Commit 458f6d6b authored by Michael Kuron's avatar Michael Kuron
Browse files

correct importorskip in notebook tests

parent 3ac2bf38
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
import pytest
pytest.importorskip('scipy.ndimage')
```
%% Cell type:code id: tags:
``` python
from lbmpy.session import * from lbmpy.session import *
from lbmpy.phasefield.analytical import * from lbmpy.phasefield.analytical import *
from lbmpy.phasefield.eos import * from lbmpy.phasefield.eos import *
from lbmpy.phasefield.high_density_ratio_model import * from lbmpy.phasefield.high_density_ratio_model import *
from pystencils.fd.derivative import replace_generic_laplacian from pystencils.fd.derivative import replace_generic_laplacian
from pystencils.fd.spatial import discretize_spatial, fd_stencils_standard, fd_stencils_isotropic from pystencils.fd.spatial import discretize_spatial, fd_stencils_standard, fd_stencils_isotropic
from lbmpy.phasefield.fd_stencils import fd_stencils_isotropic_high_density_code from lbmpy.phasefield.fd_stencils import fd_stencils_isotropic_high_density_code
from lbmpy.phasefield.cahn_hilliard_lbm import cahn_hilliard_lb_method from lbmpy.phasefield.cahn_hilliard_lbm import cahn_hilliard_lb_method
from lbmpy.forcemodels import EDM from lbmpy.forcemodels import EDM
from lbmpy.macroscopic_value_kernels import pdf_initialization_assignments from lbmpy.macroscopic_value_kernels import pdf_initialization_assignments
from scipy.ndimage.filters import gaussian_filter from scipy.ndimage.filters import gaussian_filter
``` ```
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
# Implementation of high density difference model # Implementation of high density difference model
According to *"Ternary free-energy entropic lattice Boltzmann model with high density ratio" by Wöhrwag, Semprebon, Mazloomi, Karlin and Kusumaatmaja* According to *"Ternary free-energy entropic lattice Boltzmann model with high density ratio" by Wöhrwag, Semprebon, Mazloomi, Karlin and Kusumaatmaja*
Up front we define all necessary parameters in one place: Up front we define all necessary parameters in one place:
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
a = 0.037 a = 0.037
b = 0.2 b = 0.2
reduced_temperature = 0.61 reduced_temperature = 0.61
gas_constant = 1 gas_constant = 1
κ = (0.01, 1, 1) κ = (0.01, 1, 1)
λ = (0.6, 1, 1) λ = (0.6, 1, 1)
χ = 5 χ = 5
φ_relaxation_rate = 1 φ_relaxation_rate = 1
ρ_relaxation_rate = 1 ρ_relaxation_rate = 1
external_force = (0, 0) external_force = (0, 0)
clipping = False clipping = False
domain_size = (100, 100) domain_size = (100, 100)
stencil = get_stencil('D2Q9', ordering='uk') stencil = get_stencil('D2Q9', ordering='uk')
fd_discretization = fd_stencils_isotropic_high_density_code fd_discretization = fd_stencils_isotropic_high_density_code
target = 'cpu' target = 'cpu'
threads = 4 threads = 4
``` ```
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
## Part 1: Free Energy ## Part 1: Free Energy
The free energy of this model contains a term that is derived from an equation of state. The equation of state and its parametrization determines the density of the liquid and gas phase. The free energy of this model contains a term that is derived from an equation of state. The equation of state and its parametrization determines the density of the liquid and gas phase.
Here we use the Carnahan-Starling EOS, with the parametrization from the paper Here we use the Carnahan-Starling EOS, with the parametrization from the paper
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
ρ, φ, c_l1, c_l2 = sp.symbols("rho, phi, c_l1, c_l2") ρ, φ, c_l1, c_l2 = sp.symbols("rho, phi, c_l1, c_l2")
critical_temperature = carnahan_starling_critical_temperature(a, b, gas_constant) critical_temperature = carnahan_starling_critical_temperature(a, b, gas_constant)
temperature = reduced_temperature * critical_temperature temperature = reduced_temperature * critical_temperature
eos = carnahan_starling_eos(ρ, gas_constant, temperature, a, b) eos = carnahan_starling_eos(ρ, gas_constant, temperature, a, b)
eos eos
``` ```
%%%% Output: execute_result %%%% Output: execute_result
![]() ![]()
$\displaystyle - 0.037 \rho^{2} + \frac{0.042578305 \rho \left(- 0.000125 \rho^{3} + 0.0025 \rho^{2} + 0.05 \rho + 1\right)}{\left(1 - 0.05 \rho\right)^{3}}$ $\displaystyle - 0.037 \rho^{2} + \frac{0.042578305 \rho \left(- 0.000125 \rho^{3} + 0.0025 \rho^{2} + 0.05 \rho + 1\right)}{\left(1 - 0.05 \rho\right)^{3}}$
⎛ 3 2 ⎞ ⎛ 3 2 ⎞
2 0.042578305⋅ρ⋅⎝- 0.000125⋅ρ + 0.0025⋅ρ + 0.05⋅ρ + 1⎠ 2 0.042578305⋅ρ⋅⎝- 0.000125⋅ρ + 0.0025⋅ρ + 0.05⋅ρ + 1⎠
- 0.037⋅ρ + ────────────────────────────────────────────────────── - 0.037⋅ρ + ──────────────────────────────────────────────────────
3 3
(1 - 0.05⋅ρ) (1 - 0.05⋅ρ)
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
Next, we use a function that determines the gas and liquid density, using the Maxwell construction rule. This function uses an iterative procedure, that terminates when the equal-area condition is fulfilled with a certain tolerance. Next, we use a function that determines the gas and liquid density, using the Maxwell construction rule. This function uses an iterative procedure, that terminates when the equal-area condition is fulfilled with a certain tolerance.
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
ρ_g, ρ_l = maxwell_construction(eos, tolerance=1e-3) ρ_g, ρ_l = maxwell_construction(eos, tolerance=1e-3)
(ρ_g, ρ_l, ρ_l / ρ_g) (ρ_g, ρ_l, ρ_l / ρ_g)
``` ```
%%%% Output: execute_result %%%% Output: execute_result
![]() ![]()
$\displaystyle \left( 0.0695273860315274, \ 8.02904149705209, \ 115.480272671423\right)$ $\displaystyle \left( 0.0695273860315274, \ 8.02904149705209, \ 115.480272671423\right)$
(0.0695273860315274, 8.02904149705209, 115.480272671423) (0.0695273860315274, 8.02904149705209, 115.480272671423)
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
With this information we call a function that assembles the full free energy density: With this information we call a function that assembles the full free energy density:
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
free_energy = free_energy_high_density_ratio(eos, ρ, ρ_g, ρ_l, c_l1, c_l2, λ, κ) free_energy = free_energy_high_density_ratio(eos, ρ, ρ_g, ρ_l, c_l1, c_l2, λ, κ)
free_energy free_energy
``` ```
%%%% Output: execute_result %%%% Output: execute_result
![]() ![]()
$\displaystyle 0.5 c_{l1}^{2} \left(1 - c_{l1}\right)^{2} + 0.5 c_{l2}^{2} \left(1 - c_{l2}\right)^{2} + 0.3 \rho \left(- 0.037 \rho - \frac{1.0 \left(1.7031322 \rho - 51.0939660000001\right)}{1.0 \rho^{2} - 40.0 \rho + 400.0} + 0.042578305 \log{\left(1.0 \rho \right)} - 0.0530922164415325\right) + 0.5 {\partial c_{l1}}^{2} + 0.5 {\partial c_{l2}}^{2} + 0.005 {\partial \rho}^{2} + 0.00085206629489322$ $\displaystyle 0.5 c_{l1}^{2} \left(1 - c_{l1}\right)^{2} + 0.5 c_{l2}^{2} \left(1 - c_{l2}\right)^{2} + 0.3 \rho \left(- 0.037 \rho - \frac{1.0 \left(1.7031322 \rho - 51.0939660000001\right)}{1.0 \rho^{2} - 40.0 \rho + 400.0} + 0.042578305 \log{\left(1.0 \rho \right)} - 0.0530922164415325\right) + 0.5 {\partial c_{l1}}^{2} + 0.5 {\partial c_{l2}}^{2} + 0.005 {\partial \rho}^{2} + 0.00085206629489322$
2 2 2 2 ⎛ 1.0⋅(1.7031322⋅ρ 2 2 2 2 ⎛ 1.0⋅(1.7031322⋅ρ
0.5⋅cₗ₁ ⋅(1 - cₗ₁) + 0.5⋅cₗ₂ ⋅(1 - cₗ₂) + 0.3⋅ρ⋅⎜-0.037⋅ρ - ──────────────── 0.5⋅cₗ₁ ⋅(1 - cₗ₁) + 0.5⋅cₗ₂ ⋅(1 - cₗ₂) + 0.3⋅ρ⋅⎜-0.037⋅ρ - ────────────────
⎜ 2 ⎜ 2
⎝ 1.0⋅ρ - 4 ⎝ 1.0⋅ρ - 4
- 51.0939660000001) ⎞ - 51.0939660000001) ⎞
──────────────────── + 0.042578305⋅log(1.0⋅ρ) - 0.0530922164415325⎟ + 0.5⋅D(c_ ──────────────────── + 0.042578305⋅log(1.0⋅ρ) - 0.0530922164415325⎟ + 0.5⋅D(c_
0.0⋅ρ + 400.0 ⎠ 0.0⋅ρ + 400.0 ⎠
2 2 2 2 2 2
l1) + 0.5⋅D(c_l2) + 0.005⋅D(rho) + 0.00085206629489322 l1) + 0.5⋅D(c_l2) + 0.005⋅D(rho) + 0.00085206629489322
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
This is the free energy expressed in the order parameters $\rho, c_{l1}, c_{l2}$. Next we have to transform it into coordinates $\rho, \phi$. This is the free energy expressed in the order parameters $\rho, c_{l1}, c_{l2}$. Next we have to transform it into coordinates $\rho, \phi$.
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
transformation_eqs = [ c_l1 - (1 + φ/χ - (ρ - ρ_l)/(ρ_g - ρ_l)) / 2, transformation_eqs = [ c_l1 - (1 + φ/χ - (ρ - ρ_l)/(ρ_g - ρ_l)) / 2,
c_l2 - (1 - φ/χ - (ρ - ρ_l)/(ρ_g - ρ_l)) / 2] c_l2 - (1 - φ/χ - (ρ - ρ_l)/(ρ_g - ρ_l)) / 2]
transform_forward_substitutions = sp.solve(transformation_eqs, [c_l1, c_l2]) transform_forward_substitutions = sp.solve(transformation_eqs, [c_l1, c_l2])
transform_backward_substitutions = sp.solve(transformation_eqs, [ρ, φ]) transform_backward_substitutions = sp.solve(transformation_eqs, [ρ, φ])
``` ```
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
To do the transformation, we use the substitutions dict. To do the transformation, we use the substitutions dict.
After the substitutions the differentials have to be expanded again. After the substitutions the differentials have to be expanded again.
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
free_energy_transformed = free_energy.subs(transform_forward_substitutions) free_energy_transformed = free_energy.subs(transform_forward_substitutions)
free_energy_transformed = expand_diff_full(free_energy_transformed, functions=(ρ, φ)) free_energy_transformed = expand_diff_full(free_energy_transformed, functions=(ρ, φ))
free_energy_transformed.atoms(sp.Symbol) free_energy_transformed.atoms(sp.Symbol)
``` ```
%%%% Output: execute_result %%%% Output: execute_result
![]() ![]()
$\displaystyle \left\{\phi, \rho\right\}$ $\displaystyle \left\{\phi, \rho\right\}$
{φ, ρ} {φ, ρ}
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
Now the free energy depends only on ρ and φ. This transformed form is later used to derive expressions for the chemical potential, pressure tensor and force computations. Now the free energy depends only on ρ and φ. This transformed form is later used to derive expressions for the chemical potential, pressure tensor and force computations.
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
## Part 2: Data setup ## Part 2: Data setup
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
dh = create_data_handling(domain_size, periodicity=True, default_target=target) dh = create_data_handling(domain_size, periodicity=True, default_target=target)
# Fields for order parameters # Fields for order parameters
ρ_field = dh.add_array("rho") ρ_field = dh.add_array("rho")
φ_field = dh.add_array("phi") φ_field = dh.add_array("phi")
c_field = dh.add_array("c", values_per_cell=2) c_field = dh.add_array("c", values_per_cell=2)
# Chemical potential, pressure tensor, forces and velocities # Chemical potential, pressure tensor, forces and velocities
μ_phi_field = dh.add_array("mu_phi", latex_name=r"\mu_{\phi}") μ_phi_field = dh.add_array("mu_phi", latex_name=r"\mu_{\phi}")
pbs_field = dh.add_array("pbs") pbs_field = dh.add_array("pbs")
pressure_tensor_field = dh.add_array("p", len(symmetric_tensor_linearization(dh.dim))) pressure_tensor_field = dh.add_array("p", len(symmetric_tensor_linearization(dh.dim)))
force_field = dh.add_array("force", values_per_cell=dh.dim, latex_name="F") force_field = dh.add_array("force", values_per_cell=dh.dim, latex_name="F")
vel_field = dh.add_array("velocity", values_per_cell=dh.dim) vel_field = dh.add_array("velocity", values_per_cell=dh.dim)
# PDF fields for lattice Boltzmann schemes # PDF fields for lattice Boltzmann schemes
pdf_src_rho = dh.add_array("pdf_src_rho", values_per_cell=len(stencil)) pdf_src_rho = dh.add_array("pdf_src_rho", values_per_cell=len(stencil))
pdf_dst_rho = dh.add_array_like("pdf_dst_rho", "pdf_src_rho") pdf_dst_rho = dh.add_array_like("pdf_dst_rho", "pdf_src_rho")
pdf_src_phi = dh.add_array("pdf_src_phi", values_per_cell=len(stencil)) pdf_src_phi = dh.add_array("pdf_src_phi", values_per_cell=len(stencil))
pdf_dst_phi = dh.add_array_like("pdf_dst_phi", "pdf_src_phi") pdf_dst_phi = dh.add_array_like("pdf_dst_phi", "pdf_src_phi")
``` ```
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
## Part 3a: Compute kernels and time loop ## Part 3a: Compute kernels and time loop
We define one function that takes an expression with derivative objects in it, substitutes the spatial derivatives with finite differences using the strategy defined in the `fd_discretization` function and compiles a kernel from it. We define one function that takes an expression with derivative objects in it, substitutes the spatial derivatives with finite differences using the strategy defined in the `fd_discretization` function and compiles a kernel from it.
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
def make_kernel(assignments): def make_kernel(assignments):
# assignments may be using the symbols ρ and φ # assignments may be using the symbols ρ and φ
# these is substituted with the access to the corresponding fields here # these is substituted with the access to the corresponding fields here
field_substitutions = { field_substitutions = {
ρ: ρ_field.center, ρ: ρ_field.center,
φ: φ_field.center φ: φ_field.center
} }
processed_assignments = [] processed_assignments = []
for a in assignments: for a in assignments:
new_rhs = a.rhs.subs(field_substitutions) new_rhs = a.rhs.subs(field_substitutions)
# ∂∂f representing the laplacian of f is replaced by the explicit carteisan form # ∂∂f representing the laplacian of f is replaced by the explicit carteisan form
# ∂_0 ∂_0 f + ∂_1 ∂_1 f (example for 2D) # ∂_0 ∂_0 f + ∂_1 ∂_1 f (example for 2D)
# otherwise the discretization would not do the correct thing # otherwise the discretization would not do the correct thing
new_rhs = replace_generic_laplacian(new_rhs) new_rhs = replace_generic_laplacian(new_rhs)
# Next the "∂" objects are replaced using finite differences # Next the "∂" objects are replaced using finite differences
new_rhs = discretize_spatial(new_rhs, dx=1, stencil=fd_discretization) new_rhs = discretize_spatial(new_rhs, dx=1, stencil=fd_discretization)
processed_assignments.append(Assignment(a.lhs, new_rhs)) processed_assignments.append(Assignment(a.lhs, new_rhs))
return create_kernel(processed_assignments, target=target, cpu_openmp=threads).compile() return create_kernel(processed_assignments, target=target, cpu_openmp=threads).compile()
``` ```
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
#### Chemical Potential #### Chemical Potential
In the next cell the kernel to compute the chemical potential is created. First an analytic expression for μ is obtained using the free energy, which is then passed to the discretization function above to create a kernel from it. We only have to store the chemical potential of the φ coordinate explicitly, which enters the Cahn-Hilliard lattice Boltzmann for φ. In the next cell the kernel to compute the chemical potential is created. First an analytic expression for μ is obtained using the free energy, which is then passed to the discretization function above to create a kernel from it. We only have to store the chemical potential of the φ coordinate explicitly, which enters the Cahn-Hilliard lattice Boltzmann for φ.
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
μ_ρ, μ_φ = chemical_potentials_from_free_energy(free_energy_transformed, μ_ρ, μ_φ = chemical_potentials_from_free_energy(free_energy_transformed,
order_parameters=(ρ, φ)) order_parameters=(ρ, φ))
μ_phi_assignment = Assignment(μ_phi_field.center, μ_φ) μ_phi_assignment = Assignment(μ_phi_field.center, μ_φ)
μ_kernel = make_kernel([μ_phi_assignment]) μ_kernel = make_kernel([μ_phi_assignment])
μ_phi_assignment μ_phi_assignment
``` ```
%%%% Output: execute_result %%%% Output: execute_result
![]() ![]()
$\displaystyle {{\mu_{\phi}}_{(0,0)}} \leftarrow 0.0004 \phi^{3} + 0.000473530700220886 \phi \rho^{2} - 0.00760399528440326 \phi \rho + 0.0205263968409311 \phi - 0.02 {\partial {\partial \phi}}$ $\displaystyle {{\mu_{\phi}}_{(0,0)}} \leftarrow 0.0004 \phi^{3} + 0.000473530700220886 \phi \rho^{2} - 0.00760399528440326 \phi \rho + 0.0205263968409311 \phi - 0.02 {\partial {\partial \phi}}$
3 2 3 2
μ_φ_C := 0.0004⋅φ + 0.000473530700220886⋅φ⋅ρ - 0.00760399528440326⋅φ⋅ρ + 0.0 μ_φ_C := 0.0004⋅φ + 0.000473530700220886⋅φ⋅ρ - 0.00760399528440326⋅φ⋅ρ + 0.0
205263968409311⋅φ - 0.02⋅D(D(phi)) 205263968409311⋅φ - 0.02⋅D(D(phi))
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
#### Pressure tensor and force computation #### Pressure tensor and force computation
For the pressure tensor a trick for enhancing numerical stability is used: the bulk component is not stored directly in the pressure tensor field, but the related quantity called `pbs` is stored in a separate field. For the pressure tensor a trick for enhancing numerical stability is used: the bulk component is not stored directly in the pressure tensor field, but the related quantity called `pbs` is stored in a separate field.
$ pbs = \sqrt{|ρ c_s^2 - p_{bulk} |} $ $ pbs = \sqrt{|ρ c_s^2 - p_{bulk} |} $
The force is then calculated as $ \nabla \cdot P_{if} + 2 (\nabla pbs) pbs$ The force is then calculated as $ \nabla \cdot P_{if} + 2 (\nabla pbs) pbs$
In the following kernel the pressure tensor field is filled with $P_{if}$ and the pbs field with above expression. In the following kernel the pressure tensor field is filled with $P_{if}$ and the pbs field with above expression.
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
# Bulk part # Bulk part
pressure_assignments = [ pressure_assignments = [
Assignment(pbs_field.center, Assignment(pbs_field.center,
pressure_tensor_bulk_sqrt_term(free_energy_transformed, (ρ, φ), ρ)), pressure_tensor_bulk_sqrt_term(free_energy_transformed, (ρ, φ), ρ)),
] ]
# Interface part # Interface part
P_if = pressure_tensor_from_free_energy(free_energy_transformed, (ρ, φ), P_if = pressure_tensor_from_free_energy(free_energy_transformed, (ρ, φ),
dim=dh.dim, include_bulk=False) dim=dh.dim, include_bulk=False)
index_map = symmetric_tensor_linearization(dh.dim) index_map = symmetric_tensor_linearization(dh.dim)
pressure_assignments += [ pressure_assignments += [
Assignment(pressure_tensor_field(index_1d), P_if[index_2d]) Assignment(pressure_tensor_field(index_1d), P_if[index_2d])
for index_2d, index_1d in index_map.items() for index_2d, index_1d in index_map.items()
] ]
pressure_kernel = make_kernel(pressure_assignments) pressure_kernel = make_kernel(pressure_assignments)
# Force kernel # Force kernel
pressure_tensor_sym = sp.Matrix(dh.dim, dh.dim, pressure_tensor_sym = sp.Matrix(dh.dim, dh.dim,
lambda i, j: pressure_tensor_field(index_map[i, j] lambda i, j: pressure_tensor_field(index_map[i, j]
if i < j else index_map[j, i])) if i < j else index_map[j, i]))
force_term = force_from_pressure_tensor(pressure_tensor_sym, force_term = force_from_pressure_tensor(pressure_tensor_sym,
functions=[ρ, φ], functions=[ρ, φ],
pbs=pbs_field.center) pbs=pbs_field.center)
force_assignments = [ force_assignments = [
Assignment(force_field(i), Assignment(force_field(i),
force_term[i] + external_force[i] * ρ_field.center / ρ_l) force_term[i] + external_force[i] * ρ_field.center / ρ_l)
for i in range(dh.dim) for i in range(dh.dim)
] ]
force_kernel = make_kernel(force_assignments) force_kernel = make_kernel(force_assignments)
``` ```
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags: