Commit 2a6d08ec authored by Jan Hönig's avatar Jan Hönig Committed by Markus Holzer
Browse files

`create_kernel` API Update

parent 4fecf0c5
__pycache__ __pycache__
.ipynb_checkpoints .ipynb_checkpoints
.coverage .coverage*
*.pyc *.pyc
*.vti *.vti
/build /build
...@@ -18,4 +18,4 @@ pystencils/boundaries/createindexlistcython.c ...@@ -18,4 +18,4 @@ pystencils/boundaries/createindexlistcython.c
pystencils/boundaries/createindexlistcython.*.so pystencils/boundaries/createindexlistcython.*.so
pystencils_tests/tmp pystencils_tests/tmp
pystencils_tests/kerncraft_inputs/.2d-5pt.c_kerncraft/ pystencils_tests/kerncraft_inputs/.2d-5pt.c_kerncraft/
pystencils_tests/kerncraft_inputs/.3d-7pt.c_kerncraft/ pystencils_tests/kerncraft_inputs/.3d-7pt.c_kerncraft/
\ No newline at end of file
%% Cell type:code id: tags: %% Cell type:code id: tags:
   
``` python ``` python
from pystencils.session import * from pystencils.session import *
import pystencils as ps
sp.init_printing() sp.init_printing()
frac = sp.Rational frac = sp.Rational
``` ```
   
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
   
# Tutorial 06: Phase-field simulation of dentritic solidification # Tutorial 06: Phase-field simulation of dentritic solidification
   
This is the second tutorial on phase field methods with pystencils. Make sure to read the previous tutorial first. This is the second tutorial on phase field methods with pystencils. Make sure to read the previous tutorial first.
   
In this tutorial we again implement a model described in **Programming Phase-Field Modelling** by S. Bulent Biner. In this tutorial we again implement a model described in **Programming Phase-Field Modelling** by S. Bulent Biner.
This time we implement the model from chapter 4.7 that describes dentritic growth. So get ready for some beautiful snowflake pictures. This time we implement the model from chapter 4.7 that describes dentritic growth. So get ready for some beautiful snowflake pictures.
   
We start again by adding all required arrays fields. This time we explicitly store the change of the phase variable φ in time, since the dynamics is calculated using an Allen-Cahn formulation where a term $\partial_t \phi$ occurs. We start again by adding all required arrays fields. This time we explicitly store the change of the phase variable φ in time, since the dynamics is calculated using an Allen-Cahn formulation where a term $\partial_t \phi$ occurs.
   
%% Cell type:code id: tags: %% Cell type:code id: tags:
   
``` python ``` python
dh = ps.create_data_handling(domain_size=(300, 300), periodicity=True, dh = ps.create_data_handling(domain_size=(300, 300), periodicity=True,
default_target='cpu') default_target=ps.Target.CPU)
φ_field = dh.add_array('phi', latex_name='φ') φ_field = dh.add_array('phi', latex_name='φ')
φ_field_tmp = dh.add_array('phi_temp', latex_name='φ_temp') φ_field_tmp = dh.add_array('phi_temp', latex_name='φ_temp')
φ_delta_field = dh.add_array('phidelta', latex_name='φ_D') φ_delta_field = dh.add_array('phidelta', latex_name='φ_D')
t_field = dh.add_array('T') t_field = dh.add_array('T')
``` ```
   
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
   
This model has a lot of parameters that are created here in a symbolic fashion. This model has a lot of parameters that are created here in a symbolic fashion.
   
%% Cell type:code id: tags: %% Cell type:code id: tags:
   
``` python ``` python
ε, m, δ, j, θzero, α, γ, Teq, κ, τ = sp.symbols("ε m δ j θ_0 α γ T_eq κ τ") ε, m, δ, j, θzero, α, γ, Teq, κ, τ = sp.symbols("ε m δ j θ_0 α γ T_eq κ τ")
εb = sp.Symbol("\\bar{\\epsilon}") εb = sp.Symbol("\\bar{\\epsilon}")
   
φ = φ_field.center φ = φ_field.center
φ_tmp = φ_field_tmp.center φ_tmp = φ_field_tmp.center
T = t_field.center T = t_field.center
   
def f(φ, m): def f(φ, m):
return φ**4 / 4 - (frac(1, 2) - m/3) * φ**3 + (frac(1,4)-m/2)*φ**2 return φ**4 / 4 - (frac(1, 2) - m/3) * φ**3 + (frac(1,4)-m/2)*φ**2
   
free_energy_density = ε**2 / 2 * (ps.fd.Diff(φ,0)**2 + ps.fd.Diff(φ,1)**2 ) + f(φ, m) free_energy_density = ε**2 / 2 * (ps.fd.Diff(φ,0)**2 + ps.fd.Diff(φ,1)**2 ) + f(φ, m)
free_energy_density free_energy_density
``` ```
   
%%%% Output: execute_result %%%% Output: execute_result
   
![]() ![]()
$\displaystyle \frac{{{φ}_{(0,0)}}^{4}}{4} - {{φ}_{(0,0)}}^{3} \left(\frac{1}{2} - \frac{m}{3}\right) + {{φ}_{(0,0)}}^{2} \left(\frac{1}{4} - \frac{m}{2}\right) + \frac{ε^{2} \left({\partial_{0} {{φ}_{(0,0)}}}^{2} + {\partial_{1} {{φ}_{(0,0)}}}^{2}\right)}{2}$ $\displaystyle \frac{{{φ}_{(0,0)}}^{4}}{4} - {{φ}_{(0,0)}}^{3} \left(\frac{1}{2} - \frac{m}{3}\right) + {{φ}_{(0,0)}}^{2} \left(\frac{1}{4} - \frac{m}{2}\right) + \frac{ε^{2} \left({\partial_{0} {{φ}_{(0,0)}}}^{2} + {\partial_{1} {{φ}_{(0,0)}}}^{2}\right)}{2}$
4 2 ⎛ 2 2⎞ 4 2 ⎛ 2 2⎞
φ_C 3 ⎛1 m⎞ 2 ⎛1 m⎞ ε ⋅⎝D(φ[0,0]) + D(φ[0,0]) ⎠ φ_C 3 ⎛1 m⎞ 2 ⎛1 m⎞ ε ⋅⎝D(φ[0,0]) + D(φ[0,0]) ⎠
──── - φ_C ⋅⎜─ - ─⎟ + φ_C ⋅⎜─ - ─⎟ + ──────────────────────────── ──── - φ_C ⋅⎜─ - ─⎟ + φ_C ⋅⎜─ - ─⎟ + ────────────────────────────
4 ⎝2 3⎠ ⎝4 2⎠ 2 4 ⎝2 3⎠ ⎝4 2⎠ 2
   
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
   
The free energy is again composed of a bulk and interface part. The free energy is again composed of a bulk and interface part.
   
%% Cell type:code id: tags: %% Cell type:code id: tags:
   
``` python ``` python
plt.figure(figsize=(7,4)) plt.figure(figsize=(7,4))
plt.sympy_function(f(φ, m=1), x_values=(-1.05, 1.5) ) plt.sympy_function(f(φ, m=1), x_values=(-1.05, 1.5) )
plt.xlabel("φ") plt.xlabel("φ")
plt.title("Bulk free energy"); plt.title("Bulk free energy");
``` ```
   
%%%% Output: display_data %%%% Output: display_data
   
![]() ![]()
   
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
   
Compared to last tutorial, this bulk free energy has also two minima, but at different values. Compared to last tutorial, this bulk free energy has also two minima, but at different values.
   
Another complexity of the model is its anisotropy. The gradient parameter $\epsilon$ depends on the interface normal. Another complexity of the model is its anisotropy. The gradient parameter $\epsilon$ depends on the interface normal.
   
%% Cell type:code id: tags: %% Cell type:code id: tags:
   
``` python ``` python
def σ(θ): def σ(θ):
return 1 + δ * sp.cos(j * (θ - θzero)) return 1 + δ * sp.cos(j * (θ - θzero))
   
θ = sp.atan2(ps.fd.Diff(φ, 1), ps.fd.Diff(φ, 0)) θ = sp.atan2(ps.fd.Diff(φ, 1), ps.fd.Diff(φ, 0))
   
ε_val = εb * σ(θ) ε_val = εb * σ(θ)
ε_val ε_val
``` ```
   
%%%% Output: execute_result %%%% Output: execute_result
   
![]() ![]()
$\displaystyle \bar{\epsilon} \left(δ \cos{\left(j \left(- θ_{0} + \operatorname{atan_{2}}{\left({\partial_{1} {{φ}_{(0,0)}}},{\partial_{0} {{φ}_{(0,0)}}} \right)}\right) \right)} + 1\right)$ $\displaystyle \bar{\epsilon} \left(δ \cos{\left(j \left(- θ_{0} + \operatorname{atan_{2}}{\left({\partial_{1} {{φ}_{(0,0)}}},{\partial_{0} {{φ}_{(0,0)}}} \right)}\right) \right)} + 1\right)$
\bar{\epsilon}⋅(δ⋅cos(j⋅(-θ₀ + atan2(D(φ[0,0]), D(φ[0,0])))) + 1) \bar{\epsilon}⋅(δ⋅cos(j⋅(-θ₀ + atan2(D(φ[0,0]), D(φ[0,0])))) + 1)
   
%% Cell type:code id: tags: %% Cell type:code id: tags:
   
``` python ``` python
def m_func(T): def m_func(T):
return (α / sp.pi) * sp.atan(γ * (Teq - T)) return (α / sp.pi) * sp.atan(γ * (Teq - T))
``` ```
   
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
   
However, we just insert these parameters into the free energy formulation before doing the functional derivative, to make the dependence of $\epsilon$ on $\nabla \phi$ explicit. However, we just insert these parameters into the free energy formulation before doing the functional derivative, to make the dependence of $\epsilon$ on $\nabla \phi$ explicit.
   
%% Cell type:code id: tags: %% Cell type:code id: tags:
   
``` python ``` python
fe = free_energy_density.subs({ fe = free_energy_density.subs({
m: m_func(T), m: m_func(T),
ε: εb * σ(θ), ε: εb * σ(θ),
}) })
   
dF_dφ = ps.fd.functional_derivative(fe, φ) dF_dφ = ps.fd.functional_derivative(fe, φ)
dF_dφ = ps.fd.expand_diff_full(dF_dφ, functions=[φ]) dF_dφ = ps.fd.expand_diff_full(dF_dφ, functions=[φ])
dF_dφ dF_dφ
``` ```
   
%%%% Output: execute_result %%%% Output: execute_result
   
![]() ![]()
$\displaystyle {{φ}_{(0,0)}}^{3} - \frac{{{φ}_{(0,0)}}^{2} α \operatorname{atan}{\left({{T}_{(0,0)}} γ - T_{eq} γ \right)}}{\pi} - \frac{3 {{φ}_{(0,0)}}^{2}}{2} + \frac{{{φ}_{(0,0)}} α \operatorname{atan}{\left({{T}_{(0,0)}} γ - T_{eq} γ \right)}}{\pi} + \frac{{{φ}_{(0,0)}}}{2} - \bar{\epsilon}^{2} δ^{2} \cos^{2}{\left(j θ_{0} - j \operatorname{atan_{2}}{\left({\partial_{1} {{φ}_{(0,0)}}},{\partial_{0} {{φ}_{(0,0)}}} \right)} \right)} {\partial_{0} {\partial_{0} {{φ}_{(0,0)}}}} - \bar{\epsilon}^{2} δ^{2} \cos^{2}{\left(j θ_{0} - j \operatorname{atan_{2}}{\left({\partial_{1} {{φ}_{(0,0)}}},{\partial_{0} {{φ}_{(0,0)}}} \right)} \right)} {\partial_{1} {\partial_{1} {{φ}_{(0,0)}}}} - 2 \bar{\epsilon}^{2} δ \cos{\left(j θ_{0} - j \operatorname{atan_{2}}{\left({\partial_{1} {{φ}_{(0,0)}}},{\partial_{0} {{φ}_{(0,0)}}} \right)} \right)} {\partial_{0} {\partial_{0} {{φ}_{(0,0)}}}} - 2 \bar{\epsilon}^{2} δ \cos{\left(j θ_{0} - j \operatorname{atan_{2}}{\left({\partial_{1} {{φ}_{(0,0)}}},{\partial_{0} {{φ}_{(0,0)}}} \right)} \right)} {\partial_{1} {\partial_{1} {{φ}_{(0,0)}}}} - \bar{\epsilon}^{2} {\partial_{0} {\partial_{0} {{φ}_{(0,0)}}}} - \bar{\epsilon}^{2} {\partial_{1} {\partial_{1} {{φ}_{(0,0)}}}}$ $\displaystyle {{φ}_{(0,0)}}^{3} - \frac{{{φ}_{(0,0)}}^{2} α \operatorname{atan}{\left({{T}_{(0,0)}} γ - T_{eq} γ \right)}}{\pi} - \frac{3 {{φ}_{(0,0)}}^{2}}{2} + \frac{{{φ}_{(0,0)}} α \operatorname{atan}{\left({{T}_{(0,0)}} γ - T_{eq} γ \right)}}{\pi} + \frac{{{φ}_{(0,0)}}}{2} - \bar{\epsilon}^{2} δ^{2} \cos^{2}{\left(j θ_{0} - j \operatorname{atan_{2}}{\left({\partial_{1} {{φ}_{(0,0)}}},{\partial_{0} {{φ}_{(0,0)}}} \right)} \right)} {\partial_{0} {\partial_{0} {{φ}_{(0,0)}}}} - \bar{\epsilon}^{2} δ^{2} \cos^{2}{\left(j θ_{0} - j \operatorname{atan_{2}}{\left({\partial_{1} {{φ}_{(0,0)}}},{\partial_{0} {{φ}_{(0,0)}}} \right)} \right)} {\partial_{1} {\partial_{1} {{φ}_{(0,0)}}}} - 2 \bar{\epsilon}^{2} δ \cos{\left(j θ_{0} - j \operatorname{atan_{2}}{\left({\partial_{1} {{φ}_{(0,0)}}},{\partial_{0} {{φ}_{(0,0)}}} \right)} \right)} {\partial_{0} {\partial_{0} {{φ}_{(0,0)}}}} - 2 \bar{\epsilon}^{2} δ \cos{\left(j θ_{0} - j \operatorname{atan_{2}}{\left({\partial_{1} {{φ}_{(0,0)}}},{\partial_{0} {{φ}_{(0,0)}}} \right)} \right)} {\partial_{1} {\partial_{1} {{φ}_{(0,0)}}}} - \bar{\epsilon}^{2} {\partial_{0} {\partial_{0} {{φ}_{(0,0)}}}} - \bar{\epsilon}^{2} {\partial_{1} {\partial_{1} {{φ}_{(0,0)}}}}$
2 2 2 2
3 φ_C ⋅α⋅atan(T_C⋅γ - T_eq⋅γ) 3⋅φ_C φ_C⋅α⋅atan(T_C⋅γ - T_eq⋅γ) φ_C 3 φ_C ⋅α⋅atan(T_C⋅γ - T_eq⋅γ) 3⋅φ_C φ_C⋅α⋅atan(T_C⋅γ - T_eq⋅γ) φ_C
φ_C - ─────────────────────────── - ────── + ────────────────────────── + ─── φ_C - ─────────────────────────── - ────── + ────────────────────────── + ───
π 2 π 2 π 2 π 2
2 2 2 2 2 2
- \bar{\epsilon} ⋅δ ⋅cos (j⋅θ₀ - j⋅atan2(D(φ[0,0]), D(φ[0,0])))⋅D(D(φ[0,0])) - \bar{\epsilon} ⋅δ ⋅cos (j⋅θ₀ - j⋅atan2(D(φ[0,0]), D(φ[0,0])))⋅D(D(φ[0,0]))
2 2 2 2 2 2
- \bar{\epsilon} ⋅δ ⋅cos (j⋅θ₀ - j⋅atan2(D(φ[0,0]), D(φ[0,0])))⋅D(D(φ[0,0])) - - \bar{\epsilon} ⋅δ ⋅cos (j⋅θ₀ - j⋅atan2(D(φ[0,0]), D(φ[0,0])))⋅D(D(φ[0,0])) -
2 2
2⋅\bar{\epsilon} ⋅δ⋅cos(j⋅θ₀ - j⋅atan2(D(φ[0,0]), D(φ[0,0])))⋅D(D(φ[0,0])) - 2⋅\bar{\epsilon} ⋅δ⋅cos(j⋅θ₀ - j⋅atan2(D(φ[0,0]), D(φ[0,0])))⋅D(D(φ[0,0])) -
2 2
2⋅\bar{\epsilon} ⋅δ⋅cos(j⋅θ₀ - j⋅atan2(D(φ[0,0]), D(φ[0,0])))⋅D(D(φ[0,0])) - \ 2⋅\bar{\epsilon} ⋅δ⋅cos(j⋅θ₀ - j⋅atan2(D(φ[0,0]), D(φ[0,0])))⋅D(D(φ[0,0])) - \
2 2 2 2
bar{\epsilon} ⋅D(D(φ[0,0])) - \bar{\epsilon} ⋅D(D(φ[0,0])) bar{\epsilon} ⋅D(D(φ[0,0])) - \bar{\epsilon} ⋅D(D(φ[0,0]))
   
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
   
Then we insert all the numeric parameters and discretize: Then we insert all the numeric parameters and discretize:
   
%% Cell type:code id: tags: %% Cell type:code id: tags:
   
``` python ``` python
discretize = ps.fd.Discretization2ndOrder(dx=0.03, dt=1e-5) discretize = ps.fd.Discretization2ndOrder(dx=0.03, dt=1e-5)
parameters = { parameters = {
τ: 0.0003, τ: 0.0003,
κ: 1.8, κ: 1.8,
εb: 0.01, εb: 0.01,
δ: 0.02, δ: 0.02,
γ: 10, γ: 10,
j: 6, j: 6,
α: 0.9, α: 0.9,
Teq: 1.0, Teq: 1.0,
θzero: 0.2, θzero: 0.2,
sp.pi: sp.pi.evalf() sp.pi: sp.pi.evalf()
} }
parameters parameters
``` ```
   
%%%% Output: execute_result %%%% Output: execute_result
   
![]() ![]()
$\displaystyle \left\{ \pi : 3.14159265358979, \ T_{eq} : 1.0, \ \bar{\epsilon} : 0.01, \ j : 6, \ α : 0.9, \ γ : 10, \ δ : 0.02, \ θ_{0} : 0.2, \ κ : 1.8, \ τ : 0.0003\right\}$ $\displaystyle \left\{ \pi : 3.14159265358979, \ T_{eq} : 1.0, \ \bar{\epsilon} : 0.01, \ j : 6, \ α : 0.9, \ γ : 10, \ δ : 0.02, \ θ_{0} : 0.2, \ κ : 1.8, \ τ : 0.0003\right\}$
{π: 3.14159265358979, T_eq: 1.0, \bar{\epsilon}: 0.01, j: 6, α: 0.9, γ: 10, δ: {π: 3.14159265358979, T_eq: 1.0, \bar{\epsilon}: 0.01, j: 6, α: 0.9, γ: 10, δ:
0.02, θ₀: 0.2, κ: 1.8, τ: 0.0003} 0.02, θ₀: 0.2, κ: 1.8, τ: 0.0003}
   
%% Cell type:code id: tags: %% Cell type:code id: tags:
   
``` python ``` python
dφ_dt = - dF_dφ / τ dφ_dt = - dF_dφ / τ
φ_eqs = ps.simp.sympy_cse_on_assignment_list([ps.Assignment(φ_delta_field.center, φ_eqs = ps.simp.sympy_cse_on_assignment_list([ps.Assignment(φ_delta_field.center,
discretize(dφ_dt.subs(parameters)))]) discretize(dφ_dt.subs(parameters)))])
φ_eqs.append(ps.Assignment(φ_tmp, discretize(ps.fd.transient(φ) - φ_delta_field.center))) φ_eqs.append(ps.Assignment(φ_tmp, discretize(ps.fd.transient(φ) - φ_delta_field.center)))
   
temperature_evolution = -ps.fd.transient(T) + ps.fd.diffusion(T, 1) + κ * φ_delta_field.center temperature_evolution = -ps.fd.transient(T) + ps.fd.diffusion(T, 1) + κ * φ_delta_field.center
temperature_eqs = [ temperature_eqs = [
ps.Assignment(T, discretize(temperature_evolution.subs(parameters))) ps.Assignment(T, discretize(temperature_evolution.subs(parameters)))
] ]
``` ```
   
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
   
When creating the kernels we pass as target (which may be 'cpu' or 'gpu') the default target of the target handling. This enables to switch to a GPU simulation just by changing the parameter of the data handling. When creating the kernels we pass as target (which may be 'Target.CPU' or 'Target.GPU') the default target of the target handling. This enables to switch to a GPU simulation just by changing the parameter of the data handling.
   
The rest is similar to the previous tutorial. The rest is similar to the previous tutorial.
   
%% Cell type:code id: tags: %% Cell type:code id: tags:
   
``` python ``` python
φ_kernel = ps.create_kernel(φ_eqs, cpu_openmp=4, target=dh.default_target).compile() φ_kernel = ps.create_kernel(φ_eqs, cpu_openmp=4, target=dh.default_target).compile()
temperature_kernel = ps.create_kernel(temperature_eqs, target=dh.default_target).compile() temperature_kernel = ps.create_kernel(temperature_eqs, target=dh.default_target).compile()
``` ```
   
%% Cell type:code id: tags: %% Cell type:code id: tags:
   
``` python ``` python
def timeloop(steps=200): def timeloop(steps=200):
φ_sync = dh.synchronization_function(['phi']) φ_sync = dh.synchronization_function(['phi'])
temperature_sync = dh.synchronization_function(['T']) temperature_sync = dh.synchronization_function(['T'])
dh.all_to_gpu() # this does nothing when running on CPU dh.all_to_gpu() # this does nothing when running on CPU
for t in range(steps): for t in range(steps):
φ_sync() φ_sync()
dh.run_kernel(φ_kernel) dh.run_kernel(φ_kernel)
dh.swap('phi', 'phi_temp') dh.swap('phi', 'phi_temp')
temperature_sync() temperature_sync()
dh.run_kernel(temperature_kernel) dh.run_kernel(temperature_kernel)
dh.all_to_cpu() dh.all_to_cpu()
return dh.gather_array('phi') return dh.gather_array('phi')
   
def init(nucleus_size=np.sqrt(5)): def init(nucleus_size=np.sqrt(5)):
for b in dh.iterate(): for b in dh.iterate():
x, y = b.cell_index_arrays x, y = b.cell_index_arrays
x, y = x-b.shape[0]//2, y-b.shape[0]//2 x, y = x-b.shape[0]//2, y-b.shape[0]//2
bArr = (x**2 + y**2) < nucleus_size**2 bArr = (x**2 + y**2) < nucleus_size**2
b['phi'].fill(0) b['phi'].fill(0)
b['phi'][(x**2 + y**2) < nucleus_size**2] = 1.0 b['phi'][(x**2 + y**2) < nucleus_size**2] = 1.0
b['T'].fill(0.0) b['T'].fill(0.0)
   
def plot(): def plot():
plt.subplot(1,3,1) plt.subplot(1,3,1)
plt.scalar_field(dh.gather_array('phi')) plt.scalar_field(dh.gather_array('phi'))
plt.title("φ") plt.title("φ")
plt.colorbar() plt.colorbar()
plt.subplot(1,3,2) plt.subplot(1,3,2)
plt.title("T") plt.title("T")
plt.scalar_field(dh.gather_array('T')) plt.scalar_field(dh.gather_array('T'))
plt.colorbar() plt.colorbar()
plt.subplot(1,3,3) plt.subplot(1,3,3)
plt.title("∂φ") plt.title("∂φ")
plt.scalar_field(dh.gather_array('phidelta')) plt.scalar_field(dh.gather_array('phidelta'))
plt.colorbar() plt.colorbar()
``` ```
   
%% Cell type:code id: tags: %% Cell type:code id: tags:
   
``` python ``` python
timeloop(10) timeloop(10)
init() init()
plot() plot()
print(dh) print(dh)
``` ```
   
%%%% Output: stream %%%% Output: stream
   
Name| Inner (min/max)| WithGl (min/max) Name| Inner (min/max)| WithGl (min/max)
---------------------------------------------------- ----------------------------------------------------
T| ( 0, 0)| ( 0, 0) T| ( 0, 0)| ( 0, 0)
phi| ( 0, 1)| ( 0, 1) phi| ( 0, 1)| ( 0, 1)
phi_temp| ( 0, 0)| ( 0, 0) phi_temp| ( 0, 0)| ( 0, 0)
phidelta| ( 0, 0)| ( 0, 0) phidelta| ( 0, 0)| ( 0, 0)
   
%%%% Output: display_data %%%% Output: display_data
   
![]() ![](