integer_functions.py 5.8 KB
Newer Older
1
import numpy as np
Martin Bauer's avatar
Martin Bauer committed
2
3
import sympy as sp

4
from pystencils.data_types import cast_func, collate_types, create_type, get_type_of_expression
Martin Bauer's avatar
Martin Bauer committed
5
6
from pystencils.sympyextensions import is_integer_sequence

7
8

class IntegerFunctionTwoArgsMixIn(sp.Function):
9
10
    is_Integer = True

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
    def __new__(cls, arg1, arg2):
        args = []
        for a in (arg1, arg2):
            if isinstance(a, sp.Number) or isinstance(a, int):
                args.append(cast_func(a, create_type("int")))
            elif isinstance(a, np.generic):
                args.append(cast_func(a, a.dtype))
            else:
                args.append(a)

        for a in args:
            try:
                type = get_type_of_expression(a)
                if not type.is_int():
                    raise ValueError("Argument to integer function is not an int but " + str(type))
            except NotImplementedError:
                raise ValueError("Integer functions can only be constructed with typed expressions")
        return super().__new__(cls, *args)


# noinspection PyPep8Naming
class bitwise_xor(IntegerFunctionTwoArgsMixIn):
    pass


# noinspection PyPep8Naming
class bit_shift_right(IntegerFunctionTwoArgsMixIn):
    pass


# noinspection PyPep8Naming
class bit_shift_left(IntegerFunctionTwoArgsMixIn):
    pass


# noinspection PyPep8Naming
class bitwise_and(IntegerFunctionTwoArgsMixIn):
    pass


# noinspection PyPep8Naming
class bitwise_or(IntegerFunctionTwoArgsMixIn):
    pass


# noinspection PyPep8Naming
class int_div(IntegerFunctionTwoArgsMixIn):
    pass


# noinspection PyPep8Naming
class int_power_of_2(IntegerFunctionTwoArgsMixIn):
    pass
Martin Bauer's avatar
Martin Bauer committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82


# noinspection PyPep8Naming
class modulo_floor(sp.Function):
    """Returns the next smaller integer divisible by given divisor.

    Examples:
        >>> modulo_floor(9, 4)
        8
        >>> modulo_floor(11, 4)
        8
        >>> modulo_floor(12, 4)
        12
        >>> from pystencils import TypedSymbol
        >>> a, b = TypedSymbol("a", "int64"), TypedSymbol("b", "int32")
        >>> modulo_floor(a, b).to_c(str)
        '(int64_t)((a) / (b)) * (b)'
    """
    nargs = 2
83
    is_Integer = True
Martin Bauer's avatar
Martin Bauer committed
84
85
86
87
88
89
90
91
92
93
94
95

    def __new__(cls, integer, divisor):
        if is_integer_sequence((integer, divisor)):
            return (int(integer) // int(divisor)) * divisor
        else:
            return super().__new__(cls, integer, divisor)

    def to_c(self, print_func):
        dtype = collate_types((get_type_of_expression(self.args[0]), get_type_of_expression(self.args[1])))
        assert dtype.is_int()
        return "({dtype})(({0}) / ({1})) * ({1})".format(print_func(self.args[0]),
                                                         print_func(self.args[1]), dtype=dtype)
Martin Bauer's avatar
Martin Bauer committed
96
97
98
99


# noinspection PyPep8Naming
class modulo_ceil(sp.Function):
100
    """Returns the next bigger integer divisible by given divisor.
Martin Bauer's avatar
Martin Bauer committed
101
102
103
104
105
106
107
108
109
110
111

    Examples:
        >>> modulo_ceil(9, 4)
        12
        >>> modulo_ceil(11, 4)
        12
        >>> modulo_ceil(12, 4)
        12
        >>> from pystencils import TypedSymbol
        >>> a, b = TypedSymbol("a", "int64"), TypedSymbol("b", "int32")
        >>> modulo_ceil(a, b).to_c(str)
112
        '((a) % (b) == 0 ? a : ((int64_t)((a) / (b))+1) * (b))'
Martin Bauer's avatar
Martin Bauer committed
113
114
    """
    nargs = 2
115
    is_Integer = True
Martin Bauer's avatar
Martin Bauer committed
116
117
118
119
120
121
122
123
124
125

    def __new__(cls, integer, divisor):
        if is_integer_sequence((integer, divisor)):
            return integer if integer % divisor == 0 else ((integer // divisor) + 1) * divisor
        else:
            return super().__new__(cls, integer, divisor)

    def to_c(self, print_func):
        dtype = collate_types((get_type_of_expression(self.args[0]), get_type_of_expression(self.args[1])))
        assert dtype.is_int()
126
        code = "(({0}) % ({1}) == 0 ? {0} : (({dtype})(({0}) / ({1}))+1) * ({1}))"
Martin Bauer's avatar
Martin Bauer committed
127
        return code.format(print_func(self.args[0]), print_func(self.args[1]), dtype=dtype)
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144


# noinspection PyPep8Naming
class div_ceil(sp.Function):
    """Integer division that is always rounded up

    Examples:
        >>> div_ceil(9, 4)
        3
        >>> div_ceil(8, 4)
        2
        >>> from pystencils import TypedSymbol
        >>> a, b = TypedSymbol("a", "int64"), TypedSymbol("b", "int32")
        >>> div_ceil(a, b).to_c(str)
        '( (a) % (b) == 0 ? (int64_t)(a) / (int64_t)(b) : ( (int64_t)(a) / (int64_t)(b) ) +1 )'
    """
    nargs = 2
145
    is_Integer = True
146
147
148
149
150
151
152
153
154
155
156
157

    def __new__(cls, integer, divisor):
        if is_integer_sequence((integer, divisor)):
            return integer // divisor if integer % divisor == 0 else (integer // divisor) + 1
        else:
            return super().__new__(cls, integer, divisor)

    def to_c(self, print_func):
        dtype = collate_types((get_type_of_expression(self.args[0]), get_type_of_expression(self.args[1])))
        assert dtype.is_int()
        code = "( ({0}) % ({1}) == 0 ? ({dtype})({0}) / ({dtype})({1}) : ( ({dtype})({0}) / ({dtype})({1}) ) +1 )"
        return code.format(print_func(self.args[0]), print_func(self.args[1]), dtype=dtype)
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174


# noinspection PyPep8Naming
class div_floor(sp.Function):
    """Integer division

    Examples:
        >>> div_floor(9, 4)
        2
        >>> div_floor(8, 4)
        2
        >>> from pystencils import TypedSymbol
        >>> a, b = TypedSymbol("a", "int64"), TypedSymbol("b", "int32")
        >>> div_floor(a, b).to_c(str)
        '((int64_t)(a) / (int64_t)(b))'
    """
    nargs = 2
175
    is_Integer = True
176
177
178
179
180
181
182
183
184
185
186
187

    def __new__(cls, integer, divisor):
        if is_integer_sequence((integer, divisor)):
            return integer // divisor
        else:
            return super().__new__(cls, integer, divisor)

    def to_c(self, print_func):
        dtype = collate_types((get_type_of_expression(self.args[0]), get_type_of_expression(self.args[1])))
        assert dtype.is_int()
        code = "(({dtype})({0}) / ({dtype})({1}))"
        return code.format(print_func(self.args[0]), print_func(self.args[1]), dtype=dtype)