main.cc 26.8 KB
Newer Older
Phillip Lino Rall's avatar
Phillip Lino Rall committed
1
2
3
4
5
6
7
8
9
10
11
// ------------------------------------------------------------
// main.cc
//
// ------------------------------------------------------------
#define _USE_MATH_DEFINES
#include <cmath>
#include <complex>
#include <iostream>
#include <string>
#include <vector>
#include "source/ugblock2D.h"
Phillip Lino Rall's avatar
Phillip Lino Rall committed
12
13
#include "ugblock.h"
#include "source/ugblock2D3D.h"
Phillip Lino Rall's avatar
Phillip Lino Rall committed
14
15
16
17
18
19
20
21
22
23
24


using std::complex;
using namespace ::_COLSAMM_;

#define L2NORM(vector) sqrt(product(vector,vector).real())
#define RESTART 0


double isZero(double x)
{
25
    return fabs(x) < 1e-10?1.0:0.0;
Phillip Lino Rall's avatar
Phillip Lino Rall committed
26
27
}

Blue Bird's avatar
Blue Bird committed
28
complex<double> I(0.0,1.0);
Phillip Lino Rall's avatar
Phillip Lino Rall committed
29

Blue Bird's avatar
Blue Bird committed
30
31
32
std::complex<double> expi(double x) {
   return exp(I*x);
}
Phillip Lino Rall's avatar
Phillip Lino Rall committed
33

Blue Bird's avatar
Blue Bird committed
34
35
36
std::complex<double> sinExp(double x) {
   return sin(x);
}
Phillip Lino Rall's avatar
Phillip Lino Rall committed
37

Blue Bird's avatar
Blue Bird committed
38
39
40
std::complex<double> cosExp(double x) {
   return cos(x);
}
Phillip Lino Rall's avatar
Phillip Lino Rall committed
41

Blue Bird's avatar
Blue Bird committed
42
double realPart(std::complex<double> x) {
43
   return x.real();
Blue Bird's avatar
Blue Bird committed
44
}
Phillip Lino Rall's avatar
Phillip Lino Rall committed
45

Blue Bird's avatar
Blue Bird committed
46
double imPart(std::complex<double> x) {
47
   return x.imag();
Blue Bird's avatar
Blue Bird committed
48
}
Phillip Lino Rall's avatar
Phillip Lino Rall committed
49

50
51
52
53
double complexAngle(std::complex<double> x) {
    return (std::arg(x)+2.0*M_PI);
 }

Blue Bird's avatar
Blue Bird committed
54
55
56
double radiusLoch;
std::complex<double> loch(double x, double y) {
   if(sqrt(x*x+y*y) < radiusLoch) return 1.0;
57
   return 0.0;
Blue Bird's avatar
Blue Bird committed
58
}
59
60
61
62
63
64
65
66
67

double radiusGauss;
double curvature;
double distanceFromWaist;
double lambda;
double rayleighrange;
std::complex<double> gauss(double x, double y) {
    double k = 2.0 * M_PI / lambda;
    double waist = radiusGauss * sqrt(1+pow(distanceFromWaist / rayleighrange,2));
68
    if (curvature == 0.0 || std::isnan(curvature))
69
70
71
72
73
74
75
76
    {
        return exp(-(x*x+y*y)/(waist*waist));
    }
    else
    {
        return exp(-(x*x+y*y)/(waist*waist))*expi(-1.0 * k * (x*x+y*y) / (2.0 * curvature));
    }
}
77
std::complex<double> spalt(double x, double y) {
78
   if(fabs(x) < radiusLoch) return 1.0;
79
80
   return 0.0;
}
81
82
83
84
85
86
87
88
89
90
91
92
93
double myRealSqrt(std::complex<double> z) {
    return sqrt(z.real());
}

std::complex<double> myLimitToOne(std::complex<double> in)
{
    if (in.real() < 1.0)
    {
        return std::complex<double>(1,0);
    }
    return in;
}

94
void CalcFresnel(std::complex<double> (*aperture) (double x, double y),
Blue Bird's avatar
Blue Bird committed
95
96
                 double distance,
                 double wavenumber,
97
                 VariableFFT& varIn,
Blue Bird's avatar
Blue Bird committed
98
99
100
                 VariableFFT& varFar) {
    Blockgrid2D* blockGridRec = varFar.Give_blockgrid();

101
102
    X_coordinate2d X(*blockGridRec);
    Y_coordinate2d Y(*blockGridRec);
Blue Bird's avatar
Blue Bird committed
103

104
    Function2d2<std::complex<double>,double> Aperture(aperture);
Blue Bird's avatar
Blue Bird committed
105
    Function2d1<std::complex<double>,double> Expi(expi);
106

107
    varFar = Aperture(X,Y) * Expi(wavenumber * (X*X+Y*Y) / (2.0 * distance));
Blue Bird's avatar
Blue Bird committed
108
109
110
    varIn  = varFar;
    varFar.FFT();
}
Phillip Lino Rall's avatar
Phillip Lino Rall committed
111

112
113
114
115
116

void spectrumPlaneWave(std::complex<double> (*aperture) (double x, double y),
                       double distance,
                       double wavenumber,
                       VariableFFT& varIn,
117
118
119
120
121
122
                       VariableFFT& varFar,
                       X_coordinate2d& X,
                       Y_coordinate2d& Y,
                       VariableFFT& Kx,
                       VariableFFT& Ky,
                       VariableFFT& temp) {
123
124
          Blockgrid2D* blockGridRec = varFar.Give_blockgrid();

125
126
127
128
//          X_coordinate2d X(*blockGridRec);
//          Y_coordinate2d Y(*blockGridRec);
//          VariableFFT Kx(varFar);
//          VariableFFT Ky(varFar);
129

130
131
//          double dx = varIn.getHx();
//          double dy = varIn.getHy();
132

133
134
//          double ukx = 2.0 * M_PI / varIn.getSizeX();
//          double uky = 2.0 * M_PI / varIn.getSizeY();
135

136
137
//          Kx = X / dx * ukx ;
//          Ky = Y / dy * uky ;
138
139

          Function2d2<std::complex<double>,double> Aperture(aperture);
140
141
          Function2d1<double, std::complex<double> > absolute(ABS);
          Function2d1<double, std::complex<double> > myRealFunc(myReal);
142
143
144
145
          Function2d1<std::complex<double>,double> Expi(expi);
          Function2d1<double, std::complex<double> > Sqrt(myRealSqrt);


146
147
148
149
150
151
152
153
154
155
          //VariableFFT temp(varFar);
          temp = Sqrt(wavenumber*wavenumber - Kx*Kx - Ky*Ky) * (distance) ;
          std::ofstream DATEIA;

          DATEIA.open("varWaveK.vtk");
          temp.Print_VTK(DATEIA);
          DATEIA.close();

          //varIn = varIn * Expi(myRealFunc(temp));

156
157
158
          varFar = Aperture(X,Y);
          varIn  = varFar;
          varFar.FFT();
159
          varFar = varFar * Expi( myRealFunc(temp));
160
161
162
          varFar.inversFFT();
      }

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306

void virtualLensCorrection(double dz, double wavenumberAverage,
                           VariableFFT& varIn,
                           VariableFFT& varWavenumber,
                           VariableFFT& temp)
{





    Function2d1<std::complex<double>,double> Expi(expi);
    Function2d1<double, std::complex<double> > absolute(ABS);
    Function2d1<double, std::complex<double> > myRealFunc(myReal);

    temp = myRealFunc(varWavenumber - wavenumberAverage ) * dz;
//    std::ofstream DATEIC;
//    DATEIC.open("varTEMPAVERAGE.vtk");
//    temp.Print_VTK(DATEIC);
//    DATEIC.close();



//    temp = myRealFunc(varWavenumber - minimumWavenmumber ) * dz;
//    DATEIC.open("varTEMPMINIMA.vtk");
//    temp.Print_VTK(DATEIC);
//    DATEIC.close();
    //sampling
    double samplingTest =Maximum(myRealFunc(temp)) ;
    double samplingMax = M_PI / samplingTest;
    if (samplingMax < 1.0)
    {
        std::cout << "undersampling \n";
        std::cout << "dz = " << dz << "\n";
        std::cout << "dzMax = " << samplingMax * dz << std::endl;
    }

//    std::ofstream DATEIB;

//    DATEIB.open("varTEMPTEST.vtk");
//    temp.Print_VTK(DATEIB);
//    DATEIB.close();



    varIn = varIn * Expi(1.0*myRealFunc(temp));

//    std::ofstream DATEIA;

//    DATEIA.open("varInAfterCorrection.vtk");
//    varIn.Print_VTK(DATEIA);
//    DATEIA.close();


}

void powerTest(VariableFFT& varIn)
{
    Function2d1<double, std::complex<double> > absolute(ABS);
    double power = product(absolute(varIn),absolute(varIn));
    std::cout << "power  = " << power << "\n";

}
void spectrumPlaneWavePropagation(double distance,
                       double wavenumber,
                       VariableFFT& varIn,
                       VariableFFT& varFar,
                       VariableFFT& Kx,
                       VariableFFT& Ky,
                       VariableFFT& temp ) {
         // Blockgrid2D* blockGridRec = varFar.Give_blockgrid();

//          X_coordinate2d X(*blockGridRec);
//          Y_coordinate2d Y(*blockGridRec);
//          VariableFFT Kx(varFar);
//          VariableFFT Ky(varFar);

//          double dx = varIn.getHx();
//          double dy = varIn.getHy();

//          double ukx = 2.0 * M_PI / varIn.getSizeX();
//          double uky = 2.0 * M_PI / varIn.getSizeY();

//          Kx = X / dx * ukx ;
//          Ky = Y / dy * uky ;


                  Function2d1<double, std::complex<double> > MYREAL(myReal);

          double maxKx = Maximum(MYREAL(Kx));
          double maxKy = Maximum(MYREAL(Ky));

          Function2d1<std::complex<double>,double> Expi(expi);
          Function2d1<double, std::complex<double> > Sqrt(myRealSqrt);
          Function2d1<double, std::complex<double> > absolute(ABS);

         // VariableFFT temp(varIn);
          temp = wavenumber*wavenumber - Kx*Kx - Ky*Ky;
          temp = Sqrt(temp) * (distance);

//          std::ofstream DATEIA;
//          DATEIA.open("varTempA.vtk");
//          temp.Print_VTK(DATEIA);
//          DATEIA.close();


          if ((wavenumber*wavenumber - maxKx*maxKx - maxKy*maxKy) < 0)
          {
              std::cout << "warning : negative sqrt() ! decrease step size or increase resolution" << std::endl;
          }

         // varIn.FFTShift();

          varIn.FFT();
          //varIn.FFTShift();


//          DATEIB.open("varIn.FFTShift-FFT-FFTShift.vtk");
//          varIn.Print_VTK(DATEIB);
//          DATEIB.close();

//          std::ofstream DATEIC;
//          DATEIC.open("varTempWithOutExp.vtk");
//          temp.Print_VTK(DATEIC);
//          DATEIC.close();
          varFar = varIn;
          temp = Expi( 1.0*MYREAL(temp));
          varIn = varIn * temp;




          //varIn.FFTShift();
          varIn.inversFFT();
          //varIn.FFTShift();

//          std::ofstream DATEID;
//          DATEID.open("varTempD.vtk");
//          varIn.Print_VTK(DATEID);
//          DATEID.close();
//varFar = varFar;
         // varFar = varIn;
      }
void applyLens(VariableFFT& varIn,VariableFFT& varOPL, double wavenumber = 1)
307
{
308

309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
        Function2d1<std::complex<double>,double> Expi(expi);
        Function2d1<double, std::complex<double> > absolute(ABS);
        Function2d1<double, std::complex<double> > myRealPart(realPart);



        varIn = varIn * Expi(-1.0*myRealPart(varOPL) * wavenumber);



}

double C_4;
double focalLength;

void estimateBeamQuality(VariableFFT& varIn,
                         VariableFFT& Kx,
                         VariableFFT& Ky,
                         X_coordinate2d& X,
                         Y_coordinate2d& Y,
                         VariableFFT& temp,
                         double lambda)
{
    std::cout << "Beamquality not estimated! " << std::endl;
    return;

    Function2d1<double, std::complex<double> > absolute(ABS);
    Function2d1<double, std::complex<double> > myRealFunc(myReal);
    Function2d1<double, std::complex<double> > winkel(complexAngle);
    Local_stiffness_matrix2D<double> dx(*(varIn.Give_blockgrid()));
    dx.Calculate(d_dx(v_())*w_());
    Local_stiffness_matrix2D<double> dy(*(varIn.Give_blockgrid()));
    dy.Calculate(d_dy(v_())*w_());

    CalcContinuousArg cont(*(varIn.Give_blockgrid()));
    int gaussIterations = 100;
    Variable2D<double> f(*(varIn.Give_blockgrid()));
    Variable2D<double> TEMP(*(varIn.Give_blockgrid()));
     Variable2D<double>  ux(*(varIn.Give_blockgrid()));
     Variable2D<double>  uy(*(varIn.Give_blockgrid()));
     Variable2D<double>  px(*(varIn.Give_blockgrid()));
     Variable2D<double>  py(*(varIn.Give_blockgrid()));
     Variable2D<double>  unity(*(varIn.Give_blockgrid()));
     Variable2D<double>  Intensity(*(varIn.Give_blockgrid()));
     Variable2D<double>  IntensityFFT(*(varIn.Give_blockgrid()));
     Variable2D<double>  phase(*(varIn.Give_blockgrid()));
     Variable2D<double>  REALPART(*(varIn.Give_blockgrid()));

//     X_coordinate2d X(*(varIn.Give_blockgrid()));
//     Y_coordinate2d Y(*(varIn.Give_blockgrid()));
//    VariableFFT temp(varIn);


    unity = 1.0;
    Intensity = absolute(varIn) * absolute(varIn);

    temp = varIn;
    temp.FFT();
    IntensityFFT = absolute(temp) * absolute(temp);
    std::ofstream DATEIX;



//    phase = winkel(varIn) - 2.0*M_PI;
//    DATEIX.open("diff_phase_noncontinuous.vtk");
//    phase.Print_VTK(DATEIX);
//    DATEIX.close();

    cont.calcArg(phase,varIn);
    phase = phase * (-1.0);

//    DATEIX.open("diff_phase_from_calcArg.vtk");
//    phase.Print_VTK(DATEIX);
//    DATEIX.close();
//    DATEIX.open("diff_field.vtk");
//    varIn.Print_VTK(DATEIX);
//    DATEIX.close();


    double waveNumber = 2.0 * M_PI / lambda;
    phase = phase / waveNumber;
    //phase = phase;

     Local_stiffness_matrix2D<double> helm(*(varIn.Give_blockgrid())); // also in FEA_Def and solverFEA
    helm.Calculate(v_()*w_());


     (ux) = 0;
    Function2d1<double, std::complex<double> > myRealPart(realPart);
    REALPART = (myRealPart(varIn));
     f = (dy)(Intensity);

     for(int i=0;i<gaussIterations;++i)
     {
         TEMP = ux;
         (ux) = (ux) - ((helm)(ux) -f) / (helm).diag();
         if (L_infty(TEMP-ux) < 1e-13)
             i = gaussIterations;
     }
     f = (dx)(Intensity);
     for(int i=0;i<gaussIterations;++i)
     {
         TEMP = uy;
         (uy) = (uy) - ((helm)(uy) -f) / (helm).diag();
         if (L_infty(TEMP-uy) < 1e-13)
             i = gaussIterations;
     }
     f = (dx)(phase);
     for(int i=0;i<gaussIterations;++i)
     {
         TEMP = px;
         (px) = (px) - ((helm)(px) -f) / (helm).diag();
         if (L_infty(TEMP-px) < 1e-13)
             i = gaussIterations;
     }
     f = (dy)(phase);
     for(int i=0;i<gaussIterations;++i)
     {
         TEMP = py;
         (py) = (py) - ((helm)(py) -f) / (helm).diag();
         if (L_infty(TEMP-py) < 1e-13)
             i = gaussIterations;
     }


//         DATEIX.open("diff_phase_continuous.vtk");
//         px.Print_VTK(DATEIX);
//         DATEIX.close();
//     px = 2.0*X / focalLength / 2.0 + (X*X*X * 4.0 + 4.0 * X*Y*Y) * C_4;
//     //px = px * waveNumber;
//     DATEIX.open("diff_phase_continuous_analytic.vtk");
//     px.Print_VTK(DATEIX);
//     DATEIX.close();
//     py = 2.0*Y / focalLength / 2.0 + (Y*Y*Y * 4.0 + 4.0 * X*X*Y) * C_4;



//     VariableFFT Kx(varIn);
//     VariableFFT Ky(varIn);

//     double delx = varIn.getHx();
//     double dely = varIn.getHy();

//     double ukx = 2.0 * M_PI / varIn.getSizeX();
//     double uky = 2.0 * M_PI / varIn.getSizeY();

//     Kx = (X-0.5*delx) / delx * ukx ;
//     Ky = (Y-0.5*dely) / dely * uky ;
//     DATEIX.open("diff_Ky.vtk");
//     Ky.Print_VTK(DATEIX);
//     DATEIX.close();
//     DATEIX.open("diff_I_FFT.vtk");
//     IntensityFFT.Print_VTK(DATEIX);
//     DATEIX.close();


     double power = product(Intensity,unity);
     double powerFFT = product(IntensityFFT,unity);

 //    std::cout << "ratio of dx / ux " << delx / ukx << std::endl;
     f = myRealFunc(IntensityFFT * Kx * Kx);
     double phiX_FFT = product(f,unity) / powerFFT / waveNumber/ waveNumber;
     f = myRealFunc(IntensityFFT * Ky * Ky);
     double phiY_FFT = product(f,unity) / powerFFT / waveNumber/ waveNumber;
     double medianX = product(Intensity * X * X,unity) / power;
     double medianX4 = product(Intensity * X * X * X * X,unity) / power;
     double medianX6 = product(Intensity * X * X * X * X* X * X,unity) / power;
     double betaX = sqrt((medianX * medianX6 - medianX4 * medianX4)/(medianX4 * medianX4));
     double C4abb = 16.0 * M_PI / lambda * 0.816 * C_4 * medianX4 ;
     C4abb = 16.0 * M_PI / lambda * C_4 * medianX4 ;
     std::cout << "aberration due to C4 " << C4abb << std::endl;
     double medianY = product(Intensity * Y * Y,unity) / power;
     std::cout << "beamwaistX = " << 2.0 * sqrt(medianX) <<std::endl;
     std::cout << "beamwaistY = " << 2.0 * sqrt(medianY) <<std::endl;

     f = 1.0 / 4.0 / waveNumber / waveNumber / power * ux * ux / Intensity;
     f = f + 1.0 / power * Intensity * px * px;
     double phiX = product(f,unity);
     f = 1.0 / 4.0 / waveNumber / waveNumber / power * uy * uy / Intensity;
     f = f + 1.0 / power * Intensity * py * py;
     double phiY = product(f,unity);
     f = 1.0 / power * Intensity * X * px;
     double medianXphiX = product(f,unity);
     f = 1.0 / power * Intensity * Y * py;
     double medianYphiY = product(f,unity);
     double M2X = 2.0 * waveNumber * sqrt(fabs(medianX * phiX_FFT - medianXphiX * medianXphiX));
     double M2Y = 2.0 * waveNumber * sqrt(fabs(medianY * phiY_FFT - medianYphiY * medianYphiY));
     double M2X_direct = 2.0 * waveNumber * sqrt(fabs(medianX * phiX - medianXphiX * medianXphiX));
     double M2Y_direct = 2.0 * waveNumber * sqrt(fabs(medianY * phiY - medianYphiY * medianYphiY));

     double REffX = medianX / medianXphiX;
     double REffY = medianY / medianYphiY;

     f = medianX / power * ux * ux / Intensity;
     double M2diffX = sqrt(product(f,unity));
     f = Intensity * (px - X / REffX)*(px - X / REffX);
     double M2abbX = sqrt(product(f,unity) / power) * 2.0 * waveNumber * medianY;
     f = medianY / power * uy * uy / Intensity;
     double M2diffY = sqrt(product(f,unity));
     f = Intensity * (py - Y / REffY)*(py - Y / REffY);
     double M2abbY = sqrt(product(f,unity) / power) * 2.0 * waveNumber * medianY;

//     std::cout << "medianX = " << medianX <<std::endl;
//     std::cout << "medianX4 = " << medianX4 <<std::endl;
//     std::cout << "medianX6 = " << medianX6 <<std::endl;
//     std::cout << "medianY = " << medianY <<std::endl;
//     std::cout << "phiX = " << phiX <<std::endl;
//     std::cout << "phiY = " << phiY <<std::endl;
//     std::cout << "phiX_FFT = " << phiX_FFT <<std::endl;
//     std::cout << "phiY_FFT = " << phiY_FFT <<std::endl;


//     std::cout << "REffX = " << REffX <<std::endl;
//     std::cout << "REffY = " << REffY <<std::endl;
//     std::cout << "medianXphiX = " << medianXphiX <<std::endl;
//     std::cout << "medianYphiY = " << medianYphiY <<std::endl;


     std::cout << "M2X_with_fft " << M2X << std::endl;
     std::cout << "M2Y_with_fft " << M2Y << std::endl;
     std::cout << "M2X_direct " << M2X_direct << std::endl;
     std::cout << "M2Y_direct " << M2Y_direct << std::endl;

//     std::cout << "M2diffX " << M2diffX << std::endl;
//     std::cout << "M2abbX " << M2abbX << std::endl;
//     std::cout << "M2TotalX " << sqrt(M2abbX*M2abbX+M2diffX*M2diffX) << std::endl;
//     std::cout << "M2diffY " << M2diffY << std::endl;
//     std::cout << "M2abbY " << M2abbY << std::endl;
//     std::cout << "M2TotalY " << sqrt(M2abbY*M2abbY+M2diffY*M2diffY) << std::endl;
//     std::cout << "C4 / M2Abb " << C4abb / M2abbY << std::endl;
//     std::cout << "C4 / M2Abb " << C4abb / M2abbX << std::endl;
//     std::cout << "M2TotalY " << sqrt(M2abbY*M2abbY+M2diffY*M2diffY) << std::endl;

//         std::ofstream DATEIR;
//         DATEIR.open("diffDX.vtk");
//         ux.Print_VTK(DATEIR);
//         DATEIR.close();

    //CalcContinuousArg;
548

549

550
}
Phillip Lino Rall's avatar
Phillip Lino Rall committed
551

Blue Bird's avatar
Blue Bird committed
552
int main(int argc, char** argv) {
553
    std::ofstream DATEI;
Phillip Lino Rall's avatar
Phillip Lino Rall committed
554

Phillip Lino Rall's avatar
Phillip Lino Rall committed
555
    int n = 5;
Blue Bird's avatar
Blue Bird committed
556

557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
    double R1 = 100;
    double R2 = 100;

    focalLength = 100.0;

    int distanceIncrements = 15;
    double distance = 50 ;      //[mm]
    double dz = distance / double(distanceIncrements);
    lambda   = 1064e-6;  //[mm]
    radiusLoch = 0.2;   //[mm]


    distance = fabs(distanceFromWaist * 2.0);

    distance = 150 ;
    dz = distance / double(distanceIncrements);
    double geometrySize  =  5.0; //[mm]
    geometrySize =  8.0;

    radiusGauss = geometrySize / 4.0;   //[mm]
    rayleighrange = M_PI *radiusGauss*radiusGauss /lambda;
    std::cout << "rayleighrange " << rayleighrange<< std::endl;
    distanceFromWaist = -rayleighrange;
    distanceFromWaist = 0;
    curvature = distanceFromWaist * (1.0 + pow(rayleighrange / distanceFromWaist,2) );

Phillip Lino Rall's avatar
Phillip Lino Rall committed
583
584
    double radiusGeo = 0.5 * geometrySize;
    Rechteck geo(-radiusGeo, -radiusGeo, radiusGeo, radiusGeo);
585

Blue Bird's avatar
Blue Bird committed
586
    double wavenumber = 2.0 * M_PI / lambda;
587
588


589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
    cout << " Test CalcFresnel!!" << endl;

    std::cout << "distance = " << distance << std::endl;
    std::cout << "lambda = " << lambda << std::endl;
    std::cout << "aperture = " << radiusLoch << std::endl;
    std::cout << "geometrySize = " << geometrySize << std::endl;

    std::cout << "Fresnelnumber = " << radiusLoch*radiusLoch / distance / lambda << std::endl;
    std::cout << "Fresnelnumber >> 1 : near field "      << std::endl;
    std::cout << "Fresnelnumber ~  1 : fresnel zone"     << std::endl;
    std::cout << "Fresnelnumber << 1 : fraunhofer zone"  << std::endl;

    double deltaX = geometrySize / pow(2,n-1);
    double deltaXFourierPlane = lambda * distance / pow(2,n-1) / deltaX;
    std::cout << "deltaX initial plane (z = 0) = " << deltaX << std::endl;
    std::cout << "deltaX fourier plane (z = " <<distance<<")  = " << deltaXFourierPlane << std::endl;
    std::cout << "dxInitial / dxFourier   = " << deltaX / deltaXFourierPlane << std::endl;
Phillip Lino Rall's avatar
Phillip Lino Rall committed
606
    std::cout << "curvature " << curvature << std::endl;
607
608


Phillip Lino Rall's avatar
Phillip Lino Rall committed
609
610
    //VTK_Reader reader(QString("/local/er96apow/FAUbox/Promotion/Vectorial_BPM/fibercryst_exmaple/RefractionIndexTherm_last.vtk"));
    //Variable<double> * thermalRefractiveIndex3D = reader.give_first_variable();
611

Phillip Lino Rall's avatar
Phillip Lino Rall committed
612
613
614
615

    Unstructured_grid *ug = new Cylinder(2,1,20);
    Blockgrid *bg = new Blockgrid(ug,10,10,20);
    Variable<double> * thermalRefractiveIndex3D = new Variable<double>(*bg);
616
617


Phillip Lino Rall's avatar
Phillip Lino Rall committed
618
619
620
621
622
    VariableFFT varSlice(n,n,geo);
    Variable2D<double> varDoubleRefr(*(varSlice.Give_blockgrid()));
    IteratorZDirection zIterator(thermalRefractiveIndex3D->Give_blockgrid());
    zIterator.gotoFront();
    thermalRefractiveIndex3D->interpolateSlizeZ(&varDoubleRefr, &zIterator);
623

624
    VariableFFT varE(n,n,geo);
625
    VariableFFT varIn(varE);
626
    VariableFFT varIntensity(varE);
627
    VariableFFT varPhase(varE);
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
    VariableFFT varTempX(varE);
    VariableFFT varTempY(varE);
    VariableFFT varRefr(varE);
    VariableFFT varPhaseLens(varE);
    VariableFFT temp(varE);
    VariableFFT varWavenumber(varE);
    Blockgrid2D* blockGridRec = varE.Give_blockgrid();
    X_coordinate2d X(*blockGridRec);
    Y_coordinate2d Y(*blockGridRec);
      VariableFFT Kx(varE);
      VariableFFT Ky(varE);


    double dx = varIn.getHx();
    double dy = varIn.getHy();

    double ukx = 2.0 * M_PI / varIn.getSizeX();
    double uky = 2.0 * M_PI / varIn.getSizeY();
646

647
648
649
650
    varTempX =(X  - 0.5*dx);
    varTempY =(Y  - 0.5*dy);
    Kx = varTempX / dx * ukx ;
    Ky = varTempY / dy * uky ;
651

652
653
654
    Function2d2<std::complex<double>,double> Aperture(gauss);
//    Function2d1<std::complex<double>,double> Expi(expi);
//    Function2d1<double, std::complex<double> > Sqrt(myRealSqrt);
655

656
657
658
659
660
    //sampling criterion


    varE = Aperture(X,Y);

661
662
663
664
665
    std::ofstream DATEIG;
    DATEIG.open("/local/er96apow/FFT_results/varE___before.vtk");
    varE.Print_VTK(DATEIG);
    DATEIG.close();

666
    C_4 = 0.00015;
667
    //C_4 = 0.0;
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
//    std::ofstream DATEIX;

//    DATEIX.open("varE_bef_fft.vtk");
//    varE.Print_VTK(DATEIX);
//    DATEIX.close();

    //varE.FFT();
//    std::ofstream DATEIR;
//    DATEIR.open("varE_fft.vtk");
//    varE.Print_VTK(DATEIR);
//    DATEIR.close();

//    varE.inversFFT();
//    std::ofstream DATEIH;
//    DATEIH.open("varE_fft_ifft.vtk");
//    varE.Print_VTK(DATEIH);
//    DATEIH.close();


    varIn = varE;

    Function2d1<double, double > wurzel(sqrt);
    //varPhaseLens =(-1.83+1.0) * (X*X+Y*Y)/2.0 * (1.0 / R1 + 1.0 / R2) *wavenumber;

    varPhaseLens = (X*X + Y*Y) / 2.0 / focalLength + C_4 * ( X * X + Y * Y ) * ( X * X + Y * Y );


    //varPhaseLens = (X*X + Y*Y) / 2.0 / focalLength;// + C_4 * ( X * X + Y * Y ) * ( X * X + Y * Y );
    //    *convergenceVariable = n_0 * wurzel(absolut( 1 - alpha * alpha * ( X * X + Y * Y ) + alpha * alpha * 4.0 * ( X * X + Y * Y ) * ( X * X + Y * Y ) )); //with C4 aberration


    //varPhaseLens = wurzel(X*X + Y*Y) / focalLength;


    Function2d1<std::complex<double>, std::complex<double> > limitToOne(myLimitToOne);
    double alpha = 2.0 * M_PI /  distance / 2.0 ;//200.0;
    alpha = alpha / 2.0;

    alpha = 1.0/1000.0 * 2.0 * M_PI ;
    varRefr = wurzel( 1.5 * 1.5 * (1.0 - alpha * alpha * (X*X+Y*Y)));
   // varRefr = wurzel( 1.5 * 1.5 * (1.0 - alpha * alpha * (X*X)));
    //varRefr = wurzel(1.8 * 1.8 * (1 - alpha * (X*X)));

    varRefr = limitToOne(varRefr);
    varWavenumber = 2.0 * M_PI * varRefr / lambda;

    Function2d1<double, std::complex<double> > myRealFunc(myReal);
    std::cout << "Minimum( (myRealFunc(varRefr))) " << Minimum( (myRealFunc(varRefr))) << std::endl;
    std::cout << "Minimum( X) " << Minimum( (myRealFunc(X))) << std::endl;
    std::cout << "Maximum( X) " << Maximum( (myRealFunc(X))) << std::endl;
    std::cout << " Maximum( (myRealFunc(varRefr))" << Maximum( (myRealFunc(varRefr))) << std::endl;

    Function2d1<double, std::complex<double> > absolute(ABS);


    double refrAverage = 0.1 *  Minimum( (myRealFunc(varRefr))) + 0.9 * Maximum( (myRealFunc(varRefr)));
    double wavenumberAverage = 2.0 * M_PI * refrAverage / lambda;

    //double focalLength = 1.0 / refrAverage / alpha / sin(alpha * distance);
    double peroid = 2.0 * M_PI / alpha;
    std::cout << "focal  length approx: " << focalLength<< std::endl;
    std::cout << "peroid length approx: " << peroid<< std::endl;
    std::cout << "z-dir      increment: " << dz<< std::endl;
731

732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
//    DATEIG.open("varWavenumber.vtk");
//    varWavenumber.Print_VTK(DATEIG);
//    DATEIG.close();
//    DATEIG.open("varvarPhaseLens.vtk");
//    varPhaseLens.Print_VTK(DATEIG);
//    DATEIG.close();
//    DATEIG.open("varE___before.vtk");
//    varIn.Print_VTK(DATEIG);
//    DATEIG.close();

    double dzMax = M_PI / ( sqrt(wavenumberAverage*wavenumberAverage-pow((pow(2,n)/2-1) * ukx,2))
                           -sqrt(wavenumberAverage*wavenumberAverage-pow((pow(2,n)/2) * ukx,2))) ;

    if (dzMax < dz)
    {
        std::cout << "undersampling " << std::endl;
    }
    //virtualLensCorrection(distance,wavenumberAverage,varIn,varWavenumber);
    applyLens(varIn, varPhaseLens,wavenumber);
    estimateBeamQuality(varIn,Kx,Ky,X,Y,temp,lambda);

753

754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
//        spectrumPlaneWavePropagation(100,
//                     wavenumber,
//                     varIn,
//                     varE,Kx,Ky,X,Y,temp);
//        DATEIG.open("varE___FFT.vtk");
//        varE.Print_VTK(DATEIG);
//        DATEIG.close();
//        DATEIG.open("varE___after.vtk");
//        varIn.Print_VTK(DATEIG);
//        DATEIG.close();
    for (int iter = 0 ; iter < distanceIncrements;iter++)
    {
        std::cout << "progress : " << double(iter) / double(distanceIncrements) * 100 << "%" << std::endl;
        std::ofstream DATEIQ;
//        DATEIQ.open("varIn____befCorrection.vtk");
//        varIn.Print_VTK(DATEIQ);
//        DATEIQ.close();

//        virtualLensCorrection(dz,wavenumberAverage,varIn,varWavenumber);
//        DATEIQ.open("varIn____AftCorrection.vtk");
//        varIn.Print_VTK(DATEIQ);
//        DATEIQ.close();
        spectrumPlaneWavePropagation(dz,
                     wavenumber,
                     varIn,
                     varE,Kx,Ky,temp);
//        DATEIQ.open("varIn____AftPropagation.vtk");
//        varIn.Print_VTK(DATEIQ);
//        DATEIQ.close();
//        powerTest(varIn);


        //virtualLensCorrection(dz,wavenumberAverage,varIn,varWavenumber);



        int plotevery = 1;
        if (iter % plotevery == 0)
        {

            estimateBeamQuality(varIn,Kx,Ky,X,Y,temp,lambda);

            std::ofstream DATEIA;

798
            DATEIA.open("/local/er96apow/FFT_results/varEAtPlane_with_aberration"+std::to_string(iter *dz)+".vtk");
799
800
801
802
803
804
805
806
807
808
809
810
811
            varIntensity = absolute(varIn) * absolute(varIn);
            varIntensity.Print_VTK(DATEIA);
            DATEIA.close();

//            std::ofstream DATEIB;

//            DATEIB.open("varEFFT"+std::to_string(iter / plotevery)+".vtk");
//            varE.Print_VTK(DATEIB);
//            DATEIB.close();
            if (iter == 101)
                iter += 500;
        }
    }
812
813
814



Blue Bird's avatar
Blue Bird committed
815
816
817
//    VariableFFT varB(varA);
/*
    Blockgrid2D* blockGridRec = varE.Give_blockgrid();
818
819
820

    X_coordinate2d X(*blockGridRec);
    Y_coordinate2d Y(*blockGridRec);
Blue Bird's avatar
Blue Bird committed
821
822
823
*/


824
825


826
827


828
829
830
831
832
833
//    CalcFresnel(loch,
//                 distance,
//                 wavenumber,
//                 varIn,
//                 varE);

834
835
836
837
838
839
//    spectrumPlaneWave(loch,
//                 distance,
//                 wavenumber,
//                 varIn,
//                 varE);
    spectrumPlaneWave(gauss,
Blue Bird's avatar
Blue Bird committed
840
841
842
                 distance,
                 wavenumber,
                 varIn,
843
                 varE,X,Y,Kx,Ky,temp);
844

845
   // varE = varE / L_infty(  varE);
846

847

848
849
    std::ofstream DATEIA;

Blue Bird's avatar
Blue Bird committed
850
    DATEIA.open("varIn.vtk");
851
852
853
    varIn.Print_VTK(DATEIA);
    DATEIA.close();

Blue Bird's avatar
Blue Bird committed
854
    DATEIA.open("varE.vtk");
855
856
    varE.Print_VTK(DATEIA);
    DATEIA.close();
Blue Bird's avatar
Blue Bird committed
857

858
859
860
//    DATEIA.open("varEimag.vtk");
//	varE.Print_VTK(DATEIA,imPart);
//	DATEIA.close();
861

862
863
864
865
866
//    DATEIA.open("varEreal.vtk");
//	varE.Print_VTK(DATEIA,realPart);
//	DATEIA.close();

    cout << " Test CalcFresnel finished!!" << endl;
Phillip Lino Rall's avatar
Phillip Lino Rall committed
867
868
869

}