Commit d77a9064 authored by itischler's avatar itischler
Browse files

Merge branch 'pressure_tensor_test' into 'pressure_tensor'

Pressure tensor test

See merge request !1
parents 34272d9e 24239a5f
Pipeline #33245 failed with stages
in 10 minutes and 27 seconds
stages:
- pretest
- test
- deploy
# -------------------------- Tests ------------------------------------------------------------------------------------
# -------------------------- Pre Tests --------------------------------------------------------------------------------
# Normal test - runs on every commit all but "long run" tests
tests-and-coverage:
stage: test
stage: pretest
except:
variables:
- $ENABLE_NIGHTLY_BUILDS
......@@ -36,6 +37,33 @@ tests-and-coverage:
cobertura: coverage.xml
junit: report.xml
minimal-conda:
stage: pretest
except:
variables:
- $ENABLE_NIGHTLY_BUILDS
image: i10git.cs.fau.de:5005/pycodegen/pycodegen/minimal_conda
script:
- pip install git+https://gitlab-ci-token:${CI_JOB_TOKEN}@i10git.cs.fau.de/pycodegen/pystencils.git@master#egg=pystencils
- python setup.py quicktest
tags:
- docker
# Linter for code formatting
flake8-lint:
stage: pretest
except:
variables:
- $ENABLE_NIGHTLY_BUILDS
image: i10git.cs.fau.de:5005/pycodegen/pycodegen/full
script:
- flake8 lbmpy
tags:
- docker
- cuda11
# -------------------------- Tests -------------------------------------------------------------------------------------
# pipeline with latest python version
latest-python:
stage: test
......@@ -132,18 +160,6 @@ ubuntu:
reports:
junit: report.xml
minimal-conda:
stage: test
except:
variables:
- $ENABLE_NIGHTLY_BUILDS
image: i10git.cs.fau.de:5005/pycodegen/pycodegen/minimal_conda
script:
- pip install git+https://gitlab-ci-token:${CI_JOB_TOKEN}@i10git.cs.fau.de/pycodegen/pystencils.git@master#egg=pystencils
- python setup.py quicktest
tags:
- docker
pycodegen-integration:
image: i10git.cs.fau.de:5005/pycodegen/pycodegen/full
stage: test
......@@ -179,21 +195,7 @@ pycodegen-integration:
- cuda11
- AVX
# -------------------- Linter & Documentation --------------------------------------------------------------------------
flake8-lint:
stage: test
except:
variables:
- $ENABLE_NIGHTLY_BUILDS
image: i10git.cs.fau.de:5005/pycodegen/pycodegen/full
script:
- flake8 lbmpy
tags:
- docker
- cuda11
# -------------------- Documentation and deploy ------------------------------------------------------------------------
build-documentation:
stage: test
......
Contributors:
-------------
- Martin Bauer <martin.bauer@fau.de>
- Markus Holzer <markus.holzer@fau.de>
- Michael Kuron <mkuron@icp.uni-stuttgart.de>
- Stephan Seitz <stephan.seitz@fau.de>
- Frederik Hennig <frederik.hennig@fau.de>
- Helen Schottenhamml <helen.schottenhamml@fau.de>
- Rudolf Weeber <weeber@icp.uni-stuttgart.de>
- Christian Godenschwager <christian.godenschwager@fau.de>
- Jan Hönig <jan.hoenig@fau.de>
# Contributing
lbmpy is built on the open-source python framework [pystencils](https://pypi.org/project/pystencils/). Please consider the [contribution guideline](https://i10git.cs.fau.de/pycodegen/pystencils/-/blob/master/CONTRIBUTING.md) of pystencils for contributing to lbmpy.
\ No newline at end of file
include README.md
include COPYING.txt
include RELEASE-VERSION
include AUTHORS.txt
include CONTRIBUTING.md
global-include *.pyx
include versioneer.py
include lbmpy/_version.py
......@@ -55,3 +55,18 @@ Documentation
Read the docs [here](http://pycodegen.pages.i10git.cs.fau.de/lbmpy) and
check out the Jupyter notebooks in `doc/notebooks`.
Authors
-------
Many thanks go to the [contributors](AUTHORS.txt) of lbmpy.
### Please cite us
If you use lbmpy in a publication, please cite the following articles:
Overview:
- M. Bauer et al, lbmpy: Automatic code generation for efficient parallel lattice Boltzmann methods. Journal of Computational Science, 2021. https://doi.org/10.1016/j.jocs.2020.101269
Multiphase:
- M. Holzer et al, Highly efficient lattice Boltzmann multiphase simulations of immiscible fluids at high-density ratios on CPUs and GPUs through code generation. The International Journal of High Performance Computing Applications, 2021. https://doi.org/10.1177/10943420211016525
%% Cell type:code id: tags:
``` python
from lbmpy.session import *
```
%% Cell type:markdown id: tags:
# Demo: Create lbmpy Method from Scratch
<img src='../img/collision_space.svg' width="90%">
### Defining transformation to collision space
%% Cell type:code id: tags:
``` python
from lbmpy.moments import moment_matrix, moments_up_to_component_order, exponents_to_polynomial_representations
moment_exponents = list(moments_up_to_component_order(2, 2))
moment_exponents
```
%%%% Output: execute_result
![]()
$\displaystyle \left[ \left( 0, \ 0\right), \ \left( 0, \ 1\right), \ \left( 0, \ 2\right), \ \left( 1, \ 0\right), \ \left( 1, \ 1\right), \ \left( 1, \ 2\right), \ \left( 2, \ 0\right), \ \left( 2, \ 1\right), \ \left( 2, \ 2\right)\right]$
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)]
%% Cell type:code id: tags:
``` python
moments = exponents_to_polynomial_representations(moment_exponents)
moments
```
%%%% Output: execute_result
![]()
$\displaystyle \left( 1, \ y, \ y^{2}, \ x, \ x y, \ x y^{2}, \ x^{2}, \ x^{2} y, \ x^{2} y^{2}\right)$
⎛ 2 2 2 2 2 2⎞
⎝1, y, y , x, x⋅y, x⋅y , x , x ⋅y, x ⋅y ⎠
%% Cell type:code id: tags:
``` python
from lbmpy.stencils import get_stencil
d2q9 = get_stencil("D2Q9", ordering='walberla')
ps.stencil.plot(d2q9)
```
%%%% Output: display_data
![]()
%% Cell type:code id: tags:
``` python
M = moment_matrix(moments, stencil=d2q9)
M
```
%%%% Output: execute_result
![]()
$\displaystyle \left[\begin{matrix}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\\0 & 1 & -1 & 0 & 0 & 1 & 1 & -1 & -1\\0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1\\0 & 0 & 0 & -1 & 1 & -1 & 1 & -1 & 1\\0 & 0 & 0 & 0 & 0 & -1 & 1 & 1 & -1\\0 & 0 & 0 & 0 & 0 & -1 & 1 & -1 & 1\\0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1\\0 & 0 & 0 & 0 & 0 & 1 & 1 & -1 & -1\\0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1\end{matrix}\right]$
⎡1 1 1 1 1 1 1 1 1 ⎤
⎢ ⎥
⎢0 1 -1 0 0 1 1 -1 -1⎥
⎢ ⎥
⎢0 1 1 0 0 1 1 1 1 ⎥
⎢ ⎥
⎢0 0 0 -1 1 -1 1 -1 1 ⎥
⎢ ⎥
⎢0 0 0 0 0 -1 1 1 -1⎥
⎢ ⎥
⎢0 0 0 0 0 -1 1 -1 1 ⎥
⎢ ⎥
⎢0 0 0 1 1 1 1 1 1 ⎥
⎢ ⎥
⎢0 0 0 0 0 1 1 -1 -1⎥
⎢ ⎥
⎣0 0 0 0 0 1 1 1 1 ⎦
%% Cell type:code id: tags:
``` python
from lbmpy.maxwellian_equilibrium import get_moments_of_continuous_maxwellian_equilibrium
from lbmpy.maxwellian_equilibrium import get_equilibrium_values_of_maxwell_boltzmann_function
eq_moments = get_moments_of_continuous_maxwellian_equilibrium(moments, order=2, dim=2,
c_s_sq=sp.Rational(1, 3))
eq_moments = get_equilibrium_values_of_maxwell_boltzmann_function(moments, order=2, dim=2,
c_s_sq=sp.Rational(1, 3),
space="moment")
omega = sp.symbols("omega")
relaxation_info = [(moment, eq_value, omega) for moment, eq_value in zip(moments, eq_moments)]
relaxation_info
```
%%%% Output: execute_result
![]()
$\displaystyle \left[ \left( 1, \ \rho, \ \omega\right), \ \left( y, \ \rho u_{1}, \ \omega\right), \ \left( y^{2}, \ \rho u_{1}^{2} + \frac{\rho}{3}, \ \omega\right), \ \left( x, \ \rho u_{0}, \ \omega\right), \ \left( x y, \ \rho u_{0} u_{1}, \ \omega\right), \ \left( x y^{2}, \ \frac{\rho u_{0}}{3}, \ \omega\right), \ \left( x^{2}, \ \rho u_{0}^{2} + \frac{\rho}{3}, \ \omega\right), \ \left( x^{2} y, \ \frac{\rho u_{1}}{3}, \ \omega\right), \ \left( x^{2} y^{2}, \ \frac{\rho u_{0}^{2}}{3} + \frac{\rho u_{1}^{2}}{3} + \frac{\rho}{9}, \ \omega\right)\right]$
⎢ ⎛ 2 2 ρ ⎞
⎢(1, ρ, ω), (y, ρ⋅u₁, ω), ⎜y , ρ⋅u₁ + ─, ω⎟, (x, ρ⋅u₀, ω), (x⋅y, ρ⋅u₀⋅u₁, ω),
⎣ ⎝ 3 ⎠
⎛ 2 2
⎛ 2 ρ⋅u₀ ⎞ ⎛ 2 2 ρ ⎞ ⎛ 2 ρ⋅u₁ ⎞ ⎜ 2 2 ρ⋅u₀ ρ⋅u₁
⎜x⋅y , ────, ω⎟, ⎜x , ρ⋅u₀ + ─, ω⎟, ⎜x ⋅y, ────, ω⎟, ⎜x ⋅y , ───── + ───── +
⎝ 3 ⎠ ⎝ 3 ⎠ ⎝ 3 ⎠ ⎝ 3 3
⎞⎤
ρ ⎟⎥
─, ω⎟⎥
9 ⎠⎦
%% Cell type:code id: tags:
``` python
from lbmpy.methods.creationfunctions import create_generic_mrt
force_model = forcemodels.Guo(sp.symbols("F_:2"))
method = create_generic_mrt(d2q9, relaxation_info, compressible=False, force_model=force_model)
method
```
%%%% Output: execute_result
<lbmpy.methods.momentbased.momentbasedmethod.MomentBasedLbMethod at 0x7fc9d1ff5d60>
<lbmpy.methods.momentbased.momentbasedmethod.MomentBasedLbMethod at 0x7f3aca401520>
%% Cell type:markdown id: tags:
### Example of a update equation without simplifications
%% Cell type:code id: tags:
``` python
collision_rule = method.get_collision_rule()
collision_rule
```
%%%% Output: execute_result
AssignmentCollection: d_6, d_5, d_8, d_2, d_7, d_1, d_4, d_0, d_3 <- f(f_8, f_5, f_4, f_7, f_2, f_1, f_3, F_0, omega, F_1, f_0, f_6)
AssignmentCollection: d_1, d_2, d_7, d_4, d_3, d_0, d_8, d_5, d_6 <- f(omega, F_1, F_0, f_5, f_4, f_0, f_7, f_3, f_2, f_1, f_8, f_6)
%% Cell type:markdown id: tags:
### Generic simplification strategy - common subexpresssion elimination
%% Cell type:code id: tags:
``` python
generic_strategy = ps.simp.SimplificationStrategy()
generic_strategy.add(ps.simp.sympy_cse)
generic_strategy.create_simplification_report(collision_rule)
```
%%%% Output: execute_result
<pystencils.simp.simplificationstrategy.SimplificationStrategy.create_simplification_report.<locals>.Report at 0x7fc9d1dd6610>
<pystencils.simp.simplificationstrategy.SimplificationStrategy.create_simplification_report.<locals>.Report at 0x7f3aca401190>
%% Cell type:markdown id: tags:
### A custom simplification strategy for moment-based methods
%% Cell type:code id: tags:
``` python
simplification_strategy = create_simplification_strategy(method)
simplification_strategy.create_simplification_report(collision_rule)
simplification_strategy.add(ps.simp.sympy_cse)
```
%% Cell type:markdown id: tags:
### Seeing the simplification in action
%% Cell type:code id: tags:
``` python
simplification_strategy.show_intermediate_results(collision_rule, symbols=[sp.Symbol("d_7")])
```
%%%% Output: execute_result
<pystencils.simp.simplificationstrategy.SimplificationStrategy.show_intermediate_results.<locals>.IntermediateResults at 0x7fc9d1da2880>
<pystencils.simp.simplificationstrategy.SimplificationStrategy.show_intermediate_results.<locals>.IntermediateResults at 0x7f3aca39b160>
......
......@@ -73,7 +73,6 @@ keywords = {lbm,multiphase,phasefield},
mendeley-tags = {lbm,multiphase,phasefield},
pages = {1--11},
title = {{Ternary free-energy lattice Boltzmann model with tunable surface tensions and contact angles}},
volume = {033305},
year = {2016}
}
......@@ -81,21 +80,27 @@ year = {2016}
author = {Geier, Martin and Sch{\"{o}}nherr, Martin and Pasquali, Andrea and Krafczyk, Manfred},
title = {{The cumulant lattice Boltzmann equation in three dimensions: Theory and validation}},
journal = {Computers \& Mathematics with Applications},
volume = {70},
number = {4},
pages = {507-547},
year = {2015},
doi = {10.1016/j.camwa.2015.05.001}
issn = {0898-1221},
doi = {10.1016/j.camwa.2015.05.001},
}
@Article{Coreixas2019,
author = {Christophe Coreixas and Bastien Chopard and Jonas Latt},
journal = {Physical Review E},
title = {Comprehensive comparison of collision models in the lattice Boltzmann framework: Theoretical investigations},
year = {2019},
month = {sep},
number = {3},
pages = {033305},
volume = {100},
doi = {10.1103/physreve.100.033305},
publisher = {American Physical Society ({APS})},
title = {Comprehensive comparison of collision models in the lattice Boltzmann framework: Theoretical investigations},
author = {Coreixas, Christophe and Chopard, Bastien and Latt, Jonas},
journal = {Phys. Rev. E},
volume = {100},
issue = {3},
pages = {033305},
numpages = {46},
year = {2019},
month = {Sep},
publisher = {American Physical Society},
doi = {10.1103/PhysRevE.100.033305},
url = {https://link.aps.org/doi/10.1103/PhysRevE.100.033305}
}
@PhdThesis{Geier2006,
......@@ -104,3 +109,14 @@ doi = {10.1016/j.camwa.2015.05.001}
title = {Ab inito derivation of the cascaded lattice Boltzmann automaton},
year = {2006},
}
@article{Fakhari2018,
title = {A phase-field lattice {Boltzmann} model for simulating multiphase flows in porous media: Application and comparison to experiments of {CO2} sequestration at pore scale},
journal = {Advances in Water Resources},
volume = {114},
pages = {119-134},
year = {2018},
issn = {0309-1708},
doi = {10.1016/j.advwatres.2018.02.005},
author = {Fakhari, A. and Li, Y. and Bolster, D. and Christensen, K. T.},
}
......@@ -11,7 +11,7 @@ Maxwellian Equilibrium
.. autofunction:: lbmpy.maxwellian_equilibrium.continuous_maxwellian_equilibrium
.. autofunction:: lbmpy.maxwellian_equilibrium.get_moments_of_continuous_maxwellian_equilibrium
.. autofunction:: lbmpy.maxwellian_equilibrium.get_equilibrium_values_of_maxwell_boltzmann_function
.. autofunction:: lbmpy.maxwellian_equilibrium.get_moments_of_discrete_maxwellian_equilibrium
......@@ -17,6 +17,7 @@ You can open the notebooks directly to play around with the code examples.
/notebooks/07_tutorial_thermal_lbm.ipynb
/notebooks/08_tutorial_shanchen_twophase.ipynb
/notebooks/09_tutorial_shanchen_twocomponent.ipynb
/notebooks/10_tutorial_conservative_allen_cahn_two_phase.ipynb
/notebooks/demo_stencils.ipynb
/notebooks/demo_create_method_from_scratch.ipynb
/notebooks/demo_moments_cumulants_and_maxwellian_equilibrium.ipynb
......
from lbmpy.boundaries.boundaryconditions import (
UBB, FixedDensity, SimpleExtrapolationOutflow, ExtrapolationOutflow, NeumannByCopy, NoSlip, StreamInConstant)
UBB, FixedDensity, DiffusionDirichlet, SimpleExtrapolationOutflow,
ExtrapolationOutflow, NeumannByCopy, NoSlip, StreamInConstant)
from lbmpy.boundaries.boundaryhandling import LatticeBoltzmannBoundaryHandling
__all__ = ['NoSlip', 'UBB', 'SimpleExtrapolationOutflow', 'ExtrapolationOutflow', 'FixedDensity', 'NeumannByCopy',
__all__ = ['NoSlip', 'UBB', 'SimpleExtrapolationOutflow', 'ExtrapolationOutflow',
'FixedDensity', 'DiffusionDirichlet', 'NeumannByCopy',
'LatticeBoltzmannBoundaryHandling', 'StreamInConstant']
......@@ -79,6 +79,14 @@ class LbBoundary:
def name(self, new_value):
self._name = new_value
def __hash__(self):
return hash(self.name)
def __eq__(self, other):
if not isinstance(other, type(self)):
return False
return self.__dict__ == other.__dict__
# end class Boundary
......@@ -99,15 +107,6 @@ class NoSlip(LbBoundary):
def __call__(self, f_out, f_in, dir_symbol, inv_dir, lb_method, index_field):
return Assignment(f_in(inv_dir[dir_symbol]), f_out(dir_symbol))
def __hash__(self):
return hash(self.name)
def __eq__(self, other):
if not isinstance(other, NoSlip):
return False
return self.name == other.name
# end class NoSlip
......@@ -126,7 +125,6 @@ class UBB(LbBoundary):
"""
def __init__(self, velocity, adapt_velocity_to_force=False, dim=None, name=None, data_type='double'):
super(UBB, self).__init__(name)
self._velocity = velocity
self._adaptVelocityToForce = adapt_velocity_to_force
if callable(self._velocity) and not dim:
......@@ -136,12 +134,14 @@ class UBB(LbBoundary):
self.dim = dim
self.data_type = data_type
super(UBB, self).__init__(name)
@property
def additional_data(self):
""" In case of the UBB boundary additional data is a velocity vector. This vector is added to each cell to
realize velocity profiles for the inlet."""
if self.velocity_is_callable:
return [('vel_%d' % (i,), create_type(self.data_type)) for i in range(self.dim)]
return [(f'vel_{i}', create_type(self.data_type)) for i in range(self.dim)]
else:
return []
......@@ -212,7 +212,6 @@ class UBB(LbBoundary):
return [Assignment(f_in(inv_dir[direction]),
f_out(direction) - vel_term)]
# end class UBB
......@@ -259,6 +258,7 @@ class SimpleExtrapolationOutflow(LbBoundary):
tangential_offset = tuple(offset - normal for offset, normal in zip(neighbor_offset, self.normal_direction))
return Assignment(f_in.center(inv_dir[dir_symbol]), f_out[tangential_offset](inv_dir[dir_symbol]))
# end class SimpleExtrapolationOutflow
......@@ -294,11 +294,10 @@ class ExtrapolationOutflow(LbBoundary):
streaming_pattern='pull', zeroth_timestep=Timestep.BOTH,
initial_density=None, initial_velocity=None, data_type='double'):
self.data_type = data_type
self.lb_method = lb_method
self.stencil = lb_method.stencil
self.dim = len(self.stencil[0])
if isinstance(normal_direction, str):
normal_direction = direction_string_to_offset(normal_direction, dim=self.dim)
......@@ -316,6 +315,8 @@ class ExtrapolationOutflow(LbBoundary):
self.initial_velocity = initial_velocity
self.equilibrium_calculation = None
self.data_type = data_type
if initial_density and initial_velocity:
equilibrium = lb_method.get_equilibrium(conserved_quantity_equations=AssignmentCollection([]))
rho = lb_method.zeroth_order_equilibrium_moment_symbol
......@@ -405,7 +406,6 @@ class ExtrapolationOutflow(LbBoundary):
return AssignmentCollection(boundary_assignments, subexpressions=subexpressions)
# end class ExtrapolationOutflow
......@@ -420,8 +420,9 @@ class FixedDensity(LbBoundary):
def __init__(self, density, name=None):
if name is None:
name = "Fixed Density " + str(density)
self.density = density
super(FixedDensity, self).__init__(name)
self._density = density
def __call__(self, f_out, f_in, dir_symbol, inv_dir, lb_method, index_field):
def remove_asymmetric_part_of_main_assignments(assignment_collection, degrees_of_freedom):
......@@ -441,7 +442,7 @@ class FixedDensity(LbBoundary):
density_symbol = cqc.defined_symbols()['density']
density = self._density
density = self.density
equilibrium_input = cqc.equilibrium_input_equations_from_init_values(density=density)
equilibrium_input = equilibrium_input.new_without_subexpressions()
density_eq = equilibrium_input.main_assignments[0]
......@@ -458,10 +459,43 @@ class FixedDensity(LbBoundary):
return subexpressions + [Assignment(f_in(inv_dir[dir_symbol]),
2 * eq_component - f_out(dir_symbol))]
# end class FixedDensity
class DiffusionDirichlet(LbBoundary):
"""Boundary condition for advection-diffusion problems that fixes the concentration at the obstacle.
Args:
concentration: value of the concentration which should be set.
name: optional name of the boundary.
"""
def __init__(self, concentration, name=None):
if name is None:
name = "Diffusion Dirichlet " + str(concentration)
self.concentration = concentration
super(DiffusionDirichlet, self).__init__(name)
def get_additional_code_nodes(self, lb_method):
"""Return a list of code nodes that will be added in the generated code before the index field loop.
Args:
lb_method: Lattice Boltzmann method. See :func:`lbmpy.creationfunctions.create_lb_method`
Returns:
list containing LbmWeightInfo
"""
return [LbmWeightInfo(lb_method)]
def __call__(self, f_out, f_in, dir_symbol, inv_dir, lb_method, index_field):
w_dir = LbmWeightInfo.weight_of_direction(dir_symbol, lb_method)
return [Assignment(f_in(inv_dir[dir_symbol]),
2 * w_dir * self.concentration - f_out(dir_symbol))]
# end class DiffusionDirichlet
class NeumannByCopy(LbBoundary):
"""Neumann boundary condition which is implemented by coping the PDF values to achieve similar values at the fluid
and the boundary node"""
......@@ -482,14 +516,6 @@ class NeumannByCopy(LbBoundary):