test_opencl.py 5.88 KB
Newer Older
Stephan Seitz's avatar
Stephan Seitz committed
1
import numpy as np
2
import pytest
Stephan Seitz's avatar
Stephan Seitz committed
3 4

import pystencils
5
import sympy as sp
Stephan Seitz's avatar
Stephan Seitz committed
6
from pystencils.backends.cuda_backend import CudaBackend
7
from pystencils.backends.opencl_backend import OpenClBackend
Stephan Seitz's avatar
Stephan Seitz committed
8
from pystencils.opencl.opencljit import make_python_function
Stephan Seitz's avatar
Stephan Seitz committed
9

10 11 12 13 14 15
try:
    import pyopencl as cl
    HAS_OPENCL = True
except Exception:
    HAS_OPENCL = False

Stephan Seitz's avatar
Stephan Seitz committed
16

Stephan Seitz's avatar
Stephan Seitz committed
17
def test_print_opencl():
Stephan Seitz's avatar
Stephan Seitz committed
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
    z, y, x = pystencils.fields("z, y, x: [2d]")

    assignments = pystencils.AssignmentCollection({
        z[0, 0]: x[0, 0] * sp.log(x[0, 0] * y[0, 0])
    })

    print(assignments)

    ast = pystencils.create_kernel(assignments, target='gpu')

    print(ast)

    code = pystencils.show_code(ast, custom_backend=CudaBackend())
    print(code)

33
    opencl_code = pystencils.show_code(ast, custom_backend=OpenClBackend())
Stephan Seitz's avatar
Stephan Seitz committed
34 35
    print(opencl_code)

Stephan Seitz's avatar
Stephan Seitz committed
36 37 38 39 40
    assert "__global double * RESTRICT const _data_x" in str(opencl_code)
    assert "__global double * RESTRICT" in str(opencl_code)
    assert "get_local_id(0)" in str(opencl_code)


41
@pytest.mark.skipif(not HAS_OPENCL, reason="Test requires pyopencl")
42
def test_opencl_jit_fixed_size():
Stephan Seitz's avatar
Stephan Seitz committed
43 44 45 46 47 48 49 50 51 52 53 54 55
    z, y, x = pystencils.fields("z, y, x: [20,30]")

    assignments = pystencils.AssignmentCollection({
        z[0, 0]: x[0, 0] * sp.log(x[0, 0] * y[0, 0])
    })

    print(assignments)

    ast = pystencils.create_kernel(assignments, target='gpu')

    print(ast)

    code = pystencils.show_code(ast, custom_backend=CudaBackend())
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    print(code)
    opencl_code = pystencils.show_code(ast, custom_backend=OpenClBackend())
    print(opencl_code)

    cuda_kernel = ast.compile()
    assert cuda_kernel is not None

    import pycuda.gpuarray as gpuarray

    x_cpu = np.random.rand(20, 30)
    y_cpu = np.random.rand(20, 30)
    z_cpu = np.random.rand(20, 30)

    x = gpuarray.to_gpu(x_cpu)
    y = gpuarray.to_gpu(y_cpu)
    z = gpuarray.to_gpu(z_cpu)
    cuda_kernel(x=x, y=y, z=z)

    result_cuda = z.get()

    import pyopencl.array as array
    ctx = cl.create_some_context(0)
    queue = cl.CommandQueue(ctx)

    x = array.to_device(queue, x_cpu)
    y = array.to_device(queue, y_cpu)
    z = array.to_device(queue, z_cpu)

    opencl_kernel = make_python_function(ast, queue, ctx)
    assert opencl_kernel is not None
    opencl_kernel(x=x, y=y, z=z)

    result_opencl = z.get(queue)

    assert np.allclose(result_cuda, result_opencl)


@pytest.mark.skipif(not HAS_OPENCL, reason="Test requires pyopencl")
def test_opencl_jit():
    z, y, x = pystencils.fields("z, y, x: [2d]")

    assignments = pystencils.AssignmentCollection({
        z[0, 0]: x[0, 0] * sp.log(x[0, 0] * y[0, 0])
    })

    print(assignments)

    ast = pystencils.create_kernel(assignments, target='gpu')

    print(ast)

    code = pystencils.show_code(ast, custom_backend=CudaBackend())
Stephan Seitz's avatar
Stephan Seitz committed
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    print(code)
    opencl_code = pystencils.show_code(ast, custom_backend=OpenClBackend())
    print(opencl_code)

    cuda_kernel = ast.compile()
    assert cuda_kernel is not None

    import pycuda.gpuarray as gpuarray

    x_cpu = np.random.rand(20, 30)
    y_cpu = np.random.rand(20, 30)
    z_cpu = np.random.rand(20, 30)

    x = gpuarray.to_gpu(x_cpu)
    y = gpuarray.to_gpu(y_cpu)
    z = gpuarray.to_gpu(z_cpu)
    cuda_kernel(x=x, y=y, z=z)

    result_cuda = z.get()

    import pyopencl.array as array
    ctx = cl.create_some_context(0)
    queue = cl.CommandQueue(ctx)

    x = array.to_device(queue, x_cpu)
    y = array.to_device(queue, y_cpu)
    z = array.to_device(queue, z_cpu)

    opencl_kernel = make_python_function(ast, queue, ctx)
    assert opencl_kernel is not None
    opencl_kernel(x=x, y=y, z=z)

    result_opencl = z.get(queue)

    assert np.allclose(result_cuda, result_opencl)

Stephan Seitz's avatar
Stephan Seitz committed
144

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
@pytest.mark.skipif(not HAS_OPENCL, reason="Test requires pyopencl")
def test_opencl_jit_with_parameter():
    z, y, x = pystencils.fields("z, y, x: [2d]")

    a = sp.Symbol('a')
    assignments = pystencils.AssignmentCollection({
        z[0, 0]: x[0, 0] * sp.log(x[0, 0] * y[0, 0]) + a
    })

    print(assignments)

    ast = pystencils.create_kernel(assignments, target='gpu')

    print(ast)

    code = pystencils.show_code(ast, custom_backend=CudaBackend())
    print(code)
    opencl_code = pystencils.show_code(ast, custom_backend=OpenClBackend())
    print(opencl_code)

    cuda_kernel = ast.compile()
    assert cuda_kernel is not None

    import pycuda.gpuarray as gpuarray

    x_cpu = np.random.rand(20, 30)
    y_cpu = np.random.rand(20, 30)
    z_cpu = np.random.rand(20, 30)

    x = gpuarray.to_gpu(x_cpu)
    y = gpuarray.to_gpu(y_cpu)
    z = gpuarray.to_gpu(z_cpu)
    cuda_kernel(x=x, y=y, z=z, a=5.)

    result_cuda = z.get()

    import pyopencl.array as array
    ctx = cl.create_some_context(0)
    queue = cl.CommandQueue(ctx)

    x = array.to_device(queue, x_cpu)
    y = array.to_device(queue, y_cpu)
    z = array.to_device(queue, z_cpu)

    opencl_kernel = make_python_function(ast, queue, ctx)
    assert opencl_kernel is not None
    opencl_kernel(x=x, y=y, z=z, a=5.)

    result_opencl = z.get(queue)

    assert np.allclose(result_cuda, result_opencl)


198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
@pytest.mark.skipif(not HAS_OPENCL, reason="Test requires pyopencl")
def test_without_cuda():
    z, y, x = pystencils.fields("z, y, x: [20,30]")

    assignments = pystencils.AssignmentCollection({
        z[0, 0]: x[0, 0] * sp.log(x[0, 0] * y[0, 0])
    })

    print(assignments)

    ast = pystencils.create_kernel(assignments, target='gpu')

    print(ast)

    opencl_code = pystencils.show_code(ast, custom_backend=OpenClBackend())
    print(opencl_code)

    x_cpu = np.random.rand(20, 30)
    y_cpu = np.random.rand(20, 30)
    z_cpu = np.random.rand(20, 30)

    import pyopencl.array as array
    ctx = cl.create_some_context(0)
    queue = cl.CommandQueue(ctx)

    x = array.to_device(queue, x_cpu)
    y = array.to_device(queue, y_cpu)
    z = array.to_device(queue, z_cpu)

    opencl_kernel = make_python_function(ast, queue, ctx)
    assert opencl_kernel is not None
    opencl_kernel(x=x, y=y, z=z)