Commit 115b0b08 authored by Frederik Hennig's avatar Frederik Hennig
Browse files

Updated boundaries_in_kernel

parent fe36b5a3
Pipeline #27519 canceled with stage
in 3 minutes and 2 seconds
......@@ -5,6 +5,7 @@ import pystencils as ps
from pystencils.data_types import TypedSymbol, create_type
from pystencils.backends.cbackend import CustomCodeNode
from lbmpy.stencils import get_stencil
from lbmpy.advanced_streaming.utility import get_accessor, inverse_dir_index, is_inplace, Timestep
from itertools import product
......@@ -30,6 +31,8 @@ class BetweenTimestepsIndexing:
@property
def inverse_dir_symbol(self):
"""Symbol denoting the inversion of a PDF field index.
Use only at top-level of index to f_out or f_in, otherwise it can't be correctly replaced."""
return sp.IndexedBase('invdir')
# =============================
......@@ -42,6 +45,9 @@ class BetweenTimestepsIndexing:
raise ValueError('Cannot create index arrays for both kinds of timesteps for inplace streaming pattern '
+ streaming_pattern)
if isinstance(stencil, str):
stencil = get_stencil(stencil)
prev_accessor = get_accessor(streaming_pattern, prev_timestep)
next_accessor = get_accessor(streaming_pattern, prev_timestep.next())
......@@ -193,9 +199,12 @@ class BetweenTimestepsIndexing:
class NeighbourOffsetArrays(CustomCodeNode):
@staticmethod
def symbolic_neighbour_offset(dir_idx, dim):
return tuple([sp.IndexedBase(symbol, shape=(1,))[dir_idx]
for symbol in NeighbourOffsetArrays._offset_symbols(dim)])
def neighbour_offset(dir_idx, stencil):
if isinstance(sp.sympify(dir_idx), sp.Integer):
return stencil[dir_idx]
else:
return tuple([sp.IndexedBase(symbol, shape=(1,))[dir_idx]
for symbol in NeighbourOffsetArrays._offset_symbols(len(stencil[0]))])
@staticmethod
def _offset_symbols(dim):
......
import sympy as sp
from lbmpy.boundaries.boundaryhandling import LbmWeightInfo
from lbmpy.advanced_streaming.indexing import BetweenTimestepsIndexing
from lbmpy.advanced_streaming.utility import Timestep, get_accessor
from pystencils.boundaries.boundaryhandling import BoundaryOffsetInfo
from pystencils.assignment import Assignment
from pystencils.astnodes import Block, Conditional, LoopOverCoordinate, SympyAssignment
......@@ -56,6 +58,8 @@ def border_conditions(direction, field, ghost_layers=1):
result = sp.And(border_condition, *other_min, *other_max)
return type_all_numbers(result, loop_ctr.dtype)
# TODO: Function is called nowhere... remove it?
def transformed_boundary_rule(boundary, accessor_func, field, direction_symbol, lb_method, **kwargs):
tmp_field = field.new_field_with_different_name("t")
......@@ -82,27 +86,24 @@ def transformed_boundary_rule(boundary, accessor_func, field, direction_symbol,
return ac.main_assignments[0].rhs
def boundary_conditional(boundary, direction, read_of_next_accessor, lb_method, output_field, cse=False):
def boundary_conditional(boundary, direction, streaming_pattern, prev_timestep, lb_method, output_field, cse=False):
stencil = lb_method.stencil
tmp_field = output_field.new_field_with_different_name("t")
dir_indices = direction_indices_in_direction(direction, stencil)
indexing = BetweenTimestepsIndexing(output_field, lb_method.stencil, prev_timestep, streaming_pattern)
f_out, f_in = indexing.proxy_fields
inv_dir = indexing.inverse_dir_symbol
assignments = []
for direction_idx in dir_indices:
rule = boundary(tmp_field, direction_idx, lb_method, index_field=None)
boundary_subs = boundary_substitutions(lb_method)
rule = [a.subs(boundary_subs) for a in rule]
rhs_substitutions = {tmp_field(i): sym for i, sym in enumerate(lb_method.post_collision_pdf_symbols)}
offset = stencil[direction_idx]
inv_offset = inverse_direction(offset)
inv_idx = stencil.index(inv_offset)
lhs_substitutions = {
tmp_field[offset](inv_idx): read_of_next_accessor(output_field, stencil)[inv_idx]}
rule = [Assignment(a.lhs.subs(lhs_substitutions), a.rhs.subs(rhs_substitutions)) for a in rule]
ac = AssignmentCollection([rule[-1]], rule[:-1]).new_without_subexpressions()
rule = boundary(f_out, f_in, direction_idx, inv_dir, lb_method, index_field=None)
# rhs: replace f_out by post collision symbols.
rhs_substitutions = {f_out(i): sym for i, sym in enumerate(lb_method.post_collision_pdf_symbols)}
rule = AssignmentCollection([rule]).new_with_substitutions(rhs_substitutions)
rule = indexing.substitute_proxies(rule)
ac = rule.new_without_subexpressions()
assignments += ac.main_assignments
border_cond = border_conditions(direction, output_field, ghost_layers=1)
......@@ -112,8 +113,10 @@ def boundary_conditional(boundary, direction, read_of_next_accessor, lb_method,
return Conditional(border_cond, Block(assignments))
def update_rule_with_push_boundaries(collision_rule, field, boundary_spec, accessor, read_of_next_accessor):
def update_rule_with_push_boundaries(collision_rule, field, boundary_spec,
streaming_pattern='pull', timestep=Timestep.BOTH):
method = collision_rule.method
accessor = get_accessor(streaming_pattern, timestep)
loads = [Assignment(a, b) for a, b in zip(method.pre_collision_pdf_symbols, accessor.read(field, method.stencil))]
stores = [Assignment(a, b) for a, b in
zip(accessor.write(field, method.stencil), method.post_collision_pdf_symbols)]
......@@ -122,7 +125,7 @@ def update_rule_with_push_boundaries(collision_rule, field, boundary_spec, acces
result.subexpressions = loads + result.subexpressions
result.main_assignments += stores
for direction, boundary in boundary_spec.items():
cond = boundary_conditional(boundary, direction, read_of_next_accessor, method, field)
cond = boundary_conditional(boundary, direction, streaming_pattern, timestep, method, field)
result.main_assignments.append(cond)
if 'split_groups' in result.simplification_hints:
......
......@@ -137,7 +137,7 @@ class UBB(Boundary):
assert self.dim == lb_method.dim, \
f"Dimension of UBB ({self.dim}) does not match dimension of method ({lb_method.dim})"
neighbor_offset = NeighbourOffsetArrays.symbolic_neighbour_offset(direction, lb_method.dim)
neighbor_offset = NeighbourOffsetArrays.neighbour_offset(direction, lb_method.stencil)
velocity = tuple(v_i.get_shifted(*neighbor_offset)
if isinstance(v_i, Field.Access) and not vel_from_idx_field
......@@ -153,7 +153,7 @@ class UBB(Boundary):
weight_of_direction = LbmWeightInfo.weight_of_direction
vel_term = 2 / c_s_sq \
* sum([d_i * v_i for d_i, v_i in zip(neighbor_offset, velocity)]) \
* weight_of_direction(direction)
* weight_of_direction(direction, lb_method)
# Better alternative: in conserved value computation
# rename what is currently called density to "virtual_density"
......@@ -227,7 +227,7 @@ class NeumannByCopy(Boundary):
return [NeighbourOffsetArrays(lb_method.stencil)]
def __call__(self, f_out, f_in, dir_symbol, inv_dir, lb_method, index_field):
neighbour_offset = NeighbourOffsetArrays.symbolic_neighbour_offset(dir_symbol, lb_method.dim)
neighbour_offset = NeighbourOffsetArrays.neighbour_offset(dir_symbol, lb_method.stencil)
return [Assignment(f_in(inv_dir[dir_symbol]), f_out(inv_dir[dir_symbol])),
Assignment(f_out[neighbour_offset](dir_symbol), f_out(dir_symbol))]
......@@ -249,7 +249,7 @@ class StreamInConstant(Boundary):
return [NeighbourOffsetArrays(lb_method.stencil)]
def __call__(self, f_out, f_in, dir_symbol, inv_dir, lb_method, index_field):
neighbour_offset = NeighbourOffsetArrays.symbolic_neighbour_offset(dir_symbol, lb_method.dim)
neighbour_offset = NeighbourOffsetArrays.neighbour_offset(dir_symbol, lb_method.stencil)
return [Assignment(f_in(inv_dir[dir_symbol]), self._constant),
Assignment(f_out[neighbour_offset](dir_symbol), self._constant)]
......
......@@ -155,8 +155,11 @@ class LbmWeightInfo(CustomCodeNode):
# --------------------------- Functions to be used by boundaries --------------------------
@staticmethod
def weight_of_direction(dir_idx):
return sp.IndexedBase(LbmWeightInfo.WEIGHTS_SYMBOL, shape=(1,))[dir_idx]
def weight_of_direction(dir_idx, lb_method=None):
if isinstance(sp.sympify(dir_idx), sp.Integer):
return lb_method.weights[dir_idx].evalf()
else:
return sp.IndexedBase(LbmWeightInfo.WEIGHTS_SYMBOL, shape=(1,))[dir_idx]
# ---------------------------------- Internal ---------------------------------------------
......
......@@ -3,6 +3,7 @@ import sympy as sp
import lbmpy.plot as plt
import pystencils as ps
from lbmpy.advanced_streaming import *
from lbmpy.boundaries import *
from lbmpy.creationfunctions import *
from lbmpy.geometry import *
......
%% Cell type:code id: tags:
``` python
from lbmpy.session import *
from lbmpy.boundaries.boundaries_in_kernel import update_rule_with_push_boundaries
from lbmpy.macroscopic_value_kernels import macroscopic_values_getter, macroscopic_values_setter
from collections import OrderedDict
from time import perf_counter
```
%% Cell type:markdown id: tags:
# Version 1: compile-in boundaries
%% Cell type:code id: tags:
``` python
domain_size = (32, 32, 32)
relaxation_rate = 1.8
time_steps = 100
lid_velocity = 0.05
```
%% Cell type:code id: tags:
``` python
dh = create_data_handling(domain_size, default_target='cpu')
pdfs = dh.add_array('pdfs', values_per_cell=19)
u = dh.add_array('u', values_per_cell=len(domain_size))
streaming_pattern = 'aa'
```
%% Cell type:code id: tags:
``` python
boundaries = OrderedDict((
((0, 1, 0), UBB([lid_velocity, 0, 0])),
((1, 0, 0), NoSlip()),
((-1, 0, 0), NoSlip()),
((0, -1, 0), NoSlip()),
((0, 0, 1), NoSlip()),
((0, 0, -1), NoSlip()),
((0, 0, -1), NeumannByCopy()),
))
opt = {'symbolic_field': pdfs, 'cse_global': False, 'cse_pdfs': True}
cr_even = create_lb_collision_rule(stencil="D3Q19", relaxation_rate=relaxation_rate, compressible=False, optimization=opt)
cr_odd = create_lb_collision_rule(stencil="D3Q19", relaxation_rate=relaxation_rate, compressible=False, optimization=opt)
update_rule_aa_even = update_rule_with_push_boundaries(cr_even, pdfs, boundaries, AAEvenTimeStepAccessor, AAOddTimeStepAccessor.read)
update_rule_aa_odd = update_rule_with_push_boundaries(cr_odd, pdfs, boundaries, AAOddTimeStepAccessor, AAEvenTimeStepAccessor.read)
update_rule_aa_even = update_rule_with_push_boundaries(cr_even, pdfs, boundaries, streaming_pattern, Timestep.EVEN)
update_rule_aa_odd = update_rule_with_push_boundaries(cr_odd, pdfs, boundaries, streaming_pattern, Timestep.ODD)
getter_assignments = macroscopic_values_getter(update_rule_aa_even.method, velocity=u.center_vector,
pdfs=pdfs.center_vector, density=None)
pdfs=pdfs, density=None,
streaming_pattern=streaming_pattern,
previous_timestep=Timestep.EVEN)
getter_kernel = ps.create_kernel(getter_assignments, target=dh.default_target).compile()
even_kernel = ps.create_kernel(update_rule_aa_even, target=dh.default_target, ghost_layers=1).compile()
odd_kernel = ps.create_kernel(update_rule_aa_odd, target=dh.default_target, ghost_layers=1).compile()
```
%% Cell type:code id: tags:
``` python
def init():
dh.fill(pdfs.name, 0, ghost_layers=True)
def aa_time_loop(steps=100):
assert steps % 2 == 0, "Works only for an even number of time steps"
dh.all_to_gpu()
for i in range(steps // 2):
dh.run_kernel(odd_kernel)
dh.run_kernel(even_kernel)
dh.run_kernel(getter_kernel)
dh.all_to_cpu()
```
%% Cell type:code id: tags:
``` python
init()
aa_time_loop(time_steps)
vel_version1 = dh.gather_array(u.name, ghost_layers=False).copy()
plt.vector_field_magnitude(vel_version1[:, :, domain_size[2]//2, :])
plt.colorbar();
plt.colorbar()
```
%%%% Output: execute_result
<matplotlib.colorbar.Colorbar at 0x7fa8b1205490>
%%%% Output: display_data
![]()
![]()
![](data:image/svg+xml;utf8,<?xml version="1.0" encoding="utf-8" standalone="no"?> <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"> <!-- Created with matplotlib (https://matplotlib.org/) --> <svg height="357.238125pt" version="1.1" viewBox="0 0 844.941125 357.238125" width="844.941125pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"> <metadata> <rdf:RDF xmlns:cc="http://creativecommons.org/ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <cc:Work> <dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage"/> <dc:date>2020-10-27T11:08:18.449885</dc:date> <dc:format>image/svg+xml</dc:format> <dc:creator> <cc:Agent> <dc:title>Matplotlib v3.3.1, https://matplotlib.org/</dc:title> </cc:Agent> </dc:creator> </cc:Work> </rdf:RDF> </metadata> <defs> <style type="text/css">*{stroke-linecap:butt;stroke-linejoin:round;}</style> </defs> <g id="figure_1"> <g id="patch_1"> <path d="M 0 357.238125 L 844.941125 357.238125 L 844.941125 0 L 0 0 z " style="fill:none;"/> </g> <g id="axes_1"> <g id="patch_2"> <path d="M 26.925 333.36 L 741.165 333.36 L 741.165 7.2 L 26.925 7.2 z " style="fill:#ffffff;"/> </g> <g clip-path="url(#pb06035e813)"> <image height="327" id="imagea717631e5d" transform="scale(1 -1)translate(0 -327)" width="327" x="220.965" xlink:href="data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAAUcAAAFHCAYAAAAySY5rAAAM00lEQVR4nO3dsZIdW3kF4N1nzmikkeBeuFUExiajIKCKGGISclf5GUj8EpDyGjwDAc7I/AB24MhlTBkooKR7dYU0c5rAhKtgNXe3WiN9X7yrd58+3et0cFb9yw+Wf14HD9eyHLj36bi9W+vlwL09Wg/ZA7i7Ad4+4QgQCEeAQDgCBMIRIBCOAIFwBAiEI0AgHAGC86G7z253HNjYWE4HfZYN+y6zr/epPMc9Wjyz2yeXrkmzbtn3Uq6d3OJZ2333MLuRdGDLyJsjQCAcAQLhCBAIR4BAOAIEwhEgEI4AgXAECIQjQDC/IbOlDTG50VK3VLbsO7n5UrdU9miflMec36TZoSEzuQXSNl+Wsknzl4N26ya3c5arbttN17BsvqyX2e9bO1zvkjdHgEA4AgTCESAQjgCBcAQIhCNAIBwBAuEIEAhHgEA4AgR9fXCPIUnt1rNrge/TUKr2eEc6cuDTbFuud1s1bGudk/ddt9w6ZS1wObU1wx3uifaZKWuGD+DJAnj7hCNAIBwBAuEIEAhHgEA4AgTCESAQjgCBcAQIdhiw9YHm7R4DsXhr2iZUO+RqjNHfE22TZvIAqQdhS56UQ8BaH2iSAfx1whEgEI4AgXAECIQjQCAcAQLhCBAIR4BAOAIE57qxsUPzZfpsmPfJDrNhdmmBvCemzwr6UJXP6i6zZuqc6Pb+AFMH4G8TjgCBcAQIhCNAIBwBAuEIEAhHgEA4AgTCESCYP0PmSGXjZlMbYvZsmMnNF82Ot2uP673OnjVTHm9pjzfGWOvyydx2Vd2iGxvbNAVvjgCBcAQIhCNAIBwBAuEIEAhHgEA4AgTCESAQjgCBcAQI6vrglhpPrR2Is8fe77j3qha4oaZW22EAGRO0z+ql/P7W/t5pM2q9747nDgMIhCNAIBwBAuEIEAhHgEA4AgTCESAQjgCBcAQI5g/YalsvO6hbJVvaFZOP+V41X5iivSeOGsQ1Rj+Ma13nDrnalCcb2jQNb44AgXAECIQjQCAcAQLhCBAIR4BAOAIEwhEgEI4Awbn+B/oezZdy5sP05ouWCn+vPeYZXSa3SmY3aTYcs27StHGy5drUWdYd05sjQCAcAQLhCBAIR4BAOAIEwhEgEI4AgXAECIQjQDB/hsyGBsEuM19mO2o2zIFNjHqmSTsv5MDv70HM7GmbYmWhZZfvZfJcmulNmjGmN428OQIEwhEgEI4AgXAECIQjQCAcAQLhCBAIR4BAOAIEfUNm9ryXMebPfNmhifEgmi+z95490+QhOPJ7aR3VpBlj/lyayU2aMTa0ae67Zd4cAQLhCBAIR4BAOAIEwhEgEI4AgXAECIQjQCAcAQLhCBDMH7C1xUG1wG0VxwdQKzvIgxhedaRl8rvH2lbz5tYMt1hn1wwP5M0RIBCOAIFwBAiEI0AgHAEC4QgQCEeAQDgCBMIRIDi2IdMO2TlyyNXslsORJjcsansM7DqquXTk/TB779P8lko93Ktt0tyX07B28B49+QDzCEeAQDgCBMIRIBCOAIFwBAiEI0AgHAEC4QgQzG/ITJ73sm3vsjWxpWnwrs+Q2dI+ecdnmuziyEbLO3/v7HFtJjdatuTJ5DaNN0eAQDgCBMIRIBCOAIFwBAiEI0AgHAEC4QgQCEeA4NgZMq3ZzZc9mguz59ysZfNlj8/Stm4ewnydQ9s573hDZo+vb+0+cz1r5gucyhf1AO5ugLdPOAIEwhEgEI4AgXAECIQjQCAcAQLhCBAIR4Cgb8i0rYmrfvPlqszm2c2XLc2Fw1ogZYVgi9mtm/Y6tvtu8a63T8Z4AA2iDfdY+x1etQEwedbMGNvmKRXe9W8P4BDCESAQjgCBcAQIhCNAIBwBAuEIEAhHgEA4AgTCESA4j7WtEJW1oLo+NI6rBW6pdR02oKm8jpsqU+V3Pbv29gCafrs4crhXZcOzel/W/dqaYXuPbcmT9hzvuufAmyNAIBwBAuEIEAhHgEA4AgTCESAQjgCBcAQIhCNAUA/Yaodh1UOztmibL1v+TT/ZMnng0zp7GNYYY1Mjgi+svidmDwvbY6DZuYuK9e6uO147W6/cd4xRN2Taq+PNESAQjgCBcAQIhCNAIBwBAuEIEAhHgEA4AgTCESA4L22rpF23Zf5I++/3sgVyWCNhB+/+GfI3tffZ6aB3lEs7P6q3XF9X69Z277ZxM0Z9vdvM8+YIEAhHgEA4AgTCESAQjgCBcAQIhCNAIBwBAuEIEJzr5kv7L/4NM2SWR92/6eumQTlDYtOsmXbvHdoG080+x/ae2OPaHLX3ljZLe++0M1/qWUrttdnwWSafY9sAWy/9PJy2+bJqyAD8/YQjQCAcAQLhCBAIR4BAOAIEwhEgEI4AgXAECIQjQHAeZT1nuXnUrXvypN+9HJxVO2+oBbba2tSp3LutQ7X7btHWJmfvvaWu2aq/l/L3f4+ha7PrfrMHyF3t8Jnb76Vctzzt86S+az9/VS3z5ggQCEeAQDgCBMIRIBCOAIFwBAiEI0AgHAEC4QgQnNuFy81NtW593DVpxhhjue+GH61tk6ZtYrSDuEZ/jnUr4VT+j78dDLVhAFHtqMFQe6i/l3aQ2obrPfm+bZ+DpTzHdUujrF3bPi/t/b3h3mmf1aVsJHlzBAiEI0AgHAEC4QgQCEeAQDgCBMIRIBCOAIFwBAjOp2dPy5Xz549cnj2u1zaWN2Xz5VQXg8Z6XS686/auGzdt26dt3IzRtxJqBzZfjtp7Q6tkbWfDtNomzc38mT1r2VRZb8oHprw0p0//1C0co/5ulqe33d79zgAfDuEIEAhHgEA4AgTCESAQjgCBcAQIhCNAIBwBgnM752J91P3zfX3Sz5C53HZrl7t2LkW58ZafhLIZ0PY1pk982dBIqjsls2fDbDjH2kFzaTbNXZl9juXel8d9A6zWPoLl3utVO9unf1hPn5bHfF4er94Z4AMiHAEC4QgQCEeAQDgCBMIRIBCOAIFwBAiEI0BwXl91MxrWj7tZM68/6hsy58/uyoVdht9/3M2kOb0uZ82MMU6v3lTr1uuyOVHOAVnelNdmw1yYtt1Rz7lpmy8bWg61cu96jssejZt67krZaGmvY9tmuW0HJI1x/7i9d+a2oT7/uM+Tm0fdOZ5/9X/VOm+OAIFwBAiEI0AgHAEC4QgQCEeAQDgCBMIRIBCOAIFwBAjOp69+pVr46stdjWctq35jjHF/O3cQ0Fo2wJZLX3Gqa4FlZWtZ2m5XeR23DK9qK3fl0LX2o+zioAFbm/adXF2cPZRqPfef5e5J9xysO8z2ar3+qKtDnr/2SbXOmyNAIBwBAuEIEAhHgEA4AgTCESAQjgCBcAQIhCNAcL7/2kfVwrZ9sqWx8eIfu9bN9cuuinH7625Y2NhQKrk87v51f3rZDeJayoFdtQ3Xux7ataV109jQSKq1LZ52llrbUimHlI0xxigv93JXnuTtTbXs/qZ751ne9BWn60+7D/PiG905vvpKd71vf9Of4/nU3Wf3X31WrfPmCBAIR4BAOAIEwhEgEI4AgXAECIQjQCAcAQLhCBCcT88/rxa++O6Xq3VvnvVzKR497/7R/uhF9y/50+uuabBlhszps651s7x81R3wddeQWd+UTZryeGOMcbkvmxjtrJn2eHs0ZFptk6adDVPOZxljjOVR164a527wyul5ue7J42rdetutG2OMy6Nu7ye/7RpEr7/UXZs/fLu/3ueX3bov/Uf3rHpzBAiEI0AgHAEC4QgQCEeAQDgCBMIRIBCOAIFwBAjO7eyM332vmyFxetHP2Pjmzz4tj1m2Ty7lvInn3b5jjLG0bYPrrkEw2nU33WyftrmwyVU5T6Vsn9RmH2+Mvp3TrmubNGOM9a5sdv2pbE21e7czgH73h27dGOOqbPHcvnrdrfvv7r3sP3/0cbVujDGuvtM913e/fFqt8+YIEAhHgEA4AgTCESAQjgCBcAQIhCNAIBwBAuEIEAhHgGD55o9/WnWN1jJG/+nfuoFUY4xxKWtqrz7phvF8/kl3kne31bIxxhiXckZSve6mHF5VtjDb7+X/15Z7t8c88Kd1ndw0XNoZYGVDddsxuw9z6hq8Yynnno0Nc8/OL7tzvC6budefdZs/+X37Ycb49fe7h2a96vb25ggQCEeAQDgCBMIRIBCOAIFwBAiEI0AgHAEC4QgQnJf77p/vX//+/1Tr/vVfflFv/uLypFr39NS1br51/ZvyeH3N4b5sETwth0M9W8oqTelqw8CnU/lbeBpz6ydXy/zf4Pu1+w5n793uO8YYl7KC0l7vu9G1RV5cuiFX1xuuzVV5jv/1plv3x/LZ/4fzi2rdGGP85H9/WK37959/p1rnzREgEI4AgXAECIQjQCAcAQLhCBAIR4BAOAIEwhEg+DMAhjZB3TlgUwAAAABJRU5ErkJggg==" y="-6.36"/> </g> <g id="matplotlib.axis_1"> <g id="xtick_1"> <g id="line2d_1"> <defs> <path d="M 0 0 L 0 3.5 " id="m225dc936d9" style="stroke:#000000;stroke-width:0.8;"/> </defs> <g> <use style="stroke:#000000;stroke-width:0.8;" x="124.13625" xlink:href="#m225dc936d9" y="333.36"/> </g> </g> <g id="text_1"> <!-- −10 --> <g transform="translate(113.583906 347.958438)scale(0.1 -0.1)"> <defs> <path d="M 10.59375 35.5 L 73.1875 35.5 L 73.1875 27.203125 L 10.59375 27.203125 z " id="DejaVuSans-8722"/> <path d="M 12.40625 8.296875 L 28.515625 8.296875 L 28.515625 63.921875 L 10.984375 60.40625 L 10.984375 69.390625 L 28.421875 72.90625 L 38.28125 72.90625 L 38.28125 8.296875 L 54.390625 8.296875 L 54.390625 0 L 12.40625 0 z " id="DejaVuSans-49"/> <path d="M 31.78125 66.40625 Q 24.171875 66.40625 20.328125 58.90625 Q 16.5 51.421875 16.5 36.375 Q 16.5 21.390625 20.328125 13.890625 Q 24.171875 6.390625 31.78125 6.390625 Q 39.453125 6.390625 43.28125 13.890625 Q 47.125 21.390625 47.125 36.375 Q 47.125 51.421875 43.28125 58.90625 Q 39.453125 66.40625 31.78125 66.40625 z M 31.78125 74.21875 Q 44.046875 74.21875 50.515625 64.515625 Q 56.984375 54.828125 56.984375 36.375 Q 56.984375 17.96875 50.515625 8.265625 Q 44.046875 -1.421875 31.78125 -1.421875 Q 19.53125 -1.421875 13.0625 8.265625 Q 6.59375 17.96875 6.59375 36.375 Q 6.59375 54.828125 13.0625 64.515625 Q 19.53125 74.21875 31.78125 74.21875 z " id="DejaVuSans-48"/> </defs> <use xlink:href="#DejaVuSans-8722"/> <use x="83.789062" xlink:href="#DejaVuSans-49"/> <use x="147.412109" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="xtick_2"> <g id="line2d_2"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="226.06125" xlink:href="#m225dc936d9" y="333.36"/> </g> </g> <g id="text_2"> <!-- 0 --> <g transform="translate(222.88 347.958438)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="xtick_3"> <g id="line2d_3"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="327.98625" xlink:href="#m225dc936d9" y="333.36"/> </g> </g> <g id="text_3"> <!-- 10 --> <g transform="translate(321.62375 347.958438)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-49"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="xtick_4"> <g id="line2d_4"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="429.91125" xlink:href="#m225dc936d9" y="333.36"/> </g> </g> <g id="text_4"> <!-- 20 --> <g transform="translate(423.54875 347.958438)scale(0.1 -0.1)"> <defs> <path d="M 19.1875 8.296875 L 53.609375 8.296875 L 53.609375 0 L 7.328125 0 L 7.328125 8.296875 Q 12.9375 14.109375 22.625 23.890625 Q 32.328125 33.6875 34.8125 36.53125 Q 39.546875 41.84375 41.421875 45.53125 Q 43.3125 49.21875 43.3125 52.78125 Q 43.3125 58.59375 39.234375 62.25 Q 35.15625 65.921875 28.609375 65.921875 Q 23.96875 65.921875 18.8125 64.3125 Q 13.671875 62.703125 7.8125 59.421875 L 7.8125 69.390625 Q 13.765625 71.78125 18.9375 73 Q 24.125 74.21875 28.421875 74.21875 Q 39.75 74.21875 46.484375 68.546875 Q 53.21875 62.890625 53.21875 53.421875 Q 53.21875 48.921875 51.53125 44.890625 Q 49.859375 40.875 45.40625 35.40625 Q 44.1875 33.984375 37.640625 27.21875 Q 31.109375 20.453125 19.1875 8.296875 z " id="DejaVuSans-50"/> </defs> <use xlink:href="#DejaVuSans-50"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="xtick_5"> <g id="line2d_5"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="531.83625" xlink:href="#m225dc936d9" y="333.36"/> </g> </g> <g id="text_5"> <!-- 30 --> <g transform="translate(525.47375 347.958438)scale(0.1 -0.1)"> <defs> <path d="M 40.578125 39.3125 Q 47.65625 37.796875 51.625 33 Q 55.609375 28.21875 55.609375 21.1875 Q 55.609375 10.40625 48.1875 4.484375 Q 40.765625 -1.421875 27.09375 -1.421875 Q 22.515625 -1.421875 17.65625 -0.515625 Q 12.796875 0.390625 7.625 2.203125 L 7.625 11.71875 Q 11.71875 9.328125 16.59375 8.109375 Q 21.484375 6.890625 26.8125 6.890625 Q 36.078125 6.890625 40.9375 10.546875 Q 45.796875 14.203125 45.796875 21.1875 Q 45.796875 27.640625 41.28125 31.265625 Q 36.765625 34.90625 28.71875 34.90625 L 20.21875 34.90625 L 20.21875 43.015625 L 29.109375 43.015625 Q 36.375 43.015625 40.234375 45.921875 Q 44.09375 48.828125 44.09375 54.296875 Q 44.09375 59.90625 40.109375 62.90625 Q 36.140625 65.921875 28.71875 65.921875 Q 24.65625 65.921875 20.015625 65.03125 Q 15.375 64.15625 9.8125 62.3125 L 9.8125 71.09375 Q 15.4375 72.65625 20.34375 73.4375 Q 25.25 74.21875 29.59375 74.21875 Q 40.828125 74.21875 47.359375 69.109375 Q 53.90625 64.015625 53.90625 55.328125 Q 53.90625 49.265625 50.4375 45.09375 Q 46.96875 40.921875 40.578125 39.3125 z " id="DejaVuSans-51"/> </defs> <use xlink:href="#DejaVuSans-51"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="xtick_6"> <g id="line2d_6"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="633.76125" xlink:href="#m225dc936d9" y="333.36"/> </g> </g> <g id="text_6"> <!-- 40 --> <g transform="translate(627.39875 347.958438)scale(0.1 -0.1)"> <defs> <path d="M 37.796875 64.3125 L 12.890625 25.390625 L 37.796875 25.390625 z M 35.203125 72.90625 L 47.609375 72.90625 L 47.609375 25.390625 L 58.015625 25.390625 L 58.015625 17.1875 L 47.609375 17.1875 L 47.609375 0 L 37.796875 0 L 37.796875 17.1875 L 4.890625 17.1875 L 4.890625 26.703125 z " id="DejaVuSans-52"/> </defs> <use xlink:href="#DejaVuSans-52"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="xtick_7"> <g id="line2d_7"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="735.68625" xlink:href="#m225dc936d9" y="333.36"/> </g> </g> <g id="text_7"> <!-- 50 --> <g transform="translate(729.32375 347.958438)scale(0.1 -0.1)"> <defs> <path d="M 10.796875 72.90625 L 49.515625 72.90625 L 49.515625 64.59375 L 19.828125 64.59375 L 19.828125 46.734375 Q 21.96875 47.46875 24.109375 47.828125 Q 26.265625 48.1875 28.421875 48.1875 Q 40.625 48.1875 47.75 41.5 Q 54.890625 34.8125 54.890625 23.390625 Q 54.890625 11.625 47.5625 5.09375 Q 40.234375 -1.421875 26.90625 -1.421875 Q 22.3125 -1.421875 17.546875 -0.640625 Q 12.796875 0.140625 7.71875 1.703125 L 7.71875 11.625 Q 12.109375 9.234375 16.796875 8.0625 Q 21.484375 6.890625 26.703125 6.890625 Q 35.15625 6.890625 40.078125 11.328125 Q 45.015625 15.765625 45.015625 23.390625 Q 45.015625 31 40.078125 35.4375 Q 35.15625 39.890625 26.703125 39.890625 Q 22.75 39.890625 18.8125 39.015625 Q 14.890625 38.140625 10.796875 36.28125 z " id="DejaVuSans-53"/> </defs> <use xlink:href="#DejaVuSans-53"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> </g> <g id="matplotlib.axis_2"> <g id="ytick_1"> <g id="line2d_8"> <defs> <path d="M 0 0 L -3.5 0 " id="m019c7e846d" style="stroke:#000000;stroke-width:0.8;"/> </defs> <g> <use style="stroke:#000000;stroke-width:0.8;" x="26.925" xlink:href="#m019c7e846d" y="328.26375"/> </g> </g> <g id="text_8"> <!-- 0 --> <g transform="translate(13.5625 332.062969)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="ytick_2"> <g id="line2d_9"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="26.925" xlink:href="#m019c7e846d" y="277.30125"/> </g> </g> <g id="text_9"> <!-- 5 --> <g transform="translate(13.5625 281.100469)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-53"/> </g> </g> </g> <g id="ytick_3"> <g id="line2d_10"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="26.925" xlink:href="#m019c7e846d" y="226.33875"/> </g> </g> <g id="text_10"> <!-- 10 --> <g transform="translate(7.2 230.137969)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-49"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="ytick_4"> <g id="line2d_11"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="26.925" xlink:href="#m019c7e846d" y="175.37625"/> </g> </g> <g id="text_11"> <!-- 15 --> <g transform="translate(7.2 179.175469)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-49"/> <use x="63.623047" xlink:href="#DejaVuSans-53"/> </g> </g> </g> <g id="ytick_5"> <g id="line2d_12"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="26.925" xlink:href="#m019c7e846d" y="124.41375"/> </g> </g> <g id="text_12"> <!-- 20 --> <g transform="translate(7.2 128.212969)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-50"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="ytick_6"> <g id="line2d_13"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="26.925" xlink:href="#m019c7e846d" y="73.45125"/> </g> </g> <g id="text_13"> <!-- 25 --> <g transform="translate(7.2 77.250469)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-50"/> <use x="63.623047" xlink:href="#DejaVuSans-53"/> </g> </g> </g> <g id="ytick_7"> <g id="line2d_14"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="26.925" xlink:href="#m019c7e846d" y="22.48875"/> </g> </g> <g id="text_14"> <!-- 30 --> <g transform="translate(7.2 26.287969)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-51"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> </g> <g id="patch_3"> <path d="M 26.925 333.36 L 26.925 7.2 " style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> </g> <g id="patch_4"> <path d="M 741.165 333.36 L 741.165 7.2 " style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> </g> <g id="patch_5"> <path d="M 26.925 333.36 L 741.165 333.36 " style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> </g> <g id="patch_6"> <path d="M 26.925 7.2 L 741.165 7.2 " style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> </g> </g> <g id="axes_2"> <g id="patch_7"> <path clip-path="url(#p4da09dcd2a)" d="M 785.805 333.36 L 785.805 332.085938 L 785.805 8.474063 L 785.805 7.2 L 802.113 7.2 L 802.113 8.474063 L 802.113 332.085938 L 802.113 333.36 z " style="fill:#ffffff;stroke:#ffffff;stroke-linejoin:miter;stroke-width:0.01;"/> </g> <image height="326" id="image1be7469932" transform="scale(1 -1)translate(0 -326)" width="16" x="786" xlink:href="data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAABAAAAFGCAYAAABjUx8/AAABrklEQVR4nO2cwW3EMAwEKdmlpYT0X0qcIobArATe37r1aJYWDvCtn/X7Ffi8tTa5vt61F1tAT8C+vjpuoThEm8HalAG8hbfsBA0iUQ/WmDgitTDgEC8Qaco0IjVA/DgDmEDfxgAT9V0IYDAQIxiw6xPa+OkT6YMQA0TCHlzQRr9MVKSENvJboAvoP8L4DEakgVgZEPWxfr4HEQcMuECAiQMRJ5hDVgTE8xlMG0ekpgTs+gSI+i4EMPBF8tt4PoMxMUKkYTBtrGljS4IOBuyM4jMIgHg+A+yBD9GfBz4DXmfdRH8bAyAmdMFmAH+Lu4IBX6Dssd7ggb0LNEEERJzAZoA9wAx0ExMg2gkSGFCRNk8wEC+AuOHT2YcYIJLuQQDEBpHsXQiAaN8C3sYrGNgLBLSxgcGfm2AgdjB47IFyg0jP8QywBx1t1BnABAHPxgeLRFWmCTogQgZ+nWmCCIgXjHXKYNrIxzo+oTSYaENsMBEf83QG/kQ6v4380WbPxAQG+kRKOB9gBvYC8D3ZCBNxggAG8IWoBgY4gf2eawNEuEADRIah46SKGcB/qdIZ/AMyVI2OEN2MIAAAAABJRU5ErkJggg==" y="-7"/> <g id="matplotlib.axis_3"/> <g id="matplotlib.axis_4"> <g id="ytick_8"> <g id="line2d_15"> <defs> <path d="M 0 0 L 3.5 0 " id="m8a31f06eee" style="stroke:#000000;stroke-width:0.8;"/> </defs> <g> <use style="stroke:#000000;stroke-width:0.8;" x="802.113" xlink:href="#m8a31f06eee" y="291.918742"/> </g> </g> <g id="text_15"> <!-- 0.005 --> <g transform="translate(809.113 295.71796)scale(0.1 -0.1)"> <defs> <path d="M 10.6875 12.40625 L 21 12.40625 L 21 0 L 10.6875 0 z " id="DejaVuSans-46"/> </defs> <use xlink:href="#DejaVuSans-48"/> <use x="63.623047" xlink:href="#DejaVuSans-46"/> <use x="95.410156" xlink:href="#DejaVuSans-48"/> <use x="159.033203" xlink:href="#DejaVuSans-48"/> <use x="222.65625" xlink:href="#DejaVuSans-53"/> </g> </g> </g> <g id="ytick_9"> <g id="line2d_16"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="802.113" xlink:href="#m8a31f06eee" y="250.466707"/> </g> </g> <g id="text_16"> <!-- 0.010 --> <g transform="translate(809.113 254.265926)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> <use x="63.623047" xlink:href="#DejaVuSans-46"/> <use x="95.410156" xlink:href="#DejaVuSans-48"/> <use x="159.033203" xlink:href="#DejaVuSans-49"/> <use x="222.65625" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="ytick_10"> <g id="line2d_17"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="802.113" xlink:href="#m8a31f06eee" y="209.014673"/> </g> </g> <g id="text_17"> <!-- 0.015 --> <g transform="translate(809.113 212.813892)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> <use x="63.623047" xlink:href="#DejaVuSans-46"/> <use x="95.410156" xlink:href="#DejaVuSans-48"/> <use x="159.033203" xlink:href="#DejaVuSans-49"/> <use x="222.65625" xlink:href="#DejaVuSans-53"/> </g> </g> </g> <g id="ytick_11"> <g id="line2d_18"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="802.113" xlink:href="#m8a31f06eee" y="167.562639"/> </g> </g> <g id="text_18"> <!-- 0.020 --> <g transform="translate(809.113 171.361858)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> <use x="63.623047" xlink:href="#DejaVuSans-46"/> <use x="95.410156" xlink:href="#DejaVuSans-48"/> <use x="159.033203" xlink:href="#DejaVuSans-50"/> <use x="222.65625" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="ytick_12"> <g id="line2d_19"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="802.113" xlink:href="#m8a31f06eee" y="126.110605"/> </g> </g> <g id="text_19"> <!-- 0.025 --> <g transform="translate(809.113 129.909824)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> <use x="63.623047" xlink:href="#DejaVuSans-46"/> <use x="95.410156" xlink:href="#DejaVuSans-48"/> <use x="159.033203" xlink:href="#DejaVuSans-50"/> <use x="222.65625" xlink:href="#DejaVuSans-53"/> </g> </g> </g> <g id="ytick_13"> <g id="line2d_20"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="802.113" xlink:href="#m8a31f06eee" y="84.658571"/> </g> </g> <g id="text_20"> <!-- 0.030 --> <g transform="translate(809.113 88.457789)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> <use x="63.623047" xlink:href="#DejaVuSans-46"/> <use x="95.410156" xlink:href="#DejaVuSans-48"/> <use x="159.033203" xlink:href="#DejaVuSans-51"/> <use x="222.65625" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="ytick_14"> <g id="line2d_21"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="802.113" xlink:href="#m8a31f06eee" y="43.206536"/> </g> </g> <g id="text_21"> <!-- 0.035 --> <g transform="translate(809.113 47.005755)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> <use x="63.623047" xlink:href="#DejaVuSans-46"/> <use x="95.410156" xlink:href="#DejaVuSans-48"/> <use x="159.033203" xlink:href="#DejaVuSans-51"/> <use x="222.65625" xlink:href="#DejaVuSans-53"/> </g> </g> </g> </g> <g id="patch_8"> <path d="M 785.805 333.36 L 785.805 332.085938 L 785.805 8.474063 L 785.805 7.2 L 802.113 7.2 L 802.113 8.474063 L 802.113 332.085938 L 802.113 333.36 z " style="fill:none;stroke:#000000;stroke-linejoin:miter;stroke-width:0.8;"/> </g> </g> </g> <defs> <clipPath id="pb06035e813"> <rect height="326.16" width="714.24" x="26.925" y="7.2"/> </clipPath> <clipPath id="p4da09dcd2a"> <rect height="326.16" width="16.308" x="785.805" y="7.2"/> </clipPath> </defs> </svg>)
%% Cell type:markdown id: tags:
# Version 2: Normal boundary handling
%% Cell type:code id: tags:
``` python
ldc = create_lid_driven_cavity(domain_size, relaxation_rate=relaxation_rate, lid_velocity=lid_velocity)
ldc.run(time_steps)
vel_version2 = ldc.velocity[:, :, :, :]
plt.vector_field_magnitude(vel_version2[:, :, domain_size[2]//2, :])
plt.colorbar();
plt.colorbar()
```
%%%% Output: execute_result
<matplotlib.colorbar.Colorbar at 0x7fa8b15ff7f0>
%%%% Output: display_data
![]()
![]()
![](data:image/svg+xml;utf8,<?xml version="1.0" encoding="utf-8" standalone="no"?> <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"> <!-- Created with matplotlib (https://matplotlib.org/) --> <svg height="357.238125pt" version="1.1" viewBox="0 0 844.941125 357.238125" width="844.941125pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"> <metadata> <rdf:RDF xmlns:cc="http://creativecommons.org/ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <cc:Work> <dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage"/> <dc:date>2020-10-27T11:08:27.352601</dc:date> <dc:format>image/svg+xml</dc:format> <dc:creator> <cc:Agent> <dc:title>Matplotlib v3.3.1, https://matplotlib.org/</dc:title> </cc:Agent> </dc:creator> </cc:Work> </rdf:RDF> </metadata> <defs> <style type="text/css">*{stroke-linecap:butt;stroke-linejoin:round;}</style> </defs> <g id="figure_1"> <g id="patch_1"> <path d="M 0 357.238125 L 844.941125 357.238125 L 844.941125 0 L 0 0 z " style="fill:none;"/> </g> <g id="axes_1"> <g id="patch_2"> <path d="M 26.925 333.36 L 741.165 333.36 L 741.165 7.2 L 26.925 7.2 z " style="fill:#ffffff;"/> </g> <g clip-path="url(#p75585fa4a0)"> <image height="327" id="image9296eb896c" transform="scale(1 -1)translate(0 -327)" width="327" x="220.965" xlink:href="data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAAUcAAAFHCAYAAAAySY5rAAAMwElEQVR4nO3dsY4kWVoF4BtZWdVdNTO7s8sIJMR6rAE4eBjrrLEeLuIdVtqnQMLkOXgHBA4+/loYSAMCtAua7pnura7MwMDBOEIn0A2iq/r77Ku4GZERJ8PIo3/52fJn64D/aVmO/gQfr9Xj8qk4Hf0BAD5GwhEgEI4AgXAECIQjQCAcAQLhCBAIR4BAOAIE50N3P6qJscz/TVhOz+BcJn/G5Rk0adbZjZbrhuOt17l719vu0OI56FyObCR5cwQIhCNAIBwBAuEIEAhHgEA4AgTCESAQjgCBcAQI5jdktrQmJjdV6pbKc2iVnMrPuEdLpd27tEeTpm2+1Dtfd2iAtO2Ocu/6nG+6bbe1fborOb+ds+F7mdym8eYIEAhHgEA4AgTCESAQjgCBcAQIhCNAIBwBAuEIEAhHgKCvDx44TGmXWuBkn2ItsDV9yNUe9rg2bSWx3HuZXHFct5zytfyMp7IKuccQsPaZKe9Hb44AgXAECIQjQCAcAQLhCBAIR4BAOAIEwhEgEI4AwQ4Dtp5B3m4YmjW9+TLbUfsyz+x7bI9hYUfZkidred7l9fZkAQTCESAQjgCBcAQIhCNAIBwBAuEIEAhHgEA4AgTn+t/5OzRfnsNsmOk+9sYN82i0/C/Ldpg10+ZE2aTxBAIEwhEgEI4AgXAECIQjQCAcAQLhCBAIR4BAOAIE02fI1K2XPZR713NhxtBUmWGPBshL+l5mN2nK4y0bvpe1vdxbGi2FLXmyqU1TeEF3GMA8whEgEI4AgXAECIQjQCAcAQLhCBAIR4BAOAIEwhEgqOuDu9QC24E4R1YSWwcNztpUhSyt69wa1nOwx3Vsvajr3T6r17nDsMboM2q9dMfz5ggQCEeAQDgCBMIRIBCOAIFwBAiEI0AgHAEC4QgQTB+wVbdedlC3HLa0VF5Q84Vn7qBBXGP0w7jqts/sJs0WS/cZvTkCBMIRIBCOAIFwBAiEI0AgHAEC4QgQCEeAQDgCBOe60bJH86X8l/wuzZeDfJLNl2fwvRypvSf69snkJs2GY05v0hzIXQsQCEeAQDgCBMIRIBCOAIFwBAiEI0AgHAEC4QgQ9DNk2pkPGxzWfNnSUmmbAS+o+TK9sXGgQ7+Xek5Kdx0Pa9KMMX0uTd2k2eP17dIt8+YIEAhHgEA4AgTCESAQjgCBcAQIhCNAIBwBAuEIEPQNmdKmRkL7D/3ZLYcNzYDpDYsdmka1sonRekmtoNoe39/kYy5lmWVTw2n2XJrJTZox5je2vDkCBMIRIBCOAIFwBAiEI0AgHAEC4QgQCEeAQDgCBMIRIDgvR9bZDhqwta3i+IIqcpMHPj0LL+n7a5Xn3NYMt1hn1wx30GaeN0eAQDgCBMIRIBCOAIFwBAiEI0AgHAEC4QgQCEeAYPqArU1tlnbIzpFDrpaP/Pdj3aFp8Cm2Slof+/2wxWn+vVMP92pzYsvQrMulX1t4Qd80wDzCESAQjgCBcAQIhCNAIBwBAuEIEAhHgEA4AgTntZwXstyUR9zQZqmbL21jY4/2wlFtkXaOy0tqbLw0H33TqH2oR38/lq2bukmzQ55cy3PxZAEEwhEgEI4AgXAECIQjQCAcAQLhCBAIR4BAOAIE9QyZ6XNctmhbIHs0Eo46bz9bn44jn61Wez9e24Vz573swSMIEAhHgEA4AgTCESAQjgCBcAQIhCNAIBwBAuEIENQNmXUtZ81s2b1ttMxuvmxpJBw2o6UcsrFF+R0+i8bGc3DUvdM+L+1cmP9eXO7dHq+cX3PpmzRtRrW8OQIEwhEgEI4AgXAECIQjQCAcAQLhCBAIR4BAOAIEwhEgqOuDtdOGvJ1dr2prb1v23WNoV6WsV22pgGkF/v866N5ph+GtWx6/enDW3JrhclM+B2OM9empXtvw5ggQCEeAQDgCBMIRIBCOAIFwBAiEI0AgHAEC4QgQnMfa/aO9/af6ct5QumkbBOU//jftXaoHi00eSlUPCzqswdObfW3GmD9MaQ/1ec++Pnvcs+fuPWqtSyplk2ZDQ6bNqPXxsVrnzREgEI4AgXAECIQjQCAcAQLhCBAIR4BAOAIEwhEgONczGnZoOYyy0XJY02DL3u3snGvZSGr3PbIpssc9UW990PXZ45y3zF36yC1tSa0cYLOuH/rN2xZfue7lfCsAEwlHgEA4AgTCESAQjgCBcAQIhCNAIBwBAuEIEJzrGQ3tv/hv+rxdbm/rtZW2DbGl5TC7idFexz0aIGU75yU1Nmp7XJvZbZq6rVWuu264d9r77K58ptu9L+X3MsZYlm6AzaohA/B/JxwBAuEIEAhHgEA4AgTCESAQjgCBcAQIhCNAIBwBgnNb41le3XXr7u/73duaU2uP4Ud1PW+HytZsbVX0U3TkoLn2OZg9aO6mP5e1/IxLW/dbytz5rM+T+sl6975a5s0RIBCOAIFwBAiEI0AgHAEC4QgQCEeAQDgCBMIRIDi3C5dXr6p166t+aNZStkXaf+fXLYfLpVs3tvzjv/2M5cbtZ+znD81vJLVtn9n7Hr13qx6I1b2j1M9Ba8uwsHN3467t89IONNvQSKqf1fI6enMECIQjQCAcAQLhCBAIR4BAOAIEwhEgEI4AgXAECM6nzz8rV86fP3L9/PXU4y0fylbJqS4GjbUt/Dx1e9f/4m/bPqcNM2nqeTildgbJ7H3HGOPmoN/1DY2Ntf2Mk5s0ezyra/kZ1/u+Idc4venmvYwx6nvi9PDQret3Bvh0CEeAQDgCBMIRIBCOAIFwBAiEI0AgHAEC4QgQnNt5Cutd98/39f6u3vz60K1dntq5FOXGW34SymZA25uY3hXZ0D5pZ/ZMb7RsaJVMP2Z7Lm0DZEszZ/Z5l82X6+uyAbbl812663i96/Ze23bVhjk3p7dlm+bN2+549c4AnxDhCBAIR4BAOAIEwhEgEI4AgXAECIQjQCAcAYLz+v431cL1y27WzOP3+4bM+duncmGX4Zcvu5k0p8dy1swY4/T+Q7VuvS3ndpSzYZYP5bW5trWgDa2EslXSNm7WsoW1Rb337DkuW7Stm1dlo6Vti7SFsod+ltLTfXffnp7mtqvef7+fSXN3133G89f/Wq3z5ggQCEeAQDgCBMIRIBCOAIFwBAiEI0AgHAEC4QgQCEeA4Hz66ofVwvff62qBa1n1G2OMS1lfWic3u+pBU2NDLbCsbC1L2+0qr+PsYVgbrAf+tNaVxLYWuEd9cHJ1cfZQqvXcn/OlrA9+KI+5lPftuuF7eSyrhuff/q1qnTdHgEA4AgTCESAQjgCBcAQIhCNAIBwBAuEIEAhHgOB8+ep71cLZLZUxxnjze13r5va7rlXy8C/dsLCxoVRyfd396/70XTeIaykHdtU2NGSWp3Kw2OzWzR4tnrY50e7dtlRu+6FUo7ze9ffy8KpadnnVvfMsH/rhbLdvu4Fvb37Ufcb3P+iu98O/9Z9xLN15X3/webXOmyNAIBwBAuEIEAhHgEA4AgTCESAQjgCBcAQIhCNAcD69eV8t/OaPuybNh8/7Ks3dN1174e5N9y/502PZSLj0/7o/fffYHfPtu+6AH7qGzPrUNRLGY9+4uV4mN2Su3XVc6+Pt0KQpZ80sbeOmnM8yxhjLuWzTlK2b0zdlW+v+dbVufejWjTHG9a77jPevu1kzj1905/Iff9Dnyfm77rv54pddk86bI0AgHAEC4QgQCEeAQDgCBMIRIBCOAIFwBAiEI0BwbtsQv/qTrrFxetv9Q36MMX7819+Wx+xaPO3MjvHN227dGGN5uK/Wra+7eTjjVdcMWF93szjW2/561z+F7TyVsn2yi3bvtnXTLttwym0T6/Suazldy3bOUj7Ty6/+s1o3xhg3N9199vC+a5Q9/FN3Lr/8+ZfVujHGuPmj7rl++vvumfbmCBAIR4BAOAIEwhEgEI4AgXAECIQjQCAcAQLhCBAIR4Bg+f2//Kuya9Qd8Ed/2w2vGWOM60130PdfdZW7dz/ssv7ps2rZGGOMazkj6Vq2B6933eVu9123/Lydur3rYx7YHtxS42ss7WyvLTPAyrVLOe/t9FQOCytbtKOfMzfO77q9b990x7v9trs4979uT2aMf/5JV3Fcb7q9vTkCBMIRIBCOAIFwBAiEI0AgHAEC4QgQCEeAQDgCBOeb8p/vv/PTr6t1v/jzv6s3//baDZH67NS1bn58++/Vui9O/b/uL2XL4Yty4NPD0rV9WjflMKwxxjiPDcO4DnCz9L/Vl7Wrd2w55sx9xxjjWlZkTmXV6Gl09+2bazfk6nbDtbkpP+M/dnP4xq8vD9W63z2XlZsxxl98/afVun/4mz+s1nlzBAiEI0AgHAEC4QgQCEeAQDgCBMIRIBCOAIFwBAj+CyCBMSw3IXNSAAAAAElFTkSuQmCC" y="-6.36"/> </g> <g id="matplotlib.axis_1"> <g id="xtick_1"> <g id="line2d_1"> <defs> <path d="M 0 0 L 0 3.5 " id="m35d5e751ae" style="stroke:#000000;stroke-width:0.8;"/> </defs> <g> <use style="stroke:#000000;stroke-width:0.8;" x="124.13625" xlink:href="#m35d5e751ae" y="333.36"/> </g> </g> <g id="text_1"> <!-- −10 --> <g transform="translate(113.583906 347.958438)scale(0.1 -0.1)"> <defs> <path d="M 10.59375 35.5 L 73.1875 35.5 L 73.1875 27.203125 L 10.59375 27.203125 z " id="DejaVuSans-8722"/> <path d="M 12.40625 8.296875 L 28.515625 8.296875 L 28.515625 63.921875 L 10.984375 60.40625 L 10.984375 69.390625 L 28.421875 72.90625 L 38.28125 72.90625 L 38.28125 8.296875 L 54.390625 8.296875 L 54.390625 0 L 12.40625 0 z " id="DejaVuSans-49"/> <path d="M 31.78125 66.40625 Q 24.171875 66.40625 20.328125 58.90625 Q 16.5 51.421875 16.5 36.375 Q 16.5 21.390625 20.328125 13.890625 Q 24.171875 6.390625 31.78125 6.390625 Q 39.453125 6.390625 43.28125 13.890625 Q 47.125 21.390625 47.125 36.375 Q 47.125 51.421875 43.28125 58.90625 Q 39.453125 66.40625 31.78125 66.40625 z M 31.78125 74.21875 Q 44.046875 74.21875 50.515625 64.515625 Q 56.984375 54.828125 56.984375 36.375 Q 56.984375 17.96875 50.515625 8.265625 Q 44.046875 -1.421875 31.78125 -1.421875 Q 19.53125 -1.421875 13.0625 8.265625 Q 6.59375 17.96875 6.59375 36.375 Q 6.59375 54.828125 13.0625 64.515625 Q 19.53125 74.21875 31.78125 74.21875 z " id="DejaVuSans-48"/> </defs> <use xlink:href="#DejaVuSans-8722"/> <use x="83.789062" xlink:href="#DejaVuSans-49"/> <use x="147.412109" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="xtick_2"> <g id="line2d_2"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="226.06125" xlink:href="#m35d5e751ae" y="333.36"/> </g> </g> <g id="text_2"> <!-- 0 --> <g transform="translate(222.88 347.958438)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="xtick_3"> <g id="line2d_3"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="327.98625" xlink:href="#m35d5e751ae" y="333.36"/> </g> </g> <g id="text_3"> <!-- 10 --> <g transform="translate(321.62375 347.958438)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-49"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="xtick_4"> <g id="line2d_4"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="429.91125" xlink:href="#m35d5e751ae" y="333.36"/> </g> </g> <g id="text_4"> <!-- 20 --> <g transform="translate(423.54875 347.958438)scale(0.1 -0.1)"> <defs> <path d="M 19.1875 8.296875 L 53.609375 8.296875 L 53.609375 0 L 7.328125 0 L 7.328125 8.296875 Q 12.9375 14.109375 22.625 23.890625 Q 32.328125 33.6875 34.8125 36.53125 Q 39.546875 41.84375 41.421875 45.53125 Q 43.3125 49.21875 43.3125 52.78125 Q 43.3125 58.59375 39.234375 62.25 Q 35.15625 65.921875 28.609375 65.921875 Q 23.96875 65.921875 18.8125 64.3125 Q 13.671875 62.703125 7.8125 59.421875 L 7.8125 69.390625 Q 13.765625 71.78125 18.9375 73 Q 24.125 74.21875 28.421875 74.21875 Q 39.75 74.21875 46.484375 68.546875 Q 53.21875 62.890625 53.21875 53.421875 Q 53.21875 48.921875 51.53125 44.890625 Q 49.859375 40.875 45.40625 35.40625 Q 44.1875 33.984375 37.640625 27.21875 Q 31.109375 20.453125 19.1875 8.296875 z " id="DejaVuSans-50"/> </defs> <use xlink:href="#DejaVuSans-50"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="xtick_5"> <g id="line2d_5"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="531.83625" xlink:href="#m35d5e751ae" y="333.36"/> </g> </g> <g id="text_5"> <!-- 30 --> <g transform="translate(525.47375 347.958438)scale(0.1 -0.1)"> <defs> <path d="M 40.578125 39.3125 Q 47.65625 37.796875 51.625 33 Q 55.609375 28.21875 55.609375 21.1875 Q 55.609375 10.40625 48.1875 4.484375 Q 40.765625 -1.421875 27.09375 -1.421875 Q 22.515625 -1.421875 17.65625 -0.515625 Q 12.796875 0.390625 7.625 2.203125 L 7.625 11.71875 Q 11.71875 9.328125 16.59375 8.109375 Q 21.484375 6.890625 26.8125 6.890625 Q 36.078125 6.890625 40.9375 10.546875 Q 45.796875 14.203125 45.796875 21.1875 Q 45.796875 27.640625 41.28125 31.265625 Q 36.765625 34.90625 28.71875 34.90625 L 20.21875 34.90625 L 20.21875 43.015625 L 29.109375 43.015625 Q 36.375 43.015625 40.234375 45.921875 Q 44.09375 48.828125 44.09375 54.296875 Q 44.09375 59.90625 40.109375 62.90625 Q 36.140625 65.921875 28.71875 65.921875 Q 24.65625 65.921875 20.015625 65.03125 Q 15.375 64.15625 9.8125 62.3125 L 9.8125 71.09375 Q 15.4375 72.65625 20.34375 73.4375 Q 25.25 74.21875 29.59375 74.21875 Q 40.828125 74.21875 47.359375 69.109375 Q 53.90625 64.015625 53.90625 55.328125 Q 53.90625 49.265625 50.4375 45.09375 Q 46.96875 40.921875 40.578125 39.3125 z " id="DejaVuSans-51"/> </defs> <use xlink:href="#DejaVuSans-51"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="xtick_6"> <g id="line2d_6"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="633.76125" xlink:href="#m35d5e751ae" y="333.36"/> </g> </g> <g id="text_6"> <!-- 40 --> <g transform="translate(627.39875 347.958438)scale(0.1 -0.1)"> <defs> <path d="M 37.796875 64.3125 L 12.890625 25.390625 L 37.796875 25.390625 z M 35.203125 72.90625 L 47.609375 72.90625 L 47.609375 25.390625 L 58.015625 25.390625 L 58.015625 17.1875 L 47.609375 17.1875 L 47.609375 0 L 37.796875 0 L 37.796875 17.1875 L 4.890625 17.1875 L 4.890625 26.703125 z " id="DejaVuSans-52"/> </defs> <use xlink:href="#DejaVuSans-52"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="xtick_7"> <g id="line2d_7"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="735.68625" xlink:href="#m35d5e751ae" y="333.36"/> </g> </g> <g id="text_7"> <!-- 50 --> <g transform="translate(729.32375 347.958438)scale(0.1 -0.1)"> <defs> <path d="M 10.796875 72.90625 L 49.515625 72.90625 L 49.515625 64.59375 L 19.828125 64.59375 L 19.828125 46.734375 Q 21.96875 47.46875 24.109375 47.828125 Q 26.265625 48.1875 28.421875 48.1875 Q 40.625 48.1875 47.75 41.5 Q 54.890625 34.8125 54.890625 23.390625 Q 54.890625 11.625 47.5625 5.09375 Q 40.234375 -1.421875 26.90625 -1.421875 Q 22.3125 -1.421875 17.546875 -0.640625 Q 12.796875 0.140625 7.71875 1.703125 L 7.71875 11.625 Q 12.109375 9.234375 16.796875 8.0625 Q 21.484375 6.890625 26.703125 6.890625 Q 35.15625 6.890625 40.078125 11.328125 Q 45.015625 15.765625 45.015625 23.390625 Q 45.015625 31 40.078125 35.4375 Q 35.15625 39.890625 26.703125 39.890625 Q 22.75 39.890625 18.8125 39.015625 Q 14.890625 38.140625 10.796875 36.28125 z " id="DejaVuSans-53"/> </defs> <use xlink:href="#DejaVuSans-53"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> </g> <g id="matplotlib.axis_2"> <g id="ytick_1"> <g id="line2d_8"> <defs> <path d="M 0 0 L -3.5 0 " id="mbef11f7315" style="stroke:#000000;stroke-width:0.8;"/> </defs> <g> <use style="stroke:#000000;stroke-width:0.8;" x="26.925" xlink:href="#mbef11f7315" y="328.26375"/> </g> </g> <g id="text_8"> <!-- 0 --> <g transform="translate(13.5625 332.062969)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="ytick_2"> <g id="line2d_9"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="26.925" xlink:href="#mbef11f7315" y="277.30125"/> </g> </g> <g id="text_9"> <!-- 5 --> <g transform="translate(13.5625 281.100469)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-53"/> </g> </g> </g> <g id="ytick_3"> <g id="line2d_10"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="26.925" xlink:href="#mbef11f7315" y="226.33875"/> </g> </g> <g id="text_10"> <!-- 10 --> <g transform="translate(7.2 230.137969)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-49"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="ytick_4"> <g id="line2d_11"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="26.925" xlink:href="#mbef11f7315" y="175.37625"/> </g> </g> <g id="text_11"> <!-- 15 --> <g transform="translate(7.2 179.175469)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-49"/> <use x="63.623047" xlink:href="#DejaVuSans-53"/> </g> </g> </g> <g id="ytick_5"> <g id="line2d_12"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="26.925" xlink:href="#mbef11f7315" y="124.41375"/> </g> </g> <g id="text_12"> <!-- 20 --> <g transform="translate(7.2 128.212969)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-50"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="ytick_6"> <g id="line2d_13"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="26.925" xlink:href="#mbef11f7315" y="73.45125"/> </g> </g> <g id="text_13"> <!-- 25 --> <g transform="translate(7.2 77.250469)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-50"/> <use x="63.623047" xlink:href="#DejaVuSans-53"/> </g> </g> </g> <g id="ytick_7"> <g id="line2d_14"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="26.925" xlink:href="#mbef11f7315" y="22.48875"/> </g> </g> <g id="text_14"> <!-- 30 --> <g transform="translate(7.2 26.287969)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-51"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> </g> <g id="patch_3"> <path d="M 26.925 333.36 L 26.925 7.2 " style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> </g> <g id="patch_4"> <path d="M 741.165 333.36 L 741.165 7.2 " style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> </g> <g id="patch_5"> <path d="M 26.925 333.36 L 741.165 333.36 " style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> </g> <g id="patch_6"> <path d="M 26.925 7.2 L 741.165 7.2 " style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> </g> </g> <g id="axes_2"> <g id="patch_7"> <path clip-path="url(#p3d8b2788c0)" d="M 785.805 333.36 L 785.805 332.085938 L 785.805 8.474063 L 785.805 7.2 L 802.113 7.2 L 802.113 8.474063 L 802.113 332.085938 L 802.113 333.36 z " style="fill:#ffffff;stroke:#ffffff;stroke-linejoin:miter;stroke-width:0.01;"/> </g> <image height="326" id="imageca91ea68cd" transform="scale(1 -1)translate(0 -326)" width="16" x="786" xlink:href="data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAABAAAAFGCAYAAABjUx8/AAABrklEQVR4nO2cwW3EMAwEKdmlpYT0X0qcIobArATe37r1aJYWDvCtn/X7Ffi8tTa5vt61F1tAT8C+vjpuoThEm8HalAG8hbfsBA0iUQ/WmDgitTDgEC8Qaco0IjVA/DgDmEDfxgAT9V0IYDAQIxiw6xPa+OkT6YMQA0TCHlzQRr9MVKSENvJboAvoP8L4DEakgVgZEPWxfr4HEQcMuECAiQMRJ5hDVgTE8xlMG0ekpgTs+gSI+i4EMPBF8tt4PoMxMUKkYTBtrGljS4IOBuyM4jMIgHg+A+yBD9GfBz4DXmfdRH8bAyAmdMFmAH+Lu4IBX6Dssd7ggb0LNEEERJzAZoA9wAx0ExMg2gkSGFCRNk8wEC+AuOHT2YcYIJLuQQDEBpHsXQiAaN8C3sYrGNgLBLSxgcGfm2AgdjB47IFyg0jP8QywBx1t1BnABAHPxgeLRFWmCTogQgZ+nWmCCIgXjHXKYNrIxzo+oTSYaENsMBEf83QG/kQ6v4380WbPxAQG+kRKOB9gBvYC8D3ZCBNxggAG8IWoBgY4gf2eawNEuEADRIah46SKGcB/qdIZ/AMyVI2OEN2MIAAAAABJRU5ErkJggg==" y="-7"/> <g id="matplotlib.axis_3"/> <g id="matplotlib.axis_4"> <g id="ytick_8"> <g id="line2d_15"> <defs> <path d="M 0 0 L 3.5 0 " id="me59db57928" style="stroke:#000000;stroke-width:0.8;"/> </defs> <g> <use style="stroke:#000000;stroke-width:0.8;" x="802.113" xlink:href="#me59db57928" y="291.992282"/> </g> </g> <g id="text_15"> <!-- 0.005 --> <g transform="translate(809.113 295.791501)scale(0.1 -0.1)"> <defs> <path d="M 10.6875 12.40625 L 21 12.40625 L 21 0 L 10.6875 0 z " id="DejaVuSans-46"/> </defs> <use xlink:href="#DejaVuSans-48"/> <use x="63.623047" xlink:href="#DejaVuSans-46"/> <use x="95.410156" xlink:href="#DejaVuSans-48"/> <use x="159.033203" xlink:href="#DejaVuSans-48"/> <use x="222.65625" xlink:href="#DejaVuSans-53"/> </g> </g> </g> <g id="ytick_9"> <g id="line2d_16"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="802.113" xlink:href="#me59db57928" y="250.574889"/> </g> </g> <g id="text_16"> <!-- 0.010 --> <g transform="translate(809.113 254.374108)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> <use x="63.623047" xlink:href="#DejaVuSans-46"/> <use x="95.410156" xlink:href="#DejaVuSans-48"/> <use x="159.033203" xlink:href="#DejaVuSans-49"/> <use x="222.65625" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="ytick_10"> <g id="line2d_17"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="802.113" xlink:href="#me59db57928" y="209.157495"/> </g> </g> <g id="text_17"> <!-- 0.015 --> <g transform="translate(809.113 212.956714)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> <use x="63.623047" xlink:href="#DejaVuSans-46"/> <use x="95.410156" xlink:href="#DejaVuSans-48"/> <use x="159.033203" xlink:href="#DejaVuSans-49"/> <use x="222.65625" xlink:href="#DejaVuSans-53"/> </g> </g> </g> <g id="ytick_11"> <g id="line2d_18"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="802.113" xlink:href="#me59db57928" y="167.740101"/> </g> </g> <g id="text_18"> <!-- 0.020 --> <g transform="translate(809.113 171.53932)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> <use x="63.623047" xlink:href="#DejaVuSans-46"/> <use x="95.410156" xlink:href="#DejaVuSans-48"/> <use x="159.033203" xlink:href="#DejaVuSans-50"/> <use x="222.65625" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="ytick_12"> <g id="line2d_19"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="802.113" xlink:href="#me59db57928" y="126.322708"/> </g> </g> <g id="text_19"> <!-- 0.025 --> <g transform="translate(809.113 130.121927)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> <use x="63.623047" xlink:href="#DejaVuSans-46"/> <use x="95.410156" xlink:href="#DejaVuSans-48"/> <use x="159.033203" xlink:href="#DejaVuSans-50"/> <use x="222.65625" xlink:href="#DejaVuSans-53"/> </g> </g> </g> <g id="ytick_13"> <g id="line2d_20"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="802.113" xlink:href="#me59db57928" y="84.905314"/> </g> </g> <g id="text_20"> <!-- 0.030 --> <g transform="translate(809.113 88.704533)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> <use x="63.623047" xlink:href="#DejaVuSans-46"/> <use x="95.410156" xlink:href="#DejaVuSans-48"/> <use x="159.033203" xlink:href="#DejaVuSans-51"/> <use x="222.65625" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="ytick_14"> <g id="line2d_21"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="802.113" xlink:href="#me59db57928" y="43.487921"/> </g> </g> <g id="text_21"> <!-- 0.035 --> <g transform="translate(809.113 47.287139)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> <use x="63.623047" xlink:href="#DejaVuSans-46"/> <use x="95.410156" xlink:href="#DejaVuSans-48"/> <use x="159.033203" xlink:href="#DejaVuSans-51"/> <use x="222.65625" xlink:href="#DejaVuSans-53"/> </g> </g> </g> </g> <g id="patch_8"> <path d="M 785.805 333.36 L 785.805 332.085938 L 785.805 8.474063 L 785.805 7.2 L 802.113 7.2 L 802.113 8.474063 L 802.113 332.085938 L 802.113 333.36 z " style="fill:none;stroke:#000000;stroke-linejoin:miter;stroke-width:0.8;"/> </g> </g> </g> <defs> <clipPath id="p75585fa4a0"> <rect height="326.16" width="714.24" x="26.925" y="7.2"/> </clipPath> <clipPath id="p3d8b2788c0"> <rect height="326.16" width="16.308" x="785.805" y="7.2"/> </clipPath> </defs> </svg>)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment