field.py 22.1 KB
Newer Older
1
2
3
4
5
from itertools import chain
import numpy as np
import sympy as sp
from sympy.core.cache import cacheit
from sympy.tensor import IndexedBase
Martin Bauer's avatar
Martin Bauer committed
6
from pystencils.data_types import TypedSymbol, createType, createCompositeTypeFromString
7
from pystencils.sympyextensions import isIntegerSequence
8
9


Michael Kuron's avatar
Michael Kuron committed
10
class Field(object):
11
12
13
14
    """
    With fields one can formulate stencil-like update rules on structured grids.
    This Field class knows about the dimension, memory layout (strides) and optionally about the size of an array.

Martin Bauer's avatar
Martin Bauer committed
15
16
17
18
    Creating Fields:

        To create a field use one of the static create* members. There are two options:

19
        1. create a kernel with fixed loop sizes i.e. the shape of the array is already known. This is usually the
Martin Bauer's avatar
Martin Bauer committed
20
           case if just-in-time compilation directly from Python is done. (see :func:`Field.createFromNumpyArray`)
21
        2. create a more general kernel that works for variable array sizes. This can be used to create kernels
Martin Bauer's avatar
Martin Bauer committed
22
           beforehand for a library. (see :func:`Field.createGeneric`)
23
24
25
26
27
28

    Dimensions:
        A field has spatial and index dimensions, where the spatial dimensions come first.
        The interpretation is that the field has multiple cells in (usually) two or three dimensional space which are
        looped over. Additionally  N values are stored per cell. In this case spatialDimensions is two or three,
        and indexDimensions equals N. If you want to store a matrix on each point in a two dimensional grid, there
Martin Bauer's avatar
Martin Bauer committed
29
        are four dimensions, two spatial and two index dimensions: ``len(arr.shape) == spatialDims + indexDims``
30
31
32
33

    Indexing:
        When accessing (indexing) a field the result is a FieldAccess which is derived from sympy Symbol.
        First specify the spatial offsets in [], then in case indexDimension>0 the indices in ()
Martin Bauer's avatar
Martin Bauer committed
34
        e.g. ``f[-1,0,0](7)``
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

    Example without index dimensions:
        >>> a = np.zeros([10, 10])
        >>> f = Field.createFromNumpyArray("f", a, indexDimensions=0)
        >>> jacobi = ( f[-1,0] + f[1,0] + f[0,-1] + f[0,1] ) / 4

    Example with index dimensions: LBM D2Q9 stream pull
        >>> stencil = np.array([[0,0], [0,1], [0,-1]])
        >>> src = Field.createGeneric("src", spatialDimensions=2, indexDimensions=1)
        >>> dst = Field.createGeneric("dst", spatialDimensions=2, indexDimensions=1)
        >>> for i, offset in enumerate(stencil):
        ...     sp.Eq(dst[0,0](i), src[-offset](i))
        Eq(dst_C^0, src_C^0)
        Eq(dst_C^1, src_S^1)
        Eq(dst_C^2, src_N^2)
    """
51
52

    @staticmethod
53
54
    def createGeneric(fieldName, spatialDimensions, dtype=np.float64, indexDimensions=0, layout='numpy',
                      indexShape=None):
55
56
57
58
59
60
61
62
63
64
        """
        Creates a generic field where the field size is not fixed i.e. can be called with arrays of different sizes

        :param fieldName: symbolic name for the field
        :param dtype: numpy data type of the array the kernel is called with later
        :param spatialDimensions: see documentation of Field
        :param indexDimensions: see documentation of Field
        :param layout: tuple specifying the loop ordering of the spatial dimensions e.g. (2, 1, 0 ) means that
                       the outer loop loops over dimension 2, the second outer over dimension 1, and the inner loop
                       over dimension 0. Also allowed: the strings 'numpy' (0,1,..d) or 'reverseNumpy' (d, ..., 1, 0)
65
66
        :param indexShape: optional shape of the index dimensions i.e. maximum values allowed for each index dimension,
                           has to be a list or tuple
67
        """
68
        if isinstance(layout, str):
69
            layout = spatialLayoutStringToTuple(layout, dim=spatialDimensions)
70
71
72
        shapeSymbol = IndexedBase(TypedSymbol(Field.SHAPE_PREFIX + fieldName, Field.SHAPE_DTYPE), shape=(1,))
        strideSymbol = IndexedBase(TypedSymbol(Field.STRIDE_PREFIX + fieldName, Field.STRIDE_DTYPE), shape=(1,))
        totalDimensions = spatialDimensions + indexDimensions
73
74
75
76
77
78
        if indexShape is None or len(indexShape) == 0:
            shape = tuple([shapeSymbol[i] for i in range(totalDimensions)])
        else:
            shape = tuple([shapeSymbol[i] for i in range(spatialDimensions)] + list(indexShape))
            assert len(shape) == totalDimensions

79
        strides = tuple([strideSymbol[i] for i in range(totalDimensions)])
80
81
82
83
84
85
86
87

        npDataType = np.dtype(dtype)
        if npDataType.fields is not None:
            if indexDimensions != 0:
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)

88
89
        return Field(fieldName, dtype, layout, shape, strides)

90
91
92
93
94
95
96
97
98
99
100
101
102
    @staticmethod
    def createFromNumpyArray(fieldName, npArray, indexDimensions=0):
        """
        Creates a field based on the layout, data type, and shape of a given numpy array.
        Kernels created for these kind of fields can only be called with arrays of the same layout, shape and type.
        :param fieldName: symbolic name for the field
        :param npArray: numpy array
        :param indexDimensions: see documentation of Field
        """
        spatialDimensions = len(npArray.shape) - indexDimensions
        if spatialDimensions < 1:
            raise ValueError("Too many index dimensions. At least one spatial dimension required")

103
        fullLayout = getLayoutOfArray(npArray)
104
105
106
107
        spatialLayout = tuple([i for i in fullLayout if i < spatialDimensions])
        assert len(spatialLayout) == spatialDimensions

        strides = tuple([s // np.dtype(npArray.dtype).itemsize for s in npArray.strides])
108
        shape = tuple(int(s) for s in npArray.shape)
109

110
111
112
113
114
115
116
        npDataType = np.dtype(npArray.dtype)
        if npDataType.fields is not None:
            if indexDimensions != 0:
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)

117
118
119
        return Field(fieldName, npArray.dtype, spatialLayout, shape, strides)

    @staticmethod
120
    def createFixedSize(fieldName, shape, indexDimensions=0, dtype=np.float64, layout='numpy'):
121
        """
122
        Creates a field with fixed sizes i.e. can be called only with arrays of the same size and layout
123

124
        :param fieldName: symbolic name for the field
125
126
        :param shape: overall shape of the array
        :param indexDimensions: how many of the trailing dimensions are interpreted as index (as opposed to spatial)
127
        :param dtype: numpy data type of the array the kernel is called with later
128
        :param layout: full layout of array, not only spatial dimensions
129
        """
130
131
132
        spatialDimensions = len(shape) - indexDimensions
        assert spatialDimensions >= 1

133
134
        if isinstance(layout, str):
            layout = layoutStringToTuple(layout, spatialDimensions + indexDimensions)
135
136
137

        shape = tuple(int(s) for s in shape)
        strides = computeStrides(shape, layout)
138
139
140
141
142
143
144
145

        npDataType = np.dtype(dtype)
        if npDataType.fields is not None:
            if indexDimensions != 0:
                raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
            shape += (1,)
            strides += (1,)

146
147
148
149
        spatialLayout = list(layout)
        for i in range(spatialDimensions, len(layout)):
            spatialLayout.remove(i)
        return Field(fieldName, dtype, tuple(spatialLayout), shape, strides)
150
151
152
153

    def __init__(self, fieldName, dtype, layout, shape, strides):
        """Do not use directly. Use static create* methods"""
        self._fieldName = fieldName
154
        self._dtype = createType(dtype)
155
        self._layout = normalizeLayout(layout)
156
157
        self.shape = shape
        self.strides = strides
158
159
160
        # index fields are currently only used for boundary handling
        # the coordinates are not the loop counters in that case, but are read from this index field
        self.isIndexField = False
161

162
163
164
    def newFieldWithDifferentName(self, newName):
        return Field(newName, self._dtype, self._layout, self.shape, self.strides)

165
166
167
168
169
170
    @property
    def spatialDimensions(self):
        return len(self._layout)

    @property
    def indexDimensions(self):
171
        return len(self.shape) - len(self._layout)
172
173
174
175
176
177
178
179
180
181
182

    @property
    def layout(self):
        return self._layout

    @property
    def name(self):
        return self._fieldName

    @property
    def spatialShape(self):
183
        return self.shape[:self.spatialDimensions]
184

185
186
187
188
    @property
    def indexShape(self):
        return self.shape[self.spatialDimensions:]

189
190
    @property
    def hasFixedShape(self):
191
        return isIntegerSequence(self.shape)
192

193
194
    @property
    def indexShape(self):
195
        return self.shape[self.spatialDimensions:]
196

197
198
199
200
    @property
    def hasFixedIndexShape(self):
        return isIntegerSequence(self.indexShape)

201
202
    @property
    def spatialStrides(self):
203
        return self.strides[:self.spatialDimensions]
204
205
206

    @property
    def indexStrides(self):
207
        return self.strides[self.spatialDimensions:]
208
209
210
211
212
213
214
215

    @property
    def dtype(self):
        return self._dtype

    def __repr__(self):
        return self._fieldName

216
217
218
219
220
    def neighbor(self, coordId, offset):
        offsetList = [0] * self.spatialDimensions
        offsetList[coordId] = offset
        return Field.Access(self, tuple(offsetList))

221
222
223
224
    def center(self):
        center = tuple([0] * self.spatialDimensions)
        return Field.Access(self, center)

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    def __getitem__(self, offset):
        if type(offset) is np.ndarray:
            offset = tuple(offset)
        if type(offset) is str:
            offset = tuple(directionStringToOffset(offset, self.spatialDimensions))
        if type(offset) is not tuple:
            offset = (offset,)
        if len(offset) != self.spatialDimensions:
            raise ValueError("Wrong number of spatial indices: "
                             "Got %d, expected %d" % (len(offset), self.spatialDimensions))
        return Field.Access(self, offset)

    def __call__(self, *args, **kwargs):
        center = tuple([0]*self.spatialDimensions)
        return Field.Access(self, center)(*args, **kwargs)

    def __hash__(self):
242
        return hash((self._layout, self.shape, self.strides, self._dtype, self._fieldName))
243
244
245
246
247
248
249
250
251

    def __eq__(self, other):
        selfTuple = (self.shape, self.strides, self.name, self.dtype)
        otherTuple = (other.shape, other.strides, other.name, other.dtype)
        return selfTuple == otherTuple

    PREFIX = "f"
    STRIDE_PREFIX = PREFIX + "stride_"
    SHAPE_PREFIX = PREFIX + "shape_"
Martin Bauer's avatar
Martin Bauer committed
252
253
    STRIDE_DTYPE = createCompositeTypeFromString("const int *")
    SHAPE_DTYPE = createCompositeTypeFromString("const int *")
254
    DATA_PREFIX = PREFIX + "d_"
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

    class Access(sp.Symbol):
        def __new__(cls, name, *args, **kwargs):
            obj = Field.Access.__xnew_cached_(cls, name, *args, **kwargs)
            return obj

        def __new_stage2__(self, field, offsets=(0, 0, 0), idx=None):
            fieldName = field.name
            offsetsAndIndex = chain(offsets, idx) if idx is not None else offsets
            constantOffsets = not any([isinstance(o, sp.Basic) for o in offsetsAndIndex])

            if not idx:
                idx = tuple([0] * field.indexDimensions)

            if constantOffsets:
                offsetName = offsetToDirectionString(offsets)
                if field.indexDimensions == 0:
272
                    superscript = None
273
                elif field.indexDimensions == 1:
274
                    superscript = str(idx[0])
275
276
                else:
                    idxStr = ",".join([str(e) for e in idx])
277
                    superscript = idxStr
278
279
            else:
                offsetName = "%0.10X" % (abs(hash(tuple(offsetsAndIndex))))
280
                superscript = None
281

282
283
284
285
286
            symbolName = "%s_%s" % (fieldName, offsetName)
            if superscript is not None:
                symbolName += "^" + superscript

            obj = super(Field.Access, self).__xnew__(self, symbolName)
287
288
289
290
291
292
293
294
            obj._field = field
            obj._offsets = []
            for o in offsets:
                if isinstance(o, sp.Basic):
                    obj._offsets.append(o)
                else:
                    obj._offsets.append(int(o))
            obj._offsetName = offsetName
295
            obj._superscript = superscript
296
297
298
299
            obj._index = idx

            return obj

300
        def __getnewargs__(self):
301
            return self.field, self.offsets, self.index
302

303
304
305
306
307
308
309
310
311
312
313
314
315
316
        __xnew__ = staticmethod(__new_stage2__)
        __xnew_cached_ = staticmethod(cacheit(__new_stage2__))

        def __call__(self, *idx):
            if self._index != tuple([0]*self.field.indexDimensions):
                print(self._index, tuple([0]*self.field.indexDimensions))
                raise ValueError("Indexing an already indexed Field.Access")

            idx = tuple(idx)
            if len(idx) != self.field.indexDimensions and idx != (0,):
                raise ValueError("Wrong number of indices: "
                                 "Got %d, expected %d" % (len(idx), self.field.indexDimensions))
            return Field.Access(self.field, self._offsets, idx)

Martin Bauer's avatar
Martin Bauer committed
317
318
319
        def __getitem__(self, *idx):
            return self.__call__(*idx)

Martin Bauer's avatar
Martin Bauer committed
320
321
322
323
324
        def __iter__(self):
            """This is necessary to work with parts of sympy that test if an object is iterable (e.g. simplify).
            The __getitem__ would make it iterable"""
            raise TypeError("Field access is not iterable")

325
326
327
328
329
330
331
332
        @property
        def field(self):
            return self._field

        @property
        def offsets(self):
            return self._offsets

333
334
335
336
        @offsets.setter
        def offsets(self, value):
            self._offsets = value

337
338
339
340
341
342
343
344
345
346
347
348
        @property
        def requiredGhostLayers(self):
            return int(np.max(np.abs(self._offsets)))

        @property
        def nrOfCoordinates(self):
            return len(self._offsets)

        @property
        def offsetName(self):
            return self._offsetName

349
350
351
352
353
354
        def _latex(self, arg):
            if self._superscript:
                return "{{%s}_{%s}^{%s}}" % (self._field.name, self._offsetName, self._superscript)
            else:
                return "{{%s}_{%s}}" % (self._field.name, self._offsetName)

355
356
357
358
        @property
        def index(self):
            return self._index

359
360
361
362
363
364
        def getNeighbor(self, *offsets):
            return Field.Access(self.field, offsets, self.index)

        def getShifted(self, *shift):
            return Field.Access(self.field, tuple(a + b for a, b in zip(shift, self.offsets)), self.index)

365
366
        def _hashable_content(self):
            superClassContents = list(super(Field.Access, self)._hashable_content())
Martin Bauer's avatar
Martin Bauer committed
367
            t = tuple(superClassContents + [hash(self._field), self._index] + self._offsets)
368
            return t
Martin Bauer's avatar
Martin Bauer committed
369
370
371
372
373
374
375
376
377


def extractCommonSubexpressions(equations):
    """
    Uses sympy to find common subexpressions in equations and returns
    them in a topologically sorted order, ready for evaluation.
    Usually called before list of equations is passed to :func:`createKernel`
    """
    replacements, newEq = sp.cse(equations)
Martin Bauer's avatar
Martin Bauer committed
378
379
380
381
382
    # Workaround for older sympy versions: here subexpressions (temporary = True) are extracted
    # which leads to problems in Piecewise functions which have to a default case indicated by True
    symbolsEqualToTrue = {r[0]: True for r in replacements if r[1] is sp.true}

    replacementEqs = [sp.Eq(*r) for r in replacements if r[1] is not sp.true]
Martin Bauer's avatar
Martin Bauer committed
383
384
    equations = replacementEqs + newEq
    topologicallySortedPairs = sp.cse_main.reps_toposort([[e.lhs, e.rhs] for e in equations])
Martin Bauer's avatar
Martin Bauer committed
385
    equations = [sp.Eq(a[0], a[1].subs(symbolsEqualToTrue)) for a in topologicallySortedPairs]
Martin Bauer's avatar
Martin Bauer committed
386
387
388
    return equations


389
390
391
392
393
394
395
def getLayoutFromStrides(strides, indexDimensionIds=[]):
    coordinates = list(range(len(strides)))
    relevantStrides = [stride for i, stride in enumerate(strides) if i not in indexDimensionIds]
    result = [x for (y, x) in sorted(zip(relevantStrides, coordinates), key=lambda pair: pair[0], reverse=True)]
    return normalizeLayout(result)


396
def getLayoutOfArray(arr, indexDimensionIds=[]):
Martin Bauer's avatar
Martin Bauer committed
397
398
399
    """
    Returns a list indicating the memory layout (linearization order) of the numpy array.
    Example:
400
    >>> getLayoutOfArray(np.zeros([3,3,3]))
Martin Bauer's avatar
Martin Bauer committed
401
    (0, 1, 2)
Martin Bauer's avatar
Martin Bauer committed
402
403
404
405
406

    In this example the loop over the zeroth coordinate should be the outermost loop,
    followed by the first and second. Elements arr[x,y,0] and arr[x,y,1] are adjacent in memory.
    Normally constructed numpy arrays have this order, however by stride tricks or other frameworks, arrays
    with different memory layout can be created.
Martin Bauer's avatar
Martin Bauer committed
407
408

    The indexDimensionIds parameter leaves specifies which coordinates should not be
Martin Bauer's avatar
Martin Bauer committed
409
    """
410
    return getLayoutFromStrides(arr.strides, indexDimensionIds)
411
412


413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
def createNumpyArrayWithLayout(shape, layout):
    """
    Creates a numpy array with
    :param shape: shape of the resulting array
    :param layout: layout as tuple, where the coordinates are ordered from slow to fast
    >>> res = createNumpyArrayWithLayout(shape=(2, 3, 4, 5), layout=(3, 2, 0, 1))
    >>> res.shape
    (2, 3, 4, 5)
    >>> getLayoutOfArray(res)
    (3, 2, 0, 1)
    """
    assert set(layout) == set(range(len(shape))), "Wrong layout descriptor"
    currentLayout = list(range(len(shape)))
    swaps = []
    for i in range(len(layout)):
        if currentLayout[i] != layout[i]:
            indexToSwapWith = currentLayout.index(layout[i])
            swaps.append((i, indexToSwapWith))
            currentLayout[i], currentLayout[indexToSwapWith] = currentLayout[indexToSwapWith], currentLayout[i]
    assert tuple(currentLayout) == tuple(layout)

    shape = list(shape)
    for a, b in swaps:
        shape[a], shape[b] = shape[b], shape[a]

    res = np.empty(shape, order='c')
    for a, b in reversed(swaps):
        res = res.swapaxes(a, b)
    return res


444
445
446
447
def spatialLayoutStringToTuple(layoutStr, dim):
    if layoutStr in ('fzyx', 'zyxf'):
        assert dim <= 3
        return tuple(reversed(range(dim)))
448

Martin Bauer's avatar
Martin Bauer committed
449
    if layoutStr in ('fzyx', 'f', 'reverseNumpy', 'SoA'):
450
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
451
    elif layoutStr in ('c', 'numpy', 'AoS'):
452
        return tuple(range(dim))
453
454
455
456
    raise ValueError("Unknown layout descriptor " + layoutStr)


def layoutStringToTuple(layoutStr, dim):
Martin Bauer's avatar
Martin Bauer committed
457
    if layoutStr == 'fzyx' or layoutStr == 'SoA':
458
459
        assert dim <= 4
        return tuple(reversed(range(dim)))
Martin Bauer's avatar
Martin Bauer committed
460
    elif layoutStr == 'zyxf' or layoutStr == 'AoS':
461
462
463
464
465
466
        assert dim <= 4
        return tuple(reversed(range(dim - 1))) + (dim-1,)
    elif layoutStr == 'f' or layoutStr == 'reverseNumpy':
        return tuple(reversed(range(dim)))
    elif layoutStr == 'c' or layoutStr == 'numpy':
        return tuple(range(dim))
467
468
469
    raise ValueError("Unknown layout descriptor " + layoutStr)


470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
def normalizeLayout(layout):
    """Takes a layout tuple and subtracts the minimum from all entries"""
    minEntry = min(layout)
    return tuple(i - minEntry for i in layout)


def computeStrides(shape, layout):
    """
    Computes strides assuming no padding exists
    :param shape: shape (size) of array
    :param layout: layout specification as tuple
    :return: strides in elements, not in bytes
    """
    N = len(shape)
    assert len(layout) == N
    assert len(set(layout)) == N
    strides = [0] * N
    product = 1
488
    for j in reversed(layout):
489
490
491
        strides[j] = product
        product *= shape[j]
    return tuple(strides)
Martin Bauer's avatar
Martin Bauer committed
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584


def offsetComponentToDirectionString(coordinateId, value):
    """
    Translates numerical offset to string notation.
    x offsets are labeled with east 'E' and 'W',
    y offsets with north 'N' and 'S' and
    z offsets with top 'T' and bottom 'B'
    If the absolute value of the offset is bigger than 1, this number is prefixed.
    :param coordinateId: integer 0, 1 or 2 standing for x,y and z
    :param value: integer offset

    Example:
    >>> offsetComponentToDirectionString(0, 1)
    'E'
    >>> offsetComponentToDirectionString(1, 2)
    '2N'
    """
    nameComponents = (('W', 'E'),  # west, east
                      ('S', 'N'),  # south, north
                      ('B', 'T'),  # bottom, top
                      )
    if value == 0:
        result = ""
    elif value < 0:
        result = nameComponents[coordinateId][0]
    else:
        result = nameComponents[coordinateId][1]
    if abs(value) > 1:
        result = "%d%s" % (abs(value), result)
    return result


def offsetToDirectionString(offsetTuple):
    """
    Translates numerical offset to string notation.
    For details see :func:`offsetComponentToDirectionString`
    :param offsetTuple: 3-tuple with x,y,z offset

    Example:
    >>> offsetToDirectionString([1, -1, 0])
    'SE'
    >>> offsetToDirectionString(([-3, 0, -2]))
    '2B3W'
    """
    names = ["", "", ""]
    for i in range(len(offsetTuple)):
        names[i] = offsetComponentToDirectionString(i, offsetTuple[i])
    name = "".join(reversed(names))
    if name == "":
        name = "C"
    return name


def directionStringToOffset(directionStr, dim=3):
    """
    Reverse mapping of :func:`offsetToDirectionString`
    :param directionStr: string representation of offset
    :param dim: dimension of offset, i.e the length of the returned list

    >>> directionStringToOffset('NW', dim=3)
    array([-1,  1,  0])
    >>> directionStringToOffset('NW', dim=2)
    array([-1,  1])
    >>> directionStringToOffset(offsetToDirectionString([3,-2,1]))
    array([ 3, -2,  1])
    """
    offsetMap = {
        'C': np.array([0, 0, 0]),

        'W': np.array([-1, 0, 0]),
        'E': np.array([1, 0, 0]),

        'S': np.array([0, -1, 0]),
        'N': np.array([0, 1, 0]),

        'B': np.array([0, 0, -1]),
        'T': np.array([0, 0, 1]),
    }
    offset = np.array([0, 0, 0])

    while len(directionStr) > 0:
        factor = 1
        firstNonDigit = 0
        while directionStr[firstNonDigit].isdigit():
            firstNonDigit += 1
        if firstNonDigit > 0:
            factor = int(directionStr[:firstNonDigit])
            directionStr = directionStr[firstNonDigit:]
        curOffset = offsetMap[directionStr[0]]
        offset += factor * curOffset
        directionStr = directionStr[1:]
    return offset[:dim]
585
586
587
588
589
590
591


if __name__ == '__main__':
    f = Field.createGeneric('f', spatialDimensions=2, indexDimensions=1)
    fa = f[0, 1](4) ** 2
    print(fa)
    print(sp.latex(fa))