indexing.py 9.94 KB
Newer Older
1
import abc
2
3
4
5
6
7
import sympy as sp
import math
import pycuda.driver as cuda
import pycuda.autoinit

from pystencils.astnodes import Conditional, Block
8
from pystencils.slicing import normalizeSlice
9
10
11
12
13

BLOCK_IDX = list(sp.symbols("blockIdx.x blockIdx.y blockIdx.z"))
THREAD_IDX = list(sp.symbols("threadIdx.x threadIdx.y threadIdx.z"))


14
15
16
17
18
class AbstractIndexing(abc.ABCMeta('ABC', (object,), {})):
    """
    Abstract base class for all Indexing classes. An Indexing class defines how a multidimensional
    field is mapped to CUDA's block and grid system. It calculates indices based on CUDA's thread and block indices
    and computes the number of blocks and threads a kernel is started with. The Indexing class is created with
19
    a pystencils field, a slice to iterate over, and further optional parameters that must have default values.
20
    """
21

22
23
24
25
    @abc.abstractproperty
    def coordinates(self):
        """Returns a sequence of coordinate expressions for (x,y,z) depending on symbolic CUDA block and thread indices.
        These symbolic indices can be obtained with the method `indexVariables` """
26
27

    @property
28
29
30
    def indexVariables(self):
        """Sympy symbols for CUDA's block and thread indices"""
        return BLOCK_IDX + THREAD_IDX
31

32
    @abc.abstractmethod
33
    def getCallParameters(self, arrShape):
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
        """
        Determine grid and block size for kernel call
        :param arrShape: the numeric (not symbolic) shape of the array
        :return: dict with keys 'blocks' and 'threads' with tuple values for number of (x,y,z) threads and blocks
                 the kernel should be started with
        """

    @abc.abstractmethod
    def guard(self, kernelContent, arrShape):
        """
        In some indexing schemes not all threads of a block execute the kernel content.
        This function can return a Conditional ast node, defining this execution guard.
        :param kernelContent: the actual kernel contents which can e.g. be put into the Conditional node as true block
        :param arrShape: the numeric or symbolic shape of the field
        :return: ast node, which is put inside the kernel function
        """
50
51


52
# -------------------------------------------- Implementations ---------------------------------------------------------
53
54


55
56
class BlockIndexing(AbstractIndexing):
    """Generic indexing scheme that maps sub-blocks of an array to CUDA blocks."""
57

58
59
    def __init__(self, field, iterationSlice=None,
                 blockSize=(256, 8, 1), permuteBlockSizeDependentOnLayout=True):
60
61
62
        """
        Creates
        :param field: pystencils field (common to all Indexing classes)
63
        :param iterationSlice: slice that defines rectangular subarea which is iterated over
64
65
66
        :param permuteBlockSizeDependentOnLayout: if True the blockSize is permuted such that the fastest coordinate
                                                  gets the largest amount of threads
        """
67
68
69
70
71
72
        if field.spatialDimensions > 3:
            raise NotImplementedError("This indexing scheme supports at most 3 spatial dimensions")

        if permuteBlockSizeDependentOnLayout:
            blockSize = self.permuteBlockSizeAccordingToLayout(blockSize, field.layout)

73
74
75
        blockSize = self.limitBlockSizeToDeviceMaximum(blockSize)
        self._blockSize = blockSize

76
77
78
79
        self._iterationSlice = iterationSlice
        offsets = _getStartFromSlice(self._iterationSlice)
        self._coordinates = [blockIndex * bs + threadIndex + off
                             for blockIndex, bs, threadIndex, off in zip(BLOCK_IDX, blockSize, THREAD_IDX, offsets)]
80
81
82

        self._coordinates = self._coordinates[:field.spatialDimensions]

83
84
85
86
87
    @property
    def coordinates(self):
        return self._coordinates

    def getCallParameters(self, arrShape):
88
89
90
        widths = [end - start for start, end in zip(_getStartFromSlice(self._iterationSlice),
                                                    _getEndFromSlice(self._iterationSlice, arrShape))]
        grid = tuple(math.ceil(length / blockSize) for length, blockSize in zip(widths, self._blockSize))
91
92
93
94
95
96
97
98
        extendBs = (1,) * (3 - len(self._blockSize))
        extendGr = (1,) * (3 - len(grid))
        return {'block': self._blockSize + extendBs,
                'grid': grid + extendGr}

    def guard(self, kernelContent, arrShape):
        dim = len(self._coordinates)
        arrShape = arrShape[:dim]
99
100
        conditions = [c < end
                      for c, end in zip(self._coordinates, _getEndFromSlice(self._iterationSlice, arrShape))]
101
102
103
104
105
        condition = conditions[0]
        for c in conditions[1:]:
            condition = sp.And(condition, c)
        return Block([Conditional(condition, kernelContent)])

106
107
    @staticmethod
    def limitBlockSizeToDeviceMaximum(blockSize):
108
109
110
111
112
113
114
        """
        Changes blocksize according to match device limits according to the following rules:
        1) if the total amount of threads is too big for the current device, the biggest coordinate is divided by 2.
        2) next, if one component is still too big, the component which is too big is divided by 2 and the smallest
           component is multiplied by 2, such that the total amount of threads stays the same
        Returns the altered blockSize
        """
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
        # Get device limits
        da = cuda.device_attribute
        device = cuda.Context.get_device()

        blockSize = list(blockSize)
        maxThreads = device.get_attribute(da.MAX_THREADS_PER_BLOCK)
        maxBlockSize = [device.get_attribute(a)
                        for a in (da.MAX_BLOCK_DIM_X, da.MAX_BLOCK_DIM_Y, da.MAX_BLOCK_DIM_Z)]

        def prod(seq):
            result = 1
            for e in seq:
                result *= e
            return result

        def getIndexOfTooBigElement(blockSize):
            for i, bs in enumerate(blockSize):
                if bs > maxBlockSize[i]:
                    return i
            return None

        def getIndexOfTooSmallElement(blockSize):
            for i, bs in enumerate(blockSize):
                if bs // 2 <= maxBlockSize[i]:
                    return i
            return None

        # Reduce the total number of threads if necessary
        while prod(blockSize) > maxThreads:
            itemToReduce = blockSize.index(max(blockSize))
            for i, bs in enumerate(blockSize):
                if bs > maxBlockSize[i]:
                    itemToReduce = i
            blockSize[itemToReduce] //= 2

        # Cap individual elements
        tooBigElementIndex = getIndexOfTooBigElement(blockSize)
        while tooBigElementIndex is not None:
            tooSmallElementIndex = getIndexOfTooSmallElement(blockSize)
            blockSize[tooSmallElementIndex] *= 2
            blockSize[tooBigElementIndex] //= 2
            tooBigElementIndex = getIndexOfTooBigElement(blockSize)

        return tuple(blockSize)

    @staticmethod
    def permuteBlockSizeAccordingToLayout(blockSize, layout):
162
        """Returns modified blockSize such that the fastest coordinate gets the biggest block dimension"""
163
164
165
166
167
168
169
170
171
172
        sortedBlockSize = list(sorted(blockSize, reverse=True))
        while len(sortedBlockSize) > len(layout):
            sortedBlockSize[0] *= sortedBlockSize[-1]
            sortedBlockSize = sortedBlockSize[:-1]

        result = list(blockSize)
        for l, bs in zip(reversed(layout), sortedBlockSize):
            result[l] = bs
        return tuple(result[:len(layout)])

173
174
175
176
177
178
179
180
181

class LineIndexing(AbstractIndexing):
    """
    Indexing scheme that assigns the innermost 'line' i.e. the elements which are adjacent in memory to a 1D CUDA block.
    The fastest coordinate is indexed with threadIdx.x, the remaining coordinates are mapped to blockIdx.{x,y,z}
    This indexing scheme supports up to 4 spatial dimensions, where the innermost dimensions is not larger than the
    maximum amount of threads allowed in a CUDA block (which depends on device).
    """

182
    def __init__(self, field, iterationSlice=None):
183
184
185
186
187
188
189
190
191
        availableIndices = [THREAD_IDX[0]] + BLOCK_IDX
        if field.spatialDimensions > 4:
            raise NotImplementedError("This indexing scheme supports at most 4 spatial dimensions")

        coordinates = availableIndices[:field.spatialDimensions]

        fastestCoordinate = field.layout[-1]
        coordinates[0], coordinates[fastestCoordinate] = coordinates[fastestCoordinate], coordinates[0]

192
193
        self._coordinates = coordinates
        self._iterationSlice = iterationSlice
194

195
196
    @property
    def coordinates(self):
197
        return [i + offset for i, offset in zip(self._coordinates, _getStartFromSlice(self._iterationSlice))]
198
199

    def getCallParameters(self, arrShape):
200
201
202
        widths = [end - start for start, end in zip(_getStartFromSlice(self._iterationSlice),
                                                    _getEndFromSlice(self._iterationSlice, arrShape))]

203
        def getShapeOfCudaIdx(cudaIdx):
204
            if cudaIdx not in self._coordinates:
205
206
                return 1
            else:
207
208
                idx = self._coordinates.index(cudaIdx)
                return widths[idx]
209

210
211
        return {'block': tuple([getShapeOfCudaIdx(idx) for idx in THREAD_IDX]),
                'grid': tuple([getShapeOfCudaIdx(idx) for idx in BLOCK_IDX])}
212

213
214
    def guard(self, kernelContent, arrShape):
        return kernelContent
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239


# -------------------------------------- Helper functions --------------------------------------------------------------

def _getStartFromSlice(iterationSlice):
    res = []
    for sliceComponent in iterationSlice:
        if type(sliceComponent) is slice:
            res.append(sliceComponent.start if sliceComponent.start is not None else 0)
        else:
            assert isinstance(sliceComponent, int)
            res.append(sliceComponent)
    return res


def _getEndFromSlice(iterationSlice, arrShape):
    iterSlice = normalizeSlice(iterationSlice, arrShape)
    res = []
    for sliceComponent in iterSlice:
        if type(sliceComponent) is slice:
            res.append(sliceComponent.stop)
        else:
            assert isinstance(sliceComponent, int)
            res.append(sliceComponent + 1)
    return res