Commit 296de5db by Martin Bauer

Merge branch 'fvm' into 'master'

finite difference stencil derivation for staggered positions

See merge request pycodegen/pystencils!99
parents 47aee5fa d002888a
 import warnings from collections import defaultdict import itertools import numpy as np import sympy as sp from pystencils.field import Field from pystencils.stencil import direction_string_to_offset from pystencils.sympyextensions import multidimensional_sum, prod from pystencils.utils import LinearEquationSystem, fully_contains ... ... @@ -228,3 +230,120 @@ class FiniteDifferenceStencilDerivation: def __repr__(self): return "Finite difference stencil of accuracy {}, isotropic error: {}".format(self.accuracy, self.is_isotropic) class FiniteDifferenceStaggeredStencilDerivation: """Derives a finite difference stencil for application at a staggered position Args: neighbor: the neighbor direction string or vector at whose staggered position to calculate the derivative dim: how many dimensions (2 or 3) derivative: a tuple of directions over which to perform derivatives """ def __init__(self, neighbor, dim, derivative=tuple()): if type(neighbor) is str: neighbor = direction_string_to_offset(neighbor) if dim == 2: assert neighbor[dim:] == 0 assert derivative is tuple() or max(derivative) < dim neighbor = sp.Matrix(neighbor[:dim]) pos = neighbor / 2 def unitvec(i): """return the i-th unit vector in three dimensions""" a = np.zeros(dim, dtype=int) a[i] = 1 return a def flipped(a, i): """return a with its i-th element's sign flipped""" a = a.copy() a[i] *= -1 return a # determine the points to use, coordinates are relative to position points = [] if np.linalg.norm(neighbor, 1) == 1: main_points = [neighbor / 2, neighbor / -2] elif np.linalg.norm(neighbor, 1) == 2: nonzero_indices = [i for i, v in enumerate(neighbor) if v != 0 and i < dim] main_points = [neighbor / 2, neighbor / -2, flipped(neighbor / 2, nonzero_indices[0]), flipped(neighbor / -2, nonzero_indices[0])] else: main_points = [neighbor.multiply_elementwise(sp.Matrix(c) / 2) for c in itertools.product([-1, 1], repeat=3)] points += main_points zero_indices = [i for i, v in enumerate(neighbor) if v == 0 and i < dim] for i in zero_indices: points += [point + sp.Matrix(unitvec(i)) for point in main_points] points += [point - sp.Matrix(unitvec(i)) for point in main_points] points_tuple = tuple([tuple(p) for p in points]) self._stencil = points_tuple # determine the stencil weights if len(derivative) == 0: weights = None else: derivation = FiniteDifferenceStencilDerivation(derivative, points_tuple).get_stencil() if not derivation.accuracy: raise Exception('the requested derivative cannot be performed with the available neighbors') weights = derivation.weights # if the weights are underdefined, we can choose the free symbols to find the sparsest stencil free_weights = set(itertools.chain(*[w.free_symbols for w in weights])) if len(free_weights) > 0: zero_counts = defaultdict(list) for values in itertools.product([-1, -sp.Rational(1, 2), 0, 1, sp.Rational(1, 2)], repeat=len(free_weights)): subs = {free_weight: value for free_weight, value in zip(free_weights, values)} weights = [w.subs(subs) for w in derivation.weights] if not all(a == 0 for a in weights): zero_count = sum([1 for w in weights if w == 0]) zero_counts[zero_count].append(weights) best = zero_counts[max(zero_counts.keys())] if len(best) > 1: # if there are multiple, pick the one that contains a nonzero center weight center = [tuple(p + pos) for p in points].index((0, 0, 0)) best = [b for b in best if b[center] != 0] if len(best) > 1: raise NotImplementedError("more than one suitable set of weights found, don't know how to proceed") weights = best[0] assert weights points_tuple = tuple([tuple(p + pos) for p in points]) self._points = points_tuple self._weights = weights @property def points(self): """return the points of the stencil""" return self._points @property def stencil(self): """return the points of the stencil relative to the staggered position specified by neighbor""" return self._stencil @property def weights(self): """return the weights of the stencil""" assert self._weights is not None return self._weights def visualize(self): if self._weights is None: ws = None else: ws = np.array([w for w in self.weights if w != 0], dtype=float) pts = np.array([p for i, p in enumerate(self.points) if self.weights[i] != 0], dtype=int) from pystencils.stencil import plot plot(pts, data=ws) def apply(self, field): if field.index_dimensions == 0: return sum([field.__getitem__(point) * weight for point, weight in zip(self.points, self.weights)]) else: total = field.neighbor_vector(self.points[0]) * self.weights[0] for point, weight in zip(self.points[1:], self.weights[1:]): total += field.neighbor_vector(point) * weight return total
 ... ... @@ -441,6 +441,22 @@ class Field(AbstractField): center = tuple([0] * self.spatial_dimensions) return Field.Access(self, center) def neighbor_vector(self, offset): """Like neighbor, but returns the entire vector/tensor stored at offset.""" if self.spatial_dimensions == 2 and len(offset) == 3: assert offset[2] == 0 offset = offset[:2] if self.index_dimensions == 0: return sp.Matrix([self.__getitem__(offset)]) elif self.index_dimensions == 1: return sp.Matrix([self.__getitem__(offset)(i) for i in range(self.index_shape[0])]) elif self.index_dimensions == 2: return sp.Matrix([[self.__getitem__(offset)(i, k) for k in range(self.index_shape[1])] for i in range(self.index_shape[0])]) else: raise NotImplementedError("neighbor_vector is not implemented for more than 2 index dimensions") def __getitem__(self, offset): if type(offset) is np.ndarray: offset = tuple(offset) ... ...
 %% Cell type:code id: tags:  python from pystencils.session import * from pystencils.fd.derivation import *  %% Cell type:markdown id: tags: # 2D standard stencils %% Cell type:code id: tags:  python stencil = [(-1, 0), (1, 0), (0, -1), (0, 1), (0, 0)] standard_2d_00 = FiniteDifferenceStencilDerivation((0,0), stencil) f = ps.fields("f: [2D]") standard_2d_00_res = standard_2d_00.get_stencil() res = standard_2d_00_res.apply(f.center) expected = f[-1, 0] - 2 * f[0, 0] + f[1, 0] assert res == expected  %% Cell type:code id: tags:  python assert standard_2d_00_res.accuracy == 2 assert not standard_2d_00_res.is_isotropic standard_2d_00_res  %%%% Output: execute_result Finite difference stencil of accuracy 2, isotropic error: False %% Cell type:code id: tags:  python standard_2d_00.get_stencil().as_matrix()  %%%% Output: error %%%% Output: execute_result --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) in ----> 1 standard_2d_00.get_stencil().as_matrix() ~/pystencils/pystencils/pystencils/fd/derivation.py in as_matrix(self) 185 for direction, weight in zip(self.stencil, self.weights): 186 result[max_offset - direction[1], max_offset + direction[0]] = weight --> 187 result.tomatrix().tomatrix() 188 print("test") 189 if dim == 3: ~/anaconda3/envs/pystencils/lib/python3.7/site-packages/sympy/matrices/matrices.py in __getattr__(self, attr) 2139 else: 2140 raise AttributeError( -> 2141 "%s has no attribute %s." % (self.__class__.__name__, attr)) 2142 2143 def __len__(self): AttributeError: MutableDenseMatrix has no attribute tomatrix. ![]() $$\left[\begin{matrix}0 & 0 & 0\\1 & -2 & 1\\0 & 0 & 0\end{matrix}\right]$$ ⎡0 0 0⎤ ⎢ ⎥ ⎢1 -2 1⎥ ⎢ ⎥ ⎣0 0 0⎦ %% Cell type:markdown id: tags: # 2D isotropic stencils ## second x-derivative %% Cell type:code id: tags:  python stencil = [(i, j) for i in (-1, 0, 1) for j in (-1, 0, 1)] isotropic_2d_00 = FiniteDifferenceStencilDerivation((0,0), stencil) isotropic_2d_00_res = isotropic_2d_00.get_stencil(isotropic=True) assert isotropic_2d_00_res.is_isotropic assert isotropic_2d_00_res.accuracy == 2 isotropic_2d_00_res  %%%% Output: execute_result Finite difference stencil of accuracy 2, isotropic error: True %% Cell type:code id: tags:  python isotropic_2d_00_res.as_matrix()  %%%% Output: execute_result ![]() $$\left[\begin{matrix}\frac{1}{12} & - \frac{1}{6} & \frac{1}{12}\\\frac{5}{6} & - \frac{5}{3} & \frac{5}{6}\\\frac{1}{12} & - \frac{1}{6} & \frac{1}{12}\end{matrix}\right]$$ ⎡1/12 -1/6 1/12⎤ ⎢ ⎥ ⎢5/6 -5/3 5/6 ⎥ ⎢ ⎥ ⎣1/12 -1/6 1/12⎦ %% Cell type:code id: tags:  python plt.figure(figsize=(2,2)) isotropic_2d_00_res.visualize()  %%%% Output: display_data ![]() %% Cell type:code id: tags:  python expected_result = sp.Matrix([[1, -2, 1], [10, -20, 10], [1, -2, 1]]) / 12 assert expected_result == isotropic_2d_00_res.as_matrix()  %% Cell type:code id: tags:  python type(isotropic_2d_00_res.as_matrix())  %%%% Output: execute_result sympy.matrices.dense.MutableDenseMatrix %% Cell type:code id: tags:  python type(expected_result)  %%%% Output: execute_result sympy.matrices.dense.MutableDenseMatrix %% Cell type:markdown id: tags: ## Isotropic laplacian %% Cell type:code id: tags:  python isotropic_2d_11 = FiniteDifferenceStencilDerivation((1,1), stencil) isotropic_2d_11_res = isotropic_2d_11.get_stencil(isotropic=True) iso_laplacian = isotropic_2d_00_res.as_matrix() + isotropic_2d_11_res.as_matrix() iso_laplacian  %%%% Output: execute_result ![]() $$\left[\begin{matrix}\frac{1}{6} & \frac{2}{3} & \frac{1}{6}\\\frac{2}{3} & - \frac{10}{3} & \frac{2}{3}\\\frac{1}{6} & \frac{2}{3} & \frac{1}{6}\end{matrix}\right]$$ ⎡1/6 2/3 1/6⎤ ⎢ ⎥ ⎢2/3 -10/3 2/3⎥ ⎢ ⎥ ⎣1/6 2/3 1/6⎦ %% Cell type:code id: tags:  python expected_result = sp.Matrix([[1, 4, 1], [4, -20, 4], [1, 4, 1]]) / 6 assert iso_laplacian == expected_result  %% Cell type:markdown id: tags: # stencils for staggered fields %% Cell type:code id: tags:  python half = sp.Rational(1, 2) fd_points_ex = ( (half, 0), (-half, 0), (half, 1), (half, -1), (-half, 1), (-half, -1) ) assert set(fd_points_ex) == set(FiniteDifferenceStaggeredStencilDerivation("E", 2).stencil) fd_points_ey = ( (0, half), (0, -half), (-1,-half), (-1, half), (1, -half), (1, half) ) assert set(fd_points_ey) == set(FiniteDifferenceStaggeredStencilDerivation("N",2).stencil) fd_points_c = ( (half, half), (-half, -half), (half, -half), (-half, half) ) assert set(fd_points_c) == set(FiniteDifferenceStaggeredStencilDerivation("NE",2).stencil) assert len(FiniteDifferenceStaggeredStencilDerivation("E",3).points) == 10 assert len(FiniteDifferenceStaggeredStencilDerivation("NE",3).points) == 12 assert len(FiniteDifferenceStaggeredStencilDerivation("TNE",3).points) == 8  %% Cell type:code id: tags:  python c = ps.fields("c: [2D]") c3 = ps.fields("c3: [3D]") assert FiniteDifferenceStaggeredStencilDerivation("E", 2, (0,)).apply(c) == c[1, 0] - c[0, 0] assert FiniteDifferenceStaggeredStencilDerivation("W", 2, (0,)).apply(c) == c[0, 0] - c[-1, 0] assert FiniteDifferenceStaggeredStencilDerivation("N", 2, (1,)).apply(c) == c[0, 1] - c[0, 0] assert FiniteDifferenceStaggeredStencilDerivation("S", 2, (1,)).apply(c) == c[0, 0] - c[0, -1] assert FiniteDifferenceStaggeredStencilDerivation("E", 3, (0,)).apply(c3) == c3[1, 0, 0] - c3[0, 0, 0] assert FiniteDifferenceStaggeredStencilDerivation("W", 3, (0,)).apply(c3) == c3[0, 0, 0] - c3[-1, 0, 0] assert FiniteDifferenceStaggeredStencilDerivation("N", 3, (1,)).apply(c3) == c3[0, 1, 0] - c3[0, 0, 0] assert FiniteDifferenceStaggeredStencilDerivation("S", 3, (1,)).apply(c3) == c3[0, 0, 0] - c3[0, -1, 0] assert FiniteDifferenceStaggeredStencilDerivation("T", 3, (2,)).apply(c3) == c3[0, 0, 1] - c3[0, 0, 0] assert FiniteDifferenceStaggeredStencilDerivation("B", 3, (2,)).apply(c3) == c3[0, 0, 0] - c3[0, 0, -1] assert FiniteDifferenceStaggeredStencilDerivation("NE", 2, (0,)).apply(c) + \ FiniteDifferenceStaggeredStencilDerivation("NE", 2, (1,)).apply(c) == c[1, 1] - c[0, 0] assert FiniteDifferenceStaggeredStencilDerivation("NE", 3, (0,)).apply(c3) + \ FiniteDifferenceStaggeredStencilDerivation("NE", 3, (1,)).apply(c3) == c3[1, 1, 0] - c3[0, 0, 0]  %% Cell type:code id: tags:  python d = FiniteDifferenceStaggeredStencilDerivation("NE", 2, (0, 1)) assert d.apply(c) == c[0,0] + c[1,1] - c[1,0] - c[0,1] d.visualize()  %%%% Output: display_data ![]() %% Cell type:code id: tags:  python v3 = ps.fields("v(3): [3D]") assert FiniteDifferenceStaggeredStencilDerivation("E", 3, (0,)).apply(v3) == \ sp.Matrix([v3[1,0,0](i) - v3[0,0,0](i) for i in range(*v3.index_shape)])  %% Cell type:code id: tags:  python  ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!