sympyextensions.py 22.5 KB
Newer Older
1
import itertools
2
import warnings
Martin Bauer's avatar
Martin Bauer committed
3
4
5
import operator
from functools import reduce, partial
from collections import defaultdict, Counter
Martin Bauer's avatar
Martin Bauer committed
6
import sympy as sp
Martin Bauer's avatar
Martin Bauer committed
7
8
from sympy.functions import Abs
from typing import Optional, Union, List, TypeVar, Iterable, Sequence, Callable, Dict, Tuple
Martin Bauer's avatar
Martin Bauer committed
9
from pystencils.data_types import get_type_of_expression, get_base_type, cast_func
10
from pystencils.assignment import Assignment
11

Martin Bauer's avatar
Martin Bauer committed
12
13
T = TypeVar('T')

14

Martin Bauer's avatar
Martin Bauer committed
15
def prod(seq: Iterable[T]) -> T:
16
17
18
19
    """Takes a sequence and returns the product of all elements"""
    return reduce(operator.mul, seq, 1)


20
21
22
23
24
25
26
27
28
29
30
31
32
33
def remove_small_floats(expr, threshold):
    """Removes all sp.Float objects whose absolute value is smaller than threshold

    >>> expr = sp.sympify("x + 1e-15 * y")
    >>> remove_small_floats(expr, 1e-14)
    x
    """
    if isinstance(expr, sp.Float) and sp.Abs(expr) < threshold:
        return 0
    else:
        new_args = [remove_small_floats(c, threshold) for c in expr.args]
        return expr.func(*new_args) if new_args else expr


Martin Bauer's avatar
Martin Bauer committed
34
35
def is_integer_sequence(sequence: Iterable) -> bool:
    """Checks if all elements of the passed sequence can be cast to integers"""
36
    try:
Martin Bauer's avatar
Martin Bauer committed
37
38
        for i in sequence:
            int(i)
39
40
41
42
43
        return True
    except TypeError:
        return False


Martin Bauer's avatar
Martin Bauer committed
44
45
def scalar_product(a: Iterable[T], b: Iterable[T]) -> T:
    """Scalar product between two sequences."""
46
47
48
    return sum(a_i * b_i for a_i, b_i in zip(a, b))


Martin Bauer's avatar
Martin Bauer committed
49
50
def kronecker_delta(*args):
    """Kronecker delta for variable number of arguments, 1 if all args are equal, otherwise 0"""
Martin Bauer's avatar
Martin Bauer committed
51
52
53
54
55
56
    for a in args:
        if a != args[0]:
            return 0
    return 1


57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
def tanh_step_function_approximation(x, step_location, kind='right', steepness=0.0001):
    """Approximation of step function by a tanh function

    >>> tanh_step_function_approximation(1.2, step_location=1.0, kind='right')
    1.00000000000000
    >>> tanh_step_function_approximation(0.9, step_location=1.0, kind='right')
    0
    >>> tanh_step_function_approximation(1.1, step_location=1.0, kind='left')
    0
    >>> tanh_step_function_approximation(0.9, step_location=1.0, kind='left')
    1.00000000000000
    >>> tanh_step_function_approximation(0.5, step_location=(0, 1), kind='middle')
    1
    """
    if kind == 'left':
        return (1 - sp.tanh((x - step_location) / steepness)) / 2
    elif kind == 'right':
        return (1 + sp.tanh((x - step_location) / steepness)) / 2
    elif kind == 'middle':
        x1, x2 = step_location
Martin Bauer's avatar
Martin Bauer committed
77
78
        return 1 - (tanh_step_function_approximation(x, x1, 'left', steepness)
                    + tanh_step_function_approximation(x, x2, 'right', steepness))
79
80


Martin Bauer's avatar
Martin Bauer committed
81
82
def multidimensional_sum(i, dim):
    """Multidimensional summation
Martin Bauer's avatar
Martin Bauer committed
83

Martin Bauer's avatar
Martin Bauer committed
84
85
86
    Example:
        >>> list(multidimensional_sum(2, dim=3))
        [(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)]
87
    """
Martin Bauer's avatar
Martin Bauer committed
88
89
90
91
92
93
94
95
96
97
98
99
100
    prod_args = [range(dim)] * i
    return itertools.product(*prod_args)


def normalize_product(product: sp.Expr) -> List[sp.Expr]:
    """Expects a sympy expression that can be interpreted as a product and returns a list of all factors.

    Removes sp.Pow nodes that have integer exponent by representing them as single factors in list.

    Returns:
        * for a Mul node list of factors ('args')
        * for a Pow node with positive integer exponent a list of factors
        * for other node types [product] is returned
101
    """
Martin Bauer's avatar
Martin Bauer committed
102
    def handle_pow(power):
103
104
105
106
107
        if power.exp.is_integer and power.exp.is_number and power.exp > 0:
            return [power.base] * power.exp
        else:
            return [power]

Martin Bauer's avatar
Martin Bauer committed
108
109
110
    if isinstance(product, sp.Pow):
        return handle_pow(product)
    elif isinstance(product, sp.Mul):
111
112
113
        result = []
        for a in product.args:
            if a.func == sp.Pow:
Martin Bauer's avatar
Martin Bauer committed
114
                result += handle_pow(a)
115
116
117
118
119
120
121
            else:
                result.append(a)
        return result
    else:
        return [product]


Martin Bauer's avatar
Martin Bauer committed
122
123
124
125
126
127
128
129
130
def symmetric_product(*args, with_diagonal: bool = True) -> Iterable:
    """Similar to itertools.product but yields only values where the index is ascending i.e. values below/up to diagonal

    Examples:
        >>> list(symmetric_product([1, 2, 3], ['a', 'b', 'c']))
        [(1, 'a'), (1, 'b'), (1, 'c'), (2, 'b'), (2, 'c'), (3, 'c')]
        >>> list(symmetric_product([1, 2, 3], ['a', 'b', 'c'], with_diagonal=False))
        [(1, 'b'), (1, 'c'), (2, 'c')]
    """
131
132
    ranges = [range(len(a)) for a in args]
    for idx in itertools.product(*ranges):
Martin Bauer's avatar
Martin Bauer committed
133
        valid_index = True
134
        for t in range(1, len(idx)):
Martin Bauer's avatar
Martin Bauer committed
135
136
            if (with_diagonal and idx[t - 1] > idx[t]) or (not with_diagonal and idx[t - 1] >= idx[t]):
                valid_index = False
137
                break
Martin Bauer's avatar
Martin Bauer committed
138
        if valid_index:
139
140
141
            yield tuple(a[i] for a, i in zip(args, idx))


Martin Bauer's avatar
Martin Bauer committed
142
def fast_subs(expression: T, substitutions: Dict,
Martin Bauer's avatar
Martin Bauer committed
143
              skip: Optional[Callable[[sp.Expr], bool]] = None) -> T:
144
    """Similar to sympy subs function.
Martin Bauer's avatar
Martin Bauer committed
145
146
147
148
149
150
151
152
153
154
155
156

    Args:
        expression: expression where parts should be substituted
        substitutions: dict defining substitutions by mapping from old to new terms
        skip: function that marks expressions to be skipped (if True is returned) - that means that in these skipped
              expressions no substitutions are done

    This version is much faster for big substitution dictionaries than sympy version
    """
    if type(expression) is sp.Matrix:
        return expression.copy().applyfunc(partial(fast_subs, substitutions=substitutions))

157
    def visit(expr):
158
159
        if skip and skip(expr):
            return expr
Martin Bauer's avatar
Martin Bauer committed
160
161
162
163
        if hasattr(expr, "fast_subs"):
            return expr.fast_subs(substitutions)
        if expr in substitutions:
            return substitutions[expr]
164
165
        if not hasattr(expr, 'args'):
            return expr
Martin Bauer's avatar
Martin Bauer committed
166
167
        param_list = [visit(a) for a in expr.args]
        return expr if not param_list else expr.func(*param_list)
168

Martin Bauer's avatar
Martin Bauer committed
169
170
    if len(substitutions) == 0:
        return expression
171
    else:
Martin Bauer's avatar
Martin Bauer committed
172
173
        return visit(expression)

174

175
176
177
178
179
180
181
def is_constant(expr):
    """Simple version of checking if a sympy expression is constant.
    Works also for piecewise defined functions - sympy's is_constant() has a problem there, see:
    https://github.com/sympy/sympy/issues/16662
    """
    return len(expr.free_symbols) == 0

182

Martin Bauer's avatar
Martin Bauer committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
def subs_additive(expr: sp.Expr, replacement: sp.Expr, subexpression: sp.Expr,
                  required_match_replacement: Optional[Union[int, float]] = 0.5,
                  required_match_original: Optional[Union[int, float]] = None) -> sp.Expr:
    """Transformation for replacing a given subexpression inside a sum.

    Examples:
        The next example demonstrates the advantage of replace_additive compared to sympy.subs:
        >>> x, y, z, k = sp.symbols("x y z k")
        >>> subs_additive(3*x + 3*y, replacement=k, subexpression=x + y)
        3*k

        Terms that don't match completely can be substituted at the cost of additional terms.
        This trade-off is managed using the required_match parameters.
        >>> subs_additive(3*x + 3*y + z, replacement=k, subexpression=x+y+z, required_match_original=1.0)
        3*x + 3*y + z
        >>> subs_additive(3*x + 3*y + z, replacement=k, subexpression=x+y+z, required_match_original=0.5)
        3*k - 2*z
200
201
        >>> subs_additive(3*x + 3*y + z, replacement=k, subexpression=x+y+z, required_match_original=2)
        3*k - 2*z
Martin Bauer's avatar
Martin Bauer committed
202
203
204

    Args:
        expr: input expression
Martin Bauer's avatar
Martin Bauer committed
205
        replacement: expression that is inserted for subexpression (if found)
Martin Bauer's avatar
Martin Bauer committed
206
207
        subexpression: expression to replace
        required_match_replacement:
Martin Bauer's avatar
Martin Bauer committed
208
             * if float: the percentage of terms of the subexpression that has to be matched in order to replace
Martin Bauer's avatar
Martin Bauer committed
209
210
211
212
213
214
215
216
217
218
             * if integer: the total number of terms that has to be matched in order to replace
             * None: is equal to integer 1
             * if both match parameters are given, both restrictions have to be fulfilled (i.e. logical AND)
        required_match_original:
             * if float: the percentage of terms of the original addition expression that has to be matched
             * if integer: the total number of terms that has to be matched in order to replace
             * None: is equal to integer 1

    Returns:
        new expression with replacement
219
    """
Martin Bauer's avatar
Martin Bauer committed
220
221
    def normalize_match_parameter(match_parameter, expression_length):
        if match_parameter is None:
222
            return 1
Martin Bauer's avatar
Martin Bauer committed
223
224
225
        elif isinstance(match_parameter, float):
            assert 0 <= match_parameter <= 1
            res = int(match_parameter * expression_length)
226
            return max(res, 1)
Martin Bauer's avatar
Martin Bauer committed
227
228
229
        elif isinstance(match_parameter, int):
            assert match_parameter > 0
            return match_parameter
230
231
        raise ValueError("Invalid parameter")

Martin Bauer's avatar
Martin Bauer committed
232
    normalized_replacement_match = normalize_match_parameter(required_match_replacement, len(subexpression.args))
233

Martin Bauer's avatar
Martin Bauer committed
234
235
236
237
238
239
240
241
    def visit(current_expr):
        if current_expr.is_Add:
            expr_max_length = max(len(current_expr.args), len(subexpression.args))
            normalized_current_expr_match = normalize_match_parameter(required_match_original, expr_max_length)
            expr_coefficients = current_expr.as_coefficients_dict()
            subexpression_coefficient_dict = subexpression.as_coefficients_dict()
            intersection = set(subexpression_coefficient_dict.keys()).intersection(set(expr_coefficients))
            if len(intersection) >= max(normalized_replacement_match, normalized_current_expr_match):
242
                # find common factor
243
                factors = defaultdict(int)
244
                skips = 0
Martin Bauer's avatar
Martin Bauer committed
245
246
                for common_symbol in subexpression_coefficient_dict.keys():
                    if common_symbol not in expr_coefficients:
247
248
                        skips += 1
                        continue
Martin Bauer's avatar
Martin Bauer committed
249
                    factor = expr_coefficients[common_symbol] / subexpression_coefficient_dict[common_symbol]
250
251
                    factors[sp.simplify(factor)] += 1

Martin Bauer's avatar
Martin Bauer committed
252
253
254
                common_factor = max(factors.items(), key=operator.itemgetter(1))[0]
                if factors[common_factor] >= max(normalized_current_expr_match, normalized_replacement_match):
                    return current_expr - common_factor * subexpression + common_factor * replacement
255
256

        # if no subexpression was found
Martin Bauer's avatar
Martin Bauer committed
257
258
259
        param_list = [visit(a) for a in current_expr.args]
        if not param_list:
            return current_expr
260
        else:
261
262
263
264
            if current_expr.func == sp.Mul and sp.numbers.Zero() in param_list:
                return sp.numbers.Zero()
            else:
                return current_expr.func(*param_list, evaluate=False)
265
266
267
268

    return visit(expr)


Martin Bauer's avatar
Martin Bauer committed
269
270
271
272
273
def replace_second_order_products(expr: sp.Expr, search_symbols: Iterable[sp.Symbol],
                                  positive: Optional[bool] = None,
                                  replace_mixed: Optional[List[Assignment]] = None) -> sp.Expr:
    """Replaces second order mixed terms like x*y by 2*( (x+y)**2 - x**2 - y**2 ).

274
275
    This makes the term longer - simplify usually is undoing these - however this
    transformation can be done to find more common sub-expressions
Martin Bauer's avatar
Martin Bauer committed
276
277
278
279
280
281
282
283
284
285
286

    Args:
        expr: input expression
        search_symbols: symbols that are searched for
                         for example, given [x,y,z] terms like x*y, x*z, z*y are replaced
        positive: there are two ways to do this substitution, either with term
                 (x+y)**2 or (x-y)**2 . if positive=True the first version is done,
                 if positive=False the second version is done, if positive=None the
                 sign is determined by the sign of the mixed term that is replaced
        replace_mixed: if a list is passed here, the expr x+y or x-y is replaced by a special new symbol
                       and the replacement equation is added to the list
287
    """
Martin Bauer's avatar
Martin Bauer committed
288
    mixed_symbols_replaced = set([e.lhs for e in replace_mixed]) if replace_mixed is not None else set()
289
290

    if expr.is_Mul:
Martin Bauer's avatar
Martin Bauer committed
291
292
293
        distinct_search_symbols = set()
        nr_of_search_terms = 0
        other_factors = 1
294
        for t in expr.args:
Martin Bauer's avatar
Martin Bauer committed
295
296
297
            if t in search_symbols:
                nr_of_search_terms += 1
                distinct_search_symbols.add(t)
298
            else:
Martin Bauer's avatar
Martin Bauer committed
299
300
301
                other_factors *= t
        if len(distinct_search_symbols) == 2 and nr_of_search_terms == 2:
            u, v = sorted(list(distinct_search_symbols), key=lambda symbol: symbol.name)
302
            if positive is None:
Martin Bauer's avatar
Martin Bauer committed
303
304
305
306
                other_factors_without_symbols = other_factors
                for s in other_factors.atoms(sp.Symbol):
                    other_factors_without_symbols = other_factors_without_symbols.subs(s, 1)
                positive = other_factors_without_symbols.is_positive
307
308
                assert positive is not None
            sign = 1 if positive else -1
Martin Bauer's avatar
Martin Bauer committed
309
310
311
312
313
314
315
            if replace_mixed is not None:
                new_symbol_str = 'P' if positive else 'M'
                mixed_symbol_name = u.name + new_symbol_str + v.name
                mixed_symbol = sp.Symbol(mixed_symbol_name.replace("_", ""))
                if mixed_symbol not in mixed_symbols_replaced:
                    mixed_symbols_replaced.add(mixed_symbol)
                    replace_mixed.append(Assignment(mixed_symbol, u + sign * v))
316
            else:
Martin Bauer's avatar
Martin Bauer committed
317
318
                mixed_symbol = u + sign * v
            return sp.Rational(1, 2) * sign * other_factors * (mixed_symbol ** 2 - u ** 2 - v ** 2)
319

Martin Bauer's avatar
Martin Bauer committed
320
321
    param_list = [replace_second_order_products(a, search_symbols, positive, replace_mixed) for a in expr.args]
    result = expr.func(*param_list, evaluate=False) if param_list else expr
322
323
324
    return result


Martin Bauer's avatar
Martin Bauer committed
325
326
def remove_higher_order_terms(expr: sp.Expr, symbols: Sequence[sp.Symbol], order: int = 3) -> sp.Expr:
    """Removes all terms that contain more than 'order' factors of given 'symbols'
Martin Bauer's avatar
Martin Bauer committed
327
328
329
330

    Example:
        >>> x, y = sp.symbols("x y")
        >>> term = x**2 * y + y**2 * x + y**3 + x + y ** 2
Martin Bauer's avatar
Martin Bauer committed
331
        >>> remove_higher_order_terms(term, order=2, symbols=[x, y])
Martin Bauer's avatar
Martin Bauer committed
332
        x + y**2
333
334
335
336
337
    """
    from sympy.core.power import Pow
    from sympy.core.add import Add, Mul

    result = 0
Martin Bauer's avatar
Martin Bauer committed
338
    expr = expr.expand()
339

Martin Bauer's avatar
Martin Bauer committed
340
341
    def velocity_factors_in_product(product):
        factor_count = 0
Martin Bauer's avatar
Martin Bauer committed
342
343
344
345
        if type(product) is Mul:
            for factor in product.args:
                if type(factor) == Pow:
                    if factor.args[0] in symbols:
Martin Bauer's avatar
Martin Bauer committed
346
                        factor_count += factor.args[1]
Martin Bauer's avatar
Martin Bauer committed
347
                if factor in symbols:
Martin Bauer's avatar
Martin Bauer committed
348
                    factor_count += 1
Martin Bauer's avatar
Martin Bauer committed
349
350
        elif type(product) is Pow:
            if product.args[0] in symbols:
Martin Bauer's avatar
Martin Bauer committed
351
352
                factor_count += product.args[1]
        return factor_count
353

Martin Bauer's avatar
Martin Bauer committed
354
355
356
    if type(expr) == Mul or type(expr) == Pow:
        if velocity_factors_in_product(expr) <= order:
            return expr
357
358
359
        else:
            return sp.Rational(0, 1)

Martin Bauer's avatar
Martin Bauer committed
360
361
    if type(expr) != Add:
        return expr
362

Martin Bauer's avatar
Martin Bauer committed
363
364
365
    for sum_term in expr.args:
        if velocity_factors_in_product(sum_term) <= order:
            result += sum_term
366
367
368
    return result


Martin Bauer's avatar
Martin Bauer committed
369
370
371
def complete_the_square(expr: sp.Expr, symbol_to_complete: sp.Symbol,
                        new_variable: sp.Symbol) -> Tuple[sp.Expr, Optional[Tuple[sp.Symbol, sp.Expr]]]:
    """Transforms second order polynomial into only squared part.
372

Martin Bauer's avatar
Martin Bauer committed
373
374
375
376
377
378
379
380
    Examples:
        >>> a, b, c, s, n = sp.symbols("a b c s n")
        >>> expr = a * s**2 + b * s + c
        >>> completed_expr, substitution = complete_the_square(expr, symbol_to_complete=s, new_variable=n)
        >>> completed_expr
        a*n**2 + c - b**2/(4*a)
        >>> substitution
        (n, s + b/(2*a))
381

Martin Bauer's avatar
Martin Bauer committed
382
    Returns:
Martin Bauer's avatar
Martin Bauer committed
383
        (replaced_expr, tuple to pass to subs, such that old expr comes out again)
384
    """
Martin Bauer's avatar
Martin Bauer committed
385
386
387
    p = sp.Poly(expr, symbol_to_complete)
    coefficients = p.all_coeffs()
    if len(coefficients) != 3:
388
        return expr, None
Martin Bauer's avatar
Martin Bauer committed
389
390
391
    a, b, _ = coefficients
    expr = expr.subs(symbol_to_complete, new_variable - b / (2 * a))
    return sp.simplify(expr), (new_variable, symbol_to_complete + b / (2 * a))
392
393


Martin Bauer's avatar
Martin Bauer committed
394
395
396
397
398
399
def complete_the_squares_in_exp(expr: sp.Expr, symbols_to_complete: Sequence[sp.Symbol]):
    """Completes squares in arguments of exponential which makes them simpler to integrate.

    Very useful for integrating Maxwell-Boltzmann equilibria and its moment generating function
    """
    dummies = [sp.Dummy() for _ in symbols_to_complete]
400
401
402

    def visit(term):
        if term.func == sp.exp:
Martin Bauer's avatar
Martin Bauer committed
403
404
405
406
            exp_arg = term.args[0]
            for symbol_to_complete, dummy in zip(symbols_to_complete, dummies):
                exp_arg, substitution = complete_the_square(exp_arg, symbol_to_complete, dummy)
            return sp.exp(sp.expand(exp_arg))
407
        else:
Martin Bauer's avatar
Martin Bauer committed
408
409
            param_list = [visit(a) for a in term.args]
            if not param_list:
410
411
                return term
            else:
Martin Bauer's avatar
Martin Bauer committed
412
                return term.func(*param_list)
413
414

    result = visit(expr)
Martin Bauer's avatar
Martin Bauer committed
415
416
    for s, d in zip(symbols_to_complete, dummies):
        result = result.subs(d, s)
417
418
419
    return result


Martin Bauer's avatar
Martin Bauer committed
420
def extract_most_common_factor(term):
421
    """Processes a sum of fractions: determines the most common factor and splits term in common factor and rest"""
Martin Bauer's avatar
Martin Bauer committed
422
423
424
    coefficient_dict = term.as_coefficients_dict()
    counter = Counter([Abs(v) for v in coefficient_dict.values()])
    common_factor, occurrences = max(counter.items(), key=operator.itemgetter(1))
Martin Bauer's avatar
Martin Bauer committed
425
    if occurrences == 1 and (1 in counter):
Martin Bauer's avatar
Martin Bauer committed
426
427
        common_factor = 1
    return common_factor, term / common_factor
428
429


Martin Bauer's avatar
Martin Bauer committed
430
431
432
def count_operations(term: Union[sp.Expr, List[sp.Expr]],
                     only_type: Optional[str] = 'real') -> Dict[str, int]:
    """Counts the number of additions, multiplications and division.
Martin Bauer's avatar
Martin Bauer committed
433

Martin Bauer's avatar
Martin Bauer committed
434
435
436
    Args:
        term: a sympy expression (term, assignment) or sequence of sympy objects
        only_type: 'real' or 'int' to count only operations on these types, or None for all
Martin Bauer's avatar
Martin Bauer committed
437

Martin Bauer's avatar
Martin Bauer committed
438
439
    Returns:
        dict with 'adds', 'muls' and 'divs' keys
440
    """
441
442
443
444
    from pystencils.fast_approximation import fast_sqrt, fast_inv_sqrt, fast_division

    result = {'adds': 0, 'muls': 0, 'divs': 0, 'sqrts': 0,
              'fast_sqrts': 0, 'fast_inv_sqrts': 0, 'fast_div': 0}
445
446
447

    if isinstance(term, Sequence):
        for element in term:
Martin Bauer's avatar
Martin Bauer committed
448
            r = count_operations(element, only_type)
Martin Bauer's avatar
Martin Bauer committed
449
450
            for operation_name in result.keys():
                result[operation_name] += r[operation_name]
451
        return result
452
    elif isinstance(term, Assignment):
453
454
        term = term.rhs

455
456
    if hasattr(term, 'evalf'):
        term = term.evalf()
457

Martin Bauer's avatar
Martin Bauer committed
458
459
    def check_type(e):
        if only_type is None:
460
461
            return True
        try:
Martin Bauer's avatar
Martin Bauer committed
462
            base_type = get_base_type(get_type_of_expression(e))
463
464
        except ValueError:
            return False
Martin Bauer's avatar
Martin Bauer committed
465
        if only_type == 'int' and (base_type.is_int() or base_type.is_uint()):
466
            return True
Martin Bauer's avatar
Martin Bauer committed
467
        if only_type == 'real' and (base_type.is_float()):
468
469
            return True
        else:
Martin Bauer's avatar
Martin Bauer committed
470
            return base_type == only_type
471

472
    def visit(t):
Martin Bauer's avatar
Martin Bauer committed
473
        visit_children = True
474
        if t.func is sp.Add:
Martin Bauer's avatar
Martin Bauer committed
475
            if check_type(t):
476
                result['adds'] += len(t.args) - 1
Julian Hammer's avatar
Julian Hammer committed
477
478
        elif t.func in [sp.Or, sp.And]:
            pass
479
        elif t.func is sp.Mul:
Martin Bauer's avatar
Martin Bauer committed
480
            if check_type(t):
481
482
483
484
                result['muls'] += len(t.args) - 1
                for a in t.args:
                    if a == 1 or a == -1:
                        result['muls'] -= 1
Martin Bauer's avatar
Martin Bauer committed
485
        elif isinstance(t, sp.Float) or isinstance(t, sp.Rational):
486
487
            pass
        elif isinstance(t, sp.Symbol):
Martin Bauer's avatar
Martin Bauer committed
488
            visit_children = False
489
        elif isinstance(t, sp.Indexed):
Martin Bauer's avatar
Martin Bauer committed
490
            visit_children = False
491
492
        elif t.is_integer:
            pass
493
        elif isinstance(t, cast_func):
Martin Bauer's avatar
Martin Bauer committed
494
495
            visit_children = False
            visit(t.args[0])
496
497
498
499
500
501
        elif t.func is fast_sqrt:
            result['fast_sqrts'] += 1
        elif t.func is fast_inv_sqrt:
            result['fast_inv_sqrts'] += 1
        elif t.func is fast_division:
            result['fast_div'] += 1
502
        elif t.func is sp.Pow:
Martin Bauer's avatar
Martin Bauer committed
503
504
            if check_type(t.args[0]):
                visit_children = False
505
506
507
508
509
510
511
                if t.exp.is_integer and t.exp.is_number:
                    if t.exp >= 0:
                        result['muls'] += int(t.exp) - 1
                    else:
                        result['muls'] -= 1
                        result['divs'] += 1
                        result['muls'] += (-int(t.exp)) - 1
512
513
514
515
                elif sp.nsimplify(t.exp) == sp.Rational(1, 2):
                    result['sqrts'] += 1
                else:
                    warnings.warn("Cannot handle exponent", t.exp, " of sp.Pow node")
516
517
518
            else:
                warnings.warn("Counting operations: only integer exponents are supported in Pow, "
                              "counting will be inaccurate")
519
520
521
522
        elif t.func is sp.Piecewise:
            for child_term, condition in t.args:
                visit(child_term)
            visit_children = False
523
524
        elif isinstance(t, sp.Rel):
            pass
525
526
527
        else:
            warnings.warn("Unknown sympy node of type " + str(t.func) + " counting will be inaccurate")

Martin Bauer's avatar
Martin Bauer committed
528
        if visit_children:
529
530
531
532
533
            for a in t.args:
                visit(a)

    visit(term)
    return result
534
535


Martin Bauer's avatar
Martin Bauer committed
536
537
def count_operations_in_ast(ast) -> Dict[str, int]:
    """Counts number of operations in an abstract syntax tree, see also :func:`count_operations`"""
538
    from pystencils.astnodes import SympyAssignment
539
    result = defaultdict(int)
540
541
542

    def visit(node):
        if isinstance(node, SympyAssignment):
Martin Bauer's avatar
Martin Bauer committed
543
            r = count_operations(node.rhs)
544
545
            for k, v in r.items():
                result[k] += v
546
547
548
549
550
551
552
        else:
            for arg in node.args:
                visit(arg)
    visit(ast)
    return result


Martin Bauer's avatar
Martin Bauer committed
553
554
def common_denominator(expr: sp.Expr) -> sp.Expr:
    """Finds least common multiple of all denominators occurring in an expression"""
555
556
    denominators = [r.q for r in expr.atoms(sp.Rational)]
    return sp.lcm(denominators)
557

Martin Bauer's avatar
Martin Bauer committed
558

Martin Bauer's avatar
Martin Bauer committed
559
def get_symmetric_part(expr: sp.Expr, symbols: Iterable[sp.Symbol]) -> sp.Expr:
Martin Bauer's avatar
Martin Bauer committed
560
561
562
    """
    Returns the symmetric part of a sympy expressions.

Martin Bauer's avatar
Martin Bauer committed
563
564
565
566
567
568
    Args:
        expr: sympy expression, labeled here as :math:`f`
        symbols: sequence of symbols which are considered as degrees of freedom, labeled here as :math:`x_0, x_1,...`

    Returns:
        :math:`\frac{1}{2} [ f(x_0, x_1, ..) + f(-x_0, -x_1) ]`
Martin Bauer's avatar
Martin Bauer committed
569
    """
Martin Bauer's avatar
Martin Bauer committed
570
571
    substitution_dict = {e: -e for e in symbols}
    return sp.Rational(1, 2) * (expr + expr.subs(substitution_dict))
572
573


Martin Bauer's avatar
Martin Bauer committed
574
575
576
def sort_assignments_topologically(assignments: Sequence[Assignment]) -> List[Assignment]:
    """Sorts assignments in topological order, such that symbols used on rhs occur first on a lhs"""
    res = sp.cse_main.reps_toposort([[e.lhs, e.rhs] for e in assignments])
577
    return [Assignment(a, b) for a, b in res]
578
579


Martin Bauer's avatar
Martin Bauer committed
580
581
582
class SymbolCreator:
    def __getattribute__(self, name):
        return sp.Symbol(name)