Commit 62e2ed51 by Markus Holzer Committed by Jan Hönig

### Remove interpolator

parent 43393627
This source diff could not be displayed because it is too large. You can view the blob instead.
 %% Cell type:code id: tags:  python from pystencils.session import *  %% Cell type:markdown id: tags: # Demo: Working with derivatives ## Overview This notebook demonstrates how to formulate continuous differential operators in *pystencils* and automatically derive finite difference stencils from them. Instead of using the built-in derivatives in *sympy*, *pystencils* comes with its own derivative objects. They represent spatial derivatives of pystencils fields. %% Cell type:code id: tags:  python f = ps.fields("f: [2D]") first_derivative_x = ps.fd.diff(f, 0) first_derivative_x  %%%% Output: execute_result ![]() $\displaystyle {\partial_{0} {{f}_{(0,0)}}}$ ![]() $\displaystyle {\partial_{0} {f}_{(0,0)}}$ D(f[0,0]) %% Cell type:markdown id: tags: This object is the derivative of the field $f$ with respect to the first spatial coordinate $x$. To get a finite difference approximation a discretization strategy is required: %% Cell type:code id: tags:  python discretize_2nd_order = ps.fd.Discretization2ndOrder(dx=sp.symbols("h")) discretize_2nd_order(first_derivative_x)  %%%% Output: stream ! %%%% Output: execute_result ![]() $\displaystyle \frac{- {{f}_{(-1,0)}} + {{f}_{(1,0)}}}{2 h}$ -f_W + f_E ────────── ![]() $\displaystyle \frac{{f}_{(1,0)} - {f}_{(-1,0)}}{2 h}$ f_E - f_W ───────── 2⋅h %% Cell type:markdown id: tags: Strictly speaking, derivative objects act on *field accesses*, not *fields*, that why there is a $(0,0)$ index at the field: %% Cell type:code id: tags:  python first_derivative_x  %%%% Output: execute_result ![]() $\displaystyle {\partial_{0} {{f}_{(0,0)}}}$ ![]() $\displaystyle {\partial_{0} {f}_{(0,0)}}$ D(f[0,0]) %% Cell type:markdown id: tags: Sometimes it might be useful to specify derivatives at an offset e.g. %% Cell type:code id: tags:  python derivative_offset = ps.fd.diff(f[0, 1], 0) derivative_offset, discretize_2nd_order(derivative_offset)  %%%% Output: execute_result ![]() $\displaystyle \left( {\partial_{0} {{f}_{(0,1)}}}, \ \frac{- {{f}_{(-1,1)}} + {{f}_{(1,1)}}}{2 h}\right)$ ⎛ -f_NW + f_NE⎞ ⎜D(f[0,1]), ────────────⎟ ⎝ 2⋅h ⎠ ![]() $\displaystyle \left( {\partial_{0} {f}_{(0,1)}}, \ \frac{{f}_{(1,1)} - {f}_{(-1,1)}}{2 h}\right)$ ⎛ f_NE - f_NW⎞ ⎜D(f[0,1]), ───────────⎟ ⎝ 2⋅h ⎠ %% Cell type:markdown id: tags: Another example with second order derivatives: %% Cell type:code id: tags:  python laplacian = ps.fd.diff(f, 0, 0) + ps.fd.diff(f, 1, 1) laplacian  %%%% Output: execute_result ![]() $\displaystyle {\partial_{0} {\partial_{0} {{f}_{(0,0)}}}} + {\partial_{1} {\partial_{1} {{f}_{(0,0)}}}}$ ![]() $\displaystyle {\partial_{0} {\partial_{0} {f}_{(0,0)}}} + {\partial_{1} {\partial_{1} {f}_{(0,0)}}}$ D(D(f[0,0])) + D(D(f[0,0])) %% Cell type:code id: tags:  python discretize_2nd_order(laplacian)  %%%% Output: execute_result ![]() $\displaystyle \frac{{{f}_{(-1,0)}} - 2 {{f}_{(0,0)}} + {{f}_{(1,0)}}}{h^{2}} + \frac{{{f}_{(0,-1)}} - 2 {{f}_{(0,0)}} + {{f}_{(0,1)}}}{h^{2}}$ f_W - 2⋅f_C + f_E f_S - 2⋅f_C + f_N ───────────────── + ───────────────── 2 2 h h ![]() $\displaystyle \frac{- 2 {f}_{(0,0)} + {f}_{(1,0)} + {f}_{(-1,0)}}{h^{2}} + \frac{- 2 {f}_{(0,0)} + {f}_{(0,1)} + {f}_{(0,-1)}}{h^{2}}$ -2⋅f_C + f_E + f_W -2⋅f_C + f_N + f_S ────────────────── + ────────────────── 2 2 h h %% Cell type:markdown id: tags: ## Working with derivative terms No automatic simplifications are done on derivative terms i.e. linearity relations or product rule are not applied automatically. %% Cell type:code id: tags:  python f, g = ps.fields("f, g :[2D]") c = sp.symbols("c") δ = ps.fd.diff expr = δ( δ(f, 0) + δ(g, 0) + c + 5 , 0) expr  %%%% Output: execute_result ![]() $\displaystyle {\partial_{0} (c + {\partial_{0} {{f}_{(0,0)}}} + {\partial_{0} {{g}_{(0,0)}}} + 5) }$ ![]() $\displaystyle {\partial_{0} (c + {\partial_{0} {f}_{(0,0)}} + {\partial_{0} {g}_{(0,0)}} + 5) }$ D(c + Diff(f_C, 0, -1) + Diff(g_C, 0, -1) + 5) %% Cell type:markdown id: tags: This nested term can not be discretized automatically. %% Cell type:code id: tags:  python try: discretize_2nd_order(expr) except ValueError as e: print(e)  %%%% Output: stream Only derivatives with field or field accesses as arguments can be discretized %% Cell type:markdown id: tags: ### Linearity The following function expands all derivatives exploiting linearity: %% Cell type:code id: tags:  python ps.fd.expand_diff_linear(expr)  %%%% Output: execute_result ![]() $\displaystyle {\partial_{0} c} + {\partial_{0} {\partial_{0} {{f}_{(0,0)}}}} + {\partial_{0} {\partial_{0} {{g}_{(0,0)}}}}$ ![]() $\displaystyle {\partial_{0} c} + {\partial_{0} {\partial_{0} {f}_{(0,0)}}} + {\partial_{0} {\partial_{0} {g}_{(0,0)}}}$ D(c) + D(D(f[0,0])) + D(D(g[0,0])) %% Cell type:markdown id: tags: The symbol $c$ that was included is interpreted as a function by default. We can control the simplification behaviour by specifying all functions or all constants: %% Cell type:code id: tags:  python ps.fd.expand_diff_linear(expr, functions=(f[0,0], g[0, 0]))  %%%% Output: execute_result ![]() $\displaystyle {\partial_{0} {\partial_{0} {{f}_{(0,0)}}}} + {\partial_{0} {\partial_{0} {{g}_{(0,0)}}}}$ ![]() $\displaystyle {\partial_{0} {\partial_{0} {f}_{(0,0)}}} + {\partial_{0} {\partial_{0} {g}_{(0,0)}}}$ D(D(f[0,0])) + D(D(g[0,0])) %% Cell type:code id: tags:  python ps.fd.expand_diff_linear(expr, constants=[c])  %%%% Output: execute_result ![]() $\displaystyle {\partial_{0} {\partial_{0} {{f}_{(0,0)}}}} + {\partial_{0} {\partial_{0} {{g}_{(0,0)}}}}$ ![]() $\displaystyle {\partial_{0} {\partial_{0} {f}_{(0,0)}}} + {\partial_{0} {\partial_{0} {g}_{(0,0)}}}$ D(D(f[0,0])) + D(D(g[0,0])) %% Cell type:markdown id: tags: The expanded term can then be discretized: %% Cell type:code id: tags:  python discretize_2nd_order(ps.fd.expand_diff_linear(expr, constants=[c]))  %%%% Output: execute_result ![]() $\displaystyle \frac{{{f}_{(-1,0)}} - 2 {{f}_{(0,0)}} + {{f}_{(1,0)}}}{h^{2}} + \frac{{{g}_{(-1,0)}} - 2 {{g}_{(0,0)}} + {{g}_{(1,0)}}}{h^{2}}$ f_W - 2⋅f_C + f_E g_W - 2⋅g_C + g_E ───────────────── + ───────────────── 2 2 h h ![]() $\displaystyle \frac{- 2 {f}_{(0,0)} + {f}_{(1,0)} + {f}_{(-1,0)}}{h^{2}} + \frac{- 2 {g}_{(0,0)} + {g}_{(1,0)} + {g}_{(-1,0)}}{h^{2}}$ -2⋅f_C + f_E + f_W -2⋅g_C + g_E + g_W ────────────────── + ────────────────── 2 2 h h %% Cell type:markdown id: tags: ### Product rule The next cells show how to apply product rule and its reverse: %% Cell type:code id: tags:  python expr = δ(f[0, 0] * g[0, 0], 0 ) expr  %%%% Output: execute_result ![]() $\displaystyle {\partial_{0} ({{f}_{(0,0)}} {{g}_{(0,0)}}) }$ ![]() $\displaystyle {\partial_{0} ({f}_{(0,0)} {g}_{(0,0)}) }$ D(f_C*g_C) %% Cell type:code id: tags:  python expanded_expr = ps.fd.expand_diff_products(expr) expanded_expr  %%%% Output: execute_result ![]() $\displaystyle {{f}_{(0,0)}} {\partial_{0} {{g}_{(0,0)}}} + {{g}_{(0,0)}} {\partial_{0} {{f}_{(0,0)}}}$ ![]() $\displaystyle {f}_{(0,0)} {\partial_{0} {g}_{(0,0)}} + {g}_{(0,0)} {\partial_{0} {f}_{(0,0)}}$ f_C⋅D(g[0,0]) + g_C⋅D(f[0,0]) %% Cell type:code id: tags:  python recombined_expr = ps.fd.combine_diff_products(expanded_expr) recombined_expr  %%%% Output: execute_result ![]() $\displaystyle {\partial_{0} ({{f}_{(0,0)}} {{g}_{(0,0)}}) }$ ![]() $\displaystyle {\partial_{0} ({f}_{(0,0)} {g}_{(0,0)}) }$ D(f_C*g_C) %% Cell type:code id: tags:  python assert recombined_expr == expr  %% Cell type:markdown id: tags: ### Evaluate derivatives Arguments of derivative need not be to be fields, only when trying to discretize them. The next cells show how to transform them to *sympy* derivatives and evaluate them. %% Cell type:code id: tags:  python k = sp.symbols("k") expr = δ(k**3 + 2 * k, 0 ) expr  %%%% Output: execute_result ![]() ![]() $\displaystyle {\partial_{0} (k^{3} + 2 k) }$ D(k**3 + 2*k) %% Cell type:code id: tags:  python ps.fd.evaluate_diffs(expr, var=k)  %%%% Output: execute_result ![]() ![]() $\displaystyle 3 k^{2} + 2$ 2 3⋅k + 2 ... ...
 ... ... @@ -228,8 +228,7 @@ class KernelFunction(Node): @property def fields_accessed(self) -> Set[Field]: """Set of Field instances: fields which are accessed inside this kernel function""" from pystencils.interpolation_astnodes import InterpolatorAccess return set(o.field for o in itertools.chain(self.atoms(ResolvedFieldAccess), self.atoms(InterpolatorAccess))) return set(o.field for o in itertools.chain(self.atoms(ResolvedFieldAccess))) @property def fields_written(self) -> Set[Field]: ... ...
 ... ... @@ -4,7 +4,6 @@ from pystencils.astnodes import Node from pystencils.backends.cbackend import CBackend, CustomSympyPrinter, generate_c from pystencils.enums import Backend from pystencils.fast_approximation import fast_division, fast_inv_sqrt, fast_sqrt from pystencils.interpolation_astnodes import DiffInterpolatorAccess, InterpolationMode with open(join(dirname(__file__), 'cuda_known_functions.txt')) as f: lines = f.readlines() ... ... @@ -76,30 +75,6 @@ class CudaSympyPrinter(CustomSympyPrinter): super(CudaSympyPrinter, self).__init__() self.known_functions.update(CUDA_KNOWN_FUNCTIONS) def _print_InterpolatorAccess(self, node): dtype = node.interpolator.field.dtype.numpy_dtype if type(node) == DiffInterpolatorAccess: # cubicTex3D_1st_derivative_x(texture tex, float3 coord) template = f"cubicTex%iD_1st_derivative_{list(reversed('xyz'[:node.ndim]))[node.diff_coordinate_idx]}(%s, %s)" # noqa elif node.interpolator.interpolation_mode == InterpolationMode.CUBIC_SPLINE: template = "cubicTex%iDSimple(%s, %s)" else: if dtype.itemsize > 4: # Use PyCuda hack! # https://github.com/inducer/pycuda/blob/master/pycuda/cuda/pycuda-helpers.hpp template = "fp_tex%iD(%s, %s)" else: template = "tex%iD(%s, %s)" code = template % ( node.interpolator.field.spatial_dimensions, str(node.interpolator), # + 0.5 comes from Nvidia's staggered indexing ', '.join(self._print(o + 0.5) for o in reversed(node.offsets)) ) return code def _print_Function(self, expr): if isinstance(expr, fast_division): assert len(expr.args) == 2, f"__fdividef has two arguments, but {len(expr.args)} where given" ... ...
 ... ... @@ -11,9 +11,9 @@ from pystencils.cpu.cpujit import make_python_function from pystencils.data_types import StructType, TypedSymbol, create_type from pystencils.field import Field, FieldType from pystencils.transformations import ( add_types, filtered_tree_iteration, get_base_buffer_index, get_optimal_loop_ordering, implement_interpolations, make_loop_over_domain, move_constants_before_loop, parse_base_pointer_info, resolve_buffer_accesses, resolve_field_accesses, split_inner_loop) add_types, filtered_tree_iteration, get_base_buffer_index, get_optimal_loop_ordering, make_loop_over_domain, move_constants_before_loop, parse_base_pointer_info, resolve_buffer_accesses, resolve_field_accesses, split_inner_loop) AssignmentOrAstNodeList = List[Union[Assignment, ast.Node]] ... ... @@ -73,7 +73,6 @@ def create_kernel(assignments: AssignmentOrAstNodeList, function_name: str = "ke ghost_layers=ghost_layers, loop_order=loop_order) ast_node = KernelFunction(loop_node, Target.CPU, Backend.C, compile_function=make_python_function, ghost_layers=ghost_layer_info, function_name=function_name, assignments=assignments) implement_interpolations(body) if split_groups: typed_split_groups = [[type_symbol(s) for s in split_group] for split_group in split_groups] ... ... @@ -146,8 +145,6 @@ def create_indexed_kernel(assignments: AssignmentOrAstNodeList, index_fields, fu loop_body = Block([]) loop_node = LoopOverCoordinate(loop_body, coordinate_to_loop_over=0, start=0, stop=index_fields[0].shape[0]) implement_interpolations(loop_node) for assignment in assignments: loop_body.append(assignment) ... ...
 ... ... @@ -105,9 +105,8 @@ class Discretization2ndOrder: return self._discretize_advection(e) elif isinstance(e, Diff): arg, *indices = diff_args(e) from pystencils.interpolation_astnodes import InterpolatorAccess if not isinstance(arg, (Field.Access, InterpolatorAccess)): if not isinstance(arg, Field.Access): raise ValueError("Only derivatives with field or field accesses as arguments can be discretized") return self.spatial_stencil(indices, self.dx, arg) else: ... ...
 ... ... @@ -4,9 +4,7 @@ from pystencils.backends.cbackend import get_headers from pystencils.backends.cuda_backend import generate_cuda from pystencils.data_types import StructType from pystencils.field import FieldType from pystencils.gpucuda.texture_utils import ndarray_to_tex from pystencils.include import get_pycuda_include_path, get_pystencils_include_path from pystencils.interpolation_astnodes import InterpolatorAccess, TextureCachedField from pystencils.kernel_wrapper import KernelWrapper from pystencils.kernelparameters import FieldPointerSymbol ... ... @@ -47,29 +45,11 @@ def make_python_function(kernel_function_node, argument_dict=None, custom_backen code += "#define FUNC_PREFIX __global__\n" code += "#define RESTRICT __restrict__\n\n" code += str(generate_cuda(kernel_function_node, custom_backend=custom_backend)) textures = set(d.interpolator for d in kernel_function_node.atoms( InterpolatorAccess) if isinstance(d.interpolator, TextureCachedField)) nvcc_options = ["-w", "-std=c++11", "-Wno-deprecated-gpu-targets"] if USE_FAST_MATH: nvcc_options.append("-use_fast_math") # Code for CubicInterpolationCUDA from pystencils.interpolation_astnodes import InterpolationMode from os.path import join, dirname, isdir if any(t.interpolation_mode == InterpolationMode.CUBIC_SPLINE for t in textures): assert isdir(join(dirname(__file__), ("CubicInterpolationCUDA", "code")), "Submodule CubicInterpolationCUDA does not exist.\n" + "Clone https://github.com/theHamsta/CubicInterpolationCUDA into pystencils.gpucuda") nvcc_options += ["-I" + join(dirname(__file__), "CubicInterpolationCUDA", "code")] nvcc_options += ["-I" + join(dirname(__file__), "CubicInterpolationCUDA", "code", "internal")] needed_dims = set(t.field.spatial_dimensions for t in textures if t.interpolation_mode == InterpolationMode.CUBIC_SPLINE) for i in needed_dims: code = 'extern "C++" {\n#include "cubicTex%iD.cu"\n}\n' % i + code mod = SourceModule(code, options=nvcc_options, include_dirs=[ get_pystencils_include_path(), get_pycuda_include_path()]) func = mod.get_function(kernel_function_node.function_name) ... ... @@ -95,12 +75,6 @@ def make_python_function(kernel_function_node, argument_dict=None, custom_backen block_and_thread_numbers['block'] = tuple(int(i) for i in block_and_thread_numbers['block']) block_and_thread_numbers['grid'] = tuple(int(i) for i in block_and_thread_numbers['grid']) # TODO: use texture objects: # https://devblogs.nvidia.com/cuda-pro-tip-kepler-texture-objects-improve-performance-and-flexibility/ for tex in textures: tex_ref = mod.get_texref(str(tex)) ndarray_to_tex(tex_ref, full_arguments[tex.field.name], tex.address_mode, tex.filter_mode, tex.use_normalized_coordinates, tex.read_as_integer) args = _build_numpy_argument_list(parameters, full_arguments) cache[key] = (args, block_and_thread_numbers) cache_values.append(kwargs) # keep objects alive such that ids remain unique ... ...
 ... ... @@ -7,8 +7,8 @@ from pystencils.enums import Target, Backend from pystencils.gpucuda.cudajit import make_python_function from pystencils.gpucuda.indexing import BlockIndexing from pystencils.transformations import ( add_types, get_base_buffer_index, get_common_shape, implement_interpolations, parse_base_pointer_info, resolve_buffer_accesses, resolve_field_accesses, unify_shape_symbols) add_types, get_base_buffer_index, get_common_shape, parse_base_pointer_info, resolve_buffer_accesses, resolve_field_accesses, unify_shape_symbols) def create_cuda_kernel(assignments, ... ... @@ -17,8 +17,7 @@ def create_cuda_kernel(assignments, indexing_creator=BlockIndexing, iteration_slice=None, ghost_layers=None, skip_independence_check=False, use_textures_for_interpolation=True): skip_independence_check=False): assert assignments, "Assignments must not be empty!" fields_read, fields_written, assignments = add_types(assignments, type_info, not skip_independence_check) all_fields = fields_read.union(fields_written) ... ... @@ -74,8 +73,6 @@ def create_cuda_kernel(assignments, assignments=assignments) ast.global_variables.update(indexing.index_variables) implement_interpolations(ast, implement_by_texture_accesses=use_textures_for_interpolation) base_pointer_spec = [['spatialInner0']] base_pointer_info = {f.name: parse_base_pointer_info(base_pointer_spec, [2, 1, 0], f.spatial_dimensions, f.index_dimensions) ... ... @@ -110,8 +107,7 @@ def created_indexed_cuda_kernel(assignments, function_name="kernel", type_info=None, coordinate_names=('x', 'y', 'z'), indexing_creator=BlockIndexing, use_textures_for_interpolation=True): indexing_creator=BlockIndexing): fields_read, fields_written, assignments = add_types(assignments, type_info, check_independence_condition=False) all_fields = fields_read.union(fields_written) read_only_fields = set([f.name for f in fields_read - fields_written]) ... ... @@ -150,8 +146,6 @@ def created_indexed_cuda_kernel(assignments, None, function_name, assignments=assignments) ast.global_variables.update(indexing.index_variables) implement_interpolations(ast, implement_by_texture_accesses=use_textures_for_interpolation) coord_mapping = indexing.coordinates base_pointer_spec = [['spatialInner0']] base_pointer_info = {f.name: parse_base_pointer_info(base_pointer_spec, [2, 1, 0], ... ...
<
 # -*- coding: utf-8 -*- # # Copyright © 2019 Stephan Seitz # # Distributed under terms of the GPLv3 license. """ """ import hashlib import itertools from enum import Enum from typing import Set import sympy as sp