Commit 0023726c authored by Markus Holzer's avatar Markus Holzer
Browse files

Merge branch 'extrapolation_outflow' into 'master'

Extrapolation Outflow Boundary

See merge request pycodegen/lbmpy!45
parents 93093c12 0289430a
......@@ -9,6 +9,7 @@ __pycache__
.cache
_build
/.idea
.cache
_local_tmp
**/.vscode
\ No newline at end of file
**/.vscode
doc/bibtex.json
/html_doc
\ No newline at end of file
......@@ -18,6 +18,8 @@ tests-and-coverage:
- echo "backend:template" > ~/.config/matplotlib/matplotlibrc
- mkdir public
- pip install git+https://gitlab-ci-token:${CI_JOB_TOKEN}@i10git.cs.fau.de/pycodegen/pystencils.git@master#egg=pystencils
- env
- pip list
- py.test -v -n $NUM_CORES --cov-report html --cov-report term --cov=. -m "not longrun"
tags:
- docker
......@@ -76,6 +78,8 @@ ubuntu:
- mkdir -p ~/.config/matplotlib
- echo "backend:template" > ~/.config/matplotlib/matplotlibrc
- pip3 install git+https://gitlab-ci-token:${CI_JOB_TOKEN}@i10git.cs.fau.de/pycodegen/pystencils.git@master#egg=pystencils
- env
- pip3 list
- pytest-3 -v -m "not longrun"
tags:
- docker
......
......@@ -62,11 +62,11 @@
plt.boundary_handling(sc1.boundary_handling, make_slice[0.5, :, :])
```
%%%% Output: display_data
![]()
![]()
%% Cell type:markdown id: tags:
Now the setup is complete. We can run it and look at the velocity profile in the pipe.
......@@ -77,19 +77,21 @@
plt.scalar_field(sc1.velocity[domain_size[0] // 2, :, :, 0]);
```
%%%% Output: display_data
![]()
![]()
%% Cell type:markdown id: tags:
## Boundary Setup
Now instead of creating a periodic, force driven channel, we want to drive the flow with a velocity bounce back boundary condition (UBB) at the inlet and a pressure boundary at the outlet. We want the inflow velocity boundary set up to already prescribe the correct, parabolic flow profile. That means we need a different velocity value at each cell.
Now instead of creating a periodic, force driven channel, we want to drive the flow with a velocity bounce back boundary condition (UBB) at the inlet and a outflow boundary at the outlet. We want the inflow velocity boundary set up to already prescribe the correct, parabolic flow profile. That means we need a different velocity value at each cell. The outflow boundary condition takes the following form:
$$ f_{\overline{1}jkxyzt} = f_{\overline{1}jk(x - \Delta x)yz(t - \Delta t)} \left(c \theta^{\frac{1}{2}} -u \right) \frac{\Delta t}{\Delta x} + \left(1 - \left(c \theta^{\frac{1}{2}} -u \right) \frac{\Delta t}{\Delta x} \right) f_{\overline{1}jk(x - \Delta x)yzt}$$
More information on the outflow condition can be found in appendix F in https://doi.org/10.1016/j.camwa.2015.05.001
Again, we set up a scenario, but this time without external force and without periodicity.
Again, we set up a scenario, but this time without external force and without periodicity.
%% Cell type:code id: tags:
``` python
sc2 = LatticeBoltzmannStep(domain_size=domain_size, method='srt', relaxation_rate=1.9,
......@@ -125,19 +127,21 @@
else:
boundary_data['vel_0'] = 0
inflow = UBB(velocity_info_callback, dim=sc2.method.dim)
outflow = FixedDensity(1.0)
stencil = get_stencil('D3Q27')
outflow = ExtrapolationOutflow(stencil[4], sc2.method)
sc2.boundary_handling.set_boundary(inflow, make_slice[0, :, :])
sc2.boundary_handling.set_boundary(outflow, make_slice[-1, :, :])
```
%%%% Output: execute_result
512
4
%% Cell type:markdown id: tags:
Lastly we can use the callback function from above to set the pipe geometry. This is intentionally done at the end of the setup to overwrite the in- and outflow boundaries in the outermost slices.
......@@ -147,11 +151,11 @@
sc2.boundary_handling.set_boundary(wall, mask_callback=pipe_geometry_callback)
```
%%%% Output: execute_result
32
8
%% Cell type:markdown id: tags:
To see the full setup, a few slices through the domain are plotted
......@@ -159,29 +163,29 @@
``` python
plt.rc('figure', figsize=(14, 8))
plt.subplot(231)
plt.boundary_handling(sc2.boundary_handling, make_slice[-1, :, :], show_legend=False)
plt.boundary_handling(sc2.boundary_handling, make_slice[0, :, :], show_legend=False)
plt.title('Inflow')
plt.subplot(232)
plt.boundary_handling(sc2.boundary_handling, make_slice[0.5, :, :], show_legend=False)
plt.title('Middle')
plt.subplot(233)
plt.boundary_handling(sc2.boundary_handling, make_slice[0, :, :], show_legend=False)
plt.boundary_handling(sc2.boundary_handling, make_slice[-1, :, :], show_legend=False)
plt.title('Outflow')
plt.subplot(212)
plt.boundary_handling(sc2.boundary_handling, make_slice[:, 0.5, :], show_legend=True)
plt.title('Cross section');
```
%%%% Output: display_data
![]()
![]()
%% Cell type:markdown id: tags:
We run the channel for a few steps...
......@@ -193,11 +197,11 @@
plt.colorbar();
```
%%%% Output: display_data
![]()
![]()
%% Cell type:markdown id: tags:
And then switch off the inflow...
......@@ -215,6 +219,6 @@
plt.colorbar();
```
%%%% Output: display_data
![]()
![]()
......
......@@ -13,5 +13,6 @@ API Reference
continuous_distribution_measures.rst
moments.rst
cumulants.rst
boundary_conditions.rst
forcemodels.rst
zbibliography.rst
*******************
Boundary Conditions
*******************
.. automodule:: lbmpy.boundaries.boundaryconditions
:members:
......@@ -75,4 +75,12 @@ pages = {1--11},
title = {{Ternary free-energy lattice Boltzmann model with tunable surface tensions and contact angles}},
volume = {033305},
year = {2016}
}
@article{geier2015,
author = {Geier, Martin and Sch{\"{o}}nherr, Martin and Pasquali, Andrea and Krafczyk, Manfred},
title = {{The cumulant lattice Boltzmann equation in three dimensions: Theory and validation}},
journal = {Computers \& Mathematics with Applications},
year = {2015},
doi = {10.1016/j.camwa.2015.05.001}
}
\ No newline at end of file
......@@ -80,12 +80,14 @@ class AccessPdfValues:
"""Allows to access values from a PDF array correctly depending on
the streaming pattern."""
def __init__(self, pdf_field, stencil,
def __init__(self, stencil,
streaming_pattern='pull', timestep=Timestep.BOTH, streaming_dir='out',
accessor=None):
if streaming_dir not in ['in', 'out']:
raise ValueError('Invalid streaming direction.', streaming_dir)
pdf_field = ps.Field.create_generic('pdfs', len(stencil[0]), index_shape=(len(stencil),))
if accessor is None:
accessor = get_accessor(streaming_pattern, timestep)
self.accs = accessor.read(pdf_field, stencil) \
......
from lbmpy.boundaries.boundaryconditions import (
UBB, FixedDensity, NeumannByCopy, NoSlip, StreamInConstant)
UBB, FixedDensity, SimpleExtrapolationOutflow, ExtrapolationOutflow, NeumannByCopy, NoSlip, StreamInConstant)
from lbmpy.boundaries.boundaryhandling import LatticeBoltzmannBoundaryHandling
__all__ = ['NoSlip', 'UBB', 'FixedDensity', 'NeumannByCopy', 'LatticeBoltzmannBoundaryHandling', 'StreamInConstant']
__all__ = ['NoSlip', 'UBB', 'SimpleExtrapolationOutflow', 'ExtrapolationOutflow', 'FixedDensity', 'NeumannByCopy',
'LatticeBoltzmannBoundaryHandling', 'StreamInConstant']
from lbmpy.advanced_streaming.utility import AccessPdfValues, Timestep
from pystencils.simp.assignment_collection import AssignmentCollection
import sympy as sp
from pystencils import Assignment, Field
from lbmpy.boundaries.boundaryhandling import LbmWeightInfo
......@@ -5,10 +7,15 @@ from pystencils.data_types import create_type
from pystencils.sympyextensions import get_symmetric_part
from lbmpy.simplificationfactory import create_simplification_strategy
from lbmpy.advanced_streaming.indexing import NeighbourOffsetArrays
from pystencils.stencil import offset_to_direction_string, direction_string_to_offset
class LbBoundary:
"""Base class that all boundaries should derive from"""
"""Base class that all boundaries should derive from.
Args:
name: optional name of the boundary.
"""
inner_or_boundary = True
single_link = False
......@@ -52,7 +59,11 @@ class LbBoundary:
return None
def get_additional_code_nodes(self, lb_method):
"""Return a list of code nodes that will be added in the generated code before the index field loop."""
"""Return a list of code nodes that will be added in the generated code before the index field loop.
Args:
lb_method: lattice Boltzmann method. See :func:`lbmpy.creationfunctions.create_lb_method`
"""
return []
@property
......@@ -70,16 +81,18 @@ class LbBoundary:
class NoSlip(LbBoundary):
def __init__(self, name=None):
"""Set an optional name here, to mark boundaries, for example for force evaluations"""
super(NoSlip, self).__init__(name)
"""
No-Slip, (half-way) simple bounce back boundary condition, enforcing zero velocity at obstacle.
Extended for use with any streaming pattern.
Args:
name: optional name of the boundary.
"""
def __init__(self, name=None):
"""Set an optional name here, to mark boundaries, for example for force evaluations"""
super(NoSlip, self).__init__(name)
def __call__(self, f_out, f_in, dir_symbol, inv_dir, lb_method, index_field):
return Assignment(f_in(inv_dir[dir_symbol]), f_out(dir_symbol))
......@@ -95,16 +108,20 @@ class NoSlip(LbBoundary):
class UBB(LbBoundary):
"""Velocity bounce back boundary condition, enforcing specified velocity at obstacle"""
"""Velocity bounce back boundary condition, enforcing specified velocity at obstacle
Args:
velocity: can either be a constant, an access into a field, or a callback function.
The callback functions gets a numpy record array with members, 'x','y','z', 'dir' (direction)
and 'velocity' which has to be set to the desired velocity of the corresponding link
adapt_velocity_to_force: adapts the velocity to the correct equilibrium when the lattice Boltzmann method holds
a forcing term. If no forcing term is set and adapt_velocity_to_force is set to True
it has no effect.
dim: number of spatial dimensions
name: optional name of the boundary.
"""
def __init__(self, velocity, adapt_velocity_to_force=False, dim=None, name=None):
"""
Args:
velocity: can either be a constant, an access into a field, or a callback function.
The callback functions gets a numpy record array with members, 'x','y','z', 'dir' (direction)
and 'velocity' which has to be set to the desired velocity of the corresponding link
adapt_velocity_to_force:
"""
super(UBB, self).__init__(name)
self._velocity = velocity
self._adaptVelocityToForce = adapt_velocity_to_force
......@@ -116,6 +133,8 @@ class UBB(LbBoundary):
@property
def additional_data(self):
""" In case of the UBB boundary additional data is a velocity vector. This vector is added to each cell to
realize velocity profiles for the inlet."""
if callable(self._velocity):
return [('vel_%d' % (i,), create_type("double")) for i in range(self.dim)]
else:
......@@ -123,10 +142,22 @@ class UBB(LbBoundary):
@property
def additional_data_init_callback(self):
"""Initialise additional data of the boundary. For an example see
`tutorial 02 <https://pycodegen.pages.i10git.cs.fau.de/lbmpy/notebooks/02_tutorial_boundary_setup.html>`_
or lbmpy.geometry.add_pipe_inflow_boundary"""
if callable(self._velocity):
return self._velocity
def get_additional_code_nodes(self, lb_method):
"""Return a list of code nodes that will be added in the generated code before the index field loop.
Args:
lb_method: Lattice Boltzmann method. See :func:`lbmpy.creationfunctions.create_lb_method`
Returns:
list containing LbmWeightInfo and NeighbourOffsetArrays
"""
return [LbmWeightInfo(lb_method), NeighbourOffsetArrays(lb_method.stencil)]
def __call__(self, f_out, f_in, dir_symbol, inv_dir, lb_method, index_field):
......@@ -174,7 +205,197 @@ class UBB(LbBoundary):
# end class UBB
class SimpleExtrapolationOutflow(LbBoundary):
r"""
Simple Outflow boundary condition :cite:`geier2015`, equation F.1 (listed below).
This boundary condition extrapolates missing populations from the last layer of
fluid cells onto the boundary by copying them in the normal direction.
.. math ::
f_{\overline{1}jkxyzt} = f_{\overline{1}jk(x - \Delta x)yzt}
Args:
normal_direction: direction vector normal to the outflow
stencil: stencil used for the lattice Boltzmann method
name: optional name of the boundary.
"""
# We need each fluid cell only once, the direction of the outflow is given
# in the constructor.
single_link = True
def __init__(self, normal_direction, stencil, name=None):
if isinstance(normal_direction, str):
normal_direction = direction_string_to_offset(normal_direction, dim=len(stencil[0]))
if name is None:
name = f"Simple Outflow: {offset_to_direction_string(normal_direction)}"
self.normal_direction = normal_direction
super(SimpleExtrapolationOutflow, self).__init__(name)
def __call__(self, f_out, f_in, dir_symbol, inv_dir, lb_method, index_field):
stencil = lb_method.stencil
boundary_assignments = []
for i, stencil_dir in enumerate(stencil):
if all(n == 0 or n == -s for s, n in zip(stencil_dir, self.normal_direction)):
asm = Assignment(f_out[self.normal_direction](i), f_out.center(i))
boundary_assignments.append(asm)
print(boundary_assignments)
return boundary_assignments
# end class SimpleExtrapolationOutflow
class ExtrapolationOutflow(LbBoundary):
r"""
Outflow boundary condition :cite:`geier2015`, equation F.2, with u neglected (listed below).
This boundary condition interpolates missing on the boundary in normal direction. For this interpolation, the
PDF values of the last time step are used. They are interpolated between fluid cell and boundary cell.
To get the PDF values from the last time step an index array is used which stores them.
.. math ::
f_{\overline{1}jkxyzt} = f_{\overline{1}jk(x - \Delta x)yz(t - \Delta t)} c \theta^{\frac{1}{2}}
\frac{\Delta t}{\Delta x} + \left(1 - c \theta^{\frac{1}{2}} \frac{\Delta t}{\Delta x} \right)
f_{\overline{1}jk(x - \Delta x)yzt}
Args:
normal_direction: direction vector normal to the outflow
lb_method: the lattice boltzman method to be used in the simulation
dt: lattice time step size
dx: lattice spacing distance
name: optional name of the boundary.
streaming_pattern: Streaming pattern to be used in the simulation
zeroth_timestep: for in-place patterns, whether the initial setup corresponds to an even or odd time step
initial_density: floating point constant or callback taking spatial coordinates (x, y [,z]) as
positional arguments, specifying the initial density on boundary nodes
initial_velocity: tuple of floating point constants or callback taking spatial coordinates (x, y [,z]) as
positional arguments, specifying the initial velocity on boundary nodes
"""
# We need each fluid cell only once, the direction of the outflow is given
# in the constructor.
single_link = True
def __init__(self, normal_direction, lb_method, dt=1, dx=1, name=None,
streaming_pattern='pull', zeroth_timestep=Timestep.BOTH,
initial_density=None, initial_velocity=None):
self.lb_method = lb_method
self.stencil = lb_method.stencil
self.dim = len(self.stencil[0])
if isinstance(normal_direction, str):
normal_direction = direction_string_to_offset(normal_direction, dim=self.dim)
if name is None:
name = f"Outflow: {offset_to_direction_string(normal_direction)}"
self.normal_direction = normal_direction
self.streaming_pattern = streaming_pattern
self.zeroth_timestep = zeroth_timestep
self.dx = sp.Number(dx)
self.dt = sp.Number(dt)
self.c = sp.sqrt(sp.Rational(1, 3)) * (self.dx / self.dt)
self.initial_density = initial_density
self.initial_velocity = initial_velocity
self.equilibrium_calculation = None
if initial_density and initial_velocity:
equilibrium = lb_method.get_equilibrium(conserved_quantity_equations=AssignmentCollection([]))
rho = lb_method.zeroth_order_equilibrium_moment_symbol
u_vec = lb_method.first_order_equilibrium_moment_symbols
eq_lambda = equilibrium.lambdify((rho,) + u_vec)
post_pdf_symbols = lb_method.post_collision_pdf_symbols
def calc_eq_pdfs(density, velocity, j):
return eq_lambda(density, *velocity)[post_pdf_symbols[j]]
self.equilibrium_calculation = calc_eq_pdfs
super(ExtrapolationOutflow, self).__init__(name)
def init_callback(self, boundary_data, **_):
dim = boundary_data.dim
coord_names = ['x', 'y', 'z'][:dim]
pdf_acc = AccessPdfValues(self.stencil, streaming_pattern=self.streaming_pattern,
timestep=self.zeroth_timestep, streaming_dir='out')
def get_boundary_cell_pdfs(fluid_cell, boundary_cell, j):
if self.equilibrium_calculation is not None:
density = self.initial_density(
*boundary_cell) if callable(self.initial_density) else self.initial_density
velocity = self.initial_velocity(
*boundary_cell) if callable(self.initial_velocity) else self.initial_velocity
return self.equilibrium_calculation(density, velocity, j)
else:
return pdf_acc.read_pdf(boundary_data.pdf_array, fluid_cell, j)
for entry in boundary_data.index_array:
fluid_cell = tuple(entry[c] for c in coord_names)
boundary_cell = tuple(f + o for f, o in zip(fluid_cell, self.normal_direction))
# Initial fluid cell PDF values
for j, stencil_dir in enumerate(self.stencil):
if all(n == 0 or n == -s for s, n in zip(stencil_dir, self.normal_direction)):
entry[f'pdf_{j}'] = pdf_acc.read_pdf(boundary_data.pdf_array, fluid_cell, j)
entry[f'pdf_nd_{j}'] = get_boundary_cell_pdfs(fluid_cell, boundary_cell, j)
@property
def additional_data(self):
"""Used internally only. For the ExtrapolationOutflow information of the precious PDF values is needed. This
information is added to the boundary"""
data = []
for i, stencil_dir in enumerate(self.stencil):
if all(n == 0 or n == -s for s, n in zip(stencil_dir, self.normal_direction)):
data.append((f'pdf_{i}', create_type("double")))
data.append((f'pdf_nd_{i}', create_type("double")))
return data
@property
def additional_data_init_callback(self):
"""The initialisation of the additional data is implemented internally for this class.
Thus no callback can be provided"""
if callable(self.init_callback):
return self.init_callback
def __call__(self, f_out, f_in, dir_symbol, inv_dir, lb_method, index_field):
subexpressions = []
boundary_assignments = []
dtdx = sp.Rational(self.dt, self.dx)
for i, stencil_dir in enumerate(self.stencil):
if all(n == 0 or n == -s for s, n in zip(stencil_dir, self.normal_direction)):
interpolated_pdf_sym = sp.Symbol(f'pdf_inter_{i}')
interpolated_pdf_asm = Assignment(interpolated_pdf_sym, (index_field[0](f'pdf_{i}') * (self.c * dtdx))
+ ((sp.Number(1) - self.c * dtdx) * index_field[0](f'pdf_nd_{i}')))
subexpressions.append(interpolated_pdf_asm)
asm = Assignment(f_out[self.normal_direction](i), interpolated_pdf_sym)
boundary_assignments.append(asm)
asm = Assignment(index_field[0](f'pdf_{i}'), f_out.center(i))
boundary_assignments.append(asm)
asm = Assignment(index_field[0](f'pdf_nd_{i}'), interpolated_pdf_sym)
boundary_assignments.append(asm)
return AssignmentCollection(boundary_assignments, subexpressions=subexpressions)
# end class ExtrapolationOutflow
class FixedDensity(LbBoundary):
"""Boundary condition that fixes the density/pressure at the obstacle.
Args: