Commit 0330b3ca authored by Markus Holzer's avatar Markus Holzer Committed by Michael Kuron
Browse files

Bump minimum SymPy version and add Python 3.9 to CI

parent 6374f339
......@@ -36,6 +36,31 @@ tests-and-coverage:
cobertura: coverage.xml
junit: report.xml
# pipeline with latest python version
latest-python:
stage: test
except:
variables:
- $ENABLE_NIGHTLY_BUILDS
image: i10git.cs.fau.de:5005/pycodegen/pycodegen/latest_python
before_script:
- pip install git+https://gitlab-ci-token:${CI_JOB_TOKEN}@i10git.cs.fau.de/pycodegen/pystencils.git@master#egg=pystencils
script:
- env
- pip list
- export NUM_CORES=$(nproc --all)
- mkdir -p ~/.config/matplotlib
- echo "backend:template" > ~/.config/matplotlib/matplotlibrc
- mkdir public
- py.test -v -n $NUM_CORES -m "not longrun" --junitxml=report.xml
tags:
- docker
- AVX
artifacts:
when: always
reports:
junit: report.xml
# Nightly test - runs "long run" jobs only
test-longrun:
stage: test
......@@ -85,15 +110,18 @@ ubuntu:
variables:
- $ENABLE_NIGHTLY_BUILDS
image: i10git.cs.fau.de:5005/pycodegen/pycodegen/ubuntu
script:
before_script:
- apt-get -y remove python3-sympy
- ln -s /usr/include/locale.h /usr/include/xlocale.h
- pip3 install `grep -Eo 'sympy[>=]+[0-9\.]+' setup.py | sed 's/>/=/g'`
- pip3 install `grep -Eo 'numpy[>=]+[0-9\.]+' setup.py | sed 's/>/=/g'`
- pip3 install git+https://gitlab-ci-token:${CI_JOB_TOKEN}@i10git.cs.fau.de/pycodegen/pystencils.git@master#egg=pystencils
script:
- export NUM_CORES=$(nproc --all)
- mkdir -p ~/.config/matplotlib
- echo "backend:template" > ~/.config/matplotlib/matplotlibrc
- pip3 install git+https://gitlab-ci-token:${CI_JOB_TOKEN}@i10git.cs.fau.de/pycodegen/pystencils.git@master#egg=pystencils
- env
- pip3 list
- pytest-3 -v -m "not longrun" --junitxml=report.xml
- pytest-3 -v -n $NUM_CORES -m "not longrun" --junitxml=report.xml
tags:
- docker
- cuda11
......
%% Cell type:code id: tags:
``` python
import pytest
pytest.importorskip('pycuda')
```
%%%% Output: execute_result
<module 'pycuda' from '/home/markus/miniconda3/envs/pystencils/lib/python3.8/site-packages/pycuda/__init__.py'>
%% Cell type:code id: tags:
``` python
%load_ext autoreload
%autoreload 2
```
%% Cell type:code id: tags:
``` python
import sympy as sp
import numpy as np
from numpy.testing import assert_allclose
from pystencils.session import *
from lbmpy.session import *
from lbmpy.stencils import get_stencil
from lbmpy.methods.centeredcumulant import CenteredCumulantForceModel
from lbmpy.macroscopic_value_kernels import macroscopic_values_getter, macroscopic_values_setter
```
%% Cell type:markdown id: tags:
## Pipe Flow Scenario
%% Cell type:code id: tags:
``` python
class PeriodicPipeFlow:
def __init__(self, method_params, optimization=dict()):
wall_boundary = NoSlip()
self.stencil = method_params.get('stencil', get_stencil("D2Q9"))
self.streaming_pattern = method_params.get('streaming_pattern', 'pull')
self.target = optimization.get('target', 'cpu')
self.gpu = self.target in ['gpu', 'opencl']
# Stencil
self.q = len(self.stencil)
self.dim = len(self.stencil[0])
# Streaming
self.inplace = is_inplace(self.streaming_pattern)
self.timesteps = get_timesteps(self.streaming_pattern)
self.zeroth_timestep = self.timesteps[0]
# Domain, Data Handling and PDF fields
self.pipe_length = 60
self.pipe_radius = 15
self.domain_size = (self.pipe_length, ) + (2 * self.pipe_radius,) * (self.dim - 1)
self.periodicity = (True, ) + (False, ) * (self.dim - 1)
force = (0.0001, ) + (0.0,) * (self.dim - 1)
self.force = method_params.get('force', force)
self.dh = create_data_handling(domain_size=self.domain_size,
periodicity=self.periodicity, default_target=self.target)
self.pdfs = self.dh.add_array('pdfs', self.q)
if not self.inplace:
self.pdfs_tmp = self.dh.add_array_like('pdfs_tmp', self.pdfs.name)
method_params['force'] = self.force
optimization['symbolic_field'] = self.pdfs
if not self.inplace:
optimization['symbolic_temporary_field'] = self.pdfs_tmp
self.lb_collision = create_lb_collision_rule(optimization=optimization, **method_params)
self.lb_method = self.lb_collision.method
self.lb_kernels = []
for t in self.timesteps:
self.lb_kernels.append(create_lb_function(collision_rule=self.lb_collision,
optimization=optimization,
timestep=t,
**method_params))
# Macroscopic Values
self.density = 1.0
self.density_field = self.dh.add_array('rho', 1)
u_x = 0.0
self.velocity = (u_x,) * self.dim
self.velocity_field = self.dh.add_array('u', self.dim)
setter = macroscopic_values_setter(
self.lb_method, self.density, self.velocity, self.pdfs,
streaming_pattern=self.streaming_pattern, previous_timestep=self.zeroth_timestep)
self.init_kernel = create_kernel(setter, ghost_layers=1, target=self.target).compile()
self.getter_kernels = []
for t in self.timesteps:
getter = macroscopic_values_getter(
self.lb_method, self.density_field, self.velocity_field, self.pdfs,
streaming_pattern=self.streaming_pattern, previous_timestep=t)
self.getter_kernels.append(create_kernel(getter, ghost_layers=1, target=self.target).compile())
# Periodicity
self.periodicity_handler = LBMPeriodicityHandling(
self.stencil, self.dh, self.pdfs.name, streaming_pattern=self.streaming_pattern)
# Boundary Handling
self.wall = wall_boundary
self.bh = LatticeBoltzmannBoundaryHandling(
self.lb_method, self.dh, self.pdfs.name,
streaming_pattern=self.streaming_pattern, target=self.target)
self.bh.set_boundary(boundary_obj=self.wall, mask_callback=self.mask_callback)
self.current_timestep = self.zeroth_timestep
def mask_callback(self, x, y, z=None):
y = y - self.pipe_radius
z = z - self.pipe_radius if z is not None else 0
return np.sqrt(y**2 + z**2) >= self.pipe_radius
def init(self):
self.current_timestep = self.zeroth_timestep
self.dh.run_kernel(self.init_kernel)
def step(self):
# Order matters! First communicate, then boundaries, otherwise
# periodicity handling overwrites reflected populations
# Periodicty
self.periodicity_handler(self.current_timestep)
# Boundaries
self.bh(prev_timestep=self.current_timestep)
# Here, the next time step begins
self.current_timestep = self.current_timestep.next()
# LBM Step
self.dh.run_kernel(self.lb_kernels[self.current_timestep.idx])
# Field Swaps
if not self.inplace:
self.dh.swap(self.pdfs.name, self.pdfs_tmp.name)
# Macroscopic Values
self.dh.run_kernel(self.getter_kernels[self.current_timestep.idx])
def run(self, iterations):
for _ in range(iterations):
self.step()
@property
def velocity_array(self):
if self.gpu:
self.dh.to_cpu(self.velocity_field.name)
return self.dh.gather_array(self.velocity_field.name)
def get_trimmed_velocity_array(self):
if self.gpu:
self.dh.to_cpu(self.velocity_field.name)
u = np.copy(self.dh.gather_array(self.velocity_field.name))
mask = self.bh.get_mask(None, self.wall)
for idx in np.ndindex(u.shape[:-1]):
if mask[idx] != 0:
u[idx] = np.full((self.dim, ), np.nan)
return u
```
%% Cell type:markdown id: tags:
## General Setup
%% Cell type:code id: tags:
``` python
stencil = get_stencil('D3Q19')
dim = len(stencil[0])
target = 'gpu'
streaming_pattern = 'aa'
optimization = { 'target': target }
viscous_rr = 1.1
force = (0.0001, ) + (0.0,) * (dim - 1)
```
%% Cell type:markdown id: tags:
## 1. Reference: SRT Method
%% Cell type:code id: tags:
``` python
srt_params = {
'stencil': stencil,
'method': 'srt',
'relaxation_rate': viscous_rr,
'force_model': 'guo',
'force' : force,
'streaming_pattern': streaming_pattern
}
srt_flow = PeriodicPipeFlow(srt_params, optimization)
srt_flow.init()
srt_flow.run(400)
```
%% Cell type:code id: tags:
``` python
srt_u = srt_flow.get_trimmed_velocity_array()
ps.plot.vector_field_magnitude(srt_u[30,:,:,:])
ps.plot.colorbar()
```
%%%% Output: execute_result
<matplotlib.colorbar.Colorbar at 0x7f8678eccbe0>
<matplotlib.colorbar.Colorbar at 0x7f20b2f75bb0>
%%%% Output: display_data
![]()
![](data:image/svg+xml;utf8,<?xml version="1.0" encoding="utf-8" standalone="no"?> <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"> <!-- Created with matplotlib (https://matplotlib.org/) --> <svg height="360.337013pt" version="1.1" viewBox="0 0 844.941125 360.337013" width="844.941125pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"> <metadata> <rdf:RDF xmlns:cc="http://creativecommons.org/ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <cc:Work> <dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage"/> <dc:date>2021-01-30T11:27:56.312291</dc:date> <dc:format>image/svg+xml</dc:format> <dc:creator> <cc:Agent> <dc:title>Matplotlib v3.3.3, https://matplotlib.org/</dc:title> </cc:Agent> </dc:creator> </cc:Work> </rdf:RDF> </metadata> <defs> <style type="text/css">*{stroke-linecap:butt;stroke-linejoin:round;}</style> </defs> <g id="figure_1"> <g id="patch_1"> <path d="M 0 360.337013 L 844.941125 360.337013 L 844.941125 0 L 0 0 z " style="fill:none;"/> </g> <g id="axes_1"> <g id="patch_2"> <path d="M 26.925 336.458888 L 741.165 336.458888 L 741.165 10.298888 L 26.925 10.298888 z " style="fill:#ffffff;"/> </g> <g clip-path="url(#p45058bb045)"> <image height="327" id="imagebfbeb8fdc1" transform="scale(1 -1)translate(0 -327)" width="327" x="220.965" xlink:href="data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAAUcAAAFHCAYAAAAySY5rAAAPU0lEQVR4nO3dSa4cB3YF0Mj252/YmwJlS4YK8FJI1AY0KGgBBrwxoQZagamd2IAJs2ARZLH7/E326Q28wX2wEqToc8YPwcho7o8BL95o4Kv2dPTjIZ0dn53lB55M4tHRaJQfN3Q4xD9rGHa7eHR/cxPP/nr45ff/YXwxxp/7BAC+RMIRoCAcAQrCEaAgHAEKwhGgIBwBCsIRoCAcAQrCEaCg/nRErere+Xl83FGn5vf4QTy6uziJZ/fzvD44TI7wmO3y+uB4ndcHJ1er/BzevI9HD41a4v76Op5VYTweX44ABeEIUBCOAAXhCFAQjgAF4QhQEI4ABeEIUBCOAAXhCFBQPWp6Nv8prwT+8F183N2ji3h2czHLZ+9M49ntaf447Gb57KHRNEyN8kbgMNnkVcPpbT47+7TNZ6828ezk7VU8u3/xt3j2+fpn73uDL0eAgnAEKAhHgIJwBCgIR4CCcAQoCEeAgnAEKAhHgIJwBCh8tXWizua/yaOH8XEP3z+JZ5dP8o2Cywd5x25zkd+2zXmjEpgvHxz2eSvxs9cHx3nLb5g0lg/OrhtVw6t8dvE+/3GLV/mmwtHLV/Hs7u27aO5r3n7oyxGgIBwBCsIRoCAcAQrCEaAgHAEKwhGgIBwBCsIRoCAcAQp/uOrPs9lfoh7W+Ifv42Nuvr0fz95+M49nlw/zvz2re/mt2OaLCoftIq+t7Ruzh1ljdpzPpkb7/HqNNvnseJnPTjuz+ULB4eRjo2r4bh/Pnr5ex7Oz3z5Ec/sXL+NjPt/89Q+VN74cAQrCEaAgHAEKwhGgIBwBCsIRoCAcAQrCEaAgHAEKX8T/WG8tw/qXP0Vzq3/Ol2bdPJnFs7eP8r8n6/vx6LC+m7cidheN7VKLfHZyks9Op/ns+AgNmX2jIbPd5hu+dqvGNrBlPju5ymfnl/lvm3+IR4fTt3mb5uzVJpo7+e9sEdcwDMPuP/8rnv0SFnf5cgQoCEeAgnAEKAhHgIJwBCgIR4CCcAQoCEeAgnAEKAhHgML0c5/AMAzD5FFe9UuXYXUqgTffNBZhPcyrcOv7eV3rcGcbz56c54uSzhaN2XlWGRuGYTid5bOTUX4dUrtDfs9uN41nYd2YXebL1laLxmK2k/y13M/y63CYdL6Fsusw3tzPj/g+f8+Hv+ejx+LLEaAgHAEKwhGgIBwBCsIRoCAcAQrCEaAgHAEKwhGgIBwBCkerDz6b/xT37A7fP4mPe/tNVsPqbAlsVQIf5lW40f28unfnYhnPPji7jWfvn+Szd+f57Okkrw/OjlAf3HTqg7u8Eni5Po1nPyzy2ffzfPZqtohn1+O8ltj5FhrtstnJKv/3p5/y9/zZZZ4fz9c/H2VToS9HgIJwBCgIR4CCcAQoCEeAgnAEKAhHgIJwBCgIR4CCcAQotOqDT0c/xpWe8Q/fxce9fXIezy4fZnm+vh8fsrUlsFMJvHf3Jp795uIqnz39FM8+nufHvTvNK4xnk1U8Oxvt4tnU5jCJZ292J/Hs5Tyv7r2ZX8Szi+mdePb1OH8eP8aTw7De51W/8Sa7vstl/n01u87f89PrPD+e/keeS78efomrhr4cAQrCEaAgHAEKwhGgIBwBCsIRoCAcAQrCEaAgHAEKwhGg0KoPjs/z+s/uUV6tWj7Iq2Cre1n7Z3033yh4uLONZztbAjuVwH86y4tg3y7y2X+Y5VXDh5P8fM/HeY1yNsqvb2pzyB/d60Zt7t00f24/9wbGYRiG3T7/vrnc5LPrVbh98DZf/De7yt/zeSM/xv+T59KQP+K+HAEqwhGgIBwBCsIRoCAcAQrCEaAgHAEKwhGgIBwBCsIRoNCqD47OzuLZzcWsMZtXkLZhq2h3kW+8OznPq3APzm7j2c6WwE4l8Lv5u3j28TQ/h/uT63j2fNSpD37e7YPXh7w+2KlFLkZ5fbBjc8i/WZbb/D1brfPXfbXMru/2Oj9m5z3v5MeikUvqgwD/R8IRoCAcAQrCEaAgHAEKwhGgIBwBCsIRoCAcAQrCEaAwfTr6MV/T9/hBPLq506gVnTfqg4vwdBd5Ze1skVfG7p/k9cHH87yr1NkS2KkEPp5exrP3x/lmxTuNjYKz/PbGNvlTO3w6dLYE/v5Vx2EYhuUhr8Pd7vLZy5PTfHZxEs+uFlnlcrvIa5yd97yTH4tGLj19k+edL0eAgnAEKAhHgIJwBCgIR4CCcAQoCEeAgnAEKAhHgIJwBChMx43NXbuLvH60Pc2rQrv8sMM+rA9OThr1wXleL7s7z+uDd6d5He/hJK8adrYEdiqBD8d5JfB8lP9dnTVmU5vDPv/3D/nvGob8em0mjQ2I+3wD4sdp/k52nsez+Xk8exm+P+n7OAzDsDtp1IQ7+dHIpU7e+XIEKAhHgIJwBCgIR4CCcAQoCEeAgnAEKAhHgIJwBCgIR4DCdGhUoPbzfHbXWDm3zxeNDYdZVleaTfP64Oksrw+eTvLZs8kqnj0f5xsQz0f5bGdLYKcSeDbON+RNh/y5SbW2BO7ze7ZpXK+bxn3o3N/Oc9N5HjvP+TR8f9bh+zgMvfe8lR+NXBo38s6XI0BBOAIUhCNAQTgCFIQjQEE4AhSEI0BBOAIUhCNAQTgCFKajUV7TGSb57KHRGGvNjrO60jicG4ZhmIwam+xas3nFbdaorfWOG4+2tgR2KoGTI2wfHPLb27xef7T7m59v5zlP35/0fRyG42VCJ5c6eefLEaAgHAEKwhGgIBwBCsIRoCAcAQrCEaAgHAEKwhGgIBwBCsIRoCAcAQrCEaAgHAEKwhGgIBwBCsIRoCAcAQrCEaAgHAEK08Ohsalol882dgT1ZvfZgpx9ODcMw7A75H8jNq3ZfEvQ5jA90nHj0WFzOM5yqc4yrNR2yP/9zu/qXa8v4f7mz2PnOU/fn/R9HIbjZUInlzp558sRoCAcAQrCEaAgHAEKwhGgIBwBCsIRoCAcAQrCEaAgHAEK02GX93TG63x20uhhjbeNCtImm91u8wrW7WaWz+7y2ZvdSTx7vZ/ns4d89tNhE8/ODtt4dtg3jtvqgmU6lcDrxuynRs2vcx8697fz3HSex85znr4/6fs4DMMwbjxerfxo5FIr7/KjAvz/IRwBCsIRoCAcAQrCEaAgHAEKwhGgIBwBCsIRoCAcAQrT/c1NPDy5WuUHvj3Lj5sfdhgvw/rgKq8P3qzzWtXl+jSfnS/i2XfTi3j2fLyOZ3vVvWU8uRnlXbDZKK/vxf9+Y0tgpxL4YZ/fsw+783j23S6/v5fb/Bw6z2PnOd+F7880fB+HofeeT2/zG9zJpV0j73w5AhSEI0BBOAIUhCNAQTgCFIQjQEE4AhSEI0BBOAIUhCNAYfrr4Ze4//PnN/8Wd3pm/3gnPonZdZ7RaV1pu2zUB5f5ZrgPi7yu9WaeV8ZOJ/k2v8Uon+3YTBrXbHSsCmNmc8jPtbMlsFMJfLPNn/G/b/LZN+v8ufmwatQHG8/5EL4/nfrg7DqvBM4+NVYVvnkfj3byzpcjQEE4AhSEI0BBOAIUhCNAQTgCFIQjQEE4AhSEI0BBOAIU8rVswzAcGpu7Zld5xW12lW9Fm15l7Z/JeV4vWy3yWtX7eV7XWkwbFcojbOgbhmFYHvJre73Pr0NvA2KjChbaNDYKdn5XZ0tgpxL42/JePPv6Nj/u+5v8eVxd59dhchXWB6/iQw6zq0Z9sJEfnVzq8OUIUBCOAAXhCFAQjgAF4QhQEI4ABeEIUBCOAAXhCFAQjgCFVn1wf30dz07e5r2ixf2TeHZzkdUHd6f5VrTlSX4ZrmaLePb1+DiVwM0h/5t2u8vrgx+nZ/Hs2WQVz37u7YM3u/z5utzm97ezJbBTCXx9lR/36io/39Gn/DmfX2bvz8nHvBK4eJ8/B5382DVyqcOXI0BBOAIUhCNAQTgCFIQjQEE4AhSEI0BBOAIUhCNAQTgCFFr1wV8Pv8SdvGcvfop7RYvzvAK1Oc9qWNtFXi/bz/K/EetxvsHtYzw5DLt9fg7LbV4JvDzJt9Pdnd/Gs6eTxnbJI2xWPFaF8nKdX68Pq3y2syWwUwk8fMifx/mH/JrNP2Rzi3f5vV28ymt++xd/i2c7udThyxGgIBwBCsIRoCAcAQrCEaAgHAEKwhGgIBwBCsIRoCAcAQqt+mDH8/XPcaXnzy//Na4ant7JNsntTvKNc4dJ529Eo2q4z6tdl5v8uKt1ftsuF/l1OJufx7Ons7w+ODlCfXDXqQ9u8vrgzboxu8zv7+o6n21tCWxUAk/e5S2707fZPTt9vY6POXr5Kp7990Z+HIsvR4CCcAQoCEeAgnAEKAhHgIJwBCgIR4CCcAQoCEeAgnAEKBytPtixe/sunp39di+aO5s9bJxBXhkb7fK/J+NNvgFxvWrUB5f5cVeLRoXxZBfPTqf57Hgct0Nj+33eLttu8+u1W+WzQ+M+TK7y2fll/tvSLYHDkFcCh2EYzl5l9dDZb/kJdN7zL4EvR4CCcAQoCEeAgnAEKAhHgIJwBCgIR4CCcAQoCEeAwmdfYtP1bPaXqG4x/uH7+Jibb+/Hs7ff5I2T5cNG6+Veo/FxEY8O20XeTtk3Zg+zxuwRGjKjRkNmtMlnx8t8dtqZvYpHh5OP+fVavMtbL51lWGnzZf/iZXzM55u//qHyxpcjQEE4AhSEI0BBOAIUhCNAQTgCFIQjQEE4AhSEI0BBOAIU/lB1no6nox/jDtbkUb6M6/D9k3h2+eQ8n32QL2DaXOS3bXOez+5O4tFh31jNdmjsrEqN8v1ew3ibz05W+ezsOq/5za4alcD3+Y9bvLqOZ0cvX8Wz6TKsXw+/fLUZ4ssRoCAcAQrCEaAgHAEKwhGgIBwBCsIRoCAcAQrCEaAgHAEKX23151iezX+Ke2DjH76Lj7t7lK8U3FzM8tk7ec9ve9qoGs7y2c9dH5xs8ure9LZRCfyU9xJnV5t4dvI2X1W4f/G3ePb5+mfve4MvR4CCcAQoCEeAgnAEKAhHgIJwBCgIR4CCcAQoCEeAgnAEKKgTHVFnA+L4PN9UODo7y0/i8YN4dHeRrx/czxudwMkRHrNdXvMbr/Ou4eSqsX7wzft49HBzE8/ur/ONgl/z9r/PzZcjQEE4AhSEI0BBOAIUhCNAQTgCFIQjQEE4AhSEI0BBOAIUVI++cq0KY6eWOMnrg6PR7/+YHQ55fXDY5fXBfaPmp7r3dfPlCFAQjgAF4QhQEI4ABeEIUBCOAAXhCFAQjgAF4QhQEI4Ahf8Fuae6pJinBSAAAAAASUVORK5CYII=" y="-9.458888"/> </g> <g id="matplotlib.axis_1"> <g id="xtick_1"> <g id="line2d_1"> <defs> <path d="M 0 0 L 0 3.5 " id="m25408d715f" style="stroke:#000000;stroke-width:0.8;"/> </defs> <g> <use style="stroke:#000000;stroke-width:0.8;" x="117.681" xlink:href="#m25408d715f" y="336.458888"/> </g> </g> <g id="text_1"> <!-- −10 --> <g transform="translate(107.128656 351.057326)scale(0.1 -0.1)"> <defs> <path d="M 10.59375 35.5 L 73.1875 35.5 L 73.1875 27.203125 L 10.59375 27.203125 z " id="DejaVuSans-8722"/> <path d="M 12.40625 8.296875 L 28.515625 8.296875 L 28.515625 63.921875 L 10.984375 60.40625 L 10.984375 69.390625 L 28.421875 72.90625 L 38.28125 72.90625 L 38.28125 8.296875 L 54.390625 8.296875 L 54.390625 0 L 12.40625 0 z " id="DejaVuSans-49"/> <path d="M 31.78125 66.40625 Q 24.171875 66.40625 20.328125 58.90625 Q 16.5 51.421875 16.5 36.375 Q 16.5 21.390625 20.328125 13.890625 Q 24.171875 6.390625 31.78125 6.390625 Q 39.453125 6.390625 43.28125 13.890625 Q 47.125 21.390625 47.125 36.375 Q 47.125 51.421875 43.28125 58.90625 Q 39.453125 66.40625 31.78125 66.40625 z M 31.78125 74.21875 Q 44.046875 74.21875 50.515625 64.515625 Q 56.984375 54.828125 56.984375 36.375 Q 56.984375 17.96875 50.515625 8.265625 Q 44.046875 -1.421875 31.78125 -1.421875 Q 19.53125 -1.421875 13.0625 8.265625 Q 6.59375 17.96875 6.59375 36.375 Q 6.59375 54.828125 13.0625 64.515625 Q 19.53125 74.21875 31.78125 74.21875 z " id="DejaVuSans-48"/> </defs> <use xlink:href="#DejaVuSans-8722"/> <use x="83.789062" xlink:href="#DejaVuSans-49"/> <use x="147.412109" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="xtick_2"> <g id="line2d_2"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="226.401" xlink:href="#m25408d715f" y="336.458888"/> </g> </g> <g id="text_2"> <!-- 0 --> <g transform="translate(223.21975 351.057326)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="xtick_3"> <g id="line2d_3"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="335.121" xlink:href="#m25408d715f" y="336.458888"/> </g> </g> <g id="text_3"> <!-- 10 --> <g transform="translate(328.7585 351.057326)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-49"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="xtick_4"> <g id="line2d_4"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="443.841" xlink:href="#m25408d715f" y="336.458888"/> </g> </g> <g id="text_4"> <!-- 20 --> <g transform="translate(437.4785 351.057326)scale(0.1 -0.1)"> <defs> <path d="M 19.1875 8.296875 L 53.609375 8.296875 L 53.609375 0 L 7.328125 0 L 7.328125 8.296875 Q 12.9375 14.109375 22.625 23.890625 Q 32.328125 33.6875 34.8125 36.53125 Q 39.546875 41.84375 41.421875 45.53125 Q 43.3125 49.21875 43.3125 52.78125 Q 43.3125 58.59375 39.234375 62.25 Q 35.15625 65.921875 28.609375 65.921875 Q 23.96875 65.921875 18.8125 64.3125 Q 13.671875 62.703125 7.8125 59.421875 L 7.8125 69.390625 Q 13.765625 71.78125 18.9375 73 Q 24.125 74.21875 28.421875 74.21875 Q 39.75 74.21875 46.484375 68.546875 Q 53.21875 62.890625 53.21875 53.421875 Q 53.21875 48.921875 51.53125 44.890625 Q 49.859375 40.875 45.40625 35.40625 Q 44.1875 33.984375 37.640625 27.21875 Q 31.109375 20.453125 19.1875 8.296875 z " id="DejaVuSans-50"/> </defs> <use xlink:href="#DejaVuSans-50"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="xtick_5"> <g id="line2d_5"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="552.561" xlink:href="#m25408d715f" y="336.458888"/> </g> </g> <g id="text_5"> <!-- 30 --> <g transform="translate(546.1985 351.057326)scale(0.1 -0.1)"> <defs> <path d="M 40.578125 39.3125 Q 47.65625 37.796875 51.625 33 Q 55.609375 28.21875 55.609375 21.1875 Q 55.609375 10.40625 48.1875 4.484375 Q 40.765625 -1.421875 27.09375 -1.421875 Q 22.515625 -1.421875 17.65625 -0.515625 Q 12.796875 0.390625 7.625 2.203125 L 7.625 11.71875 Q 11.71875 9.328125 16.59375 8.109375 Q 21.484375 6.890625 26.8125 6.890625 Q 36.078125 6.890625 40.9375 10.546875 Q 45.796875 14.203125 45.796875 21.1875 Q 45.796875 27.640625 41.28125 31.265625 Q 36.765625 34.90625 28.71875 34.90625 L 20.21875 34.90625 L 20.21875 43.015625 L 29.109375 43.015625 Q 36.375 43.015625 40.234375 45.921875 Q 44.09375 48.828125 44.09375 54.296875 Q 44.09375 59.90625 40.109375 62.90625 Q 36.140625 65.921875 28.71875 65.921875 Q 24.65625 65.921875 20.015625 65.03125 Q 15.375 64.15625 9.8125 62.3125 L 9.8125 71.09375 Q 15.4375 72.65625 20.34375 73.4375 Q 25.25 74.21875 29.59375 74.21875 Q 40.828125 74.21875 47.359375 69.109375 Q 53.90625 64.015625 53.90625 55.328125 Q 53.90625 49.265625 50.4375 45.09375 Q 46.96875 40.921875 40.578125 39.3125 z " id="DejaVuSans-51"/> </defs> <use xlink:href="#DejaVuSans-51"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="xtick_6"> <g id="line2d_6"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="661.281" xlink:href="#m25408d715f" y="336.458888"/> </g> </g> <g id="text_6"> <!-- 40 --> <g transform="translate(654.9185 351.057326)scale(0.1 -0.1)"> <defs> <path d="M 37.796875 64.3125 L 12.890625 25.390625 L 37.796875 25.390625 z M 35.203125 72.90625 L 47.609375 72.90625 L 47.609375 25.390625 L 58.015625 25.390625 L 58.015625 17.1875 L 47.609375 17.1875 L 47.609375 0 L 37.796875 0 L 37.796875 17.1875 L 4.890625 17.1875 L 4.890625 26.703125 z " id="DejaVuSans-52"/> </defs> <use xlink:href="#DejaVuSans-52"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> </g> <g id="matplotlib.axis_2"> <g id="ytick_1"> <g id="line2d_7"> <defs> <path d="M 0 0 L -3.5 0 " id="m94c86c2012" style="stroke:#000000;stroke-width:0.8;"/> </defs> <g> <use style="stroke:#000000;stroke-width:0.8;" x="26.925" xlink:href="#m94c86c2012" y="331.022888"/> </g> </g> <g id="text_7"> <!-- 0 --> <g transform="translate(13.5625 334.822107)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="ytick_2"> <g id="line2d_8"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="26.925" xlink:href="#m94c86c2012" y="276.662888"/> </g> </g> <g id="text_8"> <!-- 5 --> <g transform="translate(13.5625 280.462107)scale(0.1 -0.1)"> <defs> <path d="M 10.796875 72.90625 L 49.515625 72.90625 L 49.515625 64.59375 L 19.828125 64.59375 L 19.828125 46.734375 Q 21.96875 47.46875 24.109375 47.828125 Q 26.265625 48.1875 28.421875 48.1875 Q 40.625 48.1875 47.75 41.5 Q 54.890625 34.8125 54.890625 23.390625 Q 54.890625 11.625 47.5625 5.09375 Q 40.234375 -1.421875 26.90625 -1.421875 Q 22.3125 -1.421875 17.546875 -0.640625 Q 12.796875 0.140625 7.71875 1.703125 L 7.71875 11.625 Q 12.109375 9.234375 16.796875 8.0625 Q 21.484375 6.890625 26.703125 6.890625 Q 35.15625 6.890625 40.078125 11.328125 Q 45.015625 15.765625 45.015625 23.390625 Q 45.015625 31 40.078125 35.4375 Q 35.15625 39.890625 26.703125 39.890625 Q 22.75 39.890625 18.8125 39.015625 Q 14.890625 38.140625 10.796875 36.28125 z " id="DejaVuSans-53"/> </defs> <use xlink:href="#DejaVuSans-53"/> </g> </g> </g> <g id="ytick_3"> <g id="line2d_9"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="26.925" xlink:href="#m94c86c2012" y="222.302888"/> </g> </g> <g id="text_9"> <!-- 10 --> <g transform="translate(7.2 226.102107)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-49"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="ytick_4"> <g id="line2d_10"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="26.925" xlink:href="#m94c86c2012" y="167.942888"/> </g> </g> <g id="text_10"> <!-- 15 --> <g transform="translate(7.2 171.742107)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-49"/> <use x="63.623047" xlink:href="#DejaVuSans-53"/> </g> </g> </g> <g id="ytick_5"> <g id="line2d_11"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="26.925" xlink:href="#m94c86c2012" y="113.582888"/> </g> </g> <g id="text_11"> <!-- 20 --> <g transform="translate(7.2 117.382107)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-50"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="ytick_6"> <g id="line2d_12"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="26.925" xlink:href="#m94c86c2012" y="59.222888"/> </g> </g> <g id="text_12"> <!-- 25 --> <g transform="translate(7.2 63.022107)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-50"/> <use x="63.623047" xlink:href="#DejaVuSans-53"/> </g> </g> </g> </g> <g id="patch_3"> <path d="M 26.925 336.458888 L 26.925 10.298888 " style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> </g> <g id="patch_4"> <path d="M 741.165 336.458888 L 741.165 10.298888 " style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> </g> <g id="patch_5"> <path d="M 26.925 336.458888 L 741.165 336.458888 " style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> </g> <g id="patch_6"> <path d="M 26.925 10.298888 L 741.165 10.298888 " style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> </g> </g> <g id="axes_2"> <g id="patch_7"> <path clip-path="url(#pbfb9dab91d)" d="M 785.805 336.458888 L 785.805 335.184826 L 785.805 11.572951 L 785.805 10.298888 L 802.113 10.298888 L 802.113 11.572951 L 802.113 335.184826 L 802.113 336.458888 z " style="fill:#ffffff;stroke:#ffffff;stroke-linejoin:miter;stroke-width:0.01;"/> </g> <image height="326" id="imageb275fad3b3" transform="scale(1 -1)translate(0 -326)" width="16" x="786" xlink:href="data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAABAAAAFGCAYAAABjUx8/AAABrklEQVR4nO2cwW3EMAwEKdmlpYT0X0qcIobArATe37r1aJYWDvCtn/X7Ffi8tTa5vt61F1tAT8C+vjpuoThEm8HalAG8hbfsBA0iUQ/WmDgitTDgEC8Qaco0IjVA/DgDmEDfxgAT9V0IYDAQIxiw6xPa+OkT6YMQA0TCHlzQRr9MVKSENvJboAvoP8L4DEakgVgZEPWxfr4HEQcMuECAiQMRJ5hDVgTE8xlMG0ekpgTs+gSI+i4EMPBF8tt4PoMxMUKkYTBtrGljS4IOBuyM4jMIgHg+A+yBD9GfBz4DXmfdRH8bAyAmdMFmAH+Lu4IBX6Dssd7ggb0LNEEERJzAZoA9wAx0ExMg2gkSGFCRNk8wEC+AuOHT2YcYIJLuQQDEBpHsXQiAaN8C3sYrGNgLBLSxgcGfm2AgdjB47IFyg0jP8QywBx1t1BnABAHPxgeLRFWmCTogQgZ+nWmCCIgXjHXKYNrIxzo+oTSYaENsMBEf83QG/kQ6v4380WbPxAQG+kRKOB9gBvYC8D3ZCBNxggAG8IWoBgY4gf2eawNEuEADRIah46SKGcB/qdIZ/AMyVI2OEN2MIAAAAABJRU5ErkJggg==" y="-10"/> <g id="matplotlib.axis_3"/> <g id="matplotlib.axis_4"> <g id="ytick_7"> <g id="line2d_13"> <defs> <path d="M 0 0 L 3.5 0 " id="m7591b74935" style="stroke:#000000;stroke-width:0.8;"/> </defs> <g> <use style="stroke:#000000;stroke-width:0.8;" x="802.113" xlink:href="#m7591b74935" y="293.587667"/> </g> </g> <g id="text_13"> <!-- 0.005 --> <g transform="translate(809.113 297.386886)scale(0.1 -0.1)"> <defs> <path d="M 10.6875 12.40625 L 21 12.40625 L 21 0 L 10.6875 0 z " id="DejaVuSans-46"/> </defs> <use xlink:href="#DejaVuSans-48"/> <use x="63.623047" xlink:href="#DejaVuSans-46"/> <use x="95.410156" xlink:href="#DejaVuSans-48"/> <use x="159.033203" xlink:href="#DejaVuSans-48"/> <use x="222.65625" xlink:href="#DejaVuSans-53"/> </g> </g> </g> <g id="ytick_8"> <g id="line2d_14"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="802.113" xlink:href="#m7591b74935" y="237.069978"/> </g> </g> <g id="text_14"> <!-- 0.010 --> <g transform="translate(809.113 240.869196)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> <use x="63.623047" xlink:href="#DejaVuSans-46"/> <use x="95.410156" xlink:href="#DejaVuSans-48"/> <use x="159.033203" xlink:href="#DejaVuSans-49"/> <use x="222.65625" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="ytick_9"> <g id="line2d_15"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="802.113" xlink:href="#m7591b74935" y="180.552288"/> </g> </g> <g id="text_15"> <!-- 0.015 --> <g transform="translate(809.113 184.351507)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> <use x="63.623047" xlink:href="#DejaVuSans-46"/> <use x="95.410156" xlink:href="#DejaVuSans-48"/> <use x="159.033203" xlink:href="#DejaVuSans-49"/> <use x="222.65625" xlink:href="#DejaVuSans-53"/> </g> </g> </g> <g id="ytick_10"> <g id="line2d_16"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="802.113" xlink:href="#m7591b74935" y="124.034598"/> </g> </g> <g id="text_16"> <!-- 0.020 --> <g transform="translate(809.113 127.833817)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> <use x="63.623047" xlink:href="#DejaVuSans-46"/> <use x="95.410156" xlink:href="#DejaVuSans-48"/> <use x="159.033203" xlink:href="#DejaVuSans-50"/> <use x="222.65625" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="ytick_11"> <g id="line2d_17"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="802.113" xlink:href="#m7591b74935" y="67.516908"/> </g> </g> <g id="text_17"> <!-- 0.025 --> <g transform="translate(809.113 71.316127)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> <use x="63.623047" xlink:href="#DejaVuSans-46"/> <use x="95.410156" xlink:href="#DejaVuSans-48"/> <use x="159.033203" xlink:href="#DejaVuSans-50"/> <use x="222.65625" xlink:href="#DejaVuSans-53"/> </g> </g> </g> <g id="ytick_12"> <g id="line2d_18"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="802.113" xlink:href="#m7591b74935" y="10.999219"/> </g> </g> <g id="text_18"> <!-- 0.030 --> <g transform="translate(809.113 14.798438)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> <use x="63.623047" xlink:href="#DejaVuSans-46"/> <use x="95.410156" xlink:href="#DejaVuSans-48"/> <use x="159.033203" xlink:href="#DejaVuSans-51"/> <use x="222.65625" xlink:href="#DejaVuSans-48"/> </g> </g> </g> </g> <g id="patch_8"> <path d="M 785.805 336.458888 L 785.805 335.184826 L 785.805 11.572951 L 785.805 10.298888 L 802.113 10.298888 L 802.113 11.572951 L 802.113 335.184826 L 802.113 336.458888 z " style="fill:none;stroke:#000000;stroke-linejoin:miter;stroke-width:0.8;"/> </g> </g> </g> <defs> <clipPath id="p45058bb045"> <rect height="326.16" width="714.24" x="26.925" y="10.298888"/> </clipPath> <clipPath id="pbfb9dab91d"> <rect height="326.16" width="16.308" x="785.805" y="10.298888"/> </clipPath> </defs> </svg>)
![]()
%% Cell type:markdown id: tags:
## 2. Centered Cumulant Method with Implicit Forcing
The default setup of the centered cumulant method does not use a force model to compute the force contributions on all populations, but instead applies the force in cumulant space simply by setting the momentum relaxation rate $\omega_1 = 2$. Due to the half-force shift of the equilibrium input velocity, the first central moments (which correspond to momentum relative to the moving frame of reference) are not zero, but equal to $-F/2$. The relaxation process causes the first central moments to simply change sign:
$$
\kappa_{100}^* = - \kappa_{100}.
$$
Thus, $\kappa_{100}^* = F_x /2$. In total, the entire acceleration given by the force is added onto the momentum.
%% Cell type:code id: tags:
``` python
cm_method_params = {
'method' : 'monomial_cumulant',
'stencil': stencil,
'relaxation_rate': viscous_rr, # Specify viscous relaxation rate only
'force_model': CenteredCumulantForceModel(force),
'force' : force,
'streaming_pattern' : streaming_pattern
}
optimization = {
'target': target,
'pre_simplification' : True
}
cm_impl_f_flow = PeriodicPipeFlow(cm_method_params, optimization)
```
%% Cell type:code id: tags:
``` python
lb_method = cm_impl_f_flow.lb_method
assert all(rr == 2 for rr in lb_method.relaxation_rates[1:4])
assert all(rr == viscous_rr for rr in lb_method.relaxation_rates[4:9])
```
%% Cell type:code id: tags:
``` python
cm_impl_f_flow.init()
cm_impl_f_flow.run(400)
```
%% Cell type:code id: tags:
``` python
cm_impl_f_u = cm_impl_f_flow.get_trimmed_velocity_array()
ps.plot.vector_field_magnitude(cm_impl_f_u[30,:,:,:])
ps.plot.colorbar()
```
%%%% Output: execute_result
<matplotlib.colorbar.Colorbar at 0x7f8678e35130>
<matplotlib.colorbar.Colorbar at 0x7f20aa846670>
%%%% Output: display_data
![]()
![](data:image/svg+xml;utf8,<?xml version="1.0" encoding="utf-8" standalone="no"?> <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"> <!-- Created with matplotlib (https://matplotlib.org/) --> <svg height="359.931212pt" version="1.1" viewBox="0 0 844.941125 359.931212" width="844.941125pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"> <metadata> <rdf:RDF xmlns:cc="http://creativecommons.org/ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <cc:Work> <dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage"/> <dc:date>2021-01-30T11:28:03.341562</dc:date> <dc:format>image/svg+xml</dc:format> <dc:creator> <cc:Agent> <dc:title>Matplotlib v3.3.3, https://matplotlib.org/</dc:title> </cc:Agent> </dc:creator> </cc:Work> </rdf:RDF> </metadata> <defs> <style type="text/css">*{stroke-linecap:butt;stroke-linejoin:round;}</style> </defs> <g id="figure_1"> <g id="patch_1"> <path d="M 0 359.931212 L 844.941125 359.931212 L 844.941125 0 L 0 0 z " style="fill:none;"/> </g> <g id="axes_1"> <g id="patch_2"> <path d="M 26.925 336.053087 L 741.165 336.053087 L 741.165 9.893087 L 26.925 9.893087 z " style="fill:#ffffff;"/> </g> <g clip-path="url(#p812b30c217)"> <image height="327" id="imagefd5d84309a" transform="scale(1 -1)translate(0 -327)" width="327" x="220.965" xlink:href="data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAAUcAAAFHCAYAAAAySY5rAAAPlUlEQVR4nO3dy45c53UF4L+uXX0hRVKhxSSSYRvIm4jwC2hg6AEC5MUED/QEkd7EQCxYRkKJ5q3Zl7p0VWXg6R6sjbghifm+8cZhdZ3/rDoDLuzJ4IP2+eSLYzo7PTvLLzybxaOTySS/buh4jP+sMfb7ePRwcxPPfnv8+h//h/GzMf2pPwDAz5FwBCgIR4CCcAQoCEeAgnAEKAhHgIJwBCgIR4CCcAQoqD/do1Z17/w8vu6kU/N7+jge3V+cxLOHZV4fHLN7OGb7vD443eb1wdnVJv8ML9/Eo8dGLfFwfR3PqjDeH2+OAAXhCFAQjgAF4QhQEI4ABeEIUBCOAAXhCFAQjgAF4QhQUD1qer78Mq8E/ubT+Lr7jy/i2d3FIp99MI9n707z47Bf5LPHRtMwNckbgWO2y6uG89t8dvH+Lp+92sWzs1dX8ezhu7/Gs99sv/K8N3hzBCgIR4CCcAQoCEeAgnAEKAhHgIJwBCgIR4CCcAQoCEeAwgdbJ+ps/pt9/CS+7vGzZ/Hs+lm+UXD9OO/Y7S7y27Y7b1QC8+WD45A3GMfxHn6CJ4d8dpo398assXxwcd2oGl7ls6s3eTdy9SLfVDj5/kU8u3/1Opr7kLcfenMEKAhHgIJwBCgIR4CCcAQoCEeAgnAEKAhHgIJwBCgIR4DCL67683zxh6iHNf3tr+Nr7j55GM/efpJ37NZP8t+ezUf5rbjLFxWOu9O8tnY4yWePi8bsNJ9NTQ759zXZ5bPTTT47v23M5gsFx8m7RtXwdd6jPP0h70YufriM5g5//kt8zW92f/xF5Y03R4CCcAQoCEeAgnAEKAhHgIJwBCgIR4CCcAQoCEeAws/if6y3lmH92++iuc1nj+N//+ZZvi3q9uP892T7KB4d24d5K2J/kS9gGqt8dnaSz87n+ez0Hhoyh0ZD5u4uX1623+SzY53Pzq7y2eVl/rct38aj4/RV3qY5e5FtJTv5/k18zf2f/iue/Tks7vLmCFAQjgAF4QhQEI4ABeEIUBCOAAXhCFAQjgAF4QhQEI4AhflP/QHGGGP28ZN4Nl2G1akE3vyqsQjrSV6F2z7K61rHB3fx7Mn5Np49WzVml1llbIwxThf57GySfw+p/TG/Z7e7xlnYNmbXy3h2s8pn1yf5Y3lY5N/DcdZ5F8q+h+k2X063eJ0/5+Nv+eh98eYIUBCOAAXhCFAQjgAF4QhQEI4ABeEIUBCOAAXhCFAQjgCFe6sPPl9+Gffsjp89i697+8lJNtfYEtiqBD7Jq3CTR3l178HFOp59fHYbzz46yWcfLvPZ01leH1zcQ31w16kP7vNK4OX2NJ59u8pn3yzz2avFKp7dTvNaYuddaLLPZmeb7HkcY4z5Vf6cP7/M8+Ob7Vf3sqnQmyNAQTgCFIQjQEE4AhSEI0BBOAIUhCNAQTgCFIQjQEE4AhRa9cHPJ1/ElZ7pbz6Nr3v77DyeXT/J8nz7KL5ka0tgpxL40cObePZXF1f57On7ePbpMr/uw3leYTybbeLZ1STfrJhaH/Oje7PPK26Xy7y693J5Ec+u5g/i2R+n+Xl8F0+OsT3kVcPpbhbNrdf5+9XiOn/OT6/z/Pj8T3kufXv8Oq4aenMEKAhHgIJwBCgIR4CCcAQoCEeAgnAEKAhHgIJwBCgIR4BCqz44Pc/rP/uP82rV+nFWVRpjjM1HWftn+zDfKHh8kNfbOlsCO5XAfz3Li2D/vMpn/2mRVw2fzPLPez7Na5SLe6gP7hr1wetGbe71PD+3P/UGxjHG2B/y95vLXT673YTbB2/zxX+Lq/w5XzbyY/rfeS6N/Ih7cwSoCEeAgnAEKAhHgIJwBCgIR4CCcAQoCEeAgnAEKAhHgEKrPjg5O4tndxeLxmxeQboLW0X7i318zZPzvAr3+Ow2nu1sCexUAj9dvo5nn87zz/Bodh3Pnk869cH8XqR2x7yKdn3M64OdWuRqktcHO3bH/J1lfZc/Z5tt/rhv1tn3e3edX7PznHfyY9XIJfVBgP8j4QhQEI4ABeEIUBCOAAXhCFAQjgAF4QhQEI4ABeEIUJh/PvkiX9P39HE8unvQqBWdN+qDp+HHXeWVtbNVXhl7dJLXB58u865SZ0tgpxL4dH4Zzz6a5psVHzQ2Ci7y2xvb5ad2vD92tgT+46uOY4yxPuZ1uNt9Pnt5cprPrk7i2c0qq1zeneY1zs5z3smPVSOXPn+Z5503R4CCcAQoCEeAgnAEKAhHgIJwBCgIR4CCcAQoCEeAgnAEKMynjc1d+4u8fnR3mleF9vllx+Eka//MThr1wWVeL3u4zOuDD+d5He/JLK8adrYEdiqBT6Z5JfB8kv+uLhqzqd3xkP/7x/zvGiP/vnazxgbEQ74B8d08fyY75/FseR7PXobPT/o8jjHG/qRTE27kRyOXOnnnzRGgIBwBCsIRoCAcAQrCEaAgHAEKwhGgIBwBCsIRoCAcAQrz0ahAHZb57L6xcu6QL1sbx0VWV1rM8/rg6SKvD57O8tmz2SaePZ/mGxDPJ/lsZ0tgpxJ4Ns1v2nzk5ybV2hJ4yO/ZrvF93TTuQ+f+ds5N5zx2zvk8fH624fM4Ru85b+VHI5emjbzz5ghQEI4ABeEIUBCOAAXhCFAQjgAF4QhQEI4ABeEIUBCOAIX5ZJLXdMYsnz02GmPHRkQfp1ldaRrOjTHGbNLYZNeYXTWqaIvWbF6da7SwWlsCO5XA2T1sHxz57W1+X52z0Llufn975yb/vJ1znj4/6fP499l4tJUfnVzq5J03R4CCcAQoCEeAgnAEKAhHgIJwBCgIR4CCcAQoCEeAgnAEKAhHgIJwBCgIR4CCcAQoCEeAgnAEKAhHgIJwBCgIR4CCcAQozI/HxqaifT7b2D00Gnt/xuSQLcg5hHNjjLFvbP7ZNWbXx3njup3ZfPvQrnF7d8f7WS7VWYaVuhv5v9/5u3rfV+c+5Pe3d27y89g55+nzkz6Pf5+NR1v50cmlTt55cwQoCEeAgnAEKAhHgIJwBCgIR4CCcAQoCEeAgnAEKAhHgMJ87POeznSbz84aPazprlFBCmfv7vJq1+1ukc/u89mb/Uk8e31Y5rPHfPb9cRfPLo538ew4NK7b6oJlOpXA68bs+0Z1r3MfOve3c24657FzztPnJ30exxhjmh+ZXn40cqmVd/lVAf7/EI4ABeEIUBCOAAXhCFAQjgAF4QhQEI4ABeEIUBCOAIX54eYmHp5dbfIL357l180vO6absD64yeuDN9u8VnW5Pc1nl6t49vX8Ip49n27j2V51bx1P7iZ51XDRWTuX/vuNLYGdSuDbQ37P3u7P49nX+/z+Xt7ln6FzHjvnfB8+P/PweRyj95zPb/Mb3MmlfSPvvDkCFIQjQEE4AhSEI0BBOAIUhCNAQTgCFIQjQEE4AhSEI0Bh/u3x67j/8/uX/xF3ehb/8iD+EIvrPKPnt2F9cN2oD67zzXBvV3ld6+Uyr4ydzvLVbKtJY41bw27W+M4m91VhzOyO+WftbAnsVAJf3uVn/G+7fPblNj83bzeN+mDjnI/w+UmfxzHGWFznlcDF+8YmzJdv4tFO3nlzBCgIR4CCcAQoCEeAgnAEKAhHgIJwBCgIR4CCcAQoCEeAQr6WbYxxbGzuWlzlFbfFVb4VbX6VtX9m53m9bLPKa1VvlnldazVvVCjvYUPfGGOsj/l3e33Iv4feBsRGFSy0a2wU7PxdnS2BnUrg/6w/imd/vM2v++YmP4+b6/x7mF2F9cGr+JJjcdWoDzbyo5NLHd4cAQrCEaAgHAEKwhGgIBwBCsIRoCAcAQrCEaAgHAEKwhGg0KoPHq6v49nZq7xXtHp0Es/uLrL64P4034q2Psm/hqvFKp79cXo/lcDdMf9Nu93n9cF387N49my2iWdX91AfXDfqgzf7/Hxd3uX3t7MlsFMJ/PEqv+7VVf55J+/z72x5mT0/J+/ySuDqTb6FspMf+0YudXhzBCgIR4CCcAQoCEeAgnAEKAhHgIJwBCgIR4CCcAQoCEeAQqs++O3x67iT9/y7L+Ne0eo8r0DtzrMa1t0q3z54WOS/EdtpvsHtXTw5xv6Qf4b1XV4JvDzJt9M9XN7Gs6ezxnbJe9iseF8Vystt/n293eSznS2BnUrg8W1+Hpdv8+9s+TabW73O7+3qRV7zO3z313i2k0sd3hwBCsIRoCAcAQrCEaAgHAEKwhGgIBwBCsIRoCAcAQrCEaDQqg92fLP9Kq70/P77f4+rhqcXWV1qf9KoYM06vxGNquEhr3Zd7vLrbrb5bbtc5Zv3zpbn8ezpIq8Pzu6hPrjv1Ad3eX3wZtuYXef3d3Odz7a2BDYqgSev85bd6avsnp3+kG+hnHz/Ip79z0Z+3BdvjgAF4QhQEI4ABeEIUBCOAAXhCFAQjgAF4QhQEI4ABeEIULi3+mDH/tXreHbxw6No7myZbx8cI6+MTfb578l0l3+G7aZRH1zn192sGhXGk308O5/ns9Np3A6NHQ55u+zuLv++9pvGuWnch9lVPru8zP+2dEvgGHklcIwxzl5k9dDFD5fxNTvP+c+BN0eAgnAEKAhHgIJwBCgIR4CCcAQoCEeAgnAEKAhHgMJPvsSm6/niD1HdYvrbX8fX3H3yMJ69/SRfWLV+0mi9fNRofFzEo+PuNG+nHE7y2eOiMXsPDZlJoyEz2eWz000+O79tzF7Fo+PkXf59rV7nrZfOMqy0+XL481/ia36z++MvKm+8OQIUhCNAQTgCFIQjQEE4AhSEI0BBOAIUhCNAQTgCFIQjQOEXVefp+HzyRdzBmn38JL7u8bNn8ez62Xk++zhfwLS7yG/b7jyf3efNyHHId5KN4z38BE/y1tyYZruixhhjzPKG3Vhc5zW/xVWjEvgmX162enEdz06+fxHPpsuwvj1+/cFmiDdHgIJwBCgIR4CCcAQoCEeAgnAEKAhHgIJwBCgIR4CCcAQofLDVn/vyfPll3AOb/ubT+Lr7j/OVgruLvLu3ezCPZ+9OG1XDRT57zJuRsUnesBuzXV7dm982KoHv7/LZq7zDOHuVryo8fPfXePab7Vee9wZvjgAF4QhQEI4ABeEIUBCOAAXhCFAQjgAF4QhQEI4ABeEIUFAnukedDYjT83xT4eTsLP8QTx/Ho/uLfP3gYdnoBM7u4Zjt85rfdJt3DWdXjfWDL9/Eo8ebm3j2cJ1vFPyQt//91Lw5AhSEI0BBOAIUhCNAQTgCFIQjQEE4AhSEI0BBOAIUhCNAQfXoA9eqMHZqibO8PjiZ/OOP2fGY1wfHPq8PHho1P9W9D5s3R4CCcAQoCEeAgnAEKAhHgIJwBCgIR4CCcAQoCEeAgnAEKPwvwku6ltsGgQgAAAAASUVORK5CYII=" y="-9.053087"/> </g> <g id="matplotlib.axis_1"> <g id="xtick_1"> <g id="line2d_1"> <defs> <path d="M 0 0 L 0 3.5 " id="m6535274822" style="stroke:#000000;stroke-width:0.8;"/> </defs> <g> <use style="stroke:#000000;stroke-width:0.8;" x="117.681" xlink:href="#m6535274822" y="336.053087"/> </g> </g> <g id="text_1"> <!-- −10 --> <g transform="translate(107.128656 350.651525)scale(0.1 -0.1)"> <defs> <path d="M 10.59375 35.5 L 73.1875 35.5 L 73.1875 27.203125 L 10.59375 27.203125 z " id="DejaVuSans-8722"/> <path d="M 12.40625 8.296875 L 28.515625 8.296875 L 28.515625 63.921875 L 10.984375 60.40625 L 10.984375 69.390625 L 28.421875 72.90625 L 38.28125 72.90625 L 38.28125 8.296875 L 54.390625 8.296875 L 54.390625 0 L 12.40625 0 z " id="DejaVuSans-49"/> <path d="M 31.78125 66.40625 Q 24.171875 66.40625 20.328125 58.90625 Q 16.5 51.421875 16.5 36.375 Q 16.5 21.390625 20.328125 13.890625 Q 24.171875 6.390625 31.78125 6.390625 Q 39.453125 6.390625 43.28125 13.890625 Q 47.125 21.390625 47.125 36.375 Q 47.125 51.421875 43.28125 58.90625 Q 39.453125 66.40625 31.78125 66.40625 z M 31.78125 74.21875 Q 44.046875 74.21875 50.515625 64.515625 Q 56.984375 54.828125 56.984375 36.375 Q 56.984375 17.96875 50.515625 8.265625 Q 44.046875 -1.421875 31.78125 -1.421875 Q 19.53125 -1.421875 13.0625 8.265625 Q 6.59375 17.96875 6.59375 36.375 Q 6.59375 54.828125 13.0625 64.515625 Q 19.53125 74.21875 31.78125 74.21875 z " id="DejaVuSans-48"/> </defs> <use xlink:href="#DejaVuSans-8722"/> <use x="83.789062" xlink:href="#DejaVuSans-49"/> <use x="147.412109" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="xtick_2"> <g id="line2d_2"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="226.401" xlink:href="#m6535274822" y="336.053087"/> </g> </g> <g id="text_2"> <!-- 0 --> <g transform="translate(223.21975 350.651525)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="xtick_3"> <g id="line2d_3"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="335.121" xlink:href="#m6535274822" y="336.053087"/> </g> </g> <g id="text_3"> <!-- 10 --> <g transform="translate(328.7585 350.651525)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-49"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="xtick_4"> <g id="line2d_4"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="443.841" xlink:href="#m6535274822" y="336.053087"/> </g> </g> <g id="text_4"> <!-- 20 --> <g transform="translate(437.4785 350.651525)scale(0.1 -0.1)"> <defs> <path d="M 19.1875 8.296875 L 53.609375 8.296875 L 53.609375 0 L 7.328125 0 L 7.328125 8.296875 Q 12.9375 14.109375 22.625 23.890625 Q 32.328125 33.6875 34.8125 36.53125 Q 39.546875 41.84375 41.421875 45.53125 Q 43.3125 49.21875 43.3125 52.78125 Q 43.3125 58.59375 39.234375 62.25 Q 35.15625 65.921875 28.609375 65.921875 Q 23.96875 65.921875 18.8125 64.3125 Q 13.671875 62.703125 7.8125 59.421875 L 7.8125 69.390625 Q 13.765625 71.78125 18.9375 73 Q 24.125 74.21875 28.421875 74.21875 Q 39.75 74.21875 46.484375 68.546875 Q 53.21875 62.890625 53.21875 53.421875 Q 53.21875 48.921875 51.53125 44.890625 Q 49.859375 40.875 45.40625 35.40625 Q 44.1875 33.984375 37.640625 27.21875 Q 31.109375 20.453125 19.1875 8.296875 z " id="DejaVuSans-50"/> </defs> <use xlink:href="#DejaVuSans-50"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="xtick_5"> <g id="line2d_5"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="552.561" xlink:href="#m6535274822" y="336.053087"/> </g> </g> <g id="text_5"> <!-- 30 --> <g transform="translate(546.1985 350.651525)scale(0.1 -0.1)"> <defs> <path d="M 40.578125 39.3125 Q 47.65625 37.796875 51.625 33 Q 55.609375 28.21875 55.609375 21.1875 Q 55.609375 10.40625 48.1875 4.484375 Q 40.765625 -1.421875 27.09375 -1.421875 Q 22.515625 -1.421875 17.65625 -0.515625 Q 12.796875 0.390625 7.625 2.203125 L 7.625 11.71875 Q 11.71875 9.328125 16.59375 8.109375 Q 21.484375 6.890625 26.8125 6.890625 Q 36.078125 6.890625 40.9375 10.546875 Q 45.796875 14.203125 45.796875 21.1875 Q 45.796875 27.640625 41.28125 31.265625 Q 36.765625 34.90625 28.71875 34.90625 L 20.21875 34.90625 L 20.21875 43.015625 L 29.109375 43.015625 Q 36.375 43.015625 40.234375 45.921875 Q 44.09375 48.828125 44.09375 54.296875 Q 44.09375 59.90625 40.109375 62.90625 Q 36.140625 65.921875 28.71875 65.921875 Q 24.65625 65.921875 20.015625 65.03125 Q 15.375 64.15625 9.8125 62.3125 L 9.8125 71.09375 Q 15.4375 72.65625 20.34375 73.4375 Q 25.25 74.21875 29.59375 74.21875 Q 40.828125 74.21875 47.359375 69.109375 Q 53.90625 64.015625 53.90625 55.328125 Q 53.90625 49.265625 50.4375 45.09375 Q 46.96875 40.921875 40.578125 39.3125 z " id="DejaVuSans-51"/> </defs> <use xlink:href="#DejaVuSans-51"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="xtick_6"> <g id="line2d_6"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="661.281" xlink:href="#m6535274822" y="336.053087"/> </g> </g> <g id="text_6"> <!-- 40 --> <g transform="translate(654.9185 350.651525)scale(0.1 -0.1)"> <defs> <path d="M 37.796875 64.3125 L 12.890625 25.390625 L 37.796875 25.390625 z M 35.203125 72.90625 L 47.609375 72.90625 L 47.609375 25.390625 L 58.015625 25.390625 L 58.015625 17.1875 L 47.609375 17.1875 L 47.609375 0 L 37.796875 0 L 37.796875 17.1875 L 4.890625 17.1875 L 4.890625 26.703125 z " id="DejaVuSans-52"/> </defs> <use xlink:href="#DejaVuSans-52"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> </g> <g id="matplotlib.axis_2"> <g id="ytick_1"> <g id="line2d_7"> <defs> <path d="M 0 0 L -3.5 0 " id="m1693fa70cc" style="stroke:#000000;stroke-width:0.8;"/> </defs> <g> <use style="stroke:#000000;stroke-width:0.8;" x="26.925" xlink:href="#m1693fa70cc" y="330.617087"/> </g> </g> <g id="text_7"> <!-- 0 --> <g transform="translate(13.5625 334.416306)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="ytick_2"> <g id="line2d_8"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="26.925" xlink:href="#m1693fa70cc" y="276.257087"/> </g> </g> <g id="text_8"> <!-- 5 --> <g transform="translate(13.5625 280.056306)scale(0.1 -0.1)"> <defs> <path d="M 10.796875 72.90625 L 49.515625 72.90625 L 49.515625 64.59375 L 19.828125 64.59375 L 19.828125 46.734375 Q 21.96875 47.46875 24.109375 47.828125 Q 26.265625 48.1875 28.421875 48.1875 Q 40.625 48.1875 47.75 41.5 Q 54.890625 34.8125 54.890625 23.390625 Q 54.890625 11.625 47.5625 5.09375 Q 40.234375 -1.421875 26.90625 -1.421875 Q 22.3125 -1.421875 17.546875 -0.640625 Q 12.796875 0.140625 7.71875 1.703125 L 7.71875 11.625 Q 12.109375 9.234375 16.796875 8.0625 Q 21.484375 6.890625 26.703125 6.890625 Q 35.15625 6.890625 40.078125 11.328125 Q 45.015625 15.765625 45.015625 23.390625 Q 45.015625 31 40.078125 35.4375 Q 35.15625 39.890625 26.703125 39.890625 Q 22.75 39.890625 18.8125 39.015625 Q 14.890625 38.140625 10.796875 36.28125 z " id="DejaVuSans-53"/> </defs> <use xlink:href="#DejaVuSans-53"/> </g> </g> </g> <g id="ytick_3"> <g id="line2d_9"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="26.925" xlink:href="#m1693fa70cc" y="221.897087"/> </g> </g> <g id="text_9"> <!-- 10 --> <g transform="translate(7.2 225.696306)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-49"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="ytick_4"> <g id="line2d_10"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="26.925" xlink:href="#m1693fa70cc" y="167.537087"/> </g> </g> <g id="text_10"> <!-- 15 --> <g transform="translate(7.2 171.336306)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-49"/> <use x="63.623047" xlink:href="#DejaVuSans-53"/> </g> </g> </g> <g id="ytick_5"> <g id="line2d_11"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="26.925" xlink:href="#m1693fa70cc" y="113.177087"/> </g> </g> <g id="text_11"> <!-- 20 --> <g transform="translate(7.2 116.976306)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-50"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="ytick_6"> <g id="line2d_12"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="26.925" xlink:href="#m1693fa70cc" y="58.817087"/> </g> </g> <g id="text_12"> <!-- 25 --> <g transform="translate(7.2 62.616306)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-50"/> <use x="63.623047" xlink:href="#DejaVuSans-53"/> </g> </g> </g> </g> <g id="patch_3"> <path d="M 26.925 336.053087 L 26.925 9.893087 " style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> </g> <g id="patch_4"> <path d="M 741.165 336.053087 L 741.165 9.893087 " style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> </g> <g id="patch_5"> <path d="M 26.925 336.053087 L 741.165 336.053087 " style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> </g> <g id="patch_6"> <path d="M 26.925 9.893087 L 741.165 9.893087 " style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> </g> </g> <g id="axes_2"> <g id="patch_7"> <path clip-path="url(#p286cf1b800)" d="M 785.805 336.053087 L 785.805 334.779025 L 785.805 11.16715 L 785.805 9.893087 L 802.113 9.893087 L 802.113 11.16715 L 802.113 334.779025 L 802.113 336.053087 z " style="fill:#ffffff;stroke:#ffffff;stroke-linejoin:miter;stroke-width:0.01;"/> </g> <image height="326" id="imagef51e0bf694" transform="scale(1 -1)translate(0 -326)" width="16" x="786" xlink:href="data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAABAAAAFGCAYAAABjUx8/AAABrklEQVR4nO2cwW3EMAwEKdmlpYT0X0qcIobArATe37r1aJYWDvCtn/X7Ffi8tTa5vt61F1tAT8C+vjpuoThEm8HalAG8hbfsBA0iUQ/WmDgitTDgEC8Qaco0IjVA/DgDmEDfxgAT9V0IYDAQIxiw6xPa+OkT6YMQA0TCHlzQRr9MVKSENvJboAvoP8L4DEakgVgZEPWxfr4HEQcMuECAiQMRJ5hDVgTE8xlMG0ekpgTs+gSI+i4EMPBF8tt4PoMxMUKkYTBtrGljS4IOBuyM4jMIgHg+A+yBD9GfBz4DXmfdRH8bAyAmdMFmAH+Lu4IBX6Dssd7ggb0LNEEERJzAZoA9wAx0ExMg2gkSGFCRNk8wEC+AuOHT2YcYIJLuQQDEBpHsXQiAaN8C3sYrGNgLBLSxgcGfm2AgdjB47IFyg0jP8QywBx1t1BnABAHPxgeLRFWmCTogQgZ+nWmCCIgXjHXKYNrIxzo+oTSYaENsMBEf83QG/kQ6v4380WbPxAQG+kRKOB9gBvYC8D3ZCBNxggAG8IWoBgY4gf2eawNEuEADRIah46SKGcB/qdIZ/AMyVI2OEN2MIAAAAABJRU5ErkJggg==" y="-9"/> <g id="matplotlib.axis_3"/> <g id="matplotlib.axis_4"> <g id="ytick_7"> <g id="line2d_13"> <defs> <path d="M 0 0 L 3.5 0 " id="m0587f5ce72" style="stroke:#000000;stroke-width:0.8;"/> </defs> <g> <use style="stroke:#000000;stroke-width:0.8;" x="802.113" xlink:href="#m0587f5ce72" y="293.867644"/> </g> </g> <g id="text_13"> <!-- 0.005 --> <g transform="translate(809.113 297.666863)scale(0.1 -0.1)"> <defs> <path d="M 10.6875 12.40625 L 21 12.40625 L 21 0 L 10.6875 0 z " id="DejaVuSans-46"/> </defs> <use xlink:href="#DejaVuSans-48"/> <use x="63.623047" xlink:href="#DejaVuSans-46"/> <use x="95.410156" xlink:href="#DejaVuSans-48"/> <use x="159.033203" xlink:href="#DejaVuSans-48"/> <use x="222.65625" xlink:href="#DejaVuSans-53"/> </g> </g> </g> <g id="ytick_8"> <g id="line2d_14"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="802.113" xlink:href="#m0587f5ce72" y="237.293959"/> </g> </g> <g id="text_14"> <!-- 0.010 --> <g transform="translate(809.113 241.093178)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> <use x="63.623047" xlink:href="#DejaVuSans-46"/> <use x="95.410156" xlink:href="#DejaVuSans-48"/> <use x="159.033203" xlink:href="#DejaVuSans-49"/> <use x="222.65625" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="ytick_9"> <g id="line2d_15"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="802.113" xlink:href="#m0587f5ce72" y="180.720274"/> </g> </g> <g id="text_15"> <!-- 0.015 --> <g transform="translate(809.113 184.519493)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> <use x="63.623047" xlink:href="#DejaVuSans-46"/> <use x="95.410156" xlink:href="#DejaVuSans-48"/> <use x="159.033203" xlink:href="#DejaVuSans-49"/> <use x="222.65625" xlink:href="#DejaVuSans-53"/> </g> </g> </g> <g id="ytick_10"> <g id="line2d_16"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="802.113" xlink:href="#m0587f5ce72" y="124.146589"/> </g> </g> <g id="text_16"> <!-- 0.020 --> <g transform="translate(809.113 127.945808)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> <use x="63.623047" xlink:href="#DejaVuSans-46"/> <use x="95.410156" xlink:href="#DejaVuSans-48"/> <use x="159.033203" xlink:href="#DejaVuSans-50"/> <use x="222.65625" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="ytick_11"> <g id="line2d_17"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="802.113" xlink:href="#m0587f5ce72" y="67.572904"/> </g> </g> <g id="text_17"> <!-- 0.025 --> <g transform="translate(809.113 71.372123)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> <use x="63.623047" xlink:href="#DejaVuSans-46"/> <use x="95.410156" xlink:href="#DejaVuSans-48"/> <use x="159.033203" xlink:href="#DejaVuSans-50"/> <use x="222.65625" xlink:href="#DejaVuSans-53"/> </g> </g> </g> <g id="ytick_12"> <g id="line2d_18"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="802.113" xlink:href="#m0587f5ce72" y="10.999219"/> </g> </g> <g id="text_18"> <!-- 0.030 --> <g transform="translate(809.113 14.798437)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> <use x="63.623047" xlink:href="#DejaVuSans-46"/> <use x="95.410156" xlink:href="#DejaVuSans-48"/> <use x="159.033203" xlink:href="#DejaVuSans-51"/> <use x="222.65625" xlink:href="#DejaVuSans-48"/> </g> </g> </g> </g> <g id="patch_8"> <path d="M 785.805 336.053087 L 785.805 334.779025 L 785.805 11.16715 L 785.805 9.893087 L 802.113 9.893087 L 802.113 11.16715 L 802.113 334.779025 L 802.113 336.053087 z " style="fill:none;stroke:#000000;stroke-linejoin:miter;stroke-width:0.8;"/> </g> </g> </g> <defs> <clipPath id="p812b30c217"> <rect height="326.16" width="714.24" x="26.925" y="9.893087"/> </clipPath> <clipPath id="p286cf1b800"> <rect height="326.16" width="16.308" x="785.805" y="9.893087"/> </clipPath> </defs> </svg>)
![]()
%% Cell type:code id: tags:
``` python
assert_allclose(cm_impl_f_u, srt_u, rtol=1, atol=1e-4)
```
%% Cell type:markdown id: tags:
## 3. Centered Cumulant Method with Explicit Forcing
%% Cell type:code id: tags:
``` python
from lbmpy.forcemodels import Schiller
cm_method_params_expl_force = {
'method' : 'cumulant',
'stencil': stencil,
'relaxation_rates': [viscous_rr], # Specify viscous relaxation rate only
'force_model': Schiller(force),
'force' : force,
'streaming_pattern' : streaming_pattern
}
optimization = {
'target': target,
'pre_simplification' : True
}
cm_expl_f_flow = PeriodicPipeFlow(cm_method_params_expl_force, optimization)
```
%% Cell type:code id: tags:
``` python
lb_method = cm_expl_f_flow.lb_method
assert all(rr == 0 for rr in lb_method.relaxation_rates[1:4])
assert all(rr == viscous_rr for rr in lb_method.relaxation_rates[4:9])
```
%% Cell type:code id: tags:
``` python
cm_expl_f_flow.init()
cm_expl_f_flow.run(400)
```
%% Cell type:code id: tags:
``` python
cm_expl_f_u = cm_expl_f_flow.get_trimmed_velocity_array()
ps.plot.vector_field_magnitude(cm_expl_f_u[30,:,:,:])
ps.plot.colorbar()
```
%%%% Output: execute_result
<matplotlib.colorbar.Colorbar at 0x7f8678b73c10>
<matplotlib.colorbar.Colorbar at 0x7f20aa641070>
%%%% Output: display_data
![]()
![](data:image/svg+xml;utf8,<?xml version="1.0" encoding="utf-8" standalone="no"?> <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"> <!-- Created with matplotlib (https://matplotlib.org/) --> <svg height="360.273633pt" version="1.1" viewBox="0 0 844.941125 360.273633" width="844.941125pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"> <metadata> <rdf:RDF xmlns:cc="http://creativecommons.org/ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <cc:Work> <dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage"/> <dc:date>2021-01-30T11:28:10.123089</dc:date> <dc:format>image/svg+xml</dc:format> <dc:creator> <cc:Agent> <dc:title>Matplotlib v3.3.3, https://matplotlib.org/</dc:title> </cc:Agent> </dc:creator> </cc:Work> </rdf:RDF> </metadata> <defs> <style type="text/css">*{stroke-linecap:butt;stroke-linejoin:round;}</style> </defs> <g id="figure_1"> <g id="patch_1"> <path d="M 0 360.273633 L 844.941125 360.273633 L 844.941125 0 L 0 0 z " style="fill:none;"/> </g> <g id="axes_1"> <g id="patch_2"> <path d="M 26.925 336.395508 L 741.165 336.395508 L 741.165 10.235508 L 26.925 10.235508 z " style="fill:#ffffff;"/> </g> <g clip-path="url(#p45be66aaef)"> <image height="327" id="image626063c3e3" transform="scale(1 -1)translate(0 -327)" width="327" x="220.965" xlink:href="data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAAUcAAAFHCAYAAAAySY5rAAAPlUlEQVR4nO3dy45c53UF4L+uXX0hRVKhxSSSYRvIm4jwC2hg6AEC5MUED/QEkd7EQCxYRkKJ5q3Zl7p0VWXg6R6sjbghifm+8cZhdZ3/rDoDLuzJ4IP2+eSLYzo7PTvLLzybxaOTySS/buh4jP+sMfb7ePRwcxPPfnv8+h//h/GzMf2pPwDAz5FwBCgIR4CCcAQoCEeAgnAEKAhHgIJwBCgIR4CCcAQoqD/do1Z17/w8vu6kU/N7+jge3V+cxLOHZV4fHLN7OGb7vD443eb1wdnVJv8ML9/Eo8dGLfFwfR3PqjDeH2+OAAXhCFAQjgAF4QhQEI4ABeEIUBCOAAXhCFAQjgAF4QhQUD1qer78Mq8E/ubT+Lr7jy/i2d3FIp99MI9n707z47Bf5LPHRtMwNckbgWO2y6uG89t8dvH+Lp+92sWzs1dX8ezhu7/Gs99sv/K8N3hzBCgIR4CCcAQoCEeAgnAEKAhHgIJwBCgIR4CCcAQoCEeAwgdbJ+ps/pt9/CS+7vGzZ/Hs+lm+UXD9OO/Y7S7y27Y7b1QC8+WD45A3GMfxHn6CJ4d8dpo398assXxwcd2oGl7ls6s3eTdy9SLfVDj5/kU8u3/1Opr7kLcfenMEKAhHgIJwBCgIR4CCcAQoCEeAgnAEKAhHgIJwBCgIR4DCL67683zxh6iHNf3tr+Nr7j55GM/efpJ37NZP8t+ezUf5rbjLFxWOu9O8tnY4yWePi8bsNJ9NTQ759zXZ5bPTTT47v23M5gsFx8m7RtXwdd6jPP0h70YufriM5g5//kt8zW92f/xF5Y03R4CCcAQoCEeAgnAEKAhHgIJwBCgIR4CCcAQoCEeAws/if6y3lmH92++iuc1nj+N//+ZZvi3q9uP892T7KB4d24d5K2J/kS9gGqt8dnaSz87n+ez0Hhoyh0ZD5u4uX1623+SzY53Pzq7y2eVl/rct38aj4/RV3qY5e5FtJTv5/k18zf2f/iue/Tks7vLmCFAQjgAF4QhQEI4ABeEIUBCOAAXhCFAQjgAF4QhQEI4AhflP/QHGGGP28ZN4Nl2G1akE3vyqsQjrSV6F2z7K61rHB3fx7Mn5Np49WzVml1llbIwxThf57GySfw+p/TG/Z7e7xlnYNmbXy3h2s8pn1yf5Y3lY5N/DcdZ5F8q+h+k2X063eJ0/5+Nv+eh98eYIUBCOAAXhCFAQjgAF4QhQEI4ABeEIUBCOAAXhCFAQjgCFe6sPPl9+Gffsjp89i697+8lJNtfYEtiqBD7Jq3CTR3l178HFOp59fHYbzz46yWcfLvPZ01leH1zcQ31w16kP7vNK4OX2NJ59u8pn3yzz2avFKp7dTvNaYuddaLLPZmeb7HkcY4z5Vf6cP7/M8+Ob7Vf3sqnQmyNAQTgCFIQjQEE4AhSEI0BBOAIUhCNAQTgCFIQjQEE4AhRa9cHPJ1/ElZ7pbz6Nr3v77DyeXT/J8nz7KL5ka0tgpxL40cObePZXF1f57On7ePbpMr/uw3leYTybbeLZ1STfrJhaH/Oje7PPK26Xy7y693J5Ec+u5g/i2R+n+Xl8F0+OsT3kVcPpbhbNrdf5+9XiOn/OT6/z/Pj8T3kufXv8Oq4aenMEKAhHgIJwBCgIR4CCcAQoCEeAgnAEKAhHgIJwBCgIR4BCqz44Pc/rP/uP82rV+nFWVRpjjM1HWftn+zDfKHh8kNfbOlsCO5XAfz3Li2D/vMpn/2mRVw2fzPLPez7Na5SLe6gP7hr1wetGbe71PD+3P/UGxjHG2B/y95vLXT673YTbB2/zxX+Lq/w5XzbyY/rfeS6N/Ih7cwSoCEeAgnAEKAhHgIJwBCgIR4CCcAQoCEeAgnAEKAhHgEKrPjg5O4tndxeLxmxeQboLW0X7i318zZPzvAr3+Ow2nu1sCexUAj9dvo5nn87zz/Bodh3Pnk869cH8XqR2x7yKdn3M64OdWuRqktcHO3bH/J1lfZc/Z5tt/rhv1tn3e3edX7PznHfyY9XIJfVBgP8j4QhQEI4ABeEIUBCOAAXhCFAQjgAF4QhQEI4ABeEIUJh/PvkiX9P39HE8unvQqBWdN+qDp+HHXeWVtbNVXhl7dJLXB58u865SZ0tgpxL4dH4Zzz6a5psVHzQ2Ci7y2xvb5ad2vD92tgT+46uOY4yxPuZ1uNt9Pnt5cprPrk7i2c0qq1zeneY1zs5z3smPVSOXPn+Z5503R4CCcAQoCEeAgnAEKAhHgIJwBCgIR4CCcAQoCEeAgnAEKMynjc1d+4u8fnR3mleF9vllx+Eka//MThr1wWVeL3u4zOuDD+d5He/JLK8adrYEdiqBT6Z5JfB8kv+uLhqzqd3xkP/7x/zvGiP/vnazxgbEQ74B8d08fyY75/FseR7PXobPT/o8jjHG/qRTE27kRyOXOnnnzRGgIBwBCsIRoCAcAQrCEaAgHAEKwhGgIBwBCsIRoCAcAQrz0ahAHZb57L6xcu6QL1sbx0VWV1rM8/rg6SKvD57O8tmz2SaePZ/mGxDPJ/lsZ0tgpxJ4Ns1v2nzk5ybV2hJ4yO/ZrvF93TTuQ+f+ds5N5zx2zvk8fH624fM4Ru85b+VHI5emjbzz5ghQEI4ABeEIUBCOAAXhCFAQjgAF4QhQEI4ABeEIUBCOAIX5ZJLXdMYsnz02GmPHRkQfp1ldaRrOjTHGbNLYZNeYXTWqaIvWbF6da7SwWlsCO5XA2T1sHxz57W1+X52z0Llufn975yb/vJ1znj4/6fP499l4tJUfnVzq5J03R4CCcAQoCEeAgnAEKAhHgIJwBCgIR4CCcAQoCEeAgnAEKAhHgIJwBCgIR4CCcAQoCEeAgnAEKAhHgIJwBCgIR4CCcAQozI/HxqaifT7b2D00Gnt/xuSQLcg5hHNjjLFvbP7ZNWbXx3njup3ZfPvQrnF7d8f7WS7VWYaVuhv5v9/5u3rfV+c+5Pe3d27y89g55+nzkz6Pf5+NR1v50cmlTt55cwQoCEeAgnAEKAhHgIJwBCgIR4CCcAQoCEeAgnAEKAhHgMJ87POeznSbz84aPazprlFBCmfv7vJq1+1ukc/u89mb/Uk8e31Y5rPHfPb9cRfPLo538ew4NK7b6oJlOpXA68bs+0Z1r3MfOve3c24657FzztPnJ30exxhjmh+ZXn40cqmVd/lVAf7/EI4ABeEIUBCOAAXhCFAQjgAF4QhQEI4ABeEIUBCOAIX54eYmHp5dbfIL357l180vO6absD64yeuDN9u8VnW5Pc1nl6t49vX8Ip49n27j2V51bx1P7iZ51XDRWTuX/vuNLYGdSuDbQ37P3u7P49nX+/z+Xt7ln6FzHjvnfB8+P/PweRyj95zPb/Mb3MmlfSPvvDkCFIQjQEE4AhSEI0BBOAIUhCNAQTgCFIQjQEE4AhSEI0Bh/u3x67j/8/uX/xF3ehb/8iD+EIvrPKPnt2F9cN2oD67zzXBvV3ld6+Uyr4ydzvLVbKtJY41bw27W+M4m91VhzOyO+WftbAnsVAJf3uVn/G+7fPblNj83bzeN+mDjnI/w+UmfxzHGWFznlcDF+8YmzJdv4tFO3nlzBCgIR4CCcAQoCEeAgnAEKAhHgIJwBCgIR4CCcAQoCEeAQr6WbYxxbGzuWlzlFbfFVb4VbX6VtX9m53m9bLPKa1VvlnldazVvVCjvYUPfGGOsj/l3e33Iv4feBsRGFSy0a2wU7PxdnS2BnUrg/6w/imd/vM2v++YmP4+b6/x7mF2F9cGr+JJjcdWoDzbyo5NLHd4cAQrCEaAgHAEKwhGgIBwBCsIRoCAcAQrCEaAgHAEKwhGg0KoPHq6v49nZq7xXtHp0Es/uLrL64P4034q2Psm/hqvFKp79cXo/lcDdMf9Nu93n9cF387N49my2iWdX91AfXDfqgzf7/Hxd3uX3t7MlsFMJ/PEqv+7VVf55J+/z72x5mT0/J+/ySuDqTb6FspMf+0YudXhzBCgIR4CCcAQoCEeAgnAEKAhHgIJwBCgIR4CCcAQoCEeAQqs++O3x67iT9/y7L+Ne0eo8r0DtzrMa1t0q3z54WOS/EdtpvsHtXTw5xv6Qf4b1XV4JvDzJt9M9XN7Gs6ezxnbJe9iseF8Vystt/n293eSznS2BnUrg8W1+Hpdv8+9s+TabW73O7+3qRV7zO3z313i2k0sd3hwBCsIRoCAcAQrCEaAgHAEKwhGgIBwBCsIRoCAcAQrCEaDQqg92fLP9Kq70/P77f4+rhqcXWV1qf9KoYM06vxGNquEhr3Zd7vLrbrb5bbtc5Zv3zpbn8ezpIq8Pzu6hPrjv1Ad3eX3wZtuYXef3d3Odz7a2BDYqgSev85bd6avsnp3+kG+hnHz/Ip79z0Z+3BdvjgAF4QhQEI4ABeEIUBCOAAXhCFAQjgAF4QhQEI4ABeEIULi3+mDH/tXreHbxw6No7myZbx8cI6+MTfb578l0l3+G7aZRH1zn192sGhXGk308O5/ns9Np3A6NHQ55u+zuLv++9pvGuWnch9lVPru8zP+2dEvgGHklcIwxzl5k9dDFD5fxNTvP+c+BN0eAgnAEKAhHgIJwBCgIR4CCcAQoCEeAgnAEKAhHgMJPvsSm6/niD1HdYvrbX8fX3H3yMJ69/SRfWLV+0mi9fNRofFzEo+PuNG+nHE7y2eOiMXsPDZlJoyEz2eWz000+O79tzF7Fo+PkXf59rV7nrZfOMqy0+XL481/ia36z++MvKm+8OQIUhCNAQTgCFIQjQEE4AhSEI0BBOAIUhCNAQTgCFIQjQOEXVefp+HzyRdzBmn38JL7u8bNn8ez62Xk++zhfwLS7yG/b7jyf3efNyHHId5KN4z38BE/y1tyYZruixhhjzPKG3Vhc5zW/xVWjEvgmX162enEdz06+fxHPpsuwvj1+/cFmiDdHgIJwBCgIR4CCcAQoCEeAgnAEKAhHgIJwBCgIR4CCcAQofLDVn/vyfPll3AOb/ubT+Lr7j/OVgruLvLu3ezCPZ+9OG1XDRT57zJuRsUnesBuzXV7dm982KoHv7/LZq7zDOHuVryo8fPfXePab7Vee9wZvjgAF4QhQEI4ABeEIUBCOAAXhCFAQjgAF4QhQEI4ABeEIUFAnukedDYjT83xT4eTsLP8QTx/Ho/uLfP3gYdnoBM7u4Zjt85rfdJt3DWdXjfWDL9/Eo8ebm3j2cJ1vFPyQt//91Lw5AhSEI0BBOAIUhCNAQTgCFIQjQEE4AhSEI0BBOAIUhCNAQfXoA9eqMHZqibO8PjiZ/OOP2fGY1wfHPq8PHho1P9W9D5s3R4CCcAQoCEeAgnAEKAhHgIJwBCgIR4CCcAQoCEeAgnAEKPwvwku6ltsGgQgAAAAASUVORK5CYII=" y="-9.395508"/> </g> <g id="matplotlib.axis_1"> <g id="xtick_1"> <g id="line2d_1"> <defs> <path d="M 0 0 L 0 3.5 " id="mccb3b401ca" style="stroke:#000000;stroke-width:0.8;"/> </defs> <g> <use style="stroke:#000000;stroke-width:0.8;" x="117.681" xlink:href="#mccb3b401ca" y="336.395508"/> </g> </g> <g id="text_1"> <!-- −10 --> <g transform="translate(107.128656 350.993946)scale(0.1 -0.1)"> <defs> <path d="M 10.59375 35.5 L 73.1875 35.5 L 73.1875 27.203125 L 10.59375 27.203125 z " id="DejaVuSans-8722"/> <path d="M 12.40625 8.296875 L 28.515625 8.296875 L 28.515625 63.921875 L 10.984375 60.40625 L 10.984375 69.390625 L 28.421875 72.90625 L 38.28125 72.90625 L 38.28125 8.296875 L 54.390625 8.296875 L 54.390625 0 L 12.40625 0 z " id="DejaVuSans-49"/> <path d="M 31.78125 66.40625 Q 24.171875 66.40625 20.328125 58.90625 Q 16.5 51.421875 16.5 36.375 Q 16.5 21.390625 20.328125 13.890625 Q 24.171875 6.390625 31.78125 6.390625 Q 39.453125 6.390625 43.28125 13.890625 Q 47.125 21.390625 47.125 36.375 Q 47.125 51.421875 43.28125 58.90625 Q 39.453125 66.40625 31.78125 66.40625 z M 31.78125 74.21875 Q 44.046875 74.21875 50.515625 64.515625 Q 56.984375 54.828125 56.984375 36.375 Q 56.984375 17.96875 50.515625 8.265625 Q 44.046875 -1.421875 31.78125 -1.421875 Q 19.53125 -1.421875 13.0625 8.265625 Q 6.59375 17.96875 6.59375 36.375 Q 6.59375 54.828125 13.0625 64.515625 Q 19.53125 74.21875 31.78125 74.21875 z " id="DejaVuSans-48"/> </defs> <use xlink:href="#DejaVuSans-8722"/> <use x="83.789062" xlink:href="#DejaVuSans-49"/> <use x="147.412109" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="xtick_2"> <g id="line2d_2"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="226.401" xlink:href="#mccb3b401ca" y="336.395508"/> </g> </g> <g id="text_2"> <!-- 0 --> <g transform="translate(223.21975 350.993946)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="xtick_3"> <g id="line2d_3"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="335.121" xlink:href="#mccb3b401ca" y="336.395508"/> </g> </g> <g id="text_3"> <!-- 10 --> <g transform="translate(328.7585 350.993946)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-49"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="xtick_4"> <g id="line2d_4"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="443.841" xlink:href="#mccb3b401ca" y="336.395508"/> </g> </g> <g id="text_4"> <!-- 20 --> <g transform="translate(437.4785 350.993946)scale(0.1 -0.1)"> <defs> <path d="M 19.1875 8.296875 L 53.609375 8.296875 L 53.609375 0 L 7.328125 0 L 7.328125 8.296875 Q 12.9375 14.109375 22.625 23.890625 Q 32.328125 33.6875 34.8125 36.53125 Q 39.546875 41.84375 41.421875 45.53125 Q 43.3125 49.21875 43.3125 52.78125 Q 43.3125 58.59375 39.234375 62.25 Q 35.15625 65.921875 28.609375 65.921875 Q 23.96875 65.921875 18.8125 64.3125 Q 13.671875 62.703125 7.8125 59.421875 L 7.8125 69.390625 Q 13.765625 71.78125 18.9375 73 Q 24.125 74.21875 28.421875 74.21875 Q 39.75 74.21875 46.484375 68.546875 Q 53.21875 62.890625 53.21875 53.421875 Q 53.21875 48.921875 51.53125 44.890625 Q 49.859375 40.875 45.40625 35.40625 Q 44.1875 33.984375 37.640625 27.21875 Q 31.109375 20.453125 19.1875 8.296875 z " id="DejaVuSans-50"/> </defs> <use xlink:href="#DejaVuSans-50"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="xtick_5"> <g id="line2d_5"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="552.561" xlink:href="#mccb3b401ca" y="336.395508"/> </g> </g> <g id="text_5"> <!-- 30 --> <g transform="translate(546.1985 350.993946)scale(0.1 -0.1)"> <defs> <path d="M 40.578125 39.3125 Q 47.65625 37.796875 51.625 33 Q 55.609375 28.21875 55.609375 21.1875 Q 55.609375 10.40625 48.1875 4.484375 Q 40.765625 -1.421875 27.09375 -1.421875 Q 22.515625 -1.421875 17.65625 -0.515625 Q 12.796875 0.390625 7.625 2.203125 L 7.625 11.71875 Q 11.71875 9.328125 16.59375 8.109375 Q 21.484375 6.890625 26.8125 6.890625 Q 36.078125 6.890625 40.9375 10.546875 Q 45.796875 14.203125 45.796875 21.1875 Q 45.796875 27.640625 41.28125 31.265625 Q 36.765625 34.90625 28.71875 34.90625 L 20.21875 34.90625 L 20.21875 43.015625 L 29.109375 43.015625 Q 36.375 43.015625 40.234375 45.921875 Q 44.09375 48.828125 44.09375 54.296875 Q 44.09375 59.90625 40.109375 62.90625 Q 36.140625 65.921875 28.71875 65.921875 Q 24.65625 65.921875 20.015625 65.03125 Q 15.375 64.15625 9.8125 62.3125 L 9.8125 71.09375 Q 15.4375 72.65625 20.34375 73.4375 Q 25.25 74.21875 29.59375 74.21875 Q 40.828125 74.21875 47.359375 69.109375 Q 53.90625 64.015625 53.90625 55.328125 Q 53.90625 49.265625 50.4375 45.09375 Q 46.96875 40.921875 40.578125 39.3125 z " id="DejaVuSans-51"/> </defs> <use xlink:href="#DejaVuSans-51"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="xtick_6"> <g id="line2d_6"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="661.281" xlink:href="#mccb3b401ca" y="336.395508"/> </g> </g> <g id="text_6"> <!-- 40 --> <g transform="translate(654.9185 350.993946)scale(0.1 -0.1)"> <defs> <path d="M 37.796875 64.3125 L 12.890625 25.390625 L 37.796875 25.390625 z M 35.203125 72.90625 L 47.609375 72.90625 L 47.609375 25.390625 L 58.015625 25.390625 L 58.015625 17.1875 L 47.609375 17.1875 L 47.609375 0 L 37.796875 0 L 37.796875 17.1875 L 4.890625 17.1875 L 4.890625 26.703125 z " id="DejaVuSans-52"/> </defs> <use xlink:href="#DejaVuSans-52"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> </g> <g id="matplotlib.axis_2"> <g id="ytick_1"> <g id="line2d_7"> <defs> <path d="M 0 0 L -3.5 0 " id="m4a8d03b90a" style="stroke:#000000;stroke-width:0.8;"/> </defs> <g> <use style="stroke:#000000;stroke-width:0.8;" x="26.925" xlink:href="#m4a8d03b90a" y="330.959508"/> </g> </g> <g id="text_7"> <!-- 0 --> <g transform="translate(13.5625 334.758727)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="ytick_2"> <g id="line2d_8"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="26.925" xlink:href="#m4a8d03b90a" y="276.599508"/> </g> </g> <g id="text_8"> <!-- 5 --> <g transform="translate(13.5625 280.398727)scale(0.1 -0.1)"> <defs> <path d="M 10.796875 72.90625 L 49.515625 72.90625 L 49.515625 64.59375 L 19.828125 64.59375 L 19.828125 46.734375 Q 21.96875 47.46875 24.109375 47.828125 Q 26.265625 48.1875 28.421875 48.1875 Q 40.625 48.1875 47.75 41.5 Q 54.890625 34.8125 54.890625 23.390625 Q 54.890625 11.625 47.5625 5.09375 Q 40.234375 -1.421875 26.90625 -1.421875 Q 22.3125 -1.421875 17.546875 -0.640625 Q 12.796875 0.140625 7.71875 1.703125 L 7.71875 11.625 Q 12.109375 9.234375 16.796875 8.0625 Q 21.484375 6.890625 26.703125 6.890625 Q 35.15625 6.890625 40.078125 11.328125 Q 45.015625 15.765625 45.015625 23.390625 Q 45.015625 31 40.078125 35.4375 Q 35.15625 39.890625 26.703125 39.890625 Q 22.75 39.890625 18.8125 39.015625 Q 14.890625 38.140625 10.796875 36.28125 z " id="DejaVuSans-53"/> </defs> <use xlink:href="#DejaVuSans-53"/> </g> </g> </g> <g id="ytick_3"> <g id="line2d_9"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="26.925" xlink:href="#m4a8d03b90a" y="222.239508"/> </g> </g> <g id="text_9"> <!-- 10 --> <g transform="translate(7.2 226.038727)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-49"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="ytick_4"> <g id="line2d_10"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="26.925" xlink:href="#m4a8d03b90a" y="167.879508"/> </g> </g> <g id="text_10"> <!-- 15 --> <g transform="translate(7.2 171.678727)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-49"/> <use x="63.623047" xlink:href="#DejaVuSans-53"/> </g> </g> </g> <g id="ytick_5"> <g id="line2d_11"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="26.925" xlink:href="#m4a8d03b90a" y="113.519508"/> </g> </g> <g id="text_11"> <!-- 20 --> <g transform="translate(7.2 117.318727)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-50"/> <use x="63.623047" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="ytick_6"> <g id="line2d_12"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="26.925" xlink:href="#m4a8d03b90a" y="59.159508"/> </g> </g> <g id="text_12"> <!-- 25 --> <g transform="translate(7.2 62.958727)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-50"/> <use x="63.623047" xlink:href="#DejaVuSans-53"/> </g> </g> </g> </g> <g id="patch_3"> <path d="M 26.925 336.395508 L 26.925 10.235508 " style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> </g> <g id="patch_4"> <path d="M 741.165 336.395508 L 741.165 10.235508 " style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> </g> <g id="patch_5"> <path d="M 26.925 336.395508 L 741.165 336.395508 " style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> </g> <g id="patch_6"> <path d="M 26.925 10.235508 L 741.165 10.235508 " style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> </g> </g> <g id="axes_2"> <g id="patch_7"> <path clip-path="url(#pc6d116c209)" d="M 785.805 336.395508 L 785.805 335.121446 L 785.805 11.509571 L 785.805 10.235508 L 802.113 10.235508 L 802.113 11.509571 L 802.113 335.121446 L 802.113 336.395508 z " style="fill:#ffffff;stroke:#ffffff;stroke-linejoin:miter;stroke-width:0.01;"/> </g> <image height="326" id="image875b468d0c" transform="scale(1 -1)translate(0 -326)" width="16" x="786" xlink:href="data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAABAAAAFGCAYAAABjUx8/AAABrklEQVR4nO2cwW3EMAwEKdmlpYT0X0qcIobArATe37r1aJYWDvCtn/X7Ffi8tTa5vt61F1tAT8C+vjpuoThEm8HalAG8hbfsBA0iUQ/WmDgitTDgEC8Qaco0IjVA/DgDmEDfxgAT9V0IYDAQIxiw6xPa+OkT6YMQA0TCHlzQRr9MVKSENvJboAvoP8L4DEakgVgZEPWxfr4HEQcMuECAiQMRJ5hDVgTE8xlMG0ekpgTs+gSI+i4EMPBF8tt4PoMxMUKkYTBtrGljS4IOBuyM4jMIgHg+A+yBD9GfBz4DXmfdRH8bAyAmdMFmAH+Lu4IBX6Dssd7ggb0LNEEERJzAZoA9wAx0ExMg2gkSGFCRNk8wEC+AuOHT2YcYIJLuQQDEBpHsXQiAaN8C3sYrGNgLBLSxgcGfm2AgdjB47IFyg0jP8QywBx1t1BnABAHPxgeLRFWmCTogQgZ+nWmCCIgXjHXKYNrIxzo+oTSYaENsMBEf83QG/kQ6v4380WbPxAQG+kRKOB9gBvYC8D3ZCBNxggAG8IWoBgY4gf2eawNEuEADRIah46SKGcB/qdIZ/AMyVI2OEN2MIAAAAABJRU5ErkJggg==" y="-10"/> <g id="matplotlib.axis_3"/> <g id="matplotlib.axis_4"> <g id="ytick_7"> <g id="line2d_13"> <defs> <path d="M 0 0 L 3.5 0 " id="mde26ccb965" style="stroke:#000000;stroke-width:0.8;"/> </defs> <g> <use style="stroke:#000000;stroke-width:0.8;" x="802.113" xlink:href="#mde26ccb965" y="293.677608"/> </g> </g> <g id="text_13"> <!-- 0.005 --> <g transform="translate(809.113 297.476827)scale(0.1 -0.1)"> <defs> <path d="M 10.6875 12.40625 L 21 12.40625 L 21 0 L 10.6875 0 z " id="DejaVuSans-46"/> </defs> <use xlink:href="#DejaVuSans-48"/> <use x="63.623047" xlink:href="#DejaVuSans-46"/> <use x="95.410156" xlink:href="#DejaVuSans-48"/> <use x="159.033203" xlink:href="#DejaVuSans-48"/> <use x="222.65625" xlink:href="#DejaVuSans-53"/> </g> </g> </g> <g id="ytick_8"> <g id="line2d_14"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="802.113" xlink:href="#mde26ccb965" y="237.14193"/> </g> </g> <g id="text_14"> <!-- 0.010 --> <g transform="translate(809.113 240.941149)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> <use x="63.623047" xlink:href="#DejaVuSans-46"/> <use x="95.410156" xlink:href="#DejaVuSans-48"/> <use x="159.033203" xlink:href="#DejaVuSans-49"/> <use x="222.65625" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="ytick_9"> <g id="line2d_15"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="802.113" xlink:href="#mde26ccb965" y="180.606252"/> </g> </g> <g id="text_15"> <!-- 0.015 --> <g transform="translate(809.113 184.405471)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> <use x="63.623047" xlink:href="#DejaVuSans-46"/> <use x="95.410156" xlink:href="#DejaVuSans-48"/> <use x="159.033203" xlink:href="#DejaVuSans-49"/> <use x="222.65625" xlink:href="#DejaVuSans-53"/> </g> </g> </g> <g id="ytick_10"> <g id="line2d_16"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="802.113" xlink:href="#mde26ccb965" y="124.070574"/> </g> </g> <g id="text_16"> <!-- 0.020 --> <g transform="translate(809.113 127.869793)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> <use x="63.623047" xlink:href="#DejaVuSans-46"/> <use x="95.410156" xlink:href="#DejaVuSans-48"/> <use x="159.033203" xlink:href="#DejaVuSans-50"/> <use x="222.65625" xlink:href="#DejaVuSans-48"/> </g> </g> </g> <g id="ytick_11"> <g id="line2d_17"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="802.113" xlink:href="#mde26ccb965" y="67.534897"/> </g> </g> <g id="text_17"> <!-- 0.025 --> <g transform="translate(809.113 71.334115)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> <use x="63.623047" xlink:href="#DejaVuSans-46"/> <use x="95.410156" xlink:href="#DejaVuSans-48"/> <use x="159.033203" xlink:href="#DejaVuSans-50"/> <use x="222.65625" xlink:href="#DejaVuSans-53"/> </g> </g> </g> <g id="ytick_12"> <g id="line2d_18"> <g> <use style="stroke:#000000;stroke-width:0.8;" x="802.113" xlink:href="#mde26ccb965" y="10.999219"/> </g> </g> <g id="text_18"> <!-- 0.030 --> <g transform="translate(809.113 14.798438)scale(0.1 -0.1)"> <use xlink:href="#DejaVuSans-48"/> <use x="63.623047" xlink:href="#DejaVuSans-46"/> <use x="95.410156" xlink:href="#DejaVuSans-48"/> <use x="159.033203" xlink:href="#DejaVuSans-51"/> <use x="222.65625" xlink:href="#DejaVuSans-48"/> </g> </g> </g> </g> <g id="patch_8"> <path d="M 785.805 336.395508 L 785.805 335.121446 L 785.805 11.509571 L 785.805 10.235508 L 802.113 10.235508 L 802.113 11.509571 L 802.113 335.121446 L 802.113 336.395508 z " style="fill:none;stroke:#000000;stroke-linejoin:miter;stroke-width:0.8;"/> </g> </g> </g> <defs> <clipPath id="p45be66aaef"> <rect height="326.16" width="714.24" x="26.925" y="10.235508"/> </clipPath> <clipPath id="pc6d116c209"> <rect height="326.16" width="16.308" x="785.805" y="10.235508"/> </clipPath> </defs> </svg>)
![]()
%% Cell type:code id: tags:
``` python
assert_allclose(cm_expl_f_u, srt_u, rtol=1, atol=1e-4)
assert_allclose(cm_expl_f_u, cm_impl_f_u, rtol=1, atol=1e-4)
```
......
This source diff could not be displayed because it is too large. You can view the blob instead.
from hashlib import sha256
from lbmpy.creationfunctions import create_lb_ast
from pystencils.llvm.llvmjit import generate_llvm
def test_hash_equivalence_llvm():
import pytest
pytest.importorskip("llvmlite")
from pystencils.llvm.llvmjit import generate_llvm
ref_value = "6db6ed9e2cbd05edae8fcaeb8168e3178dd578c2681133f3ae9228b23d2be432"
ast = create_lb_ast(stencil='D3Q19', method='srt', optimization={'target': 'llvm'})
code = generate_llvm(ast)
......
import pytest
from lbmpy.methods import create_srt
from lbmpy.stencils import get_stencil
from lbmpy.methods.creationfunctions import create_with_default_polynomial_cumulants
def test_weights():
for stencil_name in ('D2Q9', 'D3Q19', 'D3Q27'):
stencil = get_stencil(stencil_name)
cumulant_method = create_with_default_polynomial_cumulants(stencil, [1])
moment_method = create_srt(stencil, 1, cumulant=False, compressible=True, maxwellian_moments=True)
assert cumulant_method.weights == moment_method.weights
@pytest.mark.parametrize('stencil_name', ['D2Q9', 'D3Q19', 'D3Q27'])
def test_weights(stencil_name):
stencil = get_stencil(stencil_name)
cumulant_method = create_with_default_polynomial_cumulants(stencil, [1])
moment_method = create_srt(stencil, 1, cumulant=False, compressible=True, maxwellian_moments=True)
assert cumulant_method.weights == moment_method.weights
from lbmpy.creationfunctions import create_lb_ast
import pytest
def test_gpu_block_size_limiting():
pytest.importorskip("pycuda")
too_large = 2048*2048
opt = {'target': 'gpu', 'gpu_indexing_params': {'block_size': (too_large, too_large, too_large)}}
ast = create_lb_ast(stencil='D3Q19', cumulant=True, relaxation_rate=1.8, optimization=opt,
......
%% Cell type:code id: tags:
``` python
import pytest
pytest.importorskip('pycuda')
```
%%%% Output: execute_result
<module 'pycuda' from '/home/markus/miniconda3/envs/pystencils/lib/python3.8/site-packages/pycuda/__init__.py'>
%% Cell type:code id: tags:
``` python
from lbmpy.session import *
from lbmpy.sparse import *
from pystencils.field import FieldType
import pycuda.gpuarray as gpuarray
import pystencils as ps
```
%% Cell type:markdown id: tags:
# Sparse (list based) LBM
%% Cell type:code id: tags: