Commit c3dbce3c authored by Michael Kuron's avatar Michael Kuron
Browse files

Default to Schiller force model and test against Ladd&Verberg

parent ec74a5cb
......@@ -41,8 +41,8 @@ General:
- ``equilibrium_order=2``: order in velocity, at which the equilibrium moment/cumulant approximation is
truncated. Order 2 is sufficient to approximate Navier-Stokes
- ``force_model=None``: possible values: ``None``, ``'simple'``, ``'luo'``, ``'guo'`` ``'buick'``, or an instance of a
class implementing the same methods as the classes in :mod:`lbmpy.forcemodels`. For details, see
- ``force_model=None``: possible values: ``None``, ``'simple'``, ``'luo'``, ``'guo'``, ``'buick'``, ``'schiller'``, or
an instance of a class implementing the same methods as the classes in :mod:`lbmpy.forcemodels`. For details, see
- ``force=(0,0,0)``: either constant force or a symbolic expression depending on field value
- ``maxwellian_moments=True``: way to compute equilibrium moments/cumulants, if False the standard
......@@ -387,7 +387,7 @@ def create_lb_method(**params):
no_force_model = 'force_model' not in params or params['force_model'] == 'none' or params['force_model'] is None
if not force_is_zero and no_force_model:
params['force_model'] = 'guo'
params['force_model'] = 'schiller'
if 'force_model' in params:
force_model = force_model_from_string(params['force_model'], params['force'][:dim])
......@@ -7,7 +7,7 @@ Get started:
This module offers different models to introduce a body force in the lattice Boltzmann scheme.
If you don't know which model to choose, use :class:`lbmpy.forcemodels.Guo`.
If you don't know which model to choose, use :class:`lbmpy.forcemodels.Schiller`.
For incompressible collision models the :class:`lbmpy.forcemodels.Buick` model can be better.
......@@ -161,7 +161,7 @@ class Guo:
class Schiller:
Force model by Schiller :cite:`schiller2008thermal`
Force model by Schiller :cite:`schiller2008thermal`, equation 4.67
Equivalent to Guo but not restricted to SRT.
def __init__(self, force):
......@@ -78,3 +78,47 @@ def test_total_momentum(method, force_model, omega):
total = np.sum(dh.gather_array(, axis=(0,1))
assert np.allclose(total/, 1)
@pytest.mark.parametrize("stencil", ["D2Q9", "D3Q15", "D3Q19", "D3Q27"])
def test_stress(stencil):
"""check Schiller's force term in mode space"""
stencil = get_stencil(stencil)
dim = len(stencil[0])
omega_s = sp.Symbol("omega_s")
omega_b = sp.Symbol("omega_b")
omega_o = sp.Symbol("omega_o")
omega_e = sp.Symbol("omega_e")
F = [sp.Symbol(f"F_{i}") for i in range(dim)]
method = create_lb_method(method="mrt", weighted=True,
relaxation_rates=[omega_s, omega_b, omega_o, omega_e, omega_o, omega_e],
force_moments = sp.simplify(method.moment_matrix * sp.Matrix(method.force_model(method)))
# The momentum modes should contain the force
assert force_moments[1:dim+1] == F
# The stress modes should match eq. 47 from
u = method.first_order_equilibrium_moment_symbols
def traceless(m):
tr = sp.simplify(sp.Trace(m))
return m - tr/m.shape[0]*sp.eye(m.shape[0])
C = sp.Rational(1,2) * (2 + omega_s) * (traceless(sp.Matrix(u) * sp.Matrix(F).transpose()) + \
traceless(sp.Matrix(F) * sp.Matrix(u).transpose())) + \
sp.Rational(1,3) * (2 + omega_b) * sp.Matrix(u).dot(F) * sp.eye(method.dim)
num_stresses = (dim*dim-dim)//2+dim
subs = {sp.Symbol(chr(ord("x")+i)) * sp.Symbol(chr(ord("x")+j)) : C[i,j]
for i in range(dim) for j in range(dim)}
for force_moment, moment in zip(force_moments[dim+1:dim+1+num_stresses],
ref = moment.subs(subs)
diff = sp.simplify(ref - force_moment)
assert diff == 0 or isinstance(diff, sp.Rational) # difference should be zero or a constant
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment