Commit b556372a authored by Frederik Hennig's avatar Frederik Hennig
Browse files

Reverted API name change

parent 3842b69c
Pipeline #34471 passed with stages
in 40 minutes and 13 seconds
......@@ -8,11 +8,11 @@ from lbmpy.advanced_streaming.utility import get_accessor, Timestep
def pdf_initialization_assignments(lb_method, density, velocity, pdfs,
streaming_pattern='pull', timestep=Timestep.BOTH,
streaming_pattern='pull', previous_timestep=Timestep.BOTH,
set_pre_collision_pdfs=False):
"""Assignments to initialize the pdf field with equilibrium"""
if isinstance(pdfs, Field):
accessor = get_accessor(streaming_pattern, timestep)
accessor = get_accessor(streaming_pattern, previous_timestep)
if set_pre_collision_pdfs:
field_accesses = accessor.read(pdfs, lb_method.stencil)
else:
......@@ -32,10 +32,10 @@ def pdf_initialization_assignments(lb_method, density, velocity, pdfs,
def macroscopic_values_getter(lb_method, density, velocity, pdfs,
streaming_pattern='pull', timestep=Timestep.BOTH,
streaming_pattern='pull', previous_timestep=Timestep.BOTH,
use_pre_collision_pdfs=False):
if isinstance(pdfs, Field):
accessor = get_accessor(streaming_pattern, timestep)
accessor = get_accessor(streaming_pattern, previous_timestep)
if use_pre_collision_pdfs:
field_accesses = accessor.read(pdfs, lb_method.stencil)
else:
......
......@@ -105,14 +105,14 @@ def test_fully_periodic_flow(target, stencil, streaming_pattern):
setter = macroscopic_values_setter(
lb_method, density, velocity, pdfs,
streaming_pattern=streaming_pattern, timestep=zeroth_timestep)
streaming_pattern=streaming_pattern, previous_timestep=zeroth_timestep)
setter_kernel = create_kernel(setter, ghost_layers=1, target=target).compile()
getter_kernels = []
for t in timesteps:
getter = macroscopic_values_getter(
lb_method, density_field, velocity_field, pdfs,
streaming_pattern=streaming_pattern, timestep=t)
streaming_pattern=streaming_pattern, previous_timestep=t)
getter_kernels.append(create_kernel(getter, ghost_layers=1, target=target).compile())
# Periodicity
......
......@@ -106,14 +106,14 @@ class PeriodicPipeFlow:
setter = macroscopic_values_setter(
self.lb_method, self.density, self.velocity, self.pdfs,
streaming_pattern=self.streaming_pattern, timestep=self.zeroth_timestep)
streaming_pattern=self.streaming_pattern, previous_timestep=self.zeroth_timestep)
self.init_kernel = create_kernel(setter, ghost_layers=1, target=self.target).compile()
self.getter_kernels = []
for t in self.timesteps:
getter = macroscopic_values_getter(
self.lb_method, self.density_field, self.velocity_field, self.pdfs,
streaming_pattern=self.streaming_pattern, timestep=t)
streaming_pattern=self.streaming_pattern, previous_timestep=t)
self.getter_kernels.append(create_kernel(getter, ghost_layers=1, target=self.target).compile())
# Periodicity
......
......@@ -104,7 +104,7 @@ def flow_around_sphere(stencil, galilean_correction, L_LU, total_steps):
init_eqs = pdf_initialization_assignments(lb_method, 1.0, initial_velocity, pdf_field,
streaming_pattern=streaming_pattern,
timestep=timesteps[0])
previous_timestep=timesteps[0])
init_kernel = create_kernel(init_eqs, target=target).compile()
output = {
......
......@@ -99,18 +99,18 @@
self.velocity = (u_x,) * self.dim
self.velocity_field = self.dh.add_array('u', self.dim)
setter = macroscopic_values_setter(
self.lb_method, self.density, self.velocity, self.pdfs,
streaming_pattern=self.streaming_pattern, timestep=self.zeroth_timestep)
streaming_pattern=self.streaming_pattern, previous_timestep=self.zeroth_timestep)
self.init_kernel = create_kernel(setter, ghost_layers=1, target=self.target).compile()
self.getter_kernels = []
for t in self.timesteps:
getter = macroscopic_values_getter(
self.lb_method, self.density_field, self.velocity_field, self.pdfs,
streaming_pattern=self.streaming_pattern, timestep=t)
streaming_pattern=self.streaming_pattern, previous_timestep=t)
self.getter_kernels.append(create_kernel(getter, ghost_layers=1, target=self.target).compile())
# Periodicity
self.periodicity_handler = LBMPeriodicityHandling(
self.stencil, self.dh, self.pdfs.name, streaming_pattern=self.streaming_pattern)
......@@ -225,11 +225,11 @@
ps.plot.colorbar()
```
%%%% Output: execute_result
<matplotlib.colorbar.Colorbar at 0x7faa51244c40>
<matplotlib.colorbar.Colorbar at 0x7fd9a51311c0>
%%%% Output: display_data
![]()
......@@ -286,11 +286,11 @@
ps.plot.colorbar()
```
%%%% Output: execute_result
<matplotlib.colorbar.Colorbar at 0x7faa5077ed30>
<matplotlib.colorbar.Colorbar at 0x7fd9a40bd5e0>
%%%% Output: display_data
![]()
......@@ -349,11 +349,11 @@
ps.plot.colorbar()
```
%%%% Output: execute_result
<matplotlib.colorbar.Colorbar at 0x7faa506476a0>
<matplotlib.colorbar.Colorbar at 0x7fd99ddf0e20>
%%%% Output: display_data
![]()
......
......@@ -48,11 +48,11 @@
update_rule_aa_odd = update_rule_with_push_boundaries(cr_odd, pdfs, boundaries, streaming_pattern, Timestep.ODD)
getter_assignments = macroscopic_values_getter(update_rule_aa_even.method, velocity=u.center_vector,
pdfs=pdfs, density=None,
streaming_pattern=streaming_pattern,
timestep=Timestep.EVEN)
previous_timestep=Timestep.EVEN)
getter_kernel = ps.create_kernel(getter_assignments, target=dh.default_target).compile()
even_kernel = ps.create_kernel(update_rule_aa_even, target=dh.default_target, ghost_layers=1).compile()
odd_kernel = ps.create_kernel(update_rule_aa_odd, target=dh.default_target, ghost_layers=1).compile()
```
......@@ -83,11 +83,11 @@
plt.colorbar()
```
%%%% Output: execute_result
<matplotlib.colorbar.Colorbar at 0x7f7c316778e0>
<matplotlib.colorbar.Colorbar at 0x7f0cfc8f5b50>
%%%% Output: display_data
![]()
......@@ -106,10 +106,10 @@
plt.colorbar()
```
%%%% Output: execute_result
<matplotlib.colorbar.Colorbar at 0x7f7c30fd9d60>
<matplotlib.colorbar.Colorbar at 0x7f0cfca3ceb0>
%%%% Output: display_data
![]()
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment