test_opencl.py 5.03 KB
Newer Older
Stephan Seitz's avatar
Stephan Seitz committed
1
import numpy as np
2
import pytest
Stephan Seitz's avatar
Stephan Seitz committed
3
4
5
6
import sympy as sp

import pystencils
from pystencils.backends.cuda_backend import CudaBackend
7
from pystencils.backends.opencl_backend import OpenClBackend
Stephan Seitz's avatar
Stephan Seitz committed
8
from pystencils.opencl.opencljit import make_python_function
Stephan Seitz's avatar
Stephan Seitz committed
9

10
11
12
13
14
15
try:
    import pyopencl as cl
    HAS_OPENCL = True
except Exception:
    HAS_OPENCL = False

Stephan Seitz's avatar
Stephan Seitz committed
16

Stephan Seitz's avatar
Stephan Seitz committed
17
def test_print_opencl():
Stephan Seitz's avatar
Stephan Seitz committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
    z, y, x = pystencils.fields("z, y, x: [2d]")

    assignments = pystencils.AssignmentCollection({
        z[0, 0]: x[0, 0] * sp.log(x[0, 0] * y[0, 0])
    })

    print(assignments)

    ast = pystencils.create_kernel(assignments, target='gpu')

    print(ast)

    code = pystencils.show_code(ast, custom_backend=CudaBackend())
    print(code)

33
    opencl_code = pystencils.show_code(ast, custom_backend=OpenClBackend())
Stephan Seitz's avatar
Stephan Seitz committed
34
35
    print(opencl_code)

Stephan Seitz's avatar
Stephan Seitz committed
36
37
38
39
40
    assert "__global double * RESTRICT const _data_x" in str(opencl_code)
    assert "__global double * RESTRICT" in str(opencl_code)
    assert "get_local_id(0)" in str(opencl_code)


41
@pytest.mark.skipif(not HAS_OPENCL, reason="Test requires pyopencl")
42
def test_opencl_jit_fixed_size():
Stephan Seitz's avatar
Stephan Seitz committed
43
44
45
46
47
48
49
50
51
52
53
54
55
    z, y, x = pystencils.fields("z, y, x: [20,30]")

    assignments = pystencils.AssignmentCollection({
        z[0, 0]: x[0, 0] * sp.log(x[0, 0] * y[0, 0])
    })

    print(assignments)

    ast = pystencils.create_kernel(assignments, target='gpu')

    print(ast)

    code = pystencils.show_code(ast, custom_backend=CudaBackend())
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    print(code)
    opencl_code = pystencils.show_code(ast, custom_backend=OpenClBackend())
    print(opencl_code)

    cuda_kernel = ast.compile()
    assert cuda_kernel is not None

    import pycuda.gpuarray as gpuarray

    x_cpu = np.random.rand(20, 30)
    y_cpu = np.random.rand(20, 30)
    z_cpu = np.random.rand(20, 30)

    x = gpuarray.to_gpu(x_cpu)
    y = gpuarray.to_gpu(y_cpu)
    z = gpuarray.to_gpu(z_cpu)
    cuda_kernel(x=x, y=y, z=z)

    result_cuda = z.get()

    import pyopencl.array as array
    ctx = cl.create_some_context(0)
    queue = cl.CommandQueue(ctx)

    x = array.to_device(queue, x_cpu)
    y = array.to_device(queue, y_cpu)
    z = array.to_device(queue, z_cpu)

    opencl_kernel = make_python_function(ast, queue, ctx)
    assert opencl_kernel is not None
    opencl_kernel(x=x, y=y, z=z)

    result_opencl = z.get(queue)

    assert np.allclose(result_cuda, result_opencl)


@pytest.mark.skipif(not HAS_OPENCL, reason="Test requires pyopencl")
def test_opencl_jit():
    z, y, x = pystencils.fields("z, y, x: [2d]")

    assignments = pystencils.AssignmentCollection({
        z[0, 0]: x[0, 0] * sp.log(x[0, 0] * y[0, 0])
    })

    print(assignments)

    ast = pystencils.create_kernel(assignments, target='gpu')

    print(ast)

    code = pystencils.show_code(ast, custom_backend=CudaBackend())
Stephan Seitz's avatar
Stephan Seitz committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
    print(code)
    opencl_code = pystencils.show_code(ast, custom_backend=OpenClBackend())
    print(opencl_code)

    cuda_kernel = ast.compile()
    assert cuda_kernel is not None

    import pycuda.gpuarray as gpuarray

    x_cpu = np.random.rand(20, 30)
    y_cpu = np.random.rand(20, 30)
    z_cpu = np.random.rand(20, 30)

    x = gpuarray.to_gpu(x_cpu)
    y = gpuarray.to_gpu(y_cpu)
    z = gpuarray.to_gpu(z_cpu)
    cuda_kernel(x=x, y=y, z=z)

    result_cuda = z.get()

    import pyopencl.array as array
    ctx = cl.create_some_context(0)
    queue = cl.CommandQueue(ctx)

    x = array.to_device(queue, x_cpu)
    y = array.to_device(queue, y_cpu)
    z = array.to_device(queue, z_cpu)

    opencl_kernel = make_python_function(ast, queue, ctx)
    assert opencl_kernel is not None
    opencl_kernel(x=x, y=y, z=z)

    result_opencl = z.get(queue)

    assert np.allclose(result_cuda, result_opencl)

Stephan Seitz's avatar
Stephan Seitz committed
144

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
@pytest.mark.skipif(not HAS_OPENCL, reason="Test requires pyopencl")
def test_opencl_jit_with_parameter():
    z, y, x = pystencils.fields("z, y, x: [2d]")

    a = sp.Symbol('a')
    assignments = pystencils.AssignmentCollection({
        z[0, 0]: x[0, 0] * sp.log(x[0, 0] * y[0, 0]) + a
    })

    print(assignments)

    ast = pystencils.create_kernel(assignments, target='gpu')

    print(ast)

    code = pystencils.show_code(ast, custom_backend=CudaBackend())
    print(code)
    opencl_code = pystencils.show_code(ast, custom_backend=OpenClBackend())
    print(opencl_code)

    cuda_kernel = ast.compile()
    assert cuda_kernel is not None

    import pycuda.gpuarray as gpuarray

    x_cpu = np.random.rand(20, 30)
    y_cpu = np.random.rand(20, 30)
    z_cpu = np.random.rand(20, 30)

    x = gpuarray.to_gpu(x_cpu)
    y = gpuarray.to_gpu(y_cpu)
    z = gpuarray.to_gpu(z_cpu)
    cuda_kernel(x=x, y=y, z=z, a=5.)

    result_cuda = z.get()

    import pyopencl.array as array
    ctx = cl.create_some_context(0)
    queue = cl.CommandQueue(ctx)

    x = array.to_device(queue, x_cpu)
    y = array.to_device(queue, y_cpu)
    z = array.to_device(queue, z_cpu)

    opencl_kernel = make_python_function(ast, queue, ctx)
    assert opencl_kernel is not None
    opencl_kernel(x=x, y=y, z=z, a=5.)

    result_opencl = z.get(queue)

    assert np.allclose(result_cuda, result_opencl)


Stephan Seitz's avatar
Stephan Seitz committed
198
if __name__ == '__main__':
Stephan Seitz's avatar
Stephan Seitz committed
199
    test_opencl_jit()