfField_T *pdf = blockIt.get()->getData<PdfField_T>(pdfFieldId_); + + if (blockIt.get()->getAABB().contains(float_c(L_/2.0), float_c(H_/2.0), 0)) { + uCurr_ = pdf->getVelocity(int32_c(blockSize_/2), int32_c(blockSize_/2), 0)[0]/uExpected_; + tCurr_ = timeloop_.getCurrentTimeStep(); + if (tCurr_ == timesteps_ - 1){ + uSteady_ = uCurr_; + } + if (maxFlag_ == 0) { + if (uCurr_ >= uPrev_) { + uMax_ = uCurr_; + } else { + t0_ = tCurr_; + maxFlag_ = 1; + } + uPrev_ = uCurr_; + } + else if (maxFlag_ == 1) { + if ((uCurr_ - 1.0) <= (uMax_ - 1.0) / std::exp(1)) { + t1_ = tCurr_ - t0_; + maxFlag_ = 2; + } + } + } + } + } + + real_t getUSteady(){ + return uSteady_; + } + + real_t getUMax(){ + return uMax_; + } + + real_t getT0(){ + return real_c(t0_); + } + + real_t getT1(){ + return real_c(t1_); + } + +private: + Timeloop & timeloop_; + shared_ptr< StructuredBlockForest > blocks_; + BlockDataID pdfFieldId_, stressFieldId_; + uint_t timesteps_, blockSize_, t0_, t1_, tCurr_; + uint_t maxFlag_ = 0; + real_t L_, H_, uMax_, uPrev_, uCurr_, uExpected_, uSteady_; +}; + +} // namespace walberla + +////////// +// Main // +////////// + +int main(int argc, char ** argv ){ + using namespace walberla; + + Environment env( argc, argv ); + + // read parameter + shared_ptr<StructuredBlockForest> blocks = blockforest::createUniformBlockGridFromConfig( env.config() ); + auto parameters = env.config()->getOneBlock( "Parameters" ); + + // extract some constants from the parameters + const real_t eta_s = parameters.getParameter< real_t > ("eta_s"); + const real_t force = parameters.getParameter< real_t > ("force"); + const real_t eta_p = parameters.getParameter< real_t > ("eta_p"); + const real_t lambda_p = parameters.getParameter< real_t > ("lambda_p"); + const uint_t period = parameters.getParameter< uint_t > ("period"); + const real_t L = parameters.getParameter< real_t > ("L"); + const real_t H = parameters.getParameter< real_t > ("H"); + const uint_t blockSize = parameters.getParameter< uint_t > ("blockSize"); + const uint_t timesteps = parameters.getParameter< uint_t > ("timesteps"); + + // reference data + const real_t uExpected = force*H*H/(real_c(8.0)*(eta_s + eta_p)); + const real_t uMax = parameters.getParameter< real_t > ("uMax"); + const real_t t0 = parameters.getParameter< real_t > ("t0"); + const real_t t1 = parameters.getParameter< real_t > ("t1"); + + // create fields + BlockDataID flagFieldId = field::addFlagFieldToStorage< FlagField_T >(blocks, "flag field", FieldGhostLayers); + BlockDataID forceFieldId = field::addToStorage<ForceField_T>( blocks, "Force Field", Vector3<real_t>(0.0), field::zyxf, FieldGhostLayers); + LatticeModel_T latticeModel = LatticeModel_T(lbm::collision_model::TRT::constructWithMagicNumber( walberla::lbm::collision_model::omegaFromViscosity(eta_s)), lbm::force_model::GuoField<ForceField_T>( forceFieldId ) ); + BlockDataID pdfFieldId = lbm::addPdfFieldToStorage( blocks, "pdf field", latticeModel, Vector3<real_t>(), real_c(1.0), FieldGhostLayers ); + BlockDataID stressId = walberla::field::addToStorage<StressField_T>( blocks, "Stress Field", Matrix3<real_t>(0.0), field::zyxf, FieldGhostLayers); + BlockDataID stressOldId = walberla::field::addToStorage<StressField_T>( blocks, "Old Stress Field", Matrix3<real_t>(0.0), field::zyxf, FieldGhostLayers); + BlockDataID velocityId = walberla::field::addToStorage<VelocityField_T> (blocks, "Velocity Field", Vector3<real_t>(0.0), field::zyxf, FieldGhostLayers); + + // add boundary handling + BlockDataID boundaryHandlingId = blocks->addStructuredBlockData< BoundaryHandling_T >( MyBoundaryHandling( flagFieldId, pdfFieldId ), "boundary handling" ); + + // create time loop + SweepTimeloop timeloop( blocks->getBlockStorage(), timesteps ); + + // create communication for PdfField + blockforest::communication::UniformBufferedScheme< Stencil_T > communication( blocks ); + communication.addPackInfo( make_shared< field::communication::PackInfo< PdfField_T > >( pdfFieldId ) ); + auto testData = make_shared< TestData >(TestData(timeloop, blocks, pdfFieldId, stressId, timesteps, blockSize, L, H, uExpected)); + + // structure timeloop + timeloop.add() << BeforeFunction( communication, "communication" ) + << Sweep( BoundaryHandling_T::getBlockSweep( boundaryHandlingId ), "boundary handling" ); + timeloop.add() << BeforeFunction( lbm::viscoelastic::Su<LatticeModel_T, BoundaryHandling_T>(blocks, forceFieldId, pdfFieldId, boundaryHandlingId, stressId, stressOldId, velocityId, + lambda_p, eta_p, period, true), "viscoelasticity") + << Sweep( ConstantForce<BoundaryHandling_T>(forceFieldId, boundaryHandlingId, force),"Poiseuille Force"); + timeloop.add() << Sweep( makeSharedSweep( lbm::makeCellwiseSweep< LatticeModel_T, FlagField_T >( pdfFieldId, flagFieldId, Fluid_Flag ) ), + "LB stream & collide" ) + << AfterFunction(makeSharedFunctor(testData), "test data"); + + timeloop.run(); + + + // compare to reference data + real_t errSteady = real_c(fabs(testData->getUSteady() - real_c(1.0))/real_c(1.0)); + real_t errMax = real_c(fabs(testData->getUMax() - uMax)/uMax); + real_t errt0 = real_c(fabs(testData->getT0() - t0)/t0); + real_t errt1 = real_c(fabs(testData->getT1() - t1)/t1); + + WALBERLA_LOG_RESULT("Steady State Velocity Error: " << errSteady ); + WALBERLA_LOG_RESULT("Maximum Velocity Error: " << errMax ); + WALBERLA_LOG_RESULT("Time of Maximum Error: " << errt0 ); + WALBERLA_LOG_RESULT("Decay Time Error: " << errt1 ); + + // check that errors < 1% + if (errSteady < 0.01 && errMax < 0.01 && errt0 < 0.01 && errt1 < 0.01){ + WALBERLA_LOG_RESULT("Success" ); + return EXIT_SUCCESS; + } + else { + WALBERLA_LOG_RESULT("Failure" ); + return EXIT_FAILURE; + } + +} + +