{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from lbmpy.session import *\n", "from lbmpy.relaxationrates import *" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Tutorial 05: Modifying a LBM method: Smagorinsky model\n", "\n", "In this demo, we show how to modify a lattice Boltzmann method. As example we are going to add a simple turbulence model, by introducing a rule that locally computes the relaxation parameter dependent on the local strain rate tensor. The Smagorinsky model is implemented directly in *lbmpy* as well, however here we take the manual approach to demonstrate how a LB method can be changed in *lbmpy*.\n", "\n", "## 1) Theoretical background\n", "\n", "Since we have *sympy* available, we want to start out with the basic model equations and derive the concrete equations ourselves. This approach is less error prone, since the calculations are done by the computer algebra system, and oftentimes this approach is also more general and easier to understand. \n", "\n", "### a) Smagorinsky model \n", "\n", "The basic idea of the Smagorinsky turbulence model is to safe compute time, by not resolving the smallest eddies of the flow on the grid, but model them by an artifical dissipation term. \n", "The energy dissipation of small scale vortices is taken into account by introducing a \"turbulent viscosity\". This additional viscosity depends on local flow properties, namely the local shear rates. The larger the local shear rates the higher the turbulent viscosity and the more artifical dissipation is added. \n", "\n", "The total viscosity is \n", "\n", "$$\\nu_{total} = \\nu_0 + \\underbrace{(C_S \\Delta)^2 |S|}_{\\nu_{t}}$$\n", "\n", "where $\\nu_0$ is the normal viscosity, $C_S$ is the Smagorinsky constant, not to be confused with the speed of sound! Typical values of the Smagorinsky constant are between 0.1 - 0.2. The filter length $\\Delta$ is chosen as 1 in lattice coordinates.\n", "\n", "The quantity $|S|$ is computed from the local strain rate tensor $S$ that is given by\n", "\n", "$$S_{ij} = \\frac{1}{2} \\left( \\partial_i u_j + \\partial_j u_i \\right)$$\n", "\n", "and \n", "\n", "$$|S| = \\sqrt{2 S_{ij} S_{ij}}$$\n", "\n", "\n", "### b) LBM implementation of Smagorinsky model\n", "\n", "To add the Smagorinsky model to a LB scheme one has to first compute the strain rate tensor $S_{ij}$ in each cell, and compute the turbulent viscosity $\\nu_t$ from it. Then the local relaxation rate has to be adapted to match the total viscosity $\\nu_{total}$ instead of the standard viscosity $\\nu_0$.\n", "\n", "A fortunate property of LB methods is, that the strain rate tensor can be computed locally from the non-equilibrium part of the distribution function. This is somewhat surprising, since the strain rate tensor contains first order derivatives. The strain rate tensor can be obtained by\n", "\n", "$$S_{ij} = - \\frac{3 \\omega_s}{2 \\rho_{(0)}} \\Pi_{ij}^{(neq)}$$\n", "\n", "where $\\omega_s$ is the relaxation rate that determines the viscosity, $\\rho_{(0)}$ is $\\rho$ in compressible models and $1$ for incompressible schemes.\n", "$\\Pi_{ij}^{(neq)}$ is the second order moment tensor of the non-equilibrium part of the distribution functions $f^{(neq)} = f - f^{(eq)}$ and can be computed as \n", "\n", "$$\\Pi_{ij}^{(neq)} = \\sum_q c_{qi} c_{qj} \\; f_q^{(neq)}$$\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We first have to find a closed form for $S_{ij}$ since in the formula above, it depends on $\\omega$, which should be adapated according to $S_{ij}$. \n", "So we compute $\\omega$ and insert it into the formula for $S$:\n", " " ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAF8AAAAqBAMAAAAnjZq0AAAAMFBMVEX///8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAMhCJRHZUmWa7zasi792vCGvXAAAACXBIWXMAAA7EAAAOxAGVKw4bAAABzElEQVRIDZWTu0vDUBTGv6TpQwha/AfMWgStVBCVQgdXQf8AaTbX4lJcxMFBcHLo4CAKDoIK7SZSaAMdXEREVHBQx471hY+Kvd7bxuT2kYZzhvDdc77fPffkJoB36IlpU9n9LRbP2IG3S6qcI/QF5QfQ61K2j0ybaEAXwHcfl1SaT6FOAiCOROkAjMVpQKVq0AAEb4gAHgzKDBfAnkkBmEEE7oFa95GGnZtylZ3abH4a/JbbbnrSAVxlp7TsakovsZy+xnKOC03bciK+0VJuwUsJYGAdsWcKkAUi+wRAfQG0BQKgfQFKlACobEJM2PWWOsYu8PVlqmlLsx/LBmaORBx2eMUykuKP8dbJ1a2na98OYUEFTPsg4Y9uYIhJ8Yw5YB8RSwBxQO0BiB2lWICSQUDsq/JplFe7Q2uGY8n4LzMImqgIW+gKCPMuPm9pGyMZnAhbuArM8n18gOTU3WdyvQlop0XTH4jVraXbNlvPDmp2J8pdUrg2V0nlUQTepSWXrs1VkmMFeJCW/sAjULbaiEVn5SonBeQNlDuGkKq9Zc3onffKam9eFY/8YMGj4JXmPzwpghmSHViGblEQJY4gCbhMTJUoDZBnrNEG/AEkdopMbD2xwgAAAABJRU5ErkJggg==\n", "text/latex": [ "$$|S| = \\frac{3 \\Pi}{2} \\omega$$" ], "text/plain": [ " 3⋅Π⋅ω\n", "|S| = ─────\n", " 2 " ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "τ_0, ρ, ω, ω_total, ω_0 = sp.symbols(\"tau_0 rho omega omega_total omega_0\", positive=True, real=True)\n", "ν_0, C_S, S, Π = sp.symbols(\"nu_0, C_S, |S|, Pi\", positive=True, real=True)\n", "\n", "Seq = sp.Eq(S, 3 * ω / 2 * Π)\n", "Seq" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note that we left of the minus, since we took the absolute value of both tensor. The absolute value is defined as above, with the factor of two inside the square root. The $\\rho_{(0)}$ has been left out, remembering that $\\Pi^{(neq)}$ has to be divided by $\\rho$ in case of compressible models|.\n", "\n", "Next, we compute $\\omega$ from the total viscosity as given by the Smagorinsky equation:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJoAAAAxBAMAAADQCq0JAAAAMFBMVEX///8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAEJm7MquJRO/dIs12VGbfGimAAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADFUlEQVRIDe2WS2gTQRjH/7tNNs9NY7EgKGZLaEo9aBQ9eNEcVAQP7UGlKkooGEErBsGb0PTkwUdbwQdSpCcPXiyiUF0Q8ZCDp6AePFhaxJuXBsT6Xr+Z2c0mE02mtMcOZPebb37zy7zYXUCldKV3qmBqjDaIC0U1VIHSkwiXFDg1JDyB4A81VIGKVRH8osApI5GqMqoAjuYVIGXkljKpAOqWAqSMvFImFUDTwkMFTBE5ALxWRNtj0duF3on2mCIRcxxn9WyKf7qGra1A2xWgg7l6pe2/rQQw0j0r6S71PYsTUmYl1XsYmEYg6Sn8yMss634Hj4owau91P1K2jJRzxG7a1bvwgO7zSWEzM4VEsckm2BbqjUV9BojfAN7QD1MQtj3Q9taNUggE+2+ZOcbyO9CRhbab1kqnrwPDEjb2kvpcs31gIBXOitC7mi9F1H2avb9D/AMjxsShEvCR7mx+qRxwWbYJloi64tmQYLaOEmvaVqFLwEIoH8pxx+gCsE+2CZbxfmm0dT4Z6UP0O2vWpnFo7q3YhdTXHGW8XXBnytnQbB6JLON5abSlXiBSMX65beOOIxxxxzneZOMsUhWE8y4PSLZF6GORhu8pPqLNQ9/cs0Id3bGlGMvO0Px0uez6Gm2dE0gshfn3lOYC7vxoLXl0zrbv2vZTauQs+oHHibw5SAnDtp9dtW0Wil2IzCDxJ7LI6u/YhQo5DLrRjFyvNzbO4ibik5Ei3A+6xrEFSzQ2dtKAPG1r4fwn5uim6kDTTDmr/cbBJB2g66yLvG6BKvRSlO2CkQQuwlxktvdUzzTtAmfNqvmcPRvuM5dsw1FsqGB+AWYPtU0CWWbrt2DQakgz5aw+WeDjnuIyf0/jfOpG5jAdtfSRPtZKM+arZV3qPUlV2cbY2CmaA43tWqNNH/q5VWT86+yZOkezrQbSui2JSm0Xam1+0DV+xXf40TqfEJG/pxqN9L8lesx31EdSh7jFz5uUlarr6ZTVO7x1kzCqloebc3JmDthPT86cl/cjL7Ocexra9uXwrdktmeFWi9q6M7X+BWeTDtYybKlgAAAAAElFTkSuQmCC\n", "text/latex": [ "$$\\frac{2}{6 C_{S}^{2} |S| + 6 \\nu_{0} + 1}$$" ], "text/plain": [ " 2 \n", "─────────────────────\n", " 2 \n", "6⋅C_S ⋅|S| + 6⋅ν₀ + 1" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "relaxation_rate_from_lattice_viscosity(ν_0 + C_S ** 2 * S)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and insert it into the equation for $|S|$" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAM8AAAAwBAMAAABEazOgAAAAMFBMVEX///8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAMhCJRHZUmWa7zasi792vCGvXAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADzElEQVRYCb2XS2gTURSG/0ySSR9pE+3CpYMutCg2mkrRLhwRN0ppXYi4ULPxgSINdlEfpAZ14WOhCKIipYKikKJ0ZZVaCbhwoaC0IihIi4gFQfpQRGPreM6dh5NJNJO2zFnMnHvnP/fLuXPumRaYvYXj6xK+7pmBgUfardmv4iLyGeQf8P0CwjkX6jlI9iTwG2EG/ZzDKi5CW1TkPAGBt86LjIBVMW9AT8cUb0AIvvYIhPeKF+/oBdCT8AKkKR6B3gLj7rduoXkyfYrpub2fFS2IuoKrztBoLutXTc/tPdB5TA0/0a6Eu7QrpWMEaH88dqZ8UOnF7QoGVaZRP+EFqBOouOkBSJoEAm0egAI/AF/UA5CkraYX5QEIe7RfWQO0PsN2114u8+Rz1UkXRoY8yQgIfS8ERbR5tAlQRjHKqQhonrbMXKYRUh8V3VTeO+o1n9ruTVcV26h8txHyK9q6WOHW5a/lz1bfzJ8pc9SI0BjQXLK8a7O+acpcMZe3ur45UepOoED/QKI0SA1/s4u4WssyK6DIgfVv55Ms7ex/GKaCkacMkNwRr1CtOIOma/+DtgIKQdJtHKfIXWnIqTRQ22aArkHq4Wq1m6G1T/315SHyrYBCUGUS14H6D6Q6mQWa6M6iUBI4b8XtpVkyXav75lWmX8a2opn2wgooUnWtWZbdU+jSQh8SWl+IGqLAZivOAOlaUtjMBKGCQdvMJ0GKz7duHlLPIFsEbMJGHdSaBhY4QULLSpvlg2wPnG6uboeKl6M8vRK+O/suGxl95Z9kbrmRkdBuGQbOsVw3tyApl8YnbGjTo2o0bUIHBTXtsROka6mRYTi4NlYuSANSyjj/fMtExSwfnFEcGUlCSwdAnj6NQ4bcbUb07xwuqiMKh4kL3QWIijChg+jr9SWT4c4otKFRVCU/IsJqfyZz/10m00euXgzs/MM+Eyg9zg9lSqsufiDKID+NGwwQucY7EtraJHYvmURNgubJXGc0yBnxCeLFA0m0i4xW0Hixc+sgtA0J3xB1xNo0Schcg2i5FF62Ucga6gsKKgXoMI074HhHjE6hXTmYpQ8OtxA216DqmPSG/7zGfgWIZCELUFcSftp5R3kLbdfSGCijGicoyAf2f9bUHAWW3ehXSVQ1zFd6R8mtJx6Q5wCBtb2nqAVPIsJKMjOj0GDuqD7j5iqlZlQBMsROkLWGUXU0NkHWI5fO89FioCXO6B3WOZIU5zMXYykKaaIYqCA2GE8WzJUxISfg63MFKmPRYtLQJdQrwN8Wb3X9Yuo5zIWexY/MIRz4A5rnS+TeMTbOAAAAAElFTkSuQmCC\n", "text/latex": [ "$$|S| = \\frac{3 \\Pi}{6 C_{S}^{2} |S| + 6 \\nu_{0} + 1}$$" ], "text/plain": [ " 3⋅Π \n", "|S| = ─────────────────────\n", " 2 \n", " 6⋅C_S ⋅|S| + 6⋅ν₀ + 1" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Seq2 = Seq.subs(ω, relaxation_rate_from_lattice_viscosity(ν_0 + C_S **2 * S ))\n", "Seq2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This equation contains only known quantities, such that we can solve it for $|S|$.\n", "Additionally we substitute the lattice viscosity $\\nu_0$ by the original relaxation time $\\tau_0$. The resulting equations get simpler using relaxation times instead of rates." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAARQAAAAxBAMAAADpSEt7AAAAMFBMVEX///8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAEM0ydu+JIqtUu2bdmUS9ndDkAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAFFElEQVRYCdVXT2gcVRj/zW52djfZTZeox5JtSk4qLh5UvGQRjIcqpuJBEc0eSsRDbUCwokgGCyUHxYWiUEG64sWD0qAH8SCuIFoUNILEELDNwWtpY4uN/xp/35vd2Zk3b2Zedi/6wbyZ73u/75vfzLyZ3zfA/93eqv1HrsA5/WYClb0RbMiL+yKBSnfIeiOkJVApr49QU0sdW9zbu67FTG4CldK2CTxcbOneUyeX5+czkxOoVDITrQH5NjqYaJW9rIwEKpez8vYzn/dQ2cZOVkoClYtZefuZd9cw3cCTWSkJVLpZefuZrzQwt4zvslLMVHhL4+Zu/RgP6hETaAWYq+ErHar7ZipuW8fRfxavGaJayAR6mFSW8biGjLmPGj9xxhfoGymYZSbQT5C1cjMjdXPxzjUD5GVDDN9jZdsUj8QSQDZvUKRO4BxB/sLG0hIObr0vsVs/2Fx7kftzNdy/+MTq6vnfWhIOWX49cAiK29h69nclniWRQ5igHO46Hk5sA2NPAe9yUytvzgNW6nQiVvEC17w8548HADkoNyNusuPUUeWy8Ko1FBbgfMjrrN4AXLn0FY9bhwe0QcEHPRXgoEB9J3E/yEyE+BMTTbgs2ih0UbqB3FFGJxeAz2XWSKX4sSdzYgrkH6aM1lTGeUuAX5HbQekaLrXpcDFMtiYbCVTcnCcZNB/kH6eM1lSmVJGOjJWd4t+yd5Zx99l3aglUPiUVvxfwQZKRatZU3pYyVA7alZbb7zXYdjBgekBOk1RULwAfJJmpZkPlM6lwSoZpGXABlWvqoD+YqLjIeaoX6IGmZsQOA3wNdSPEnZm547GZGU/Q+nTf56PelfmuDA/IUF1HQam7I55YQCVU8AypcDlxszWLu/LKLIuVW1LxWxke4Wq5KgdneKql5z4JUWGwV9BpKSryRFObtZBUplHpwRonGkCJGyD3hy3uSfmiAC3gMspkFdwVmW5y4O6NXy493QR7gfRmLSSVaVT6sDlWV2KY/4cnuQd4qCjL1q0BX4KdoYkK5wseZ5iZ2qyFpDKNSh9WqMvl08q/A8Wvlza7OLeGsnQqvDttyn2HJ+UmNihY6ADsBdKbtZBUDjKlTtT6sBIXqeomi2wAc1zPXThbqyoy+zxTXvrhz+ar3FR2UNA9v7sG9gLxZu3YvDztkJ6qxNBFKD8uuwyX/+i9QH5KeDy4+EzYFXBTC8Satantal3TU5Xi8IH3jL/KJtnlV3U3+aUsvt5P7+1DBf1IrFn7COMdTU+jNdSvskl2CZuFsZsEbul/9aK1Ip7erE2qty+qp5EEOmxpTbLLmRONnA72/bPAfeaZQbSivUHjCzIX1dMB2j8iFZPscnKuZewmgS047+lldF9v1g4cPnYRmp7qOaRCi8kuY4X6ER3s+z9vHB+sNTOEX9toszZ9OyptTU/1VJ9KTHYJK+0c0sHD+9NXUT2q6alezacSk13CytfrOnh4/0AXEzc1PdWrKSpx2SXM2Wvq4OH9Sh0TfwV6aq6jqIRldwC7a3lwPOpRaYF3JdBTX9r1mkIlIrsDmOpTdPyQfn4H1YVAT31p10sJlYjsDmAv6NhR/NO4rR3oqS/tejn+Kkdl1wzT0/btuxtsTvt66ku7VkN+laOya4RpWaO6Stqzi1jCsgulIOLSbgRbwoy51sGYtJszLWHmZKuojbSzkCXM6pRJIBtpZ64lLOksVnEbaWchS5jVKZNAVtIOWMKSzhKN/wusdeg2FhHxWwAAAABJRU5ErkJggg==\n", "text/latex": [ "$$- \\frac{\\tau_{0}}{6 C_{S}^{2}} + \\frac{1}{12 C_{S}^{2}} \\sqrt{72 C_{S}^{2} \\Pi + 4 \\tau_{0}^{2}}$$" ], "text/plain": [ " ___________________\n", " ╱ 2 2 \n", " τ₀ ╲╱ 72⋅C_S ⋅Π + 4⋅τ₀ \n", "- ────── + ──────────────────────\n", " 2 2 \n", " 6⋅C_S 12⋅C_S " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "solveRes = sp.solve(Seq2, S)\n", "assert len(solveRes) == 1\n", "SVal = solveRes[0]\n", "SVal = SVal.subs(ν_0, lattice_viscosity_from_relaxation_rate(1 / τ_0)).expand()\n", "SVal" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Knowning $|S|$ we can compute the total relaxation time using\n", "\n", "$$\\nu_{total} = \\nu_0 +C_S^2 |S|$$\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMAAAAAqBAMAAAAXLUnQAAAAMFBMVEX///8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAdu+JMiKrVLtm3ZlEEM1YyO/sAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAEIklEQVRIDcVXT4gbVRz+JpNkmsnObnDpoS201YNFsW5KxCJb2EBp6y0DusU/hw21LOhlFxV72EP3UKUopYEWPJrSIggtjRSXlVYM6MkenIL0UrBhL4Jld7ta+0eaxt/vTeZl3rwXyZaKP5jJ+33f93vfvHnv5SXA/xfOzv/W+/rLbcWg83ih9KEmOdWgrrJPIFMNnMbjdvkUDb1gKlYNsk2TZgDMfungvklrV1GXqgauLhgMOYANwCl8pKtVg6u6YFBkP3AeI4EmVw2uaPzAwCvw7iA1q+lVg7rGDwycQ/ovuDVNrxikqxpPwPhn+sBjupDO3Ea6DbcQI8KmYmDrIwRsP9vSynpAl7bqPIKUbmDFN5pxEbk+VfaPLp0v8ByMNJPC/KFH3/awN3rNXsttZh72Mq0Vo42rSCnY1M2ujYrldO2ThdprBDltvDr27PT0yUdFRd5NiA5ji2kfKBXLlL0fAA1kaTas54A5usTUVarAVIsSPeTMWqVGxDqFqBX/9Frw3pkJ4NTAzU/JKs+vf5yuqSpd89SgSFQznYyEpEvn2PaLAPY8vDqG+aQY2g7k+Ln6GwiaFEqYDTb4JCKDofuBXcP3s5SlqfMf8OO/GQha6Z0Ss8GvLCMDzDzYjczfnHk+0r8dOWE2sMY6nbWQZm08zAYfsIQN7M4y7LVuQarTuW02KO07POmHdLxzbmsGnzN6mG9sMPfTH033DmcyDHOQnsV8xMuTlp4F9srK7y+urFSpOSIImsu7rKzzjQxyVWzbmRKr22OIQxrEqmH+7mJ5cgRvLjFYZIoMUgHS91x+FnxI81zafTpmQKCstmvA6CjrkiElXaI8UQaydAmDm/TxrtgBIM+rcMhLjoA4We2WkSs6VYKSISURUSnQhhUJj8AHPs7wJNsBcAH8qo0GU1TURPRNEfXFn5pBqsWPyrGN9sEyaM8drcH5jgDay7NAZZ5M6OKQ1ZuBm2XsCFHlLiURmqXHuMLJwtitGvZfora3OC2QpT0EH7x4v/A2XUIvq78mYx9fCRA3Fo+FDb5LiXf5eFkA97qLiBM1boy9oAK9asIrAc4I2qtioimFHr1bEddhP+SGd7f/msu8F2rlXVYTQiN4WhB5mrvtUiIb9JKfEckSjOcl8Au9ZynXGzQH4gmRqiNrOPmepy8en8smysN6NSNHAPrJ0zfkKhpuI6tuflGzGmCmzK1K0XheAovwTgip+WY1evvApZViiItiPlKt6LxMSL65NB5NWIIJ09HeefNz0aQY+lOg2fayiV0X9qVR7VYF7Ky1jPQ6wHzDKL4cop75172xpA+4xYhbke2qb+QHB+nPy6RBPYdM2PNWA7kuaC+wUS9IF2GFBq/r5LqQzNnSQl2veKs0nvwi0EUDIcN0OBoMVjsd8ethoD76i/4BKltUnMkL88AAAAAASUVORK5CYII=\n", "text/latex": [ "$$\\frac{\\tau_{0}}{2} + \\frac{1}{2} \\sqrt{18 C_{S}^{2} \\Pi + \\tau_{0}^{2}}$$" ], "text/plain": [ " _________________\n", " ╱ 2 2 \n", "τ₀ ╲╱ 18⋅C_S ⋅Π + τ₀ \n", "── + ────────────────────\n", "2 2 " ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "τ_val = 1 / (relaxation_rate_from_lattice_viscosity(lattice_viscosity_from_relaxation_rate(1/τ_0) + C_S**2 * SVal)).cancel()\n", "τ_val" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To compute $\\Pi^{(neq)}$ we use the following functions:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "def second_order_moment_tensor(function_values, stencil):\n", " assert len(function_values) == len(stencil)\n", " dim = len(stencil[0])\n", " return sp.Matrix(dim, dim, lambda i, j: sum(c[i] * c[j] * f for f, c in zip(function_values, stencil)))\n", "\n", "\n", "def frobenius_norm(matrix, factor=1):\n", " return sp.sqrt(sum(i*i for i in matrix) * factor)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the next cell we construct equations that take an standard relaxation rate $\\omega_0$ and compute a new relaxation rate $\\omega_{total}$ according to the Smagorinksy model, using τ_val computed above" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABiAAAAA/BAMAAACbYR3KAAAAMFBMVEX///8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMARM1UEHbviTIiq7tm3ZmvXb9KAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAU6klEQVR4Ae1dDZAcxXV+ezt7s3u3e7dOUrIrKbi1YjuWC+NLznY5pNCNCXJcUOKuoEAulSMdMWCDcbSJLC4O5rwVpxIjKtw65UD4vTUJASumdJUCVwzEbKgATtmGcyWkQgxoTUnIIEscCGELAZvX/9273bM3e7d3I2oabrr7va9fv/dm3nRPT88KRprNEiQp8UDiARhsNo/CyNhYMfFF4oHEAwCpsTEMiMQTiQcSDwgPfKZHAeE3k5R4wO2BRXEBxi3vVUAU4mZook/igaV4oFcBcctSOk8wiQfi5oFeBcRH4mZook/igaV4oFcB8bOldJ5gInjAP7Q/AjrO0Fhb0quAWIjzGTkpdfsS3HFS6t2udKwt6VFAeKV2PySUZXngKZitLktAbBrH2pLOAZG+pAtPpstdNEqahHngxzBXDOOfPLxVs6SbS7djQJzz56924Wr/bXLuujC9d03Gg97JXl3Jq2NJV5dux4CAfDcB0fe2OXere6WE9vZkKPdkYq6SJd1cur0KiJPh9PzwZFAS4Byupt9w6puvO1lxYng1po3fYHmvjzEKiFN7besKyM+UVkDIColI7brbKSlVYqzHnQg4381adc47t1acff4K44RY4mzaDSNGAXFBN/r3os3M9wKX2HVOjqtF7+gzsM4tfCtlpcqpigOT6mbdwyFruWS/kZpyysjUCCvEEsJeuRSjgLh35axaliS/OlByCPA+52CsATm9ABPuZYi+OlHpL8Z+LyC5JX2iYiGuEelM8F52d30aYYVY4m7ZDSdGAbHQjf49aFOoZo87xA7UHIw1IPfXYWTU2W+ODgA7mk0XYo+LsQb0KyF11N3tDQHyQixxt+yGE5+AyNa60b8HbQrFnOt+FafXXCMBbK+6ze9wwTtj3i2xZ5zUq5Bx3YKw09W9C8UnIGK06pF2rRp/oGcXRXTBhwE+aG3Ftv3MBlamIPbVRGnt86EF6LNPD+jTXNZ1NnqieXwCYiDkdtcT091CC5N2Xi7kPmZv0UPqs5D9pVU82/bT57CBN5mLj7eh0IDZis0U/jT3XhuvV7TeBESmi6Au9MrE6HJnHE2GSg7GGpC9E7C5bu2XbfvJT1mZgvicKMQgn5j3nraqwZ/mHrUye0Ts5tLt+GJu6J9e+XlkffXPg3L1yM1XpkGa3DjzDYew/vC7rqNVb8jp4xc6tsuzbT/O5yCmzqW90aorqeN/t61ibcif5lZzP1ZXl27HgLBah8TrdlyxZ89Dr5St/Eco9Xp6PFdHeAde0KuifN4226gfCSxEafm3sPxOeJdGwaJ35IEKoczRI0CUriMpFAEcNlrRbT+fJRq3JmFJjs+2olgSyewo4JDRij7N9dsvmFbb1q7edUDAbA2vqpJdc3a/+z/K3KBDBnZa1+TuGh/VUbwcCWxpfxZA9jfH7jU554BP152e4OQoXUdSKAI4bLSi237uMG1gNWFJfpHVo1gCvQKHjFb0aW6gZDMlRrTuA2KuhgExbzdlgZAzV5CjOWeZ+LUiIdKUnhQl7+WPiyKA+vhUByu+AVZkS8mfhP5mc5FxRG/7AS4jFFzYIcmQZu9atAQwFJLgSCIMMFNBjVairuV+g1S2k4NIQh9hCS7skGRIFhhTZ0U1wNISw8BIYKGbGK1EXc/p01yGnw6dEatyTwLCKxEbb6ULm4Wqbu+4VlEeT+teUqdHB6t2BliRLSVvSiOK3r4AsJeo9BPGM6TZuxYtAQyFJDiSCAMs1DtFFNpztu1nXHei0EdYUpinzQzJAmPqrKgGWFpiGBgJLBRPLYhSW87ujOk4Le616YiEngQE+zyoTAPiNqPXa7Sa8rivu1GdHh2s2hlgRbaV3q0RRW8fCmBvBelvMZ4hzd61aAlgKCTBkUQYYE09R5Fv+5kd1fhCH2HJcIMyDckCY+qsqAZYWmIYGAmsqecqsqe5rHXK7GqzBnQWEBl8m34sYu/2KVOugmLo50H5Kg2IbbrYx79wRFWlx/PPP9tQZHl6DLDkm2BO3nQAPLq/AUArAh2kOUT2BrAvQBoz15Rm71q2NBUS4EgiTDBXzZoxO/i2n4m6hpH6cEuGJwnTlCwxhs6SaoKFJdA9WFOvrehtm4RPBPxpznujjU8JNTzeVrTzVpXKAmL62rtvqm7ZQnv+0/Uknd5RCxUQegv6DqmPNN4ENCAeNAQdg+zdt9YZSZ4eIKd0+tMcKE8PXrP+hwNOVRmC87tw/qynxjrAyWlmVxmAFeE6wn5Yw6jeUr9AsjgxpGuKJVC9a5D7ZFVLXXsFXoL2SoRNe01LVWR28G0/pAuZlDBqCfBoQYy/7R85SmGOIWWwjYrg3deK70EMs/1ddYZWIhC882wuQplNbimPbQsE3Z0PpabwIUg8zRF92lO+iLQJ3Uqse3spUL+82luuNIUGRHYU5iFfTteiSFcBobcaJzJoQJRZQPyXzsVnrlTzdU5RHscl0L7iDZwsTw+CB5rNE3p7Ukbw9+Fcg5qrPweD8/AYnAG8eP1hAjhTQ6neCjUk5/idCqUxLIHqXat9srKlob0CL0F7KcKmPem5LXE7OH24rAGUMGoJzNUpE9X4ORziOImhT7ni2UdSiRojzRoH62bDu3NTjGyA9zab84ysg/MVj1O5JGt2K64qPyA55G7UnoYIyR+F9zMWz05pB/acwp8hsjUoFKH1nfSw9tucbZpYA8L70RQCT8W/dIUFxMUY6XTMWV9B4iKkPhYgF/z16z/4R+vX10iZPMttxREFE94N/mf9ejq0EPDAO75GVk2VAAb+Lgu5s6hcdJ4Hl0L/JPwYhgNeBOrLWSKSJKM3OmsTc1lyrTC/t3TN36zqLZX2hp6dtNdFEFNbtQegbl5ETZShwg42eg03kEmTIYxaAvwBAyUfBLqYrGNQZ/C+QprqVKLGr/4lFdhidqbmTVrA33zXdQGSW8CDVSghVWkN7IpBGsiTAwGeGlyN5RMQ/uxGIFp6B6CkfNUjTkCBLDOmvAysXZC9KGInPCD8OkxUsBIhWQMiPUSC6gL8+wOQAaGE+guQqoiqugVdQ/QQSd6CEJyGdFHQRY7g54u7RY3luMdytuL9EvpHgRb5RS4DAlGyt0yDtBEBgdJ4QGBB71rtk5UtUSGlvQIvQXspgjy2tmlP9GlLzA4+eqmAQJwUxiwRAUEsaR8hUGfITHDpsiVRQ72w1M1GD9rAo/DbnKyDhy7GG2nnNBLgTi0xAbEHxCRkG+ADfhdCEs/AnG537mglEDwgChXyqz9PE4l4F8DEbtJhPaiA0FvkySoCuaufceTIawcwN6ZMgzVIHRDzTnV67gc4eqF4LJAeRzCNKzzqCcGbTzR0Ct79FuAiwF3QhTor8ov8FA0le9sIuaqaMqE0S0DQrsU+WdnS0F4FxBK0lyLApr2mpSpSk4RuE2XFUAHBLBFTJmKJ/OhJdkgs+eowby2pRI1TrR4f/oj19IAnNNBPj7fve5pezuI1kJkSExDPPmVqQGYUbswdPr0Cu6ZJ5h24owJsiVa/vJx9rBiDB8QcwGwAT0YRO1ezvZjLEYNZnMMVRNyD5CASDp65Yn6eVdXpuRSwmbh6pccRDCCeEoUEIKNvft9Tqk5KeNofyH/yVcCXobQYMGkPayjRW7YMmSpeOscYD6XJntU1TrsW+2RFSzIrU9or8BK0lyKs2mtaqqJuh7jmGVcI45aIZ1FiyfnEZSQJDNEZyu0BgeCvww8YVlmC4LlyaoGRpQiiMwwEFjD86E10Zcd0Pz7g/QefgIhnt5ZG/wqzDdgAfaP4MDlQx2xzZTbITrWgVqPKA+IPMSCq1HJnp94rJmt23hYQgCgxjn6eNJjRW00UsSa+Z5Eex28O8f9hwsMkA4KAc9iJmcgHitPpywKDOlRL/bGPcvGM0iK/yA9qINHbbdMz9xAyu1PRzx1FKJpdS81FS/aVp9BegpeivRRh1V7TUhV1O8SsiHGFMGEJe+KmlrRPmdCJ+WpbQDAwnnGadI8jnu5s0WKKgm8Rmulgv/zRSwQ9JH8R1jXK2NnTiBFT1Zar6aqZz7x1VR2Gq/Ai+DXMjsDfQKbt5Ls7yRrYoS4fMFA+D4gDuOhVEa5wdPtMoDNu3ndi8nb802mk/BDOWeuUeHXz25jLq43QRgCGAnY2NI+nFgG7Hq4ThBYQCAa/gQcjIdhbgM2jBtG784KbP4XPEBhUtMi7fb8GEpfRh5rNNwmZDl9AulYqypNNus438ECSaGlqLwNiKdpLEVbtWTctR90OGClqXCFMWNJfI0xqCcxxvwgM0XkTtAUEAe+Xn3HrZqMH32B9SRFUsryv6eDN4BkzYtaw7XjOhb97J97w6QQkxcMNngl03LmvVC/CgeivyAU5WKbZVhic1CGh5eyRBZ0vw1cjdvqJZb7MzgMCG1pWmTRxWEwHZt1e+0oFjM+DjK0bVwP0V3N8MUt63J8HOK19hEAwtH8ag2AcNjKjlt7JKpMgkzjEwFFJ9sZJ/0Jz0rUlIEjXcp+sbGloLwNiKdpLEQ7tc9NX2wySuj0RYFEkKYwTBkukgJLxCYIvwaogRp03Tr/EN/DLlkTny2EuIA21WxCC++ritmiA4b0MaoJvYesngkVypyU4QpCpl/xmx3o1bfWqx/HOvNX7xnF48Oz+r+mSw8tiosdQ37SAO/zEslhmVwGRaaRrFjmK5KtiSGm8DgWdLW+0GFG10/DEBX6D8b2A5WfgSYDfgN9hNTib5RQM/XVWk0cK3qCmtJKBhW34HkKkM7GAm/tUEr0JylWkQKWp1xV612qfLG/Zor3Qc0nai85d2t8OaX5fFuqJnAQ2AFVWkIQwUfensEQlPwWPBoyq64wzW5PKwF+Uc0Ld7NR8umSI4D66khFBmE290Vdte8ZzWsInIFRZIst6NR3w8U3EXYDZ5dmX68MZ0Wnn3AiIXMnSoMNPLIufo1ABAVvksGgRh6RNdnILdaIGeOPQ0ndluXBvCcvT+sye8H5yFh7SB/eTskoMjMOWmSj4vF1fMqmslpluCPLt++7EpXBRs+XjAVKpNIrVIbRr8WZVMnqp/fZReFN2ZBRYQHzAoLVU6GoYteSvt3zL5DGd8w/9g0mmYH+mbFIZeONMYJIpGN/xmImCvYNbqiYZnJbwCUhfjTewXk27PwU3bxkFzH79gm31oT9pEY7V3L5ms/WaICgjIIZsiA4/sSyW2bWAaO/dpNTNqqPWvwCPGKxzZS1v/QwIHnlBIrRCJLDWTiuqUNSIojhRx1KUriMpFAkMsK5IFiNs6UxCFPtMbADOjWJJJLOjgd2W8AkIdTuxo243phN16Bs18L78xTaYERDiTrhpy08JcNP9L9ZvxHw8yH7ntT17/rn5W23NCYEts0cICKuUNuLAq/Azg5irG9XVq+Rb715G12SBPkbJMWVio1f6eKim5A1EfJLDEj4BMTayd6F0gJuMBgN1kxUijIDYidSPBrivDQZGcY0Hp3sbyZTvSVzkeh0HGce9pzBJhIUHxAAicq2jJWnmTpmXYcHNjQ8nPxUfXVCTzeUQdYZKIUyAR0O5q80MtQSeW646qTL04388yTUvPSC8Enh37Q0gXQdS/LcA1zbxluI38GImAXECWJLLBqzKnhjCA+LfEYqvsPg2FC4nPMse8+bDEfHgeuSVemzSjc8GIbr0j4YwccE8nB3adsWZ4ZZoW3S67HmoDjdAocJbWwPCryMXF+bIwhv+TNQlWEtNATyOeUhA8NWf8IBooAzYKbahkErndCIddrPr3H61EOevVkdL6idzcQjsohAesjKlcP7qckMtyUwtVxmMBVtAiO1PRDxd5cSASJ0IMDZeIreLbAPot1YhAcGX2UMDIlUk20r/s+MbCsPI9/lFox7XSn8lVppdFrjVkWueDsjnHPS1IYdZ0l9frk54tQ9Df8DFiBEid/j1SSn506SEAQF739gJObp851XZTyxbA+IifK89KZbZQwMiA3A9boXBJWS1GVV26yq89LcuTrzo+VJ89LkJ3/CTG5k9dRwBHra3WwtquCUr8w9ZaA/VIiAMUxdIjQSE33wP+Mc4bwf5sWhbQPh/dvO1N8kPmEIDYoi8icyJbShccKfsiRidnlBd7wvlriqzGYQFxA3VDspE2OPQQdKy2eGW5C5fdgcoQFt2bQ2IANkZOlaQgNh4ymvFgvEbobaA+CoMYiuRQgNisJJ9C/qqs5H2wc49K2THPN9ciY2Cn+efR1sV6rxfyPtfa8O1IIZa0roFrQsFxa490lT7XImQF/Gr7DKSC1QsBkS+Btsv6acbhTxK00cI/Xup3ZxLstCA8D/7/PjBKzvug9XEYXE4Vss3pm5GLfeUUV3Lyg+dWzdQq8F6R9Vu6zSGdJSwUoBQS8xvAVaiS3OESP1gCoU+RgVjQOCTRvZoAeME4GP4XD298/vWKRPAl3FYId/jkxQaEN5DGzKXTXbeB8tE8eMg37tnEGNZ+fvYaJU6cqjoVObjTo5k5CqyuMaFUEs8t5ER1Ja//oBtZEAwYuoNpP03lYUBMYGFb5M3EPgcTL5rTi86AgIHWPI9Pk2hAcEgnffBchzL/AWjmlQSD6yoB8S2VCpUBIQgPoM7MPDix0RGiCp+wJ47hhU/oHGCG6VtL+Zyi0C/xyfNwkcIisDhpJGu8eISMnyVmKTEAz3zgNiWSjsQASGI2/FFQUA52/E9xHsgPwnjdUjvRxKOFKOQxbfUbW+qMwvAvscnDZcyQnTcB0s1SA6JB1bDA2JbKu1LBgT/p9Nwr/VGynhxx+l12H3wp7gmdWgPHgHeh3tnc/c078sdbt5HIfKjkSH8iQP6PT4hLykgWPvkmHggFh4Qv/6AyoiAEHtV8Ylhg0PH83Zc3MJJT0oC/lNfbG9fEhDSJ0nhZPEAv3SJumdLnRkx94tUTZJaCrl7WgheIAnse3xSTUYI6ZSkcJJ4wPohGyd+ZxCfpG3pk7gJ0kZnNPY9PiknAeH2UsKJpQfyDYtagjiyx8IkpDEA/f1bK0p+j58ERKtrknrMPSB//UHXUxDNnRoa4hB492rV1qL8Hj8JiFbXJPV4e0BsSzW0lMTMvEFXlRcOzgSq1laS3+MnAdHmm4QQaw+0/foD0dZK7MoMDIhms9RV06RR4oG3mQcGm82j8PtjY8W3mV2JOYkHuvJAamzsw/8Ph7x6/nGQQukAAAAASUVORK5CYII=\n", "text/latex": [ "$$\\left [ \\tau_{0} = \\frac{1}{\\omega_{0}}, \\quad \\Pi = \\sqrt{4 \\left(- f_{5} + f_{6} + f_{7} - f_{8} - u_{0} u_{1}\\right)^{2} + 2 \\left(f_{1} + f_{2} + f_{5} + f_{6} + f_{7} + f_{8} - \\frac{\\rho}{3} - u_{1}^{2}\\right)^{2} + 2 \\left(f_{3} + f_{4} + f_{5} + f_{6} + f_{7} + f_{8} - \\frac{\\rho}{3} - u_{0}^{2}\\right)^{2}}, \\quad \\omega_{total} = \\frac{1}{\\frac{\\tau_{0}}{2} + \\frac{1}{2} \\sqrt{18 C_{S}^{2} \\Pi + \\tau_{0}^{2}}}\\right ]$$" ], "text/plain": [ "⎡ ___________________________________________________________\n", "⎢ ╱ \n", "⎢ 1 ╱ 2 ⎛ \n", "⎢τ₀ = ──, Π = ╱ 4⋅(-f₅ + f₆ + f₇ - f₈ - u₀⋅u₁) + 2⋅⎜f₁ + f₂ + f₅ + f₆ + f\n", "⎢ ω₀ ╲╱ ⎝ \n", "⎢ \n", "⎢ \n", "⎢ \n", "⎣ \n", "\n", "________________________________________________________________ \n", " 2 2 \n", " ρ 2⎞ ⎛ ρ 2⎞ \n", "₇ + f₈ - ─ - u₁ ⎟ + 2⋅⎜f₃ + f₄ + f₅ + f₆ + f₇ + f₈ - ─ - u₀ ⎟ , ωₜₒₜₐₗ = ───\n", " 3 ⎠ ⎝ 3 ⎠ \n", " \n", " τ₀ \n", " ── \n", " 2 \n", "\n", " ⎤\n", " ⎥\n", " 1 ⎥\n", "──────────────────────⎥\n", " _________________⎥\n", " ╱ 2 2 ⎥\n", " ╲╱ 18⋅C_S ⋅Π + τ₀ ⎥\n", "+ ────────────────────⎥\n", " 2 ⎦" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def smagorinsky_equations(ω_0, ω_total, method):\n", " f_neq = sp.Matrix(method.pre_collision_pdf_symbols) - method.get_equilibrium_terms()\n", " return [sp.Eq(τ_0, 1 / ω_0),\n", " sp.Eq(Π, frobenius_norm(second_order_moment_tensor(f_neq, method.stencil), factor=2)),\n", " sp.Eq(ω_total, 1 / τ_val)]\n", "\n", "\n", "smagorinsky_equations(ω_0, ω_total, create_lb_method())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2) Application: Channel flow\n", "\n", "Next we modify a *lbmpy* scenario to use the Smagorinsky model. \n", "We create a MRT method, where we fix all relaxation rates except the relaxation rate that controls the viscosity." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", " \n", " \n", " \n", " \n", "\n", " \n", " \n", " \n", " \n", "\n", " \n", " \n", " \n", " \n", "\n", " \n", " \n", " \n", " \n", "\n", " \n", " \n", " \n", " \n", "\n", " \n", " \n", " \n", " \n", "\n", " \n", " \n", " \n", " \n", "\n", " \n", " \n", " \n", " \n", "\n", "
MomentEq. Value Relaxation Rate
$1$$\\rho$$0$
$x$$u_{0}$$0$
$y$$u_{1}$$0$
$3 x^{2} + 3 y^{2} - 2$$3 u_{0}^{2} + 3 u_{1}^{2}$$\\omega$
$x^{2} - y^{2}$$u_{0}^{2} - u_{1}^{2}$$\\omega$
$x y$$u_{0} u_{1}$$\\omega$
$3 x^{2} y - y$$0$$1.9$
$3 x y^{2} - x$$0$$1.9$
$9 x^{2} y^{2} - 3 x^{2} - 3 y^{2} + 1$$0$$1.9$
\n", " " ], "text/plain": [ "" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "method = create_lb_method(method='mrt', weighted=True, stencil='D2Q9', force=(1e-6, 0),\n", " force_model='luo', relaxation_rates=[0, 0, ω, 1.9, 1.9])\n", "method" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Only the collision rule has to be changed. Thus we first construct the collision rule, add the Smagorinsky equations and create a normal scenario from the modified collision rule." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Subexpressions:
 $$vel0Term \\leftarrow f_{4} + f_{6} + f_{8}$$ $$vel1Term \\leftarrow f_{1} + f_{5}$$ $$\\rho \\leftarrow f_{0} + f_{2} + f_{3} + f_{7} + vel0Term + vel1Term$$ $$u_{0} \\leftarrow - f_{3} - f_{5} - f_{7} + vel0Term + 5.0 \\cdot 10^{-7}$$ $$u_{1} \\leftarrow - f_{2} + f_{6} - f_{7} - f_{8} + vel1Term$$ $$u0Mu1 \\leftarrow u_{0} - u_{1}$$ $$u0Pu1 \\leftarrow u_{0} + u_{1}$$ $$f_{eq common} \\leftarrow 1.0 \\rho - 1.57894736842105 u_{0}^{2} - 1.57894736842105 u_{1}^{2}$$ $$\\tau_{0} = \\frac{1}{\\omega}$$ $$\\Pi = \\sqrt{4 \\left(- f_{5} + f_{6} + f_{7} - f_{8} - u_{0} u_{1}\\right)^{2} + 2 \\left(f_{1} + f_{2} + f_{5} + f_{6} + f_{7} + f_{8} - \\frac{\\rho}{3} - u_{1}^{2}\\right)^{2} + 2 \\left(f_{3} + f_{4} + f_{5} + f_{6} + f_{7} + f_{8} - \\frac{\\rho}{3} - u_{0}^{2}\\right)^{2}}$$ $$\\omega_{total} = \\frac{1}{\\frac{\\tau_{0}}{2} + \\frac{1}{2} \\sqrt{18 C_{S}^{2} \\Pi + \\tau_{0}^{2}}}$$ $$forceTerm_{0} \\leftarrow - 1.33333333333333 \\cdot 10^{-6} u_{0} \\left(- \\frac{\\omega_{total}}{2} + 1\\right)$$ $$forceTerm_{1} \\leftarrow - 3.33333333333333 \\cdot 10^{-7} u_{0} \\left(- \\frac{\\omega_{total}}{2} + 1\\right)$$ $$forceTerm_{2} \\leftarrow - 3.33333333333333 \\cdot 10^{-7} u_{0} \\left(- \\frac{\\omega_{total}}{2} + 1\\right)$$ $$forceTerm_{3} \\leftarrow \\left(- \\frac{\\omega_{total}}{2} + 1\\right) \\left(6.66666666666667 \\cdot 10^{-7} u_{0} - 3.33333333333333 \\cdot 10^{-7}\\right)$$ $$forceTerm_{4} \\leftarrow \\left(- \\frac{\\omega_{total}}{2} + 1\\right) \\left(6.66666666666667 \\cdot 10^{-7} u_{0} + 3.33333333333333 \\cdot 10^{-7}\\right)$$ $$forceTerm_{5} \\leftarrow \\left(- \\frac{\\omega_{total}}{2} + 1\\right) \\left(1.66666666666667 \\cdot 10^{-7} u_{0} - 2.5 \\cdot 10^{-7} u_{1} - 8.33333333333333 \\cdot 10^{-8}\\right)$$ $$forceTerm_{6} \\leftarrow \\left(- \\frac{\\omega_{total}}{2} + 1\\right) \\left(1.66666666666667 \\cdot 10^{-7} u_{0} + 2.5 \\cdot 10^{-7} u_{1} + 8.33333333333333 \\cdot 10^{-8}\\right)$$ $$forceTerm_{7} \\leftarrow \\left(- \\frac{\\omega_{total}}{2} + 1\\right) \\left(1.66666666666667 \\cdot 10^{-7} u_{0} + 2.5 \\cdot 10^{-7} u_{1} - 8.33333333333333 \\cdot 10^{-8}\\right)$$ $$forceTerm_{8} \\leftarrow \\left(- \\frac{\\omega_{total}}{2} + 1\\right) \\left(1.66666666666667 \\cdot 10^{-7} u_{0} - 2.5 \\cdot 10^{-7} u_{1} + 8.33333333333333 \\cdot 10^{-8}\\right)$$
Main Assignments:
 $$d_{0} \\leftarrow 0.366666666666667 f_{0} - 1.26666666666667 f_{5} - 1.26666666666667 f_{6} - 1.26666666666667 f_{7} - 1.26666666666667 f_{8} + 0.422222222222222 f_{eq common} + forceTerm_{0} + \\omega_{total} \\left(- \\frac{4 f_{0}}{9} + \\frac{2 f_{1}}{9} + \\frac{2 f_{2}}{9} + \\frac{2 f_{3}}{9} + \\frac{2 f_{4}}{9} + \\frac{8 f_{5}}{9} + \\frac{8 f_{6}}{9} + \\frac{8 f_{7}}{9} + \\frac{8 f_{8}}{9} - \\frac{2 u_{0}^{2}}{3} - \\frac{2 u_{1}^{2}}{3}\\right) + 0.666666666666667 u_{0}^{2} + 0.666666666666667 u_{1}^{2}$$ $$d_{1} \\leftarrow 0.105555555555556 f_{0} + 0.472222222222222 f_{1} + 0.105555555555556 f_{2} - 0.211111111111111 f_{3} - 0.211111111111111 f_{4} + 1.05555555555556 f_{5} + 1.05555555555556 f_{6} - 0.211111111111111 f_{7} - 0.211111111111111 f_{8} + forceTerm_{1} + \\omega_{total} \\left(\\frac{f_{0}}{6} - \\frac{f_{1}}{6} - \\frac{f_{2}}{6} + \\frac{f_{3}}{3} + \\frac{f_{4}}{3} - 0.111111111111111 f_{eq common} - 0.342105263157895 u_{0}^{2} + 0.157894736842105 u_{1}^{2}\\right)$$ $$d_{2} \\leftarrow 0.105555555555556 f_{0} + 0.105555555555556 f_{1} + 0.472222222222222 f_{2} - 0.211111111111111 f_{3} - 0.211111111111111 f_{4} - 0.211111111111111 f_{5} - 0.211111111111111 f_{6} + 1.05555555555556 f_{7} + 1.05555555555556 f_{8} + forceTerm_{2} + \\omega_{total} \\left(\\frac{f_{0}}{6} - \\frac{f_{1}}{6} - \\frac{f_{2}}{6} + \\frac{f_{3}}{3} + \\frac{f_{4}}{3} - 0.111111111111111 f_{eq common} - 0.342105263157895 u_{0}^{2} + 0.157894736842105 u_{1}^{2}\\right)$$ $$d_{3} \\leftarrow 0.105555555555556 f_{0} - 0.211111111111111 f_{1} - 0.211111111111111 f_{2} + 0.472222222222222 f_{3} + 0.105555555555556 f_{4} + 1.05555555555556 f_{5} - 0.211111111111111 f_{6} + 1.05555555555556 f_{7} - 0.211111111111111 f_{8} + forceTerm_{3} + \\omega_{total} \\left(\\frac{f_{0}}{6} + \\frac{f_{1}}{3} + \\frac{f_{2}}{3} - \\frac{f_{3}}{6} - \\frac{f_{4}}{6} - 0.111111111111111 f_{eq common} + 0.157894736842105 u_{0}^{2} - 0.342105263157895 u_{1}^{2}\\right)$$ $$d_{4} \\leftarrow 0.105555555555556 f_{0} - 0.211111111111111 f_{1} - 0.211111111111111 f_{2} + 0.105555555555556 f_{3} + 0.472222222222222 f_{4} - 0.211111111111111 f_{5} + 1.05555555555556 f_{6} - 0.211111111111111 f_{7} + 1.05555555555556 f_{8} + forceTerm_{4} + \\omega_{total} \\left(\\frac{f_{0}}{6} + \\frac{f_{1}}{3} + \\frac{f_{2}}{3} - \\frac{f_{3}}{6} - \\frac{f_{4}}{6} - 0.111111111111111 f_{eq common} + 0.157894736842105 u_{0}^{2} - 0.342105263157895 u_{1}^{2}\\right)$$ $$d_{5} \\leftarrow - 0.0527777777777778 f_{0} + 0.263888888888889 f_{1} - 0.0527777777777778 f_{2} + 0.263888888888889 f_{3} - 0.0527777777777778 f_{4} + 0.155555555555556 f_{5} - 0.211111111111111 f_{6} - 0.211111111111111 f_{7} + 0.422222222222222 f_{8} + forceTerm_{5} + \\omega_{total} \\left(\\frac{f_{0}}{12} - \\frac{f_{5}}{3} + \\frac{f_{6}}{6} + \\frac{f_{7}}{6} - \\frac{f_{8}}{3} + 0.0263888888888889 f_{eq common} - 0.0541666666666667 \\rho + \\frac{u0Mu1^{2}}{8}\\right)$$ $$d_{6} \\leftarrow - 0.0527777777777778 f_{0} + 0.263888888888889 f_{1} - 0.0527777777777778 f_{2} - 0.0527777777777778 f_{3} + 0.263888888888889 f_{4} - 0.211111111111111 f_{5} + 0.155555555555556 f_{6} + 0.422222222222222 f_{7} - 0.211111111111111 f_{8} + forceTerm_{6} + \\omega_{total} \\left(\\frac{f_{0}}{12} + \\frac{f_{5}}{6} - \\frac{f_{6}}{3} - \\frac{f_{7}}{3} + \\frac{f_{8}}{6} + 0.0263888888888889 f_{eq common} - 0.0541666666666667 \\rho + \\frac{u0Pu1^{2}}{8}\\right)$$ $$d_{7} \\leftarrow - 0.0527777777777778 f_{0} - 0.0527777777777778 f_{1} + 0.263888888888889 f_{2} + 0.263888888888889 f_{3} - 0.0527777777777778 f_{4} - 0.211111111111111 f_{5} + 0.422222222222222 f_{6} + 0.155555555555556 f_{7} - 0.211111111111111 f_{8} + forceTerm_{7} + \\omega_{total} \\left(\\frac{f_{0}}{12} + \\frac{f_{5}}{6} - \\frac{f_{6}}{3} - \\frac{f_{7}}{3} + \\frac{f_{8}}{6} + 0.0263888888888889 f_{eq common} - 0.0541666666666667 \\rho + \\frac{u0Pu1^{2}}{8}\\right)$$ $$d_{8} \\leftarrow - 0.0527777777777778 f_{0} - 0.0527777777777778 f_{1} + 0.263888888888889 f_{2} - 0.0527777777777778 f_{3} + 0.263888888888889 f_{4} + 0.422222222222222 f_{5} - 0.211111111111111 f_{6} - 0.211111111111111 f_{7} + 0.155555555555556 f_{8} + forceTerm_{8} + \\omega_{total} \\left(\\frac{f_{0}}{12} - \\frac{f_{5}}{3} + \\frac{f_{6}}{6} + \\frac{f_{7}}{6} - \\frac{f_{8}}{3} + 0.0263888888888889 f_{eq common} - 0.0541666666666667 \\rho + \\frac{u0Mu1^{2}}{8}\\right)$$
" ], "text/plain": [ "Assignment Collection for d_0,d_1,d_2,d_3,d_4,d_5,d_6,d_7,d_8" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "collision_rule = create_lb_collision_rule(lb_method=method)\n", "collision_rule = collision_rule.new_with_substitutions({ω: ω_total})\n", "\n", "collision_rule.subexpressions += smagorinsky_equations(ω, ω_total, method)\n", "collision_rule.topological_sort(sort_subexpressions=True, sort_main_assignments=False)\n", "collision_rule" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the next cell the collision rule is simplified by extracting common subexpressions" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "from pystencils.simp import sympy_cse\n", "#collision_rule = sympy_cse(collision_rule)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A channel scenario can be created from a modified collision rule:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "ch = create_channel((300, 100), force=1e-6, collision_rule=collision_rule,\n", " kernel_params={\"C_S\": 0.12, \"omega\": 1.999})" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "#show_code(ch.ast)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "ch.run(5000)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAALgAAAAPBAMAAACl0hg5AAAAMFBMVEX///8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAEJm7MquJRO/dIs12VGbfGimAAAAACXBIWXMAAA7EAAAOxAGVKw4bAAACqklEQVQ4EbVUTWsTURQ9mUyS5msaCpZKhcSIFURtUTfuBheCK0MRUQQ7qM2qaLeCYEop+EElIHUj4uBKXdgs6kq0JQsXtUgRXNv+gdqIrVpbx3Pvm7TRrD0wb+45952TmffeBJHiMRdEetk+LHfg9GC57GlltK59x2FP9ZXL1E4Cami6yNsR/3CV4sg7F7sQ/y79jiDwgOwY8CUIgpJWqkVKuD7qUFvjrCkYQ9NF3o432O2jd9SqYS9wW/rp4XkahxvAQSBmKtWsHDoqlg+UgMwEjCF0CW+DU0G8hqOIDuAOMEQn8wQOwz2AryWVah1VxDbiQNwFXr6CMYQu4W2I8rUbiQ3RZ3MYcnnfCQcScy3h6QZi3zjhJi+PYWoIXcLb0FlCYitaCfUnORaxlbprIoEouT65akCSb4EBar4JUwMH5ZGRus/2DvIFJDY7Z0YOiJRYlzGaS3FjJRK4xksqowG3PK7KErAHGq4GGZTf8FNst2Dag72Zf4vkIsUkd0pxIgyPrJKanwE1PSPI8+6ZcDXIIDwyiS5XJm1jugB7Pb8Ka4xSsSn3+yYyU6MShlODVSB/z3PqmnA1cFAeu7+wzDZ6XwtmWJllqcLhSmQK0sNF8DibyOQAuYQbDXXpPwC6oeFqkEE5t+8fUMluJWtwfgMfkfLZvgf0c4tkzXW+VEbLFvACWAM+FYs/DoUGcSnv9Oj4CzzfTiNWkSe3PWR8NgvAo3AxzrDWnzHaKWAe9ldqAD8aNTRdE0h6wJy0tuHIR2Q3YFXwvHz5AvI1PIVzl2skT/7Z4yCVaqmH5f1VZPVIYRzGoC7OGgc3qMtn1YLH6HFxDj2LmA2Cn3JgUn2DOVjnfx0Bni1yE6VSLc2/lSpSk+K+ElwyBnUZXl9ZagmWsnvhLI9uH4f/iT9B4uI/5gIIngAAAABJRU5ErkJggg==\n", "text/latex": [ "$$2.51715274224e-06$$" ], "text/plain": [ "2.51715274224e-06" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6IAAAFpCAYAAACGSJXZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAIABJREFUeJzsnXd4VNX2vz+T3glJSAhJ6EWKFOm918xBiiiiIAoKSrEhYg/V3lHsijTpvSWE9J5MJr333sukJzPr9wee/czJGTR+75Xrvb/9Pg+Pup4dM4vs96y1zzl7R0FE4HA4HA6Hw+FwOBwO515h9J/+ABwOh8PhcDgcDofD+f8LvhDlcDgcDofD4XA4HM49hS9EORwOh8PhcDgcDodzT+ELUQ6Hw+FwOBwOh8Ph3FP4QpTD4XA4HA6Hw+FwOPcUvhDlcDgcDofD4XA4HM49hS9EORwOh8PhcDgcDodzT+ELUQ6Hw+FwOBwOh8Ph3FP4QpTD4XA4HA6Hw+FwOPcUvhDlcDgcDofD4XA4HM49xeRefjMnJyfq27fvvfyWHA6Hw+FwOBwOh8O5R8TExFQSUY8/G3dPF6J9+/ZFdHT0vfyWHA6Hw+FwOBwOh8O5RygUiryujOOv5nI4HA6Hw+FwOBwO557CF6IcDofD4XA4HA6Hw7mn8IUoh8PhcDgcDofD4XDuKXwhyuFwOBwOh8PhcDicewpfiHI4HA6Hw+FwOBwO557CF6IcDofD4XA4HA6Hw7mn8IUoh8PhcDgcDofD4XDuKXwhyuFwOBwOh8PhcDicewpfiHI4HA6Hw+FwOBwO557CF6IcDofD4XA4HA6Hw7mn8IUoh8PhcDgcDofD4XDuKXwhyuFwOBwOh8PhcDicewpfiHI4HA6Hw+FwOBwO557CF6IcDofD4XA4HA6Hw7mn8IUoh8PhcDgcDofD4XDuKXwhyuFwOBwOh8PhcDicewpfiHI4HA6Hw+FwOBwO557CF6IcDofD4XA4HA6Hw7mnmHRlkEKhyAWgAaAF0EFE4xQKhQOAkwD6AsgF8DAR1fw9H5PD4XA4HA6Hw+FwOP8r/JUnorOJaDQRjfv9v3cB8CWiQQB8f/9vDofD4XA4HA6Hw+Fw/pB/5dXcBwEc/v3fDwNY9q9/HA6Hw+FwOBwOh8Ph/K/T1YUoAfBWKBQxCoXimd9jLkRUAgC//9P57/iAHA6Hw+FwOBwOh8P536JLe0QBTCWiYoVC4QzAR6FQpHb1G/y+cH0GAHr37v1/+IgcDofD4XA4HA6Hw/lfoktPRImo+Pd/lgM4D2ACgDKFQuEKAL//s/wuX/sdEY0jonE9evT493xqDofD4XA4HA6Hw+H81/KnC1GFQmGtUChsxX8HsABAIoBLAJ74fdgTAC7+XR+Sw+FwOBwOh8PhcDj/O3TliagLgGCFQhEHIBLAVSK6AeA9APMVCkUGgPm///d/NYmJicjIyJDE2tvb4e3tjdbWVkk8OjoaBQUFklh9fT0CAgLQ0dEhiYeGhqKsrEwSKykpQUREBHQ6nSTu7++Pmhrpb8HJzs5GXFwciIjFiAg+Pj5oaGiQjE1OTkZaWpok1tHRAW9vb7S0tEjiKpUKeXl5klhDQwP8/PzQ3t4uiYeFhaG0tFQSKy8vR1hYGLRarSQeEBCA6upqSSw3NxexsbGSHADg1q1b0Gg0klhqaipSUlIkY7VaLby9vdHc3CwZq1arkZOTI4k1NTXB19cXbW1tknhERASKi4slscrKSoSEhMhyCAoKQlVVlSSWn5+PmJgYWQ6+vr6or6+XxNLS0pCUlCQZq9Pp4O3tjaamJsnY+Ph4ZGdnS2Ktra24deuWLIfIyEgUFRVJYjU1NQgKCpLNu+DgYFRUVEhiRUVFiIqKks2727dvo66uThLLyMhAQkKCbN55e3ujsbFRMjYhIUHmTltbG3x8fLrkTl1dnUF3QkJCUF4ufdnir7oTHx/fJXeSkpKQnp4uif1d7pSVlf0t7qSkpCA1NbVL7sTGxiI3N1cSE93pnEN4eDhKSkokscrKSoSGhspyCAwMNOiOSqXqsjvJycldcicuLk7mTktLS5fdqa6uRnBwsCwHQ+4UFhYiOjq6y+4kJiZ22Z3MzExJ7G7uREVFGXQnMDCwS+4UFxcjMjJSloOfn5/MnaysLIPueHt7d9kdHx8fmTsxMTHIz8+XxDQaDfz9/WXzLjQ01KA74eHhBv3v7E5OTg7UarVs3vn4+Pwt7ty+fbtL7lRUVHTZnby8vH+LO51zuJs7d6udXXUnKCgIlZWVkti/yx1DtfOvuFNYWCiJ1dbW/lvcqa2tlcTu5o6Pj4/M/z/qO/9Vdzr3naWlpXd1p7P/htz5o77zbu50ziE2NlZWOxsbG/82d+5WOzu7Y6jv1Ol0uHnzZpf6zubmZoN1x1DfWVVV1WV3CgoKuuzOfyvGXl5efzjAy8urxsvL65vf/3zt5eUV9Hu82cvL61cvL68vf/9n8x/+jwB89913Xs8888yfDfuPERISgmnTpuG3335DXl4eLCws4ODggNWrV+O1115DdHQ0mpqa4Obmhps3b2LBggW4cOECioqKYGNjA2tra8yfPx8HDhxAfHw82tra4O7ujp9//hnLly/H9evXUVZWBnt7exgZGWHy5Mn44osvkJKSAp1OBw8PD+zbtw/r1q3D7du3UVVVBScnJ9TV1WHcuHH48ccfkZmZCSMjI7i5uWHr1q3YsmULQkJCUFdXh549eyItLQ1TpkzB8ePHkZubCzMzMzg5OWHt2rXYuXMnoqKi0NjYiF69esHPzw/z5s3DuXPnUFhYCGtra9jY2MDT0xN79+5FXFwcWltb4e7ujmPHjmHp0qW4du0aSktL0a1bN5iYmGDq1Kn47LPPkJycDK1WCw8PD3zwwQdYs2YNfH19UVlZCUdHRzQ2NmL8+PH4/vvvkZGRASMjI7i7u+OFF17A5s2bERQUhNraWri4uCA3NxeTJk3C0aNHkZOTAzMzMzg7O2P9+vXYsWMHIiMj0dDQgF69eiE0NBSzZ8/GmTNnUFBQACsrK9jZ2eHBBx/E7t27oVar0dLSAnd3d5w+fRqenp64cuUKSkpKYGdnB3Nzc8yYMQOffPIJkpKS0NHRAQ8PD3z++ed45JFH4OPjg4qKCjg4OKC1tRXjx4/Ht99+i/T0dCgUCri7u+PVV1/F008/jYCAANTU1MDZ2RnFxcWYMGECfv31V2RnZ8PU1BQuLi7YuHEjXnzxRURERECj0cDV1RXR0dGYOXMmTp06hfz8fFhaWsLe3h4rV67EW2+9BZVKhebmZri5ueHSpUtYvHgxLl26hOLiYtja2sLS0hJz5szBBx98gMTERHR0dMDd3R2HDh3CQw89BG9vb5SXl6N79+7QarWYOHEivv76a3bDwt3dHW+99RaeeuopthDq0aMHKisrMW7cOBw+fBhZWVkwMTGBq6srNm/ejO3btyMsLAwajQY9e/ZEfHw8pk+fLnGne/fueOSRR/DGG28gJiYGzc3N6NWrF65fv46FCxdK3LGxscH8+fPx7rvvIj4+Hu3t7XB3d8ePP/6IFStWSNxRKBSYNGkSDh48yAqHh4cH9uzZgyeeeAJ+fn7MndraWowbNw4//fQTMjMzYWxsDDc3N2zZsgVbt25FaGjoXd0xNzeHo6MjHnvsMezatQtRUVFoamqCq6srbt++jXnz5uH8+fPMHVtbWyxevBj79+9HXFwc2tra4ObmhqNHj2Lp0qW4fv06c8fU1BRTpkzB559/juTkZOh0Ori7u+P999/H448/Dl9fX1RVVcHBwQENDQ0YP348fvjhB+aOh4cHtm/fjueeew7BwcGoq6uDs7MzcnJyZO706NEDTzzxBF555RVERkaisbERrq6uCA4Oxpw5cwy64+XlBbVajdbWVri5ueHUqVNQKpW4evWqxJ3p06czd7RaLdzd3fHpp59i9erVuHXrFiorK9G9e3e0tLTI3PHw8MCOHTvwzDPPIDAwELW1tejRoweKioowYcIEHDlyhLnj7OyMDRs24OWXX0Z4eDgaGhrg6uqKqKgozJw5E6dPn5a4s2LFCrz99ttQqVRoaWmBm5sbLly4gMWLF+Py5csoKSmBjY0NLC0tMWvWLJk7X3/9NVatWgVvb29UVFTA3t4eHR0dmDBhAg4dOoTU1DvHJHh4eOCNN95g7tTU1KBHjx4oKyvD+PHjJe707NkTmzZtwgsvvCBxJy4uDtOnT8fJkyeRn58Pc3PzP3Xn4sWLKC4uho2NDaysrDBv3jy89957End++OEHrFixAjdu3EB5eTns7e0BABMnTpS5s3v3buZOdXU1nJycUFNTg3HjxuHnn3+WuPPcc89h27ZtCAkJQX19PVxcXJCSkoKpU6fixIkTyMvLg5mZGRwdHbFmzRqJO7169cKtW7cwf/58nD9/HkVFRbCysoKtrS0WLVokccfd3R2//vorHnzwQeZ/t27dYGxszNxJSUlhdefdd9/F2rVrmTuOjo5oaGhgtTMjI4PNu23btmHLli3MHRcXF2RlZWHy5Mk4duyYpHauW7cOO3fulLgTFBSEOXPm4OzZsygsLGTuKJVKVndEd06ePMncKS0thZ2dHczMzAy688knn+DRRx9l7jg4OKC5uRnjx4/Hd999xxb7Hh4eePnll7Fp0ybmjrOzMwoKCjBx4kQcOXIEOTk5MDExYe689NJLEnciIiIwa9YsnD59GgUFBcyd5cuX45133kFsbCyrO+fPn8eSJUuYO7a2trCwsMCsWbPw0UcfITExkc27gwcPStzp3r27xB2x7nh4eOC1117Dhg0b7upOdnY2TExM4OLigmeeeQYvvPACwsPDUV9fj549e0KtVmPGjBnMHQsLC9jb2+Phhx/Gm2++CZVKxXq2q1evytyxtrbG3Llz8f777yMhIYHNu++//x4rV66UuENEmDRpEr766iu26PLw8ICXl5fMnerqaowbNw6//PILc6dXr17MHf26k5ycLHFHrDtr1qxhfafYs/n4+EjcEXu2hQsXyvrOw4cPY9myZZK6I7rTue88cOAA1q5di9u3b7OeTaPRSNwRe7Zt27bhueeeY32ni4sLMjMzMWXKFIk7jo6OzB39vjMgIABz586VuGNrawtBELBnzx7mjru7O44fPw5BECTumJqaYtq0afjss8+YOx4eHvjoo49Y3yn2bE1NTRJ3RP9feukl1neKPVtnd8S68+STT+Lll19GREQEcyc8PByzZs3CmTNnWN3p1q0bli9fDi8vL8TGxrK6c+7cOSxZsgRXrlyR9GwzZsxg7oh955dffinpO7t374729nZMmDAB33zzjcSdXbt2YePGjQgMDGTuODg43Otl0x+ye/fuEi8vr+/+bNyfLkT/nfzTF6InTpxgd1XCw8ORkZGB+vp6XL16FQ0NDUhNTUVUVBRKSkrYEy/xyUZWVhZqamrYndbExESoVCpUVlYiOjoaOTk5KCoqQmhoKHJzc1FZWYmAgADU19dDrVYjPj4etbW18PX1RXl5OfLy8hAWFoa8vDyUlpayghkVFYXk5GQ0NDTg/Pnz0Gg0yMrKQnh4OAoLC1FYWIjIyEhUV1dLcrhy5Qo0Gg3S0tIQGRmJkpIS9sRLfLKZlZWF2tpaeHt7sxxiYmJQXl6O2NhYZGVlobi4GKGhocjJyUFlZSX8/f0lOVRXV8Pf3x+lpaXIz89nOZSVlbEcoqOjZTlkZ2cjPDwc+fn5KCoqQkREBGpqahAREYG0tDTU19fj8uXLkhyKiorYXbuKigqEhYUhMzMTdXV1uHHjBjQaDZKSkhAdHY3y8nIkJCQgPT0dJSUlkhz8/PxQX1+PuLg4qNVqdreqqKgIBQUFCA0NleUQExODpKQkaDQaXLlyBTU1NcjJyUFYWBjy8/NRUlKCsLAw1NbWshw0Gg0uXboEjUaD9PR0dpdZfOJVWVkp+Zldu3YNGo0GycnJiI6ORmlpKZKSkpCamorS0lKEhYUhOzsbNTU18PX1hUajQXx8PGJjY1FVVYWwsDAUFBSwHHJzc1FRUYHAwEDU19dDpVIhMTGR/X1VVVVJcigtLUVISAhqa2sRGRmJ1NRUaDQaXLx4ERqNBhkZGYiIiEBhYSF7WqzvTl1dHcshJSVF4k5ycrLEnaqqKvaELyEhAbGxsaioqEBUVBRyc3Ml7ujnEBsbi4SEBNTW1rKLd25ursQdsWBGRUUhJSUFjY2NbN5lZmYyd/Lz8xEVFcXcSU9PZz9fjUaD1NRUmTv6OfyRO9nZ2SyHu7lTU1MDPz8/lJaWSvwvLy+XuSPmUF9fz/wvKCgw6I5Go5G5U1xcjKysLMTFxf2hOzExMSgrK0N8fDwyMjJk/uu7ExcXx56SFBUVMf/Fn1lQUBDq6+sl7ly6dAm1tbXIzs6WuaOfQ0NDA5t36enpEv/FuaI/765fv27QnbS0NPb/z87ORnV1NW7fvs3cUavVqKyslLgj/hwMuVNfX4/r168zd8RrmHiN0XensbERFy5cuKs7ov+ZmZms7ojuREdHo6SkBKmpqUhOTpb4X11dLXOnsrKSuVNYWCj5OYh1R3Snrq6OLRpEd/Lz81FWVvan7og5FBYWIioqivmfnp4uqTv6tVN84iW6I+bQuXaWl5dDpVIxd8LCwpCTk4OKigqZO7W1tQbd0a+d0dHRLIezZ89Kaqe+O9XV1YiIiGD+d3anpKQEmZmZiI+Pl9TOmpoa5r/oTnl5OeLi4pCZmYni4mKWg+iORqNh7ohvthQXF0tqp+iOft0Rfairq5PUTn13IiMjDdYdQ7VTnHe1tbXM/+TkZMTExKC0tBSJiYl3dae+vp65U1VVhdDQUBQWFjJ3cnNzUV5ebtCda9euobq6+k/dMVR3ioqKkJeXJ3Gns/+iO6WlpUhJSUFKSkqX3ImMjEReXp7Mnc51R3SnsrJS4o5+DqI7+v2OvjsFBQXMHXHe6fuv7056errEHUN9Z0xMDCoqKhATEyNzp6qqymDduX37NsrKyiTu6Puv37OdO3eOuSNeJ4uKiljfqe9O576zuLhY4o7+vOvsTllZGdRqNes7O7vTue4EBgaipKTkrn2nvjsXLlxAfX29xJ3i4mKEh4dL3GloaDDYsxlyR7926tedxMRE1neK866qqkpWd6qqqhASEsLmhH6/I9ZOfXeuXr0q6TsLCgrQr18/9OrV6z+9lGJ0dSHa1VNz/79g4sSJWLVqFQRBwOLFi+Hk5IT29nZERUXh/vvvhyAIeOCBB6BQKPDLL7/A3NwcgiBg4cKFsLOzQ319PUJCQjBjxgwolUoMGzYMCoUCH374IQYOHAhBEDB37lxYWVmhsLAQ4eHhWLRoEZRKJQYMGADgzqsxc+fOhSAImDlzJszMzBAXF4eEhAQIggClUgk3NzcQEbKysuDg4AClUonJkyfDxMQEPj4+KCkpgSAIWLJkCXr06IGOjg6oVCoMHTqU5WBkZIRjx45BoVCwHOzt7dHQ0ICwsDBMmTIFgiBg+PDhUCgU+Oyzz+Dh4QFBEDBv3jxYW1uzC/qCBQsgCAIGDhzI/i6nT58OpVKJWbNmwdzcHMnJyVCr1VAqlVAqlfDw8ABw59UJGxsbKJVKTJ06FSYmJvD390d+fj7LwcXFBVqtFnFxcezvcdy4cTAyMsKpU6fQ2toKQRCwaNEidO/eHc3NzQgLC8PEiRMhCALuv/9+KBQKfPXVV+jRowcEQcD8+fNhY2PDmvB58+ZBEAQMHjwYALB7926MHz8eSqUSs2fPhoWFBdLT06FSqeDp6QmlUok+ffoAuPOqmKmpKQRBwNSpU2FqaoqQkBBkZmZCEAR4enqiZ8+e0Ol0SExMRJ8+fSAIAsaPHw9jY2OcP38ejY2NUCqVWLx4MXv6Gh4ejrFjx0IQBIwaNQoKhQLfffcd7O3tWQ62traorq5GSEgIZs+eDUEQMGTIECgUCuzfvx8jR46EIAiYPXs2LC0tkZOTg8jISCxZsgRKpRL9+vUDcOcVJSKCIAiYPn06TE1NERkZiZSUFJZDr169QERITU2Fq6srBEHAxIkTYWxsjCtXrqC6ulriTltbG6KiojBq1CgIgoAxY8ZAoVDg559/hqWlJZRKJXOnrq4OYWFhmDFjBgRBwNChQ6FQKPDBBx9gyJAhEAQBc+bMgZWVFQoKChAREYFFixZBEAT0798fwJ1X48S5OGPGDJiZmUGtViMpKYnNO9Gd9PR0ODk5QRAETJ48GcbGxuzJsVKplLgTHR2NYcOGSdw5evQojIyMmDvdunVDQ0MDQkJCMHXqVIk7n376KfuZz507F9bW1qxRWbhwocQdnU7H/g5mzpwJc3NzJCUlGXQnJyeH3UmeMmUKTExM4Ofnh4KCAiiVSnh6esLZ2RlarRZqtRqDBg2SuHPy5El0dHRAqVQyd5qamhAaGopJkyZJ3Dl48CB69uzJ/LexsWFNeGd3TE1NMWHCBAiCgFmzZjF3YmJiZO4UFxez66joTnBwMLKzs5n/ojvx8fHo27cvBEHAhAkTYGRkhHPnzqGpqYn57+DggJaWFkRERMjc+fbbb9G9e3eJO2LxnzNnjsSdffv2sXkrupOdnY2oqCjmTt++fQGAvQ6q747YjIk5iO4kJyejV69eEncuX76Mmpoa5o6joyPa2toQGRkpc+fHH3+ElZUVBEHAggULmDuhoaEyd95//32ZO/n5+YiIiMDixYuhVCqZOw0NDWwuiu7ExsYiMTGR+f9H7ty4cQNlZWUsXycnJ3R0dCAmJgbDhw+HUqlk7vz6668wNjaWuKPRaBAWFoZp06ZBEARWOz/55BP2MxfdERvGhQsXQqlUMnc6Ojowc+ZMiTuJiYmIj49n7ri7uwO48+qknZ2dxJ3bt2+jsLCQ5SC6o1KpMHjwYIk7v/32G7RaLZt39vb2aGpqQlhYGCZPngylUsnc+fLLL9n1srM78+fPh1KpZO4YGxuzuiW6k5qaipiYGJaD+NsHioqKYGFhwWqnqakpgoKCmDuenp5wcXGBTqdDQkIC+vXrx+qOkZERzp49i+bmZpk74eHhGD9+PARBwMiRI6FQKPDNN9/AwcFB5k5oaKjEHQDYu3cvxowZw2qnpaUlsrKyEBUVxfwX3amsrISRkRGUSiVzR7yRIebg6urK3HF3d2f+GxsbsxtZhtwZM2YMBEHA6NGjmTvW1tYSd2praxESEoJZs2ZBEATcd999UCgUeO+99zB06FAolUrMnTsXlpaWyMvLQ2RkpEF32tvbmf9mZmaIiYlBcnKyzJ20tDQ4OztDEARMmjQJxsbGuH79OioqKljdEfvO6OhojBgxgvkvuiP2GgsWLGDuhIaGytz5+OOP0b9/f0nfKd4MFWun2He2t7ez/mHGjBkwNzdHfHw84uLiWN/p7u4OIkJ2djbrQcS+89atWygqKpK5Exsby65BY8eOhZGREU6cOAEiYnXH3t4ejY2NzB1BEDBixAgoFAp88cUX7Gcu9p3iInz+/PkQBAGDBg1i7oh968yZM5k7arWazTvRHfENILHumJiYIDAwELm5uax2iu6o1WoMGDBA4s6ZM2fQ0tJisO8Ua5/ozqFDh9j1Uuw7xS1hYq8vurNnzx488MADrO5YWFggMzPToDsVFRXsOjpt2jSYmpr+pfXOPwlF53en/07GjRtH0dHR9+z7cTgcDofD4XA4HA7n3qFQKGKIaNyfjevSr2/5/wVDi/K7LdT/02OJ6C+NvVef6+8a+0/9XH9l7D/1c/2Vsf8L8+5/IYe/Mvaf+rn+yth/6uf6K2P/F+bd/0IOf2XsP/Vz/ZWx/9TP9VfG/i/MO57Df9/Yf+rn+qP4fyN8j6geV69exY4dO9hBOLa2tujo6MDy5csRHx8PS0tLuLm5wcjICD///DPeffdddhCOlZUVNBoNlEolcnJyYGdnh549e7JXpL777ju2Idnc3BxFRUVYtmwZSktL4eDgACcnJygUCrzyyis4e/YsgDsbkk1NTREfH4+1a9eyTdXdu3cHADz55JPw8/ODiYkJPDw8YGxsDB8fHzz//PPsIBw7OztotVqsWLECsbGxsLCwYDkcO3YMe/bsYQcSWFtbs1dEMzMzYWtry3L49NNP8dVXX6G9vR0eHh6wsLBAaWkpHnzwQRQXF6N79+7o0aMHFAoFXnvtNZw8eRJEdzbzm5mZITk5GY8++ig7CEfcVP3MM8/Ax8cHJiYmcHd3Z6/mbtmyhR1I0K1bN+h0OqxatQrR0dGSHE6ePIm3336bHUhgbW3NXjdKS0uDjY0NXF1d2euFX3zxBdvMb2lpicrKSgiCgMLCQtjb28PZ2RkKhQLvvPMOjh49CiKCu7s7zMzMkJGRgVWrVqGyshJOTk5wdHQEAGzZsgXXrl2DsbExyyEkJASbNm1iBxJ069YNALB69WqEh4fD3Nwcbm5u7NXc119/nW3mt7GxQVtbG5YuXYrk5GRYW1ujV69e7PXCjz/+mB2EY2lpiZqaGiiVSuTn56Nbt25wcXGBQqHA3r178csvv7CDcMzNzZGbm4uVK1eivLwcjo6OcHR0hEKhwPPPP49Lly6xAwlMTU0RHR2Np556ih0iJR528vjjjyM4OBhmZmZwd3dnr+bu3LlT4k57ezsefPBBJCQkwMrKCr169YKRkRF++uknvP/+++wwDysrK9TX19/Vne+//54d5mFubo7CwkIsX75c5s6OHTtw7tw5diCBqakp1Go11q1bJ3Nn/fr18Pf3h6mpKcvh5s2bePHFF9HQ0ICePXvK3NH3/8iRI9i3bx9aWlrQq1evP3Tn448/xqFDh9hBOF1xR9//5ORkrFmzBlVVVRJ3nn76aZk7fn5+2Lp1KzsIx87ODjqdDg899JBBd9555x12EM4fufPll1/iiy++YAeSWFhYoKKiwqA7b731Fo4dOybxPz09HY888gg7REZ059lnn8X169cNuiMehNOtWzcQER555BGZO+fOncMbb7zBDpGysbFBa2srli5dipSUFDbvxNcLP/nkE4n/4uvkBQUFsLOzY+7s2bMHhw8fZod5mJmZITs7Gw899BA7CEN0Z/v27bh8+TI7RMrExASRkZHYsGEDO8xDdOexxx6TuXP58mWjIqFPAAAgAElEQVTs3LmTHYQjurNs2TIkJibC0tKSufPDDz/ggw8+kLhTV1cHQRCQm5srmXfvvvsufvjhB4k7BQUFWL58OcrKyiTuvPTSSzh//rxBd8SDcER3nnjiCQQEBLB519kdMQetVovly5cjLi5OMu9+/fVX7N+/nx3mYWVlhYaGBgiCgKysLNjY2LAcPvroI3zzzTcSd0pKSvDggw+ipKRE4s6uXbtw6tQpiTuJiYl47LHHZHVn48aN8PX1lcy727dvY9u2bQbdiYmJYfNOfL3Qy8vLoDvp6ekSdz7//HN8+eWXBt0pKiqSuXP8+HHJvEtLS2Pu6NedzZs34+bNm5J5FxwcjM2bN8vcefjhhxEZGcnmnfhqruiOWHfEbS6pqamSunPo0KE/dEe/7uzevRu//vorO0SmszuOjo5wcnICAGzbtg1XrlyR5BAREWHQnTVr1iA0NFTizqVLl7Br1y5Wd2xsbNDe3o6lS5ciKSlJUnd++OEHfPjhh5J5V1dXB6VSidzcXEndOXDgAH766SeWg7m5OfLz87FixQqD7ly4cEHijkqlwvr162V1Z926dQgMDJTUnevXr+Pll19mPZt+3xkXFyepO4cPH8aBAwdk7iiVSmRnZ8PW1pbNuw8//BDffvutxJ3i4mIsW7ZM5s7OnTtx5syZP3VHoVBgw4YN8PX1lfSdvr6+2L59O+vZRHdWrlwJlUol8f/48eOyvrOpqQlKpRIZGRkydw4ePChxp6ysDEuXLpW58+abb7LXfsV5l5qaitWrV9/VHWNjYzbvAgMD8dxzz0n6Tn13zM3NmTunT5/GW2+9JXGnpaUFS5culbnz1Vdf4bPPPpO4U1VVZdAdLy8vHDlyROJ/VlaWQXe2bt2Kq1evStz5p9HVPaLsDse9+DN27Fj6J/Paa68RAPZn7NixtG/fPrKxsWExJycn2rBhA61cuZLFjIyMaNq0abRnzx6ysLBg8V69etH27dtp+vTpLGZqakrz5s2jt99+m0xNTVm8f//+9Prrr9PgwYNZzMLCgpRKJe3cuZMUCgWLDxs2jPbt20f29vYsZmtrSw8//DA999xzkhweeOAB2r9/P9na2rKYg4MDrV+/nlavXs1iCoWCpkyZQnv37iVLS0sWd3V1pS1bttDcuXNZzMTEhObMmUPvvPMOmZmZsXjfvn3p1VdfpeHDh0tyWLJkCe3atYuMjIxYfMiQIbRv3z5ydHRkMRsbG1q5ciVt27ZNksPo0aNp3759ZGdnx2Ldu3entWvX0uOPPy7JYdKkSbRnzx6ysrJicRcXF9q8eTMtWrSIxYyNjWnWrFnk5eUlyaF37960Y8cOeuCBB1jM3NycFi1aRK+//joZGxuz+ODBg8nLy4tcXV1ZzNrampYvX07PP/+8JIeRI0fS/v37qVu3bixmb29Pjz32GK1fv14ydsKECbR3716ytrZmMWdnZ3r66adJEARJDjNmzKDdu3eTubk5i3t4eNCLL75IEydOZDEzMzNasGABvfnmm2RiYsLiAwcOpLfffpv69OnDYlZWVvTggw/Syy+/LPlcI0aMkOVgZ2dHq1evpo0bN0rGjhs3jvbv32/QnRUrVvxL7rz11lsyd9544w0aNGgQi1laWpIgCPTKK6902Z3Nmzf/qTuOjo705JNP0sMPP9wld7Zu3UqzZ8826I5+Dn379qVdu3Z1yZ377ruP9u/fTw4ODjJ3tm7dKnNn//79Bt157LHHZO7s3btX4k7Pnj3p2WefpYULF8rc6ey/6M7o0aO75M6ePXvIxcVF4s6KFSsMutPZ/7/qzqZNm0ipVEpymDlzJnl5ecnceemll2jChAkSdxYuXEhvvPGGzJ133nmHevfuLXFn2bJl9NJLL/2pO926daM1a9YYdKdz3enRowdt3LiRli9fLnNn9+7dEnfc3Nzo+eefp6lTp0rcmT9/vsx/0Z0BAwb8n9yxs7OjRx55ROaOodppyB0jIyOaOnUq7dmzp0vuzJ07V1Y7+/XrR7t27aJhw4ZJ3PH09KRXX33VoDvdu3eXuLNq1aq7utO5dj7xxBO0Zs0aiTuTJ0826M5zzz1HCxYskOQwe/ZsmTt9+vShV155hUaNGiVxZ/HixfTaa69J3BkyZAjt2bOHnJ2d/9SdUaNGGXTn8ccfpyeeeEKSw8SJE+/qjqenZ5fdGTdunEF39HMYNGgQvfPOO+Tu7i5z58UXX5TkcP/999O+ffsMurNhwwbJ2PHjx9O+ffskOYjuLFu2TDLvpk+fLqs7ojtTpkz5U3cGDBhAb775JvXv31/iztKlS2nHjh0Sd4YPH0779+836M4zzzzTZXceeughmTud606vXr1o27ZtNHPmzC6589prr9F9991n0B39HIYOHSpzx9bWllatWkVbtmyR5DBmzBjat2+fQXceffTRLrszf/78Lrmzc+dOGjlypMwdQ33n3r17qUePHjJ3tm/fLnPnbrVz7dq1Mnf27dsn6zs3bdpES5YskbnTuWcTa+fYsWO75I6Xlxe5ubnJ3ImOjv5PL6MkAIimLqwN+UJUj/Pnz7MJ+Oabb1JERATV19fT/fffT/b29vToo4/S8ePHqbq6mg4ePCiZgHFxcVRRUUGurq7k7OxMTz31FJ07d440Gg0rJDNnzqSPPvqI0tLSKDc3l6ytrcnDw4Oee+45unbtGjU3N9O6devYBDx48CDl5uaSSqUiIyMjGjRoEL300kvk5+dHLS0tNH/+fLZo+OGHH6ikpISuXbvGLt6vv/46hYWFkUajoTFjxlC3bt1o9erVdPToUaqqqqLvv/+eXbz37NlDsbGxVFVVRb1796YePXrQ+vXr6cyZM1RfX09eXl7s4v3BBx9QSkoK5efnk52dHbm5udHmzZvpypUr1NTURBs3biRTU1NasGABffHFF5SdnU3x8fFkbGxMAwYMoBdeeIF8fX2ptbWVFi9ezC7e3333HRUVFdGtW7fYxXvXrl0UEhJCDQ0NNGHCBLKzs6OHH36Yjhw5QhUVFXT48GF28fby8qKYmBiqqamh/v37k6OjI61bt45Onz5NdXV1dODAAXbxfu+99ygpKYmKioqoe/fu1KtXL3rmmWfo8uXL1NjYSFu2bGELn88++4yysrIoJSWFTE1NqV+/frR9+3by8fGh1tZWWrZsGbtp8M0331BhYSEFBASwi/fOnTspKCiImpqaaOrUqWRra0sPPfQQHT58mMrLy+nEiRPs4v32229TVFQU1dbW0pAhQ8jBwYEef/xxOnnyJNXW1tJHH33EFj4HDhyghIQEKi0tJScnJ+rZsydt3LiRLl68SA0NDfTiiy+yhc8nn3xCGRkZlJGRQRYWFtSnTx/aunUr3bx5k1paWujhhx8mc3NzWrJkCR06dIjy8/MpLCyMXbx37NhBAQEB1NzcTDNnziQbGxtasWIF/fzzz1RWVkbnzp2TuVNXV0cjRoyg7t2705o1a+jEiRNUXV1NX375JVv4iO6Ul5eTq6srubi40FNPPUXnz58njUZDu3btYgsf0Z2cnByysrJi7ly/fp2am5tp7dq1ZGZmRosWLaKvvvqKcnNzKTo62qA7c+fOZRfvH3/8kUpKSujKlSsE3Fn46LszevRo5s6xY8eoqqqKvv32WwLuLHz03fHw8GDunD17lurr6+ntt98mIyMjmjFjBn344YeUkpJCeXl5ZGtrS+7u7rR582a6evUqNTU10YYNG5g7X375JeXk5FBcXJzMnba2Nlq0aBFz5/vvv6eioiLy8fEh4M7CR9+d8ePHS9yprKykX375hYA7Cx/Rnerqaurfvz85OTlJ3Nm/fz9b+Lz//vuUlJREhYWFZG9vL3Pn2WefZe58/vnnlJWVRcnJyQbdWbp0KXPn22+/lbgzbNgwiTuTJ0+WuFNRUUHHjx8n4M5Ng3feeYeioqKopqaGBg8eLHPnww8/ZO68++67lJiYSCUlJQbdeeGFF5g7n376KWVkZFB6ejqZm5tT3759adu2bcydVatWSdwpKCig0NBQAu4sfF555RXmzowZM2TunDlzhoA7C5+33nqLuTNs2DCJOzU1NfT5558zd/bv30/x8fFUXl5OPXv2lLmzc+dO5s7HH39MaWlplJ2dTZaWltS7d2/asmULc+exxx6TuJOXl0dRUVGkUCho8ODB9PLLLzN35syZQ9bW1syd0tJSunz5MnPnjTfeoPDwcNJoNDRq1CiZO9988w1zZ+/evaRWq6myspLc3d3J2dmZnnzySebOW2+9xW64ffjhh5Samkp5eXlkY2ND7u7u9OyzzzJ3nnrqKXbDTXRHrVaTsbExDRw4kF588UXmzsKFCyXuFBcX082bN5k7r732GoWGhlJDQwONGzdO5s5PP/3E3Nm9ezepVCqqrq6mvn37kpOTEz3xxBPMnb1790rcSU5OlrizadMmunz5MjU1NdHmzZtl7iQlJZGJiQn179+fnn/+ebp16xa1traSIAgyd/z8/Jg7r776KgUHB1NTUxNNmjSJLRpEd44dOyZxJzo6mmpqamjQoEHk6OhIa9euZe588MEHBt1xdHQkV1dXevrpp+nixYvU2NhI27dvZwufTz/9lDIzMyktLU3ijre3N7W0tNDKlSvZwkd0JyQkROJOYGAgNTU10fTp09kNt19++YXKysro9OnTEnciIyOprq6Ohg4dSt27d6fHHnuMfvvtN6qpqaHPPvtM5k5ZWRm5uLiQi4sLbdiwgS5cuEANDQ30yiuvkLGxMc2ePZs+/vhjSk9Pp6ysLIk7N27coJaWFlqzZg1b+IjuREZGStzx9/enlpYWmj17NrtZ/dNPP1FpaSldvHjRoDsjR46U9Z1ff/215KaB6I6bmxtzR+w7xQXMzJkz7+qO2HeuX79e0nfm5ORQbGwsGRkZMXdu375Nra2ttGDBAknfWVxcTDdu3JC5o9FoaOzYsdStWzd65JFH6OjRo1RZWUk//vgj6zv13enTpw9zR+w79+zZw/pO0Z2CggLq1q0bubm50aZNm1jfuWnTJnbTQOw7ExMTDbqjVCrZDTex77x9+zbrO0V3GhsbaeLEicydX3/9lSoqKujIkSOs7xTdqa2tpYEDBzJ3Tp06RbW1tfTee+9J+s7ExEQqLi4mBwcH5s6lS5eosbGRtm3bxtz57LPPKDMzk1JTU8nMzEziTmtrK61YsYK5880331BBQcF/egklgy9E/w8kJSVRXl6eJNbW1kYBAQHU3t4uicfGxlJpaakkVldXR+Hh4aTVaiXxiIgIqq6ulsRKS0tJrVaTTqeTxIODg0mj0UhiOTk5lJqaKonpdDrW3OiTkpJCOTk5klh7ezv5+/tTW1ubJK5Wq6m4uFgS02g0FBoaSh0dHZJ4ZGQkVVZWSmLl5eWkUqlkOYSEhFB9fb0klpeXR8nJybKxAQEB1NTUJImJDZM+HR0d5O/vT62trZJ4fHw8FRUVSWKNjY0UHBwsyyE6OpoqKiokscrKSoqOjpZ9rrCwMKqtrZXECgoKKDExUTY2MDCQGhsbJbGMjAzKzMyUxLRarcEcEhMTqbCwUBJraWmhwMBA2byLiYmh8vJySay6upoiIyNl8y48PJxqamoksaKiIoqPj5flEBQURA0NDZJYVlYWpaenS2I6nY4VVX0MudPa2tpld2pra7vsTklJyV9yJy0tzWAOhtzJzc2VxP7InZKSEknsj9ypqqqSxMrKyrrsTm5u7j/SnYqKCoqJiZF9rtDQUKqrq5PECgoKKCkpyWAOnd1JT0/vsjsJCQkyd5qbmykoKEiWw93ciYqKks27sLAwmTuFhYWUkJDQJXcyMzMpIyNDEtPpdGwxp09SUhLl5+dLYq2trQb9V6lUVFZWJonV1tZSRESEQf8NuRMXF2cwh87uZGdn/8vuBAQEdMmd+vp6CgsLk+VwN3diY2O77E5KSopsrL+/v8yd1NRUWe0U3emcQ1xcnEF3QkJCZPMuKipKVjv/ijv5+fkG3TFUd8QFkz7/Dneio6Nl7lRVVd3Vnc61827uBAYGdtkdQ3UnMTHxX3Knpqbmru509r+4uNigO4bqTlZWVpfdSU5Ovmvf2XneGaqdf8Wd0tJSg+4EBwd3yR0xh3/Vnc59Z0NDQ5fdKS8v/0vu3K12/ivuxMfHy9xpamq6qzuda+e/y53OOfzT6OpClJ+ay+FwOBwOh8PhcDicfwv81Nz/A1FRUfD390d7ezuLtbe348iRIygtLZWM9ff3R3h4OHQ6HYvV19fj+PHjqKmpkYy9fv061Gq15JSroqIi9ouB9Tl37hxSU1MlY9PS0nDt2jW0tLSwGBHhxIkTyMvLk3x9TEwMbt++Lcmho6MDR44cQUlJiWRsUFAQQkNDodVqWayhoQHHjh1DVVWVZOzNmzehUqkkn6u0tBRnzpxBfX29ZOyFCxeQkpIiGZuRkYErV66gublZMva3335DTk6OJKZWq3Hr1i20tbWxmFarxZEjR1BcXCwZGxISguDgYEkOTU1NOHr0KCorKyVjfXx8EB0dLfmZVVRU4NSpU6irq5OMvXTpEpKSkiQ5ZGdn49KlS2hqapKMPXXqFLKysiSx+Ph4eHt7o7W1lcV0Oh2OHj2KwsJCydjw8HAEBQWho6ODxVpbW3HkyBGUl5dLxt6+fRtRUVGSHKqrq/Hbb7+htrZWMvbKlStISEiQ5JCXl4cLFy6gsbFRMvbMmTPIyMiQxJKSknDjxg1JDkSEY8eOIT8/XzI2MjIS/v7+khza2tpw5MgRlJWVScb6+/sjIiJCkkNdXd1d3YmLi5PkUFhYiHPnzqGhoUEy9ty5c0hLS5PEUlNTcf36dZk7x48fN+iOn59fl9wJDAxEWFhYl92JjY2V5FBSUvK3uePr69tld0JCQrrsTkxMjORzlZeX4/Tp01125/LlyzJ3Tp48adAdHx8fSQ53cycsLEzmTktLC44cOYKKigrJWF9fX5k7VVVVOHnypCwHQ+7k5ubi4sWLXXInMTERN2/elLlz9OhRFBQUSMZGREQgICCgS+74+fkZdOfEiRMyd65du2bQnfPnz8vcOXv2rMydlJSULrsTHR19V3c6105D7mg0Ghw/fpz9TlaRGzduyNwpLi7G2bNnZbXz/PnzMnfS09Nx9epVmTsnTpyQuRMbG9tld4KDg+/qTmf/vb297+pOZ/8vXrwocycrK8ugO6dOnUJ2drYkFhcXd1d3ioqKJGP/LncuX76MxMTELrlz+vRpZGZmSmL/Lnc6105D7tTW1t7Vnfj4eEkOBQUFd3UnPT1dEktOTv5L7nS17wwICEB4eLjMnWPHjhl0p3Pf+UfudO47Dbkj9p25ubmSr1epVPD19ZXkILrTuXYGBwfL+s7Gxsa7utO57ywrK7urO8nJyZKxmZmZuHLlisG6Y8idzn2nTqfDkSNHZO6EhobK+s7m5maD7ty6dUvWd1ZWVnbZnZycnC67819LVx6b/rv+/NNfzRX3G4nv5R87doxycnJo6NChsj0tH3zwAQGQ7GlJS0sjV1dX2Z6WF154gYA7m/nF9/LVajVZW1tL9rTk5ubSqlWrCIDkvfyAgAAyMjIiKysrtqelsLCQpk2bJnsvX9wzIb6Xf+TIEcrJyaERI0bI9rR8/vnnBECypyUtLY08PDxke1p27txJ+H0zv7inJT4+nuzs7Nh7+Z9//jllZ2ezQ1D038sPDg4mExMT9l7+t99+S0VFRTRr1izZnpYLFy4Qft/ML76Xn5ubyw5B0X8v/9ChQ4TfN/OL7+VnZGRQ37592Xv54p6WN998kwBI3stPTEyk7t27y/a0PPXUU2wzv/hefkREBJmamsr2tIgHuejvaRH36urvacnPz2cHOejvafnhhx/YZn5xT0tWVhYNHDiQbeYX97Ts2bOHbeYX97QkJydTjx492GZ+cU+LeIBInz592J6W6OhosrCwYHtavv76a8rPz2eHIA0ZMoTtaRH36urvacnPz2eHII0aNYrtaRH3TOjvacnOzqb77rtPspdarVbT+++/L3Hn3LlzlJqaSj179pTspU5NTWWHb+i7ExsbS1ZWVrK91OJBDoMGDWLu+Pn5MXfEPS2FhYXsIJf777+fuXPy5EmJO0ePHpW4o7+n5dNPPyXgzkEY4p6W9PR0cnd3l+ylTk5Oph07dkjcuXLlCsXHx5Otra1sT4t4CMqAAQMk7hgbG8v2tIiHUYh7qYODg9k+d3138vLy2CEo4l7q6Oho+vrrr//UHXFPyxtvvEHAnYMw9N2xt7eX7GnJyspiBwiJ+0G9vb0pPDxc4o64l1o8jELcSx0YGEhXr14l/H4QhuhOXl4eO8hB3EsdGRnJ9rl3dmfAgAHMnQMHDlB8fDzt3r1b5k5SUhI5OTkxd8S91Js2bWLubN26lW7cuEFRUVFkbm4uc0c8BEncS+3v70/e3t4ydwoKCiTuvPnmmxQeHs72uXd2Z8iQIbJzCN599112EIZ4DkFKSorMnbS0NHboW+/evdk5BCqVyqA74gFi+nup/fz8SKFQyNwRD3LRP4fgt99+M+iOePiW/jkEn3zyCXNHPIcgLS2N3NzcZOcQiAemiXupr1y5QnFxcWRjYyNxJycnhx2CIu6lvnXrFgUFBTF3xHMIiouLacaMGbJzCMR97uJ+ULHuiIeg6J9DcPDgQVY7161bx9zp06eP7BwC8RBE/b3UCQkJZG9vT6amphJ3xAOE9PdSh4WFkYmJicydefPmyc4hEPe5i3upRXfEw/f0zyH47rvvmDuPP/44/fbbb5SZmSlzJyEhgby8vJg7GzduZO44OjrKziF4+umnCbhzAJt4DkFkZCRzZ8mSJcwd8SAX/XMIxL26+nup8/Pz2QFio0ePZucQiPvc9fdSZ2Vl0eDBg2XnEBw4cEDizvnz5yk5OZmcnZ1l5xCIB1eJ7ly/fp1iYmLI0tKSHcB28OBBysvLYweI6bvj6+tLCoVCspe6oKDAoDv6fae4lzonJ4cdvqV/DsFHH30kcefs2bOUmppKbm5urO8U3REPfdI/h0B0p/Ne6kceeYT1neI5BKI7+n1nUVERO0BQ/xyCs2fPStwR+07RHbHvjImJoS+//FLizunTpyk9PZ169+4tO4dg165dBt3p1q2bbC/1unXrWN8puhMaGsr6TnEvdVFRETt8U/8cgkuXLkncOXz4MOXl5dGYMWMIv++lFt0R97nrn0OQmZlJ/fv3l+ylTkhIoLfffpv1neI5BElJSeTg4CA7h0A8uK6zO2ZmZuzwQrHvXLx4saTvNLQN6j8Nuvhq7j/vvN//IOLdttraWly9ehVarRY1NTXsTlNkZCR0Oh20Wi27q1VeXo7Lly9Dq9WiqKgIzc3N0Gq1CA4OZmPFuxYFBQW4ePEitFotBg8eDJ1Oh7a2Nvj5+UGn00Gn07E7TZmZmbhw4QK0Wi1cXFwA3Lnj6u3tzf6/4udNTExkMSOjOw+56+rqcO3aNWi1Wmg0GnanSbwzo9Pp2J2qyspKlkNJSQkaGxuh0+kQEhLCxoo5FBUVsRzuu+8+aLVatLe3w8/PD1qtFjqdjt1pzs7OZjn06tULwJ27Rt7e3tBqtSAi9mQtOTmZ5WBubg7gzhPm69evsxzEO00xMTHQarXQarXsZ1NVVYUrV65Aq9WitLQUGo0GOp2O3XnT6XTsrmVJSQkuXboErVaLESNGoL29HR0dHfD392djxbtlOTk5LIfevXsDuHPX2MfHR5ZDamoq+/uytrYGcOcpmZhDc3Mze8KhVqvZWPHuZHV1NcuhoqICdXV1ICL29ECn07GnFqWlpSyH0aNHo7W1FR0dHQgMDGRjxSdNeXl5uHjxInQ6Hfr16wciQmtrK3x9fdlYcT6npaWxmHhsfmNjI27cuAGtVovW1lb2dCAuLo6NFe8i6rtTXV2NmpoaEBEiIiLYz0ycH/ru5Ofno6WlBVqtFkFBQWxsZ3d0Oh0GDhwIIkJbWxtu377NxoruZGRksLHiUedNTU24efMmtFotOjo62JO1hIQElgP9fhdSdEen06Guro65ExUVxcaKd0grKipw5coVFhPdEe+W6udQVFSES5cuQafTYciQITJ39P9usrKyWA6urq4yd3Q6HZt3SUlJ7OvNzMy67I741FN0R6fTGXRHq9WyJ37FxcUsh+HDh6Ojo0Pijn4O+u54eHgwd27dusXmvphDSkoK+3rRHY1Ggxs3bkCn06GpqYm5Exsby8aKd8Wrq6tx9epV6HQ6VFRUoL6+XuKOVquVuHP58mXodDrcf//9aGtrk7ij1Wol7og59O3bl827P3JHq9VK3Ll58yZ0Oh1aWlrYNVd0R6vVsqcmtbW1bN5VV1ejtrZW5o54XSorK2P+5+XlSdzpXHfy8/PZNXvgwIHM19u3b7Ox+u6I+eq7I9ad9vZ2iTvi13fFHXGsvjv6tbOpqemudaewsJDlMGTIEPZZDNXOrKwslkPPnj1l7uhfs/XdEX/9QX19PaudjY2NzJOYmBiWg+iTfu0sLS1FQ0MDc0ccq++OmIPoTnt7O/z9/VkOhtxxd3eXuaOfQ0pKCvteVlZWzB3R/6amJvZ0MDY2ln0v8WlM57ojuiO+8XW3uqPvTkBAgKx2ik9BO7tz69Yt9nMw5I74q84aGhpY3WlubmbuqNVqNlZ8WldTU8PqTlVVFXNHfHqoP5f03RkzZgxaW1uh1WoN1k59dwYMGCCrnURksO6IvyZE9F+81nd2R6fTsae5+rWztrZW0nd2vubru1NYWIimpibWd3bOobCwkF2z9ftOQ7UzMzOT5dC57xTH6ved4vcyNjaWuVNfX8/ciY6OZl8vXsf13SkuLmbuiG8a3K3uDB06VOJO57qTnZ3NcnBzc2P+iz2b/t9jcnIyi1lYWEjc0el0aGxsZO6oVCo2Vnz7TL/ulJeXG6w7nftOse6Ifafojv71XXRHp9OhT58+Ev87153U1FT29XZ2dqvaG44AACAASURBVBg9ejT+2+ALUT1GjRqF559/HoIgYPr06TAzM0N7ezvUajUmTJgAT09PtqA6fvw4nJ2dIQgCJk2aBGNjY9TX1yM6Ohrz5s3D4sWLWSG3trbG2LFjIQgCHnjgASgUChQWFiIhIQGenp5YuHAh7OzsANwp5CtXroQgCBg6dCgUCgXi4uKQm5sLQRAwd+5cWFlZgYiQnp6O3r17Q6lUYsCAAQDuvELT2NgIQRAwc+ZMmJmZoaOjA2q1Gg888ACUSiWT89SpU+jWrRsEQcDkyZNhYmKChoYGxMTEYPbs2ViyZAl69OgBAPjmm28wfPhwCIKAsWPHwsjICKWlpYiPj8eSJUuwcOFC1nw1NzdDqVRCEAQMHz4cCoUCycnJyMrKgiAImDdvHms2s7Ky4OrqCkEQMHDgQAB3Xt2qra2FIAiYNWsWzM3NodVqkZCQgJEjR0KpVLLG9vz587C0tIQgCJg6dSpMTEzQ3NwMlUqFGTNmYMmSJeyC+uOPP2Lw4MEQBAHjxo2DkZERKioqoFarsWjRIixatIj9vi+tVot58+ZBEATcf//9UCgUSE9PR1paGgRBwPz582FjYwPgziJpw4YNEAQBgwcPBnDn1Q3xd8XNnj0bFhYW0Ol0SExMxNChQ6FUKtkF5vLlyzAxMYFSqcS0adNgamqK1tZWxMbGYsqUKfD09GQN1eHDh9GnTx8IgoDx48fD2NgY1dXVUKlUWLBgARYvXsx+V56xsTGmT58OQRAwatQoKBQK5OTkIDk5GUqlEgsWLICtrS2AO8X58ccfhyAIGDJkCBQKBaKiolBcXAxBEDBnzhxYWlqCiJCSkoKBAwdCEAT07dsXAFjDILpjamqKtrY2xMbGYuLEiRJ3jh07hp49e0IQBEycOBHGxsaoq6uDSqXCvHnzsGTJElbILS0tMX78eAiCgDFjxkChUKCgoACJiYkyd2pra/HQQw9J3FGr1SgoKGA5iO6kpaWxv8f+/fsDuPMKTUtLCwRBwIwZMyTujB07VuLOyZMn4eDgwNwxNjZm7syZM0fizqFDhzBy5Ejmv5GREUpKSpg7ixYtYs1XU1MTBEGQuJOUlNRldwICAtjvlZw5cyZzJz4+HqNGjZK4c+7cOVhbW0MQBEyZMgUmJiZoampi7nh6esLZ2RkA8P3338vcKS8vR1xcHHNH9L+jowPz58+XuZOens5yEN3Jz8+Hk5OTzB3x9/vOmjVL4s6wYcMk7ly6dAmmpqbMf1NTU7S0tCA2NhZTp07FkiVLmDu//PIL+vbtC0EQMGHCBBgZGaGqqgpqtRoLFy7EokWLmDtGRkaYMWOGxJ3s7GykpqZCqVRi/vz5zJ3S0lKsXbtW4k5kZCRKSkqY//ruDBo0SOLOtWvXQEQG3Zk0aRI8PT3ZzYijR4+yn7m+O2q1mtUd0R0LCwtMnDhR4k5+fj6SkpLg6emJBQsWMHdqamrw8MMPS9yJjY016E56ejr69u0LpVLJ3PHx8bmrO+PGjYOnp+cfuqPRaKBSqZg7Yu38+uuvMWrUKIk7xcXFSEhIYHVHf+HS2Z3ExETk5OSweScu1DIyMuDm5galUsnc8ff3h0ajkbmjVqsxevRoKJVKtig8e/YsbGxsDLozc+ZMLFmyhLnz3Xff4b777pO5o1arsXjxYok7bW1tWLhwIQRBwIgRI6BQKJCamoqMjAyZO3l5eejRowcEQcCgQYMA3HntUfwdhZ3dGT58OJRKJbuhevHiRYPuqFQqTJs2DZ6enqx2/vzzz+jXr1+X3AGAWbNmQRAEjBw5EgqFAllZWQbdKS4uxvr165k7wJ3XbUtLS9m8s7CwABEhOTkZQ4YMgVKplLgDQOaOSqXC5MmTJe4cOXIEbm5uLAdjY2PU1tZCpVJh/vz5EnfMzMwwadIkCIKA0aNHQ6FQIC8vD0lJSax2iu5UVVVh9erVEAQB9913HxQKBVQqFXNn7ty5zP/U1FT069dP4o63tzfa29uhVCqZO+3t7YiNjcX48eOhVCpZ7Txx4gT7mYt9593c+eqrrzBmzBhJ31lUVIT4+HhWO0V3NBoNli1bBkEQMGzYMCgUCiQkJMjcISJkZGTA3d0dgiCwvtPPz4/5N2PGDOZOXFwcxowZI3HnzJkzsLOzk/SdjY2NUKlUmDVrlsydYcOGSfrOsrIyxMXFydxpbW3FokWLZO5kZmbKamdubi7r30V3goKCUFNTI+k7dTodEhISMGLECIk7Fy5cgLm5uazvjImJwfTp0yXu/PTTTxgwYADr2YyMjFBZWQmVSoVFixZh8eLFrO8kIsyePVviTmbm/2PvvaOiurrG/w0ivakUgUFNYkEsX/WxxxqN0Rg1RpMYSzRqLLHEEixgN3ZQig0VUVREEewNuwIW7J3eGXoZOszM+f3B2vu9Z+5F8U15fdZv9lr3n7uOGXbmfNiHmbs/Ow7evHlD505kJz09HX755ReOnf/W0MqKtKENbWhDG9rQhja0oQ1taEMbf0toZUX/ixA2KWPgo3x1WVtdXc01JL9rbVVVFUh9CFDbWs3Ax1zqsvZjzeFD1uKjWHVZW11dDSqVqk5rPySHysrKv5Tvh+SgVCo/yhw+ZN/hY5t1fa1/kx2hCONda///yM4/kYOWnQ9np645aOvOu9dKxYfkoGXn/z6Hf4qdf7vu/Lezo62dta/9GNj5b416q1at+tdebM+ePaumTZv2r73eh8bVq1fhhx9+gIyMDDAzM4PGjRuDjo4ODBgwAK5duwZKpRJkMhkYGhpCQEAAzJ49G7Kzs6FBgwZgbW0NVVVV0L17d8BvfWUyGejr68PmzZth1apVkJ+fD9bW1tCwYUPIzc2Fbt26wdu3b0FPTw9kMhno6enBggULYPv27VBcXAyNGzcGc3NziImJgb59+0JSUhIYGhqCg4MD1KtXD8aPHw9Hjx6F8vJysLe3BxMTE7h9+zaMHDkS0tPTwdTUFOzs7EBXVxe++uoruHz5MlRXV1MOQUFBMG3aNMjKygJLS0uwsbEBpVIJPXv2hPv37wNjDBwdHUFfXx88PT3Bzc0N8vLywMrKCho1agSFhYXQtWtXePXqFdSrV49yWLJkCWzbtg0UCgXY2tqChYUFJCYmQq9evSAhIQEMDAwoh19++QUCAgKgrKwM7O3twdTUFO7duwfDhg2DtLQ0MDExAXt7e9DR0YGhQ4fC+fPnoaqqCmQyGRgZGUFoaChMnjwZMjMzwcLCAmxtbUGlUkGvXr2oTwdz2LlzJyxatAjy8vKgYcOG0KhRIygpKYFu3brB8+fPQVdXFxwdHUFPTw9WrFgBmzdvhqKiIrCxsQFLS0tIS0uDzz//HOLi4kBfXx9kMhnUq1cPpk+fDn5+flBaWgp2dnZgZmYGjx49gsGDB0NaWhoYGRmBvb096OrqwrfffgunT5+GyspKcHBwAGNjYzh37hxMmDABMjMzad8xxqBv377UtyKTycDAwAD27t0L8+fPh9zcXGjYsCFYWVlBeXk5dOvWDZ48eQI6Ojrg6OgI9evXh7Vr18K6deugsLAQbGxsoEGDBpCVlQXdu3eHmJgYqF+/PuUwe/Zs8PX1hZKSEsrhxYsXMHDgQEhOTgYjIyNwcHAAXV1d+P777+HEiRNQUVFBOVy5cgV+/PFHkMvlYGpqSo9DDhgwAK5fv86xc/DgQZg9ezbk5OSApaUlsdOtWzd49OgRAADlsGnTJli1ahUUFBQQOzk5OdC9e3eIjo7m9t38+fNF7Lx9+xb69+8PycnJ3L4bN24cBAUFcezcvHkTRo0aBRkZGRw7gwYNosenMIejR4/C9OnTITs7m9iprq6GHj16iNjZunUrLFu2DPLz84mdgoIC6NatG7GD+27x4sUidhISEqBPnz6QmJhI+05XVxcmTZoEhw4d4ti5e/cuDBs2DNLT08HY2JjY+frrr+HChQscOyEhITB58mTIysri2Pn888+pxwVz2L59OyxevBjy8vKgUaNGYGVlBcXFxdCtWzd48eIF7Ts9PT1YtmwZbNmyBYqKisDW1hYsLS0hNTUVevXqBfHx8Rw7v/76K/j7+0NJSQnl8PDhQxgyZAikpaVRDrq6ujBixAg4c+YMt+/Onj1L7JibmxM7ffr0oV5jR0dHMDAwgD179sCCBQs4dsrKyqBbt27w7Nkzjp01a9bA+vXrOXbkcjn07NkTYmNjOXZmzZolYuf58+fw5ZdfQkpKioidkJAQKC8vpxwuX74MY8aMAblcDmZmZvQoYf/+/clEi/vO398f5syZAzk5OVR3KioqoHv37vD48WOOnQ0bNsCaNWu4uiNkR1h35s2bBzt37gSFQiHJjrDu/PTTT3Ds2DHKwcTEBG7cuCFiR0dHB7788ku4cuUKl0NgYCDMmDFDkp0HDx5w7Hh4eIjYyc/Ph27dusHr1685dlxcXMDLywuKioqgcePGYGFhAXFxccSOgYEBsTNx4kQ4fPgwlJaW0r6LiIiA4cOHQ3p6OtUdXV1dGDJkCFy8eJFj58SJEzB16lRR3enZsyfcvXuXqzs+Pj6wZMkSyM3NJXYUCgV07doVXr58ydUdNzc3cHd359hJSUmRZGfq1Klw4MABLoeoqChJdoYPHw5nz56FyspKyuHMmTPw888/14kdX19fWLhwIeTk5LyXnVWrVsHGjRuhsLCQcpDL5dCjRw8ROzNnzoS9e/cS/2ZmZvDs2TNJdkaNGgWhoaFQUVEBMpkMjI2N4dKlSzB27Fg6syE7/fr1I4s75uDv7w9z587l2KmsrIRu3bqJ2Fm/fj2sXbuWqzvZ2dkcO46OjlCvXj34/fffYefOnVBcXAx2dnZgbm4Or1+/hgEDBojYGTNmDBw/fpxj59q1a/D999+L2Bk4cCBcvXoVqqurwdHREQwNDeHw4cPw22+/ic6dPXr0gKioKI4dd3d3WLFiBcd/bez88ccf4O3tTfxbWFhAbGws9O3bl2OnXr168PPPP8ORI0egrKyMcggPD4dvv/1WxM7gwYPh0qVLHDvBwcEwdepUru4olUqqO0J2vL29YenSpdy5s6ioiGqnkB1XV1fw8PDg2ElKSoLevXtDQkICx86UKVNE7Dx48ACGDh1K506s/8OGDROxc+rUKZg0aRLHv1qtht69e1OfLu67Xbt2wR9//EH8N2rUCEpLS6Fr164idlauXCliJyMjA3r27AlxcXFQv3592nczZsyAffv2cex8bLF69Wr5qlWr9rx3YV2MRn/X9bFbc3/77TcGAHTZ29uz1atXMx0dHbqnp6fHRo8eTbZHvD777DO2fPlybq2hoSGbPHky2V7xateuHVlo8TI1NWXz589njRs35u53796dDG54NWjQgK1cuZLp6urSPR0dHTZw4EA2YcIEbm3jxo3Z6tWrubX16tVjI0eOZEOHDuXWNmvWjK1YsYLLwcDAgE2aNImMdXg5OzuT0QwvExMT9vvvvzNHR0fufpcuXdjcuXO5e5aWlmzFihVMT0+Pu9+/f3+ybuJlY2PDVq1aJcphxIgRbMSIEdzaJk2asJUrV3I56Ovrs/Hjx5OxDi8nJyfm6urK3TM2NmazZs1izZs35+536tSJ7Md4WVhYMFdXV2ZiYsLd79OnD9nP8LK2tha9D7q6umzo0KFs1KhR3FqZTMZWrVrF5VC/fn32008/kSkVrxYtWjA3NzdurZGREZs+fTrZnvHq0KEDWSjxMjc3Z4sWLWINGjTg7vfq1Yusu3g1atRI9D7o6uqyIUOGsDFjxojY0cxBT0+P/fDDD5LsLFu2TMTO1KlTyfYqZMfFxUXEzsKFC5mtrS13v0ePHmzWrFncvYYNG4py0NHRYV9++SUbP368iB3NtXp6euy7774jYx1en3zyiYh/ZAdNyXihqVOKHZlMxt3v2rUrmYM12alXrx6XwxdffPFB7AwfPlzEjib/+vr6bMKECZLsoA1Uk51PP/2Uu9+5c2dJdtzc3JiRkRF3v2/fvmzKlCkidqT23TfffEO2VyE7mvwjO2hKxatly5ZkAxayM2PGDObk5MTd79ixoyQ7ixcvZpaWliJ20LqLl5WVlST/Q4YMYT/88AO31sHBQbLu/PDDD2R7xKt58+aSdWfq1KmsXbt23Nr27duL2DEzM2MLFy5k1tbWdWJHqu4MGjSITOl42dnZSbIzatQoNnjwYBE7tdUdNCUL2Vm8eLGI/3nz5kmyg+ZgvBo0aCDJ/xdffEHWTbxsbW0la+eIESPIMo5X06ZNJevOhAkTWPfu3bm1rVu3rrXufPLJJ3ViZ9myZczQ0LBO7EjtOyl2HB0dRb+z9fX12dixY+vMzsyZM1nLli1F7CxYsEDEzpIlS5i5ubmInWnTponYkeL/66+/lmRHqnb++OOP7IsvvhCxo1k7DQ0N2bRp08iULmQH7edCdlxcXJiVlZWInZkzZ4rYkdp3gwYNIlP6+9gZPXo0Gfrx+vTTTyXrzuTJk8n2ilfbtm0l2Zk/fz6zt7fn7nfv3l2SnRUrVkieO6XYkao7I0eOJMu4kB0p/n/++WeyjAvZkaqdc+bMYc2aNXsvO5aWlmzZsmXMwMCAu9+/f3+alIBXbbVz2LBh7NtvvxWxI8X/uHHjaLoFXq1atZLkf+bMmaxFixbc/U6dOkmys3TpUmZmZsbd79OnD4uKivq//jOKC6ijNVf7h6ggzp07R3rxXbt2sZSUFFZRUcHatWvHnJycSC9eXV3NfH19Ob14VlYWKyoqYvb29pxeXKVSsRUrVnB68fz8fJaWlsbMzMw4vbharWZTpkzh9OLFxcXs+fPnTF9fn9OLq9VqNmTIEObo6Eh68fLychYWFsb09fXZ4MGD2Y4dO1hSUhKrrKxk//nPf1jLli1JL15VVcUOHDjAjI2NSS8ul8tZcXExa9KkCWvfvj1zc3Njd+/eZSqViq1bt45ZWFiQXjwvL49lZmYyS0tLGmvz5MkTplar2cyZMzm9uEKhYG/evGEGBgY01ubNmzdMrVaz4cOHc3rxsrIyduvWLZFevKqqinXv3p3U/NeuXWNVVVUsMDCQ1Px79+5lGRkZrLS0lH322Wc01iYiIoIplUq2ZcsWTi+em5vLcnJyWMOGDTm9uFqtZvPmzeP04kVFRSwuLo4ZGRlxY23UajX7/vvvOb14aWkpi4yMZPr6+pxevLq6mvXp04fG2ly5coVVVlayEydOMENDQ9KLp6WlsbKyMubk5ERjbe7cucOUSiXz8vJiZmZm7Pvvv2cHDx5kOTk5LD8/n9nY2LBOnTqxlStXsqioKKZSqdiiRYtoNMexY8dYYWEhS0pKYiYmJpxeXK1Ws3HjxtFYm9OnT7OSkhL28OFDpq+vz+nFlUolGzBgAGvWrBmbM2cOu3z5MquoqGBnz57l2ElNTWXl5eXEjlAvvnv3bhE7hYWFzM7Ojhtro1Kp2PLlyzl2CgoKOHZwrI1arWaTJ09mtra2bMqUKcTOs2fPiB0PDw9iZ/DgwaxJkyZs1qxZxM7ly5dpNMeOHTtYcnIyq6ysZJ06dWItW7ZkCxcuJHb2799Pozn8/PxYZmYmKy4uZo6OjiJ21q5dy42EysvLY3K5nFlYWHAjodRqNZsxYwY3EkqhULDXr19z7Lx9+5ap1Wo2bNgwJpPJaKxNWVkZu3HjhiQ73bp140ZCVVVVsSNHjtBoDmSnpKSEffrpp9xIKKVSyTZv3syNhMrNzWXZ2dkcO48fP2ZqtZrNnTuXGwlVVFTEYmNjmZGREevduzfHzqhRo7ixNmVlZcQOjoRCdnr16sWNhKqsrGTBwcHcSChkp2XLltxIKKVSyTw9PUXs5OXlMWtra2Ln4cOHTKVSMRcXF26sTWFhIUtMTGTGxsbcSCi1Ws3Gjh3LjYQqLS1lUVFRTF9fnxsJpVQq2RdffEHshIWFsYqKCnb69GluNAey07ZtW24kVHV1Ndu5cyc3EkrITseOHTl23NzcWIMGDWisTUFBAUtNTWWmpqbcSCi1Ws0mTZpE7Jw6dYqVlJQQO8KRUCqVin311VfEzqVLl1hFRQW7dOmSiJ2KigrWsWNHbiRUdXU18/Pz48baZGZmMoVCwRwdHbmRUCqViq1Zs4Yba5OXl8cyMjKYubk5NxJKrVaz6dOncyOhFAoFe/XqFTMwMOBGQjHG2DfffMONhCovL2fXr1/nxtogO127dhWxc+jQIW6sDbLTrFkzbiSUUqlkGzdu5Mba5OXlsezsbNagQQNuJJRarWZz5swhdk6cOMEUCgWLiYlhhoaG3EgotVrNvvvuOxE74eHhxI63tzex8/nnn4vYOX78uGgkFLIjHAmlVCrZtm3biJ2AgABix8rKihsJpVar2cKFC0XsJCQkEDs4EkqtVrMxY8aI2MFxFTjWBtnp168fx05lZSU7deqUJDvOzs7cSKjq6mq2Y8cOjp3s7GxWUFDAGjduzI2EUqlUzNXVVcROSkoKsYNjbdRqNZs4cSI3EqqkpIQ9efKE2Nm6dSuxM2jQIG4kVEVFBbtw4YJoJFRFRQXr0KEDNxKqurqa7d27l5mYmLDvvvuOY0cmk3EjoVQqFVu1ahXVzsDAQJafn18rO7/++iuzsbGhkVDFxcXs5cuXHDtYO4cOHUrnTmTn2rVropFQlZWVrEuXLtxYm6qqKhYQEMCxI5fLOXZwrI1SqWQbNmygcyeyk5WVRezgWBu1Ws1mz57NjYRSKBQsOjqaYwfPnSNHjmQODg40EqqsrIzduXOHaieOU6uqqmI9e/bkRkJVVlayoKAgbiRUeno6Ky0tZc2bNxex4+HhwY2EysnJYbm5uaxRo0bcSCi1Ws0WLFjAGjVqRCOhioqKWHx8PDMyMuJGQqnVavbjjz+Kzp0fW2j/EP1fRFJSEispKeHuVVVVsdjYWNHauLg4VlFRwd0rLi5mKSkporXR0dGi+T65ubksMzNTtPbt27dMpVJx9zIyMlh+fj53T61WE1TCSE5OZsXFxdy96upqFh0dLXqt+Ph4Vl5ezt0rKSlhSUlJorUxMTGsqqqKu4cH6rrkkJmZyfLy8kRrpXJISUlhCoWCu6dUKukALoyEhARWVlbG3SsrK2MJCQmi14qNjRXlUFBQwNLT00Vro6OjmVKp5O5lZWWx3NzcOuWQmprKioqKuHsqlUpybWJiouiXSEVFBYuPjxe9VlxcHKusrOTuFRUVsbS0tDrlkJ2dzbKzsyVz0HzP0tPTWWFhIXevtn0nxU5lZaUkO/Hx8SJ2FAqFJDsxMTGS7GRlZdUph4yMDFZQUCDKAQ9zwvhY2ZHL5ZLsSOXwd7CTmJgoeq3a2MnIyJDM4f+SnfLyckl2YmNjRewUFhZ+EDs5OTmSOWi+Z2lpaR/EjmYOtbEjVXcUCgVLTU2VzEGTnZycnL/MzofUnZiYGNFrSbFTXFzMkpOTRWtrY0eqdkrl8HewI8V/QkKCKIfS0lJJdqRywD8KNEOKnczMzL/MjhT/iYmJIv4/lJ261s5/m524uDjRa0mxU1RU9I+wk56e/kHsSJ07a2NH6txZGzuaOdTGTm11p67nzr+DHanaKVV3PpSduvKfmpoqyuFD2ant3KnJzoeeO2tjR/Pn+tiirn+Iaq252tCGNrShDW1oQxva0IY2tKGNvyXqas3VyooEcefOHQgPD6eGZIAam9e2bdvAyMiI5EUANfOrnj9/Tg3JADXDfLdv304iHFx7/PhxSEpKooZkgJohwwcPHqSGZIz9+/dDfn4+NSQD1AzdPn36NNeQzBiDHTt2gFKppMZwgJoZfDdv3qRmfoAam9e2bdvA0NCQy+Hy5cvw5MkTLoeSkhLw9vYGS0tLsLKyorUnTpyA+Ph4Lge5XA779+8nmQfGwYMHITc3lxrDAWqG7oaEhFAzP8bOnTtJ3IM5PHjwAK5evUqN8AA1BjZPT0+oX78+l8PVq1chKiqKmvkBamYxenl5gbm5OVhbW9PakydPQkxMDDXCA9QMht6zZw8182McPnwYMjMzSeYBUDN77vjx49TMj+Hr60uN+5jDo0eP4PLly1wOarUavLy8QFdXl4QEADUzuO7fvw8ODg607yorK8HT0xNMTU3BxsaG1p45cwbevHlDIiyAmqHKu3btokZ4jMDAQEhPT+dySExMhMDAQFEOe/fuheLiYpIqAAA8e/YMzp8/T838uO+8vb0BAEiEAyDNTlVVFWzbtg2MjY3B1taWY+fFixckYAKomZ+7Y8cOETvHjh2DlJQUkMlktO9SU1MhICBAkp2CggJu3718+RLOnDlDEhnMYfv27aBSqUTs3Lp1iyQyALWzc+nSJXj69CmXw7vYSUhI4NjJyMiQZOfAgQMidt68eQOhoaF1Yuf+/ftw/fp1EjABvJudhw8fkkQG4N3sxMbGcjlkZ2fD3r17wcrKimPn0KFDkJWVJWInODiYRDgYu3fvFrHz8OFDCAsL43JQq9Xg6ekJ9erVk2RHmENFRcU72RHyn5eXB76+viTCwJBiJyEhAY4ePUoSKQwpdp4+fQoXLlwQsePl5QUAPDu3b9+GiIiIOrFz/vx5ePnyJZdDbewEBQVBSkoKyTwAaua2Hjp0SMSOn58fFBYWcvvuxYsXcPbs2TqxExERAbdv35ZkR7N2SrFTXFwM27dvhwYNGnDsBAcHQ2Jioogdf39/ETv+/v6Ql5cnYufkyZNcDgA1Mxarqqq4fXfv3j24fv06l4NKpYJt27aBvr4+l8OVK1fg0aNHkuxYWFhw7ISGhtbKjmbdCQgIELETExNTKzsovakLO3p6ehw7169fr5UdMzMzjp3Tp0/D27dv68TOkSNHQC6Xc/uuNnb27NkDJSUlJJECAHjy5AlcvHhRkh0dHR2OnVu3bkFkZKQkOyYmJhw7586dE7FTWFgIO3bsIIkURlBQEKSmpnI5JCcnw+HDhyXZKSoq4vbd8+fP4ezZs6IcfHx8QK1Wc+yEh4fDnTt3uH1XXV0Nnp6esbfITAAAIABJREFUInYuXrwoOncWFxeDj4+PJDua58709HQ4cOCAJDv5+flcDq9fvxaxg+fO6urqOrNjYGDA7buwsDB4/Pgxt+9KS0vB29tbkp24uDguh8zMTNi3b58kO9nZ2dzZOTo6GkJCQkTs7Nq1i6R3mENUVJTo3KlWq2Hbtm0idq5duyY6d5aXl4OnpyeYm5uL2ImOjub2XW5uLuzevbtO7MTHx0NQUJDkubO0tJRj52MLrazofxH79++nhuQ+ffqwzZs3s8jISBLXCHsZV6xYQQ3J2I9169YtEqYIexmx+d7Y2Jh6GS9fvkySG3ymPCIighq5hb2MoaGh1DCNz5Q/ePCAJCjCXsZ9+/ZRM3+vXr3Yxo0bWWRkJGvVqhUDAO6Z8nXr1lEz/8CBA5mnpye7ffs2c3BwoEb4uXPnsitXrpAwSdjLeOXKFZINODs7s0WLFrE7d+6QBMHMzIyNHj2aHTx4kJ0+fZrERJ06dWIrVqxgUVFRJHJo2LAhGz9+PDt27Bg7ePAgNcJjL+Pdu3eZs7MzNfNPnTqVnT59mm3evJma+bGX8fbt2yRMatasGZs9eza7fPkyNX0bGhpSL+O1a9dI1CPsA0b5jrCX8dy5c6x+/foMAKiX8f79+yQQEvYyHjlyhHLAXsZ79+6x9u3bUzM/9gFv27aN9h32MkZERJC4okmTJtQHjLIBAwMD6gO+ceMGCROEfcAoEDAxMaE+4IsXL5LkQtjLOHDgQGrmxz7gY8eOUSM89jLev3+f5Fs2NjbUB7xjxw6OnS1btrCIiAhiB/ux6sIO9mNdu3aN/frrryJ2Ll26xIyNjUnAgH3AKN8SshMSEkLsYC9jVFQUSVCE7OzZs4djZ9OmTezu3bsk3xCys3btWo4dLy8vdvv2bZI+CPuAUYJmZGTEsYOyAWEf8MiRI0XsnDp1isREwj5gFDkI+4D9/f1F7Ny7d49jB/uAN23aJGLnzp07HDvYBzx//nwRO1evXiVRj7CX8ccffyR2Ro0aVSs7Dx48YL179yb+x40bx44ePcoOHz4syQ7Kd7Af6+TJk2zr1q0idsLDw0lc0bRpU+plREGckJ1r166xRo0aETvYy4jSN2EfMPZyCdm5d+8eCYSEfcBS7Dx48IBjB/uAfXx8KIe+ffsSO5999hnHzoULF9iyZcuIna+++or5+PiwmzdvMhsbG46d69evk7hG2I91+fJlETuRkZEk3xL2Mp44cYLkG8jOgwcPiB1ra2vqZfT19RWxExkZSewIexnXrFlD7GAf8K1bt5idnR3HztWrV0n6IuwDDgsLE7ETHh5OAhFzc3PqZRSy85///If6gFG+J+xlxPqvq6tLfcB3794l6Zuwl3HDhg3EDvYy3r59m4RJn3zyCfUyomxM2Mt49epVZmFhIWIH5TvCXsazZ89S7RSygxIUZCcoKIgdOnSI2ME+4Hv37pF8R9jL6OHhQTlgH/CdO3dY06ZNReyg5ErYy3j9+nViR9gHjOIqYR+wkB1hHzAKhIR9wEFBQZQD9jLev3+fxHXCPmBvb2+OHXd3dxYeHk7CNCE7KFcS9jLeuHGDRF0tWrQgdlBcI2Tn0qVLJFfDXsbIyEiSb9XGDvYy3r9/n3Xq1EnEzq5du2jfYS9jZGQkiWuE7KxatYpjx9vbm92+fZvY+eyzz4gdFKYJ+4CvXLnCTE1NuXNneHg4ieuE7Jw8eZJjB8+dXbp0EbHj5+fHsYPnTpS+Ye08c+YMW79+vYidO3fucOzMnTuXhYWFkeSyNnaEfcDff/891U5k58yZM8QO9gFHRUWxzz//XMROQEAAx8769evZ/fv3WZs2bUTsbNmyhWNn69atLDw8nDVp0oTYwT5glFwJ2bl27Rpr2LAhsYN9wCiuErJz/vx5pq+vT+xgH3D//v25cyf2AX9MAXV8NLfmT25tAEDNJxoANZ/kZGRkgFwuh4yMDJrXk5eXBxkZGZCRkQFFRUUAUPPpG95r1KgRzRHKycmh+8XFxQBQ84kp3tPT06tp0gWArKwseq3S0lIAqPl2BdcKP8mRy+V0lZWVAUDNJ+K4FnNQq9WUg1wupxwKCgrotQoKCgCg5tM3XJuenk6zn3JycujfKxQKAKj5xBRfy9DQUJSDXC6HkpISUQ7CWUhSOSgUCvq58P8hY4z+vVwup/lVUjkolUpaa2dnRznk5ua+MwdTU1OaXyWVQ2lpKa0VzojC15fL5fSeCXPAT+Q0c8D3p7CwkF4rPz+f23cZGRmQnp5O86vy8vJoLe67yspKei0LCwvKITs7W5RDWVkZ3cNP6QBqPlnEnwvfh+LiYlqLn/QBwHtzwPdBmIMUO3K5HAoLCwGAZ6dhw4YiduRyOccO5oufFGrmINx3+HPhp9HC9ywjI4NjR/P/F7KD74MmO8Icqqur6Z61tTXHjmYO5eXl3P9bITuae6m0tJTWCue2CfedJv9yuZxeX7jv0tPTOXZwrZAd/O8K+c/NzaW1uO8qKiro5zIxMRHlkJGRIWJH+HNpvg9CdnAt7lFhDsLfbVI5qFQq+rmE7GAOGRkZxD+yI5fLwdzcnGNHMwf8nS2Xy0EYmZmZlIeQHVyLn3xjvrhWyA6u1eQf1wr5x59Lkx25XA4NGzakHN5Xd/D3Euag+T5gDvi7USoHzBdzEP57tVrNrUV28vPzRTkI6461tTXxj7+zhTmUl5fTWgMDgzrXHfxZhTkIORPWTvxZNWunJjvCHGqrO8L3QaruCNnB39lS7Aj3gXDfadYdXKvJDv53KyoqKAe8h/sOc8D7UrVTWHeE55L31R1ci7nW9j5g3cnIyCB2auMf646w/mvWnXfVTmHdsbS0lMxBih3ht07CuiOVA36jhvm+q3bi/tCsO5hDfn6+KAesOxkZGWBlZcXVTs0chHVHX1+f3gupHIS1s7y8nDuzadYdPO/I5XLaX8Ic5HK5iH9h7RSygyNccN/hWiE7+DMYGRlJ1k7MV5iDcNZmbXUH1+J/8121U7P+11Y7hecdzTNbbXWntjObkB2p90xYO/Pz87lvuv9roi5/rf5d18f+jejVq1c5sxZjNU3jixcvJqMrxokTJ5i3tzcnJygqKmIuLi5kdMXw8/MjsxZGamoqfQsqbE7etm0bWSkxnj17xpm1GKtpGl+zZg1ZKTFu3rzJmbUYq5FGLF26VGTWOnXqFPP09OTkBMXFxczFxYWMrhgHDhxgu3fv5sQeGRkZnNEVw9vbm6yUGK9evaJPo4RN8evWrSOjK0Z4eDhnpWOspvHd1dWVjK4Y586dY1u3buXEHqWlpczFxYWMrhiHDx8mKx1GdnY2W7RoERldMXbu3ElGV4zo6GjOhoyxceNGMrpi3Lt3j7MhM1bT+L5s2TIyumJcvHiRjK4YFRUVbNGiRWR0xQgKCiIrJUZeXh5zcXEhKx2Gr68vGV0xEhISyEonzGHLli1kdMV4+PAhZ6VjrGbfrVixgoyuGFeuXBGxU1lZWSs7aHTFKCwsrJUdNLpipKSkSLKzdetWETtPnz7lbMiYw+rVq0Xs3LhxgzO6MlbDzpIlS0TsnDx5koyuGMXFxeyPP/6QZAeNrhjp6emS7Hh5eYnYefnypSQ7f/75p4idO3fucDZkxmrYWbp0KTt9+jSXw9mzZ8mGjFEbO4cOHSIbMkZWVpYkOzt27JBkR2h0xdiwYYOInbt373JGV8Z4doT8IztCsUd5eTlbtGgRu3TpEsfO0aNHRezk5uayRYsWkZUSY/fu3SJ24uPjOaMrxubNm0XsREVFcTZkxmpnJywsjGzIGEJ2hDkcP368VnbQ6Iqxd+9eETvJycmc0RXDw8NDxM6TJ084oyvmsHr1anbixIk6s4NWSozQ0FAROwqFgrm4uJCVEsPf35/5+vpytTM9PZ2zUmJ4enqK2Hnx4gV9CyoUe6xdu1bEzu3btzkbMmP/U3fQ6Ipx5swZsiFjIDtoQ8YICAgQsZOZmckZXTG2b98uYuft27e1soNGV4zIyEhJdtzc3MjoinHhwoV3siPMITAwUJIdFxcXETu7du0ioytGXFycJDubNm0SfZPz4MEDSXaWL19ORleM2thZtGgRGV0xkB2hFKegoKBWdtDoipGUlFQrO2h0xXj8+LEkO6tWrSKjK8a1a9c4GzJjNedOKXZCQkLI6IpRGzv79+8XnTvT0tI4kziGp6cnGV0xpNhRq9Vs7dq1ZHTFuHXrliQ7S5culWQHbcgYJSUlxI4wh4CAANG5Uy6XS7Lj4+NDNmSMN2/ecDZkjPXr14vYiYiIEJ070aCsyc758+dF586ysjLm4uIiYufIkSOic2dOTk6d2YmNja0zOx9bgFZWpA1taEMb2tCGNrShDW1oQxva+DejrrKij7PD9f8o8vLy6OtyjOrqavoaXhi5ubmg+Ud8WVkZfV2uuVYzFAoF98jdu9YWFBRwj7YB1HyTLbVWKgelUkmPsLwvh/Lycno84H0/V3FxMT2S8b61hYWF3CNG71qbn5/PPQYLUPPoDT5K9L4cKioq6DGN960tKSmhx2Xe93MVFRVxj3p8aA5qtRry8vJEa/Py8kQ/V1VVFT3S8b4cSktLuUfQ3pfDv7XvPmZ2cnJy6pSDlp2ayMnJ+SjZkcqhsrKSHul639oPZaeuOfwd7NSVf23dqX3th7CTl5f3Udadv8r/38GOFP//FDv5+fl/ad99SO38WNmprq7+KNmprXbm5+eLcvgn2fm3auc/VXdKSkr+EXb+W0NrzRVEeHg49O7dG96+fQuMMTJX9enTB4KCgiA/P59MXceOHYORI0dCXFwc1KtXDxwdHYExBu3bt4fLly+DQqEgy9XWrVth2rRpkJycDAYGBiCTyUChUECrVq0gMjKSrJEmJiawcOFCWLZsGaSnp4OpqSnY2dlBcnIytG3bFp4+fQpVVVVkGxs3bhx4enpCVlYWWFpago2NDTx48AC6d+8Ob968AbVaTbaxAQMGwOHDhyEvL49MXSdPnoRvvvkGYmNjQVdXFxwdHUFHRwc6duwI58+fh6KiIsph+/bt8Msvv0BiYiLo6+uDTCaDsrIyaN26Ndy5cwdKS0vJELd06VJYvHgxpKWlgYmJCdjZ2UFGRgY4OzvD48ePobKykix3EydOBHd3d8jMzAQLCwuwtbWFp0+fQpcuXeDVq1egUqnINjZ48GDw9/eH3NxcMsRevHgRBg8eDLGxsaCjo0PGtM6dO8Pp06ehsLCQLHd79+6F8ePHczlUVlaCs7Mz3Lx5E0pKSshMvGrVKpg/fz6kpqaCsbEx2NvbQ3Z2NrRu3RqioqKgoqKCzMTTpk2D9evX07P/jRs3htevX0OnTp3g5cuXoFKpyHI7YsQI2LNnD+Tk5EDDhg3BysoKrl69CgMGDICYmBguhx49ekBISAgUFBSQ5e7gwYPw448/QkJCAtSvXx9kMhkolUpo27YtXL16FYqLi8muun79epg9ezakpKSAkZERODg4QH5+Pjg5OcH9+/fJuGhiYgKzZ8+G1atXQ0ZGBpiZmUHjxo0hLi4O2rdvD8+fP4fq6moy9Y0ePRp27twJ2dnZ0KBBA7C2toY7d+5Anz59IDo6GgCArI+9e/eGY8eOcewEBQXBd999B/Hx8aCnpwcymQzUajW0a9eO2MEcPDw8YPr06ZCcnAyGhobg4OAACoUCnJyc4O7duxw78+fPh+XLl3PsJCUlQdu2beHZs2dQXV1N7Pz000/g5eXFsXP//n3o2bMnvHnzhvivX78+fPHFFyJ2QkNDYfjw4cS/TCYDAIAOHTrAhQsXOHZ8fHxg8uTJkJSUBAYGBuDg4AClpaXg5OQkYmfJkiUcO/b29pCWlgbOzs7w5MkTMn0aGRnBzz//LGLn8ePH0LVrV3j9+jWo1WqyDQ8ePJiMvMjO+fPnYciQISL+O3fuDGfOnOHY2bNnD0yYMIFjp6KiApydneHWrVtQWlpKdsUVK1bAggULOHaysrKgdevW8PDhQzL9Ghsbw9SpU2Hjxo0cO69evZJkZ/jw4bBv3746sdO9e3cIDQ2FwsJCsLa2hgYNGsCBAwdgzJgxHDvV1dXQpk0buH79OpSUlJBdcd26dTBnzhyOnby8PHBycoIHDx6QcdHY2BhmzZoFa9as4diJiYmB//f//h+8ePEClEol5TBq1CjYtWsXx86tW7egX79+8PbtWwAAqju9e/eG48ePQ0FBAZmJAwMDYfTo0ZLshIWFQXFxMeWwZcsWmDlzJsdOUVERsVNeXk521Xnz5sGKFSuov+1d7IwZMwZ8fHwgOzub2Ll3754kO/3794fAwEDIz88ndkJCQjh2sHZ26NABLl68CAqFguyq3t7eHDsymQxKSkqgdevWEB4eDmVlZcTOokWLYOnSpRw7qamp0KZNG2IH686ECRNg69atkJWVBebm5mBrawuPHj2Cbt26ETuYw1dffQUHDx6EvLw8squePXtWkp1OnTrB2bNnoaioiNjZvXs3TJw4EZKSkmjfVVRUQOvWrUXsLF++HP744w9IS0vj2HFycoJHjx5x7EyZMgU2bdoEmZmZxM6LFy+gU6dOVDtx3w0bNgz27dsHubm5xE5YWBgMHDiQY0dXVxe6desGJ0+ehMLCQqo7/v7+MHbsWBE7zs7OxA7msHbtWvj9998hNTWV2MnNzZVkZ+bMmfDnn3+CXC4ndqKjo6FDhw4idr777jvYvXs35OTkEDs3b96Efv36QXR0NHdm+/zzzyE4OBgKCgqo7hw5cgRGjx4NCQkJxI5KpYJ27drBlStXOHY2b94MM2fOhJSUFGKnsLCQYwfrzu+//w4rV66kvmo7OztISEiAdu3aUe18FzuRkZHQq1cv7txZv3596Nevn4id4OBgGDFiBMTHx9fKDtYdT09PmDp1KnfuLCkpAScnJ4iIiODYcXFxAVdXV0hPT38nO4aGhhw7WHcePnwI3bp1E507Bw0aBAEBARw7Z86cgaFDh3LsAAD85z//EbGza9cuYgfrTnl5OdVOPLOZmpqCm5sbuLi4cOxkZmZC69atRefOX375BTZv3syx8/z5c+jcubPo3Dl06FDw8/Pj2Ll8+TIMGjRIxE6XLl3g1KlTHDt+fn4wduxYSExMJHaqqqrA2dkZbty4wbGzZs0aETs5OTng5OQEUVFRtO+MjY1hxowZHDtCq+/HElpr7v8i0DKGV4MGDdjq1au5ewDARo4cSaZEvOzt7dny5ctFaydPnky2R7yaN29OFjq86tWrxxYsWEAGN7w6dOhA1k28DA0NyZ4mvPr06UPWLbwsLCwkcxg+fDjZ3vCytbWVzGHixIlkSsTrk08+IQulMIfff/+drLt4tWvXjqy7eBkYGLCVK1eSWQ6vnj17ku0VLzMzM8l8hwwZQpZhvKytrcnKKrzGjh1Lhl68mjZtypYsWcLd09XVZbNmzSJjLV7Ozs5kP8RLX1+fubm5kYUWr27durFffvmFu2dqair5Pnz11VdkSsWrUaNGbOXKlaK1P/74I1lG8XJ0dGSurq7cPR0dHTZ9+nQyVuLl5ORE5mC86tevzxYvXkz2Y7y6dOlCtme8jI2NJd+HAQMGkLFOyI5UDqNGjSJTopAdNBoKrylTppDtEa8WLVqQhQ4vPT09tnDhQjIH49WxY0c2Y8YM7p6RkZFkDn379mU//fSTiB2ptSNGjGCDBg3i7jVu3Fhy302cOJF17NiRu/fpp5+S/ViTHbTu4tW+ffta2dF8rV69eonYMTc3l8xh6NChInZsbGwk+R83bhwZevFq1qxZreygdROvNm3akP1Qkx20AeLVvXv3D2IHTal4WVlZ1coOWkbrwg4aK4XsoDlYyM6SJUvI4CpkZ+rUqdw9ExMTssVqsjN69GjuXsOGDSXzHTVqFOvXrx93z8HBgUy6muygKfl97Pzxxx9kcMSrU6dOdWanX79+InYsLS0lc/j2228l2ZHad5MmTSLLsJAdqdo5f/58MocK2Zk1axZ3z9DQUPLn6tWrFxs/fryIHam133zzDfv6669F7EjxP378eLKMvo+d2bNnk3XzfewsX76cLNR49ejRg02aNKlO7AwePJiNGDGiTuz89NNPZBl9HzszZ84k27OQnXnz5onYWbp0KU0OeB87tdWdUaNGidiRymH06NGS7GjWHR0dHfbrr7+K2EGjtiY7Li4uZN0XsqN5lqyNnf79+5NlXMiO1NqRI0eS3R4vOzs7Sf5/+eUXsgzj1bx5c8kz2/z588lYj1eHDh0k2ZH6f9u7d29JdqRyGDZsmIid2s6dEyZMkGRHs3bq6uqyOXPmkO0dr7Zt27I5c+Zw9wwMDNjy5cvJpItXz549Rey869yJlmG8rK2ta2WnR48e3L0mTZrUmR1nZ2fJurN06VKyn+PVtWtXFhUV9X/9ZxQXUMceUe0fooK4dOkSp2gvLS1l1dXV7D//+Q8bMGAAJyfw8/Oj8QYoJygtLWWfffYZGzp0KCcnWLNmDador66uZpmZmaxx48akmUY5wYwZM1jHjh05OcHr16+ZtbU1aaYLCgqYWq1mI0aMIEU7yglu3LjBbG1tSTNdUlLClEol6969O2mmUU5w+PBh1qRJE1K0V1RUsPLyctayZUvSTKOcYNOmTdx4g+rqapabm8vs7e1JM40N1nPnzuUU7SqVisXGxjJra2tStGOD9ejRo0nRjnKCiIgITtFeXFzMVCoV6927NynaUU5w/PhxTtFeXl7OKioqmLOzMynaUeyxbds2brxBVVUVKygoYDKZjBTtKPb4448/WLt27Tg5QWJiIrOxsSFFO8oJxo0bR4p2lBM8ePCAU7QrFAqmUqnYgAEDSNGOcoJTp05xivaysjJWVVXF2rdvT4p2lBPs2LGDRgOhnEChULCmTZuSoh3lBK6urpyiXalUsrS0NGZra0uKdpQTTJo0iRTtKCd4+vQps7a2JkV7YWEhU6vVbPDgwaRoRynWxYsXJdnp1KkTKdqRnX379nHsVFZWspKSEvbpp5+Soh3lBKtXr+YU7dXV1Uwul3PsoJxg+vTppGhHdl69esWsrKxE7AwfPpwU7cjOtWvXWOPGjdnUqVM5drp16yZiJyAggFO0V1RUsLKyMtaiRQtiB+UEGzZs4BTt1dXVLCcnR5KdOXPmkKIdpVgxMTGS7IwaNYrYQSnWnTt3ROwolUrWq1cvYgelWMeOHWOOjo7st99+49hp3bo1sYNij61bt7IWLVqwBQsWEDv5+fkcOyj2WLBgAY03uHv3LsfOmDFjOHZ++uknYgelWPfv36fRQEJ2+vfvT+ygFOvkyZPMwcGBzZgxg2OnXbt2bNCgQRw727dv58ZqVVZWsqKiItakSRM2fPhwjp2lS5dyY7WUSiVLTU1lNjY2NBoI2cEP6oRCucePHzNra2saDVRUVMRUKhX76quvROycP3+eGw30Lnb27NlD4w1QilVSUsI++eQT9s0333DsrFy5kthBKRayM3r0aI6dX3/9lRtvoFKp2MuXL5m1tTUbP348x84333zDevbsyYk9rl69SuygUE6pVLKuXbuyL774ghN7HDx4kNhBKVZZWRlr3rw5jQZCdtavX0/soBQrOzub2dnZ0VgtrJ2zZs0SsRMdHc2sra1prBay891334nYuX37NjdWC9n5/PPPWb9+/Th2jh49SuygUK6iooI5OTmxwYMHc+y4u7sTOyiUy8/PZw4ODjRWS8hO+/btOaFcQkICs7a2prFayM6YMWNY165dOXbu3bvHjdUSsoNjtZCd0NBQbiRdWVkZq6ysZG3btqWxWlg7fXx8OHaqqqpYYWEhsbN3715iZ/Hixaxt27YcOykpKRw7KMWaMGECjQZ6HzuDBg2i0UDIzrlz5yTZ6dChA43VQimWr6+viJ3i4mLWrFkzGquF7KxYsYIbSadUKllGRgaztbWlsVrI/9SpU7mxWiqVir148YLYQSmWkB2hUC4sLEySnS5dutBYLWTH39+fG6uF504hO3ju/PPPP+nc+T52fvvtN24knUqlYm/fvuXYQf5HjhxJY7WwduL4NU12evbsSWO1kJ3AwEARO+Xl5axVq1Y0VgvPnVu2bKFzJ7KTl5fHsYO1c968edxIOpVKxeLi4iTZ+eGHH2isFrITGRnJjdVCdvr27UvsvH37lqnVanbixAkmk8loJB2y06ZNGxE7Xl5e3Eg6ZMfR0ZHYwXPnokWLuLFaSqWSJScnv5cdoRTrYwrtH6L/i8jNzeWsVIwx2jSakZOTI3rjy8rKOLOWcK1mKBQKzqz1rrUFBQWcWYuxGnuZ0HCIkZeXJ8qhurqas4Nh5ObminIoLy/nrHTv+rmKi4s5K937chBa6d61VioHpVIpaQerLQehlU649q/kUFhYWOcc8vPzOSsdYzUGNqFZ71054CG5LmtLSko4s967fq6ioiLOSvehOXzIvquNHakcSktLObPe+3L4q+zUdd99CDsfyv+H7DvNHGpb+0+x81f5/zfZqaioqDWHj5EdqRw+pO58CDsKhaLOOfybdeffrJ21rf072PknaqeWnQ9j50Nq54fWnQ9h56/Uzo+VnQ+pnf+N7Gjm8LGwU9ccPrao6x+iWmuuNrShDW1oQxva0IY2tKENbWjjb4m6WnO1siJBXLt2DU6cOEENyTo6OlBdXQ2urq5QWVlJDdgAACEhIXD16lVqSAaosaotW7aM5CU4PHz//v0QFRVFDckAAGlpabB+/XpqSMZhydu2bYPY2FhqSAYAeP78OezatYtrSGaMwdq1ayE7O5uayAEAbt26BUFBQdTMr6OjA0qlEtzc3KC8vJzL4fTp03Dp0iVq5geosXm5ublx4g8AgIMHD8K9e/eomR+gZkDwn3/+Sc38mIO3tze8efOGmvkBAF6/fg0+Pj7UzI9N1evWrQO5XM7lEBERAYcPH6Zmfh0dHVCpVLBs2TIoKSmhJnIAgHPnzsG5c+eomR+gxoTn6urKyQt8K61IAAAgAElEQVQAAI4cOQLh4eHUzA9QYwNcvXo1NcJjDjt37oSXL19SIzwAQExMDGzbto2a+TGHTZs2QWpqKjXCAwDcu3cPDhw4QM38Ojo6oFarYfny5VBUVMTlcOnSJTh9+jQ18wPUGNhcXV1BqVRyOQQFBcGtW7eomR+gxva2YsUKaoTH98zX1xeePXvG5ZCYmAhbtmyhZn7Md8uWLZCUlMTl8OjRI9i3bx818+O+W7lyJeTn55O8CADg6tWrInaqqqrA1dUVqqqquH134sQJuHbtGsdOUVERLF++XMSOn58fPHr0iGMnNTUVNmzYIMlOXFwcSaQAAJ49ewa+vr4idtasWQM5OTlcDjdv3oRjx46J2HF1dRWxc+rUKbh8+TKXQ23sHDhwAO7fv08Cpvex8/btW46dV69ewfbt20XsoKjA0dGR2AkPD4cjR47UmZ3z58/XiZ3Dhw9DREQEx052drYkOzt27IBXr15xOURHR4OXl5eInQ0bNkBaWpqInYMHD3I5qNVqWLZsGSgUCi6HixcvwpkzZ7gcKioq6sxOXl4erFy5sk7sxMfHg4eHB8l83sXOw4cPwc/Pj+O/NnauXLkCoaGhJJF6FzvBwcFw/fp1LgchO8J9t2/fPnj06BEJ2AAAUlJSYOPGjSL+t27dKmLn6dOn4OvrK+J/9erVInZu3LgBx48f5/hHdlDshjmcPHkSwsLCOHaKi4th2bJloKury70PUuxkZGTAunXrROx4eXlBdHQ0t+9evnwJO3bsIBHOu9i5c+cOBAYGcvyrVCpwc3OD0tJSbt+dPXsWLly4wNVOZAfgf2RtAACHDh2CyMhISXZQXoY5bN++vVZ2NPnfsGEDpKenk7wMAODu3bsQEBAgYmf58uWgUChI/PM+dlB0hDkcPXoUbt++zeWA7Ojr64ODgwO9Z7t374bnz5+DnZ2dJDtC/jdv3gzJyclcDlFRUbB//34ROytWrIDCwkKQyWS078LCwiTZWbp0KUmCcN8dP35cxE5hYSEsX76c5EVCdh4/fszVneTkZNi0aZMkO/Hx8dyZ7cmTJ7Bnzx5JdnJzc7kcrl+/DsHBwdCgQQPu3Onm5gYVFRUc/6GhoXDlyhUSsL2LHX9/f9G5Mz09HdatWyeqnV5eXhATE8Pl8OLFC9i5cyfHDmMM/vzzT8jKyuLObLdv366VnbKyMi6HM2fOwMWLF0nABlBjYHZzc5Nk5+7du9y5MzMzE9asWSPJzuvXr0nABgDw5s0b8PHxod/ZuO/Wr18P6enpXA6RkZFw6NAhsLCwENWd4uJijv8LFy7A2bNnOXbKy8vB1dWVJIGYQ2BgINy5c4cEbAA1xlspdnbt2gUvXrzg6k5cXJwkO5s2bYKUlBSu7nxsoZUV/S9i+/bt1Pj72Wefsd9//50dP36cBAJGRkbUhycUCLRp04YtXryYHT58mIQp5ubm1Ic3ZswYWou9RP7+/tRs3KhRI+rDw4Z6XV1d6iXauXMn09XVZQA1Ypdff/2VnTx5khrq9fT0qJdow4YN9FqffPIJmzNnDgsODib5jqGhIfXhCZvvW7duzVxcXNiRI0eocd3MzIz68IQSFOxhPXDgAIk6GjZsSH14X375JTVgYx/e7t27Wb169RhAjZwCe1hR5KSnp0d9eFu2bKHXatq0KZs1axY7ceIENXIbGBhQH55Q+oC9REePHiVxhYmJCfXhTZ48mdZiL9HBgweZhYUFSQKwDw9FLjo6OtRLtGfPHhJEYD9EaGgoiZzq1atHfXhbt27lmtN/++03FhISwpo3b84AaoQT2IcnlA1gL1FQUBCTyWQMoEYShH14QgkC9uEdOnSIZCMWFhbUwyqUIGEfnp+fH8mVrK2tqQ8PG+p1dXWpD8/Hx4f+PfYShYaGslatWlHTPPawCoUY2Et07Ngxjh3swxMKBLAPT5OdH374gQUEBHAiByl2rKys2M8//8yOHz/O+vbtK2Jnx44dHDvTpk1jJ0+eZK1bt6YckJ1169Zx7MydO5cFBwezZs2aidgRCgSwD+/IkSPMxsaG2ME+PKHIAfvwDhw4wExNTYkd7MNDGcW72MEeVhQ56enpUR+ekJ1mzZqx2bNns+DgYPbpp58SO19//TXbuXMnJ32QYsfU1JR99913bP/+/ZxASIqdBg0asLFjx7LAwECSUbyPnZMnT5LI6UPZwT48oWxEyA4K00xMTNi33377TnZQNmJpaUk9rEIJEvbh7du3jxkYGHDshISEkAStXr16rE+fPmzz5s3M29tbkh0UiOnr61MPq1CI0bx5c2IH5RvGxsbUSyQUiGAf3uHDh1mjRo04dg4dOsQJxDp37sxWrVrF9u/fL2InODiYJGi6urrUh7djxw6SyQnZcXJyInawD0/Izqeffsrmzp3Ljh8/TuwYGRlRH56QHezDk2Ln4MGDbNy4cbS2U6dOtbJz7Ngxjh3sYd21axexY2dnR314bdq04djZtm0b27Rp0zvZMTQ0pD48oTDJycmJ/fHHHywwMJA1btyYY8ff35+ToGAf3oEDB0gQh+wcPXqUDRkyhHLAPrw9e/aQXEXIDoqc6tWrR314Hh4eInZOnDhB7BgYGFAfnpCdli1bsgULFrCjR4+SMA3Z8fPz48R12MMaEBDALC0tOXaOHDnCiVywD2/v3r3EjrCHtWvXrhw7W7ZsYV5eXiJ2QkJCROz4+PhwghjswwsKCpJkRyh9xD68Q4cOSbIjFIhhH56fnx8zMjIidiZOnMiCg4NJgiZkZ/v27cQO+h9CQ0Ml2Vm7di3HDp47UfomZEcoTHR2dmaLFy9mR44cIcmlkB2hQAx7WP39/UkQhefOY8eOkUAQ2dmwYQPbtWsX1U70P2ieO5GdjRs3cuzUdu6UYkfz3GlqaspGjRrF/P392cSJE9/JDp47jx49SvJNITu+vr7EDp47T548SSInITvu7u70WnjuFNYdITtLly7l2Fm4cKGInZEjRzI/Pz9OvoU9rAcPHuTY+emnn9iRI0fYsGHDJNlBqZ+whxVFTlg7t2zZQr3EH0tAHR/NrfmTXRsAAPRJEH4r4+joyH0KYmVlBTKZDGQyGaSnpwMA0LcBjo6O0KRJE/oUxNbWFhwdHUEmk9EnOcbGxvTvZTIZfbJhb29Pr4WfgpiZmdE6/HQHAMDBwYHW4n1LS0tai3Mb8dMxXIufvjVq1Iju4Xwk/DZAMwcbGxtai5/kGBkZ0VphDnZ2drQWP30zMzOjdRYWFrRWKgcLCwtai/PVNHPAT66EOeD8LPxEE9fjp2/CHPBTUENDQ24tfqImlYOJiQmttba2pvfB3t6e/j2+Z5iDo6MjzaPS0dEBBwcHWot7rGHDhrQW51wJc2jSpAnlYG1tTWtjY2MBAMDAwID+fwlzaNy4sWQOeM/Ozk4yB833QfhNUm05NGjQgNbiJ3rIDuagyY6joyOkpaVx7OB9/G/Y2trSPSE7mK+DgwPlYGdnJ3ofcN8J9wzuO818LS0tRTygUh7XSrGDs9Tq169P9zTZwX8vZAfXarKDazXZEf772nKwsLCgezgTT1dXl9Y2adKEYwfX4tw2zAHvYw7W1tZ0T8gO/lw4sgL3nWYOpqamtA6/6RfmIJPJJNnB+Xs6Ojrc7xr81Ldhw4Z0H+er6enpcT8XsiPcdzExMQDwP+zgJWRHKge817hxYy4Hzd9h5ubmIh6FOTRp0oRjB+/j/0Nh3WnatCmxg++ZTCaD5ORkAODrjvA9Q3ak6g7+f8TAuiN8H4R1R8iO8LWk6g7OtBP+zhbyj+zIZDLIysqifSdcK+T/XXXHwcGhTrVT+D7W9p4Jc0AeNHNA/nHfyWQymlMpzEH4PmDdwdoHwNedJk2avLN24r6TyWT0jYtmDkJ2cC3yoLnv8L0U1h2ciYl1R/M9E9YdHC2EY0A0f+9L1R3kXyaTga2trWjfCXMwNzcX/V7UzAH5F9YdDGHdadq0Kcc/rk1KSgKA2uuOMAdkR1j/NdnRrDvCHHDP4Hum+TtbmEN2drYoh9rqTmZmJuWAryV17hSyg7VT83e2VO3EHPCe8MymuVZYO3F+JrKDa6XqDp5RkR3N8867aqfm78z31R381ri290yYA84mrS0HITt4RhXWHc0zG/77N2/eAABfO5s2bfreuoNrbWxs3rvv8J6wzv5XRV3+Wv27ro/9G9Hbt29zZi3GaqQR7u7uZHTFOH/+PJm1MIqKipiHhwcZXTGOHTvGzp8/zzVYp6amcmYtjP3795OVEuPly5ecWYuxmqbx7du3k1kLIzIykjNrMVbT+O7h4SEya126dImsdBjFxcXM3d2djK4YJ06cYGfPnuUarOVyOWelwzhw4AAZXTHevHnDfH19yayHsXPnTjK6Yty/f5+z0jFW0/i+detWMrpiXLlyhax0GGVlZczd3Z29fPmSW3vy5El2+vRpTk6QnZ3N2ZAxDh06RDZkjNjYWM5Kh7F7924yumI8fPiQs9IxVtP47unpSUZXjBs3bpCVEqOiooK5u7uTlQ7jzJkzZHTFyMvL44yuGIGBgWR0xUhMTOSsdBh79+4loyvG06dPOSsdYzX7zsvLi2zIGMiOUE5QWVlZKztodMUoLCyslR00umKkpKQwHx8fslJi+Pn5idh58eIFZ0PGHHx8fETsREREcEZXxmrYcXd3l2QHja4YtbETHBxMRleMjIwM5uXlRUZXDCl2Xr9+LcnOjh07ROzcu3ePsyEz9m520IaMUVpaKslOaGgo2ZAxsrKyOKMrRkBAANmQMWJiYjijK8auXbsk2REaXRmrYWfbtm0idq5fvy5ip7y8nLm7u5OVEuP06dMidnJzczkrJcaRI0dE7CQkJHA2ZIw9e/aI2Hny5AlnQ2asZt95enqK2Ll16xZnQ2asdnbOnTsnyc7WrVvJSokRFBQkyY7Q6Iqxb9++WtlBoyvm4OPjQzZkjPDwcEl2PDw8yEqJcfHiRRE7CoWCeXh4kNEVQ4qd9PR0zoaM4e/vL8mO0IaMsX37dhE7d+/erZUdNLpihIWFsePHj3O1E9lBoytGSEjIB7GDRleM6OjoWtlBoytGVFRUreyg0RXj2rVrdWbn1KlTH8QOGl0x4uPjJdnx9fUloyvG48eP2f79+7naieyg0RXj5s2btbKDNmSMs2fPitgpKCjgjK4YQUFBZHTFSEpKqpUdNLpiPHv2TJIdb29vMrpihIeHS547pdi5cOGC6NypUCiYu7u7iJ3jx4+T0RUjLS2NeXt7i86d/v7+ZHTFePXqlYgdPHeiDRkD2RGeO5VKJfPw8JBkR/PcWVJSUis7aEPGyMzMZJ6enqJz58GDByXZEdqQMXbu3Cli58GDB6Jzp0qlYlu3bpVkR+rcuWXLFkl20IaMkZOTw5nEMQ4fPixiJy4urs7sfGwBWlmRNrShDW1oQxva0IY2tKENbWjj34y6yop0/40f5r8lkpOT6VFPjOrqanqkSxjx8fH0VT5GcXExpKSkiNbGxMTQ45cYeXl59JiFMN68eQNqtZq7J5fLIT8/n7vHGIPXr1+D5gcJKSkp9IgRhlKphOjoaNHa+Ph4esQAo7S0lB5heV8O+fn5IJfLRWvfvn1Lj6ZiZGZm0qOPwpDKITU1lR71wFCpVPDmzRvR2oSEBCgrK+PulZeXQ0JCgui1YmNj6dEljMLCQnrM+n05ZGVl0SOZwpB6z9LS0ujxLQy1Wi2Zb2JioiiHyspKiIuLE71WXFwcPVKFUVRURI+7CiM6Opoec8TIycmhR4Hel0N6ejo9RoNR275LTk6mx0Ixqqqq/hF2cnNz6fG+9+WQkZEBBQUFdc5Bk3+lUglv376VZEczh/9GdjT5LysrqzM7BQUFkJGRUaccsrKy6PFNzRzqyo5UDlLsVFRUQHx8vGQOf4Wd7OzsOvP/IewkJSVJsoOP4QtDiv/a2JHK4d9mJzo6WvRaUuyUlJTQY8fC+NDaqbnv5HJ5ndmRqp0qlUqS/9rYSUxMFL3WP8mOFP9adurOjkKhgNTU1DrlkJOT86+x8yHnzn+Snb9y7vyn2MnPz/8gdv5K7fwQdsrLy2tlR+rcKcXO27dv68yOVO38bw2tNVcQERER0LlzZ4iIiACFQgGNGzcGY2NjGDRoEHh6ekJycjL1SISGhsKAAQMgKioKysrKwN7eHvT09KBjx44QEBAA6enpZLny8fGB0aNHw7Nnz6CqqgpkMhlUVFRAq1at4NSpU5CVlUWGuKVLl8K0adPol5ujoyPI5XJo2bIlXL16FfLy8sgQN2nSJHB1dYXY2Fjqa3vy5Al06NABwsPDoaioCGxtbcHU1BSGDh0K7u7ukJSURD0S58+fh759+8KDBw+gtLQU7O3tQV9fH7p06QL79++HtLQ0MsTt3bsXRowYAU+fPoXKykpwcHAApVIJrVu3hpCQEMjMzCRD3MqVK2Hy5Mnw+vVrUKlU4OhY01PXsmVLuHz5MuTm5pJd8ddffwUXFxeIiYkh2+irV6+gbdu2cPv2bSgsLAQbGxswMzODb7/9FjZs2ACJiYnUX3DlyhXo1asX3Lt3D0pKSsDOzg4MDQ2hZ8+e4OvrC6mpqWSIO3DgAHzzzTfw5MkTKC8vBwcHB1Cr1dCmTRs4fvw4yOVysquuX78eJkyYAC9fviT7ZmFhIbRo0QIuXrwIOTk5ZIibNWsWzJs3jw5djo41vZzOzs5w69YtyM/PB2tra7CwsIAffvgB1qxZAwkJCdRfcOvWLejevTvcu3cPiouLKYd+/frBjh07ICUlhQyRgYGBMHjwYHj8+DHloKOjA+3bt4fAwEDIyMggu6K7uzuMHTsWXrx4AdXV1dQX2LJlSzh37hxkZ2eTXXH+/Pkwe/ZsKhyOjo6QnJwMrVq1guvXr0N+fj5YWVmBpaUljBs3DlauXAlxcXFk6rx79y507twZIiMjoaioiNj58ssvReyEhITAwIED4eHDh1BWVkbWOCl2vL294fvvv4fnz59z7LRs2RLOnDkDmZmZxM6SJUtg+vTpHDvp6enQqlUruHbtGsfOxIkTRew8fvwYOnToABERERw7X3/9tYids2fPQr9+/SAqKopjp3PnziJ2fH19YeTIkcQO9nJJsbNixQqYMmUKvHr1SsROWFgY5OTkEDtTp06FRYsWcey8fPkS2rVrB3fu3OHYGTFiBGzcuJHYcXR0hLCwMOjVqxfcv38fSkpKwN7eHgwMDKBnz56wd+9eSElJIXb8/f1h2LBh8OTJE7KgqtVqcHZ2huDgYI6dP//8E37++WeOnYKCAmjRogVcunSJy+G3336DBQsWcOzExMQQOwUFBWBjYwPm5uYwevRo+PPPPyE+Pp7YuXnzpogdIyMj6N27N+zateu97AAAtGvXDo4ePcqxs2XLllrZOX/+PGRnZxP/8+bNgzlz5nDsJCYmgpOTE9y4cYP4t7S0hLFjx4rYiYyMhC5dukBkZCRXdwYOHAje3t4cO8HBwbWyc+jQIUhPT6ccvLy8ROyUl5dDq1at4MyZM5CVlUX8L1q0CGbMmPFOdtBy+fPPP4ObmxvlIJPJ4NGjR9CxY0diB3MYMmQIeHh4QFJSElkuz5w5I2Knfv360LlzZ/D394e0tDTif9euXSJ2qquroVWrVnDy5EmO/+XLl8PUqVM5drKysqBVq1YQFhYGubm5xP+UKVNg8eLFEBsbS+y8ePGCY8fW1hbMzMxg+PDhsGnTJkhMTCT+L126BL179xax0717d9i7dy+kpqYS/35+fjB8+HCOHZVKxbGD/K9duxYmTZpEOchkMsjPz4eWLVuK2Jk5cyYsWLCA4z86OhratGkjYmfUqFGwbt06SEhIoNp548YN6NGjxzvZQf4PHz4MX3/9NTx69Ihjp23bthAUFAQZGRlkV920aROMGzeO+JfJZKBQKKBFixYidubOnQtz584l/mUyGSQkJEDr1q1F7IwZMwZWr/7/2LvvqKiSdW3gT9PknHMw5wRGUDGgxN4oYB7TqJizqCiioGAadFRMM+M4zphzVgyICiiIJFEUBAFRUQGRjATr+0N33S524+A9537XOde9Vq91ps6L9Cv712+B1NOB1L+5uTmio6MZO3wPAwcORGhoKHJycqj/Y8eOwdHREfHx8dSOnJwcunTpggMHDjB2tmzZgpEjR+LBgwc0fbeiooLOHWk7ixcvxowZM+g3LBYWFsjNzUWbNm1w48YNxs64ceOwYsUKxk5cXBxsbGxoD0ZGRlBTU4OzszM2b97M2Dlz5gwGDhzI7DsVFBTQtWtX7Nu3j7GzY8cOeHl5MfvODx8+oE2bNgI7fn5+8Pb2pt/c8HZatmyJa9euMXYmTZoEX19fZnYmJyejc+fOiIqKonbU1dXBcRw2btzI2Ll8+TL69u1L950mJiZQUlJCz549sWfPHsbOnj174O7uzuw76+rq6OyUtrN69WqBncLCQmbfyScTT58+HYsWLWLsPH78GO3btxfsOz09PQV2wsPDYWdnR/3ze7Y+ffpg9+7djJ2//voLrq6uSEhIQFVVFczMzEAIkWln/fr1GDt2rEw7ly5dEtiZN28ePb9tYfFf2QjfyvU9Nfe/cUmnquFz2llgYCBNP8PntLPhw4fTZFj+0bx5c+Lv78/UKisrk8mTJ9N0O0glZy1ZsoRZ09DQIAsXLqSpe/zD1taWzJ49m1nT1dUlAQEBNNEMn5PCBg8eTMaNG8fUmpiYkMDAQKZWXl6eeHl5ETc3N6a2adOmZOXKlUwPSkpK5Mcff6TpdvyDTzuVXlNXVyfz5s2jiXX8o0ePHkzKMD4nBa5atYommvE9DBw4kEkZxOekwPr9isViMmTIEDJkyBCm1srKiqxatYrpQVFRkYwbN47Y2dkxtW3btiXLly9n1lRVVcns2bNpUhr/6NatG5k/fz6zpqWlRfz8/GgKHf/o378/k5QGfErZrP91EIvFRCKREC8vL6bWwsKCBAQECHoYM2YMTYblH61atSJ+fn5MrYqKCpk+fTpNhuUf1tbWTFIy8CkpcOnSpTQ5lH/07duXTJ8+nVnT19cXfB3k5OSIi4sLkwzN26nfg4KCAhkxYoTATosWLciKFSsEdqZMmULT7fhH586dmdQ93s6iRYto6h7/sLOzY1JGgU9JgbLsODo6Mum2vJ36tbwdPt2SfzRr1qxBO926dWNq+bRTWXbMPycl84+ePXsySYnSdvg0UL4HBweHRtsZOnQok27J25HVw/jx4xtlR01NjcyePZumjH7Jjra2NlmxYgVNoZS2M3nyZGbN0NBQph2O44inpydTa2lpKdP/mDFjiL29PVPbunVrJrFa2g6fbsk/bGxsBHa0tLSIr68vTT+UtiOd0MvbWb16tcCOq6srGTFiBFNrbm4uc+6MHDmSODg4COzUnzsqKirE29ubJpL/nR0fHx+ausk/evfu3Sg7cnJyxMnJiUm3BT6l7MqaO8OGDaPpll+yo6ysTCZNmkQTyaXtSKc983YWLFggsNOrVy8moZu3U/95iUQiMmjQICYZHviUsinrvhs6dCiTbgl8Sgqtf9/xdvhUZf7Rrl27Bu3wKaP8o3v37jLt+Pv70/RzvocBAwY02o67u7tMO7Lmzg8//CDTjnTqLvBpds6cOZOm20rbWbhwocDOsmXLaPop/7C3t2cSenk7su67huzImjujRo2iybD8o2XLljJn59SpU2kiubQdHx8fZk1TU5MsXryYpr1L25kxY0aj7Dg7O5MxY8YI7MiaO8OHDydOTk5M7Zf2nXwiOf/o2LFjg3b4tFf+YWtrK9POqlWrZO47ZdmR1YOHhwd9RwL+0dC+c8KECaRnz55Mrax9p5qaGpk7dy5N6OYfPXr0ENjR0dEh/v7+NMFZ2o70uyoADc9Od3d3JlUd+DQ7ZdkZO3YsTVXmH23atGnQTsuWLZn1rl27NmiHf8cK/tGvXz8SFxf3v/1tFHPhe2ru11/u7u6IjY0Fx3HgOA7W1tYghODGjRuwsrKCRCKBk5MTNDU1sW/fPlRUVNDatm3borKyEhcvXkS3bt0gkUjg4OAAVVVVrFu3Dnp6euA4DhKJBM2bN8ebN29w8eJFODg4QCKRoF+/flBUVERdXR0yMzMhkUggkUhgZmaG1NRUREREwM3NDRzHoVevXpCXl0daWhpqamogkUjg6uoKAwMD3LhxAw8fPqTPy8bGBiKRCJGRkTA2NqY9aGtr4+DBg3j37h2tbd++Paqrq3H58mV07twZHMfBwcEBampq9H2M+NoWLVqgsLCQ/qsqx3Ho168flJSUoKCggNTUVNqDhYUFMjIyEB4eDhcXF3AcBzs7O8jLyyMrKwtlZWW0ByMjI0RHRyMxMZF+rm7dukEkEiEmJga6urrgOA5OTk7Q0dHBiRMn8Pr1a1rbsWNH1NTU4MqVK2jXrh04jsOgQYOgrq6O0NBQKCoqQiKRgOM4tGrVCu/fv8eFCxfQp08fcByH/v37Q1lZGX5+fkhISKA9WFlZITs7G9euXYOTkxM4jkPv3r2hoKBAf3WS4zi4urrC2NgYcXFxuHfvHv1cPXr0gEgkwv379+nfo7OzM3R1dXH27Fnk5ubS2s6dO6Ourg7Xrl1Dy5YtwXEcBg8eDA0NDezevRuEEHovtW7dGmVlZbh48SJ69eoFjuMwYMAAqKioICAgAHfv3qW1TZo0wcuXLxEWFobBgweD4zj07dsXCgoKKC4uxqtXr2gPpqamSEpKQlRUFH1ePXv2hFgsxoMHDyAvLw+O4+Di4gI9PT2EhYUhIyOD1lpbW+Pjx4+IiIiAlZUVOI6Do6MjNDU18ccff6CyspLW8nYuXbqEbt26geM4DBw4kNoxMDCgPTRr1gyvX7/GpUuX4ODgAI7jYG9vD0VFRVRXVyMrKwscx8HNzQ1mZmZ49OgRbt26BVdXV3AcB1tbW4jFYvqrSHwPvJ3U1FT6uWxsbAB8eo80U1NTet9paWnhwBgmuGAAACAASURBVIEDKC4uprXt27fHhw8fcOnSJXTp0oWxExISAk1NTVrbokULFBQU4MKFC+jfvz9jR15eHo8fP6a15ubmSE9Px/Xr1wV2nj17hvLycvo1MzQ0RGRkJJKSkujfLW/n7t279DXI2dkZ2traOHbsGN6+fUs/l7Sd9u3bM3a2bt0KRUVFWsvbOX/+PPr27cvYUVdXR1JSEq21tLREVlYWrl27BmdnZ0gkEmrn1atX9DWIt3Pv3j3ExcXRj+ft3Lt3DxoaGoydM2fO4MWLF7RW2k6rVq0EdgDQ14pWrVqhtLQU58+fh52dHSQSyRft5ObmIiwsDI6OjpBIJNROUVER8vLy6H1nYmKCxMRE3Llzh/EvFouRmJgIBQUFxs6lS5fw7Nkz+ry6dOmCjx8/Ijw8HE2aNGHs/P777/jw4QOtbdOmDSoqKnDx4kV0794dEomE2gkODoaRkZHAzuXLl+nc4e1UVVUhOztbph03NzdIJBJqh/+1Nv41W19fH+Hh4fS+5f0Dn97X2szMjM4dLS0t7N+/HyUlJbS2Xbt21I61tTUkEgkGDRoEVVVV/PTTT9DS0mLs5Ofn4+LFixgwYAD1zyeMpqWlMXbS0tJw48YNxr+8vDzS09NRWVnJ2Ll9+zYePHhAn1fXrl0hEokQHR0NAwMDSCQSaufo0aPIz8+ntR06dEBNTQ0uX76Mjh070h7U1dWxZcsWKCsr09qWLVvi3bt3OH/+POzt7SGRSBg7ycnJdO5YWlri2bNn1A7vX0FBAS9evMD79+8hkUjg5uYGIyMjxMTEUDscx6F79+7UjqamJu1BV1cXp06donY4jkOnTp1QV1eHq1evonXr1tS/hoYGdu7cydhp3bo1SkpKcOHCBdjZ2dG5o6ysjJUrV9LZJ23nypUrcHR0BMdx6NOnDxQUFFBYWIg3b97QHkxMTJCQkIC7d+8K7CQlJUFJSYn619PTw8WLFxu006xZM+pfU1MTe/bsofslaTuXLl1Cjx496NxRUVFBUFAQTExMaA/NmjVDXl4eLl++jEGDBtHZqaioiMrKSuTk5FA7pqamSElJQWRkJLNnE4vFePToEf17dHFxgb6+Pq5du4a0tDT6vGxsbEAIwa1bt2Bubk79a2lp4a+//kJZWRm9x9u1a4eqqipcunQJNjY2dO6oqqpiw4YNdL/E7zu/ZCc9PZ32YG5ujidPnsi0w/+aNm/HwMAAt27dQkpKCu1B2o6hoSGdndra2jhy5AgKCwtpbYcOHVBdXY2wsDB07NiR3ndqamr4+eefoaqqSnvg7Vy8eBH29vZ07igpKUFZWRkpKSm0B0tLS2RmZjJ2evfuDXl5eTx//py+BvH7zrt37yI+Pp5+Lt5ObGwstLW16X2no6ODU6dO0dd8iUSCTp06oba2FmFhYWjbti2979TV1bFjxw6IxWJmz1ZcXIzz58+jd+/ejB1/f39m9llZWSEnJwdhYWF038nbKSgooPPbzc2NSXX/p13fw4qkrurqahpdzl/875zzEd9fqq2pqYG8vDyNlv5SbXV1NRQUFBpdW3+NEIKamppG1dbV1X36qYO8/N/W1tTUQCwW02jp/8kevqb248eP+PjxY6N6qK2thZyc3DfZQ11dneDXJxrqQSQS/ePvO+C7nW/hvvu/ZqexPXzL9x3wz7fzNT380+18yz38T9j52h7+1fuutrb2++z8X77v/i/Ozm/BTmN7+NauxoYVff9G9Pv1/fp+fb++X9+v79f36/v1/fp+fb++X/+Wq7HfiH4PK5K6wsLCEBoaSg8ki8Vi1NTUYOrUqXj9+jVMTEzoGx0fPHgQBw8epAeS5eTkUFJSAm9vb5SWlsLU1JS+eXFoaCguXbpEDySLRCK8ePECc+bMoQfh+TfNXb16Ne7cuUMPJItEIiQnJ8Pf3x/Afx1IJoRg0aJFePz4MT0IDwDh4eH4+eef6WF+eXl51NbWYvr06Xj58iWMjY1pD8eOHcO+ffvoYX45OTmUlZXB29sbxcXFTA+7d+/G2bNn6WF+kUiEvLw8zJo1i4ZI8D2sXbsWkZGR0NLSgqGhIUQiEVJTU+Hr60sP8/M/yVmyZAlSUlLoQXjg069Cbty4kR7ml5eXR11dHWbOnInnz5/DyMiIvtHxqVOnsGfPHnqYXywWo6KiAt7e3nj37h1MTEzoG//u2bMHJ0+epIf5RSIR8vPzMWPGDFRWVsLc3Jy+afZPP/2EiIgIaGpqwsjICCKRCOnp6fDx8aGH+fkeli9fjsTEROjq6kJPTw8ikQh37tzB2rVr6WF+eXl5fPz4EbNnz0ZWVhaMjIygra0NADh//jx++eUX5r778OEDpk6divz8fJiYmNA3Ot63bx+OHTsGFRUVmJqaQk5ODu/evcO0adNQXl4OMzMzqKqqAgA2b96Ma9eu0cP8IpEIWVlZWLBgAT0Iz/9azsqVKxEXF0eDMEQiEeLi4rB69Wp6mJ+/7+bNm4enT5/C0NCQvmH05cuXsX37dqaH6upqTJ06FW/evGF6OHjwIA4dOsTcd8XFxZg6dSpKS0uZHkJDQ3H58mWoq6vTHnJzczF37lyBncDAQMTExDB2kpKSsHLlSnrf8T0sXLgQT548gYGBAbVz/fp1bNmyhbnvamtrMW3aNLx69Yqxc/ToUfz1118CO1OmTBHY2bVrF86fP98oO8HBwYiKiqJBGCKRCA8fPsSyZcsEdhYvXoyHDx9CX1+f2rl16xZCQkKY+66urg4zZsxAbm4uY+fkyZPYu3cvDZGQk5Nj7JiamlI7v/32G06fPs3Yefv2rUw7GzZswM2bN2kQhkgkQlpaGpYsWUJDZPgefH19kZSUBD09Pfpm3NHR0Vi/fr3AzqxZswR2zp07h19++YX2IBaLUVVVBW9vbxQUFDD33R9//IHjx4/TIAw5OTkUFhZi+vTpjbLz7NkzLFy4kPbA2/H398f9+/cZO/fu3cOaNWsEdubOnYuMjAzGzqVLl7Bjx45G2dm/fz8OHz7MzJ2G7GzduhVhYWE0REokEuH58+eYN2+ewE5AQIDATmJiIlatWiWYOwsWLBDYuXbtGrZu3UpDpMRiMbWTl5fH2Dly5IjATmlpKaZOnYqSkhKYmZlROzt37hTYefXqFWbPno3q6mrmDeeDgoIEdlJSUuDn5yew4+PjI7ATERGBTZs20RCp+naMjY2pnRMnTmDv3r00REraTlFREWPn119/bdAOH17E21m/fr3AzpMnT7BkyRLB3PH19UVycjJjJyoqqkE72dnZjJ2zZ8/i119/lWmnsLCQ6WHv3r0N2qmoqGB62LRpE8LDwxk7mZmZWLRokcDOihUrEB8fz9iJjY1FUFCQwM6cOXOQmZnJ2Ll48SJ27twpsOPt7Y23b9/+rZ33799j6tSpKCsrg7m5OWPnypUrjJ2cnBzMmzePBrDxPQQEBCA2NpaxEx8fD35vXd9OWloa08PVq1exbds2xk5NTQ21I73vPHz4MA4cONAoOzt27MDFixeZfefLly8btBMdHc30IMsOIQQ+Pj5ITU1l/DdkZ/r06Xjx4oXAzh9//MHYKS8vh7e3N96/f8/08Ouvv+LMmTOMndevX2PmzJky7dy6dYvx//jxY/j6+grsLF26FA8ePGD8R0ZGYuPGjQI7M2fORE5ODmPnzJkz+O2335h9Z2VlpUw7v//+O913mpiYQE5ODgUFBZg2bZpgdoaEhCA8PJzxn5GRIXPu8MfH+L1z/X9d/Rau72FF/41rw4YN9OCvhoYGGTZsGAkNDWVCUGxsbMiqVauYUBA9PT0yduxY8vPPP9PgCpFIROzs7Mi6deuYw9kmJibE29ubbNy4kQZ1yMvLk4EDB5Kff/6ZdO/endY2adKEzJkzh6xZs4YemFZWViaurq5k165dxMrKijkAvXjxYuYwurq6OvH09CTbt28nJiYmdL1Lly7E39+fCQXQ0dEhY8aMIVu2bCG6urq0h169epHg4GAm2MDIyIhMmjSJhISE0KAesVhM+vfvTzZt2sQEm1haWpJZs2aR4OBgGq6ipKREnJ2dya5du5hgk1atWpFFixYxQQ5qamrEw8OD7NixgzlQ36lTJ+Ln58cETGlra5PRo0eTrVu3Ej09PebQ+po1a5hgA0NDQ/Ljjz+SkJAQoq6uTnuwt7cnP/30E+nfvz+ttbCwIDNmzCDr1q0jCgoK9CC6k5MT2b59OxMK1KJFC7JgwQLi7+/PHEQfMmQI2bFjBxOo0aFDB7Js2TImyElLS4uMHDmSbNu2jQkQ6datGwkMDGRCQQwMDMiECRPI5s2baeiDnJwc6dOnD9mwYQMTCmRmZkamTZtGNmzYQA/qKygokMGDB5Nt27aRTp060dpmzZqRefPmkcDAQLqmoqJCOI4jO3fuZMKo2rVrR5YuXcocqNfU1CTDhw8X2OnatatMO+PGjWPsyMnJkd69e5N169YxgVrSdvigDnl5eeLg4EC2bNnChAI1bdpUph03Nzeyc+dOYmlpKbAjHSCmrq5OvLy8yPbt25kAMd6OdBiVrq4u+eGHH8iWLVto6JNIJCK2trYkODiYCTYwNjYmkydPJiEhIURVVZX2MGDAALJp0yZia2vLBCDIsuPi4kJ27drFBJu0bt26QTvbt29n7HTu3Jn4+fkxgRqy7IhEItKzZ89G2+nXrx8JCQlhArW+ZGfHjh2kdevWtLZly5aNttOxY0eybNkyJlCDt7N161YmQKR79+4kMDCQCQWRtsOHPsjJyZG+ffuSDRs2kEGDBsm0o6ioKLAjHQrUvHlzMm/ePLJq1aq/tdO+fXuydOlSsmDBApl2DA0NGTsBAQFMKIi0HS0tLcbO+vXrmUAtU1PTL9qxsbFh7MydO5esXr2ahm80ZKdt27ZkyZIlTAiShoaGTDvW1tZk5cqVTKDOl+ysXbuWCaP7kp3Nmzc32s7u3buZYJPWrVsTHx8fsmzZMoGdHTt2MLOzc+fOZMWKFUyQGz87t27dyszOnj17kqCgIDJs2DBay8/OTZs2MbOTtyMdCmRpaUlmzpxJ1q1bR0P9pO1IhwK1bNmSLFy4kAnfkrZjZmbG2Fm+fDkTgig9d+rbWb16NRk9enSj7GzcuJEJ1DI3NyfTp08n69evF9gJDQ0l7du3Z+zMnz9fYMfd3Z3s2LFDYMfX15cJo9HU1CQjRowg27Zt+1s7+vr6ZPz48Y22M3XqVLJhwwZqR0FBgQwaNIhs3bqVCQXi7UiHjSkrKxOJRNKgHekQJH7f2ZAd6UAdXV1dMnbs2AbtSIfRmZiYkClTppCQkBDBvnPz5s1MKFCTJk3I7NmzBXZcXV3Jzp07mX0nb0c6QOhL+84VK1YwQW5f2ncGBQUxQY5f2neGhISQvn37CuysXbuW2uH3nTt27GBCgXg70gFCampqZOjQoQ3akQ5y09bWJqNGjRLY6dGjB1m9ejUT5GhgYEAmTpxINm3aRO3w+86NGzcygVqy7CgqKhJHR0cSGhpK2rVrR2tbtGhB5s+fTxISEv63v41iLjQyrOj7+4hKXZaWlgAAHR0dcBwHLy8vcBwHXV1diEQi9OrVC56envD09ET79u0BAEZGRhgyZAi8vLzg6uoKFRUViMVi9OvXD15eXvD09ETLli0BfPrJmIeHBzw9PeHo6Ag5OTkoKipi0KBBtLZp06YAgJYtW9LPZW9vDwBQVVWFs7MzvLy8MGTIEFhYWAAAOnXqRD++e/fuAAAtLS1IJBJ4eXlBIpHQn5j26NEDXl5e8PLyQocOHQAABgYGTA9qamqQk5ND3759aW2rVq0AfIpX9/DwgJeXFxwdHSEWi6GgoAAHBwf6HJo1awYAaNGiBV0bMGAAAEBFRQVOTk60BysrKwCfYuD52h49egAANDU14ebmBk9PT0gkEhgaGgIAunXrRp9Xp06dAAD6+vpwd3eHp6cn3NzcoKmpCTk5OfTp04fWtm7dGgBgamqKoUOHwtPTEy4uLlBQUICCggIGDBhAn0Pz5s0BAM2aNaNfh4EDBwIAlJWV4ejoCE9PT3h4eNAe2rVrRz+Xra0tAEBDQwOurq7w9PSEu7s7PVBuY2NDazt37gwANFiA71dbWxsikQh2dna0tk2bNgAAExMTDB06FF5eXnBxcaFBN/3796e1LVq0AAA0adIEnp6e8PLygoODA0QiEZSUlDB48GDaQ5MmTQAAbdq0oR/fu3dvAIC6ujpcXFzg6ekJjuNodH+XLl1oLR/so6OjA4lEQnvQ0dFh7Hh5eaFdu3aMHU9PT7i6ukJZWRlisRj29va0lrdjaWlJ1wYPHszY4Xvg7bRq1YrW9u3bFwBoHL6npyeGDBlCrfN2vLy80K3bp98g4YMJ+B6+ZMfQ0JDacXNzg5qaGsRiMfr27Uufgyw7Tk5OEIvFUFRUxMCBA+k9Jm2H//j+/fszdvgepO3wtbx/aTscxzF2+FppO9L+NTQ0ICcnh969ewt6MDU1pT24uLhAXl6e2qnfA2/Hy8tL4N/T0xNDhw5l7PC1vXr1onbc3Nzo67CRkRG1w9d26dIFAKCnpwd3d3f6eqelpSXo4e/s8D38nR3eP/9aIW2Hr5W24+rqCi8vL7i7u8PU1JTa4Wv5YB/puSORSGTOHWk70j1Izx2+VtoO/zXj7fD+vby8ZNrx9PRk7Li4uAjmTufOnWmttB3pucP/pL5nz57070uWHVdXV6iqqlL/fzd3eP/Sc4fvQdpOv379AAhnZ3070nOn/uzk7XTv3p3WduzYkdqRnju8HX7ueHp60h7MzMzo3HFycqJzZ+DAgYLZ2axZM7pXkDU7pe20b9+efnxDdvi507VrV/p3K8uOm5sbY+dLc8fZ2RmKiorUTv3Z2bRpU/r3NWjQIIEd6bnTtm1b+vF2dnaMHX52mpiYAACsra3p86pvp/7stLW1pbVt27aldvi54+LiAmVlZcjLy9M9m7R/Kysr2sPgwYPp7JQ1d1q3bk0/vr4d/jXb3Nyc2uFru3btytjhe+D983a8vLzovtPQ0JB+HRqyU3/fyfvn546DgwPtrf6+08vLC/b29iCEUDv1X7M7duxIP5e0Hek9m4GBAWPHy8urQTvq6urUTv25Y2ZmxsxOfu7ws9PLy4vaad68ucy5w+/ZZNnx8vJCz549AQhnJz93pO3we7b6dvh9p/Tckd53Ss9OBQUFumfja+vb4ecO8GnfKWvP1rZtW8FM/8ddjflu9dM3thADSARw4fN/NwUQC+ApgKMAFP/uz/jW/0X03r175ObNm6SmpoauVVdXk/3795PXr18ztTdv3iQxMTGkrq6OrhUXF5NDhw6Rd+/eMbWXLl0iSUlJ5OPHj3TtxYsX5NSpU6S0tJSpPXXqFElLS2PWnjx5Qi5dukQqKyvp2sePH8nhw4dJdnY2UxsfH09u3LhBqqur6VpNTQ3Zv38/ycvLY2pv375N7ty5Q2pra+laaWkpOXjwICksLGRqr1y5QhISEpge8vLyyIkTJ0hJSQlTe+bMGfL48WOm9unTp+TChQukoqKCqT1y5Ah59uwZs5aYmEiuX79OPnz4QNdqa2vJ/v37ycuXL5naqKgoEhUVxfRQXl5ODhw4QPLz85naa9eukfj4eOZ5vX37lhw7dowUFxcztefOnSOPHj1iajMzM8m5c+dIeXk5U3vs2DGSkZHBrCUnJ5OrV68yPdTV1ZEDBw6QFy9eMLV3794lkZGRTA9VVVVk//795O3bt0xteHg4iYuLY+67wsJCcuTIEVJUVMTUXrhwgaSkpDA9ZGdnkzNnzpCysjKm9vjx4+Tp06fM2sOHD0lYWBipqqqiax8/fiQHDx4kz58/Z2pjY2MFdj58+ED2799P3rx5w9RGRESQ2NhYpof37983aCc5OZnpITc3t9F2Hj9+TC5fviywc+jQIYGd+/fvk4iIiEbbuXv3LtNDQ3bCwsJIYmIi08OrV69k2jl9+rTATnp6ukw7hw8fJllZWcxaYmIiCQ8PZ3r4kp3o6GiZdgoKCpjaq1evCuy8efOGHD9+XGDn7NmzMu2cP39eYOfo0aMkMzOTWUtOTibXrl0T2Nm/f7/Azp07dwR2KisrZfq/fv26wE5BQQE5evQoef/+PVN7/vx5mXbOnj3baDtXrlwR2Dlw4IBMO7du3fqX7Bw+fFjg/+LFizLtnD59WmDn5MmTX2UnJyeHqY2Li2vQTv3ZeevWLYGdkpIScujQoUbbOXnyZKPspKWlkYsXLzbKTkJCQoN2Xr16xdRGRkY22s6VK1e+yk5qaipTm5GR8S/bkTV3GrKzf//+f9nOw4cPmR6ysrLI2bNnBT0cP35cMDtTUlIatJObm8vUxsTENNrOjRs3yL1795geioqKGrTz4MEDpofnz5+T06dPC/yfPHmSpKenM2upqalfZedf2XeWlJTInDuXL18W7Dtfvnwp086pU6fIkydPmDXejqx9Z3078fHxX2Wn/r6zrKysQTv1952vX7/+KjuyZqcsO0lJSYJ9Jz936s/O6Ohowb6zoqJCpp1r166R+/fvM88rPz9fpp1z58412o6sfee3dqGR/yLa6LAikUi0EEA3AJqEEIlIJDoG4BQh5IhIJNoNIJkQsutLf8b3sKLv1/fr+/X9+n59v75f36/v1/fr+/X9+s+9GhtW1KhfzRWJROYA3ADs+fzfIgADAZz4XPIngKH/vaf67VypqanIyclh1mpqanDz5k3U1NQw64mJiXj9+jWzVlJSgrt379Lobf6KjY3Fu3fvmLXXr18jMTER9X8QEBUVhdLSUmYtKysLjx8/ZmoJIbh58yYqKyuZ2idPniArK4tZq62txc2bN1FdXc2sJycn49WrV8xaWVkZoqOjBT3cu3cPBQUFzNrbt28RHx8v6CE6OholJSXM2vPnz/Ho0SNB7a1bt1BRUcGspaWlITMzk1mrq6tDRESEoIcHDx7gxYsXzFpFRQUiIyNRW1vLrN+/fx/5+fnMWmFhIeLi4vDx40dm/e7duyguLmbWcnNzkZKSIujh9u3bKC8vZ9aePn2KjIwMZo1/X80PHz4w6w8fPkRubi6z9uHDB9y+fVvQQ3x8PN6+fcusFRUVITY2VtBDTEwMioqKmLVXr14hOTlZ0ENkZCTKysqYtczMTKSlpTFrhBBERESgqqqKWZdlp7q6utF2iouL/8fsPHnyRGAnIiJCYOfx48fIzs5m1mpraxERESHoISkpCXl5eczal+wUFhYya19jJycnR6admzdvyrTz7NkzZu1Ldl6+fMmsfY2dgoIC3L9/X3Df3blzR6adhw8fyvT/77ZTVVXVaDvv3r3DvXv3ZPqvb+fly5d48OCBTP+y7KSnpzNrDdl59OgRnj9/zqxVV1fj1q1bgvsuISFBpp2YmBiZ/uvbycvLQ1JSkkz/jbVz8+ZNQQ8N2ZHlX5ad0tJS3Llzp1F23rx5g4SEBJn+Zdnh3/dU+pI1O7/GTnJyskw7UVFRgh7i4uL+x+zU95+ent5oOykpKYLZ2ZCd+/fvf5Wd9+/fM2tfslPff0ZGRoN26vfwJTv1e0hISMCbN2+Ytffv38u0ExsbK/DfkJ2oqCiB/2fPnjV6dj5+/LjR+87/n3ays7MFdhrad6alpQn2nV+yU3/fWV5e3qCd+vvO/Pz8Rtv5mn1nenq6YN/5NXYqKysbtCNr39lYOy9evGi0nX/q1ajU3MDAwL0AVgFQBGAH4CqAsYSQLZ//fxGAGQEBATu/9Od866m50dHRsLW1pW/0rKamBl1dXQwbNgwrVqxAcnIyqqurYWZmRt8U/NKlS3j9+jW0tLSgpqaGAQMG4KeffkJqaio+fvwIc3Nz7NmzB0OGDEF4eDgKCgqgp6cHQgi6d++O3bt34+nTpzSpKzAwEOPHj0dUVBTev38PIyMjFBUVwdraGvv370dWVhYUFRVhZmaGmTNnYvbs2bh37x7Ky8thYmKCJ0+eoEePHjhx4gRyc3OhqqoKPT09jBo1CsuWLUNSUhI+fPgAMzMzhIeHo3///rhw4QLy8vKgqakJDQ0NODo6Yt26dXj06BHq6upgbm6O/fv3g+M4XLt2Dfn5+dDV1YVYLEbPnj2xfft2pKen05S7devW4YcffsDt27fx/v17GBgYoLS0FNbW1ti3bx+ePXtGU+7mzJmDGTNmIDY2FmVlZTA2NsazZ8/QrVs3HDt2DM+fP4eKigoMDAwwbtw4LFmyBAkJCaiqqoKZmRkiIyNhb2+Pc+fO4dWrV9DQ0KDnY4KCgvDw4UOaEHv06FG4uLjg6tWrePv2LXR0dKCoqAg7Ozts27YNT548AfDpTMXmzZsxcuRI3Lp1C0VFRdDX10dVVRWsra3xxx9/IDMzkyYT+/j4wNvbG3fv3kVpaSmMjY2Rm5sLGxsbHD16FDk5OVBWVoahoSEmTZqERYsWIT4+HpWVlTA1NUVsbCz69OmDs2fP4tWrV1BTU4OWlhaGDBmCgIAAPHjwgKZcnj59Gk5OTggLC8Pbt2+hra0NZWVl9O3bF5s3b6Y/sLCwsMD27dsxbNgwRERE4N27d9DX10dtbS26du2K3377DRkZGTTlbtmyZZg8eTL9RsjIyAhv3ryBtbU1Dh06hOzsbCgpKcHExATe3t6YP38+4uLiUFFRAVNTUyQlJcHW1hanT5+mdnR0dDBs2DD4+/tTO+bm5rh48SIcHBxw+fJlvHnzBpqamjLtWFhY4LfffoOHhwfCw8NRWFhIE+66desmsBMQEIAJEyYgKioKxcXFMDIyQmFhIaytrXHgwAFkZ2dDQUEBZmZmmD59OubOncvYSU1NRc+ePXHy5Em8ePECqqqq0NXVlWnn+vXrGDBgAC5evIjXr19DU1MT6urqGDx4MNavX8/Y+fPPP8FxHK5fv46CggLo6upCTk4OPXv2xI4dOxg7a9euZewYGhqipKQE1tbW+Ouvvxg7s2fPxqxZsxATE4OysjKYmJggs5XXtAAAIABJREFUIyMD3bt3x/Hjx5GbmwtlZWUYGBhg7NixAju3b9+Gvb09zp8/j7y8vC/aOXLkCFxdXXH16lXk5+dDR0cHCgoK1E5aWhq970JCQjBq1Chqx8DAAJWVldTOs2fPqJ2FCxdi2rRpDdp5/vw5tTNx4kT4+PhQO2ZmZoiJiWHsqKurQ0tLC+7u7ggMDERKSgq9706dOiXTTp8+fbBlyxY8efKE3nehoaECOzU1NbCxscGePXuQmZnZoB1jY2Pk5eXB2toahw8fRk5ODpSUlGBsbIwpU6ZgwYIFjJ2EhATY2dnh9OnTePnyJbXj5eWFlStXMnYuXLiAQYMGUTtaWlpQVVVF//79ERISgsePH9MefvnlF3h6ejJ2CCHo1q0bfvnlF8bOqlWrMHHiRIGdLl264ODBg8jOzoaioiJMTEwwbdo0zJ07F3FxcSgrK4OpqSkePXok087IkSPh5+dH7Zibm+Pq1asy7QwaNAjr169HamoqTYjct28f3N3dGTv8ubmdO3cK7IwdO5axU1xcTO1kZWVRO7NmzRLYefr0KWNHRUUF+vr6GDNmDHx9fZGYmEjvu1u3bqFfv36MHU1NTTg7OyM4OJjasbCwwKFDh+Dm5iawY2tri9DQUPoNi4WFBX766SeMGjUKt2/fxrt372BgYICKigp06dKFsWNhYYEFCxZg2rRpiImJQWlpKUxMTJCTk4OuXbsydgwMDDBhwgT4+PggISGB9nD37l2ZdjiOw+rVq5GSkoKamhpYWFjg5MmTcHZ2Ftjp3bs3tcP737p1K0aMGIGbN29SO9XV1bCxscHvv//OzJ2lS5diypQpuHPnzhftGBkZYfLkyViwYAHu37+PiooKmJmZIT4+XmBHW1sbnp6eWLlyJR48eEDtnD9/HoMHD8bly5fpnk1VVRX9+vUT2Nm9ezc8PT1x48YNaufjx4/o2rUrfv31V8aOv78/Jk6ciOjoaGqnoKCA2uH3bCYmJnTuxMXFoby8HKampkhJSUGvXr3ovlNVVRU6OjoYMWKEwE5YWBgGDhwo2Hc6ODhg48aNdO5YWFhg7969gn2nSCRCjx49BHaCgoIwbtw4REZG0n3n+/fvZdqZOXMmZs2aRfdspqamSEtLQ/fu3XHixAm6Z9PT08MPP/xA7fAptxEREejXrx/dd/JzR5adgwcPQiKRMPtOeXl59OrVC9u3b2fsbNy4EaNHj8bt27dRVFQEQ0NDlJeXo0uXLnTfyduZP38+pk+fztjJzs5G165dmX2nvr4+xo8fj8WLFzN2oqOj0bdvX2bfqampCY7jsGbNGsbO8ePH4ezsjCtXrtB9p5KSEnr37o2tW7cydrZs2cLYMTAwwIcPH2TaWbJkicAOn0z8rVz/ttRcABIAOz//7/4ALgAwAJAhVWMBIKWBj58K4D6A+5aWlv/aLxz/D1/SqXnAp6TS4OBgmgyJz2lrkydPZlJk+cS41atX01Q14FPa4ty5c5k0Lz4xbuXKlTRFEviUVLp8+XImCY9PW1y8eDFNYAM+JZUGBQXRlFF8TlsbMWIEk4QJfEr5DQ4OpgldwKe0xR9//JFJ8+JTflevXk1T1fA5bW327NlMEh6ftrhq1Sqa5oXPaWtLly5lkvD4tMUlS5bQ9FLgU1JpUFAQk26rrq5Ohg0bxqT54XNiXHBwME2Gxee0tXHjxpGxY8cyPdja2pI1a9bQVEV8TlubPn06cXZ2pmtisZgMGDBA0IOlpSXx8fFhUiT5tMVly5bRFDl8TowLDAxkkuHU1NSIp6cnmTdvHtND586dSXBwME3ow+e0tbFjxzIpstJJpXwyHPApqXTq1KlMAjOfthgYGEiTcIFPSaULFy5kkvD4tMUVK1bQFDl8TltbuXIlk4SnqqpKhg4dShYtWsT00LFjR0EPWlpaZPTo0UyKLPApbTEoKKjRdgIDAwV25s2bJ9OOv7+/wI6fnx+ThMfb8fHxYey0b9+eBAcHC+yMHDmSScIEPqUtNmRHOkWWT1tsyM6AAQNk2pHuoUmTJsTX15dJwuPt+Pr6Mnbatm1LgoKCaMrg39kJCgoS2Bk/fjyTwNyQHWNjYzJjxgzi5OTE9CDLjpWVFVm8eDHp0qVLo+ysXr2aSVX+kp36PfB2JkyY8C/ZCQgIkGmnR48eAjt+fn6MnZYtW5KVK1cySZi8HekU6b+zI50i25AdAwMDMmXKFCaB+e/s9O7dm7Hj6Ogo8N+8eXPi5+dHmjdvzthxd3cXzJ327dsL5o6mpuYX7Uj38DV2TE1NG7RT33/Tpk3JsmXLBHYkEolg7rRt25asXbuWpozy/ocPH84kYfJ26vvX1dUlEyZMYBKY+dkZFBQksDNz5kwmvZxPKm3ITufOnRk7rq6uDdqRToblU76lE9h5Ow3NzsbYMTIyItOmTWPSy/mkUll2Fi1axKSXKyoqEmdnZ7J8+XKmh5YtW5JVq1YxSdi8HekUaeBTQn5QUJDAzpgxY5gUWeC/EvKlezAwMCDe3t4CO/b29gI75ubmZP78+UzyP2+nvv/mzZuTFStWMMn/vJ1FixYxdjp06CCYO5qammTUqFHMuxcAn/adsmbnpEmTmARmPiFflp05c+Yw6eV8ym/9fSdvp02bNgI7S5cuZezw+87G2LGxsSFBQUECOxMnTmQSmKX3nf+KnSVLljDJ/7yd+rOzTZs2ZM2aNcw7EjRkp0uXLjJn57hx48i4ceOYHviUX1n7TldXV4EdWXu2RYsWka5duwrs+Pn5MXZatWpFVq1axaT58infcXFx/9vfRjEXGnlGVB5/f/UG4C4SiVwBKAPQBLAFgLZIJJInhNQCMAfwStYHE0J+BfAr8OmMaCM+3//aZWdnB3d3d3AcBzc3N5iYmKCmpgaxsbFo3749JBIJevbsCbFYjL1790JeXh4cx8HFxQV6enooKSlBZGQk+vTpA4lEAmtra4hEImzYsAFNmzYFx3FwdHSEpqYmXrx4gaioKDg5OUEikaBt27YQiUT48OEDysrKIJFIMHDgQKiqqiI5ORlJSUmQSCSQSCRo1qwZCCHIyMigCX/29vZQVFTE1atXkZubS3swMzNDbW0t4uLi0Lp1a0gkEtja2kIsFuPAgQOora0Fx3FwdXWFvr4+ysrKEBUVBVtbW3AcB2tra8jJyWHz5s0wMTEBx3FwcnKClpYW8vLyEBkZicGDB4PjOLRr1w4ikYgmvUokEjg4OEBNTQ2pqamIj4+nPfCpdNnZ2VBRUYFEIkG/fv2gpKSEiIgIPHv2DBzHQSKRwNzcHHV1dUhISECzZs0gkUhgZ2cHeXl5HD16FBUVFbQHQ0NDVFZWIjo6Gt27dwfHcejatSvk5OQQGhoKPT09SCQSODs7Q1tbG/n5+YiMjISDgwM4jkOHDh0gEomwcuVKWFtbQyKRYNCgQVBXV0d6ejpiY2Ph5uYGjuNoKt3r168hJycHiUSC/v37Q1lZGdHR0UhPT6f9WlpaghCCBw8ewNzcHBzHwc7ODgoKCjh16hSKi4shkUjg5uYGIyMjfPjwAXfv3oW1tTU4jkP37t0hJyeH3bt3Q0NDg/agq6uLd+/e4fbt2+jfvz84jkOnTp0gEomwZs0atGvXDhzHYdCgQdDQ0EBWVhbu3LkDFxcXcBxHE92KiorovTBgwAAoKysjLi4OKSkp9OvQpEkTEELw6NEjGBkZgeM49OnTBwoKCrhw4QLy8/NpDyYmJqiurkZMTAw6duwIjuPQo0cPakdBQQESiYTaKS4uRmRkJPr27QuO49ClSxeIRCKsX7+efs15O7m5uYiOjoaTkxM4jkObNm0gEolQVVWFsrIycByHgQMHQkVFBUlJSUhOThbYSU9Pp+m4ffv2haKiIq5cuYKXL19SO6ampowdjuPQq1cviMVi/PXXXyCEUP9fsrNp0yb6NXd0dPyiHUIIevfuDY7j4ODgAFVVVTx69Aj379+n9x2frJeVlQVVVVVwHAd7e3tqJysri/Yrbad58+bgOA62traQl5fHkSNHUFVVRXswNDRERUWFTDvbtm2Dvr4+9a+trY23b9/KtLNixQp07dqV3ndqampIS0vDvXv34ObmBolEQu28fPmSvo72798fSkpKiIqKQnp6Ov06WFpa4uPHj3jw4AEsLCzAcRx69+4NeXl5nDx5EiUlJdS/kZERqqqqcOfOHdjY2DB2du3aBQ0NDXAcB2dnZ+jo6KCwsBCRkZEYMGAAJBIJtbN69Wq0b98eHMdh8ODBUFdXx7Nnz3D37l24urpCIpF80U5sbCwePXpE7VhZWTVo59y5cygoKKD9GhsbN2iHf89k/mumq6uL4uJiREVFoW/fvpBIJNTO2rVr0aJFC3rfaWho4Pnz57hz5w6cnZ0hkUionYqKCvo6yttJTExEUlIS7aFp06bUjq6uLiQSCbUTFhYm0869e/fQtm1bSCQSaufPP/8U2CktLUVUVBSdGzY2NhCJRAgJCRHYefXqFaKjo+Ho6AiO4+jsrKurE9hJSUlBQkIC9cDbycjIgJqaGjiOQ79+/aCoqIjw8HBkZ2fTfs3MzFBXV4f4+Hi0aNGCzk55eXkcOnQIHz58oPcd/y+XUVFR6NGjByQSCbWzZcsWGBoayrQzaNAgSCQSakdRURHdu3enc+fv7PCvo7ydyMhIPH36lPZgYWGBjx8/IikpCVZWVpBIJNTOiRMnGrTD++3WrRvk5OSwc+dO+i8+suxwHIeOHTtCJBIhICAAnTp1gkQioXYyMzMRExMDV1dXcBxH01ALCgpACIFEIqF2YmJikJqaKtMOvwfp3bs3FBQUcPbsWRQWFsq007lzZ+pfLBbjt99+g7KyMp07urq6eP/+Pf2tKo7j0LlzZ2qnVatWdO5oaGggJycHd+/ehbOzM52dIpEIZWVlqKqqons2FRUVxMfHIyUlhd53vJ0nT55AT0+P+ldUVKT/usnPTlNTU9TU1ODevXt0fvP7zn379kFOTo5+HXg7kZGR9N7n950bN26ElZUVs+98+fIloqKiBHZqa2vp3wG/70xJSWH2bLydzMxM+jrK7zuvX7+OnJwcWittp2XLlnTuiMViHDp0CDU1NZBIJNQO/6u5vXr1AsdxsLGxoXaMjIwgkUionTdv3lA7HMehffv2EIlEkJeXR48ePah/NTU1PH78GHFxcXR28vvO3NxcKCoqUv9KSkq4desWMjIy6L3E20lOTqZ/j/y+8/jx4ygvL2f2nVVVVYiOjhbY2bFjB91rODk5QUdHBwUFBbh16xYGDhwosMPft/y+MyMjg84daTv8r/vys5N/T9h/4tXosCIAEIlE/QH4kE9hRccBnCT/FVb0gBDyxV/N/dbDigghgjeFlbX2LdTyX7fG1n6LPXxN7bf6vP4v9gD8s++7/4Qevqb2W31e33v459V+t/PPq/1Wn9f/xR6Af7ad/4Qevqb2W31eX1r/li7RvzOsqIFrKYCFIpEoA4AegN//hT/rm7hkfVEb+kL/b9eKRKKvqv3/9bz+p2q/1ef1NbXf6vP6mtr/hPvuP6GHr6n9Vp/X19R+q8/ra2q/1ef1NbXf7fzzar/V5/U1td/q8/qa2v8EO/8JPXxN7bf6vL60/k+8GhVWxF8BAQHZAQEBhz7/76KAgIDfAgICtgUEBBwPCAio+7uP/9bDii5evIjly5fTA8lqamqoqanBsGHDkJqaCnV1dZiYmEAkEuGPP/7Apk2b6IFkZWVllJSUwMPDA8+fP4e2tjYMDQ0hEn36FYk//vgDhHw6kKyoqIgXL15g+PDhKCgogL6+Pg1hWbJkCc6ePUsPJMvLyyM5ORmTJk1iDiQTQjBlyhRERUVBSUkJ5ubmkJOTw9WrV7F48WJ6mF9NTQ21tbUYMWIEUlJSoKamBlNTU4hEIhw8eBDr16+nh/lVVFRQVlYGDw8PZGdnMz38/PPP+O233+hhfkVFReTl5WHYsGF4+/Yt04Ofnx9OnTpFD/PLy8sjNTUV48ePp4f5tbW1AQDTpk3DzZs3oaioCHNzc4jFYkRERGDBggX0ML+6ujrq6uowevRoJCUlQVVVFaamppCTk8PRo0cRFBRED/OrqKigoqICHh4eyMzMhJaWFoyMjCASibB9+3bs3LmTHuZXUlJCfn4+PD098fr1a+jp6dED/QEBATh69ChEok+H+RUUFJCeno4ffvgBRUVFTA+zZ8/GtWvXoKCgAAsLC4jFYkRFRWH27Nn0ML+GhgY+fvyIsWPH4v79+0wPp06dQkBAAD3Mr6qqig8fPsDT0xPp6enQ1NSEsbExRCIRfvnlF4SGhtLD/EpKSnj37h08PDzw8uVL6OrqQl9fHyKRCEFBQTh48CBEIhHMzc2hoKCArKwsjBo1Cu/evYOhoSF0dHQAAAsWLMDly5dpIIFYLEZcXBymTZtGD/NramqCEIIJEyYgJiYGKioqMDMzg5ycHC5cuCCwU11dDS8vLzx+/BgaGhq0h71792Lz5s2MneLiYnh4eCA3Nxc6OjowMDCgdvbt28fYyc3NxYgRI1BQUAADAwPo6upSO+fOnaNBOPLy8khKSsLkyZMFdiZPnoyoqCgoKyvTHq5cuYKlS5cK7AwfPhwPHz5k/O/fvx8bN25ETU0NzMzMqJ2hQ4cK7GzevBl79uwBIQTm5uZftLN8+XKcOnUKYrGY9vDo0SNMmDABxcXFTCABb0dJSQlmZmbUzsKFCwV2Ro0ahaSkJMb/0aNHERwc3Cg7oaGh2L17Nw1gU1JSwtu3b2XaWblyJY4dOwY5OTl636WlpWHs2LECO7NmzcL169cZ/1FRUZgzZw4NkeLtjBkzBvHx8YydkydPIjAwkIZIqaqqoqqqSqad3bt3IzQ0lIZIKSkpobCwEJ6engI7a9aswaFDhxj/z549w+jRo2mIBG9n/vz5AjuxsbGYMWMGDcLR0NAAIQTjx49HbGwsY+fcuXNYsWIFDZFSVVVt0M7vv/+On3/+mYZIfcnO+vXr8eeffwIA7eH58+cYMWIECgsLoa+vT+34+Pjg/PnzjJ3ExERMmTKFhkjx/idNmoTo6GjGTlhYGJYuXUoD2KTtPHr0CGpqatTOX3/9Re3wPZSWlsLDwwM5OTnQ0tKidjZt2oTff/+d8f/q1SsMGzYM+fn5jJ1ly5bh9OnTjJ2UlBT8+OOPdO7wdqZOnSqwEx4ejkWLFtEQqS/ZOXz4MNauXcvMTt7Os2fPoKmpSe1s27aN2uF74O28efMGurq61I6/vz+OHz/OzE7eDh8iw9uZOXMmwsPDmfsuMjISc+fOlWknISEBKioqjbLz9OlTxs6uXbuwfft2mXZevXrF2Fm9ejUOHz7M3HeZmZkYPXo0DZHh7cydOxdXrlyh951YLEZMTIxMO+PGjcO9e/eY++7s2bPw9/cX2PH09ERaWhpjZ8+ePQI779+/x9ChQ/HixQvGzrp167B//3563ykoKCAnJwcjR45EYWEhM3d8fHxw4cIF5r6Lj4+Ht7e3TDt37txherh8+TKWLVvGzJ2amhpqR3ru/PnnnwgJCaH3XX070nMnJCQEe/fuZey8fPkSw4cPF9jx9fXFmTNnmH1nSkoKJk6cSMML+dnp7e2N27dvM/vO69evy7QzcuRIPHjwgLFz6NAhrFu3jpk75eXl8PDwQFZWFjN3tm7dil9//ZXu2RQVFfH69Wt4eXnhzZs30NPTg76+PgDA398fJ06cYOw8fvwY48ePb9CO9Ny5desW5s+fT/ds6urq+PjxI0aPHo2EhARm7hw/fhxr1qxh7FRWVsLT0xMZGRmMnZ07d2LHjh3MvrOgoAAeHh7Iy8tj7AQGBuLIkSPM3MnIyPiiHWn/39r1bwsr+nc+unbtSr7la8WKFcwBZFtbW8FBf2NjYzJ16lQyfPhwwSHq+oeVmzRpQhYsWED69+8vOERd/8B169atyYoVK0jbtm2ZQ9Senp5k6dKlzMH3zp07k7Vr1zJBPzo6OmTMmDFMWInocwDB2rVrmYP+RkZGZMqUKUzgAh/eERQUxBz0t7S0JPPmzSOOjo6CQ9T1wwpatmxJli9fzhwaV1NTI0OHDiXLli1jDo137NiRrF27lglc0NbWJqNGjRKElfTo0YOsXbuWOehvYGBAfvzxRzJ+/HimB3t7e8FBf3NzczJr1izm0LiioiJxdHQUhBU0b96cLF26lAlcUFVVJe7u7oJD4x06dCBr1qxhAhc0NTXJiBEjBIEL3bp1E4Rk6OvrkwkTJjCBC3wAQf2QDFNTUzJjxgwyZMgQQQBB/bCCZs2aER8fH2Jra0vXVFRUiEQiEQR9tGvXjgQEBDCBCxoaGmTYsGFk8eLFggCC4OBgJiRHV1eXjBs3jkybNk0QQLB27VrGjomJCZk2bZpMO/VDcng70oELysrKxNXVVRC40KZNG+Lv788ELvB2lixZwtjp0qULWbduncDODz/8QGbOnCkIIFi3bp1MO9KBC3wAQUN2Bg0axPjn7Uj7b9WqFVm+fDnp2LHj39rp1KkTWbt2LRO48DV2DA0NyaRJkxptZ/bs2Q3akfbfokUL4uvrywR98Xbqh5XwdkxNTf+/2XF3d5dpR9o/b6dXr14CO/WDfng7TZs2FdipH/RlY2ND1q1bx9jR09Mj48aNI97e3o224+Xl1Sg7CxcuZIK++OCrhuxIh+Tx4R2y7NSfO7q6ug3aqT93jI2Nibe3NxOSJ21HugcrKysyb948JiSPt1N/drZq1Yr4+fkJ7Hh4eAjCSjp16kTWrVtH9PX1GTujR48mc+bMabQd6ZC8hmanhYUFmTNnDhOSxwdfNdbOkCFDZNoJCgpiQvK0tLTIyJEjyfz58//WjoGBAZk4cSL58ccfZdqR9m9mZkZmzZolsDN48GDB7GzWrBlZsmQJE5LHh8bVD/pp164dCQwMZELyNDU1yfDhwwV2unbtStauXSuwM378eMYOH3xV37+JiQmZPn06E5LHB1/Vn51NmzYlixYtapSdtm3bkpUrVzIhebyd+kFf1tbWgrmjq6tLxo4dywRM8vtOWXamTp1KRo4cyfQwYMAAgX8rKysyf/58MnDgQMaOi4uLzH2nn58fEzDJ26k/d/jgq/p2xowZw9jh9531w9kMDQ3J5MmTZdqpHzDF25EOyePtyNp3+vr6Emtr67+1w4fGGRsbC+zUnzvdu3cn69atk7nvlA6Y5EPj6s9O3o50SF5Ddpo3b06WLFnChOTxdurPnfbt25PAwEAmJI+3808NK/r+jajUderUKQJ8Gs6LFy8mt2/fJkVFRaRDhw70BeaPP/4gb968IaGhoQT4NJz9/f3JvXv3yOvXr4mJiQnd2B45coQUFRURX19fOpyDg4PJgwcPSGZmJlFTUyNGRkZk8uTJ5MyZM6SsrIyMGzeOJrpu2rSJpKenk/v37xM5OTliaWlJZs2aRcLCwkhFRQVxcHCgLzA7d+4kOTk55MKFC3Q4L1q0iNy8eZMUFxcTa2tr+gKzd+9e8vr1a/LLL7/Q4ezn50diYmLI27dviaWlJR3Ohw4dIu/evSMrV66kw3nNmjUkKSmJZGdnE01NTWJoaEh+/PFHcurUKVJaWkomT55MX2BCQkLIkydPSHJyMpGXlyfm5uZkxowZ5NKlS6SyspI4OzvTF5jt27eT7Oxscu3aNTqcFyxYQG7cuEFKSkpI9+7d6QvMnj17SF5eHtm3bx8dzsuWLSN37twh+fn5pFmzZvQF5sCBA6SwsJAEBwfTF5jAwECSkJBAcnNziY6ODt3YnjhxgpSUlJCZM2fSF5iNGzeS1NRU8vDhQ6KgoEDMzMzItGnTyIULF0hFRQUZMmQIfYHZtm0befbsGbl58yYdzvPmzSPXr18npaWlxM7Ojr7A/Prrr+Tly5fk0KFD9AXG19eXREVFkcLCQtK6dWuaSvfXX3+R/Px88tNPP9HhHBAQQOLj48mrV6+IgYEB3dgeO3aMFBcXk/nz59PhvH79evLo0SOSlpZGlJWViYmJCfH29ibnzp0j5eXlZPjw4XQ4b9myhWRkZJA7d+4Q4NPGds6cOeTq1aukvLyc2Nvb0+G8e/du8uLFC3Ly5Ek6nHk77969I+3bt6d29u3bR96+fUu2bdtGh/PKlSu/aIf/IQw/nFNSUkhGRgZRVVUV2Pnhhx+onc2bN5OnT5+SuLg4IicnR6ysrMjs2bOpnYEDBzJ2nj9/Ts6fP0+Hs4+PD7l16xYpLi4mnTt3FtjZvXs3Hc4rVqwgsbGx5O3bt8TCwkJgx9/fnw7noKAgkpycTLKzs4mGhobAzqRJkxg7aWlpJCkpiYjFYmJhYcHYcXJyEti5cuUKHc4LFy4kN27cIMXFxaRbt24CO3v37qXDefny5eTu3bsN2lmzZg21s3r1apKYmNignenTpzN2Hj9+TFJSUqid6dOnk4sXL5KKigrCcZzATkREBB3O8+fPJ+Hh4aS0tJT06tVLYOfgwYOMnejoaFJYWEhatWpFv7Hl7WzcuFGmHX19fbqx5e3MmzdPYOfx48dESUmJmJqakqlTp5Lz58+T8vJyMmzYMMZOZmYmiYqKohvbuXPnkmvXrpGysjLSt29fgZ3jx49TO0uWLCGRkZGkqKhIpp0tW7YwduLi4kheXh4xNjamG9ujR4+S9+/f082wLDvGxsZkypQp5OzZs6SsrIyMGTOGbmx5O/fu3SMikYjauXLlCikvLycDBgygP1Dl7Zw7d05g5/3799SOp6cnnZ27du0S2Hnz5g0xNzenP1A9fPgwKSoqIitWrBDYycrKonYmTZpETp8+TUpLS8nEiRMFdhITE6mdmTNnksuXL5PKykoyePBggZ2wsDDGTsT/Y+++46I81v7xf5beBBVQFFBj7wW7AhYslL01GuOJ5kRTTDSJOSbGaNQYS3qPsdckxoa9YUMRARWk9947LLALS1lgd75/8Jt5drhvDJ4k58l5fszrdf8zrwH2gnkzs/czzgmsAAAgAElEQVTe1zX37hGVSkXGjh3LKrpSO0eOHBHZUSgUpE+fPsTGxoa88MIL5MSJE6SiooLs2LFDZCcvL4907tyZvSk8f/48qa6uJitXrmQVXamduLg4YmRkJLIjl8tZRdddu3aR7OxsEhAQ8EQ78+bNI4cOHSJFRUXkt99+k7QzYMAAZue3334jCoWCfPnllyI7hYWFxNbWltk5e/YsUalU5J133mFvbL/66qsn2lm4cCG7KbRz584n2nF1dWUVXQ8cOEAKCgrImTNnRHYqKyvJkCFD2E2hX3/9lZSXl5MffviBAC03hfTtdO/eXWSHVlufMmUK+eKLL0h8fDxJS0sj5ubmnJ3a2lqyZMkSdlPohx9+IOnp6SQsLOx37ezbt4/k5+eTS5cucftOamfkyJHshiq1s2fPHtG+s7S0lDg6OorsbNq0SbTvzMrKIlZWVqR79+6cneXLl7ObQnTfGRUVJbJTV1fH7Hh6epI9e/aQ3NxccuPGDZEdpVJJXFxcmJ0jR46QkpIScvjwYW7fSdcdKTvbt28X7Ttzc3OJjY2NyM7rr7/O7HzzzTckJSWF2aH7Tj8/P1JfX0+8vb1Fdu7evSvad9bU1JAJEyaI7Bw7dky071QoFKR///4iO1988QUBWm4K0X1nYWEh6dq1K7Gzs+PsrF69mrOTlJREkpKSiImJCWenrq6OLFiwQGTn79Y63oj+Gy0+Pp6kp6dzfY2NjcTf3580NDRw/RERESQvL4/rU6lU5P79+6SpqYnrf/DgASktLeX6iouLSVhYGNFqtVx/YGAgqaqq4voyMzNJbGws0el0rE+n0xF/f39SU1PDjaVvNvRbU1MTuX37Nqmvr+f6IyMjSU5ODtdXU1ND7t27RxobG7n+hw8fkuLiYq6vtLSUPHr0SBTD/fv3SUVFBdeXk5NDoqOjuRgIIeTOnTukurqa60tOTibJycnc2ObmZnL79m1SV1fHjY2OjibZ2dlcX11dHbl7964ohtDQUFJUVMT1lZeXkwcPHpDm5mauPygoiCgUCq4vLy+PREZGimK4e/cuUalUXF9qaipJTEzkxmq1WvZmTr/FxsaK/ok0NDSQO3fuEI1Gw/U/fvyYFBQUcH2VlZUkODhYFENwcDApLy/n+goKCkh4eLjobxYQEECUSiXXl56eTuLj40XzTioGKTsajaZNO/n5+VyfUqlst52ioiJJO/fu3ZO0ExcXJxmDlJ20tDSu70l2cnNzub4n2SkpKeH6SkpKJO0EBgaK7GRnZ0va8ff3F9lJSkoiKSkpXB+10zoGKTu1tbVPZefhw4ftspObm0uioqIk/be2k5KSQpKSkiTttPYvZae+vp7cvXtXZCcsLIwUFhZyfRUVFSQkJKRddvLz80lERIQoBik7aWlpJCEhoV124uLiSEZGBten0WjInTt3RHbCw8Ml7QQFBYnshISESNp5/PjxH7JD3xjot4SEBEk7Uv6l7FRXV5PAwEBRDG3ZCQ0NlbRTWVnJ9WVnZ5OYmJg/3U5UVJRo7aytrSUBAQEiO48ePRLZKSsra9NOa/9PstM6hqexExMTQ7Kysri+/7QdqbXzz7Dj7+8viiE8PFy0dlZVVbVpp6ysjOsrLCxst52MjIynsiO177x9+3a79p1/lZ2srCyRnbb2nUlJSaJ959PYUavVbdppve9sy84f3XempKSI9p1arZbcunWrXXbq6uok92xSdhQKhaSdoKAgkZ28vLx22/m7tfa+EX2qqrl/tP3dq+Z2tI7W0TpaR+toHa2jdbSO1tE6Wkf795vsP1A19/9ci4iIwMOHD6HV/k/dpaamJpw+fRoVFRXc2ODgYERFRUH/jXx1dTU7m0u/3b59G0lJSdzYwsJCXLt2DfX19dzYK1euIDs7m+tLS0vDnTt30NjYyPoIITh79iyKivjjW6OjoxESEsLF0NzcjNOnT0OhUHBjHzx4gIiICOh0OtanVqtx9uxZqFQqbuydO3eQkJDAxVBSUoIrV66grq6OG3vt2jVkZmZyfRkZGbh9+zY0Gg3Xf/78eRQUFHB9sbGxCAoKQnNzM+vTarU4ffo0OzuJtkePHuHx48dcDHV1dfD19YVSqeTGBgQEID4+nouhvLwcly5dQm1tLTf2+vXrSE9P5/qys7Nx8+ZNUQwXLlxAXl4e15eQkIDAwEAuBp1OB19fX5SWlnJjHz9+jLCwMC4GjUaD06dPo6qqihsbGBiI2NhYLobKykpcuHABarWaG3vz5k2kpqZyfXl5ebh+/ToaGhq4/kuXLiE3N5frS0pKQkBAAJqamlgfIQS+vr4oKSnhxkrZaWxsbNNOdHQ0F4NKpcK5c+dQU1PDjb19+zaSk5O5sQUFBe22k5qairt377bLTlRUFB48eNBuO5GRkdzrUqvVOHPmjKSdxMTEdtm5evVqu+2cO3dO0k5wcHC77YSHh//bdsrKynD58mWRHT8/P0k7t27dkrSTn5/P9cXHx+P+/fsiO6dPnxbZCQsLE9lpaGiAr69vu+xUVFTg4sWLIjs3btwQ2cnNzcWNGzfabefevXvtshMeHo5Hjx5J2qmsrOTGBgUFSdo5f/68yM6tW7ck7fj5+YnsXL58+ansFBcXc2OfZKe1/5CQEJGdmpoanD17VrR2+vv7i+wUFxfj6tWr7bKTnp4Of39/LgZA2k5MTEy77Tx8+FDSjpT/u3fvPpWdjIwMri8rK+tPsVNWVsaNfRo79+7deyo7aWlpXF9bdi5evChaOxMTE/8yOzExMVwMSqWyTTspKSnc2Pz8/Dbt5OTkcH0pKSm4e/euKIYzZ86I7ERGRrZ73xkSEiLadz7JTut9Z1FRUZt2srKyuD4pO9R/YWEhN/Zp7bTed9bW1rZpp/W+s7S0tN12MjMz29x3trYTFxcn2ne2ZSc0NFS076yvr2/TTlxcHBeDQqGQtHP9+nWRnZycnHbb+a9t7fnY9M+6/u6P5p4+fZolJNOcp/z8fDJ06FCW80Sf2/72229ZQjLNF8zIyCA9evQQ5TytXbtWlC+YkJBALC0tuZynoqIilow+bNgwsmHDBhISEkJCQkKIgYEBS0g+duwYKSsrI+7u7lzeRkREBMtz1c8XLCgoICNHjhTlPNE8V/18waysLOLs7CzKedq4cSPL26D5gklJScTa2lqU8/TSSy9xeRtBQUEkNDSUGBkZiXKeaEK9fr4gzdWjhTBOnz5NioqKyJgxY0Q5TzTP1cHBgeULZmdnk2eeeUaU87R161aC/y+Zn+bapqSkkC5duojyBVesWMHlPAUGBpKIiAhibGzM5QuWlpYSLy8vUc4TzdXTzxcsKioiEyZMEOU8/fzzzyyZn+YL5ubmkgEDBohynmieq37eRlpaGrG3t+dynnJzc1kBEf28jejoaGJmZibKF6RFkPRznmiunn6+YElJCSuCpJ/zRPNc9e3k5eWRIUOGiPIFaZ6rk5MTWbVqFbl27RpJT08X2cnOzmYFBPRznuLj44mFhYXIzuLFi0U5T0FBQZJ2aDEK/Zync+fOEQBc3kZBQQEZMWKEyM7OnTsJAC5vIysrizg5OYnsbNiwQZTzlJSURDp16iSyQws56Oc8hYaGEkNDQ9KpUyfOzowZM0T5gjRXT99OYWGhpB2a56qf85SdnU369OkjskNzxPVznqTs5OfnswJC+vmC4eHhxNjYmOU8UTu0GIW+HZqrp5/zVFxcTMaNGyeyQ/Nc9XOecnNzSf/+/VnOE7Xz6aefEqCliBS1k5qaSuzs7FjOE7VDC4jo24mKiiKmpqasiBTNeaKFXPTt0HwjWkTqxIkTbdo5fvw4s0NznvLz88ngwYNFdr766ivOjp+fH8nIyCAODg6siBS1QwtX6duJi4tjdvRznhYtWiRpRyaTcTlPpaWlxNXVleU8UTs0z1XfTn5+Phk+fLgoX5DmuerbyczMJE5OTlzOU1ZWFlm/fr3ITmJiIrND8wULCwvJiy++KLLz8OFDZkc/X5AWENS3Q3P19PMFCwsLyejRo7kiUvHx8WTv3r1s7dS307t3b1G+IC2C2KdPH2YnOTmZdO7cWZQvSAsIDR48mNl5/PgxZ4fmC9ICgjRfMCwsjOXq6dspKipidvTzBWmea2s7/fr1E+UL0hxxfTtpaWnE1taWFZGi+YK0cB2tU/EkO7SQi36+4J07dyTt0CJI+vmCNM9V305eXh4ZNGgQK8BG8wWl7KSnp5Pu3bszO7t27SI5OTnkX//6F5cvePfuXRIbG0vMzc1ZAbZDhw6R4uJiVkBMP18wMDBQZKekpISzQ/MFfX19JdedYcOGifIFv//+e9G+MzMzkzg6OorsrFu3TnLfaWVlxQqwUTu0+N7QoUPZvlPKTllZGSsg6OLiQrZu3UoiIiIk7RQUFJBRo0ZxubYJCQksz5XuOy9fvkyysrJEdjIyMsjmzZuZHf19p42NDSteSO3QAkL6NV7CwsLYvpPaKSsrI7Nnzxbl2vr5+TE7+vvOsWPHiuwcOnRItO/MycmRtEPzXPVrvKSmppKuXbtydvLy8sgbb7zB2QkMDCRRUVHExMREZMfHx4ezI/XI9f92QzsfzTV6ives/+cbvSNUXl6Os2fPQqlUoqCgAOXl5dDpdAgODoZSqYRKpWJ3UwsLC3H69GmoVCqMHz8edXV1aGpqgr+/P5RKJZRKJZKTk9n3P3nyJFQqFQYPHgytVouGhgb4+fmx70s/SUhMTGR9PXr0ANDyieulS5fY96WvNzIykvUZGbX8SSsqKnDu3DkolUoUFRWhtLQUOp0ODx48YGPpnari4mL2KcikSZNQU1OD5uZm3L17l41NSkoC0PLJxsmTJ6FUKjF8+HA0NzejoaEBN27cEMWQnJwMlUoFpVIJJycnEEKgVqtx+fJlKJVK1NTUsDvY0dHR7GdZWFgAaPmk7/z581CpVCgtLUVxcTEIIXj06BEbS++glZSUsDtqWVlZUKlUaG5uxr1799jYxMREAC13Z0+dOgWVSoURI0agsbERGo0GN2/eZN+T3pVKTU1lMfTp0wdAy927q1evQqVSobq6msUQGxvLfpa1tTWAljuuFy5cgEqlgkKhQEFBAQghCAsLY2PpHdaysjL2aXRubi4qKyuh1Wpx//59Npbe8cvPz8epU6egVCrh4uKChoYGNDY24vbt2ywG+olOeno6Tpw4AaVSif79+0On06GhoQHXrl1jMdDvGx8fz34WLYuuUqlw8eJFqFQqVFZWsrtw4eHhbCy9M0jtqFQq5OfnQ6FQMDv090jvRBYUFLAYxo0bh9raWmaHjqV2MjMzWQyDBg1iMfj5+bEY9O3Qr3dwcODsqFQqqFQq9umPvh1a/lyhUDD/bdmhd0iLiopw+vRpZketVjM79DVI2Rk2bBhnh76utuwALXe+r1y5ApVK1aYdc3Pz37VDvy/91LOkpIT5nzJlCmeHjtW3Q2MYOXIkZ4fG8CQ7arUaV65cEfmXslNVVYXz58+z33dhYSGzQ78vtVNaWoozZ85AqVQiJycHVVVV0Gq1CAwMZN+X/m7z8vLYvBszZgyzc+vWrd+1Qwhh/ulYKTv0WATqX6lUiuzQGOgdeP11Jz8/HxUVFZwd+n9Byk5dXZ3If0pKyu/aaR0DtaNSqdCtWzfOjlKpRFVVFbMTERHBvt7AwEDSTllZGXQ6HUJCQtjvhn6qpW9n4sSJUKvVaGpqwp07d5647gwdOpTZuX79+hPXHUdHR2anrXWHxmtqasrs0LWzpKSE2Xn48CH7WfTTNrp2qlQqTJ48GdXV1WhubkZAQIBo3cnJyeHWnaamJmg0GrZ2KpVKZiclJYW9rl69erG1U8pOTEwM+3orKyuRnfLycmYnNDSUjaWfKLW2o1QqRXbo62ptR6PRQKPRSNpJS0vD8ePHoVQq0bdvX5Ed/XUnLi6O/Sx6PIVSqWTrjkKhYOvG48eP2Vj6aV3rdaeiogJarRZBQUFsLP3UsqCggO3Zxo4di/r6es6OUqlkdjIyMpidAQMGQKfTQaPRcOsOjSEhIYF9fWs7KpVK0g79H0ztnDt3DiqVCoWFhWzfqW+HfppK951KpRITJkyQtKO/76QxDB06FFqtFvX19bh+/bpo3UlKSmJ2evbsCUIIs0PH0n1nVFQU+1n6dui6U1xcjJKSEmaHfl/6KW9xcTGLobWd1mtnTk4Ot+9sampCQ0OD5LpD7SiVSvTq1QvA/6w7rdfO37NTVlaGoqIikR36Sab+2pmVlcWtO/Q10LmUl5fHYhg9ejRbO2/dusViaI+d1vNO346xsTFcXFzw39Y63ojqtTFjxuDNN9+EIAiYMWMGzMzM0NTUhOjoaIwbNw5yuZxtqI4fPw5bW1sIggBXV1cYGxujuroaERERmDlzJnx8fNgbyJ9++gmjR4+GIAiYMGECDA0NUVBQgNjYWPj4+MDT05NtXNRqNebPnw9BEDB69GjIZDLExsYiKysLgiBg9uzZ7EyqjIwMODo6QhAEDB48GDKZDHfu3EFNTQ0EQcDMmTNhbm6O5uZmxMXFYfTo0ZDL5XjmmWcAAL6+vrCysoIgCHBzc4OJiQnUajWioqIwbdo0+Pj4oGfPngCAvXv3YvDgwRAEAZMmTYKhoSFKSkoQExMDLy8veHl5sTcujY2N8PT0hFwuh4uLC2QyGZKSkpCeng5BEDBnzhx2nlt2dja6desGuVyOoUOHQiaT4f79+6ioqIAgCPDw8ICFhQW0Wi3i4+MxfPhwyOVy9OvXD0DLIxYmJiYQBAHTpk2DiYkJ6uvrERUVBVdXV/j4+LCN/MGDB9G3b18IgoDJkyfDyMgI5eXliImJwdy5c+Ht7Q17e3s2H6ZNmwZBEDB27FgYGBggLS0NycnJEAQBc+fOZWdSFRUVoXPnzpDL5Rg+fDhkMhkePnyI0tJSCIKAWbNmwdLSEjqdDomJiRg0aBDkcjkGDBgAoOWRUgAQBAHTp0+HqakpNBoNoqKiMHnyZMjlcjg7OwMAfv75Zzg5OUEul2Pq1KkwMjJCZWUlIiMjMXv2bHh7e6N79+4AAFNTU/b148ePh4GBAbKzs5GQkAC5XA5PT0+26CsUCixZsgSCIGDEiBGQyWQIDw9Hfn4+m3dWVlYghCAlJYX9HgcOHAig5XEsjUbD2WlsbERMTAzGjx8PuVyO3r17AwB+++032NnZcXZUKhUiIyPh4eEBHx8f9gZy586dcHFxgVwuZ3by8/MRFxcHHx8feHl5sfPc6Dm+crmc2YmJiUF2djabd/RMurS0NDg7O0MQBAwaNIjZqa2thVwu5+zExMRgzJgxnJ3Tp0/D2toacrmcsxMREYHp06dzdvbs2YNhw4ZBEARMnDgRhoaGKC4ulrSj0Wjg5eUFQRAwZswYyGQyJCYmMjtz585lb9SysrLQvXt3CIKAIUOGQCaTITAwEJWVlSI7cXFxGDFihMiOmZkZ5HI5s1NXV4fIyEi4ublBLpezjfzBgwfRr18/yOVyZqesrAxRUVHw9PTk7BBCMHPmTAiCABcXF2YnJSUFcrmcs0PP7xMEAcOGDYNMJsODBw9QVlYGuVwuskP/B/Xv3x9Ay2NxMpmM+Tc1NUVDQ4OknaNHj7K/+ZQpU2BkZISKigpERUWJ7JiYmGDKlCkQBAHjxo2DgYEBsrKykJiYyGKgdsrLy7F06VLOzuPHj1FYWMj8UztJSUno168fZ+f69etobm5m/qmdqKgoTJgwgbNz7NgxdOvWDYIgYOrUqU+08+OPP2Ls2LFs3TEwMEBeXh7i4+Ph7e3N2VGpVFi4cCEEQcCoUaMgk8kQHR2N3Nxc5p/aSU9PF9nx9/dHbW0t80/tREdHw8XFBYIgsLXz1KlTsLGxYeuOsbExampqEBkZiRkzZsDb25vZ2b17N4YPH87ZKSoqQmxsLIuBrp319fXw9vbm7CQkJCAzM5P5p3YyMjLg4ODA2aE3Lena2dqOIAjo27cvAODs2bMwNzeHIAhwd3d/op39+/djwIABbN0xNDREWVkZoqOj4enpCS8vL2ZHp9PBw8ODs5OSkoLU1FTmn66deXl56Nq1K2cnJCQE5eXlzD+1k5CQgCFDhkAulzM7ly5dgoGBgaSdKVOmwMfHh9k5cuRIm3bmzJkDb29v9ubLyMiI/Q6onczMTCQlJbF1h/ovLS1Fp06dIJfLmZ2wsDAUFRWJ7KSkpKB///6Qy+XMjp+fH7RaraSdiRMnwsfHh9n59ddf2f9LakepVCIyMhKzZs2Ct7c3s/PDDz9g3LhxnJ3c3FwkJCSwPRu1o1QqsWjRIsjlcmYnMjJS0k5aWhp69+4NuVzO7Ny6dQv19fWcnaamJsTExGDs2LHcvvPkyZPo0qULW3da29Hfd+7atQsjR46EXC5ndgoLCxETEyOyU1dXB0EQuH1nfHy8yA4hBFlZWejRowe376Q3XqTsjBo1CnK5nLNjYWHB2amtrUVkZCTc3d3h4+PD2Rk4cCBbdwwNDVFaWoqYmBi27tC1U6vVYvbs2WzfaWBggOTkZEk7ubm5bA9C953BwcFQKBRs3bGwsIBOp0N8fDyGDh3K2bl48SKMjIzY2mlqasr2nVOnToVcLmf7zsOHD6NPnz7cvlOhUCAyMpLtO6kdQ0NDuLu7c/vOjIwMSTslJSWwtraGIAhs3/nf2jqKFXW0jtbROlpH62gdraN1tI7W0TpaR/tTWkexon+j6Scp06bVarmE5CeNbW5uhtQb+7bGtvc1SPURQto9VqfT/WUx/Kfi1el0XDL/n/m6/pN/s/bG8H9h3nXE8HSv668a+3/BztPEoNVq/5Yx/F+Yd/8XYniasR12nvyzOuZdRwxtjf3/m52/Qwz/rc1w27Zt/7EfdvDgwW1vvPHGf+znPW27desWli1bhrKyMnTu3BndunUDIQSzZ89GcHAwdDodnJ2dYWJigl9++QVr165FZWUl7OzsYGtri/r6eri6uiI2NhYGBgZwdnaGkZERvvrqK3z++eeorq5G9+7dYWNjg9LSUri5uSEjIwMmJiZwcnKCgYEB1q5di4MHD6K2thY9e/aElZUVkpKSMHfuXBQUFMDS0hI9e/aEgYEB/vnPf+L8+fPQaDRwcnKCubk5AgICsGTJEpSWlsLGxoY9aubp6Yl79+5Bq9WyGE6ePIl33nkHFRUVsLW1hZ2dHRobG+Hu7o6oqCguhu+//x7bt2+HSqVC9+7d0blzZ1RUVMDNzQ2pqaksBkNDQ2zYsAF79+6FWq1Gjx490KlTJ2RkZMDDwwN5eXmwsLBgMbzyyivw9fVFQ0MDHB0dYWFhgQcPHmDRokXs0QMHBwfIZDLI5XL4+/tDq9XCyckJpqamOHfuHFatWgWFQoGuXbvCzs4OWq0W06ZNQ3h4OGQyGZydnWFsbIzdu3djy5YtqKqqQrdu3dClSxcolUq4ubkhOTkZxsbGLIYtW7Zg586dqKmpYTHk5ORgxowZyMnJgbm5ORwdHWFgYICVK1fi+PHjXAzh4eF49tlnUVRUhE6dOrHHZRYsWIAbN26gubkZTk5OMDMzw5UrV7BixQqUlZWhS5cusLe3h06nw4wZM/Do0SMAYDEcOHAAGzduRFVVFezt7dG1a1eo1Wq4uroiISEBRkZGcHZ2hqGhIXbs2IFvv/0WNTU1cHBwgLW1NQoLCzFt2jRkZWXBzMyMxfD222/jl19+QX19PRwdHWFpaYmYmBj4+PigsLAQVlZW6NGjBwwMDLB48WJcuXIFTU1NcHZ2hpmZGW7evInly5ejtLSUszNr1iyEhISAEMLZef/991FRUSFpx9DQkM27L7/8El988QWqq6vh4ODA7Li7uyMjIwOmpqbMzrvvvotDhw6hrq6O2UlMTISnp6fIztKlS3HhwgU0NjZydpYuXSqyM3fuXAQGBnL+T5w4gTVr1nB2NBoN3NzcRHa+++47fPLJJ5wdhUIBV1dXpKWlcXbWr1+PvXv3cv7T0tIwa9YskZ2XX34Zvr6+nP/g4GAsXrwYxcXFnB0fHx/cuXOH+Tc1NcWZM2fw1ltvcXaam5vh7u4usvPTTz/h448/ZvlP1I6rq6vIzubNm/HTTz9x/rOzs+Hh4YHc3FzOzuuvv44TJ06goaEBTk5OsLCwwOPHj/Hss8+iuLiY2ZHJZJg/fz5u3ryJ5uZmFsPly5fx+uuvo7y8nNnRarWYPn06QkNDOTv79+9ndmgMNTU1cHV1RWJiImdn+/bt+O6775h/a2tr5OfnY/r06cjOzv5dO9HR0RAEgfl3cHCAgYEBnn/+eVy9epWzc/36dbz88suc/7bsHD16FOvWrUNlZSXzX1dXBzc3N8TFxXF2Pv/8c3z55ZecnZKSEri7uyMzM5Ozs2bNGhw+fBh1dXUshsTERHh5eUnauXjxImfn7t27ePHFFzn/1M79+/c5O8ePH2d2qH9qJzo6mrPz7bfftmknPT0dpqamcHR0hKGhIdatW4d9+/ZxdlJTUzFnzhzk5+fD0tKS/Q9btmwZzpw5w9kJCgrC4sWLUVJSwvzLZDJ4e3vj7t27nB1fX1+8/fbbUCgUsLW1ha2tLbMTERHB2dm5cye2bt0KpVLJYqiqqoKrqytSUlJgbGzM5t2mTZuwa9cuqNVq9OzZE506dUJWVhZmzpyJ3Nxczv+KFStw8uRJzk5oaCgWLFgg8j9//nzcunWLs3Px4kW88cYbKC8v59bO6dOnIywsDDKZDE5OTjA2Nsa+ffuwadMmzk51dTVcXV2RlJTE+d+6dSt++OGHNu3o+3/zzTdx7Ngxzk5UVJTIjkwmw6JFi+Dn58etnX5+fnjllVdEa6eHhwcePHgAAHBycoKJiQmOHDmC9evXc3Zqa2vh6uqK+Ph4GBkZwcnJCUZGRvjss8/w9ddfc3aKi4uZHX3/a9aswZEjR1BfX4+ePXvC0tKSPf5eUFDArZ1LlizBpUuX0NTUBEdHR5ibm8Pf3x8vvfSSyM6cOVgR2c8AACAASURBVHNw//59EEJYDMeOHcN7772HyspKNu8aGhrg5uaGmJgYGBoashi++eYbfPbZZ9y+s7y8HG5ubpJ29u/fj7q6OvTo0YPZmT17NrND592yZctw9uxZzv/9+/fxwgsviOx4eXkhICAAOp2O7dl8fX2xevVqzk5TUxPc3d0RGRnJ+d+5cye2bdvGctY7d+6MyspKuLm5ISUlhVs7N27ciN27d6O2tpatO5mZmWzd0bfz6quv4tSpU9BoNGzP9ujRIzz33HMoKSnh5p0gCLh9+za377xw4QJWrlwJhUKBLl26SNqh/vfu3YvNmzdDqVTC3t6+XXb0187c3FzMmDFDZGfVqlU4duwYt+/8u7Xt27cXb9u27eDvDmxPRaM/6/q7V82lldLo1bt3b7J9+3ZiZGTE+kxNTck//vEPVimVXoMHDyZbt24lhoaGrM/S0pKsWLGCjB07lhs7ZswYsmHDBiKTyVhf586dydq1a4mTkxPrk8lkxNXVlbzzzjvc13fr1o1s3bqVmJiYsD5DQ0Myd+5cVjmMXs7OzqIYTExMyKJFi1i1R3oNGDBAFIOFhQV59dVXWbVHeo0aNYps3LiRGBgYsD4bGxvy7rvvkmeeeYYbO3nyZPLuu+9yffb29mTr1q3EzMyM9RkYGJBZs2axirX0cnR0JNu3byfGxsasz9jYmCxYsIAsXLiQG9uvXz9RDObm5mTZsmWsyjC9hg8fTjZv3szFYG1tTVavXk0GDRrEjZ04cSKrfkwvW1tbsnnzZmJjY8PFMHPmTFb9jF49e/Yk27Zt42IwMjIi8+bNY5WS6dW3b1+ybds27m9mZmZGXnzxReLh4cGNHTp0KPnoo4+4GDp16kTefPNNMmLECG7s+PHjyfr167l517VrV7JhwwZiZ2fHzbvp06eTt99+m/t6BwcHsnXrVlEMPj4+rGKlvp3WMZiampIXXniBeHp6iuxs2bKFi8HS0pK8/vrrIjsuLi6SdtatW0ccHR25GNzc3ER2unfvTrZt2yay4+npSZYvX86N7dWrl6Sd559/nlV7pNfAgQPbtDNp0iRu7OjRo8mmTZu4GKidPn36cGOnTJnSph1TU1Nu3s2ePZu89tpr3FgnJyfRvGvLTv/+/du0Q6sM02vEiBGSdt555x0yYMCA37VjZ2dHPvroI9KpU6d/y46xsTGZN28eq5Tc2o5+DNQOrdBNr2HDhrVpZ/jw4SI7H3zwgcjOhx9+SGxtbUV2aNVdevXo0UP0P8zIyIjI5XKydOlSbmyfPn3Ijh07JO3QKsP6dj7++GMuBisrK/LGG2+QMWPGcGPHjh0rstOlSxeybt060qNHj3bZae3f0NCQeHl5tcuOqalpu+1YWlqS1157jVVK1bfz4Ycfivy/9957pHfv3tzYqVOnssrB+nak/M+ZM4dVe9a30/rvYGJiQhYuXEieffZZkZ3W887CwoIsX76cVUqlF61y2R47kyZNkrSzZcsWYmVlxdnx8PAgr7/+usiO1No5f/588vzzz/+uHXNzc/LSSy+xCt2/Z+ett94iQ4cOFdlZt26dyM7GjRtJ165dRXZWrVolsiO1dsrlclbtVd9O63lnZmZGlixZwqoM02vIkCGidcfKyoqsXLmSjB49WmSntf8uXbqQDz74gDg4OHAxuLu7i9ZOuu60tuPt7c1OGaBXW/vOxYsXs0qp9Bo0aBD5+OOPJe2MHz+eGztmzBiyceNGyX1nr169ftfOk/adUnak1s7nnntOZGfAgAGiGCwsLMjLL79Mpk6dKrKzadMmkZ1//etfpH///tzYyZMns6r7re1YWlpydp5m3/nss8+yKuP06tevX5t2aIVueg0fPrxNO0OGDOHGTpgwQTTvbG1tycaNG0mXLl24eTdjxgwSHh7+v/02imtoZ9Xcjjeieu3q1auioxfq6+vJyJEjufLxGo2G7N+/X3T0glKpJD169ODKxzc3N7NFQ//ohYKCAmJlZcWVj9dqteTVV1/lSmArlUoSFxdHjIyMuKMXtFot8fT05I5eUKvV5Pbt26KjFxoaGsjYsWO5oxcaGhrIzz//LDq2pLq6mvTq1Ys7eqGpqYl8+umnomNLiouLiY2NDXf0glarJatWreLKx1dWVpKkpCRiYmLCHb2g0+mIIAikW7durHx8TU0NCQwMFB1botFoyKRJk7hjS+rr68mJEye4Y0tycnKIWq0mffv25Y5eaGxsJF9//TWxsLAgzz77LDu2pKysjHTp0oU7ekGr1ZI1a9YQGxsbVj6+oqKCpKWlEVNTU+7oBZ1ORxYtWsSVj6+uriYPHjxg5ePp0QuNjY3Ezc2NODo6svLxdXV15OzZs8TY2JiVj8/Ozia1tbVk8ODB3NELjY2N5McffxQdvVBRUUHs7e25oxeam5vJBx98wJWPVygUJDs7m5ibm3PHluh0OrJ06VJia2vLyserVCoSHh5ODA0NuWNLmpqayMyZM7mjF2pra8mVK1dY+Xhqp66ujgwfPlxkZ9++fdzRCwUFBaSqqkrSDn2zon/0Qn5+PrG0tCQuLi6cnVdeeUVkJyYmhhgZGbHy8fHx8aS5uZnMnTtXZOfmzZuioxcaGhqIi4uLyM6RI0dERy9UV1cTZ2dnkZ0dO3aIjl4oKioi1tbWIjsrV67k7FRVVZHExERibGxMJk2axNmRy+Xc0Qs1NTXk3r17XPl4amfixIkiO8ePH2fHltCjF2pqaiTtfPXVV8wOLR9fWlpKunTpwh29oNVqyTvvvNOmHf2jF3Q6HVm4cOET7dCjFxobG4mrqyt39EJdXR05c+aMpJ2BAwdyRy80NjaSH374QWRHoVAQOzs7dvQCtbNu3TqRnaysLGJmZsYdvaDT6ciSJUu4oxdUKhV5/PgxMTQ05I5eaGpqIjNmzODs1NXVkUuXLnFHL+jboUcvUDt79uwRHVtSVVVFHBwcuKMXmpubyaZNm0R28vLymB169IJWqyXLly8X2YmOjubsJCQkkObmZjJnzhzuyK/a2lpy48YN0dEL9fX1ZPTo0dzRCw0NDeTw4cMiOyqVijg5OXFHLzQ1NZHt27eL7BQWFpJOnTpxRy9otVryxhtviOwkJCQwO/ToBZ1OR3x8fDg7arWa3L17V3T0gkajIRMmTOCOXqivryfHjh2TtNOnTx/u6IWmpibyxRdfiI5eKC0tJZ07dxYdvbB69Wp25NeJEydIZWUlSU1NJSYmJiI7CxYs4I78qqmpIcHBwZJ2pk6dSpycnMibb75Jrl+/Turr64mvry93bAm1M2DAAGYnICCANDY2ku+//17Sjq2tLXdsSXNzM1m7di135JdCoSCZmZmSdv7xj38QOzs7duSXSqUiYWFhIjuNjY1k+vTp3LEldXV15OLFi6JjS+rq6sjQoUO5Y0s0Gg3ZvXs3O/KL2qmsrCTdu3cX2dm4cSPp1KkTO/KrvLyc5ObmEgsLC86OTqcjy5Yt447LUyqVJCoqihgZGZGpU6dydmbPni2y4+fnx+0727Kj0WjIwYMHRftOlUpFHB0dRXa2bt0q2ne2ZWfFihXcsSVVVVUkPj5eZEer1RJvb2/SvXt3dmyJWq0md+7cYftOaqehoYGMGzeOs9PQ0EB+/fVXbt9J7fTu3Vtk5/PPP+f2nSUlJaSkpITtO/XtvP3229xxeZWVlSQlJYXbd1I7zz77rMhOUFCQaN/Z2NhIpkyZIrJz6tQpyX1n//79RXa+/fZb0XF55eXlknbee+89zk5FRQXJyMggZmZmZPz48ZydxYsXc3aqq6v/t99CiVrHG9F/o2VmZhKlUsn1NTY2koSEBKLT6bj+1NRUUltby/VVV1eTjIwM0fdNTEwkDQ0NXB/dULdu8fHxpKmpiesrKCggpaWlXJ9OpyOxsbGic4Oys7NJVVUV19fU1ETi4+NFMaSlpRG1Ws31qdVqkpaWJnpdSUlJpL6+nutTKBQkNze3XTEUFRWRkpIS0VipGHJyckhlZSXX19zczDYR+i09PV0EsK6ujqSkpIh+VnJysiiGyspKkpOTIxqbkJBAGhsbub7i4mJSVFQkGUNzczPXl5ubSyoqKrg+rVbL3kTot4yMDFEMDQ0NJCkpSTQ2JSWF1NXVcX1KpZJkZWVJxqDRaLg+upFr3eLi4kQx5OXlkfLycq6PzrvWr0vKjkajabcdlUrVpp3WMZSVlUnaiYuLk7RTVlYmGUPreZeVlfWH7NTU1LRpp7X/v4udmpoarq+2tvYP24mPj5e0U1xcLBlDe+1IxSBlp76+niQnJ4vGJicni+xUVVW1205JSYmkHakY2rJDN0L6LTMzk6hUKq5Po9GQxMRESf9/1E5BQYForJT/P8NOW/6l7KSnp4teV1t28vLyRGOl7BQWForWTkKk7WRnZ7fbTlpamqSd1NRUyRha26moqPhT7LSO4Y+uO09rJzs7W/S6pNbOp7WjUCi4vietO3/UTmZmpuh1SdkpLS1tt538/Pw2104pO1L7Tql152nstLXv/CN2nmbf+TR21Gr1X2LnadfO9tppa9/5V9lp777z79ba+0a0o2puR+toHa2jdbSO1tE6WkfraB2to3W0P6W1t2puR7EivfbgwQOEhYWxZH4AaGpqwu7du2FtbQ07Ozt2Vs/NmzeRnJzMEpKBlnMMDxw4wBKSaTt37hwKCwtZQQLgfw4kp8n8tB07dgw1NTUsqRpoOWT8xo0bLJkfaPkk+8CBAwDAkqoBIDQ0FA8ePGCFMICW6lq7d++GpaUl7O3t2Vh/f38kJCSwIhJAyzmm+/fvh62tLTsnC2g5NykvL48lkQMtBxIfP36cJfPTRg/ipUnVQMvh9levXuViAFrOJ9RqtawgCdBy2HtQUBBLhAdaqsjt2bMH5ubm6NatGxsbEBCAmJgYLoa6ujrs3bsXXbt2ZedkAS3ndWZnZ7NkfqDlDMBffvlFFMOpU6dQUVHBkvmBlrPnLl68yAph0HbkyBE0NjaiZ8+e7HVFRUUhICCAi0Gn02HPnj0wMTFhyfwAcP/+fURFRbFEeKDlPMk9e/agc+fOsLW1ZWP9/PyQkZHB/R0qKytx5MgRlsxPm6+vL8rKylgiPNByMPTZs2dZIQzafv75Z1Zsgf7NYmNj4e/vzwph0Hm3d+9eGBkZcfMuJCREZKexsbFNOykpKZwdlUqFgwcPStopKiriYsjPz8fp06dFdn799Veo1Wpu3iUmJuLmzZtcMj8hBPv374dMJuNiePToER49esQKYQAtdnbt2gUrKyuRncTERC4GtVqNffv2wc7OTmQnPz+fm3dFRUU4fvy4KAYpOykpKe228/jxYwQHB3MxaLVa7N69W2Tn7t27iIuLa5edy5cvIycnh4uhrKyMnc2nb+fkyZOoqKhghXCAFjuXLl0S2Tl8+LCknXv37j2VHf0YGhoasGfPHlZEgrZr166J7FRUVODo0aOsiAxtUnays7Nx/vx5VkSCtqNHj0rauXPnjmjeSdkJDg5GeHg4578tOzdu3EBqaqrIzqFDh1gRGdrOnj2L4uJikR1fX19RDL/88ovITkJCQpt2DAwM2mVn9+7dIju3b98W2ampqcGBAwdEdi5cuCBp58SJE6wAG22//fYbVCoVF0NycjL8/PxEdg4cOACdTtduOxYWFu22Qwuw0Ebt6M+7J9mprKzk7KSnp+Py5cuSdpqamjg7kZGRCAwMlLRjamrK2QkMDGy3natXryIzM7Nddk6fPo3y8nJu3mVlZeH8+fOiGI4ePYqGhgbOTkxMTJt2jI2NJe1IrTs2NjacnevXr4vsKJXKNu2UlJRwMeTm5uLMmTOSdmpra7l5Fx8fj1u3brVpR3/ePXz4EKGhoZL7zk6dOnF2bt26Jdp3tmXn/Pnzon1nYWEhTp48KWmnurr6d+3QfSchhIshLCwMISEh7bJz584dxMfHc/OutrYW+/btE9m5dOkScnNzuXlXUlKCY8eOifZsJ06cQFVVFWcnLS0NV65cEc27Q4cOobm5mbMTERGB+/fvi+zs3r0bZmZmnJ179+6J9p319fXYu3evpJ2srCwuBoVC0W47mZmZuHDhguS+U6PRcHb+bq2jWNG/0X799VeWkExzDiIjI8nAgQNZMj/Ndfvkk09YQjLN1wkNDWWJ6zTnIDg4mLz11lssIZnm6wQGBrKEaf2cg/nz57Nkfpqvc/XqVWJgYEBkMhnL14mLi2OFHGjOweXLl8kvv/zCkvlpvk5UVBRLgtbPOfjyyy9ZMj/N1wkLC2MFk/RzDmjiun6+TlBQELG2tiYAuJwDWgSB5hycOnWKXL9+nRgZGRGZTMblHNBkdAcHB/Laa6+RixcvkhMnTrBEeJqvExUVxQqI6Occ/PDDDyyZn+brPH78mBWu0M85WL9+PUvmp/k6wcHBLOlbP1/nn//8J0vmp7lut2/fZonr+vk6tAiKfs7BmTNnWAw0XycmJoYVQXB2dmY5B7t372bJ/DRfJzw8nPTt25cA4HIONm/ezJL558+fTw4dOkQePnxI7O3tWSI8zTmgBQT0cw7u3r3LCkTp5+vQAkL6OQcXL15kyfw0XycmJoYVENLP1zl48KDITkREBCu+oZ+vs2PHDpGdR48eieyEhISwoi/W1tbk+eefJ7/++iu5d+8esbCwENmhxbf083WuXLkishMbG0smTJjA2bly5Qo5evQos+Ph4cHsDB48WGTniy++YHZovk5YWBgrmKRvhxZB08/XuX//PivUo2+HFkHo2rUry9e5fv06MTQ0FNmZMmUKZ+fSpUvk+PHjT7TTu3dvZue7775jdry8vJgdWrhC3866deuYHZqvExISImmHFt/Rz9e5desWMTY2JjKZjEycOJHZoYUc9O34+vqyGGi+TnR0NBk1apTIzq5du5gdmq/z+PFjVjBtwIABzM6mTZs4O4cPHyYPHjxghbpGjBjB7LzyyisiO3fu3GEFovTzxGkBIXt7e2bn/PnzzI6bmxv5+uuvSWxsLHFxcRHZ2b9/P7Mze/Zs8tNPP5HIyEhJO9u2bWN2BEEgBw8eJI8ePSLdu3cnQEsRGWpn5cqVnJ1jx45xdmieeEREBBEEQdKOTCYjBgYGLE88NjaWFUHp2bNnm3Z+/PFHzg7NE799+zb5/PPPRXZCQ0NJz549CQAuT5wWTNK3ExgYyOzo11igxbf07fj5+TE7+jUWaAExfTvHjh1jMdAaC1FRUWTYsGEiO99++y1nZ+/eveTx48fE2dmZAGB54oGBgeT9998X2QkODiadO3cmALg8cVp8R98OzV2ndmie+LRp00R2Tp06JWln5MiRzA7NE9+5c6fITnh4OGeH5ol/+OGHIjshISGsUJd+jQVauIrmiR8/fpz4+/tL2pk9ezaz8/LLL5Nz586Rc+fOiezExMSw4lv6eeL79u0T2YmIiGCFa/RrLGzdulVk5+HDh6Rbt27MDq2xQAum6dsJCAgg5ubmnJ3IyEhWfEs/T/zSpUu/a4fmiR85coTFQO1ERkaygon6NRY+++wzZkculz/RzurVq0X7zvv377MiV/p2FixYINp3StmJi4vj7NAaC23ZoYWr+vTpw2osfPPNN+2yc//+fVaoi+47jx49SoKCgliBSH07tOijfp54W3Zo8T39PHF9O9OnT2d2aNHHXr16MTs//vgjs6O/76TFBvXtbNiwQbTvfPDgASvUpW9n2bJlon2nv78/KxClb2fWrFmcnfPnz4seef7fbmjno7ktb887GoCWO8tAy92o1NRUDBw4EHZ2dqivrwfQ8ilmWloa0tLSUFJSAqDlLkhaWhpSU1NhamqKpqYmAC2fPNHvUV5eDqDlzhX9eo1G05Kki5Y7HnRsVVUVgJZPuehYeueKEIL09HSkpqaiX79+UCqVAFrurtKvb2hoANByN5q+ru7du6Ourg5Ay91kOra4uBhAy11Q2mdubo7GxkYALXcAW8egVqvZ921ubmZnXWVlZbGxlZWVAICqqirWZ2tryyZdRkYG65eKgX5PrVbLflbPnj1RW1sLoOWTWDq2qKgIQMsniPT31alTJ2g0GgBAXl4eG1tWVgag5e4bHUvI/5ztmZ2dzcZWVFQAaLljSsfS+UH/ZvS10b9ZeXk5+3p650ur1SI9PR1paWlwdnZGTU2NKAb6uhobG9nP6ty5M/tb5ufni8bW1dWxPkNDQ3amlP68UygUbF7TPrVa/cQYKioquLkAtNwVpDH06dMH1dXVAFruTNKx+nZoDPRYFqDlTiz9Wa3tpKWlwdjYmNnJzc1lY+m8q66uFs1xOu/oWDrv9GOwtrbm5l1aWhr69evHXm9bdmifg4ODpB0aQ1t28vLyRDGo1Wo2tqmpifnPzs4WxVBZWcnZAcDFkJqaytmhfXQu68+7Hj16MDtFRUVsrL4d+rP07eTn57Ox+nb0nerboWP17dCx9Cgc/RjS0tIk7dA7wfr+nZyc2NwtLi4Wva7Gxkb29TY2Npyd1mP17RgYGDA7+jHo26F91C4A7n8YjUGhULCx9FMBnU7H+nr37s3Zaf131F93unbtKrLT1rpjbGzM+adjaQzV1dVsbH19veS6oz/v6NfTu+/Uf2pqKvr27cvslJaWsrHUiP66Y29vz/oLCwufaMfMzIzz/6R1p6mpSXLdab12pqamsk+59NfO1usOjYH+fP0YpOykpaWxtVPfjpWVFef/SeuO/tneUmun/rpDj/NovXa2nndpaWnsE5sn2Wm9/j/JjtS6Q7+vTCZ74tqpv+60xw7to58w6c+71nZa/770150uXbpwe7bW8671uvOktZPa0Z/j9G/2pHWHfoKov3Y+88wznJ3Wa7J+DPb29pz/P7Jnq6mpYX36+079GPTt0LFdunQRrZ0pKSmSezb686mdtLQ0bt+pv/7r26FjLS0tuT3bk9ZOfTtSa6f+vtPe3p6z0/p/rv66Qxu1k5aWBicnJ85/632nvp221k4ag/7aSX8OnXdPWjvpvAek92z6687QoUMxePBg/Le1jjeiem3IkCH49NNPIQgCRowYAZlMhqamJkRFRWHq1KmYPXs2W5zPnj2LZ555BoIgsIlVXV2N6OhozJ07FzNmzOA2I9OmTYNcLkfv3r0B/M8/SLlcjqlTp7LHLIqLi7Fs2TL4+PjAwcEBABAXF4cPP/wQgiBg/PjxMDQ0BCEECQkJGDhwILy8vNgjGYGBgdixYwcEQcCoUaMgk8nQ3NyMqKgoTJ48GbNnz2aPlVy6dAmOjo4QBAGDBg2CTCaDWq1GTEwMZs+ejRkzZrA3I0ZGRpg0aRLkcjmeeeYZ9lqTkpIgl8vh5ubGYlAoFHjhhRfg7e2Nnj17AgCSkpLwwQcfQBAETJw4kW02k5KS0LdvX3h6erLHGUJCQrBt2zYIgoAxY8awBS86Ohrjx4/HnDlz2Jvzq1evwtbWFoIgYMiQIZDJZKirq0NUVBQ8PDwwc+ZM9miMubk5Ro8eDUEQ0LdvXwAt/4gSEhLg4+MDd3d3tghWV1dj/vz5kMvlcHR0BNDymMd7770HQRAwefJk7pHdd999F15eXuwfX2hoKD7++GMIggAXFxcYGBhAp9MhJiYGY8aMwdy5c9ljJTdu3ECnTp0gCAKGDRsGmUwGjUaDqKgoTJ8+HR4eHmxhO3XqFIYOHQq5XI7+/fsDaFk84uLi4OXlhWnTprHHe+rr6+Hl5QUfHx84OzsDaPnHvXr1agiCgClTprA3zLm5uVi1ahW8vb3ZxicyMhIfffQRBEHAuHHjYGBgAEIIYmNjMWLECHh6erLHSvz9/UV2GhsbERUVBTc3N8yaNYuz07dvX86OSqVCbGwsPD09MX36dO7xnhkzZsDHx4fZoRskQRA4O0VFRXjllVfg7e3N7MTGxmLjxo0QBAETJkxgMSQkJGDQoEHw9PRkdu7du4dPPvkEcrmcsxMZGSmyc+HCBTg5OUEul3N2oqOjRXYMDQ0xZcoUyOVy9OnT53ftLFmyBD4+Puzs2cTEREk7iYmJ6NevH7y8vNib1eDg4DbtTJgwQWSnW7dukMvl7bIzduxYyOVyZqesrEzSjkqlwsKFC+Hj48PZWbt2LeRyOWcnNTUVa9euhbe3N/MfGhqKrVu3Qi6Xc3aio6Ph4uLC2bl+/Tq++OILCIKAoUOHQiaToaGhQdLOyZMnMWzYMM5ORUVFm3a8vb0hl8vh5OQEoGXj9q9//Yv5p3ays7Px5ptvcnbCw8OxZcsWCIKAsWPHPtHO7du38dlnn0EQBAwfPvyJds6cOYMBAwZAEAQMGDCAszN37lzOTlNTE2bOnAm5XI5evXoBaNnkvfXWW6J1p6CgAK+++ip8fHzYTYOYmBhs2rSJrTs0hvj4eAwePJizExAQgE8++QSCIGDkyJHcujNlyhSRHWdnZ7buAC2b5ZiYGMyZM4dbO2UyGaZOncrZKSoqQnJyMuRyOVxdXVkMZWVlWLp0KWcnISEB69evZ/7pvEtISBDZCQoKwvbt2yEIAkaPHs3sREVFiexcvnwZ3bp1gyAIGDx4sMiOh4cH829iYoJx48aJ7CQmJsLHxwdubm7MTlVVFRYuXAi5XM7WztTUVLz//vsQBAGTJk3i7Lz//vucnUePHmHr1q3Mv76dsWPHYs6cOZydzp07S9qZMWMGPDw8mH8rKyuMGDECgiCgX79+zA49L9Pd3Z3Zqa2thVwuh4+PD7OTmZkpaScrKwurV6+Gl5fX79qJiYnBqFGjMHfuXGbn1q1bknaio6Ph7u6OWbNmMf++vr4YOHAgZ0epVHLrjv7jvR4eHpyd3NxcpKens3WHxlBQUIAVK1bA29ub2YmOjm7TztChQ+Hp6clukty9e1dkp6195/nz59GnTx+27lA70dHRIjsA4Obmxu07CwsLkZKSIrJTWlqKf/7zn9y+Mz4+Hhs2bODsEEKQmJiIAQMGcPvOtuxER0dj0qRJmDNnDvN/+fJldO/enbNTW1uLONCyGQAAIABJREFU6OhozJo1CzNnzuTsjB8/ntt3lpSUtGnn+eefh4+PD7OTnJwsaSclJQUffPABvLy8mJ2HDx9i27ZtbN2RyWRt2vHz80PXrl0hl8uZnfr6ekRFRWHmzJmcHUtLS4wcORJyuZzZUSgUzM60adO41DhBELh9Z0ZGBtasWSOyk5mZiXfeeQfe3t5s3/nf2jqKFXW0jtbROlpH62gdraN1tI7W0TpaR/tTWnuLFf09M1z/l5pSqUTrN+ZNTU3c44z6Y1u3+vp67rHBJ41Vq9XsUaDfG1tdXc0+xqeNECI5ViqG5uZm7tGYJ41taGhgj4T83uuqra39QzG0NValUolel1ar5R5ReFIMGo2Ge4zm92Kgj5X83tiamhr2GE97YqCPj9Cm0+m4x3ufFENjYyN7JOT3flZdXR17JOSvjuFp5t3fxc4fiaHDzpNjeBo7TxPDH7XT3hj+znba6//vbKct/1J2/lNrZ1tjpV7X09p5Gv8ddp7Ozl+xdtbX17c7BrVa3e4Y/ko7rdt/0k5bMbS17vxVa+dfZaf163oaO0+zdv5Vdv5bW0fVXL0WFBQEDw8PZGRkwNDQkFXqmzZtGi5cuACVSsUqdZ06dQr/+Mc/kJOTA1NTUzg6OkKr1WL06NEICAhAbW0tq3L17bffYvXq1SgoKIClpSV69uwJlUqFYcOGITw8HI2NjXB0dIS5uTnef/997NixAyUlJbCxsUH37t2Rk5OD0aNHIyEhATqdDk5OTjAxMcGLL76IvXv3QqFQsGpjYWFhcHd3R3p6OgwMDODk5ARjY2PMmjULvr6+UKlUrLrq+fPnsXDhQmRnZ8PExAROTk60qBRu376N2tpaViFu165dWLlyJfLz82FhYYGePXtCrVZj2LBhCA0NhUajYRXiPvzwQ2zZsgXFxcWwtraGg4MDCgsLMWLECMTFxUGr1bIKkcuXL8dPP/0EhULBqo3Rx7loHgqtNubp6YkTJ05AqVSy6qrXrl3DvHnzkJWVBWNjYzg5OUEmk2H8+PG4ceMG1Go1qxB34MABvPbaa8jLy4O5uTkcHR1RX1+P4cOH48GDB6x6n6WlJbZu3YoPP/wQRUVF6NSpExwcHFBaWorhw4cjJiYGzc3NrELcG2+8gW+//Rbl5eXo3Lkz7O3tkZCQgAkTJiAlJQUAWJW7efPm4ZdffkFVVRWrcnf79m14eXkhMzMTRkZGrGLalClTcOXKFdTU1LAYfv75Zyxbtgx5eXls3jU2NmLEiBEICgpi1TstLS3x2Wef4f3330dRUREsLS3Ro0cPVFZWYujQoYiKikJTUxOL4e2338aXX36JsrIy2NjYoFu3bkhLS4OLiwuSkpJACGExLFq0CIcPH0ZlZSXs7Oxga2uL+/fvS9pxd3fHhQsXUF1dzSpEnjx5Ei+88ILIzqhRoxAQEIC6ujpm55tvvsG//vUvFBYWsnmnVCo5O7TK3XvvvYdPPvkEpaWlsLa2Rvfu3ZGdnc3ZoVXuli5din379qGiooJViA0NDcW0adOQnp7OzbuZM2fizJkzUKlUrMrduXPnsGjRIuTk5LB5RwiBi4sL/P39OTs7d+7Em2++iYKCApibmzM7Q4cOFdnZsGEDPv74Y5SUlDA7BQUFGDlypMjOsmXLmJ2uXbvCzs4OkZGRv2uHVoi8cuUK5s+fj+zsbDbvWtuhMezbtw8rVqxAfn4+zMzMmJ1hw4YxOzSGLVu2YOPGjSguLmZ2SkpKMGLECMTGxnLzbsWKFfjuu+9QXl6OLl26wN7eHvHx8Zg4cSJSU1PZvDMyMsK8efPw66+/oqqqCvb29ujatStu3boFLy8vZGVlsXlnYGCAyZMn49q1a6iurmZ2jh49yuzQGKid4OBgNu8sLS3x6aefMjtWVlbo0aMHFAoFhg0bhujoaDbvzMzM8NZbbzE7nTt3Rrdu3ZCSkoKxY8ciOTmZs/Pcc8+J7Ny7dw+zZ89mdmiVS1dXV1y8eJGzc/z4cSxZsgS5ubkwNTWFk5MTmpubMXr0aNy7d49bd7766iusWbMGhYWFbN2hdiIiIqDRaJidd999l9mh605WVhZGjx6NxMREaLVaZmfJkiXYv38/W3fs7Ozw8OFDTJ8+na07NIaZM2fi7NmzUCqVzM7Zs2eZHbru6HQ6jBkzBnfu3OFi+PHHH5md1utOWFgYZ2f9+vUiO/n5+Rg5ciTi4+NZDKampnjppZewa9cukZ2pU6eyXEs67+bMmYNTp06hqqqK2bl8+TKzQ/0DwLhx43Dz5k3U1NQwO3v37mV26LpTV1eH4cOH4+HDh5ydjz76CJs2bWLrTo8ePVBUVIThw4cjNjaWW3dee+01/PDDDygrK2N24uLimB267hgZGUEQBBw7doyzc+PGDfj4+LB1x9nZGTKZDJMmTcK1a9e4defw4cNYvnw5Z0ej0TA79fX1rLrqjh078MEHH6CwsFDSTlNTE6vqv2rVKnz99decneTkZIwbN05kZ8GCBTh69ChnJyAgAHPmzJG0c+nSJebfxsYGv/32G1588UW27lA7I0eORGBgILfufPnll3j33Xe5PVtlZSWzo7/urFmzBp999hlnJyMjA2PGjEFiYiK37rzwwgs4cOAAKioqmJ2QkBDMmDFDZGfGjBk4d+4ct+74+vpi8eLF7bLz/fff4+233+bs1NTUcHZoDOvWrcO2bds4O3l5eRg1ahRnx8TEBC+99BJ2797N7TvDw8Ml7cyePRunT5/m/F+6dAkLFizg9mwAMHbsWNy6dQtqtZpV9d+zZw/eeOMNzk5tbS2GDRuGR48eoaGhgVX137x5MzZv3szWnR49erB9J7VD/b/yyiv48ccfuXUnJiYGkydPFtnx8fHBb7/9xvm/fv065HI5srKymB0DAwNMnDgRfn5+zL+1tTUOHTqEV155RWRn+PDhCAkJ4exs374d69ev5/ad5eXlknZWrlyJb775hvNPc8T/Lq2jau6/0WiVQXp16dKFbN++nesDQBYsWEA8PDy4vp49e5ItW7ZwfTKZjLz66qus6ha9+vfvTz744AOuz8jIiKxdu5ZVP6XXmDFjWNVdepmbm7PqifqXu7s7q1hJLxsbG8kY5s2bxyql0svBwUEUAwCyfPlyVimVXn379mVVaOllaGhI1qxZwyqH0mvEiBGsghu9TE1NydatW4lMJuP6p06dyiqH0cva2loyXi8vL1axjl7dunUjH3/8sWjs0qVLWbU3evXu3ZtVA6SXgYEBefvtt1nlQHoNGzaMVQ6ml4mJCdm8eTOrQkuvSZMmsaqb9LKyspL8O8ydO5dVrKOXnZ0dq/Cnfy1evJhVe6OXs7MzqwaqP+9WrlzJqj3Ta/DgwawKHb2MjY3Jhg0bWPVjeo0fP55VDqSXhYWF5N/Bw8ODVUrWtyMVw8KFC1mVYXo5OjqyasD6Mbz22mus2iu9BgwYwCq46tt5//33WfVTerm4uJBVq1a1y8706dNZxUp6de7cWXLsvHnzyJw5c7i+Hj16SM675cuXs2qP9OrXrx+rpNfaDq1+SK9Ro0aJ7JiZmUn+bl1dXdttx8fHR9KOlP8XX3yRVeimV58+fdq0QytW69uhlYPpZWpqSjZv3syqAT7JTqdOndq08+yzz7bbjqurK9fXq1cvkR0DAwOycuVKVrGWXkOGDCHvvfeeyM6HH37IKrjq21mxYgXXZ2lpyapF61+zZs1ilZLp1bVrV8l4n3vuOVZlWN/ORx99JGmHVqyk18CBAyXtrFu3jlVw/DPtSMUwf/58STtS8+7/sfeeYVVcX/v/DQiIIMWC1Fhi7703VIgRTjQxJhpN1ESTiC1GE2OMYsfeG6LY0aioFHtvWFBEFCnSe++9nP1/Qfb6z2YGg98kz5Pv82Nd17zZ1zqeuZ39mbXPMOveU6ZMIZdxKTtVa6eWlhabN28eMzc3l7Ezc+ZMGTtK5zVw4EBySudHdbXT3t6ejRo1Shhr0qSJIv+TJk0ip9Q/Y2fWrFnkWM2Pjh07KrKzZMkScnDnR79+/diUKVNqxM7IkSPJof/P2JkwYQK52/8ZOzNmzGDvv/++jJ0ffvhBGNPR0WGLFi2inQP+jB2leTdixAg2duxYGTtKGj799FNFdpTqzvTp0xXZ4e7H/NDW1mY//fQTOYfzo0ePHrK1ZHW108bGhtxe+WFiYqKYO2bMGHJKlbJTlX8AbOrUqeQyzo+WLVsqrtnmzZtHrtv86Nq1qyI7Sv+3gwcPVmRHSYODg4MiO0r8f/nllzJ2mjdvrlg7Z8+eTa67/OjUqRO5bldlp06dOsJ4//79Fdmpbt3JHfr50bhx42rZ6devnzDWtGnTGrPTvn17Wd3h7HD3c3706dOH+fn5/W//jBICNXTNrf0hKonLly8LFtw5OTmsrKyMdevWjbaveP36NVOr1ezAgQOCBXdhYSHLz89nzZo1o+0rIiIiGGOMrVixgiz4r127xkpKSlhycjJr3LgxbV8RHx/PGKv8MSzdvqK8vJy9fv2aGRsbkwV3WloaU6vVTKVSCdtXVFRUsJs3bwoW3NnZ2aysrIz16dOHtq949eoVU6vV7OjRo4IFd0FBASssLGQtW7akrV/Cw8MZY4ytXbuWNW3alCy4i4uLWVpaGmvSpAlt/RIXF8cYY2z27NnC9hVlZWXszZs3zMTEhLZ+SUlJYYwxNnbsWGH7ioqKCtoWgltwZ2VlsfLycjZw4EBh+wq1Ws1OnTolWHDn5+ez4uJi1qZNG9q+IiwsjDHG2JYtW4StX4qKilhmZiYzNzcnC+6YmBjGGGMLFiwQtq8oKytjUVFRzMTEhCy4k5OTGWOMTZgwQdi+oqKigj158oSZmJiwCRMmsOPHj7PMzExWUVHBbGxshK1f1Go1O3/+vGDBn5eXx0pKSljHjh1p65eQkBDGGGO7du1iVlZWtH1FUVERy8nJYVZWVrT1S1RUFGOMsV9//VXY+qW0tJTFxcWxhg0bso8++oi5urqyxMRExhhjkydPFrZ+KS8vZwEBAczY2Jh99tln7OjRoyw9PZ1VVFQwOzs7YesXtVrNLl26JGz9kpOTw0pLS1nXrl1l7Ozfv59ZWFjQ9hWcnaZNmxI7kZGRjDHGli9fLmxfUVJSwpKSklijRo2YSqViLi4uLCEhgTHGaAEhZScoKIgZGxuTBT9nx97eXmBHrVazGzduCNtXcHZ69eolY+fIkSPC1i+cnRYtWsjYcXZ2FrZ+KSkpYampqczU1FTGzqxZs2TshIaGMmNjYzZ27FiBnU8++UTGDt+OiG9fwdkZMGCAjJ2TJ0+yJk2a0PYVUnZsbGwEdjZt2iSwU1xcTOxwC37Ozo8//ihjJzIykpmYmND2FZydzz//nHXp0kVg5/Hjx8SOu7s7y8zMZOXl5Wzo0KHC1i9qtZqdO3dOkZ0OHTrQ9hWcnZ07d8rYyc7OZpaWlrR9RXR0NGOMsUWLFsnYiY2NZQ0aNKDtK5KSkhhjjH311Vcydvz9/ZmxsTFt/ZKRkUHs9OrVS2DnwoULAju5ubnEDt++grOzb98+YeuXwsJClpeXx5o2bUrbV3B2nJycZOwkJiYSO/v27SN2pk2bRttXcHZevXpVLTvS7SvUajW7fv26wA6vnT179qTtK4KCgpharWaHDx+WsVNQUMBatGhB21dwdtasWVMtO3zrF147HR0dWbt27apl59ChQyw1NZUxxtiYMWNo+wrOzt27d4WtXzg7/fr1E7Z+UavV7MSJEzJ2ioqKWKtWrWj7ijdv3jDGGNu4cSPVTs5ORkYGMzMzI3ZiY2MZY4zNmzdP2L6irKyMRUREKLLz2WefCdtXVFRUsIcPHyqyM2TIEGH7CrVazTw8PBTZad++PbETGhrKGGNs+/btwrZJb2Nn4cKFwvYVb2Nn0qRJwvYV5eXl7NmzZ4rsjBgxQti+Qq1WMx8fH0V2OnfuTOwEBwcztVrNXFxcmKWlJW39UlhYyHJzc9l7770nY2fp0qXC1i+lpaUsISGBNWzYUMbON998I2z9Ul5ezgIDA6l2HjlyhKWnpzO1Ws1GjRolY+fq1ausYcOGsnVnjx49ZOwcPHhQWHdydpo3b07s8HXnqlWrhK1fSkpKWEpKCmvcuLGMnRkzZghbv5SXl7OQkBAZO2q1mo0ePVrY+qWiooLduXNHtu4sLy9nffv2lbHj7u4urDvfxs6GDRtk68709HRmZmbGRo0aJbAzd+5cGTvh4eGK685x48bJ2PH19VVcdw4aNEjGzpkzZ5ipqSmtO/Py8lhxcTFr27atjJ1t27YJ2yYVFRWxrKwsZmFhIWPn559/lrETHR3NGjRowMaMGSOwM3HiRIGdiooK9m+L2h+i/0GkpKSw8vJyYay0tJSlpaXJcpOSkpharRbGCgoKWE5OTo1ys7OzWUFBgWJu1cjIyGAlJSXCmFqtVsxNTU1lZWVlwlhZWRkVYGkkJyfLJm9hYSHLysqqkYacnByWn59fYw3FxcU1ylXSUF5eTjeRP9PAf2DWRENubq7i3ktK55WZmcmKiopqlJuWlsZKS0uFsYqKClpESCMlJUWmgS9WaqIhLy+P5ebm1ig3KyuLFRYW1khDenp6jedddeykp6fLcpOTk2XnlZ+f/5fZ4T+q/1MNqampMg3vwk5BQQHLzs6ukYZadqrP/b/CTlUN78JOSUmJIjtK5/V3sPNX+a+OHaXa+XewU1P+q2NHKfevsvMutfPfwI6Shr+LnaqRlZX1lzT8Hez81brzT9VOJXaqW3cqafg72Klp3XmXdec/yY5S7VRiOjMzs8b8p6WlyTS8CzvvWjv/CXb+bVHTH6K1rrm1URu1URu1URu1URu1URu1URu18bdETV1za82KJHHz5k14enpSMz9Q6V7o5OREJiF8D59z587hzp071MwPVLqMLV++HDo6OrC0tISmZqUp8aFDhxAQEEANyUDl3lMbN26kZn7eZLxjxw5ER0eTIQFQuY/ogQMHqJlfQ0MDjDE4OzsjMzOTmsiBSsMlDw8PauYHKh3YnJycqNGZa/Dy8sKNGzeomR+odFVbtmwZmZdwDUePHsWzZ8+oER6o3Atx/fr11MzPNezevRvh4eHUCA9U7hfq4uJCzfw8d926dUhLSxM0+Pr64vfff6dmfqDSgW3ZsmUoLi4WNFy8eBFXrlyhRnig0pHMycmJzJr43lEnTpzA48ePBQ1paWlYs2YNNfNzvS4uLrQZONcQFhaGXbt2UTM/17Bx40YkJSVRIzwAPH78GO7u7mSEwfekWrFiBQoKCsiAAajcR/DixYvUCA9UOrA5OTkBgKDh1KlT8PX1pWZ+oHIf0ZUrV1IjPNewf/9+BAUFUTM/ULnn4bZt26iZn2vYsmUL4uPjBQ3+/v44fPiw0AjPGMPKlSuRm5sraLhx4wa8vLwEdkpLS7F06VIya+Aazp49i7t371IzP1DpWLdixQpFdl68eCGwExcXh02bNsnY2b59O6Kjo6mZH6jcR/TgwYMydtasWYOsrCxh3t25cwfnzp0TNJSXl2Pp0qWK7Ny8eVPGjpOTExkwSNnx9/cXNCQmJmLdunUydnbt2oWIiAhh3gUFBWHfvn0ydtauXStj58GDBzh9+nSN2Llw4QKuXbtWI3bc3d3x5MkTgZ3U1FQ4OzuTARPXu3fvXkV2du/eLdOwYcMGJCcny9g5ceIEGWFwdpYvXy5j58qVK7h06ZKgobi4GE5OTtDQ0PhTdjIyMrB69WqZBiV2IiIisGPHDhn/mzdvlrHz9OlTHD16VOC/OnauX79Oe7py/qtjx8PDA/fu3ZOxs3LlSujq6goaDh48iMDAQGHexcbGYvPmzWSEwTVs27YNMTExiuxU5X/NmjXIzs4m0zygcv9qJXacnJzIYIfPO09PT9y6dUtgJy8vD8uXL4e2trbA/5EjRxTZWb9+vYz/nTt3yth59eoVXF1dBf4BwNnZGenp6QI79+/fx+nTp4Xaydnhxi5cg4+PD65duyZo4OxoaWnB0tKSrtnx48fh5+cnsJOSkoK1a9dS3eHntXfvXoSFhZF5IVC5X+iePXsU2UlJSSHzMqByD97q2CksLBT4v3z5siI7S5culbHz+++/4+HDhzVix9XVFcHBwWTA9DZ2Nm3ahMTEREFDdeysWLEC+fn5NWaHMSZoOHPmjIyd7OxsrFixgkzzuAY3Nze8fPlS0BATE4MtW7YoshMbGyus2Z4/f45Dhw7J2Fm9ejWys7MFDbdu3YKnpyeZFwL//7qzKjvnz5/H7du3hXVndewcPnwYAQEBZMAGVO4jumHDBkV2IiMjBQ1K7PB1Z0ZGhsDOvXv3cObMGRk7Tk5OKC0tFeadj48Prl+/TgZsQKUT7rJlywTDOc7O06dPBXaSk5MV2dmzZw/evHkj8B8SEoK9e/eSeSHPXb9+PVJSUgQNDx8+lK071Wo1li1bhqKiIkHDpUuXZOvOoqIixbpz8uRJPHr0iMzLgMp9RJXY2bdvn4yd8PDwGrPzb4tas6L/IPbs2UONv/x9eU9PT9asWTNqXubvy0tNX/j78qdPnyazIWmvycSJE6kRnr8vf/z4cWrU5+/Lnz9/nkyQ6tSpQ+/L79+/n2lqalKj86xZs9jFixfJyEVXV5d6TTZs2EDnxd+X9/LyoiZoAwMD9sknnzA3Nzeh6Zu/L3/mzBlmZmZGTfP8fXneyK2hoUHvy584cYKMOqR9mh9++CE1kQ8dOpRt3LiRHTx4kBrE33vvPXpfnptR6OjosJEjR7KdO3eyrVu30nnx9+W9vb3JQERfX5/6NKWN+vx9+bNnz5Lpi7GxMRs/fjw7fvy4YL7De01OnjzJjI2NqeF8ypQpzMPDg4wcNDU1qdfk0KFDZBBhZWVFvSa9e/cmDXZ2dmz79u1s586d9F2818THx4e1bduWAZXGH7xPU2omwXtNzp07R833hoaG1KcpNa7p2bMnW7ZsGfv999/JbETa48xNUDQ1NalP8+jRo2SuJO014UYu2tra1Ke5d+9ewSRgzpw57MKFC6xdu3ZkXsB7nNesWSNj5/z582RcU79+fepxrgk7vNdEyk7//v3ZmjVr2LFjx6hR39zcnHpNbGxsiB3ep+nq6krsNGvWjNjp0KEDscP7NKXstG3bli1YsIB5enqyFi1aCOwcPHhQMH3gfZpnzpwh04fq2OF9mu7u7orscAMxzs6mTZuYm5sb09LSkrHDzSh0dXWpx3nLli01Zkdq1NG5c2f266+/Mg8PD0V2pk+fTrm8x/nEiRPMyMhIxo5KpSINvMe5OnZ69uwpsLNjxw62Y8cO+q6WLVuyH374gXl7e7M2bdowoNL4g7MjNZPgfZpnz55lVlZWMnak5hu8x7k6drgJipSdI0eOMF1dXQaA+jS9vb3JyEXKjrSW8D7NixcvEjt6enrEzurVqwVzioULF1bLjtT0hfc4nz59moy6pOxwAyHOjrOzMzt+/LgiO9zIpSo73EyO92leuHCB2Klbty6xs379eoGdn376iXl5eZHpm5QdqdlQdexMnDiRnThxgk2ePFmRHQMDA6qdvE+TmyC9jR3e48wNBKXsbN68mc6L9zh7e3uzli1bytiRmo1wf4CzZ8+SYZKUHan5jpQdbhDH+zQ9PDzIQKwqO7x2Svs0uYHg29iZN28e8/HxEdgZPXo0c3V1FcxVlNgxMjKiPs0ZM2bI2Dl58iQZ9Uj7ND/55BOhdlbHjo+PDxm5aGtrM1tbW7Zt2za2e/duGTtVayfv01y1apUiO9z0ydDQkHqcpWaDnJ1Tp04RO9Ie5/Hjx8vYOXr0KNPT0yN2eI+zlJ3hw4ezLVu2MBcXF2KnefPmbPbs2ULdqVu3LvVprl27VsaOp6enwA5fd0rNxrp168aWLFnCTp8+zUxNTYl/vu788ssvSQNfd1bHjq2tLWng684DBw4QO02bNmUzZ85kFy9eFNjh604ldqTrTn19fepxXrRokYwdDw8PgR3e4/zNN9+QBu4P4O7uLmPn7NmzzN7entjhfZrSdaeUne7duxM7vE9z27ZtQu2cN28e8/b2JtNHzs7+/fsFYzLpupMbdUrZkZq+Vbfu5Oxw40rpuvPIkSNk6idlh5tvcna2b99O/iD/lkANX82t/HlfGwBAT6g0NDRgbGwMIyMjGBkZ0ZONevXqwdjYGMbGxvTERUtLi8ZMTEzoyYaBgQGN8ydMOjo6NMafBAGAoaEhjIyMYGxsTE82dHV1KZc/CQJA52RkZES5enp6lMu/X6rB2NhY0MDH+BMXroGPSzXw7+J6tbW16bsMDQ3p6Uz9+vUplz9h0tXVpX+TPwmqqoH/n+vp6VGudH8l6f8XfxrFc42MjEiDpqamkMv16uvrv1WDkZGRogal68CffHEN/PNKepnklXfp57kGfh2MjIxoPyipBhMTE0UNfC7VqVOHvqu6ayadd9L/85pokI5VvQ58XHod+D5mfN5VvWb6+vo0JtUgzeUa6tevT2P8OnANVa+DoaGh7N+VauDzQ6pXyplUA79mGhoalCu9DtJrJuWfj1W9DlU1aGtrK14HqQal68CffFe9ZpydunXr0ph0Pzml68DvYUZGRvSUXFNTU9DLNUivmZQdqV7ODtcg/b/l97vq5p2xsTHplWqQ7r8nPS8p/zxXyg7/Huk1U7oPc3b4IeW/unu20jXj56akgZ8r18Cvo5Qdnsv3nqvuns2vQ1UNSvdsqYaq14Hfs6vOO2ku1yCtD1INUr3SusOvGWeHH1X5V6qd1dUdqV5+z+b/jzW9Z0vrjvQ6KumV7j0pza3KjvT/prq6ozTvpHVHyg7XUNNrVvX+LNUg3W+wOg38u7KysgQNSvPubbVTSUN19+yq/CtpqDoPuIa31R1+zarWHaV7tlLdkWqQ1k6l6/Bn9V+qgX9XdblSDfyaSTVI1wpK14HXHaV7dlW9f3fdkbLDc/n/t/SaVdXAP1913am0hqmKKVL8AAAgAElEQVRa07mGqtdMqqHqvKtp3eF50v1VpblKazYp/0p1R2m9U7V21mS987broFR3pL8V/quiJr9W/67j3/4X0Tt37gjOWoxVNo07OzuTsxYPb29vctbikZOTw5ydnclZi4e7uzs5a/GIi4tjmzZtImctHvv27SNnLR4vX74UHF0Zq2wa37JlCzlr8bh//77g6MpYpWnEunXryJWSx8WLF9nx48cFc4K8vDzm7OxMrpQ8fv/9d+bh4SE0WCclJQmOrjwOHDhAzno8goODBUdXHtu3bydXSh6PHj0SHF0Zq2x8X79+PblS8rh69So5uvIoLCxkzs7O5ErJ48yZM+RKxyM1NVVwdOVx6NAhckPmERYWJrgh89i1axe5UvLw8/MTHF0Zq2x837BhA7lS8rhx4wa5IfMoLi5mzs7O5IbM49y5c+ToyiMjI4OtXbuWHF15HD16lFwpeURGRgqOrjz27NnDrl69KjT2P3/+XHB0Zaxy3m3atIlcKXncvn1bxk5JSQlzdnYmV0oeSuxkZ2czZ2dncnTl4e7uTq6UPGJjYwVHVx779u0jN2QegYGB1bLDHV153L9/X3ClZKySnbVr1yqyw10pebyNHe5KySMxMbHG7Lx+/VqRnW3btsnYefjwoSI769atk7Fz5coVduzYMYGdgoICtmbNGkV2uBsyj5SUFEV2Dh48SI6uPMLCwgRXSh47d+5UZEfqSslYJTvr16+XsXP9+nVydOVRVFRE7EjPS4md9PR0tm7dOhk7R44ckbETEREhOLry2L17Nzm68vD39xdcKRmrnHcbN26UsXPr1i3B0ZWx6tnx8vIiR1ce2dnZbO3atTJ2jh8/LmMnJiaGbd68WcaOi4sLObryCAwMFFwpuYbNmzfL2Ll3716N2blw4YKMndzcXMXaefLkSRk7CQkJgislj/3798vYCQoKElwpeWzdulXGjq+vr+BKyVj17Fy+fJkcXXlUx87p06fJ0ZVHSkqK4OjKQ4md0NBQRXZ27NghY+fJkyeK7GzYsIEcXXlcu3atWna4oyuPs2fPkhsyD84Od3TlceTIEXJ05fE2drijK49nz55Vyw53dOXxNna4oysPT09PGTtZWVls7dq15OjK49ixYzJ2oqOjBUdXHi4uLuToyuPFixfVssMdXXncvXuXubm5ydada9eula07fXx82IkTJ2rEzokTJ2Trzvj4eEV2XF1dZetOJXbUajXbunWrbN35NnaqOroqsZOfn8+cnZ3JDZnH6dOnZevO5ORkRXbc3NzIDZlHSEiI4l8Kd+zYQW7IPB4/fsxcXV0V644SO0rrzjVr1sjY8fDwkK0709LSFNk5fPiwjJ3w8HDBDZnHrl27ZOz82wK1ZkW1URu1URu1URu1URu1URu1URu18T8ZNTUr0vyzhP+XIj4+Xni1DahsGo+JiZHlRkdHC3/KByrNSpKSkmS5kZGRqKioEMYyMzORkZEhy42IiEDVhwMpKSnIzc0VxhhjCA8Pl+XGx8ejqKhIGCsvL0dUVJTsu2JiYlBaWiqMFRYWIjExsUYasrKykJ6eXiMNqampyMnJkeUqaUhISKDX1XhUVFQgMjJS9vnY2FjhVV6gsmk8Pj5elhsVFSW8ugRUGn2kpaUpapC+IghUGhvxVwH/TENSUpLwqhdQ2fgeEREh+3xcXJxMQ0lJCeLi4mS50dHRMg25ublISUmR5UZGRso0pKen0ytZNdGQn58vjPF5VzWU2CktLX0ndpKTkxU1KLGTmZlZIw0pKSnIy8tT1PB3s1NQUPBfx05VDf8kOzXVkJiY+JfYKS4ufid2UlNTa6Thn2InLi7uL7GTl5f3j7CTnJz8l9mJjo6WfVdMTIxMQ0FBQY1rZ1ZWlmLtrI7/qrWzutx3Yae62pmQkCDLVWInOzv7f5SdmtbO6thR0vA/zU51/CuxExsbK8t9V3aqasjIyFBkR+me/a7sKK07/wl2/ql1Z0JCgoz/iooKxdqpVHfexk5VDe/CzrvUzsTERBn/1dWd6th5l9pZU3beZd353xq1rrmSuH//Pnr27Ak/Pz8UFBTAwsICenp6GDZsGPbs2YO4uDhy6vLw8ICtrS0CAgJQUlJCLnldunTByZMnkZSURC5X27dvx/jx4xEUFISKigpYW1ujsLAQbdq0wcWLF5GWlkYOcQsXLoSjoyPCwsKgoaEBa2trxMfHo02bNrhz5w6ysrJgamoKY2NjfPXVV3ByckJkZCQ5dfr7+6Nr1654/Pgx8vPzYW5ujnr16mHkyJHYvn07YmNjoaenB0tLS3h7e8PGxgbPnz9HcXExLC0tUadOHfTo0QPHjh1DUlISuau6uLjgk08+watXr8jJrbS0FG3atIG3tzfS0tLIIW7JkiX49ttvERoaCgCwtrZGSkoKWrdujVu3biErK4vcFb/++mssXrwYERERqFOnDqytrfHq1St06tQJjx49Ql5eHszMzKCvr4+PPvoImzZtQkxMDDnEXrlyBYMHD8azZ89QVFQES0tL6OjooE+fPjh06BASExPJIe7gwYMYPXo0Xr58SS6o5eXlaNeuHc6fP4/U1FQYG1c6xK1atQpTp05FSEgIGGOwtrZGZmYmWrVqhevXryMzM5M0zJgxAz/99BPCw8OhpaUFa2trhIaGon379vD19UVubi7MzMxQv359fPLJJ1i3bh1iYmKgq6sLKysr3Lp1C/369cPTp09RWFgIS0tL6OrqYtCgQXB1dUVCQgK5qx47dgyjRo1CYGAgSktLYWVlBQDo2LEjzpw5g5SUFBgZVborrl+/Hl9++SWCg4PJfTM3NxetWrXC1atXkZGRQQ5xc+fOxbx58xAeHg5NTU1YW1sjOjoabdu2xf3795GTk4MmTZrA0NAQn3/+OVatWoXo6Gjo6OjAysoKvr6+6NWrl8BO3bp1YWNjgz179iA+Pp7YOXPmDOzs7IgdKysraGhoEDvJycmkYdu2bYrstGrVCpcuXUJ6ejo5RC5cuBCzZs3CmzdviJ24uDi0bt0ad+/eRXZ2NrncTZo0CcuWLUNUVBSx8/TpU3Tr1g1PnjxBfn4+8f/BBx9gx44diIuLI3Y8PT0xbNgwBAQEoLi4mJwNu3fvjuPHjwvs7NmzB59++imCgoJQXl4Oa2trlJSUoE2bNvDx8RH4/+233/Ddd98hLCyM2ElOThbY4Q6RU6dOxeLFiwX+AwMD0blzZ2KH869SqbB582bi38LCApcvX8bgwYPh7+9P7GhrawvscIdINzc3jB49Gq9evRLYadu2LbHD+V+xYgW+/vprhIaGEjsZGRlo1aoVbty4IbDz3XffYeHChcS/lZUVQkND0aFDBzx8+JDYMTAwENjh/N+8eRP9+/fHs2fPBHYGDBiA/fv3IyEhgfg/evQo7O3tBXYYY+jQoQM8PDyQkpJC/K9btw5fffUVgoODyX0zJycHrVq1wrVr15CRkUEOkXPmzMGPP/5I/FtZWSEyMhLt2rXDgwcPkJOTQ/yPHz+e2OFOnffv30efPn3g5+eHwsJCmJubo27duhg6dCj27t2L+Ph46Ovrw9zcHKdOncLIkSPx4sULlJaWkktm586dcerUKYGdLVu2YMKECXj9+jXUajWsrKxQUFCA1q1b4/LlywI7P/30E2bPno03b96QYzKvO1J2jIyMMGnSJCxfvhxRUVHEv5+fH3r06CFjx9bWFjt37hRq5/nz54kdae3s3r073N3dhdq5e/dujBs3jvi3srJCSUkJWrdujQsXLiA9PR0mJiYydrhzJWfn9u3byM7ORuPGjWFiYoIpU6ZgyZIlAjsvXrxAly5d8OjRI+Tn58PMzAz16tWDvb09tm7dKtTOixcvYsiQIfD390dxcTEsLCygo6ODXr164ciRIwI7+/fvx5gxY4Taydnx8vIS2Fm+fDmmTZuGkJAQ4j89PR2tWrXCzZs3BXa+/fZb/PLLLwI7wcHB6NixIx4+fIi8vDw0adIEBgYGGDNmDDZs2CCwc+PGDQwYMIBqp4WFBXR1ddG/f3+4ubkhMTGR5t3Ro0fh4OCAwMBAlJWVwdLSktg5e/YsUlNTYWRkBFNTUzg7O2Py5MnEjrW1NbKzs9G6dWtcu3YNmZmZNO9mzZqF+fPnC+xEREQQO7m5uWjSpAnq16+PcePGYc2aNQI79+7dE9jhdWfIkCFwcXFBQkICzbuTJ08K7PDaydlJSUkhd9XNmzfjiy++ENjJz89Hq1atcPnyZaqdDRs2xPz58wV2rK2tERMTgzZt2uDevXtC7Zw4cSJWrFiB6OhomnePHz8mdgoKCmBubg49PT2MGDECu3btQnx8PN2zz549ixEjRlDd4ex069YN7u7uSE5Opnm3c+dOfPbZZ3j9+jXNu+LiYrRp00bGzqJFizBjxgyh7iQlJQns8HUnZycqKormXUBAgMAOrzsffvghtm7diri4OJp3Fy5cENjhdYezw2unmZkZXF1d8fHHH+Ply5ekoaysjNiRrjuXLVuGadOmCXUnLS2N2JGuO6dPn45ffvkFkZGRNO9ev36Njh074tGjR1R39PX1MXr0aGzcuBGxsbE0765du4aBAwfC39+f5p2Ojg769esnY+fw4cP46KOP8PLlS5p3arUa7du3J3Z43VmzZg2mTJmCkJAQWrNlZWVR3cnMzKS6M3PmTCxYsEBYd0q9Cf4NUeua+x/Ed999R+5WQKWbpdTRFH+4WY0dO5bcbfnRtGlTtmTJEmFMW1ubff311+Qyxo/27dsLzoH4wwlu3rx55BzKj969ezNHR0dhzNDQUHC848ewYcPYF198IYw1btxYUcOYMWPIoZMf1tbWihomT55MDn38aNOmjeAcij+c4ObOnUvOYfzo0aOH4PYKVDpBOjk5kbMcP4YMGcK++uorYaxhw4aCOyb+cFFTqVTkMsgPS0tLwdEMfzjBTZw4kVzG+NGyZUv2yy+/CGO6urps5syZ5FjHj65duwque/jDzW7x4sXkQsuPgQMHsqlTpwpjJiYmsuugoaHBRo0aRU5p/DA3N5ddXy0tLTZ+/Hg2aNAgYbxFixaCgyP+cIL77rvvyO2NH506dRIca/GHE9zChQvJhY4f/fv3F1yGgUo3u6rXAQD74IMP2Lhx42TsVNWgqanJxo0bx4YNGyZjR+rgyufdN998Q87QUnakzoGcnfnz55P7oZQdqWMdZ0dJw4gRI8hlVMpO1VxNTU328ccfk0Pnn7EzZcoU1q1btxqzwx1r+dGzZ89q2amqwcbGpsbsfPTRR4rsVNVQp04dNmnSJNanTx9hvFWrVtWyw91e+dGtWzc2Z84cRXa4GyA/Bg0aJGOnQYMGihrs7e3ZmDFjZOxU5V9LS4tNmDCBnKH58f7771fLDncZ5kfnzp3ZvHnzhDF9fX22cOFCcj+WsiN1SuXsVOWfs8PdrflhZmYmy9XS0mLjxo0jh05+NGvWTHAO5xqmTZvG2rdvL4x36NChWna4czA/+vTpo8iO0rxTYsfU1LTG7Lz33nvVssNd1fnBXUWravjhhx/IdVPKjtQpmbOjdB1sbGzYpEmThLFGjRop3rM/+ugjNmrUKGHcyspKse5MmjSJ9erVSxhv3bp1texwt9c/Y+e3334jF2opO9yhW8qOkgZ7e3tyhueHhYWFYt354osvyBn6bezo6uqyGTNmkFOqlB2p2zNnZ9GiRbRzwJ+xo8T/yJEjyd1ayo6Shs8++0zGTvPmzWV1R0dHh02fPl2RHaXa+dNPP5FzsJSdqmtJIyMjxbpja2vLPv/88xqxM3bsWDZixAgZO1X519bWZlOnTiVXdX60a9eu2nUnd6zmR69evRTZqW7dqcSOkoYxY8YosqNUd7766itFdqS7PQCVtXP27Nm0ywA/unfvzmbPni1jZ8mSJeSky48hQ4YosqM07xwcHNhHH30kY0ep7nzxxRfkDC1lR+oc/DZ2unbtqlh3Fi1aRO7n/Bg4cCDz8/P73/4ZJQRqXXPfPcaOHYsHDx5ApVJBpVKhd+/e0NDQwPXr12FhYQGVSoWRI0eiYcOGOHz4MHJzc+Hg4ACVSoWuXbuipKQEXl5e6Nq1K1QqFWxtbWFoaIi1a9fi4sWLlNu2bVukp6fD09MTNjY2UKlUGDZsGPT09KBWq/H69WuoVCo4ODigefPmCA0NxbVr1zBq1CioVCoMGjQIOjo6CA0NRUFBAVQqFezt7WFhYYE7d+4gICCANPTt2xeampq4c+cOGjZsCJVKhQ8//BCNGjXCiRMnkJqaSrndu3dHWVkZLly4gA4dOkClUsHOzg5GRkbYvHkz6tatSxrat2+PrKwseHl5YdCgQVCpVBg+fDjq1asHbW1tPH/+nDS8//77iIyMxJUrVzBy5EioVCoMGTIEOjo6iIyMRGZmJuVaWlri4cOH8PPzo+/q168ftLS04Ovri/r160OlUmHUqFFo3LgxPDw8kJCQQLk9evRARUUFLl26hNatW0OlUuGDDz6AsbExdu7cCQ0NDfqujh07Ijc3F15eXujXrx9UKhVGjBgBfX19LF68GA8fPqTcVq1aITY2FhcvXoSdnR1UKhWGDh0KXV1dJCcnIzExkXKtra3x7NkzPHz4EA4ODnBwcMCAAQNQp04d+Pn5QVtbmzQ0adIE3t7eiIyMpM/36tULjDFcvXoVzZo1o3lnYmKCffv2obS0lK5Zp06dUFhYCC8vL/Tq1YvmnYGBAZYvX45bt25RbuvWrZGUlAQfHx8MHz4cKpUKNjY2qFu3LnJychAVFUXn0LRpU7x8+RK3b9+Gvb09VCoVBg4cCG1tbbx48QJqtZrmnZmZGa5evYqQkBD6PGfnxo0bsLS0pHnXoEEDHDp0CHl5eZTbtWtXFBcXw9vbG926daN5V79+fTg7O+PSpUukoU2bNkhLS6O/5js4OBA7ZWVlCA4OFtgJCQnBzZs3MWrUKDg4OBA7r1+/RlFRkcDO7du3ERgYSN/Vp08faGpq4vbt22jcuLHAjru7OzIyMii3W7duKC0thY+PDzp27EjzztDQEJs2baK/SqpUKrRr1w5ZWVnw9PTE4MGDBXbq1KlD/HJ2IiIicOXKFXz44YdwcHAgdiIiIpCVlSWw4+vrCz8/Pxrj7Dx48ACGhoYCO2fOnEFCQoLAP2enbdu2cHBwIHZ27NgBTU1Nyu3QoQOx079/fzg4OBA7hoaGePToEeW2bNkSMTExuHTpEj744APiX1dXF4mJiUhJSSFOrK2t8fTpU2JHpVKhf//+0NLSwpMnT+geZG9vD1NTU3h5edG8ValU6NmzJ9RqNa5evYoWLVrQdTAxMYGLiwvKysoEdgoKCuDp6Yk+ffoQ/wYGBli2bBlu374tsJOQkAAfHx/Y2toS/3Xr1kV2djaio6MFdl68eIG7d++ShgEDBtB9EQBpMDMzw+XLlxEaGirUHQC4du0arKys4ODgQOy4ubnRPV+lUqFLly4oLi6Gl5cXunfvTvzXr18fq1evxtWrV+kcODteXl4YNmwY8a+np4eSkhKEhYVRbrNmzRAcHIwbN24Q/4MGDYK2tjZev36NkpISmksWFha4detWteyYmpoSOw0bNsTx48cV2fH29kbnzp2Jf0NDQ2zcuBH6+voCO5mZmfDy8sKQIUOodtarVw+ampoIDAwkDS1atEB4eDiuXr2KDz/8ECqVCoMHD4aOjg7CwsKQk5ND887S0hIPHjzAs2fP6Lv69esHTU1N3Lt3D8bGxqShcePGOH36NJKTk+m7ODsXLlxAu3btaN4ZGRlh27Zt0NbWptwOHTogJycHnp6eGDBgAPGvr6+P+vXr48mTJzSXWrZsiejoaEV24uPjqX7b29vD2toafn5+VLek7Dx+/Bh169ala2ZqagpPT0+at1J2Ll++jPfff5/qjrGxMfbs2YOKigrS0KlTJ+Tn5yuys3TpUty7d480cHYuXLggYyc9PR1xcXGU+9577yEgIECRHX9/f7oH2dvbo0mTJrh06RLevHlDub179wZjDNeuXcN7771HGho0aIADBw6gsLCQvqtLly4oKiqCl5cXevToIbCzatUqXLt2jXLbtGmDlJQU+Pj4yNgpLCzEmzdvKLdZs2YICgrCrVu3YG9vT3VHW1sbr169ovptb28Pc3Nz3LhxA0FBQfR5zs6tW7fQpEkTgZ2jR48iOzubrhlfd/r4+MjYWb9+Pa2XVKrKdWdGRoYiOwDw8uVLOocWLVrgzZs31bLD67e9vT291eHv7y/UHc6OiYkJzbtGjRrRmxs8t3v37igvL8fFixdl7GzdupXWSypV5bozJycHXl5eGDhwINWdevXqQU9PD0+fPhXYiYqKwuXLlzFy5Eiqnbq6uoiNjUVaWhrl8r9MS+sWr52PHj2i+s3ZOXfuHGJjYym3R48exE7Lli0Fdnbv3g3GGOV27NiR2Onbt6/AzpIlS3D//n3KbdWqFeLj4+Hj4wM7Ozs4ODgQO2lpaYiPjxfY+W+NWrMiSRQVFZE9No/y8nIwxmirhLfllpaWQktLS7Cyri63uLgYurq6ZEP9ttyioiLUrVtXyGWMobi4WDG36lhFRQUqKiqE7Tj+Lg06OjqC3fq7aHhbbtUxtVqNsrIy2ca9SrllZWXQ0NCQvaaglFtSUgJtbe0aaXjXa6akobS0VLB2f5sGADWad/+TGhhjKCkpqZGGd2GnpKQEderUqWXnH2CnoqIC5eXl//Xs/Lfz//8aO+Xl5VCr1f8IO39Fw9ty/wr//9S8q62dtey8Lff/yrpTU1Ozlp2/eM3+bVFTs6LaH6K1URu1URu1URu1URu1URu1URu18bdETX+I1poVSeLKlStwcXGhpmpNTU2UlZVh5syZSE9Ph4WFBW0Cf+LECZw6dYqMMDQ0NJCbmwtHR0cUFRXBysqKnt7t3r0bV69epYZkDQ0NxMfH48cff6SGZP7UaPXq1fDz86OGZAB48eIFVq5cSU3VderUAWMMCxcuxJs3b8hEAgBu3ryJnTt3UlO1lpYWysvLMWvWLKSkpMDCwoI2vT19+jTc3d3JCEdDQwP5+flwdHREfn4+rKys6InLvn37cPHiRTLC0NDQQFJSEubNm0cGLFzDunXr8OjRIzLCAYDXr19j6dKl1MzPnxotWrQIISEhZCIDAHfv3sXWrVvJCENLSwsVFRWYM2cOEhMTYW5uThuVnz9/HocPHyZDAk1NTRQWFsLR0RG5ubmwtLSkV0/c3Nzg5eVFRhgaGhpIS0vDnDlzUFZWBisrK3rytWnTJty/f5+a+TU0NBAWFoZff/2VjHD4E9clS5bg1atXZCIDAL6+vti4cSMZEmhpaUGtVuOHH35AXFycoMHHxwdubm7CvCspKYGjoyOysrIEDUeOHMG5c+eomV9DQwOZmZmYNWsWGf/webdt2zbcvn2bmvk1NDQQFRWFhQsXUjM/17B8+XIEBARQMz8A+Pn5Ye3atWRIwOfdjz/+iOjoaJiZmdFmy5cvX5axU1paCkdHR2RkZMDS0lJg5/Tp09TMr6GhgZycHMycOVPGzq5du3D9+nWBnbi4OMyfP1/GzqpVq/D06VOBnYCAAKxatUqYd4wxMpeSsnPjxg3s3r2bTKQ0NTVRXl6OmTNnIjU1VWDn1KlTOHHihIydGTNmoKCgQGDHxcUFly9flrHzww8/kAET17B27VoZO69evYKTk5OMnV9++UXGzp07d7B9+3Zh3lVUVGD27NlISkoSNJw7dw5Hjx6VsTNjxgwZOwcOHICPj4/ATmpqKrFjbW1N7GzcuBH3798nAyYNDQ2Ehobit99+k7Hz22+/KbKzadMmGTtz586VsePt7Y2DBw+SiYympiaKi4vh6OiI7OxsQcPhw4dx/vx5MpHS0NBARkYGZs+ejdLSUkHD1q1bZexERkZi4cKFACBoWLZsmYydJ0+eYN26dWTApqWlVS07ly5dgqura43YOX78OM6cOSPUnZycHMyaNUvGzs6dO2XsxMbGYsGCBcQ/n3crV67Es2fPBHaeP3+O1atXC0YYnJ2IiAiYmZkRO9evX6+WnbS0NEGDEjt5eXmYOXOmjJ29e/fK2ElMTMS8efNk7Dg7O+Px48cydpYtWyZjZ+HChQgNDRXYuX37NrZv3y6rO7Nnz0ZycrLAztmzZ6tlJy8vT9Cwf//+atnhtZPPuw0bNuDBgwcCOyEhIYrsLF68GK9fvxY0PHjwAJs3b1ZkJz4+HhYWFsSOl5fXW9mxsrIidg4dOlRjdrZs2YK7d+8KGiIiIvDLL7/I2HFyckJgYKDA/+PHj7F+/XoZO/PmzUNMTAzMzc2JnYsXL1bLTmZmpjDvjh07JmMnOzsbM2fORHFxMaytrYmdHTt24ObNmwI7MTEx+OmnnxTZ8ff3F/j39/dXZGfBggWIjIwU2Ll27Rr27t0rsFNWVoZZs2bJ2Dl58iR+//13QUNeXh4cHR1RWFgozLs9e/bI1p0JCQn48ccfZeysWbMGT548Efh/+fIlli9fLqudCxcuRFhYmKDh1q1b2LFjh4ydWbNmydjx8PDA8ePHBXYKCgrg6OgoY8fV1VW27kxOTsbcuXNl7Kxfvx6+vr5kIqWhoYHg4GAsXbpUxs6vv/4qY+f+/fvYsmWLoEGtVmPOnDlISEgQ2PH09JStO4uKiuDo6IicnByBnYMHD8rWnenp6YrsbN68WcZOeHi4IjtLly6VsfNvi1qzov8gNm7cKDQqT5w4ke3du5dMEDQ0NFjfvn3Z6tWr2TfffCM0yH/zzTds586d1LiupaXFhg4dyjZt2iSYAjRt2pTNnDmTbdmyhenp6VGj8ocffsh27dolGOq0bt2azZ8/n61du5ZpampSo/LHH3/M9u/fz1q0aEG5nTt3ZosXLxaa742NjdmECRPY3r17yUBIQ0OD9enTh61cuZLNmDFDaJCfOnUq27VrF2vYsCFpGDJkCNu4caNgqGFtbc1mzJjBthpfSisAACAASURBVG7dSmYDOjo67IMPPmA7d+4UDHVatWrF5s2bx9avX08N4vXq1WOjR49m+/fvF0xBOnXqxBYtWiQ0fRsZGbHPP/+c7du3T2hG79WrF1uxYoXQjN64cWM2efJktnv3bjJ90tTUZIMGDWLr168XDDUsLS3Zd999x7Zt20ZmI9ra2szW1pZt375dMKNq0aIFmzt3LtuwYQMZROjp6TGVSsX27dvHOnToQLkdOnRgCxcuFAwiDA0N2bhx49i+ffsEI5cePXqwZcuWCc3oDRs2ZF9++SXbs2cPGQhoamqyAQMGsLVr1wpmNBYWFmz69Ols+/btzMjIiJr8hw8fzrZu3SqYUTVv3pzNnj2bbdq0ienq6lKTv729Pdu7d69gqNOuXTv2888/s9WrVwtN/mPHjmWurq6Chm7durGlS5cK5jvVsdOvXz+2Zs0aRXZ27NhB7NSpU4fZ2NiwzZs3C6YAnJ3NmzfL2Nm9e7dgqNOmTRu2YMEC5uzsrMiO1IyqS5cu7LfffhPMN6TscAMhzs6qVasEM4o/Y0dqqGFtbc0cHR3Zli1bFNmRGuq0atWK/fjjj2zdunVMS0tLYOfAgQOsZcuWAju//vqrYPrA2XFxcWFWVlY1YmfXrl2K7IwfP77G7NjY2AjGDD/88ANbv369Ijvt2rUT2Pnll18U2XFxcRGMXDg7UhOURo0asa+++ort2rWLmZqaytj58ssvBXa+/fZbgR1tbW1i54MPPhDYmTNnjowdBwcHtnfvXsFQh7OzcuVKGqtfvz779NNPq2VHaiDUoEEDNmnSJLZ3715mZmYmY0dq5GRmZsamTZsm1B0pO1IzqmbNmrFZs2Yp1p3du3cLpiBSdriZnIGBAfvkk0+Yq6urIjtS8w0TExP2xRdf1IidJk2asK+//prt3LmTDJN47dy4cSP75JNPKPe9994jdrhRh46ODhs5ciTbtWuXYKijxI6+vj4bM2YMc3NzE0xBlNgxNjZm48ePr5YdqZFL48aN2ZQpU9iuXbvIME3KjtSMxsrKin3//fds27ZtzMDAgDTY2dmx7du3C4Y6nJ0NGzZQ7dTT02MfffQRc3V1VWRHaq5iaGjIPvvsM+bq6iqw07Nnz2rZ2b17t8DOwIED2bp16wQzGik73OROW1ubjRgxgm3btk0wo2rRogWbM2cO27hxIxmTcXZcXFxY586dKbd9+/bs559/ZqtWrfpTdrp3786cnJwU2dmzZ4/ATv/+/Zmzs7PAjrm5OZs2bRrbsWMHMzY2JnaGDRvGtmzZwuzt7WXsbNq0iYwJ69aty0aNGsX27NnDevbsSblt27ZlCxYsYKtXr5axU7XudO3alS1ZskQw3+HsuLi4COzwdef06dNrxM6mTZsEIzcldnR1dYmd/v37Uy5fdyqxU926U2qYVB07vXv3ZitXrhTMN5XY0dLSYoMHD2YbNmxgn332mYydrVu3ytjZsWOHwE7Lli0V152cnbZt21Jux44d2aJFiwQjJs5O1XVnz5492fLlywUDMSk70trJ2Zk4cSLlSmunEju2trYCO3PnzhXY0dPTI3akJqjt27dnCxcuZC9evPjf/hklBGpoVlS7j6gkzM3NAQD169fHsGHDYGtri2HDhtFTn65du8LOzg52dnZo3bo1AKBBgwYYMWIEbG1tMWTIEHofvXfv3pTbtGlTAICZmRlsbW1hZ2eHgQMH0jvx/fv3p3FuKd60aVP6fK9evQAAurq6GDx4MGxtbTFixAg63zZt2lBup06dAAD6+vqkYfjw4fTEpHPnzvRdbdq0AQCYmJiQhqFDh6JevXrQ0NBAz549YWtrC1tbWzRv3hwAYGpqSmODBw+m3gSuwdbWFtbW1gAqn97w7+rTpw8YY9DR0RE0WFhYAABatWpFuV27dgUA1KtXDzY2NrCzs8OwYcPoaSPXYGtri7Zt2wIAjIyMMHz4cNjZ2cHGxoaeIEo1tGjRAgDQuHFj+q4hQ4agTp060NTURL9+/WQarKys6P+2X79+ACr7NgcNGgQ7OzvY2trC0tISAPD+++/Tv9u9e3cAgJ6eHoYOHQo7OzsMHz6cntR36NCBvqt9+/YAAENDQ9IwbNgwevrWvXt3yn3//fcBAI0aNcKIESNgZ2eHoUOHUr9h3759KZc3r1tYWNB5DRgwABoaGtDW1sbAgQNlGpo3b06f79GjBwDQVhJcQ5MmTQAA7du3p9yOHTsK7PDrwJ9cd+vWjb6rVatWAjtcA++D4OzY2tpWyw7vxRgwYADlStnh5yVlZ8iQIbCzsxPYadu2LeVydgwMDEiDlJ0uXbpQblV2uAY9PT1oaGigV69edF7NmjUDADRp0kRgR1NTk9jhuVXZsbW1RZ8+fQCA2OHnxdlp3bo1fb5Lly4ydoYPH05PuTt37ky5XENVdviT3J49e1KuEjtS/vv160ec8HnH2bG1tUX//v1JgxI7LVu2pLFu3brJ2BkxYgSx07FjR8qVsiO930nZ4blV2eH3bN6r06dPH5kGCwsL+ryU/4EDB9L14RpatGhBuVJ2hgwZQuclZYfnStkZPny4rO5wduzs7Iidhg0b0vdzA47q6o65uTnl/hk7zZo1o8/37NmT2JHes83MzIidqnXHwMAANjY2pIH/taFLly6y2imtO9z4hbPD55gSO4MGDRLYqXrPfu+990gXN36SalBix87ODp07dwZQWTu5hhEjRgi1k+fyumNsbCxoqMqOnZ2drHZWZYffs5XYkdYdzk7V2snZsbOzI3Y4//y8OP8dO3ak72rXrp3AP8/lf7mqru5I72GcHWnd4dfB0tJSse5INUjZ+bPaaWpqCkCsnR06dBDY4bWT1x2phpYtWxI7/J7N2eH889yq7NjZ2WHQoEF/yg7P5XWH8881SNl5W92RstO1a1fKrcoOrzvSdSfPrcoOn3dKdYdreO+99+jz3PiJs8Pvw3zetWnThnJ53eHsKNVO/l1V2ZHWHb7u5LlK7AwZMkRWd6qrnX379hXY4blSdniu0rpTWjs7depEuVXZ4deMs9OjRw9Z7ZTWnaFDh9K6s2/fvjINnB1p7axuzfb+++/L/m//66Imv1b/ruPf/hfRR48esatXr7KSkhIaKy0tZQcOHGBxcXFC7o0bN9jdu3dZWVkZjeXk5LBDhw6xlJQUIdfb25s9efKEVVRU0Fh8fDw7efIky8rKEnJPnTrFAgMDmVqtprHg4GB2/vx5lp+fT2NqtZodOXKEhYWFCZ/38/Njly9fZsXFxTRWVlbG3NzcWGxsrJB7+/Ztdvv2bUFDXl4eO3jwIEtOThZyL1y4wB49eiRoSEpKYu7u7iwzM1PIPXPmDHvx4oWgISwsjJ09e5bl5eUJuceOHWOhoaHCmL+/P7t48SIrKiqisfLycubm5saio6OF3Lt377KbN2+y0tJSGisoKGBubm4sKSlJyL18+TLz9fVl5eXlNJaamsqOHTvGMjIyhNyzZ88yf39/QUN4eDg7c+YMy83NFXLd3d1ZcHCwkBsQEMB8fHxYYWEhjVVUVLCDBw+yyMhI4fMPHjxg169fF+ZdcXExc3NzYwkJCULu1atX2YMHDwQNGRkZ7MiRIywtLU3IPX/+PHv27JlwXtHR0ezUqVMsJydHyD158iQLCgoScl++fMm8vLxYQUEBjanVanbo0CEWHh4ufF6JnZKSEnbgwAEWHx8v5Cqxk52dzQ4dOsRSU1OFXG9vb+bn5yfMu7i4uGrZefnypaDh9evXiuwcPnyYvXnzRvj8kydP2JUrV2TsHDhwQMbOrVu32J07d2rMzuPHjwUNiYmJNWYnNDRUkZ2jR4/K2Hn27Nk7sXPr1q0asXPp0iX28OFDYd6lpKRUy87z589l7Hh4eMjYOX78uCI7Fy5ckLHj5ubGoqKihM/fv3+f3bhxQ9BQVFRUY3bS09PZ0aNHWXp6upCrxE5UVBQ7ffq0jJ0TJ07I2AkMDGTe3t6K7ERERAiff/jwIbt27VqN2Ll+/Tq7d++eoCE7O5sdPnxYxo6Xl5eMndjYWPb777+z7OxsIff3339XZMfT0/N/hJ3c3FzF2qnETkJCAjtx4oSM/9OnT8vYCQkJYefOnZOxc+TIERk7T58+ZZcuXaoRO3fu3HlndqQakpOT2fHjx2XseHh4yNh58+aNIjvHjh2TsfP8+XNFdg4ePPhO7CQmJgq5V65cqTE7586dk9XOyMjIatl5/fr1f8yOr6+vIjtubm4ydq5duyZjJysrix0+fFhWO5XYiYmJqZadV69eCRqCgoKYp6enTIMSO48fP5axU1paytzc3GTrzps3b8pqZ3Xs+Pj4yNadb2On6rpTiZ3q1p1vYycmJkbIVWInPz9fsXZeunRJtu58GzsBAQE1ZickJEQYe/78uax2Vld37t27J1t3FhYWVstO1XVnWlraX2bH3d1dxs6/LVDDv4jWmhXVRm3URm3URm3URm3URm3URm3Uxt8SNTUrqn01VxIhISFISkoSxsrKyvDw4UNUVFQI44GBgcjIyBDGcnNz4e/vj6o/7p89e4bc3FxhLCUlBa9fv5blPn78GEVFRcJYTEwMIiMjhTHGGB48eIDS0lJhPCwsDAkJCcJYeXk5fH19ZRpevXqFtLQ0YSw/Px9Pnz6FWq0Wxv39/ZGTkyOMpaWl4dWrVzINT548QWFhoTAWFxeH8PBwVA1fX1+UlJQIY+Hh4YiPjxfGKioq8ODBA5SXlwvjQUFBSE1NFcYKCwvx5MkTmYaAgABkZ2cLYxkZGQgMDJRp8PPzQ0FBgTCWkJCAsLAwmYaHDx+iuLhYGIuIiEBsbKwwplar8eDBA9qahUdwcDBSUlKEsZKSEjx69Eim4cWLF8jKyhLGsrKyEBAQINPw9OlT5OfnC2NJSUkICQmR5T569EimISoqCtHR0cIYn3dVNSixU1paWmN2cnJy/jF2oqKiFDUosZOYmCiMvY2d9PR0Yez/MjvPnz9XZOfly5eKGpTYefPmTY00VMfO/fv3ZRpev34tY6e4uBiPHz+uMTsvXryoETuJiYkIDQ2VaVDiPyoqCjExMcIYYwz3799XZCc5OVkYe1d2nj9/rshOXl6eMJacnIzg4GBF/v8KO6GhoTVm5+XLlzJ28vLy8OzZM9l5KbGTmpqKoKAgRf6rshMbG4uIiAhUDaV59+bNG0V2fH19ZfNOqXYWFhbCz8/vL7GjVHfi4+MV2Xn48KEiO3FxccIYrzt/hZ2AgAAZO5mZmYrs+Pn5/SV2IiMjFdmprna+CzuZmZnCWHZ29j/CTnR09Duxo7TurI6dqvy/jZ2qtfOvslOdhurYUZp3SuwUFBRUy05V/tPT02tcd+Lj49+pdr4LO1VrZ1FR0f86O/+tUeuaK4kHDx6gV69euHDhApKTk1G/fn2YmJhgzJgxWLZsGYKCglBRUQErKyva2Pj69etIT0+HiYkJ9PT0MGjQIGzZsgVhYWHk1OXi4oIxY8bg7t27yM7OhqmpKdRqNbp27Qo3NzdERkaSy52TkxMmT56MR48eIT8/H+bm5sjIyEDHjh1x6tQpxMXFoW7durCwsMC3336LOXPmwN/fH8XFxbC0tERQUBB69OgBb29vJCUlwcDAACYmJvjss8/w22+/4eXLlygvL4eVlRWuXbuGwYMH4+rVq0hLS4OxsTH1lm7cuBGhoaHkEHfo0CE4ODjgzp07yMrKQqNGjaCpqYkePXpg3759iIyMJFff1atXY+LEiXj48CHy8vJgZmaGnJwcdOrUCSdOnEBsbCy5+jo6OmLmzJl49uwZioqKYGFhgTdv3qBr167w9PREYmIi9PX10ahRI0yYMAGLFi1CYGAgudzeuXMHAwcOxOXLl5GamgpjY2PUr18fdnZ2WLduHUJCQshd1d3dHSNHjsStW7eQmZmJRo0aoU6dOujVqxf27NmDiIgIcojbsGEDPv/8czx48AC5ublo0qQJCgsL0alTJxw7dgwxMTHkcjdv3jx89913ePr0KQoKCmBhYYHo6Gh06dIF586dQ0JCAvT19WFqaoovv/wSP//8MwIDA8nl1tfXF3379sWlS5eQkpICIyMjGBoawt7eHqtWrUJwcDC53J05cwZ2dna4efMm0tPT0bBhQ+jq6qJfv37YuXMn3rx5Q/Nu27Zt+PTTT/HgwQNkZ2ejSZMmKCkpQZcuXXD48GFER0eTQ9zChQvxzTff0I3Q3NwcSUlJ6NSpE86cOYP4+HjUq1cPpqammDp1KubPn4+AgACad/7+/ujduzexY2hoCGNjY4wZMwbLly8X2PH29hbYadCgAerWrYtBgwZh69atAjt79+7FmDFjcO/ePWRlZcHU1BQVFRXETlRUFLGzdOlSTJ48GY8fP0ZeXh7Mzc2RlpaGTp06ETt6enowNzfH9OnT8cMPP+D58+coKiqCpaUlXr58iR49esDHxweJiYmoX78+GjRogLFjx5IzMp93V65cwdChQ3Ht2jWkpqbCxMSE+mM4O0Blv4qbmxtUKhXu3r2LzMxMNG7cGEBl/9L+/fsRERFBzsSrVq3CpEmT8OjRI+Tm5sLMzAzZ2dkCO9whcsaMGZg1axb8/f1JQ1hYGLp160bsGBgYoGHDhhg/fjx+/fVXvHz5kjTcvn0bAwcOxJUrV5CSkgJjY2MYGBjA1taW2OH8Hz9+HKNGjcLt27eRkZGBRo0aQUtLCz179sTevXsRHh5ODpHr16/H+PHj4evrSxry8/PRqVMnHD9+HNHR0cTO3Llz8f333+Pp06coLCwU2Dl//jzi4+Ohr6+Pxo0bC+yUlpYSO/3798elS5eQnJxM7IwaNQqrV69GcHAw8X/69GkZOzo6Oujbty+xw/nfunUrsZOTk0PsdO7cGUeOHEFUVBSx8/PPP2PatGn0I8LCwgIJCQno3LkzPDw8BHa+/vprYqekpASWlpZ4+vQpevfujYsXLwrsjB49GitWrCB2rK2t4enpieHDh+PGjRsCOwMHDpSxs3v3bnz88ce4d+8e1R3OzsGDB4W689tvv2HKlCl4/Pgx8c/ZOX36NGJjY4mdadOmETvFxcWwsrJCYGAgevbsCR8fHyQlJVHtHDt2LJYuXYpXr16Ry+Xly5eJnbS0NJiYmKBevXoYOnQoNm3aJLBz4MABYicrK4vY6datG/bv34/IyEhyV125ciWxw+tOVlYWOnXqhJMnTwrsfP/995g9ezbVHUtLS4SEhKB79+7w8vIidho0aIDPP/8cixcvJnasra1x8+ZNDBo0CFeuXKG6Y2BggBEjRmD9+vUCO0ePHoW9vT1u375N/FfHztq1azFhwgQZOx07doS7u7tQd+bMmSOwY2lpicjISGKH153GjRtj0qRJMnYePHhA7Ejrzocffog1a9YI7Jw6dQoffPABbt68iYyMDKo7ffr0we7duxEeHk7sbNmyBePGjRPYKS4uJnakdWfBggWYPn26wE58fDw6deqEs2fPCuxMnjwZCxYsIHasrKzg5+eHPn36EDtcg0qlwsqVK/H69Wti5/z58wI7XMOAAQOwfft2oXbu2rVLYKdJkyYoKytDly5dcOjQIYH/xYsXY+rUqXjy5Any8/NhYWGBlJQUYicuLg716tWDmZkZpk2bhnnz5lHttLKyQkBAgMCOoaEhsePk5ISgoCBi5+LFi7CxscH169eRlpaGBg0aoF69ehgyZAg2b95MD8qtra3h6uqK0aNHEzumpqZgjAnscP6XL1+OL7/8UqidmZmZAjt6enqwsLAgdqR1Jzg4WGCH107ODuffysoKN27cENgxMTGBgYEBhg8fjg0bNiAkJARAZZ/0kSNHYG9vjzt37hA7mpqa6NmzJ/bt2yfUTs7Ow4cPiZ28vDyBHc7/7Nmz4ejoiGfPnhE7ERERtO5MSEiAgYEBGjVqhIkTJ+KXX34R2Ll37x4GDBiAy5cvU+2sX78+Ro4cCWdnZ3pgYWVlhZMnT9K6k9dObW1t9O7dm9jha+fNmzfTujMnJwdmZmYoLCxE586dcfToUaqdlpaWmD9/Pr799lv4+fmhsLAQ5ubm1KP6b4la19z/IKTOn/jDEWzlypXkMgZUOlF+9dVXgiMZ/nAEW758Obkq4g9HMEdHR8GRjDuCLV68mNy88Icj2MKFCwU3P+6mOX/+fHJgwx+OYCtWrCDHSvzhpvXxxx8LjoT4wxFs5cqV5NCJPxzBJk2axMaNGyfkckcw7gyHPxzBvv/+e8EJkzuCLVmyhJww8f+xd9/xUVVr3/B/k0I66QRIQu+9I52ETmYjilSRqoCK0ntLACkioKJYAEVERVR66KQnpPfee28zyaQn1/uH7vXMyp5AvM95nttz3qzPZ/5ZZ8vJxezvrLXDXL/1V5rejh07uDQ/MU1zx44dLL0UfyWCHT58mCXW4a8kuldffZVLVcNfiWDNazAxMaFly5ZxSbj4K02veQ2Wlpb0zjvvcIlkYprewYMHuRo6depEW7dupaFDh7I5MYl2165dXA3dunWjQ4cOsZRB/JVEJ5fLaePGjdzP1a9fPzpy5AhLe8NfaXqLFy/m0jzxV5re4cOHWbol/krTW7t2Lc2dO5er4ZVXXqFDhw6xVDX8laa3adMmLs1PW1ubHBwcaM+ePSwJD3+l6e3bt49Lt9PT0yMnJycuVRF/pekdOXKEu++MjIxo4cKFtGbNmpfaMTMzo1WrVnEp0qIdZ2dnzk6HDh1o48aNrbaze/duLs1PTNPUZKd5DYaGhvT6669ziYTqdpr7f+utt7gkXODPNM3m/q2srOjdd9+lKVOmcHYmTZpEBw4c4GqwtbWlHTt2cGl+urq6NHPmTNqxYwdXg2hHTHsV/c+fP1+jncOHD/9LdtatW0fTp0/napgwYYLEv2hHPc1PR0eHpk+f3qIdMSlR9C8IgsRO//79NdpZsmSJxM7w4cNbtDNnzhzOzrhx41q0M3LkyFbZ2b9/P0skV7ezadMm7ufq27dvi3ZWrVrFXTt06NAW7ainSItJtM3vO9GOegK7mOLc3I69vT3t3r2bunXrJrGzdevWl647LdkZPHgwHT58+F+2M3nyZImd/fv3S+zs3LmT+vbtK7Gzfft2roaePXvS0aNHWWKlup0NGzZwP9fAgQNbXHfUk3CBP1OcDx8+rNGOegK7aKeldWfQoEEvtdO9e3dydnbWaEc9zfdldtSTcFuyY2FhQWvXruUS2Fuy07FjR9q8eTOXwC6mODe307VrVzpw4ABLVW+NHfUajIyMaNGiRRrtaPK/evVqEgRBYqd5DR06dKAPPviAS2AX7ezdu5erwd7envbu3avRjnoSPvBnirMmOwsWLOBS5EU7Le071VOkRTvN105x36mewK6lpUWTJ0/WaGfXrl3c6QW6uro0a9YsjXYOHz4ssfPaa6+1yo6471RPwhXtaFp31q9fT46OjhI7mvad27Zt404vEJNod+7cKbHj4uLC0u1FO/PmzWvRTnP/S5cupWXLlnHXalo7LSws6O233+YS2MV9Z0t21BPYxX1nS3bEZGjRjlwup6CgoP/txyhuoJU9on8eqtU2AACTJ09GREQEBEGAXC5H165d2deL+vfvD0EQMGHCBOjq6uK7774DAMjlcjg5OaFjx45QKpVwd3fH+PHjIQgCRo8eDW1tbZw4cQJdunSBXC7HnDlzYGFhgezsbHh6emLmzJkQBAFDhw6FTCZDfX09SktLIQgCZsyYARMTE0RERCAoKAhyuRyCIKBv376QyWRISkqCkZERBEFgqYOPHz9Gamoqq6F79+5obGxEQEAAevXqBUEQMGnSJOjq6uLHH39ETU0NBEGAk5MTOnfuDJVKBU9PT4wZMwaCIGDs2LHQ1tbG6dOnYW1tzWqwsrJCfn4+3N3dMX36dAiCgOHDh0Mmk7HkQ0EQMHPmTLRv3x5xcXHw9/eHk5MTBEFA//79IZPJkJ6eDh0dHQiCAEdHRxgaGsLT0xOJiYms3h49eqCpqQnBwcHo2rUrBEHA5MmT0a5dO/z666+oqKiAXC6HXC6Hra0tqqur4eXlhZEjR0IQBIwbNw7a2to4d+4cTE1NIQgC5syZA2traxQXF8Pd3R0ODg4QBAEjRoyAlpYWDhw4gMGDB0MQBMyaNQumpqZISkqCn58f5syZA0EQMHDgQHauVWNjIwRBwLRp02BkZAQ/Pz/Exsay96FXr14gIkRERKBjx44QBIEl9t24cQMlJSXsfbC3t0ddXR18fHwwZMgQCIKA8ePHQ0dHB19//TX09fUhCALmzp2LDh06oKysDO7u7pg8eTIEQcCoUaOgpaWFw4cPo0+fPhAEAbNnz4aZmRnS09Ph7e2N2bNnQxAEDB48mJ1FWFVVBUEQMH36dBgbGyM4OBjh4eHsfejTpw+ICDExMbCwsIAgCCyxT/xXRLGGrl27or6+Hr6+vhgwYABn59KlS5DJZKwG0Y6HhwezM2bMGGhpaeH48ePo0qULq0G04+XlhZkzZ0IulzM7NTU1KC8vl9gJDg5m94doJyEhAcbGxpydR48eISMjg71n3bp1Q2NjI/z9/dG7d2/OzpUrV1BfX8/q7dSpEyorK+Hh4YGxY8dydj755BPY2Niw+87S0hJ5eXkt2hHtiXZiYmIQEBAAJycnyOVyZkf812B1O+7u7khMTGQ1iHZCQkIkdn755RdUVFSwGkQ73t7eGDlyJORyObPz2WefwczMjL1nVlZWKCoqgoeHBxwdHSGXy5mdffv2YejQoZydxMRE+Pn5Ye7cuRAEAQMGDGDnqRIR5HI5pk+fDkNDQ/j6+mq0Ex4ejs6dO0MulzM7f/zxB7Mjl8thZ2eH2tpa+Pj4sJ9h3Lhx0NHRwVdffQUDAwPOTmlpKdzd3TFlyhQIgoCRI0dCS0sLLi4u6Nu3L2cnLS0N3t7ezP+gQYMgk8lQVlaG6upqzk5gYCBbSwRBQO/evUFEiI6OhpWVFeRyObNz584d5OfnTiTPzgAAIABJREFUsxq6dOnCvpo3YMAAyOVyZufixYvQ0tJi75mNjQ0UCgXc3d0xYcIEtu5oaWnh2LFj6N69O+RyObOTlZUFT09PzJo1C4IgYMiQIcyOQqGAXC5ndsLDwxESEsKtO0SEhIQE9q9ODg4O0NfX12inoaEBAQEB7DNo4sSJ0NXVxQ8//NCinVdeeYX519bWxqlTp9jnpbodDw8PzJgxA4IgYNiwYZDJZGhqasIrr7wCuVwusSPW0K9fP7Z26uvrQy6XY9q0aTAwMICbmxuSk5MldoKCgtC9e3fmX7RTVVXFPlc6d+6MqqoqeHh4sLXvlVdegba2Nj799FNYWFhALpczO4WFhXB3d4ejoyPzL9oZPnw4829qaoqEhAT4+vqytVO0I7bgiOuOoaEhvL29ERcXx+67nj17gogQFhYGW1tb5l9PTw+//fYb22uo2/H29sawYcM4O19++SWMjIxYDS+yc+jQIfaZP2vWLJiZmSE1NVWjneLiYtTV1TE7RkZGCAgIQGRkJHvPRDtRUVGwtrZm646enh7u3LmDgoIC9j506dIFdXV18PX1xaBBg9i6o6OjgwsXLrC9xty5c5kd8Zsh6nY++ugj9OjRg/k3NzdHZmYmvLy8JHZUKhWUSiVbd4yNjREaGorQ0FD2dyvaiY+PZ3sQ0c6DBw+QnZ0t2Xc+f/6cfQaJdi5fvsz2GuK+U7Qzbtw4zs7HH3/M3nNx35mbm6vRTkNDA4qLi9l9Z2JigujoaAQGBrL7TrSTkpLC9iCOjo4wMDDAs2fPkJKSItl3BgYGsr9H0c7PP//MPi/FfWdVVRU8PT0lds6ePQtLS0tWg2jHw8MD06ZNY+uOmMg8YsQIzk58fDyeP3/O1k7RTmZmJvscFe14eXkhPj6e1dCzZ0+2dtrb27M9W7t27fDbb79BoVCwa21tbVFTUwNvb2/mV7TzxRdfsL3G3LlzYW1tjZKSEri5uWHq1KmcnYMHD2LgwIGcneTkZPj4+GDOnDmQy+XMTlFREfscFe38p46XhhXJZDJ9AF4A9ADoAPidiA7JZLLuAK4BsAAQCuAtIqpr+U/654cVERFkMtlL5/4J14rv2/+Na/8b6m2roa2Gf1cNf+fa/4Z622poq+HfVcPfufa/od62Gtpq+HfV8Heubavhn1Hv/3YN/7Qha2VYUWseRGUAjIioUiaT6QLwAbAJwFYAN4jomkwm+xpABBF99aI/65/+INo22kbbaBtto220jbbRNtpG22gbbeN/Plr7IPrSsCJnZ2c4OzvXAYCLi4s+gHcA3AOwH8AaZ2fnJhcXlxIAG5ydna++6M/6p4cVubq6wtnZmTUkGxgYoL6+HkuWLEFSUhLMzMzQoUMHyGQyXL58GZ9//jlr5m/Xrh2USiUWLlyI3NxcWFlZsYNwP/nkE1y9epU18+vo6CA7OxvLli1DWVkZOnbsyA4v37NnDx48eMAakrW1tREREYENGzawZn5jY2MQEdavXw9/f38YGRmhc+fOkMlkePz4Mfbt28ea+Q0MDNDQ0IBly5YhLi4OpqamsLGxgUwmw08//YQzZ86wZn49PT1UVlZi4cKFyM7OhqWlJSwtLSGTyfDZZ5/h8uXLkMn+bObX1dVFXl4eli5dipKSEtjY2LADmA8cOIC7d++yZn5tbW3Exsbi7bffZs384oHz7733Hnx8fGBoaIjOnTtDS0sLHh4e2LlzJ2vmNzQ0RGNjI5YvX47o6Gi0b98eHTt2hEwmw/Xr13Hy5EnWzK+np4eqqiosXLgQGRkZsLCwgJWVFWQyGc6fP4+LFy9yNRQVFWHx4sUoKipChw4d2AHMhw8fxo0bN1gzv7a2NhITE7Fq1SrWzC8emr1p0yZ4eHjAwMAAtra20NLSgq+vL7Zu3cqa+Y2MjNDU1ISVK1ciPDwcJiYmrIabN2/i2LFjrJlfX18ftbW1WLx4MVJTU2Fubg5ra2vIZDJ8++23+PrrrwGA1VBaWopFixahoKAA1tbWsLCwAAAcO3YM169fZ838Ojo6SEtLw1tvvQWFQsHVsG3bNjx9+pQ182tpaSEwMBAffPABa+Y3MjICEWHNmjUICQmBsbExOnXqBJlMBldXV7i4uKCurg729vbQ19dHXV0dFi9erNHOuXPnQETMjkKhwMKFC5GXlyex89NPP7Fmfh0dHWRlZeHNN9+U2Nm9e7fETnh4ON59910WhCPaWbduHQICAjg7jx49woEDBzj/DQ0NWLp0KftKlWjn6tWrOHv2LOe/srISb7zxhsTOp59+ih9++IHzn5ubiyVLlqC0tJSzs3//fomd6OjoVttxd3fH7t27WRDOi+z8+uuvOHXqFAuRepGdL7/8kn2lWrzvCgsLsWTJEhQXF3N2nJ2dcfPmTc5OQkIC1qxZw+yINXz44YcSOz4+Pti2bRsLwjI0NERTUxNWrFiBiIgIzs6NGzckdmpqarBo0SKkpaXBzMzshXZKSkqwePFiFBYWvtROamoqVqxYwYIwRDtbt26V2AkICMCmTZs4/0SE1atXS+zcvXsXhw8fZiFSop0lS5YgOTmZs/Pdd9/hiy++kNhZtGiRxM7HH3+Mn3/+mQXh6OjoIDMzE8uXL2cBLKKdXbt24eHDhywIR0tLC2FhYXjvvfc02gkMDGy1nYSEBM7Ojz/+iE8//ZSzU1FRgUWLFiEnJweWlpawsrICAJw9exZXrlyR2Fm6dKnEzr59+3Dv3j3OTlRUFNatW8etnQCwYcMG+Pr6cnaePXuGPXv2aLQTExPD2bl27Rqz03zdyczM5OycO3cO3333ncTO4sWLNdq5desWZyc+Pl6jnQ8++ABeXl6cHW9vb2zfvl2jncjISJiYmLD77o8//sDx48dbtKO+7nz99df45ptvJHYWLVoksXP06FH8/vvvnJ2UlBSsXLlSYmfLli1wc3Pj7Pj7+7doJzQ0lLNz584djXYWLVqElJQUzs6lS5dw/vx5zk55eTkWLlyI/Px8zs7Jkydx7do1zk5GRgazo77u7Ny5E48ePeLshISE4P3335fYeeeddyR2Hjx4gEOHDkn2nZrsXLlyBZ999pnEzsKFCyV2zpw5gx9//JGzk5OTg2XLlkns7N27F66uri+1Q0TYsGEDnj9/LrGzd+9etmczMDBAY2Mjli1bhtjYWM7OL7/8gtOnT3N2VCoVFi5ciKysLImd77//nrOTn5+vcd05dOgQbt++zdmJi4vTuHZu3LhRYsfLyws7duzg9p1NTU1Yvnw5oqKiODu///47Tpw4we07q6ursWjRIqSnp3N2vvrqK1y4cIGzU1xcrNHOkSNH8Mcff7AANm1tbSQnJ2u0s3nzZomdf9r4t4YVAdAGEA6gEsBJAFYAktX+d3sA0S/7c/7pYUWHDh3iGtSnTp1KJ0+e5AJ1unTpQu+//z4tWbKEaxSePXs2ffTRR1xDfZ8+fWjHjh1cWIGRkRHNnz9fEs4wZMgQcnZ25sIKzMzMaMmSJbR3716u4XrMmDF08uRJsrGx4ZrsV69eTR9++CFXw+TJk+nkyZNkYWHBNdm/++67XNBHu3btaObMmXTs2DGuob5Xr160fft2LujD0NCQ5s2bJwlnGDRoEB08eJALK2jfvj0tWrSI9u/fzzVcjxo1ik6ePMk1XFtZWdGKFSu4Rn8xGOnEiRNcg7mtrS2tX7+eVq9eLWlQP3bsGNdQ36NHD9qyZQsXVmBgYEByuZyOHDnCBRsMGDCA9u3bx4UVtG/fnhYuXCgJmBkxYgQdO3aMunbtyjXZv/XWW7R9+3ZJg/rJkye5gIlOnTrRO++8wwV9iA3qx48f58JounXrRps2beLCCvT19cnJyYk++ugjLtigX79+tGfPHi6swNjYmBYsWEDOzs5co/+wYcPo6NGj1KtXL67J/s0336Rdu3ZxNbzyyit08uRJsra25prs165dS++++67EzokTJzg7Xbt2pY0bN3JBH3p6ejRnzhz66KOPuFCAPn360M6dO7mwAiMjI3rttdfIxcWFa/QfMmQIubi4cGEFZmZmtHTpUtq7dy8LXJD9FVBx8uRJLmBKtPPBBx9wNUyZMoVOnDhB5ubmnJ333nuP3nzzTc7OrFmz6NixY5x/0Y56WIGhoSG9+uqrdPjwYc6/aEc9rMDU1JQWL15M+/bt02hH3b+1tTWtXLlSYmfSpEl08uRJiZ0NGzZwQR9iqFhr7QiCILEzcOBA2rdvH40ePfqldkaOHEnHjx8ne3v7F9oRAypasvP222+/1E737t1p06ZN9Nprr0nsHD16VKOdCRMmSOw0D5gZPnw4HT16lAuYE+2oB9/J/gp3+fjjjzXaUQ/6EMNdWrKjHjAn2jl27Bhnp2/fvrRz506aOnXqS+0MHTqUXFxcuIA50c6ePXv+JTsnT578H9vp3bs3bd++nWbOnCmx03ztHDx4MB06dIgLmFO3o752jh49mk6dOqXRjnpIjrod9bVTtLNy5UqJnePHj3NrZ8+ePWnr1q3k5OSk0Y762jlw4EDav39/i3bU/Y8cOZJOnDjBBcyJa+e2bdteaqdz5860bt26VtvZvHkzF84o2mkeqNO/f3/au3cvFzBnYmLSop2PPvqIC5h7kR1N687bb7/NhTO+yM4HH3yg0c7Ro0cldnbt2sXZMTY2ptdff10SMCMGI6kHzJmbm9OyZcto9+7dEjsff/wxZ8fGxobWrFnDheSor53qdsR9p3rAnBiMpMnOjh07uIA5cd/ZfN0R7agHzIn7Tk12NK07q1at4oINRTsnTpzg7NjZ2dG7775LK1as4GrQtO8U7aiHMxoYGGjcdw4cOJAOHDjAhTO+aN954sQJLmCuJTsTJ06UrJ2iHfVwRnHfefz4cW7tFO2ohzPq6+tr3HeKdsaNG8fZeeONN+jgwYPc2ina6d69O2dn+fLl/7FhRa16EKX/88BpBsAdwCRIH0SjWvhv1gEIBhDcpUuX/0fl/8/GH3/8QcCfm69NmzbRkydPqLi4mAYOHMhuoG+++Yays7Pp888/J+DPB5ddu3aRt7c35ebmUqdOndgN9MMPP1BRURHb0I8YMYIOHTpEwcHBlJSUREZGRuwG+vXXX6m8vJyWL1/OHlyOHz9O0dHRFBgYSFpaWuzD9/bt26RUKsnR0ZF0dHTI0dGRzp49S0lJSXT37l0C/nxw+eCDD+jRo0dUUlJCw4YNIz09PZo7dy599dVXlJWVRV9//TUBf26+duzYQZ6enpSXl0ddunRhH77ff/89FRQU0IEDBwj488HlwIEDFBAQQKmpqdS+fXsyNzenN998k3755RcqKyujNWvWsAeXjz76iCIjIyk0NJR0dHTIxsaG1q5dSzdv3qSKigqaNWsW+/A9ffo0JSQk0KNHj7gP3wcPHlBpaSmNGjWKLSBffvklZWRk0Pfff0/Anw8u27ZtIw8PD8rPz6cePXqwzdelS5coPz+fjh49SsCfDy779u0jf39/ysjIIHNzc7b5+umnn6ikpIQ9WI0ZM4aOHDlC4eHhFBUVRbq6umzzdePGDVIqlTRv3jz20H/q1CmKj48nd3d37sP3/v37VF5eTuPGjWMfvufOnaO0tDT66aefCPjzwWXLli3k5uZGhYWF1LdvX7b5unDhAuXm5tLHH39MwJ8PLnv27CE/Pz/Kysoia2trtvn68ccfqbi4mG2sxDTk0NBQiouLI319fbKysqKVK1fSb7/9RgqFgt544w1u8xUbG0s+Pj5s87V+/Xq6d+8eKRQKmjRpEtt8ffbZZ5SSkkK///47Z+fp06dUVFREAwcOZJuvb7/9lnJycuizzz7j7Pj4+FBOTg6zs3DhQrpy5QoVFRWxTYm6ncTERDI0NGQPLtevX6fy8nJatmyZxI6/vz9paWmxB5c7d+5QRUUFOTg4sM3X2bNnKTk5me7cucPZefz4MZWUlNDQoUPZ5ku089VXX3F2vLy8KC8vj+zt7dmDy+XLl6mgoID279/PFpADBw5QYGAgpaSkkImJCbNz7do1Kisro9WrV7PNl2gnJCSEtLW1mZ1bt25RZWUlzZw5kyW6njlzhhITE+nhw4ecnYcPH1JZWRmNHDmS2Tl//jxlZGTQpUuXJHYKCgqoe/fuzM53331H+fn5dPjwYYmd9PR0zs7PP/9MpaWltH79erb5Onr0KIWHh1NkZKTETkVFBcnlcvbg8sknn1B8fDy5ubkR8H9+YSbaGTt2LHtw+eKLLygtLY2uXr2q0U7v3r2ZnYsXL1Jubi6dPHmSbb5EO5mZmWRlZcXsXL16lUpKStgv9EaPHk2HDx+m0NBQio2NJT09PWbn999/J6VSSQsWLGB2Pv74Y4qNjSUvLy+NdiZOnMjsfP7555SamkrXr19nm6/NmzczOwMGDJDYOXv2LNt87d69m9np2LGjxI74QD9y5EhydnZ+oZ2lS5eyB5cTJ05QTEwM+fv7k0wm4+wolUqaOnUqs/Ppp59ScnIy3b59W6OdIUOGMDtff/01ZWdn0/nz59nma+fOneTl5UW5ublkZ2fH2SksLKR9+/YxOwcPHqTAwEBKTk7WaGflypXMzrFjxygyMpKCg4NJW1ubrZ2inenTp7MHF9HO/fv32YPLxo0b6eHDh1RaWkojRozg7GRmZtLFixfZg8v27dvZutOtWzeJHRcXF/bgsn//fgoICKD09HQyMzOT2Fm3bh1nJyIigiIiIkhHR0dix8nJibOTkJBAT58+ZXbee+89un//PpWVlUnspKen05UrV9iDy9atW8nNzY0KCgokdvLy8uj48ePMzt69e5kdS0tLMjU1pSVLljA7Yuq1aCcsLIxiYmJIT0+PPbiIdl577TXOTlxcHHl6ejI7GzZsoHv37lF5eTlNmDCBpSGLdn799VfOzrNnz6iwsJD69+/PHlxEO2fOnOHs+Pr6UnZ2NtnY2LAHF9GO+FAi2gkJCaGEhAQyMDAgS0tLWrFiBVs7lyxZIrHj5+dHMpmMPbjcvXuXlEolTZkyRWLn5s2b7MHlww8/pCdPnlBJSQkNHjyY7TtFO1988QVnx9vbm/Ly8sjW1pbtO0U7e/bs4ewEBQVRcnIyGRsbs32naGfFihVs7Tx27BhFRUVJ7Ny+fZsqKipo2rRpbN955swZSkpKIldXV87Oo0ePqLS0lIYPH87tOzMzM+nChQucHU9PT8rPz6euXbtK9p3Ozs4SO2lpaWRqasoe+n/55RcqLS2lt99+W2InPDyc7TvXrFnD9p1z5sxh+07RzpMnTzg7Dx48oLKyMho9ejR76Bft/PDDD5wdd3d3KigooJ49e5KhoSHNnz+fLl26RHl5eXTs2DG2du7du5eeP39OmZmZZGFhweyI+07xlxJjxoxhdqKjo6ldu3bMzh9//EFKpZLmz5/P0pBPnTpFcXFx1NTU9L/9GMWN/ysPon/+uTgEYAeAYgA6f82NA/DoZf/tP/1fRCMiIigmJoZ7M+vq6sjV1ZVUKhV3bUBAAKWkpHBzCoWCnjx5QrW1tdy8l5cXZWdnc3O5ubnk7e1NDQ0N3PyTJ0+osLCQm0tOTqagoCBqbGxkc01NTWyDpj6ioqIoKiqKq6G+vp5cXV2psrKSuzYoKIiSkpK4uYqKCnr06BHV1NRw897e3pSZmcnN5efnk6enJ9XX13Pzz549o4KCAm4uNTWVAgICuBqIiGFXHzExMRQREcHV0NDQQK6urlRRUcFdKy4Q6qOqqooePHhA1dXV3Lyvry+lp6dzc0VFReTu7k51dXXcvJubG+Xl5XFz6enp9Pz5c0kN4sO++oiLi6OwsDCuhsbGRnJ1dSWlUsldKz4gql9bU1ND9+/fp6qqKu7a58+fU1paGjdXWlpKz549k9Tg4eFBubm53FxWVhb5+vpK7rvHjx9TcXExN5eQkEAhISHcz9XU1ESurq6kUCi4a8PDwyV2amtrNdrx9/eX2CkvL2+1nZycnBbtFBUVcXNJSUl/y050dHSr7AQGBv4tO1lZWdzc/y070dHRGu3cu3dPYic4OFhiR6VStWgnIyODmyssLGzRTn5+PjeXnp5O/v7+khoePnyo0U54eLjEzr179zTaiY+P5+aqq6s11uDn5yexU1JSQm5ubpIa3N3dJXYyMzPJz89Pct89evRIo53Q0NBW24mNjdVop7n/luw8ffpUYsfT05NycnK4uZycHPLx8Wm1neDg4FbZiYyMbNFOc//iw6T6UCqV9Pjx41bZycvLIy8vL4mdp0+fSuykpKRQYGCg5L4TH9DUR3R0NEVGRmq009y/+FCvPlQqFT18+FBy3/n4+Gi04+HhodH/37FTWlrKzcXGxmq0o2nt/FftFBcXt2in+dr5IjvN/cfHx7dop7n/luxoWjv9/f0pNTWVmysrK9Nox8PDQ2InOzu71XYSExMpODhYUoMmOxERERI7Le07X2SnNWvni+w033dqstPU1NTiuqPJTkv7zuZ2Kisr6eHDhxL/Pj4+kn1nQUFBq+2kpaVptCP+44b6iI2Nlayd4rrzr+w7/fz8JPvOv2MnIyOj1Xb+aaO1D6KtCSuyBlBPROUymcwAwGP8+fXclQD+oP8TVhRJROdf9Ge1hRW1jbbRNtpG22gbbaNttI220Tbaxn/vaG1YUWu6WzsBcJfJZJEAggA8IaJ7AHYB2CqTyZIBWAK49K/8wP+EERYWhpCQEKg/nNfX1+PGjRtQKBTctX5+foiJieGuVSqVuHv3Lqqqqrhr3dzckJKSws3l5ubiyZMnqKvjT7y5f/8+srOzubmkpCR4e3ujoaGBzRERbt26haKiIu5a8czRpqYmNtfQ0KCxBn9/f0RFRXE1VFZW4vbt21CpVNy1Hh4eSEpK4uYKCgrw6NEj1NbWcvMPHz5EVlYWN5eamgpPT0+uBgC4c+cOCgsLubmoqCgEBARwNTQ2NuLGjRsoKyvjrhXP61OvoaqqCrdu3UJlZSV3raenJxISEri5oqIiPHjwADU1Ndz848ePkZGRwc2lp6fD3d0d9fX13Pzdu3eRn5/PzcXGxuL58+dobGxkc01NTbhx4wZKS0u5a4ODgxEWFsbVUFtbi5s3b6KiooK71sfHB/Hx8dy1paWlcHV1RXV1NXft06dPkZ6ezs1lZWXh2bNnkvvO1dUVeXl53Fx8fDx8fX25GogIN2/eRElJCXdtaGioxE5dXR1u3LgBpVLJXevr6yuxo1AoWrSTmprKzeXk5LRoRzxbTxyJiYl/y05wcHCr7URHR7fKjru7O5KTk7m5/Pz8VttJSUnRaOf27dv/sp3IyMhW20lMTOTmWrLz6NEjZGZmcnPp6enw8PBolZ2YmBj4+/u32k54eDhXQ01NjUY73t7eEjslJSW4f/++xM6TJ08kdjIzM+Hm5iap4d69exrt+Pn5SeyIZwarD/HMwdbaiY2Nldi5d++exM6zZ8802nn69Gmr7fj4+Ehq0GQnPDy81XaeP38usVNRUYE7d+5IatBkJy8vD48fP5bYefDggcROcnIyvLy8WmUnMjISgYGBrbIjnnX5P7VTWFiIhw8ftspOWlqaRjvi+bPqQ7SjXoNop3kNQUFB/xY7zWt48uSJZO38O3bi4uI02tG07oSEhPxLdsrLy3Hv3j2Jf012srOzW7STm5vLzSUkJLRop7i4mLs2LCxMYqelfefz588la+eL7DTfd77ITvN9pyY7RPS37ZSXl3PXarKjUqlw69Ytydrp6empcd/58OFDSQ2a7KSmpsLDw0PjvrOgoICbi46OlqydL7LTfN9ZXV2NmzdvSvx7eXlJ9p3FxcWttpORkdFqO/+xozX/bPrvev3Tv5or9uqI3+u/c+cO5eXl0YABA7jv9aekpLBeHfF7/Y8fP6aMjAzq1KmTpCdG7NVR74mJjY0lIyMj1swvfq9fbEZX/16/n58faWlpsWb+a9euUWlpKU2dOpXriYmKimL9BmIQxq1btyg/P5+GDh3K9cQkJSXRl19+KemJyczMpC5dukh6Yvbu3SvpiUlMTKT27dtzPTEFBQUsyEH9e/1BQUGko6PDvtcv9sRMnz5d8r1+sVdH/F7/jRs3qKCggEaMGCHpiRF7dbp06cJ6YrKysqh79+6S7/WLvTrq3+tPTk4mc3Nz1swv9sSsW7eO64l5/vw5hYaGkq6uLmvmF7/XL4ZRqPfEiP0G6t/rLyoqorFjx0p6YsR+Azs7O9qwYQO5urpSTk4O9enTh+snS0tLY7066j0xaWlpZG1tzfXE5Obmsl4d9Z6YqKgo0tfX53piiouLWZCLek+M2KsjNvNfv36diouLacKECVyIVExMDF27do2zc/fuXcrNzaUBAwawZn7Rjtiro94Tk56ezuyo92KLvTrqPTGxsbFkaGjI9WIXFhayECR1O76+vsyO2ItdWlpKkydPlti5ceMGAX8G4Yg9MQUFBTR48GBJT4zYq9OtWzfWE5OZmUl2dnasJ0a0I/bqqPfEJCQkkImJiaQnRgxyGDZsGLMTGBhI2trakp6YadOmsV5s0c69e/c4Ozdv3uTsqPdif/vtt5ydBw8eMDtiAJvYiy0GuanbSUpK4uyIPTFiCIp6T0xYWJjETmlpKQtBE3uxw8LC6PHjxxI7hYWFNGbMGK4XOy4uji5fvqzRTu/evSW92GKvTq9evZid1NRUsrKyYgFsYi+22KszaNAgZicyMpL09PSYHbEXWwxyEXuxQ0JCyMPDg7Pz22+/UXFxMY0fP54LwoiJiaGff/5ZYicvL4/69+/P7Ii92J988okkxyA9PZ06duzIAti++eYbysnJYcFV6jkGmuwUFRXRokWLuF7soKAg8vHxIZlMxtkpKSlhdtR7scV8BXU7+fn5nB2xF/vcuXMSOxkZGWRnZ0f6+vpcjsHu3bslOQbx8fEa7SxfvlySYxAQECCxU1ZWRg4ODlyOQUREBMtXENdO0c6wYcM4O4mJifTNN99IcgyysrKoW7duEjtQvD+KAAAgAElEQVQHDx7kerHFdcfMzIyzk5+fT2vXrpX0Yov5Cs3tzJ49W5JjIOYrdOjQgVt3Ro8eLckxEPMVxF5s0U6vXr04O+np6SxfQezFfvbsGaWkpJClpaXEjpivoJ5jEBERQXp6epIcg3nz5nF2QkNDWb6Ceo5BUVERjRs3jrMTGxvL8hXEXmxx3enXrx+XY5CamkqnTp3i7Dx9+pTS0tLIxsaG9WKLdsTwHfUcg5iYGDIwMGAhUmI/qRiCpJ5jINpR78UuKSmhSZMmSez89ttvzI7Yi52fn0+DBg2S2BHzFbp37856sTMyMsjW1laSYyDmK6jnGMTHx5OxsTHrxf7++++psLCQBYiJdgIDA8nf35+0tbXZvlNcd0Q76jkGYr6C+r5TtCPuO0U7YjZJ165dWY5BVlYWde3aVbLvFLNJ1HMMkpKSyNTUVNKLLQZXqtsJCQlhdtR7scUQNHU7Yr6Cei92YWEhjRo1iu07RTvfffcdZ+f+/fuUnZ1NPXv2ZL3Yop0jR46wtVPMMUhJSSELCwtJL7YYXKeeYxAeHk7t2rXjcgyKi4tZgODo0aOZnf/UHtGXHt/y7xz/9ONbbt68CXd3d1RUVCA6OholJSVQqVR4+PAhVCoV0tLSkJqaCqVSicTERERFRaG8vBzR0dEoKyuDQqHA06dPUVVVhaSkJGRlZaGiogKhoaFISUlBcXExYmJiUF5ejtLSUnh4eKCqqgrx8fHIy8tDVVUVPDw8UFBQgPz8fMTFxUGhUKCoqAheXl6oqqpCbGwsCgsLUVNTgzt37qCiogLZ2dlITEyEQqFAbm4unj9/jsrKSsTExKC4uBhVVVV48OABKisrkZ6ejpSUFCiVSqSkpCA8PBwKhQLR0dEoLS2FUqnEkydPoFKpkJycjMzMTFRUVCAyMhKJiYkoKSnhanB3d2c15ObmQqVSwcfHB7m5uSgoKEBsbCwUCgUKCwtZDTExMSgoKEBdXR3u3r0LpVKJnJwcJCQkQKFQIC8vD35+flCpVIiOjpbUkJGRwWpITU1FaGgoV0NFRQUeP37MasjIyEBFRQViYmIQHx+P0tJS9p41ryEnJwcqlQrPnz9HVlYWCgsLERsbi/LychQVFcHb25u9D/n5+aipqcHDhw9RVlaG3NxcxMfHsxp8fX1RVVWF6OhoFBUVobq6Gq6urqisrERmZiaSk5OhVCqRkZGB4OBgKJVKdt9VVlbi0aNHUKlUSE1NRXp6OpRKJeLi4hAbG4uysjJWQ1lZGdzc3FBVVYWEhARkZ2ejsrISQUFBSE9PR1FREXsfiouL4enpKanhyZMnKC4uRl5eHuLj46FUKlFQUMDqjYmJYfedq6srKioqkJmZiaSkJCiVSmRlZSEwMJDZKS4uZnYqKyuRmpqKtLQ0jXZKS0s5O4mJicjKykJlZaVGOyUlJcxOXFwccnNzUV1dLbGjqYaCggLU1tbi7t27nB2lUons7Gz4+/ujsrKS1VBZWclqUPefnJyMiIgIzn95eTnnPzMzE5WVlYiIiEBSUpLETvMaVCoVvL29kZuby/lvyc6dO3fYz52QkAClUimxU1RU1KL/tLQ0zk5JSYnEv2gnOjqa2WnJv2jHz88P2dnZLfpXv+8ePHiA8vJy5l+pVCI/Px8+Pj6sXrGG+/fvo6KiAhkZGS3aKS0t5eykpKQwO7GxsYiNjWU1iHaePXvG2VGpVAgMDERGRgbzr+lzOD8/H9XV1Xj8+DFKSkqYf7EG9ftO9H/v3r2X2lH339xOQkICu9/EGsrLy/Hs2TOoVCpmp6KiAiEhIUhNTWX+y8vLUVxczN134rrj7u6OwsJC5l+hUDA71dXVnH/RTlZWFrOTk5PD2RHXTvG+e5kd9ftOfe0U7TT3L9536jV4e3sjLy9PYqf5Z5hop7l/9bVT9F9dXY379+9L7KSmpiIsLOyF6464dkZFRSEhIeGla2dlZSVnJy4ujq076vddQUEBampqcP/+fc6OQqFAfn4+fH19oVKpuPuuJTshISEvtJORkcGtO+p2ysvLuXVH9O/v74/MzExu7Wxp3Xn06BFKS0u5tVOT/+brjlhDZmYmgoKCWtyzqa+d8fHxnJ3S0lJmR1x3xLUzODgYaWlpnJ2SkhJWg3jfVVdXw83NrUU7La2dWVlZnP+AgADuvlNfO9PS0pj/pKQkREZGory8nNWgVCrx9OlTzk5lZSXCwsKQnJyM4uJirgZN/j09PZGfn4/8/HxWQ/PPbPG+07R2Nt93alp3RP+tsSOuO83tvGjP5uvri5ycHGan+fsg3ne1tbVwdXWFQqHg1h1xz9bcjrhnU993imunUqlk74N6Dep2YmJiEBcXx62dmvZsze2INajfdy3ZEWuwtbVF586d/7cfpdho7fEtOv8vfpj/lDFy5EisWbMGgiBg+vTpMDY2Rn19PUJDQzFixAjI5XL06dMHAHDlyhWYmppCEARMnToV+vr6UCqVCAwMhIODA+RyObp06QLgz7PQBg0aBEEQMGHCBOjq6iI7OxuhoaGYO3cunJycYGNjA+DPr/fI5XLI5XKMGTMGWlpaiIiIQGJiIgRBwOzZs2FhYQEiQkpKCjp27AhBEDBkyBDIZDI8efIEpaWlEAQBM2bMgImJCRoaGhAeHo4hQ4ZAEAT07dsXAPDLL79AX18fgiDAwcEBBgYG7AFm8uTJkMvl6NatGwDg3Llz6NWrFwRBwKRJk9g5oiEhIZg9ezacnJzQqVMnAH9+JWv69OkQBAFjxoxh54jGxcVBEATMmTOHndeVlpYGS0tLCIKAYcOGQSaTwdPTEwUFBRAEATNnzkT79u3R2NiIyMhIDBgwAIIgoF+/fuw8Jy0tLQiCgGnTpsHAwABVVVUICgrChAkTIJfL0aNHDwDA119/DXt7ewiCgMmTJ6Ndu3YoKipCSEgIZs6cCblczhBra2tj4sSJEAQBr7zyCjtHNCYmBnK5HHPnzmXndeXl5cHY2BiCIGD48OHsHNGcnBwIgoBZs2bB1NQUTU1NiImJYX+PAwYMgEwmw+3bt9HY2MhqMDQ0RG1tLYKDgzF27FgIgoCePXsCAC5dusTe88mTJ0NPTw+lpaUICgrC9OnTIZfLYWdnB+DPcwRHjx4NQRAwbtw4do5oREQEnJycMHfuXHTo0AHAn18VWbhwIQRBwMiRI6GlpYWgoCCkpaWx+87MzAxEhPj4eHTt2hWCIGDQoEGQyWS4f/8+VCoVu++MjIxQV1eH0NBQjBw5EoIgoHfv3syOmZkZBEHAlClToK+vD4VCgcDAQDg6OkrsDB48mNkRzxENCwuT2KmsrIRcLocgCBg9ejS0tLQQHh6OlJQUyOVyzJkzB+bm5iAiJCYmonPnzhI7CoWC1WBsbMzsDB06lLPz888/w9DQkNnR19dndqZMmSKx06dPHwiCgIkTJ0JXVxe5ubkIDg7GnDlzODv19fWYMWMGZyc6OlqjndTUVFhZWXF2xAcKuVz+Uju//fYbtLW1IQgCHB0dmZ3g4GBMmDABgiCge/fuAICvvvqKveeTJk1Cu3btUFhYqNGOTCbD5MmTOTsJCQmIjY1l74NoJycnB+3bt4cgCBgxYgRkMhlnZ+bMmZyd3r17c3Zu3bolsVNTU4Pg4GC88sorkMvlzM7FixfRqVMndt+1a9cOJSUlCAoKwowZMyCXy2FrawsA0NfXx5gxYzg7qampiIyMZP6tra2ZHT09Pc5OQEAAMjIymH/RTlxcHLp168bZEb8aKK47L7Jz+fJlWFhYsHVHT08PCoUCQUFBcHR0hJOTE7Nz+vRpdt+KdjIzMxEeHo65c+di7ty5zE5FRQXmzZvH2QkLC0NKSgrzL9pJSkqCra0t5HI5s/P48WONdsLCwjBs2DAIgsDWzp9++glGRkacnYqKCs5O165dAQCff/45+vbtK7ETGhrK7HTs2BHAn+0MM2fO5OyIG1nRjnheX3JyMqytrTk7bm5uKC4uZvediYkJGhsbER4ejkGDBkEulzM7169fh66ursROUFAQJk6cCLlczuycP38e3bt35+wUFBQgODgYs2bNgpOTE2dn6tSpkMvlzI74ACXWINrJzs5me5Dhw4dDJpOxX2SJ91379u3R1NSEqKgo9vfYv39/dn51U1OTxE5QUBDGjRvH2blw4UKr7bRr1w7jxo1jdrS1tZGSkqLRTmFhIQwMDJh/8RzRzMxMiZ3Y2Fj06NEDgiBg4MCB7AzempoaiZ3g4GC29vXq1QsA8P3337O9hminvLwcQUFBmDZtGuRyOezt7Zmd4cOHQxAEjB8/np0jGhYWBicnJzg5ObG1U6FQYP78+RAEAaNGjWLniGqyk5iYCDs7OwiCgMGDB0Mmk7EHTk37TvFnEO1cvXoVJiYm3L6zoqICgYGB7L4R7Xz22WfsM1/cd+bk5Gi0U11djTlz5jA7WlpaGu2I+04bGxsIgoChQ4dCJpPh2bNnLdoR1+++ffuy86vbtWvH7TvFX/5NmjQJgiCwtfP8+fPsPRf3nfn5+QgODmb7TtFOU1MTHBwcIAgCxo4dy84RjYuLY/eduHZmZGTA3Nycs+Pl5YX8/Hxu39nU1ITIyEj069ePs3Pjxg3IZDLm39DQENXV1QgKCsL48eMhCALbd3777bfsPRf3ncXFxQgMDGRrp2hHV1eX/feiHfEXd83tFBQUsD2IaOc/dbw0rOjfOdrCitpG22gbbaNttI220TbaRttoG23jv3f8O8OK/n8z1BvLxdHU1ARND+uarm1sbPxb17b2Z9A0R0StvvafWsPfubapqYlrIn/Zf/9PrIGIWl3D333P/pWf6+9c+99SQ5ud/6wa/lvuu/+GGv7/Zue/oYY2//+MGv7T77v/hhr+zrX/aXb+U0dbj6jaePjwId5++22UlJTA0tISVlZWaGxsxOzZs+Hv7w8tLS3Y29tDR0cHly9fxu7du6FQKGBjYwMzMzNUVVXBwcEBMTExaNeuHezs7KCtrY2TJ0/i9OnTqKysROfOnWFsbIz8/Hw4OjoiPT0dhoaG6Ny5M7S0tLBt2zZcvnwZtbW1sLOzg4GBAWJiYiAIAvLy8tC+fXt07NgRMpkMb731Fu7evYvGxkbY29tDT08Pz549w6pVq1BcXAwLCwv2NR4nJyf4+PhAJpPB3t4eurq6+Omnn7B9+3aUl5ejQ4cOMDc3R21tLRwcHBAZGQldXV1Ww5kzZ3D8+HFUVlaiU6dOMDExQXFxMRwcHJCSkgIDAwPY2tpCS0sLu3fvxoULF1BTUwNbW1sYGhoiMTERc+fORU5ODkxMTNCpUyfIZDKsWbMGN27cQENDA6vB29sbb775JoqKimBubg5ra2vIZDLMmzcPHh4eAMBq+O2337B582aUlpbC2toaFhYWqK+vh6OjI8LCwqCjowN7e3toa2vjiy++wJEjR1BRUYFOnTqhffv2KCsrg4ODA5KSkqCvr89qOHDgAL766itUV1fD1tYWRkZGSE1NxezZs5GVlQVjY2NWw4YNG/Drr7+ivr4e9vb20NfXR0BAABYvXozCwkKYmZmxr/EsWLAAT58+BRHB3t4e7dq1w+3bt/H+++9zNYhfbw4ODoa2tja777755hscOnQISqUSHTt2hKmpKZRKJaZOnYr4+Hjo6enBzs4OWlpaOHz4MD7//HNUVVWxGrKysjBjxgxkZmbCyMgInTt3hkwmw8aNG/HTTz+hrq6O3XdhYWF4/fXXkZ+fD1NTU/Y1vsWLF+Phw4doampiNTx48ADr1q2T2Jk1a5bEzvfff4+9e/dydlQqlUY7J06cwOnTp6FSqZidvLw8TJ8+XWJny5Yt+OGHHzg70dHRmDdvHleDTCbD8uXLJXaePn2K1atXo7i4GJaWlrC0tAQRYc6cOfD19eXsXL16FTt27EB5eTmroaamBg4ODoiKioKuri67706fPo2TJ08y/yYmJigqKoKjo6PEzq5du3Dx4kXU1NTAzs4OhoaGSEhIgJOTE3Jzczk7q1evxs2bNzk7Xl5eWL58OYqKipj/luz8+uuv2LJlC8rKypj/uro6TJs2DeHh4Zydzz//HEePHuXslJaWwsHBAcnJyTAwMGDvw/79+1u0k52dDRMTE/YZtm7dOly/fp2z4+/vz+yI/gHg9ddfx7Nnzzg7t27dktgRv94cEhLC2fn6669btJOQkMD5d3Fxwblz5zg7mZmZmDFjhsT/+++/j59//pmzExISggULFqCgoIDzv2jRIokdV1dXrF+/HiUlJbCysoKlpSWzExAQAG1tbdjZ2UFHRweXLl3Cvn37oFAoWA2indjYWOjp6cHW1hba2to4duwYzpw5w9nJzc1ldtT9b968GVeuXEFdXR1sbW1hYGCAqKgovPrqqxI7b775JlxdXdHU1AQ7Ozvo6enhyZMnWLNmjUY7fn5+nP8ff/wRO3fu5OxUV1fDwcEB0dHRnP9PPvlEYqewsBCOjo5ITU3l/O/YsQOXLl3i7MTHxzM76mvnqlWr2Ne6xRo8PT3x1ltvcXYAQC6Xw8vLi/Pfkh1HR0dERERwa+dnn32GY8eOcXZKSko4O+J9t2/fPnzzzTfc2pmcnIzZs2eztVOs4Z133sHvv/+OhoYG2NnZQV9fH35+fliyZAlnRyaT4bXXXoObmxvn/8aNG9i4caPGdSckJAQ6Ojrsvjt//jycnZ2hVCpZDQqFAg4ODhI7zs7O+OKLL1BdXY3OnTvDyMgIGRkZmDlzpsTOe++9h19++QX19fWshuDgYI12Fi5ciMePH3P+7927hw0bNkjszJw5E4GBgZydixcvYv/+/VAqlbCxsYGpqSkqKysxdepUxMXFSeycPXsWVVVVzE5OTg6mT5+OjIyMFu2I/iMjIzF//nzk5+ejffv2zM6yZcuYHbGGx48fY+3atdza2dTUhNmzZ0vsXLlyBbt27eLWzpbsnDp1CqdOnYJKpWJ7toKCAjg6OiItLY2zs337dnz33Xeora1l9534ldbmdlauXMnaiUQ7Hh4eWLFiBYqLi2Fubv5CO9euXcPWrVsl+05Ndj799FMcO3aM23eWlJSwtVP9vtuzZw++/fZbiZ05c+ZI7KxduxZ//PEHZ8fX1xfLli2T7DtfffVVuLu7c3b++OMPfPjhhygrK+PWnWnTpiE0NFRix8XFBRUVFejYsSPat2+P8vJyTJ06FYmJiVwNhw4dwpdffsmtnenp6Zg1axaysrJgZGTE7Lz77ru4du0aZ+efNlrbI9qWmqs2tm7dSgDYq3fv3uTi4kJ6enpsztDQkJYuXUpyuZy7dvDgweTs7Ey6urpsztTUlNavX09jx47lrh0zZgzt3buXtLS02Jy1tTVt376dunbtyua0tLRo6tSpLMFNfNnZ2ZGzszMZGBiwuXbt2pGTkxNL3RNfPXv2lNRgYGBAixcvptdff527duDAgZIa2rdvT2+//TZNmjSJu3bUqFG0d+9e0tbWZnNWVla0ZcsW6t27N1fD5MmTaevWrSSTydh8586dydnZmYyNjdmcrq4uzZ49myXWiq/u3buTi4sL6evrszl9fX164403WNqj+Orfvz+5uLhQu3bt2JyJiQmtWrWKHB0duWtHjBhB+/fvJx0dHTZnYWFBH374IQ0cOJDNyWQymjhxIu3YsYOroVOnTrR//36ytLRkczo6OjRz5kyWHCi+unXrJqlBT0+PXn/9dVq2bBl3bb9+/SQ1GBsb04oVK1jam/gaNmwYHTx4kKvB3Nyc3n//fRo2bBhXw/jx42nXrl3cfWdjY0O7d++mjh07sjltbW2aPn06ffDBB9z/V5cuXST3nZ6eHr366qssKVndjrOzM3ffGRkZ0ZtvvimxM2TIEDp06BB335mZmdGGDRtozJgx3LVjx46lPXv2SOzs2LGDs6OtrU0ODg60adOmVtmRy+W0Zs0a7tpevXpp9L9kyRKWlCq+Bg0a1KKdCRMmcNeOHj2a9u3bJ7GzdetW6tWrF2dnypQpLdoxMjLi7MyZM0dip0ePHpL7zsDAgBYuXMjSHsXXgAEDyNnZWWJn9erV5ODgwF07cuRI2r9/P1eDaKd///4SO9u3b9dox9zcnLMza9YsjXacnZ0l/l9//XWWMt4aOzNmzGi1naFDh0rs7Ny5k7vvOnbsSHv27CEbGxuJHTGxWt3O4cOHNdp56623uGv79Okjue9EO3PnztVoR70G0c6oUaNeaqdDhw60c+dOsre3f6kde3v7f4udV1999aV2TE1N6Z133qHx48dL7Ghad7Zt20Y9e/aU2NmyZQt339na2pKLiwsZGhpK7Lzzzjsa7TRfOxcuXEhvvPGGxI6Li4vE/5o1a2jKlCkSOwcOHOBqsLS0pE2bNlG/fv1aZefgwYNkZmYmsSOmbqrb0bR2LliwoNV2Vq5cKbEzfPhwOnDggGTt3LhxIw0ZMqRVdvbu3UvW1tYSO2Jitfjq2rUrubi4SOzMnz9fo53mn2FGRka0fPlyltCtbqe5fzMzM3r33Xc5O2K6cvO1s0OHDrRr1y6ys7PjanB0dKQPP/ywVXbmzZvH0l7F14v2nWLKsPgaPHiwZO00NTWldevW0bhx47hrxX2n+n1nbW1N27Zto+7du3N2pk6dKll3bG1tydnZWWLHycmp1XYWLVpECxYs4K5tad+5du1amjx5ssRO87XT0tKSNm/ezNkR953btm2TrJ0HDx4kU1NTzs7s2bMldlrady5YsIAl9IsvTftO0c60adO4a0eMGNGincGDB3P33YQJEyT3nWjHysqKq2HGjBkUFBT0v/0YxQ20MjW37UFUbdy5c4c7WiM2NpZUKhUNHjyYxYPfu3ePqqqq6KuvvuKO1khNTaWysjLq1KkTFw9eW1tL+/fvZ/Hg3377LeXk5FBWVhYZGRnRwIEDWTx4Q0MDrV69mkxMTLh48IiICNLW1qaRI0eyePDGxkaaNWsWFw9eXl5Ojx49Ii0tLZowYQKdOHGCoqOjqaqqikaMGMHFg6tUKvruu++4Y2mSk5NJoVBQly5dqFu3biwevLa2lo4cOcIdS5OVlUW5ubnUvn177lia+vp6Wr9+PYsHF4+liYmJIR0dHXa0RmBgIDU2NpJcLidzc3N2LE1ZWRm5u7tzR2tERkZSTU0NjR07losHr6yspKtXr3LH0iQmJpJSqaQePXpwx9LU1NTQyZMnJfHgBQUFZG5uzh1LU19fTx9++KEkHjwhIYHatWvHHUvT2NhICxYskMSDi/Ht6sfS1NbW0sSJE7l48IqKCrp+/brkWJrKykrq168f2dvbs2Npqqur6ezZsyweXDyWpri4mKytrdnRGm5ublRXV0fbt2+XxIOnpqaSvr4+O5bGz8+PGhoaaOnSpWRqakpLliyhq1evUklJCQUGBpKWlhZ3LE19fT05ODiwozV+//13UiqVdPv2bcmxNCqVigYNGkS2tra0YcMGZuf8+fMSO6WlpdSpUyfuWJra2lrat2+fxE5mZiYZGhpyx9I0NDTQqlWrJNH6YWFhzI54LE1DQwPNnDmTLC0t2bE0CoWCHjx4wNmJiYmhqqoqGj58OHekk0qloosXL0rslJeXk729PXekU21tLVvM5HI5O9IpJyeHTExMuGNp6uvrad26dexoDdFOdHQ0ZycoKIgaGxvJycmJHa0h2nFzc5McS1NTU0Njxoyhjh07sqM1Kisr6ccff5Qc6dTczqNHj6impoZOnDghsZOfn09mZmbcsTT19fW0ceNGdrTGy+y89tprkmNpvL29NdqZMGECdyxNRUUF/frrr+xoDXU7ffr0YXYePHhA1dXVdObMGcmRTkVFRWRlZcUdS1NXV0fbtm0jQ0ND7lialJQU0tfX546laWxspCVLljA74pFOAQEBpKWlRWPGjOHsTJ06lTuWRqlU0s2bN9nGSTyWprKykgYNGsQdS1NVVUVffPEF6erqcsfSlJaWUseOHTk7dXV1tGfPHnak04ULFygnJ4cyMjI02lmxYoXkWJrQ0FDS1tamUaNGcXZmzJjBHUujUCjo/v37kiOdqqqqaNiwYdyxNCqVii5cuCA5lqa8vJzs7Oy4I51qa2vZLyDUj3TKzs4mExMTGjBgALPT0NBA77zzjuRIp6ioKNLR0eGOpWlsbKS5c+dyx9KUl5fT06dPuaM1oqKiqLq6mkaPHi2x88MPP3BHa4h2unXrJrFz7NgxdqSTeLSGaKdfv36cnffff19yLE18fDzp6upyRzo1NjbS/PnzJcfSeHl5SY6lqa2tpfHjx0vsXLt2TXKkU0VFBfXu3Vti5/Tp08zOl19+yexYWlpyx9LU1dXRli1bJEc6JScnk56eHjtaQ7SzaNEiiR1/f39mRzzSqa6ujqZMmSKxc+PGDcmxNJWVlTRgwACys7Njx9JUVVXRuXPnJEc6lZSUkI2NDXcsTV1dHe3evZuzk5ubS+np6WRgYMAdS9PQ0EBvvfWWxE5ISAhpaWlxx9I0NDTQ9OnTJXbu3bsnOZZGpVLR0KFDqXPnzuxYGpVKRd98841GO7a2ttyRTrW1tXTw4EGNdoyNjbkjnRoaGmjt2rVs3yke6RQZGcnZCQ4OpoaGBpozZw7bd4p2njx5IjmWprq6mkaNGsX2nbdv3yaVSkWXL1+W2FEoFNS1a1du31lTU0MfffSRxE5eXh6Zmppyx9LU19fTe++9J7ETFxfH7IjH0jQ2NtKrr77K9p2iHU9PT86OuO8cN24c2djYsCOdKioq6Oeff5Yc6VRRUUG9evXijnSqrq6mU6dOsbVTPNKpsLCQLCwsuGNp6urqaPPmzWzfKR7plJSUxNnx9/enxsZGWrhwIdt3inb+aaPtQfR/MJKSkqi4uJibq6ur03g+T2xsLCkUCm5OqVRSbGys5NqIiAiqqqri5goLCyklJUXyM4SGhlJtbS03l5WVRdnZ2dxcU1MTBQUFUUNDAzefnJxMRUVF3Fx9fT2FhBDD320AACAASURBVIRQY2MjNx8XF0fl5eXcXGVlJUVHR0tqiIyMJJVKxc0VFRVRcnKypIawsDCqqanh5rKzsykrK0tybXBwMNXX13NzqampVFBQwM01NDSwB3D1ER8fT2VlZdycSqWiyMhISQ1RUVFUWVnJzZWUlFBiYqLGGqqrq7m53NxcysjIkFwbEhIiqSEtLY3y8/O5ucbGRo01JCQkUGlpKTdXU1ND4eHhkhqio6OpoqKCmysrK6P4+HjJzxUeHi6pIS8vj9LS0jTWUFdXx81lZGRQbm4uN9fSfafJTm1trUY7MTExEjsKhaLVdgoKCig1NVVSw//H3luGR3V1/f/fiSJJcYmVQHFJcHeXDC0F2lK4oRRaSqG4S9FQ3N2dBAIEh+AWNK4EEuLunkky+/8iv73+Z+ecgeFuez+9nyfruvYLzrXDnDVzPrP3zJz1WUrsREZGspiYGFkOfFGVxofYKX1eSuxkZWX9JeyUzuFT2AkNDf1HsFOaf/4Fgj456GKHf4iQhhI7eXl5zMfHR2923rx5IzsvXeyEh4fL5iqxEx4ezuLi4oRjutgJCQmRbSI+xE5mZqZwLCMjgwUFBf0pdjw8PPRm51PXHX3WzqysLBYQEPCn2NF37WSMsVevXimyk5iYKBzTxU5QUJAiO35+fnqz8/btW9l5/V3s6LvufAo7qamp/1F2lHLQxY6Xl5de7KSnp+vNTnx8vOLa6enpqbh26rvu/BX7Tn3Z+Sv2nUo56GLnU/ad+rKTnJz8t7CjtO/8EDul+c/Nzf1b2OFfgpQOJXb+aaHvB9Eya25ZlEVZlEVZlEVZlEVZlEVZlEVZ/CWhrzW3TFYkCXd3d3h5eVFBMlDS12///v2oUqUK9SADgNu3byM0NJQKkgEgMzMTR48epYJkHq6urkhMTKSCZKCkB9iFCxeomJ/H6dOnkZeXRwXJABAUFIS7d+8KBcmMMRw6dAhGRkaoWbMmzX358iVevXpFhfBASV/Pffv2oXLlytRHCQDu3buHN2/eCDlkZ2fj8OHDqFmzJipVqkRzL1++jLi4OCrmB0r6Z547d46K+Xk4OTmRIIOf15s3b+Dm5kbF/DyOHDkCAwMDKuYHgNevX+P58+dCDsXFxdi/fz/Mzc2pEB4AHjx4gMDAQCrmB0p6sR48eBA1a9ZE5cqVae61a9cQHR1NhfAAkJSUhDNnzlAhPI+zZ88iIyODivmBkt5z169fp0J4HseOHQNjjArhAcDLywtPnz6lYn6gxMC2f/9+VKxYkSQyAPD48WP4+fkJ111BQQEOHDiA6tWro0qVKvRYN2/eREREhJBDamoqTpw4Icvh/PnzSEtLE6678PBwXL58WZbDiRMnUFRUJFx3fn5+ePjwoey6O3DgAMqVK0fF/IAyOxqNBvv370fVqlUFdtzc3GTsZGRk4NixY4rsJCUlCTlERUXh4sWLVMzP49SpUygoKBByCAgIwL179xTZMTY2Fth58eIFPDw89GLn7t27ePv2rXDdfYid+Ph4kkgBfw07hw8f1pudffv24bPPPpOxExQUpDc7MTExwnWXmJiIM2fOyHI4e/YsMjMzZezcuHFDdt0dPXpUkR13d3cSMAEl7Ozbt0/GzqNHj+Dv7y9cd/n5+Yrs3LhxA5GRkUIOKSkpOHXqlIwdFxcXGTvv37/H1atXSYTD4/jx4zJ2fH198ejRIyEHXew8ffoUPj4+Mnb27dsnY+fWrVt4//49SaQA3excvHgRycnJMnZcXV31Zuf+/fskkeI5HDx4ECYmJgI7z58/15udO3fuyNjJysrCkSNHSCLD49KlS0hISBDYiY2NhYuLiyyHM2fOkFyGn1dwcDBu376tFzuvXr3Cy5cv9Vp37t+/j+DgYL3YuXr1qiI7Tk5OMnacnZ2RlZUlsPP27VvcvHlTloMSO56enors7N+/H2ZmZqhWrZpe7NSoUUPI4fr16zrZ4RIpHi4uLkhPTxdyCAsL08lOcXGxkIOPjw8eP36syE758uUF/nWxs3//flSrVk3gX4md9PR0HDt2jARMPC5cuCBjJzIyUpGdkydPQqPRCDn4+/vrZMfU1FTg/9mzZ/D09BSuO137zjt37uDdu3fC2vkhdkrvO2NiYnD+/HlFdpT2nXfu3BGuO8YYDh8+rLjvVGJn3759qFSpkmzfWZqdnJwcHDp0SJbDlStXZPvO+Ph4ODs7K7LDpUY835CQEJ3sABD49/DwwPPnz2V7tn379snYefjwIQIDA2FtbU3XXV5eHg4ePKjITlRUlMBOcnKyIjvnzp2T7Ts/hZ1/WpTJiv6NOH78OBUkDxkyhO3Zs4f5+vqyRo0aUTE/vyfd0dGRCpKHDx/Ojhw5wjw8PEj6Ir0nnRffV61ale5Jf/r0KatYsaLsnvRhw4ZRQTKvhbx58yYzMDAQ7kkPDg5mHTt2pGL+KVOmsJs3b7KTJ09SMT+v5/Dz82NNmzalYn5+T/qGDRuomJ/fk+7p6UnF99J70rnISXpP+rNnz9hnn31GhfCrVq1i3t7eVMgtrYW8ffs2MzQ0pFpIXs/RtWtXKuafPHkyu379OnN2dqZi/gEDBrAdO3awgIAAKuRu0KABmzlzJrt37x7btm0bFfPzWkhvb28S17Ro0YLqOebPn0/F/N9++y07efIke/78OQlT2rVrR/UcY8eOpWL+cePGMRcXF3bv3j1mbGwsqyPmxejSOuLz589TMT+vhQwMDGStWrWiYn5eR7x7924q5ue1kD4+PiTf4PUcT548YUuXLqVifl4L+erVKypcl9YRc3GVtI740aNHrFy5clQLyes5uMjB0tKS6ogvX75MhfC8FjIwMJBEDnXr1qV6jkOHDgns7N27l/n6+rKGDRtSMT9nZ/Xq1QI7R48eZa9fvyZ2pHXEv/76q8COk5MTe/r0KatQoYKsjpgLhKTs8No1aS1kUFAQCcSk7HD+pbWQfn5+JN9p1KgRsbN+/XqBncOHDzNPT09mZWXFADB7e3tih8vGpHXE7u7uzNzcXKiF9Pb2JvmWlB03NzeBnY0bN7Lg4GCSIEnZcXJyEtjZuXMn8/f3F9jhdcRbt26VsePl5cU+//xzYofXEc+bN0+RHS5M4XXEnp6ebMyYMXqxExQURBIkXgt59epV5uLiosgOl2/xWsg7d+6wXbt2KbJTr149EmEsWLCAPXnyhC1ZskTGzsuXL0k2xuuIX79+TfIdKTsPHz5kpqamsjrigQMHEju8jvjSpUuUg5SdNm3aEDu8jvjAgQOK7HDpm7QGf+XKlQyAUEf8+vVrEiZJ64i5fENaR/zkyRMZO35+fiRB4bWQrq6u7Nq1a0ylUulkx9bWlmohjx07JmPH19eXBCLSOuJ169bJ2PHw8GCWlpbEDq+F5MIkXgt5+vRp9vTpU2ZmZiarI+byLV4LeeHCBXbr1i0ZO2/evCEJ0ueff041+KdPnyZ2eB1xQEAAa968ucDO/fv32ebNmymHr776Sic7z549Y3PmzCH+eS2kEjteXl5s9OjRxA6vhbx79y4zMjKSsdOzZ0+BnWvXrrFz587J2AkICCD5lrSOWMrO0KFDiR0urpHWES9evJjY+eabb3Sy4+HhwX744QcGQKiFfPDgAbEjrSPm8j1pHbGrqyvl0LdvX2KndevWtHbyOuL9+/cTO7wW0sfHh6Rv0jriFStWCOwcO3aMvXr1itWsWZMkMpydSZMmCew4Ozuzx48fs/Lly8vqiNVqNQNKJFK8jljKDq+FDAoKIvmelJ0jR45QDrwW0s/PT5GdP/74g9ZOXgspZUdaR8xlg9I6Ynd3d2KnY8eOxA4XCEnriKXsSPedXILE2blx4wY7deqUbN/p7+9P0seGDRsSO5s2bRLY4ftOLkyT1hHrYofLhqR1xFz6KGXnzp07zMjISKgjDgoKIoGYEjvSOuLAwECSb9WvX5/Y2bFjB62dvI7Y29ub2draMqBEwMbZWbhwocDOiRMn2IsXL1jVqlUZAKoj1sXO/fv3mYmJiVBHHBAQQAIxKTulbyf/nw7oeWtuydcRZQGg5Bs+oORbQQ8PD1hYWKBcuXLIzs4GUPKt/uvXr2FhYYHIyEgAJb+C8GNFRUUoLCwEUPJtkqWlJSwsLBAXFweg5JcrPjc1NZVeBD8/P1haWsLS0hKJiYkASr714XP5N2LFxcXw8fGBpaUlateuTecbGRlJ58sfv6CgAJ6envSLa1ZWFgAgNDSU5vIccnJy6LG0Wi0KCgoAlHybzM8rNjYWQMk3iHxuRkYG9Vjy9/enuQkJCQBKvvXlj8W/ASwqKoK3tzcsLCxgaWmJ5ORkACXf1PO5/NsdjUYDT09P+rYyMzNTyEF6Xrm5ucLf5+fnUw78sWJiYgCU/ILAc8jOzqZ+TP7+/jQ3Pj4eQMkvpvz/rV27NoCSb8l8fHxgYWEBCwsLJCUlASj5tpHPlX6z6eXlBQsLC1SuXBkZGRkASn6Z5Dnw5yAvL4/+3sjICLm5uQBKvhHnc6OjowGU/PrOc8jLy0NRURGAkl8xSueQkpJCf29tbU05+Pr60lyeQ2xsLM3l35gWFRVRDtWqVUNqaqosB359SdkxNTVFTk6OLIeoqCgZOxqNBhqNBgAQGBhIz62UHf7/8ueLs8PnStnhj8W/XZVedzVr1pSxY2lpSdc9Z8fCwgIVKlQQ+OdzIyIiiB1+rLi4mP6PoKAgem6l7PC56enp1GdNmkNpdiwtLemXmOLiYspB+jxwdiwtLcFDyo6ZmRmxExYWRs8550HKDn8NgZJfYvlj8RwyMjKE11zKP59bmh3+fvUhdqKjo+m8pHejeHl50evI2Xn//j3N5X/P2bG0tBTYCQkJoblSdvjc3Nxc4p+zI83hQ+zw9zspO/yx+DfXhYWF8Pb2ptcxLS2N2JG+j/Lnnb9nm5qaCvzzuZydrKwsgR3+vq+LHT43JSVFtu6UZofPLc2OpaWlwE5ERATN5deMdN0pX768jJ3S646UHc4/X3ek111aWho9VlpaGuWgtO4kJCTQXP5LjHTtlL7nRkZGCmtfaXbMzc0V2eHXknTtlK47b968keUgXTszMzOF646fl5QdPpe3zdJ13UVHRwvrhhI7PIf379/T3NLsWFhYwNDQEHl5ecQOf334e4WudScwMFD2OiQnJ9P/a2VlRTlw/pXWndLs8HWnatWqSE9PJ3ak76OcHf73xsbGAv+l1x0pOwUFBTJ2pK+DdN35/PPPAZSsO3ztlLITFxdHc/mvq9K1s0aNGrR2RkRECO9BpXNQYsfS0lJx31lYWPjBdSctLY3+vvS+k8/lOSQkJNBc6b6Trzu1atUi/qXrDr+WpWunmZmZbN8pzYHzz9krvWeTrlEf2neWXjul6w5v/cP5L712cnYsLS3p10pd+86wsDCay68PvnbyXzA5O3ztLM0On5uTk/PBdYezw5kqzY6UX+merW7dumjWrBn+26Lsg6gkmjVrhqVLl0KtVqNNmzYwMDCgN8POnTtjwIAB9JO7s7MzPv/8c6jVajRv3hwqlQqZmZnw8vJC//790bdvX9rIGxgYoEuXLlCr1WjQoAGAEgB4n6aePXvSrQCJiYkYPXo0hgwZQm98Pj4+mDlzJtRqNbp06QIjIyMwxhAQEID69etj8ODBtFjdv38fixcvhlqtRrt27WBgYEAbifbt22PgwIF0u8r58+dRs2ZNqNVq2NnZQaVSITs7G15eXujbty/69etHtz6YmpqiTZs2UKvVaNSoEYCSTUtAQACGDBmCXr160S0oaWlpGDFiBBwcHFCnTh0AJW/ykZGRUKvV6Nq1K202g4ODUadOHQwZMoQ2q48fP8bChQuhVqvRvn17GBoa0pthmzZtMGjQIHqTvHz5MipXrgy1Wo2WLVtCpVIhLy8Pnp6e6NWrF/r370+3Ppibm8POzg4ODg5o3LgxVCoVkpKS4Ovri8GDB6N37950+0ZOTg4cHBzg4OCAunXrAihZ1N6/fw+1Wo1u3brRh82wsDBMnToVQ4YMoTeNZ8+eYf78+VCr1ejYsSMMDQ1pI2FnZ4dBgwbRB4zr16+jYsWKUKvVaNWqFVQqFb2hd+/eHQMGDKCF7dSpU2jUqBHUajWaNGkClUqF1NRU+Pj4YODAgejTp4+wkPfr1w8ODg744osvAJRsREJCQqBWq9GjRw/KISoqChMnToSDgwNtGl6/fo25c+dCrVajU6dOdN35+fmhadOmGDx4MPV4dHNzg6GhocAOf0Pv0qWLjJ06depArVajWbNmUKlUyMjIgLe3t4wdlUqFbt26Qa1Wo379+nSuwcHBMnYSEhIwZswYODg4wMbGhtiZNWsW1Go1OnfuLLDToEEDgZ179+5hyZIlUKvVaNu2LbHj5eWFDh06yNixsLCAWq1GixYtPsiOiYkJ2rdvD7VajYYNGwIo2bQosZOamoqRI0cK7AQEBGDatGkydoKCgmBraytjZ9GiRcQ/Z8fHx0fGzqVLl1C1alWo1WrY29tDpVIhNzcXnp6e6N27t8COmZkZ7OzsiH+VSoXExET4+fnJ2MnOzsbQoUOhVqtha2uryA7PITQ0FNOmTZOxs2DBAqjVanTo0EFgx97eHoMHD6YPGNeuXYOZmZnADv9A16NHD/Tv35/YOXnyJBo3biywk5KSAl9fXwwaNAi9e/cmdjQaDfr37w+1Wo169eoR52/fvoVarUb37t2JnYiICPz0008CO69evcK8efOIHUNDQ9rAlmbn1q1bMDExgVqtRuvWrWXsDBw4kD4UOjk5oW7duorsDBgwAH369CF2GGPo0aOHwE5kZCSx06NHD2InPj4eY8eOFdjx9vbG7NmzFdlp2LAhBg8eTBu9e/fugTEmY8fb2xsdO3bEwIEDiX8XFxcZO1lZWfDy8kK/fv3Qt29fYsfY2BgdOnQQ2ImNjUVgYCDxz9lJTk7GN998I7Dj7++P6dOn09rJr7uAgADUrVtXYOfhw4fETvv27WFgYEDrTtu2bTFw4EBix9XVFdWqVdPJTr9+/YidihUromXLlorscP45O5mZmfjqq6/g4OBA7AQHByM8PFzGztu3bzFjxgwMGTKEvkRyd3fXyU7Lli0xaNAgYufq1auK7Hh5ecnYOXHihCI7Pj4+Mnby8/MxcOBAODg4EDuhoaF49+6dIju//PILhgwZQuy8fPlSkR0/Pz80b94cgwcPprXz5s2biux4eXmha9euGDBgALFz5swZfPHFF3BwcCB20tPTiZ2+fftSDlqtFj179oSDgwOxExERgTdv3tDaydmJjY3FDz/8AAcHB/qyytPTU5Edf39/NGrUSGDnzp07UKlUsn2np6cnOnXqJLBz7tw5WFtbC/vOrKwseHt7y9gxNDRE586dhX1nTEyMTna+++47ODg40L7Tz89Pxg5jDEFBQahXrx6GDBlCa6cudry8vNCuXTuBnYsXL6JGjRrCvjMnJwdeXl7o06ePwE6FChXQunVrYd+ZkJAAf39/DBkyBL1796YcMjIyFNmJiIiQrZ0hISEydp4+fSrbd/IPf61atRLYuXLlCipVqqS47+zZs6fAzvHjx9GsWTOo1WradyYnJ9O606dPH+I/Ly8PgwYNEth59+6dIjvh4eGYPHkyHBwchC+h/xujTFZUFmVRFmVRFmVRFmVRFmVRFmVRFn9J6CsrMvhPnMx/S2RlZaH0B/OioiL6ub303NKRn59Ptxd9bK70lrCPzc3OzpadF2NMca6uHPjtHx97rIKCgk/Kgd+ao08O/HaKj81VyqG4uJhu8/zY32s0GrpV5WNzpbcXfWxuTk6O3jkovWZarZZut/nY32s0GrpV5WNz8/Ly6Paij82V3hLysbm6rjtdOZSeW1hY+Ens6JtDGTu65/5ZdgoKCv7H2VHKQavVfhL/fxc7f4b/T2VH3xw+hZ2/gv9PYUdf/j+VnU/J4c+y8yn8/29g5386h09lp3T8X2Pn79x3ln7NPiWHv4udT1k7/6+x898aZdZcSTx69AgDBgzA+/fvYWJiQparnj174vLly8jJyaG6kTNnzmDMmDGIiopChQoV6D751q1b49GjRygoKCBD5KZNmzBr1izExcXhs88+Q+3atZGRkYEWLVrAy8sLxcXFZOqaM2cO/vjjDyQnJ6NKlSqoXr06wsPD0aZNGwQHB0OlUpFtbMyYMThw4ADS09NRs2ZNVKlSBc+fP0fv3r0RFhYGY2NjyqFfv364cOECWcXMzc1x/vx5fPvtt4iMjET58uVhZWUFrVaLdu3a4d69e8jPz6ccduzYgalTpyI2Nhbm5uaoXbs2srOzYWdnh9evX6OoqIjMpIsWLcLKlSuRlJSEypUro0aNGoiJiUGrVq0QGBgIAGS5Gz9+PHbv3o20tDTUqFEDVatWpVtSQ0NDYWRkRIa4wYMHk1WQGyKvXr2K4cOHIyIiAuXKlaPbezp06IDbt28jLy+P6h337duHX375BbGxsahYsSLVudjb2+PFixcoLCykHJYvX46lS5ciMTERlStXRs2aNREfHw97e3v4+/uDMUaGuEmTJmHbtm1ITU1F9erVUa1aNfj5+aFz58549+4dDAwM6DX76quvcOrUKWRmZpIhzs3NDUOHDkVERARMTU1hbW0NlUqFLl264MaNG2SCNDMzw5EjRzBhwgTExMSgYsWKsLS0hEajQcuWLeHu7g6NRkOGuDVr1mDBggVISEhApUqVUKtWLSQnJ8Pe3h4+Pj7QarWUw2+//YaNGzciJSUF1apVQ/Xq1fHmzRu0b98eISEhQg4jR47E0aNHkZGRgVq1aqFy5cp4+PAhBg0ahPDwcLruDAwM0KNHD1y5coVMsGZmZjh9+jTGjh2L6OhogZ1WrVrJ2Nm4cSNmz56N+Ph4Yic9PR12dnbEDrcrzp49m9ipWrUqqlevjvfv36Nt27Z48+aNwM7o0aNl7Dx79gx9+/bF+/fvBXb69OmDixcvCuy4uLhg1KhRiIqKEthp27Yt7t+/L7Czfft2TJs2DXFxcTA3N6fa5BYtWsjYWbhwIbFTpUoV1KhRA9HR0WjdujWCgoLoujM2NsYPP/yAPXv2COx4eHigR48eCAsLE9gZNGgQzp49K7Bz+fJljBgxApGRkcSOSqVC+/btiR1uV9y7dy8mT56M2NhYmJmZCey8fPlSYOf333/H77//LrATFxeHli1bIiAgQGDn559/xvbt22XsdOnSBe/evYOhoSG9ZkOHDsXp06eRkZGB2rVro1KlSrh165YiO507d8bNmzeF6+7w4cOYOHGiwE5BQQFatmyJZ8+eCew4OjrK2ElKSoK9vT18fX0FdqZOnYpNmzYJ7AQFBaFDhw54+/atwM6IESNw7NgxgZ379+9j8ODBCA8Pp3WHs3P16lVkZ2dTDidPnsS4ceMEdoqKitCqVSs8efIEBQUFlMP69esxZ84cgZ20tDTY2dnB29tbYGfmzJlYt24dkpKSiJ2wsDBFdr7//nscOnRIYMfd3V0nO66urpSDubk5zp07J2OnuLgYbdq0wYMHD5Cfn0+GyG3btsnYycrKQosWLeDh4YGioiLKYf78+Vi1apXATmRkJNq0aYOgoCBh3Rk3bhz27t2L1NRUYuf169fo2bMnrTs83wEDBsDFxQVZWVlUN3bp0iUZOwDQvn173L17V2Bnz549+PXXXxETE0Ps5Obmws7OjtjhdtWlS5di2bJlAjuxsbGK7Pz000/YsWOHkIOvr68iO2q1GmfOnEFmZiaxc+PGDXz55Zcydjp16oRbt24hNzeXcjh06JAiO/b29jJ2Vq1ahUWLFgnsJCYmws7ODn5+fgI7v/76K7Zs2YKUlBTiPzAwEB07dpSxM3z4cBw/flxg5969exgyZIiwZzMwMEC3bt1w7do1gf8TJ07ghx9+ENgpLCxEy5YtZeysW7cOc+fORXx8POWQmpqqyM6MGTOwfv16JCcno1q1aqhWrRrevXuHdu3aISQkRGBn1KhRxA7P4cmTJ+jfv79s39m7d28ZO87Ozhg9erSw79RqtYrsbNmyBTNmzBD2nZmZmbCzs5OxM2/ePDg6Ogr862Jn7Nix2LdvH9LS0oj/V69eoVevXrTu8Hz79+8vY8fV1RXffPMN7Tv5baVK7OzevRtTpkwR9p05OTmws7PDq1evBHaWLFmC5cuXIzExkfgvve+0traGiYkJJkyYgJ07dwrseHt7o1u3brJ955AhQ+Dk5CSwc/36dQwbNkzYd6pUKnTs2FHGzoEDB/Dzzz8L/Ofn58POzg7Pnz8X2Fm5ciUWL16MhIQE4l8XO5MnT5ax80+LMmvuvxHclMZHtWrVyLQmHcOGDSNTKh/W1tZkNOXDwMCAjR8/noyVfDRs2JDNnTtXOGZsbMxmzZrFatSoIRxv3bo1mUP5qFChAlu+fLnsvHr27EnmMD6qVKmimMPQoUPJ9siHhYWFYg5jx44l2yMfX3zxBZk0pTlMnz6dzKF82Nvbs6lTpwrHypcvz5YtW8ZUKpVwvGvXrmSs5aNSpUqK+Q4ePJg5ODgIx2rVqsV+//134ZhKpWKjRo0iyzAfdevWZQsWLBCOGRkZsSlTppA5kI/mzZuTwZGPcuXKscWLF7Ny5coJxzt16sTGjx8vHPvss88UX4eBAweSKZmPGjVqsGXLlsly+Pbbb1m3bt2E43Xq1GGLFi0SjhkaGrJJkyaRsZaPpk2bkv2YD1NTUzZ//nyyH/PRvn179vPPPwvHzMzMFF+Hvn37krFSyk7pHACw4cOHs969e8vY4VZG6XX3448/krFSyg436fFhYmLCZs+eTeZgPtq0aUPmUD4qVqyomEOvXr3YqFGjZOwozf3yyy/J9siHpaWl7Lrj7HBTMh/169cng3Npdrj9kI+WLVvqZKf0eXXr1k1vdhwcHBTZKc2/SqVio0ePJlMqH/Xq1dPJDjdW89GiRQs2bdo0RXZMTEyE4507d/4kdrgpmY+an3hRdQAAIABJREFUNWvqZIcbuvVhhxtrpezMnDlTxs6CBQuYubm5jJ2JEycKx8zNzcl4W5qdESNGCMeqV6+umO/w4cPJlMqHjY0N2YCl192ECRPIlM4Ht2+WZmfOnDlkcOSjbdu2f4qdqlWrKubw1VdfKbKjtO6MGzeOTMlSdpTWzpkzZzILCwsZO9xYz0eFChUUz6tbt25ke+ajcuXKinMdHBzY4MGDhWO1a9dWXHdGjx7N2rVrpxc7U6dOJevux9hZunQpMzY2lrHDrZsfY2fQoEHsyy+/1Iud7777jgzdH2Nn8uTJZHuXssPN4VJ2Fi5cyCpWrCgc79ChgyI7Stddv379yPYqZUfpvXHEiBFkSpWyU3rdMTQ0ZBMnTpSx07hxY9naaWJiwubOnUvWfSk7pfeSutjp3bs3dRmQsqM0d9iwYaxv377CMSsrK0X+f/jhBzIl89GwYUPFPdvMmTPJus1H69atFdlRem579OihyI5SDmq1WpEdpXXnX//6lyI7pddOIyMj9ttvv5F1lw87OzsyB/NRvnx5tnTpUmZkZCQc79Kli4ydD+07uWWcj1q1aimyM2rUKLIM82Fra6s3O82bN1dcdxYuXMgqVKggHO/YsSN79erV//THKCGgpzW37IOoJG7cuMEqVapEmuiUlBSm0WiYvb29oFjXarXs4MGDgiY6MzOTZWVlMRsbG0GxrtVq2YoVKwRNdG5uLouLi2NVq1Zl/fv3Z9u3b2dhYWGMMcZ+/vlnQbGu0WhYQEAAMzc3J8V6TEwM02q1zMHBQVCsFxUVsbt37wqa6KSkJFZYWMjatWvH2rZtS4p1rVbLjh8/zqpVq0aa6IyMDJaTk8Pq1q0rKNa1Wi37448/BE10Tk4OS0xMZNWrV2d9+/Zl27ZtY6GhoYwxxqZOnUrtCW7fvs0KCgpYSEgIMzc3J8V6dHQ0Y4yxYcOGCYr1oqIi9uTJE0GxnpiYyAoLC1nnzp0FxXpxcTFzdnYWFOvp6eksLy+PNWjQQFCsa7VatnnzZmpPcOnSJZadnc1SUlJYzZo1SbH+9u1bxhhjs2fPZnXq1CHFen5+PgsLC2OfffYZKdajoqIYY4x99913rHHjxqRYLywsZC9evBAU6wkJCayoqIj17NlTUKwXFxezixcvCor1tLQ0VlBQwJo2bUqtfXx8fJhWq2U7d+4UFOtZWVksPT2dWVpakmL9zZs3jDHGFi5cyGxsbEixnpeXx6KioljlypVJsR4eHs4YY2zs2LHU2uf+/ftMo9EwLy8vZmZmRor1uLg4VlxczPr16yco1ouLi9n169d1siNVrGu1WnbgwAGd7HDFenBwMNNqtWz58uUydmJjY1mVKlVIsf7+/XvGGGMTJ06UsePv78/MzMxIsR4bG8u0Wi0bPHgwa968OVu4cCGxc+fOHYGd5ORkVlhYyNq2bSso1rVaLTt27JigWOfs2NraCop1rVbL1qxZwywtLdmkSZMEdqpVqyZjZ8qUKdTah7Pz5s0bRXa++uorau3D2Xn06JHADue/U6dOrHXr1tTap7i4mJ05c+aj7Pj7+zOtVss2btyoNzszZ85ktra27LfffiN2QkNDFdn55ptvqC0WZ+f58+eK7HTv3l1oi1VcXMwuXLjAqlSpQm2x0tLSWH5+PmvSpInQFkur1bIdO3awWrVqsQkTJgjsWFhYyNhZsGAB+/zzz9mUKVOInYiICFapUiU2aNAgtmvXLhYREcEYY+xf//qX0BZLo9EwDw8PZmZmRm2x4uPjWXFxMevbt6/QFqu4uJhdvXpVaIuVkpLCCgoKmJ2dndAWS6vVsn379gmtfTIzM1lmZiaztrYW2GGMsd9//51ZW1tTa5+8vDyd7EyYMIHVr1+f2mJpNBrm5+fHzM3N2ZdffimwM2jQIGLH3d2dFRUVsdu3b1NrH86ORqNhbdq0IXY8PT2ZVqtlR48eZdWrV2fjxo0jdrKzs5mtrS3r1q0bW7duHQsMDGRarZY5OjoKbbFyc3NZQkICq1atGuvXr5/AzuTJk4W2WAUFBSw4OJiZm5tTa5+YmBjGGGNDhw4V2mIVFRWxhw8fMnNzc2rtw9np2LGjjJ3Tp08LrX3S09NZbm4u++KLL2TsbNiwgVlYWFBbrJycHJacnMxq1KjB+vTpw7Zs2cLevXvHGGNsxowZxI6bmxvLz89n7969Y5999hm1lOPsjBw5UmgpV1hYyJ49e8bMzc2pLRZnp1u3bqxVq1YCOy4uLsSOk5MTsdO4cWPWqVMngZ1t27YRO66uriw7O5ulpaWx2rVrU2ufkJAQxhhj8+bNI3Zu3rzJ8vPzBXZ2795N7IwePVpoi1VYWCiwc/jwYWKnd+/eQlus4uJiduXKFaEtVmpqKisoKGDNmzcX2mJptVq2d+9egZ2srCyWmZnJrKyshLZYjDG2dOlSoS1WXl4ei46OZlWqVKG2WHzt/PHHH2Xs+Pr6MjMzM2qLFRcXx7RaLRs4cKDQUq6oqIjdunVLaIvF187WrVsLbbG0Wi07fPgwsePi4sIyMzNZdnY2q1OnjtBSTqvVslWrVsnYiY+PJ3ak+85ffvlFaItVUFDAgoKCZOxotVqmVquFtlhFRUXswYMHQlsszk6HDh2EtlharZadOnVKJzvStlharZatX79exk5SUhKxs3XrVmJn2rRpAjsFBQXs7du3zNzcnNpi8bVz+PDhQluswsJCaqnG2UlMTGRFRUWsa9euQku54uJidu7cOUV2GjVqJLSU02q1bOvWrUJbrOzsbJaamspq1aolY2fu3Lm07+TshIeHs88++4zYiYyMZIwx9v3339OXi5ydf1qUfRD9NyI2NpZpNBrhmEajYXFxcbK50dHRrKioSDjGN2elIyoqimm1WuFYWloay8zMlM2NjIyUzU1KSpL1B9JqtXRBSiMuLo4VFBQIxwoLC2kBlkZMTIwsBw66Pjmkp6ezjIwMvXJITk5mOTk5inNLR3x8vCyHoqIiehMpnUNpAPPy8lhiYqJiDsXFxcKxjIwMlpaWpncO2dnZeuWQkJDA8vPzhWPFxcW0iZBGbGysLIf8/HwWHx8vmxsdHS3LITMzk6WmpsrmKr1mqampLCsrS+8c8vLyhGO6rrv/JDupqal6s5OYmPhJ7JTO4Z/ATlJS0t/GTukccnNzP4md9PR0vXL4T7OTkJAgm6uLHX35T0lJ+Y+xU1BQoJOd0jlkZWUpsqOUw3+andjYWMUclNhJTk6WzdW1dv4n2dGX/9zcXJ38/6fYiY+PV2TnU9ZOJXaUctDFjtJr9lewo4t/JXb0XTv/KnZKR2Jiot78K7Gj0Wj0Zic7O/tvY+fP7Dv/LnbS09M/iZ1P4V/fdefPsvMp+86UlBS9+f+nhb4fRMusuWVRFmVRFmVRFmVRFmVRFmVRFmXxl4S+1twyWZEkHjx4gBs3blBBMlBiYFu9ejVUKhUVwgMlPfiePXtGBclASQ+wP/74gwqwVSoVgJIeXIGBgVSQDJT0Ed2xYwcVJPO5u3fvRnR0NBUkAyX9nE6ePCkUJDPGsGHDBmRmZlJhOFDSR/Dq1atUCA+UGNgcHR3BGIOVlRU17r169SoeP35MxfxAiSltzZo1KFeuHCwsLCjf06dPw9fXV8ghLi4OW7dupWJ+nsO+ffsQGRlJAiagpOfh0aNHqZifz920aRPS09NhbW1NPZ6ePXsGV1dXIYfi4mKsWbOGxC48h5s3b+L+/ftUzA+UWNUcHR1hYmJCjYYB4OzZs/D09KRifqCk+fGmTZuoEJ6f18GDBxEaGkrF/EBJ37aDBw9SMT+fu3XrViQnJws5vHz5Ei4uLlTMD5QY2P744w+SIvAcbt++jTt37giNsAsKCrB69WoYGRnBysqKcjh//jxev35NAiagpPfk+vXrYWZmJuRw9OhRhISEkEQGKOkjunfvXirm53N37NiBhIQEEhIAgJeXF5ycnKiYn193a9euRV5eHhXzAyX9a2/evCmwo9FosHr1ahgYGAg5uLq6ytjJyMjA2rVrUaFCBWoOz9kJCgqClZUVXXdRUVHYuXOnIjsxMTEkJAAAX19fnexkZWUJOTx+/BjXrl0jiRRnZ/Xq1YrsPHnyhBp3l2ZHyv/p06fh5+f3b7MTGBj4QXak/Lu7uyuy4+joSFI0nsONGzfw8OFDEjB9iB1nZ2d4e3uTgAko6Xmsi52wsDAhh5CQEBw6dIgEbHwuly1Ir7uXL1/i/PnzqFGjhsCOo6MjiR2k7Ny9e1fIIT8//4PsSHNISUnBhg0bZOwcOXIEb9++FdgJCwvDvn37ZOxs375dxo6npyecnZ31YufevXu4desWSaQ4O6tWrVJk5/nz5wL/utg5fvw4goKChBwiIyOxa9cuVKpUSWBn165diI2NFdYdX19fnDp1SsbO+vXrkZ2dLVx3jx49+iA70rXzypUrePr0qbDuZGVlKa6dp06dgr+/v8BObGwstm3bJmNn7969iIyMFHIICAjA8ePHSSLFY+PGjTJ2nj59isuXL+vFzvXr1/Vmx8nJSZGdzZs3k0SG53DgwAG8f/9eYOfNmzc4fPiwbN1RYufFixe4cOGCbN1Zs2YNCcV4Dm5ubjrZMTY2Fq47FxcXnexwiRQ/r8OHD+Pdu3fCdRcaGor9+/crspOYmCjk4OHhgbNnz8rY+eOPP5Cfnw8bGxvK4e7du3Bzc5Oxs3r1ahgaGgo5XLx4ES9evBDWnfT0dKxdu5bkhfy8jh07huDgYCGHiIgI7N69W7bu7Nq1C3FxccJ15+3tjdOnTyuyk5OTI1x3Dx8+xPXr12X7TkdHRwAQ2Ll8+TLc3d31ZicgIEBgJyYmBtu3b1dkJyoq6qPsMMawceNG2b7zQ+xotVpFdqQ55OTkYM2aNTA1NZWx4+PjI1x38fHxiuzs378f4eHhwp4tODhYkZ3NmzcjNTVVuO6eP3+OixcvythxdHSUsXPr1i3cv39fYCcvLw+Ojo4yds6dOyfbdyYnJ3+QHWkO7969U2Rn27ZtSEpKEnL4p0WZrOjfiH379lHhL6/ju3HjBolrpHV8XJigUqlYx44d2erVq9mlS5dYzZo1qXiZ1/FxgYihoSHr2bMn27hxIzt37hwV6n/++edUx8dFDqamplTHd+zYMWZgYMAAsAYNGrBZs2axO3fuMDs7OyqE53V827ZtoxxatGjBFi1axG7evMnq169PReS8jk9aqN++fXu2cuVKduXKFZI+SOv4uEDA0NCQde/ena1fv565uLiQ5EZax8clKCYmJlSLdPLkSSoQr1+/PtXxtW7dmgrheR3frl27hGLtBQsWsFu3brFGjRoxAEIdn7SYnNfAXr16lYRJ0jo+Ln0yMDCgOr4LFy6wypUrMwBCDezXX39Nxfy8ju/06dMkiJDW8fFi9PLly1Md3969e+m8eC2Sm5sbSRCkdXyOjo6CJGDZsmXs2rVrJK6Q1vFxYZJKpaJaJFdXV1atWjUGlAineB0flyAYGRlRHd/Zs2dJrmRra0s1sN27d2dAiQiD1/EdOnSIzovXIt2+fZs1a9aMARDq+DZs2CCws3TpUnb9+nW92HF0dGSXLl0iUVft2rWpjq80O5s2bWJnz56lQn1pHV+/fv1k7Bw9epTY4XV8utjZsmWLIDpYvHgxu3XrFgkEpOxIZQO8ju/KlSusdu3aDCgRf3B2JkyYILCzYcMG5uLiQpIbXot07do1NmTIEEV2DA0NiZ2ZM2eyu3fvkgRJys7OnTsFdhYuXMhu3rxJ4ippHZ9UrsDr+Eqzw+v4Jk+e/EF2eC3SlStXSCBkbGxMdXxnzpyRsXPnzh2SIJUvX56p1eoPstOkSRPif+TIkezYsWNs9erViuxwcQWvRXJ2dibpi5SdixcvkqiH1yJdunSJffPNNzJ2nJ2dmampKQNKRGe8FokLxMqVK0d1fAcPHvwoO8OHD2dHjhxh69atU2TH1taW+Oc1sLNnz6YceB2fEjuurq4kEDEyMmK9evVimzZtYufOnSN26tSpQ3V8XL5nampKNbBHjx4lmZyUHS7fq1ixItXxbd68WcbOzZs3BXZ4Hd/ChQtl7Fy+fFlgh9fx/fjjj8ROjx492IYNG9i5c+eYmZmZwM7169dJgmJiYsIGDBjAduzYwU6cOEHsNGjQgOr4uASpQoUKVAO7Y8cOYe1cuHAhu3XrFomrpHV8UjFRu3btiB0uG6tRowbV8XFxjYGBAdXAnj9/nlWqVElg5+rVqyQQ4uxs376dnT59mtZOKTvt27cX2Nm/fz/bs2ePIjuNGzcW2Dl+/DhbtWoVzW3Tpo1Ods6ePUvSFwMDA9alSxcZO5aWllTHx+VbRkZGVMfn5OSkyA4XiHF29u7dyw4cOEDn1aRJExk70jq+tWvX0lxeA6vEjpOTE8mGODtr1qxhrq6uJLmTsjN69GiBnc2bN7OzZ8+y8uXLEzu8jo/L9zg7u3fvZkeOHCF2eB2fLnY2bdpEOdjb29O+s169ejJ2uKhHpVJRDeylS5dINiRlh8t3ODsbN25kLi4uiuxwcSVnZ+fOnez48eMCO3zfySVInJ2DBw+y7du3C+zwfacSO1IxEa+BvXLlisDODz/8wFxcXEiYyNnRte+8evUqCYR0sSOtgeUSJF3s8BpYNzc3Yd/J2ZGK53gN7LVr15i1tbWMHS4b5OysXbuWvCCcnZ9//llgx9jYWGCHS/24e8XNzY0EYlJ2lG7B/58M6HlrbsnXGWUBAPRNAwAYGBjA0NAQhoaGdFylUsHAwIBG6bn826HSf8/n8r/nxz/0WPx46cfi80qfF38c6d9/aK5SXp9yXh/KV+m8DAwMSoqSPzJX+nyVnvuh51bX//ux1/Fj+UpzKD2XH1PKgedaeu7HcuD/NjIyUsxBei197Dn4q+fy+Z8yV5/HUnoeP/Tc6nodeOiaq/Q6fmguf/yPsaP090pzpf+vlJ2P5avruf3YXKVr6a98LH14KH1M+hxI36+kc6Xs6HpuS1+LpZ9bpf9X6brV9xrV9R6o6/1dn/fsP5uD0nuj9L1N1/kqHdP3vJTOoTRT/85z+ynnpWvdKf0cfOj97lPmfmj91/X3Skzpk4PSY+m7pksfXzq3NGcfWws+dF7S4/rkq/Se+2fX/4/N1fd1+NT1/999H1aa+7H1X9+5+l5LH3tudb2/S/dsHzovXWuB0mMpXR+fstfQtXYqveZK+2ldc6W9Oj+FHSUmdbHzsedL1zr5obm6zuu/KvT5tPpXjX/6L6L379+Xfaug0WjYypUryUrJ49KlS2TW4pGRkcFWrFhBRlceJ06cYE5OTkKBdVRUFFuzZg0ZXXns2bOHrJQ8fH192ebNm8lKyRgjGx+3UvJ4/PixYNZirEQasWrVKrJS8rh69So7fPiwUGCdlZXFVqxYQUZXHqdPnyYrHY/Y2Fi2evVqMrry2LdvH1kpeQQGBrKNGzeSlZLHpk2byErJw93dXbDSMVZS+L569WoyuvK4ceMGWel45OTksBUrVpDRlcfZs2fJSskjMTFRMLryOHToEBldeYSEhAg2ZB5bt24loyuPly9fsu3bt5OVkrGSwvc1a9aQ0ZXH7du3yUrJIz8/n61YsYKMrjzOnz9PVkoeKSkpbOXKlWR05XHkyBGyUvIICwsTrHQ8duzYQUZXHp6enmzr1q1kpWSs5Lpbu3YtGV153Lt3T8ZOQUEBW7FihYwdV1dXMrrySE9P18kON7ryiIyMVGRn9+7dMnZ8fHwEoyvPYf369TJ2Hj16JFgpGSthZ+XKlTJ2rly5QkZXHllZWWz58uWK7HCjK4+YmBi92QkICPgkdqRGV8Y+zA43uvLIyclhy5cvl7Hj7OwsYychIUGwUvI4cOCAjJ03b94IRlceW7ZsYdeuXRNyePHihWB0ZayEHUdHRxk7bm5uMnby8vLYihUryErJw8XFRcZOcnKyYKXkocROaGioYHTlsX37dnblyhWBfw8PD8Hoyhgj+3hpdu7evcv27dsniD10sXPx4kVFdlauXElGVx7Hjx+XsRMRESEYXXns2rWLXbp0SeCfs8OtlDyH9evXk9GVx8OHDxXZWbVqFVkpeSixk5mZyVasWEFWSh6nTp1SZEdqdOWxd+9edvHiRYF/f39/tmnTJrJS8ti4caOMnadPn+pkp7SV8vr164rsrFixgoyuPJycnNipU6eEtTM+Pl6wIfM4cOAAGV15BAcH62SHG115PH/+XCc73OjK49atW3qzc+7cOb3ZOXz4MBldebx7906RnW3btpHRlcfr16/Ztm3byOjK2P/PDje68vgQO9zoyuPixYtkdOWRlpbGVqxYQUZXHseOHSOjK4/w8HCd7HCjKw9vb29FdtatW0dGVx4PHjzQue8szc7ly5dl+05d7Jw8eZKMrjyio6MV2dmzZw8ZXXkoscP3ndzoyuPJkyeK7KxatUqRHW5D5pGdnc2WL1+uyE7pfWdcXJwiO/v375exExQUpLh2bt68WZGd0vvO4uJitnr1akV2Su87c3Nz2fLlyxXZ4TZkHklJSYrsHDp0SMbO27dv9WbnnxYokxWVRVmURVmURVmURVmURVmURVmUxX8yVHrKiv5Lf8f9eyI2NhYajUY4VlhYiNjYWNnc6OhoFBcXC8dycnKQnJwsmxsZGSn87A8AaWlpyMjIkM2NiIhA6S8HkpKSkJubKxxjjCEiIkL293FxcSgoKBCOFRUVITo6WjGHoqIi4Vhubi6SkpL0yiE9PR3p6el65ZCcnIycnBzFuaUjPj5elkNxcTGioqJkc2NiYmQ55OXlISEhQTY3KipKlkNmZibS0tJkcyMjI2U5pKSkIDs7W68cEhISkJ+fLxzTarWIjIyUzY2NjUVhYaFwrKCgAPHx8Yo5lL7usrKykJKSolcOqampyMrKUsyh9NzExETk5eUJx3Rdd0rsaDQavdnJzs7WyU7p8/o72Smdwz+BnaSkpH8kOxkZGYrsKOXwV7CjK4c/y05qaqps7p9lJyEh4ZPYKZ2DRqNBXFycXjlkZ2frzX9aWhoyMzP1yiExMfFPsxMTEyObq8ROTk7OJ7HzKfzry47S2llcXKzIvy52EhMT9cpBFztKr1lycrLe7MTHx/8pdvLz8/VmJzMzU292UlJS/jQ7+q6dutjRte58ytr5Kezoy78SO4WFhTrZUdp3/qfY0ZWDrnVHX3Zyc3MV2dG17vxd+86/ix2lfeffwc5/a5RZcyXx9OlTtG/fHl5eXsjPzydzXc+ePXHw4EHExcWR5crFxQUDBgyAv78/ioqKYGNjA5VKBTs7O5w/fx5JSUlk6tq+fTtGjx6NN2/eAABsbGyQm5uLhg0b4vbt20hLSyNT1/z58zF9+nSEhYXByMgINjY2iI6ORsOGDeHu7o6srCwydY0ZMwarV69GZGQkGdM8PDzQunVreHp6Ii8vD1ZWVihXrhwGDBiAPXv2IDY2liyXly9fRt++feHn54fCwkKy0bVu3RrOzs5ITEwkU9fevXvxzTffIDg4GIwx2NjYoKCgAI0aNcLNmzeRmppKlrulS5fi119/RWhoKAwNDWFjY4OEhAQ0aNAAT548QWZmJhnifvzxRyxbtgwREREoV64crKys4OvrC3t7e7x+/Rq5ublkTHVwcMCOHTsQExMDMzMzWFhY4NatW+jevTt8fX3JqGlsbIz27dvj1KlTSEhIIMvd4cOHMWzYMAQFBUGr1cLGxgaFhYVo0qQJrl27hpSUFLLcrVq1Cj/99BPevXsHQ0NDWFtbIyUlBQ0aNMDDhw+RkZFBOUyePBmLFi1CeHg4TE1NYWVlheDgYDRr1gwvX75ETk4OLC0tUaFCBXz99dfYvHkzoqOjUbFiRVhaWuLevXvo0qULfHx8oNFoYGVlBRMTE3Tp0gXHjh1DfHw8We5OnjwJtVqNwMBAstFptVo0a9YMly5dQnJyMtlV169fj/Hjx+Pt27cwMDCAjY0N0tPT0aBBA9y7dw/p6elkuZs+fTrmzp2L9+/fw8TEBNbW1ggLC0OTJk3w/PlzZGdnk6nz22+/xbp16xAVFYUKFSrA0tIS7u7u6NChg4ydHj164NChQ4iLiyPL3blz5zBo0CAEBASQjRIA7OzscOHCBYGdbdu2YfTo0QgJCYFKpYKNjQ2ys7PRoEED3LlzR2Bn7ty5mDFjBsLCwmBsbAxra2tERUWhUaNGePbsmcDO6NGj4ejoSOxYWVnh1atXaNOmDTw9PZGfnw8rKyuYmpqiX79+2Lt3r8DOpUuX0LdvX+KfG/VatmyJs2fPCuzs2bMH3377rcB/Xl4eGjZsiFu3bgnsLFmyBFOnTkVoaCiMjIxgbW2NuLg4NGzYkNjhduXx48dj+fLlAjs+Pj6wt7eHh4eHwM6QIUNk7Ny4cQM9e/aEr68vWQGNjIzQrl07nD59WmDn4MGDGD58OIKCgoj/wsJCNG7cGNevXxfYWblyJSZNmiSwk5ycjAYNGuDRo0fIzMwku+qkSZOwePFigZ2goCA0b94cr169Qm5uLrHz5ZdfYuvWrTJ2unbtSuxw/jt16oQTJ04I7Jw4cQJDhw4ldmxsbFBcXIymTZviypUrSElJQdWqVVGtWjWsW7dOxk5aWhoaNGiABw8eICMjg9iZNm0a5s2bJ7Dz7t07NG3aFC9evEBOTg4sLCxQsWJFfPPNN1i/fr3AzpMnT9ChQwd4e3ujoKCArrsePXrg8OHDAjvOzs4YPHiwjJ0WLVrg4sWLSE5OJjPxli1bMGbMGIGdrKwsNGjQAHfv3kV6ejqxM2fOHMyaNUtgJzIyktjJzs4mdr7//nusWbMGUVFRdN29fPlSkZ0+ffpg//79tHbWrl0brq6u6Nevn8COgYEBWrZsiXPnziEpKYnY2b17N7777jsEBwfL2HFzc0NaWhqxs2jRIvz2228CO7GxsWjUqBGePn2KrKwssquOGzcOK1eulLHTsmVLeHh4CGtLEYHpAAAgAElEQVTnwIEDySrM7arXr19Hr169ZOy0bdsWZ86cQWJi4gfZ0Wg0aNSoEW7cuIHU1FRiZ/ny5Zg0aRJCQ0PpuktKSkLDhg1l7Pz8889YsmQJIiIiYGpqCmtrawQEBKBFixYydoYOHYqtW7ciJiaG2Llz5w66desmsGNiYoKOHTvixIkTSEhIIHaOHTuGL7/8UsZOkyZNiB1uV12zZg0mTJiAt2/f0nWni52pU6diwYIFCA8PJ3bevn0rsMPXneHDh2Pjxo2Ijo4mdh4/foyOHTvK2OnWrRuOHDmC+Ph4YsfJyUlgx8bGBowxNG/eHK6urkhOTqZ1Z/PmzRg7dqxe7MyePRuzZs3C+/fviZ3w8HA0btxYYMfMzAzff/89/vjjD0RFRdG68/z5c7Rr1w5eXl7CdVeaHQsLC1y4cAH9+/cX9p0GBgawt7eHi4uLwM7OnTsxatQoxX1naXYWLlyI3377Tdh36mJn7NixWLlyJSIjI4kdLy8vRXYGDBiA3bt3IzY2ltada9euoVevXrTv5Oy0adMGTk5OAjv79+/HyJEjFfedpdlZtmwZfvnlF2HfmZiYiIYNG+Lx48fCnm3ixIlYunSpwI6/vz/s7OwU953btm0T2Ll9+7bivrNDhw44efKkwM7Ro0fx1VdfCfvOoqIiNGnSBFevXhXYcXR0xMSJE4V1JzU1VZGdKVOmyNiR1p7+E6LMmvtvBLfb8VGtWjW2YsUK4ZhKpWJff/01WQb5sLa2Fmxg+H+2sh9//JFMaXw0atSIzKF8mJiYsFmzZpH9kI82bdqQ7ZWPihUrCrZYPnr27Mm+//574VjVqlVlOQBgX375JZnS+LC0tJTlYGBgwMaNG8fatGkjHK9fvz6bN2+ecMzY2JhNnz6drJt8tGzZksxhfFSoUIEtW7aMzHJ8dOvWjUypfFSuXFkx3yFDhpChl4/atWsLRkOew/fff886duwoHK9bty5bsGCBcMzIyIhNmTKFbK98tGjRgoy1fJQrV44tXryYLLR8dO7cmY0fP1449tlnnym+DgMHDmTDhg0TjtWsWVMwmvLr7ttvvyVDJx916tQRDK48h0mTJpEplY+mTZuSOZAPU1NTNn/+fLLQ8dGhQwcy1vFhbm6u+Dr069ePjRw5UjhWvXp1xRyGDx9OlkEpO1KDM2dnwoQJrHnz5jJ25syZI2Nn9uzZZD/ko23btuyXX37Ri51evXqxUaNGydhRmvvVV1+R3ZoPKysrxetu3LhxZLflo0GDBmQ/LM0ONwfy0apVK53slD6v7t27682Og4ODIjtK/I8ePZrstnzUq1dPJzt16tQRjtvZ2ZGxlo/y5cuzxYsXkw2Qjy5dusjYqVSpkiI7gwYNIkPvx9j57rvvyNDJh62trU52uO2Rj2bNmrGZM2cKx8qVK8cWLFhA9mMpO9wyLmVHalqUssNNiVJ2lNadESNGsJ49ewrHbWxs2JIlSxTZ4YZuPho3bixjx9TUlM2ZM4fspx9ix8zMTPFa6t27tyI7Sq/ZsGHDFNlRuu5++OEHsttK2VFaO2fOnEm2dyk7U6ZMkbGjdF7du3cnyzAfVapUUZyrVqvJ0MuHhYWFIv9jxowhQycfX3zxhYwdY2NjNnXqVDKlf4ydpUuXkoVays4P/8+Uqg873NDLR61atRTZGTVqFBk6P8bO5MmTyZQsZWfGjBkydhYuXEidA/jo2LGjIjtK113//v3Z8OHDhWM1atRQzGHkyJGK7CitOz/99JMiO0pr59y5c8l+yke7du1ke0ld7PTp04fs9nxUq1ZNce7XX3/N+vbtKxyztrZW5H/8+PFkt+WjYcOGsj0bZ4dbd/lo3bq1IjtK607Pnj0V2VHKYejQoYrsKPH/r3/9S5EdpbXzt99+I9szH/b29mR7Ls0ON+ny0bVrV0V2lHIYPHgwGXr1YYd3VeCjbt26erPTvHlzxXVn4cKFZD/no1OnTuzVq1f/0x+jhICeNaJlH0Ql4ebmRpr6Bw8eMI1Gw4qLi1nnzp2pxQMvsD5y5Ahp6nmBdW5uLmvatCm1eODFyWvWrCFNPS+wTkxMZPXq1WPjx48XxB6//fYbtXjgcoLg4GBma2tLLR5yc3OZVqtlI0eOpBYPXE7w4MEDocWDRqNhWq2W9ejRgzT1XE5w+vRpavHAC6zz8/OZnZ0dtXjgcoKNGzdSiwdeYJ2SksLq169PLR642GPWrFmkqecF1qGhoczW1pY09bzA+vvvv6cWD1zs4e7uLmjqCwoKmFarZX379iXVNpcTuLi4kKaeywk0Gg1r1aoVqba5nGD79u3U4oGLPdLT01mDBg1Itc3lBAsXLqQWD1xOEBERwWxtbUlTz+UE48ePZ3369BHkBK9fvxY09fn5+Uyr1bJBgwZRiwcu9rh8+TK1eOBygqKiItauXTvS1HOxx969e0lTz+UEWVlZrHHjxqSp53KC33//nVo8cDlBTEwMq1u3LmnquZzg559/Jk09lxP4+voyW1tbavHAcxg6dChp6rmc4NatWwI7hYWFrLi4mHXq1Ik09Zydw4cP62SHa+q5nMDR0ZF16NBBYCchIYHYkcoJpk6dSi0eODtBQUHEDpcTaLVaNmLECNLUc3bu379P7HA5QXFxMevWrRtp6jk7J0+epBYPUnZatGhBmnrOzvr160lTL2Xniy++oBYPnP+ZM2eSpp6z8+7dO1anTh0ZO6NGjSJNPRd7PH36VJGdPn36yNg5d+4ca9asmYydli1bytjZtm0btXjgYg9d7MyfP5809VyKFR4ersjOuHHjSFPP2Xn16pXADs9h4MCBMk39pUuXWJMmTdi8efOIncLCQta2bVtih4s99uzZw1q1asV+//13YiczM5M1atRIxs7SpUupxQNnJzo6mtWtW5dNnDhRYOenn36SsePt7U3tkaTsqNVqYocL5W7cuEFfsHB2ioqKWMeOHWXsHDx4kFo8cClWTk6OIjurVq2iFg9cihUfH8/q1q0rY+fXX3+lFg9c7BEYGMhsbW3Zr7/+KrDz9ddfEztc7HHv3j1q8aCLHS72OHHiBLV44Ozk5eWxFi1asO+++04Qe6xbt47Y4UK55ORk9sUXX1CLB87OjBkziB0ulAsJCWG2trbU4oGz891338nYefz4MbV4uHv3Ll13vXr1krHj7OxMLR64UK6goIDZ29vL2NmyZQu1eOBCubS0NFa/fn02duxYdvbsWVo7582bJ2Pn/fv3zNbWllo8cHbGjh0rY+fly5dCiweew4ABA5iDg4PAzsWLF4mdx48fC+yMGDFCYGfXrl3EDhfKcXbGjBkjsLNkyRLWuXNnQSgXHR3NbG1tqbUYZ2fChAmsd+/egozRy8tLaC3G2XFwcKDWYpyd69evEztcKFdUVMQ6dOhArcX42nngwAFFdpo0aUKtxTg7K1eulLETFxfH6tatS235ODuTJ0+mtnycHX9/f2KHS7E4OwMHDhTYuXPnDrHDhXLFxcWsa9eutO/k7Bw7dozZ2dmxRYsWkVAuLy+PNW/eXLbvXLt2LbXl4+wkJSWxevXqUWsxzs706dNp3yllp06dOtSWj+87v/32W9m+szQ7fN/Zs2dPai3G2XFyctLJDm/Lx9fOzZs3U1s+zk5qaiqxI913zp07l3Xt2lVgJywsjNWpU4fa8nF2xowZQ235+L7z+fPnrF69emzatGkklNNqtax///7Ulo+zc+HCBda0aVNip6ioiBUWFrLWrVtTWz7Ozs6dO2nfKWWnYcOG1JaPr52LFy+mfSdnJyoqSpGdH3/8kVqLSWWM/6Qo+yD6b4TUtsWjsLBQMGt9aG5+fr5g1vrQ3JycHMEO9qG52dnZgi2LsRJ7mdRwJv370nOLiooUzVp/Nofc3FzBDvapOeiaqysHqZXuQ39fUFAgWOk+NPdTc9D3NVPKgS98+vy9RqMRrHQfmpuXlydY6T409++87kqHRqPRm528vLz/KDu65paOwsLC/xXs6JvD38XOn33NytjRPfefmsPftXb+X2PnU3L4s+x8Sg7/1OvufwP/f+e+889cd7rWzr9i3/l/iZ3c3Ny/5br7p4W+H0TLrLllURZlURZlURZlURZlURZlURZl8ZeEvtbcMlmRJNzc3HDkyBEqSFapVCgsLMSMGTOQnp4Oa2trlC9fHgDg7OwMV1dXKkhWqVTIzMzEjBkzoNFoYGNjAxMTEwDA3r178eDBAypIBkrsZwsXLqSCZN6kd+3atfD29qaCZADw8fHB+vXrhYJkxhgJciwtLWFmZgYAuH//Pg4cOEDF/AYGBigqKsLMmTORmpoKKysrVKhQAQBw/vx5uLi4UDG/SqVCdnY2pk+fjoKCAtjY2MDU1BQAcPDgQdy5c4eK+VUqFeLi4jB//nwAJYXwxsbGAICNGzfCw8ODivkBIDAwEI6OjlTMz4uqly5ditDQUBJhAMDjx4+xZ88eKuY3MDBAcXExZs2ahaSkJFhbW1MOly5dgpOTExXzq1Qq5ObmYvr06cjNzRVyOHr0KG7evEnF/CqVCklJSZgzZw4VwvMctm7diufPn1MxPwCEhIRgxYoVVMzPc1ixYgXevHlDxfwA8OzZM+zYsYOK+Q0MDKDVajFnzhzEx8fDysoKFStWBABcu3YNJ0+epGJ+lUqFgoICTJ8+HdnZ2bCxsUG5cuUAACdPnsS1a9eomF+lUiE1NRWzZs0iAQO/7nbs2AF3d3cq5geA9+/fY+nSpVTMz6+71atXIyAggIr5AeD169fYvHkzFfMbGBiAMYZ58+YhJiZGyOHWrVs4evSowI5Go8H06dORkZEhsOPk5CRjJyMjAzNnziRplpSdhw8fCuxERUVh0aJFiuz4+PgI7Hh7e+tkJyIiQmDn3r17OHjwoIydGTNmIDU1VcjBxcUF58+f14udAwcO4N69eySR+hA7GzZsgKenp5BDQEAA1qxZI2NnyZIlCA0NhaWlJbHz6NEjvdlxdXWFs7OzjJ1p06YhLy9PyOHIkSNwc3MT2ElMTFRkZ8uWLXj58qXA/5s3b7Bq1SoZO8uWLUNISAgJmADA3d0dO3fulLEze/ZsGTtXr17FqVOnSISjUqmQn5+vyM6JEydw/fp1IYeUlBTMnj1bJztS/sPCwvD777+TCIdfd6tWrUJgYKDAzsuXL7F161YhB13s3Lx5E8eOHRP418XOmTNncPnyZYF/Xezs3r0bjx49EviPjIxUZGfNmjXw9fUVcvDy8sLGjRtJIsXZWbhwoYydu3fv4tChQyTz4exMnz4daWlpQg7nzp3DhQsXBP6zsrJo7eSiMwDYv3+/jJ3Y2FjMnz8fKpWKJCG62PHz88PatWtlMo/FixcjLCxMYOfhw4fYt2+fwL8udi5evIizZ88K/Otadw4fPgw3Nzdh7UxMTMTcuXPBGBNy2Lx5s4yd4OBgrFq1Ssb/h9iR8s/ZSUhIIPHPx9jJycmBtbU1sXP8+HGd7HABC89h+/btePbsGapXr07shIaGYtmyZTJ2Vq5ciaCgIGHt1MXO3LlzERsbK+Rw48YNHD9+XJGdzMxMIYfTp0/L2ElPT8fMmTNJ/MPZ2bVrFx4/fiywExERgcWLF5OATcqOn58fSaTw/7F331FRJevawJ9uBESiZAR0Rh1zQB0T5py61XGSijnr6JhzAoyY9Zgwo6OOYRRFFCXnnHPOOUcz9f2hVaeL3TjMPefeM+dbvGvddc+qtUd4Yf921W52PRtAWFiYXDvbtm1DdnY2Cy8CAGdnZ1y7dq1J68779+/j8ePH0NDQ+FM7tra28PDwYAFsIpEIubm52LZtGwtgoj0cOXIE4eHhf2qHEIKdO3ciPT2dW7N5eHjItbN+/XqUlpZy685Hjx4J7NTW1mLt2rVc0CG14+zszALYRCIRCgoKsHnzZgD83HnixAkEBwdDT0+P2YmPj8f+/fsFdvbs2YPk5GSuBx8fH5w/f14w72zYsAFFRUVcD0+fPsXdu3ehpqbGenj9+rVcO3Z2doJ1Z0lJiVw7p0+fFqw7U1JSmmzn71bNYUX/gzpx4gTb+Kuvr08WLlxIrl69ysJ3FBQU2D4a2SAXU1NTsnLlSmJra8tCH5SUlNg+Gtkwmm+++YasX7+e/OMf/2CbjVu1asX20Zibm7Nj6T6aY8eOEbFYzDZQ//zzz+TmzZukY8eO3AZ5a2trLjBBT0+PzJ8/n1y7do1t5BaLxWwfjexmdGNjY7J8+XJy6dIlFvqiqKjI9tHIbqjv0KEDWbt2LTl79ixRU1Njm8DpPpoRI0awY+legOPHjxMFBQUCfAruoftoOnfuzI6l+2hkQz10dHTI3LlzybVr11gIilgsZvtoZEMQ2rRpQ5YtW0YuXbpE9PX1WQ90H42FhQW3YfzXX38l586dY0E9LVu2ZHvQxo0bx46l+2hOnTrFAiLU1dXZPhrZMCq6j+bAgQNsTFtbm8yZM4fcuHGDhSCJRCK2B002QMTQ0JAsWbKEXLlyhRgaGrKN7HQPmuyGerqP5sKFC0RLS4sAnwIU6B402VAAuo/m9OnTRFlZmQCfgnvoHjTZMCq6j8bGxoYLH5g9eza5ceMGad++PeuB7qPZvn07t3F/0aJF5MqVKyx8R9bO0qVL2bFt27Ylq1atIhcuXODs0H00smE0dB/NmTNniIqKCuth+vTp5MqVK1woALVz5MgRZkdLS4vMnDmT2NnZybUjG5igp6dHFixYQK5du0ZMTEwEdmQDxExMTMiKFSuIra2tXDuyQU50H83Zs2dZUIeKigqZOnUquXTpEhk+fLjAzokTJzg7P/30E7l58yYXRkXtyAaT6Orqknnz5pFr166xEBSxWMz20ciGbzVmZ+zYseTUqVNcCJqsHRrU07JlS7YHTTbIje6jOXnypMCOnZ0d6d69Ozu2b9++jdq5fv06+eqrr9h5R/egbdy4kR1rZGRElixZQi5dusTZoXvQ5s+fL9eOpqYm64HuQZs0adIX7aipqbE9aH379mXHmpmZkV27dpFDhw4J7NjZ2XH+Bw0aRPbv38+Fb1A7V69e5ezQPWiyQS7UzsWLF1lgirKyMpk4cSI5d+4cF6jRqVOnRu1cvXqVC6Oie9COHj3KwuRk7cgGatDsA9nAFGrn6tWrzI6CggLbg7Zy5Uq5dnR0dJh/ugdNNsipY8eOAjutWrVie9Bkg9x69OhBtm3bRo4dOyawc+vWLS6Miu5Bkw0moXauX78usGNjY8MFCMnaoWGD1M7p06e5ICe6f1vWjoqKCtuD1tDO1q1bycmTJ1m4iqwd2UAdugdt//79cuedhnYOHTok187ly5dZcA21c/LkSbl2zp8/L9eObAgizT44deoUCyaTtSMbRmVmZkZ2794t187169cFdg4cOMCF7xgaGpLFixeTK1eusOAqauf48eNk8eLFnJ1ffvmFXLhwoUl2Nm7cSM6cOcOCCencefXqVTJgwADOzs6dO4mNjQ1nZ9asWY3akQ1MouvOK1eucOtOakc2BEl23SnPzowZMzg769evb9SObJAbzQ2Rt+60s7MT2LGyshLYkbfupHZkA4Rk152ydmhuyMyZM+XaabjutLW15UIQqZ0TJ04wO3TdaWdnR7p27Sqws2/fPjZG153Xr19n605ZO7IBQkZGRmTp0qXkypUrcu3MnTuXHUuzD86fPy9Yd164cIFMmDBBYOf06dOcne+//55cv36dC6OidqKjo//Tt1FcoYmP5n66tW4uAICenh4AQEVFBYMGDcLgwYMxcOBA9slVly5dMHjwYAwePJi990lDQwODBw+Gubk5evTowT7J6dmzJzuWRs/r6OiwY01MTCASiSAWi9GnTx927PPnzwEAbdq0YWP0UzoaDz948GAMGjQIenp6SElJwddff82Ope+TatmyJQYOHMiOpZ/6dO7cmR1LPx1SV1dnY2ZmZuyTnB49erBx+t4lbW1tNvb1119DLBZDJBJxPbi5uQEADA0N2Rj9Gcr2MHjwYOjr6yMxMRHt2rVjY/Q9V8rKyhg4cCDMzc0xePBg9mljp06d2LGRkZEAADU1NfY769evH/sEsXv37uxY+n7E1q1bs7EOHTpAQUEBIpEIZmZmbNzf3x8AYGBgwMbop2wKCgro168fGzcwMEB0dDRMTU3ZGH0flZKSEgYMGMB+D/TTxo4dO7Jjabx6q1atWA8DBgxgn/p269ZN8LPR1NRkx3bp0oV9ota7d292bFhYGDuvZb9Xet7169eP/WwfPnwIADAxMWHHks+P7SsqKqJ///5sXFtbG2lpaWjfvr3g/FBRUWHnnaydrl27sq9F3zemoaHBeujRowc7z3v16sX+3fj4eACArq4uGzM2NpZrx9HRUWCH/lwUFRW5805XV1dgh54fDe3QTxtl/YtEImaH9mBmZsb5p/2mp6cL7Hz11Vdy7bi6ugrs0PNAnp2kpCR89dVX7GvR96spKyuz864xOxEREU22Q9+PJmunY8eOAjvm5ubw9fUV2KHnvaydQYMGwcDAALGxsWjbti07lr5/T9aO7L/xzTffCK6tqqqq7Hc2YMAA9sm1rB36s5G107lzZ/YJs+x5R7eQ6Ovrs58tnR/oK67osffv3xfYoe/6U1JSYnYGDhwIHR0dpKeno0OHDuxYen7I+m9oh/5s6c9GU1OT/ffdu3dndmTnnZiYmCbbefr0KQDA2NiYfS36c5G1M2jQIOjq6iI1NZXzT9/b2JR5h15XZOed3r17Mzuy805qaiqAf86dgwcPRrt27SASiQTXbGdnZwCAkZGRXDuy1zB9fX0kJyfjq6++Yv3S9/o15l/WTmhoKLND//s+ffrItUPfB9nYvCN7zfb29m6SHXotj4uL4+zQ977SubPhvCNrJy4ujtmRnXfk2aE/Gy0tLTbWqVMntGjRQtBDUFAQsyN7vRWJRIIefv/9dwDg5k76jknqn/rT1tYW2ElLS2N2ZOcdeXMnfZ+krJ2uXbuyOULWf3R0tMAO/YurWCzm/D958oSzM3jwYIjFYmZH9ryTZ4eeH7Jz5+DBg5kd2XmHXldk552ePXvKXXcmJycL7NDXDFL/9Gf78uVLgR16LsvOO+bm5tDT0+PsyJ4fjdnp3Lkz+1r02io77/Tp00fuupO+h1TWTvv27eWu2by8vAR26Nenr4eRtRMfH8/Zoe/qbTh3amlpITMzk/NPr62ydvr378/sdO/enfVL34+upaXFjm3MTmBgoFw78vzfvXuX2aFfq2PHjvivrKbcrf67/u/v/hdRPz8/LlmPkE8b3y9evMiS9Wg5OzuzVEpalZWVXLIeLXt7e5ZKSSs7O5tL1qN1584dlkpJKy4ujkulJOTTpvGrV6+yRFdagYGBXLIeIZ82vtva2rJkPVpubm4sWY9WdXU1uXTpEksHo+Xg4MBSKWnl5+dzyXq07t27x9LBaCUmJnLJerSuX7/O0sFohYSEcKmUhHza+G5raytIB/Pw8GCplLRqa2uJra0tS9aj5ejoyFIpaRUVFXGplLQePHjAEl1ppaSkcKmUtG7evMmS9WiFh4dzqZSEfNr4fvnyZZasR8vb25ulUtJ68+YNsbW1Zcl6tJycnFiyHq3S0lIulZLWH3/8Qfz9/bnzLj09nUulpPXbb7+xZD1aUVFRXColIZ/OuytXrrBkPVry7Lx9+1aunVevXgnsVFRUcMl6tOzt7VmyHq2srKxG7dBkPVqxsbFcKiXt4erVqyxZj1ZgYCCXrEdI43ZcXV1Zsh6txuw8ffqUJevRysvLk2vn999/F9hJSEj4X7NDUylpfckOTaWkVVhYSK5du8ZSKWndv3+fpVLSSk5O5lIpadnZ2cm1I5tKScgnO5cuXRLY8fLyYqmUtF6/fi3XzosXLwR2SkpKuFRKWtSObA9paWlcKiWtW7duCexERkZyqZSEfDrvLl++LLDj6+vLUilpUTs0lZLWq1evWColrcbsPH78WK4d2VRKWrdv35ZrRzaVkvYgz05AQIBcOxcvXmSplLRcXFwEdqqqqppsJzc3l9jZ2Qn8y7MTHx/PpVLSkmcnODiYS6UkpHE77u7uTbbz7NkzuXZkE11pfclOQ/83btwQ2AkLC/u32KFp6LS+ZKfh3Pnw4UPB3PklOzQNndaX7NA0dFo+Pj5NtvPy5UuBnfLycu5NArQePXoksJOZmdmoHZqGTismJqZROzQNnZa/vz9xcHAQrDttbW3l2mk4dzZm58mTJ4J1Z05Ojlw7d+/eZW8SoCXPTn19Pbl27Zpg3RkUFESePHnC+ad25K07G9qpqakhtra27E0CtJ49eyZYdxYUFDRqh6ah00pKSmrUDk1DpxUaGiqYO6kdmoZOy9PTkzg5OXF26urq5Np5/vy5YN1ZXFzcZDupqaly7dy8eVNg5+9WaA4raq7maq7maq7maq7maq7maq7maq7/y2pqWJH4/+Kb+W+p5ORk9mgrrffv3yM0NBT19fXceGxsLHtMklZVVRViYmLQ8OY+MjKSPRZCq6ioCCkpKYLvITQ0lD26SCs7OxvZ2dncGCEEQUFB7DEWWikpKSgqKuLGPnz4gODgYEEP8fHxKC8v58ZqamoQFRUl6CEqKoo9ukCrpKQESUlJgh7CwsLYo6m0cnJykJWVJTg2ODgY79+/58bS0tLYo4C0Pn78iKCgIEEPCQkJ7LEQWnV1dYiIiBD0EB0djerqam6srKwMCQkJgmPDw8MFPeTl5SEjI0PQQ0hIiKCH9PR09rgarfr6egQFBbHHa2glJiaitLSUG3v79i3CwsIE31dMTAyqqqq4sYqKCsTFxQmOjYiIYI/y0SooKGCPMzXsgT5uTiszM5M9NkSLnncNe0hKShLYeffuHUJCQv5lO/RxM1p/xU5WVhZ7vKdhD/+Knbi4OPaoJ60v2Wno/0t2GvbwJTsNe0hLS2OPGNP6kp2G/r9kp6H/srIy9lh5wx7k2aGPbzfs4d9t582bNwgPD2+SncQUB4IAACAASURBVPLycsTHx8v139BOfn4+e4xWtuTZycjIQF5eHjdGCEFgYKBcO/TxLVrv3r37S/NObGysXP8N7RQWFrLHXWXr32Gnof8PHz7I9S/PTnV1NaKjo5s0dxYXF7PHDv+sh5ycHMHcCUBuD6mpqXLtNHXurKurQ2RkZJPmztLSUrl2Gpt3/oqdhnPnv8OOvLnz/9pOY/NOY3Yafl+xsbEC/5WVlf8WO/LmzqbaaWzd2Zidhv7/t+z8lXXnv2qntrb2X7Yjb97Jzc1tsh15687G7Mhbd75+/fr/3E7DHv5bqzk1V6b8/PzQr18/vHr1CsXFxWjdujU0NDQglUqxf/9+JCYmsoRIBwcHjBo1Cp6enigvL4eenh5atmwJc3NznD17FmlpaSzl6uLFi5g+fTr8/f1RXV0NQ0NDfPjwAT179sStW7eQlZXFkrr27NmDBQsWIDQ0FK9fv4axsTGKiorQrVs3PH78GHl5eSypa+nSpVi3bh2io6Px/v17mJiYICYmBmZmZnByckJRURG0tLSgpaWFGTNmwMrKit10mZqa4uXLlxg2bBjc3d1RVlYGXV1dtGrVCsOHD8epU6eQmprK0lWvX78OiUQCX19fVFVVwdDQEMCnPYk3btxAZmYmS1fdt28f5syZg5CQENTW1qJNmzaoqKhA165d8ccffyA3N5clxK1cuRJr1qxBVFQUS31LSkpCr1698Pz5cxQWFkJTUxPa2tr4+eefsWvXLsTHx7O0MXd3dwwZMgSurq4oLS2Fjo4O1NTUMGbMGBw/fhzJycksIfL27duYNGkSfHx8UFlZCQMDA7bf4+rVq8jIyGAJcUeOHMHMmTMRHByMmpoatGnTBtXV1ejWrRvu37+PnJwclhC3bt06rFy5EhEREXj79i1MTEyQnp6OHj164NmzZygoKICGhgZ0dXVhYWGBbdu2IS4ujiV1+vr6YuDAgXB1dUVxcTG0tbWhpqaGiRMn4vDhw0hKSmIpdw8ePMC4cePg7e2NiooK6Ovrs30otra2SE9PZwlxp06dwg8//IDAwEDWw5s3b9C9e3fcvXsX2dnZLF1xy5YtWLp0KVsImZiYICcnB927d8fTp0+Rn58PdXV16OvrY/78+di8eTNiYmJY2mBISAi+/fZbuXYOHDjAJg5TU1M8ffoUo0aNgpeXF8rKypidwYMH4/z580hNTWXpqhcuXMD06dMREBCA6upqGBkZ4f379+jRowd+++03zs7u3buxYMEChIWFCezY29sjNzcXampqMDAwwJIlS7BhwwZmx9TUFFFRUejTpw9evnzJ2fnuu+8EdpycnDBixAh4eHiwHlRUVDBs2DCcOXMGKSkpzM7Vq1chlUrh5+fH7BBC0KtXL4Eda2trZqeurg7GxsYoKytDt27dBHZWrFghsJOYmIhevXrhxYsXKCgogKamJlq3bo2ffvoJu3fv5uy4ublhyJAhcHNz4+yMHj1aYOe3337DpEmT4Ovry9np06cPrl69ivT0dGbHxsYGs2bNQnBwMPNfVVWFrl274sGDB5ydX3/9FatWreLspKWloWfPnnB0dGQ96OjoYPbs2dixYwdiY2OZHR8fHwwaNAiurq4oKSmBjo4OVFVVMX78eNjY2HB27t+/j/HjxzM7BgYGbP/jpUuXmB1TU1OcPHkSP/74I2enrq4O3bp1w++//47s7GzWw+bNm7Fs2TLOTnZ2Nrp37w4HBwfk5+dDQ0MDenp6cu0EBQWhf//+cHZ2Zv7V1dUxZcoUHDx4kLNjb2+P0aNHw8vLC+Xl5dDX14eSkhIGDRqE8+fPs3nH1NQU586dw3fffSfXzu3bt5GVlQUVFRW0adMGO3fuxKJFi7h5p7CwEN26dcOTJ0+Ql5cHdXV1GBgYYPHixQI7kZGRnB3qf/r06bC2tmY9mJiY4MWLFwI7rVq1wpAhQ3DmzBnm38TEBFeuXBHYqa+vR69evWBnZ4fMzEzm39raGnPnzuXslJaWomvXrnj06BHzb2RkhOXLl+PXX3/l7MTHx6N379548eIFCgsLoaWlhdatW+PHH38U2HF1dcXQoUOZHV1dXaiqqmLEiBE4ceIE829iYoKbN29i8uTJzA5N2ezTpw+uXbuGjIwMlq566NChP7VD/a9ZswarVq1CZGQk3r17B2NjY6SmpgrsaGtrMztxcXGor6+HiYkJvL295doZN24cjh49yvm/d++ewA7dd3f58mXO//Hjx/HTTz8hKCjoT+1s3LgRy5cvZ/6NjY0btTN37lxs3bqV+TcxMUFgYCAGDBjA2VFTU2N2ZP0/evQIY8aMYWs2fX19tpf2woULSEtLY3Pn2bNnMWPGDAQGBjI7b9++FdgxNjbG9u3bsWjRInYjZGxsjIKCArl2Fi1ahI0bNzL/JiYmCA8PR9++ffHq1StmR1NTE9OmTePsmJqa4tmzZxg5ciTrQVdXFyoqKhgyZAjOnj3L2bl06RKmTp3KrTs/fvyIXr164ebNm5wdS0tLzJ8/n/lv06ZNo3aWLVuGdevWISoqiq074+LiYGZmJrDzww8/YO/eveymy9TUFM7Ozhg6dCjc3d05OyNHjsTJkye5udPOzg6TJ09m/mnGhZmZGWfHxMQEBw8ehIWFBYKDg1FXV8fWnd26dcPDhw85O6tXr8bq1auZHRMTEyQnJ3PrTg0NDWhra2PWrFnYuXMns2NqagpPT0+Ym5sL1p1jx44V2Ll79y4mTpzIrTtpzkBDO8eOHcPPP/+MoKAg1NbWwsjICLW1tejWrRvu3bvH2dmwYYPADt2j+nep5tTc/0HJpsgBn9ISra2tWVIiPqelWVhYEKlUyh3bu3dvYmlpyZIh8TnxbcWKFWTQoEFsjCa+7dixg6X54XNa2ubNm1m6HT6npY0ePZqsX7+eJbDhc1qalZUVS93F57Q0qVTKpSoCn5JGra2tWdobPqelzZw5k3z//ffcsT179iSWlpYsoQuf09KWLl3KpXnic+Lbzp07uR709PTIhg0buDRPsVhMRo4cSTZu3Mj1YGJiQiwtLVlyID6npU2ePJlLhgM+JY1aW1uztEd8Tkv78ccfuTRf4FPSqJWVFdeDhoYGWbRoEZeqhs+Jb7t27WKpavic+LZ27VrSo0cProdhw4aRzZs3sxQ54FNa4u7du1lSKu1hwoQJXKoqPqelWVlZcT20bNmSfP/991yaLz4nvllZWXHnnbq6Opk/fz6Xqgb8M2lU9rzT1tYmq1evJn369OHOuyFDhpBt27ZxPRgaGpLt27ezlEF8TnwbN24clwwJgLRr145YW1tz552ysjKZPn06l6qIz4lvDXtQU1Mjc+bMEdgxMzMje/fuFdhZuXIll+ZJk4a3b9/OnXcGBgZky5YtAjtjxozhUpX/zI5sqiLwKS1Rnp1Zs2ZxSdjAp7TEhucdtSObSAiADBw4kOzatUuuHdlEQpr42JgdmhxIe5gyZQqX5k3tNDzvVFRUyE8//UR++ukn7tgePXoI/Ddmp3///o3akU3zFIvFZPjw4Y3aoUnJ1M7EiRMFdtq3b9+oHdk03z+zM378eLl2ZHvQ0dEhq1ev5tI8qZ2tW7dyPRgZGZEdO3awhF5qZ/z48VwyJPApabQxO/PmzRPYaTjvUDtTpkxpsp3+/fsL7DScd6gdmgz7JTtt27YV2FFWViZTp05tkh1VVVUye/ZsLgmb2ml43mlpaZFly5aRIUOGCOzImzs3bdrEJWFTOxs2bBDYsba2ZsmhX7LTsWNHuf5//vlnLs2X2pHnf/HixWTkyJECO7t37xbYWbduHZfmKWtHtgdjY2OyZ88elvZK7UyaNIlLJG7MjoqKCvnhhx+abGfBggVNtrNmzRouzZOmpW7ZskVgZ+fOnSyhW9bO6tWrBXbk+f/uu++4RFJqR968M3fuXC5FHvhnwn1DO6tWrRLYMTc3F8ydBgYGZNu2bSwZVtZOw7mzMTvTpk0jCxcu5I6l6055dqZNm8YdK2/dqaWlRZYvX869gYGuOxuu2agdmoRPexg9erTAjqmpKbG0tBTYkUgkcu1YWVnJXXc2tNPYunPJkiXcGxioHXnzzvr160mXLl24827EiBFk06ZNAjt79+5lbxmQtbNixQrua31p3Smb5gt8WndaW1tzPairq5OFCxeSsWPHcsf269evUTu9evXiehg2bJjceWfnzp0sZZjamTBhAgkODv5P30ZxhebU3L9eo0ePRlhYGKRSKSQSCb755ht8+PAB3t7e6NSpE6RSKUaOHAllZWVcu3YNHz58YMeampqiuroazs7OGDRoEKRSKYYMGYIWLVrg0KFDMDIyglQqxeTJk2FgYIDc3Fy4urpi3LhxkEgk6N+/P8RiMd6/f4/CwkJIpVJMnDgRrVu3RlRUFPz9/SGRSCCRSNCrVy+IRCIkJSVBSUkJUqkU48aNg5qaGpydnZGcnMy+r86dO6O+vh7+/v74+uuvIZFIMGrUKLRs2RK3bt1CTU0NO7Zdu3aoq6uDq6sr+vfvD4lEgqFDh0JRURHHjh1D69atIZVKMWXKFBgaGqKwsBCurq4YPXo0JBIJBgwYAAUFBSgoKCA7OxsSiQSTJk2CtrY2EhIS4OPjgylTpkAqlaJ3794QiUTsUVeJRILx48dDXV0dnp6eiIuLg1QqhVQqRefOnQF8epzKxMQEEokEo0ePhoqKCu7du4eysjLWw9dff403b97Azc0Nffr0gVQqxdChQ6GkpIQzZ85AVVWV9UA/9XNxccHIkSMhlUoxcOBAKCgoYNeuXejatSukUikmTZrEUla9vLwwadIkSKVS9OnTh73X6u3bt5BIJJgwYQI0NDTg7++PyMhI1kPXrl0BfHrkR09PDxKJBGPGjEGrVq3w6NEjFBQUsB46dOiAd+/ewdPTEz169IBEIsGIESOgpKSECxcuQFFRkZ0LxsbGqKiogIuLC4YOHQqpVIpBgwahRYsWsLKyQocOHSCRSDB58mTo6ekhMzMT7u7umDBhAqRSKfr27QuxWIzKykpUVVWxHrS0tBAaGorg4GDWQ/fu3QF8etREU1MTUqkUY8aMgaqqKhwdHZGVlcWO7dixIz58+AAfHx907twZUqkUI0aMgLKyMq5evSrXjouLCwYPHgypVMpSOw8ePAhjY2PWA7Xj5uaGcePGQSqV4ttvv4VYLMbbt29RXFwMiUTC7ERGRiIgIAASiQRSqRQ9e/aESCRCQkICVFRUIJFImJ1Xr14hNTWVHdupUyd8/PgRvr6+6NChA/PfsmVL3Lx5E69fv2a/h3bt2qG2thbOzs4YMGAA86+oqIijR49CV1eX+Tc0NERBQQGcnZ0xZswYSKVSDBgwAGKxGGKxGDk5Ocy/trY24uLi5NpJT0+HSCRi/tXV1eHu7o74+HjODiEEwcHBMDExgVQqxahRo6CiooK7d++ioqKC9UDtuLu7MzvDhg2DoqIiTp06BTU1NUgkEmanpKRErp0dO3agR48ezI6Ojg6Sk5Pl2snPz8e7d+8glUoxfvx4aGhowM/PD1FRUez3QO3Qd0RKpVKMHj2a2SkqKmLnUvv27fHu3Tt4eHigZ8+ekEqlGD58OJSUlHD+/Hl2vZwyZQqMjY1RXl4OZ2dnDBs2DFKpFIMHf0oTt7S0RMeOHVkPenp6SE9Ph4eHByZOnAiJRMLslJeXo7q6GlKpFBMmTICmpiaCg4MRGhrKvi9qJyoqClpaWpwdBwcH9juXSCTMjpeXF7p06cLZuXz5Mggh7FgTExNUVVXJtXPgwAGYmpqy805fXx85OTls3pG18+bNG5SUlLDzTktLC5GRkQgMDGTnR0M7UqkUY8eOhZqaGl6+fInU1FT2fX3Jjp2dHd68ecN+D9SOq6srBgwYAIlEwuwcOXIEenp6Ajuurq4YO3Ysm3foO//y8vI4O7GxsfDz88OUKVMgkUiYneTkZCgoKAjsJCQkMDudOnUCIQQBAQFo27atwE5VVRXr96uvvsLr16/h4uKCfv36cXZOnjzJng6ZMmUKjIyMUFxcDGdnZ4waNQoSiYTZ2b59OztvqZ2kpCR4eXlh8uTJkEgkzE5ubi7ev3/P2fHx8UF0dDT7vmTtGBoasrmzVatWePjwYaN2evXqBYlEwuycPXu2UTvDhw+HRCJhdvbs2YNOnTqxa7auri7S09Ph6emJiRMnMv9isRilpaWora1l846mpiaCgoLYOkwqlaJbt27Mjra2NiQSCcaOHYtWrVrh6dOnyM3N5ey8f/8eXl5e6NatG/OvrKyMS5c+/WFG1k5lZSVcXFwwZMgQ5r9FixbYv3+/wE52djbc3d0xfvx4SKVS9OvXD2KxGLW1tSgrK2PzjpaWFsLDwxEcHMyuYT169IBIJEJ8fDxUVVVZD2pqanjx4gXS09NZv9988w2z07FjR0gkEmbnxo0bePfuHTPZtm1b1NbWwsXFBQMHDmT+FRUVYWNjAwMDA3bNNjAwQH5+PlxcXDB27FhIpVK27qyvr0d+fj7roaEdqVTK1p30r67Uv7q6Otzc3Dg7dN0ZGBiIdu3aMTstW7bEnTt35Npxc3Njdui68+TJk9DS0mI9GBkZoaioCM7Ozhg9ejSbOxUUFKCkpITevXuzdaeOjg4SExPh7e2NyZMnQyqVwszMDCKRCFlZWaivr2frTg0NDXh7eyM2Npb9zrp06QLg02O8bdq0YfOOiooKHjx4gNLSUvZ7aN++Pd6+fQtXV1eYmZkx/9QOvV7SubOsrAyvXr3CiBEj2JpNQUEBu3fvZusluu5MTU2Fu7s7N3eKxWKUlJSgrq6O+afJ+P+N1RxWJFP19fUsdlt2jEbFN+XYhmP/W8fSTxKacuzftYe/cuxf7eHv2C+19t/ew3/7eff/Qw9/5dhmO3+fHv7bz7v/H3r4K8c22/n79PDfft419/DvO7bZTuPjf6dqalhR841oczVXczVXczVXczVXczVXczVXc/1bqqk3os1hRTL1/PlzHDx4EPX1nzbzKysr4/3795g7dy7S0tKgo6MDHR0diEQi3Lx5ExcvXoRY/GlDcosWLVBVVYXZs2ejqKgIBgYG7CXSJ0+exP3799mGZAUFBeTk5GDBggVsIzx9efGuXbvg7OzMNiSLxWJERkZi7dq13IZkQgh++eUXhISEQENDgwUgODs7w9ramm3mV1ZWxocPHzB//nykpKSgdevW7OXSd+/exdmzZ9lmfkVFRdTU1MDCwgIFBQXQ09ND69atAQD/+Mc/cOfOHbaZX0FBAfn5+Zg/fz4qKyu5HiwtLeHk5MQ2wovFYsTFxWHVqlVsMz/dVP3rr78iMDCQBTCJRCJ4eHhg9+7dbDN/y5Yt8fHjRyxcuBCJiYlo3bo19PT0IBKJ8PDhQ5w8eRIAWA91dXWwsLBAbm4u9PT0oK2tDQC4ePEi7Ozs2Gb+Fi1aoLi4GHPnzkV5eTkMDQ3ZC5APHDgABwcHroekpCQsX76cbYSnL83euHEjfH19oaqqyl567evri+3bt7PN/C1btkR9fT0WL16M2NhYaGpqQl9fHyKRCPb29jh69CjbzK+kpIS3b99izpw5yMrKgq6uLnR0dAAAV65cwbVr17jzrqysDBYWFigtLYWBgQF7RMPGxgb29vbsvBOLxUhPT8eSJUtYEIaamhoAYOvWrfD09GSb+UUiEYKDg7Fp0ya2mV9FRQWEECxbtgxRUVHQ1NRk4QGydmgP7969w5w5c5CRkQEdHR32YmY7OzvY2tpyPVRWVsLCwgLFxcWcnRMnTuDBgwfceZednY2FCxcK7OzcuROurq4sgEUsFiM8PBzr1q0T2Fm1ahXCwsI4O69evcK+ffvYeUftzJs3DykpKdDW1mZ27ty5g3PnznHnXU1NDWbPno2CggLo6+szO2fOnMHdu3ebZGfv3r14+fIlC8IQi8WIjY3FL7/8IrCzZs0aBAUFQV1dnZ137u7u2LNnj8DOggULBHYePHiA06dPs/OO2pk9ezby8vI4OxcuXMCtW7dYAEuLFi1QVFQk186+ffvg6OjI2UlMTMSKFStYiAy1s379evj5+bEgDJFIBB8fH+zYsYOdd9TOokWLEBcXBy0tLc7OsWPHODtv3ryBhYUFsrOz5dqhQRgtWrRAaWkp5syZg9LSUhgaGjI7hw8fhr29PQvCEIvFSEtLw9KlSwV2tmzZIrATGBiILVu2NMnOs2fPcPjw4SbZuXHjBi5dutQkO8eOHcPDhw+5eScrK4vZke1hx44dcHV15ead8PBwrF+/XmBn5cqVjdqhIVLUzty5c5GamsrZuX37Ns6fP8/NO9XV1bCwsEBhYSFn5/Tp0/j99985O3l5eZg/fz6qqqo4O3v27BHYiY6Oxpo1a1iIFLWzevVqgR03Nzfs3buXhUgpKys3aufevXs4c+aMYN6RZ+f8+fO4desWC5FSUFBgdioqKv7UTkJCAlauXMlCpKiddevWCex4e3tj586dLERK1k58fDxn59GjRzh+/LhcOzk5OZydS5cu4fr163LtlJWVcXYOHTqEp0+fcnZSU1OxdOlSgf/NmzfD29ubsxMQECDXztKlSxEdHc314ODgABsbG4EdCwsLZGZmcj1cv34dly9f5uxUVFTAwsICJSUlf2onMzMTixYtYgFMsnbc3Nw4O6GhodiwYQMLYKM9rFy5EuHh4ZwdJycn7N+/n7Pz/v17zJs3T7Du/O2333DhwoVG7cj2cOrUKdy7d48FsCkoKCA3NxcLFixAVVUV2rRpw+zs3r1bsO6UZ4cQgtWrVwvWna6urrC0tBTYmT9/PpKTkzn/8uzU1tbCwsIC+fn5nP9z587h9u3bnJ2CggLMmzcPFRUVMDIyYnasra3x/Plzzk58fHyjdvz9/aGurs568PLywq5duwR2Fi5ciPj4eM7/H3/8gZMnT3J2Xr9+zezI+re1tRWsO0tKSuTaOXjwIJ4+fcr1kJKSItfOpk2b4O3tzfn/u1VzWNH/oKytrblN2OPHjydHjx7lAjU6duxI1q9fz230b9WqFZk6dSo5fPgwF77To0cPsmPHDjJu3DhuE/bPP/9M9u/fz22o//bbb8n+/fu5zcq6urpk/vz5ZPfu3Wyzsvjz5v/jx49zATPGxsZk+fLlXMCEoqIiGTt2LDl69CgXqNO+fXuydu1asmDBAm4TtkQiITY2NkRDQ4ONd+vWjWzbto0LyVBXVyc//PAD2b9/P7eRu2/fvsTa2pp8++233CbsuXPnkr1797JN8nTz//Hjx4mxsTG3CXvp0qVk06ZN3Cbs0aNHk2PHjnGbs7/++muyZs0aLiSjZcuWZMqUKcTGxobbjN6lSxeyZcsWLiRDTU2NfP/99+TgwYNcgICZmRmxtLTkNvpra2sTCwsLYmlpyTaY0/CPI0eOcBv9DQ0NyeLFi8mWLVu4HkaNGkWOHTtGDAwM2Hi7du3IL7/8wm2SV1ZWJpMmTSJHjx7lwig6depENm3axG30V1VVJd999x05dOgQFyDQq1cvsnv3bm6jv5aWFpk1a5ZgQ/2AAQPIoUOHSOfOnbkAg4ULF5IdO3ZwAQYjRowgx44d48JZTE1NycqVK7mACSUlJTJhwgRy5MgRzs4333wj1860adPIoUOHODs9e/YkO3fubJKd/v37kwMHDnB29PT0yPz588muXbs4O8OGDSPHjx/neqB21q5dy9kZN24cOXbsmFw7sgEzKioqRCqVNmpHNiRDQ0OD/Pjjj2T//v1ckEO/fv2ItbU16devn8DOnj17mB2xWEyGDBlCjh8/Ttq0acOObdOmDVm6dCkXuNaiRQsyZswYcvTo0b9kR1NTk4137dqVbNmyhQvJoHYOHDjA2enTpw+xtLTkwtm+ZOfo0aNcwBS1s3XrVrl2ZINNqB3ZYDNqx8bGhrPTuXPnJtvp3bs32bNnDxfORu1YWVmxUBCRSEQGDhxIDh8+zIWzUTvbt28X2Gl43lE7suFM1E7DeYfakQ3JoHYOHz7MBVdRO2PGjBHY2bdvn1w7suFsenp6ZMGCBWTXrl0s6IPaaejfxMSErFixolE7Ojo6bLxDhw5k3bp1XMAMtXP48GHOTvfu3cn27dvJpEmTmmRn3759pG/fvgI7u3fvFtg5ceIEN3e2adOGLFu2jGzYsIHrYcyYMXLnnV9//ZULmKF2jhw5IteObDgbnTsPHjzIzZ3Ujmw4m7a2NpkzZw7Zu3evXDvt2rXj7CxZsqTReUfWzldffUVWr17NBcxQO0eOHOHmzs6dO5PNmzdzwYbUzsGDB+XakQ1na926NZk9e7ZcOzY2Nlw4m4GBAVm0aFGjdmTnzrZt25JVq1YJ7EycOFHuvLNhwwbOjqqqKpk+fTo5dOiQwM6uXbu4cDYtLS0yc+ZMuXPnwYMHSffu3QV2du7cyewoKCiQ4cOHC9Zs1I5ssJnsulOenTlz5nD+6bpTnh3ZYEMNDQ3y008/NWpHNpxNV1eXzJs3j+zZs0ew7jx27FiT7IwdO1bu3CnPjkQiIYcPH+bsdOvWjWzdulWunQMHDgjWnVZWVmTAgAF/asfc3JwcPXqUC2czMjIiS5YsIZs3b+bs0HWnPDtLly7lepg8eXKjdmbMmMHG1NTUyIwZM+SuO5tqZ9CgQcTGxoYLZ6N2QkJC/tO3UVyhiWFFzTeiMvXgwQN2gVi5ciVxdHQkBQUFpFu3buwC8Y9//IOkp6eTU6dOEeCfN6aurq4kKyuLGBkZERUVFTJ16lRy+fJlkpeXx07wHj16kO3btxM/Pz+SkJBAVFVV2QXi1q1bpKSkhC3Sv/32W2JlZUXCwsJIQEAAEYvF7ALx4MEDUl5eTkaOHMkuEDY2NiQuLo7Y29uzC8Ty5cuJg4MDKSwsJL1792YXiNOnT5PU1FRy/vx5doFYu3YtcXZ2JtnZ2aRt27bsAmFra0tycnLIzp07uQuEt7c3SU5OJhoaGkRdXZ38+OOPxM7OjhQXF7MbC9kSWwAAIABJREFU3L59+5K9e/eSkJAQEhISQhQUFNgC4d69e6SiooKMGzeOXSAOHTpEYmJiyPPnz9kFYunSpeTJkyekuLiY9OvXjy2uT548SZKTk8nVq1fZBWLNmjXk1atXJDc3l7Rv354tEC5cuECys7PZBw1dunQhmzdvJl5eXiQ1NZW0bt2aLa6vX79OCgsL2QLXzMyM7N69mwQFBZGIiAiiqKhIWrduTSwsLMjvv/9OysvLiUQiYReIAwcOkKioKOLi4sIuEIsXLyb29vaktLSUDBw4kCU6Hj9+nCQlJZFbt26xyfWXX34hTk5OJD8/n3Tq1IktEM6dO0cyMzPJ4cOHCfDpxnTjxo3Ew8ODZGRkED09PbZAuHr1KikoKGATXK9evcjOnTtJQEAAiYmJIS1btmSL69u3b5PS0lIyY8YMtkDYt28fiYiIIF5eXgT45+L60aNHpLS0lAwZMoQtEI4ePUoSEhLI/fv3OTvPnz/n7EyYMIGcPXuWpKenk5MnT3J23NzcmB26uL5y5QrJy8tjH0rI2omPjyetWrVii+vffvuNlJSUsIWGrB1/f39mZ/78+eThw4ekoqKCjBgxgi2uqZ1Hjx4R4J83ps+ePSNFRUWkV69ebHFN7Zw7d46z4+LiQrKzs4mJiQlbXF+6dInk5uayG/ru3buTrVu3Eh8fH5KcnEzU1dWZnZs3b5Li4mKWPtyvXz9mJzg4mLNz//59UlFRQcaOHcsW14cPHyYxMTHE0dGRs/P06VNSXFxM+vbty+ycOnWKpKSkkMuXLwvs5OTkkK+//prZuXjxIsnOziaWlpZy7WhpaTE7N27cIEVFRWySpqmUQUFBJDw8XK6dyZMns8X1wYMHSVRUFHF2dhbYKSkpIQMGDGCL6xMnTpCkpCRy8+ZNgZ28vDzyzTffMDvnz58nmZmZ5NChQ2yBQO2kp6cTXV1dZufatWukoKCAfbDSu3dvsmvXLhIQEECio6OJsrIys3Pnzh1SVlZGvvvuO2Zn//79JCIignh4eAjslJWVEXNzc+5DnYSEBPL7778T4NON6apVq5idrl27cnYyMjLI8ePHucW1m5sbyczMJIaGhpyd/Px8tjjs2bMn2bFjB/Hz8yNxcXECO6WlpSx9vH///sTa2pqEh4cTPz8/IhKJODvl5eVk+PDhzM6RI0dIfHy8XDuFhYWkZ8+ezM6ZM2dIWloaOXv2LLe4dnFxIVlZWXLt0JuS7t27k23bthEfHx+SlJRE1NTU2I0ptUNvcPv160csLS1JSEgICQoKYnbmzZtH7t+/TyorK8no0aM5O7GxscTBwYFbXFM7ffr0Edi5dOkSAf55Y0rnna+++oqzk5OTQ/bu3UuAf96Yent7k5SUFKKpqSmwQ1PvqZ3g4GASFhZGWrRoIbAzadIkzk50dDR5+fIlAf55Y0rt9O/fn7OTnJxMbty4QYBPH+qsXr2a2enYsSNnJysrixw4cIDZ2bRpE7Ojo6NDVFVVyYwZM5gdenNI7QQGBpKoqCiirKzMFtfUzrRp0zg7kZGRxN3dndlZtGgRm3cGDx7M5s5jx46RxMREcvfuXc7OixcvSH5+PunSpQu7MaV2jh07xtlxd3cnGRkZxMDAgLRq1YpMnz6d2Vm/fj1nx9/fn8TFxREVFRWiqalJZs6cyeZOmj4ua8fHx4eIRCJ2Y/rHH380aufhw4fcjamjoyMpLCwkPXr0IIqKimT8+PHMzpkzZzg7rq6uJDs7mxgbG7N1J7VDP9Cjdnx9fUliYiKzQ9edxcXF7Ab322+/JZaWliQ0NJQEBQURsVjM7Dx48IBUVFSQUaNGsXUntfP06VPOjoODAykqKiJmZmaCdaetrS1nx9nZmeTk5JB27doJ1p179uxp1A69MbWzsyNFRUVk0aJFAjuhoaGkRYsW7MaUrjsnTJjA1p3UjpOTE2fnyZMnpKSkhHz77bfsxpTauX79Omfn5cuXJC8vj3To0IEoKyuTyZMnkwsXLpCsrCyyf/9+Nndu2rSJeHp6krS0NKKtrc1uTOm6k6Zem5mZMTuRkZFESUmJ2bl79y4pKysjU6dO5dadkZGRpL6+/j99G8XVv+1GFIApAHcA8QBiAaz9PK4NwBlA8uf/3/rP/q2/+41oeHg4CQ8P536Z7969I/b29qSqqoo7li6IZY+trKwkjo6OpK6ujjvWzc2NpKenc2O5ubnE1dWVvHv3jht/8eIFyc3N5caSk5OJr68v+fDhAxurr68nT58+JSUlJdyxkZGRJDQ0lPu+3r9/T+zt7UllZSV3bEBAAImNjeWOra6uJg4ODqS2tpY71sPDg6SmpnJjBQUFxNnZmbx9+5Ybf/nyJcnJyeHGUlNTibe3N9cDIYQ4ODiQ4uJibiw6OpoEBweTjx8/srEPHz4Qe3t7UlFRwR0bFBREoqOjuR7q6urI06dPSU1NDXesl5cXSU5O5saKiorIy5cvyZs3b7jxV69ekaysLG4sPT2deHp6kvfv33PjdNElW7GxsSQwMJDr4ePHj8Te3p6Ul5dzx4aEhAguIm/evCFPnjwh1dXV3LE+Pj4kMTGRGystLSUvXrwgr1+/5sZdXFxIZmYmN5aVlUXc3d0F5x1d/MpWQkIC8ff353qor69nN9WyFRYWJrDz9u3bJtupqKj4t9jJy8vjxpKSkuTaoZOMbEVGRpKwsDCBncePH8u1ExcX9z+2k5+f32Q7KSkpcu3QhbJsNWbn8ePHcu3ExMRwPdTW1pKnT58KevirdrKzs7mx9PR04uXl1WQ7QUFBAjuPHz+WaycqKorr4fXr1+TJkycC//QmRrZKS0uJk5NTk+14eHgIeqAfWMpWfHw8CQgIaLKdiIiIJtnx9fUlCQkJ3FhFRQV5/vy5oAdXV1eBnZycHOLm5tZkO35+fk2yExERIdeOvHmHLuplj62qqiLPnj0T+Hd3d5drx8XFRWDHyclJMHempKQQHx+fJtmJiooiISEh3PfVmJ3AwMAm2/H09CQpKSncWGFhIXn16tW/ZId+yCxbMTExcu3Im3eCg4ObbMfb21tgp6SkhDg5OQl6oB8syFZmZua/xU5ZWRl3bGhoaKN2Gs6d8uyUl5c3aicjI4Mby87ObtROfn4+N5aYmNionYb+w8PDBXYaW3f6+/sL5s4v2UlLS+PG8vLy/iU7dN35V+w09C/PTk1NzV+207AH+kGqbKWlpTVqp6ioiBuLiYkRzJ2NzTvBwcFy152N2Wk4dxYXF8u14+zsLLCTkZHRZDt/t2rqjeifhhWJRCIjAEaEkDCRSKQOIBTAdAALAJQRQg6LRKJtn29Et37p32oOK2qu5mqu5mqu5mqu5mqu5mqu5vr/t5oaVvSn2b+EkHxCSNjn/12NT38ZNQYwDYDd58Ps8Onm9L+6IiMjER0dDdmb8/fv3+PZs2eora3ljg0MDERycjI3VlVVhZcvX+Lt27fcuKenJ7Kzs7mx/Px8eHp64sOHD9y4s7MzioqKuLGUlBQEBgaivr6ejRFC4OjoiPLycu7Y6OhoREZGcj18+PABDg4OqKmp4Y4NCgpCYmIiN1ZTU4MXL17gzZs33Li3tzcyMzO5scLCQri7u+P9+/fcuIuLCwoKCrix9PR0+Pv74+PHj9z48+fPUVZWxo3FxsYiPDyc6+Hjx49wcHBAdXU1d2xISAji4+O5Y+vq6vD8+XO8fv2aO9bHxwfp6encWElJCVxdXQU9uLm5IT8/nxvLzMyEr6+voAcnJyeUlpZyY/Hx8QgNDeW+r/r6ejg4OKCqqoo7Njw8HHFxcdyxb9++xbNnz1BXV8cd6+fnh7S0NG6srKwMzs7OePfuHTfu7u6O3NxcbiwnJwfe3t6C8+7ly5coLi7mxpKSkhAcHCw47549e4bKykru2IiICIGdd+/ewcHBQWAnICAAKSkp3FhlZWWT7eTl5cm18+rVK7l2goKC5PYgz05UVFST7SQlJXFjX7KTlZXFjRUUFDTZTlpa2l+yExER0WQ7CQkJAjuOjo5y7dB3/tIqLi6Gm5uboAdXV1e5dvz8/AQ9vHjxQq6dsLCwJtkJCwsT2Hnz5o3cHhqz4+Li0iQ72dnZ8PHxEfQgz05iYiJCQkIE552Dg4NcOzExMQI78uadxuy8evVKYMfDwwM5OTncWF5eHry8vP4lO46OjqioqOCOjYqKkmtHXg/y7FRXV8PJyUlgx8vLS64dDw8PwXnn7Ows105AQADXAwA4OjoK7MTExPzLdp4/fy7o4V+1k5GR0WQ7cXFxTbYTGhraZDu+vr4CO/Qd3PLs5OXlcWNZWVly7Tg5OaGkpIQb+3fZaTh3+vv7C+xUVFQ02U5ubm6T7SQnJzc678izI2/dKW/ulLfupHYa9vAlO/LWnYWFhdxYamqqwE5j684v2Wk4dwYHBwvWnbW1tY3aabjuLCoq+kt25M2djdlpuO78kp2G687Xr183aqfhurMxO25ubv+Snf/W+kupuSKR6CsAOwDsBLCbELILACwtLWusrKz2WVpa2nzpv/+7p+b6+vpi1KhRsLOzYy/t1dbWxpw5c7Bt2zb4+fmxpD4XFxdMmTIFv//+OzIzM9GyZUuoqqpiypQp2L9/P0JDQ1nK1c2bN/HDDz/A3t4eubm5UFNTg4KCAoYPH44TJ04gKiqKpaseOnQI8+fPx4sXL1BYWAgtLS1UV1fD3NwcFy9eZCe/iYkJfv31V6xevRru7u4oLS1lL78dMWIErl+/jpSUFCgoKEBHRwcLFy7E5s2bWQ8GBgbsBfN37txBRkYGlJWVoa6ujunTp8PKygrBwcEsIfbu3buYMWMGHj16hJycHKiqqkJZWRkjR47EsWPHEBkZyVLujh8/jjlz5uDFixcoKCiApqYm3rx5A3Nzc5w7dw5xcXEs5W7Dhg1YtWoVXF1dUVpaCm1tbWRnZ2PYsGG4evUqkpOTIRaLoa+vjyVLlmDjxo3w8fFBZWUl9PX1ERgYiPHjx+O3335Deno6lJSUoKmpiR9++AF79uxBUFAQamtrYWRkhMePH2P69Ol4+PAhsrOz0apVKygrK2Ps2LGwsbFBREQES4g8e/YsZs2aBUdHR+Tn50NDQwMfPnyAubk5zp49i9jYWJZMvH37dixbtgwuLi4oKSlB69atUVBQgKFDh+Ly5ctISkqCSCSCgYEBVqxYgfXr18PLywsVFRXQ19dHWFgYxo4di1u3biEtLQ2KiorQ0tLCrFmzsGPHDgQGBqKmpgZGRkZ49uwZpFIpHjx4gOzsbHbeTZgwAQcPHkRYWBhLV7106RJ+/vlnODg4ID8/H+rq6iCEYOjQoTh9+jRiYmJYuurevXuxePFivHr1CsXFxWjdujVKS0thbm6Oy5cvIyEhAQBgZGSEX375Bb/++is8PT1RXl4OPT09xMXFYfTo0Zyd1q1bY86cOdi+fTv8/f1RXV0NQ0NDODs7Y8qUKbh37x6zo6amxtmhKXc3btzAjz/+iCdPniAvLw+qqqoQi8UYPnw4Tp48ydk5cOAAFixYACcnJxQVFUFLSwtVVVV/aqesrAy6urpITk5mdlJTUyEWi6Grq4v58+dj69at8PX1ZXY8PT0xadIk3L17F5mZmczOtGnTBHbu3LmDGTNm4PHjx8jNzYWqqiqUlJQwcuRIHD9+nLNz7NgxzJ07l/nX1NTE69evYW5ujvPnz3N21q9fz9nR0dFBZmamXDuLFy/Gpk2bmB0DAwP4+/tjwoQJuH37NjIyMqCoqAgNDQ388MMP2Lt3L7PTpk0bPHz4ENOnT8cff/yBnJwcZmfMmDECO2fOnMHs2bPh6OiIgoICaGho4N27dwI7pqam2Lp1K5YvX87saGtrIy8vD0OHDsWVK1c4O8uXL/+infT0dCgqKkJTUxM///wzdu3ahYCAAGbHwcEBU6dOZXZUVFTQqlUrjB8/HocPH0Z4eDg772xtbTFz5kzOTn19PYYMGYIzZ84wO6amptizZ4/ATklJCbNDF12GhoZy7cTExDA7aWlpbN6xsLAQ2Hn58iUkEgnu3buHrKwstGzZEq1atcLkyZMFdq5fv87ZUVNTg1gsxrBhw3Dy5ElER0czO/v378fChQs5O5WVlRg8eDBsbW3ZTVebNm2wZs0auXZGjhzJ7NB5Z/78+diyZQv8/PxQWVkJQ0NDeHh4yLUzdepUWFtbIyQkhM2dt2/fxvfff8/ZUVRUZHaioqKYnSNHjmDevHmcnbq6OmYnPj6e2Vm3bh1++eUXgZ3hw4fj2rVrzI6urq5cO35+fpwdJSUlaGhoYMaMGdi7dy+Cg4NZuuqDBw/w3XffcXaUlJQwZswYHDlyhNkxMTHB6dOnYWFh0aiduLg4ZmfLli1Yvnw5XF1dUVxc3KgdfX19LFu2DBs2bIC3tzezExISgnHjxjVqh847bdq0wZMnTzBt2jTOjoqKCsaNG8fs0HTV8+fPY+bMmXj27Bny8vLYvCPPzq5du7B06VI4OzszO8XFxQI7BgYGWLVqFdauXQsvLy9mJzo6GmPGjMHNmze5eYfaCQgIYOnqTk5OAjuqqqqYNGkSDhw4gLCwMGbn2rVr+Omnn/D06VO2ZhOJRBg2bBhOnTrF7JiammLfvn1YuHAhXr58yexUVFTA3Nxcrp01a9bAw8MDZWVl0NPTQ0JCAkaOHIkbN26wNZu2tjabd+iazdDQEG5ubpg8eTJbdyorK0NNTQ1SqVRg59atW3LXnSNGjBDYsbGxEaw7a2trBXZMTEyYHTc3N7buTE9Pl2tn0aJF2LRpE3x9fZl/X19fTJgwAXfu3GFrNnV1dc4OnXfu37+P7777jq076bwzevRoHD16lLNz8uRJzJkzB8+fP5e77pSddzZt2oQVK1bA1dUVJSUl0NHRQU5ODoYOHcrmTmpn6dKlnB0DAwMEBwdj3Lhx3LpTS0sLP/74I3bv3s3Zsbe3x7Rp07h1p4qKClt3NrQza9YsPHv2jK07P378KNfOzp07OTuyycR/l2pqam6Tb0RFIpEagBcAdhJCIqysrLZZWloelvmC2+TdiIpEomVWVla2VlZWyxQVFdusX7++6V38H9eDBw/g4eGBiooKhIWFIScnh/2Vo6amBikpKYiNjUVJSQmSkpIQExOD0tJShIaGIi8vDxUVFXBxcUFNTQ3i4+ORmJiI8vJyhIWFIS0tDYWFhQgLC0NBQQFKSkrg6emJmpoaREdHIzU1FVVVVXB3d0dhYSFyc3MRHh6OoqIiFBYWwsfHBzU1NYiIiEBGRgZqa2vZJ7UZGRmIjIxEcXExcnNzERgYiMrKSoSFhSE7Oxs1NTV4/vw56yEmJgYlJSVITU1FZGQkysrKWA/00/WamhokJCQgISEBZWVliIqKQnJyMoqKihAWFob8/HyUlJTAw8MDNTU1iImJQUpKCiorK+Hl5YX8/HxBD97e3lwPr1+/xpMnT1BVVYXMzEzWQ15eHvz9/VFVVYXw8HBkZWWhpqYGjo6OqK6uRmpqKqKjo1FSUoL09HSEh4ezn3Nubi77lLOmpgaJiYmIj49HWVkZoqOjkZiYiOLiYvZ7KC0thbu7O2praxEbG4vk5GRUVlbCz88POTk5yMvLQ3h4OAoLC1FUVMR6iIyMRHp6OvsUvLy8HFlZWYiIiEBxcTHy8/Ph5+eH6upqhIeHIzs7G7W1tXj27Bmqq6uRlpaG6OhoFBcXIzMzE6GhoVwP9C+ENTU1SEpKQlxcHEpLSxEfH4/4+HjWQ35+PkpLS+Hm5oaamhrExcUhKSkJFRUVCAwMRFZWFvLz8xEWFobCwkIUFxfD09MTtbW1iIqKQlpaGmpqavDy5UuUlpYiOzsbERERgvMuPDwcmZmZqKurY+ddeno6oqKiUFxcjKysLAQHBzM7ubm57JPampoaJCcnIzY2FqWlpUhMTGTnIO2hvLwcrq6uAjuhoaFIT09HQUEB14OXlxezk5aWxuwUFRUhJyen0fOO9vD06VOBnZycHM5OTk4OqqurBXZKS0uRnJyMqKgolJaWIiwsjPl3dnYW2ImIiEBKSgrnv7S0tFE7BQUFzE5hYSH3e4iMjERGRgbq6upgb2+P6upqZqeoqEhgJzs7G9XV1XB0dERNTQ1SU1MRExOD4uJipKenIyIiAmVlZawHWf8N7SQlJXH+G9qhPfj6+iI3N/eLdug1jP51jdopKipCQUEBZ6ehf1k7GRkZCAsL4+zQJ1Ma2omLixPYKSsr4+wkJyejvLy8UTv0vJO14+TkhLKyMs5OQUEBfH19BeddY3ZCQkK4eaeqqkqunYSEBDYH0d9ZQztJSUkoLy9HSEgIMjIymJ2CggLOP513qqur2c1MQzuy805mZqZg3qE9ZGdnIygoCJWVldx5J2/uTElJkWuHzp2ydsLDw5Gamtro3EntVFdXw9PTU2BH3nlH552GdnJzcxEQEMDZoeedrJ2SkhKkpaVxdug1W9ZOQkICSktL5dopKyuDu7s7ampq2LxTUVEBHx8f5OXlMTtFRUWNzjv0yZSsrCx2DZNnhx5bU1ODtLQ0REVFoaSkBJmZmQI7stfshnYSEhK+aIfOOwEBAcjOzkZ+fj73e/gzO+Hh4ayHhnZk505ZO5mZmQI7sufdl+zIzju1tbVs3qmoqEBwcDCzQ3ugdmTXbDU1NXBxcRHYKSgo4OzQ34O8eaehnYY9yM47SUlJiI6OZuvO/Pz8Ru3IW3fSeae2tpaz03Dd2Zgd2R6+ZKfh3Cm7ZpNdd8qbO2XnHdl1Z2hoKPNP586G8w61Q6/Zjc07snboNZuu2aqqqri1M/UvO+/IrjtDQ0MF/mXtxMbGMjv0dybrn9qprKyEv78/syOvh6ioKKSnpzc677Rt2xZt2rT5T99KsWrqjWiLpvxjIpFIEcAfAG4TQh59Hi4UiURGhJD8z/tIi+T9t4SQSwAuAZ/2iDbpu/8PVf/+/TFnzhxIpVJMmDABmpqaeP/+PUJCQmBmZgapVIru3btDJBLBzs4OqqqqkEqlGDNmDFRVVVFVVYWAgACMGDECUqkUHTt2BAAcP34cXbp0gVQqxYgRI6CsrIycnByEhIT8P/buOzyqavsf/3sy6ZlJIIV0ehGkSIDQO6Seg4A0AREp0kQRQRBEAnZQUVAsVOm9SlV6S4F00hvpvddJMuv3R+7Zv9k5E4yfe+/n473f7Oc5z33ufnbILHNes/aUtTa8vb3h6+sLV1dXAA1fjfH09IQoihgyZAgMDQ0RFhaG6OhoiKIIHx8ftGnTBkSExMRE2NnZQRRF9O/fHwYGBuzdESmG1q1bo66uDiEhIejZsycEQUCvXr3YWYiGhoYQRRHjxo2DSqVCeXk5AgICMGzYMAiCgK5duwJoOAuxffv2EEURo0aNgqmpKbKyshAUFARPT0/4+vqiXbt2ABq+zjB69GgIgoChQ4fCyMgIUVFRiIyMZDE4ODgAaPjqRKtWrSAIAtzd3WFgYIDbt28jMzMToijCy8sL1tbWqK+vR3h4OLp16wZBENCnTx92FqJWq4Uoihg/fjzUajUqKysRFBSEwYMHQxRFdO3aFQqFAjt37oSTkxNEUcTo0aNhZmaGvLw8BAYGYvz48RAEAe3btwcAGBkZYdCgQRBFEcOHD4eRkRHi4uIQFhYGQRDg6+sLR0dHAA1fdzEzM4MgCBg4cCCUSiUePHiAZ8+eQRRFeHt7w8bGBlqtFpGRkejYsSMEQUDfvn2hUChw9uxZVFdXQxRFeHh4wNLSEjU1NXj8+DEGDBgAQRDQvXt3KBQK7Nq1C7a2thAEAWPGjIG5uTkKCwsREBCAsWPHQhAEdOzYEUDDWYhubm4QBAEjRoyAsbExkpOTERwcDF9fX/j6+sLZ2RkAUFRUBKVSCUEQMHjwYCiVSgQFBSE+Pp79zWxtbUFEiI6OhqurK0RRRN++fWFgYIBLly6htLSUs6PRaPDkyRP07dsXoiiiR48eUCgU2L9/P3sXV7JTUlKCgIAAjBo1CoIgcHZ69OgBQRCYnbS0NDx58gTe3t4QBAEuLi4AGr4aJ81JdkJCQhATEyOzEx8fD3t7ewiCwOxcv34dBQUFEAQBXl5eaNWqFerq6hAcHIxevXpBFEX07NmTnYVoYmICQRBkdoYPH87Z+e6779CpUycIgsDsZGZmIiAgAF5eXhAEAW3btmV2xowZw/wbGRkhMjKS2fH19YW9vT2Ahq+7t27dGqIoYsCAATAwMGBfi9NnR3oO6t27NxQKBU6cOAEAEASBsxMQEIAhQ4ZAFEV069YNQMNZiC4uLhAEgdnJzc1l30jQtWNoaIihQ4dCFEUMGzYMRkZGiI2NRXh4OLvvJDvSp9yiKMLd3R1KpRL3799HamoqBEHg7ERERKBz584QRREvvfQSs6PRaCAIArNTXV2NoKAguLu7QxRFvPDCC1AoFPjll1/Y8+WYMWNgZmaGgoICvXY+//xz9OvXj/k3NjZGUlISQkJCWAxSwi8oKGDPo4MGDYJSqURAQACSkpKYf8lOVFQU2rZty9mRXiRI/iU7jx8/hpubG2dn3759sLKyYnbMzc05O6IoolOnTgCArVu3omfPnhBFESNGjICJiQlSU1P12ikvL4evry9EUcTgwYOZndjYWBaDrh0HBweIooh+/frBwMAA165dQ2FhIfOva6d3796cnUOHDsHExITlHQsLC5SVlSEgIAAjRoyAIAjo0qULgIazEKW/+ahRo2BiYoLMzEw8fvwYXl5e8PX1ZXY0Gg3Gjh0LURQxdOhQGBoaIiIiAk+fPmX+JTvS2aa6dm7evImcnBxmp3Xr1qivr0doaCi6d+/O2Tl+/DgUCgXLOyqVqkk733//PXu+HD16NExNTZGbm4vAwEB4eHjA19eX2VEqlRg2bBhnJyYmBuHh4RAEAT4+PsxOeno6ex6V7EhlAFIMje0IgsDsnDlzBhqNht13arUa1dXVCAwMxMCBAyEIArPz888/o02bNnoyCvT7AAAgAElEQVTtjBs3DoIgoEOHDgAazuCW8pZkJzExEaGhoTI7+fn5MDY2hiAIzI6/v79eO9HR0WjXrh0EQYCbmxs7R7SiokKvHcmvlDv37t0rsyO9cB4zZgwEQWB2tmzZwp7zR44cCWNjY/aGsY+PDwRBYLlTyntS7jQ0NMSTJ08QFxfH7js7OzsQEeLi4uDo6AhBEJidK1euoKioiLNTW1uL4OBg9OnTB4IgMDsHDx6Eubk5yzvPs7Nt2za2X5LsZGRkICgoiOUdad+p0WjY8/jz7BARkpKSYGtry+07b9y4oddOWFgYevToAVEU2b7z2LFjMDAw4OxUVFQgMDCQ5Q0pd37//ffsby7Zyc7ORmBgIDw9PSEIAtt3Sp9YC4LA7ERHRyMiIoLt2aR9Z1paGiwtLdm+U6lU4u7du0hPT2d5x9raGlqtFuHh4ejatStEUWT7ztOnT6O+vp7lHbVajaqqKgQGBrJ9Y7du3aBQKPDTTz/BwcGB7dnMzMyQn58Pf39/tu+U7JiamrK8NWzYMBgbGyMhIQEhISEsBslOXl4eex6V9p3/qaM5zYoUaKgBLSSiFTrzWwEU6DQrsiai95/3b7U0K2oZLaNltIyW0TJaRstoGS2jZbSM/97xL2tWBGAogNcAjFEoFKH/uHwAfAFgvEKhiAcw/h///z966HtRLrUXbu7av/Lv/jNr/+rj+jvG8FfWtsTw91j733Df/TfE8FfWtsTw91j733Df/TfE8FfWtsTw91j733DftcTw73tc/661/2kx/KeOP60R9fPzS/Xz89vk5+f3o5+f30//uOL9/Pyq/Pz8Dvj5+e34x/9WPfcfwt+/WdGlS5fw1ltvsYLkVq1aob6+Hr6+vnj8+DGMjIzg4uICpVKJvXv3ws/PjxUkq9VqlJeXw8PDA3FxcTAzM4OzszMMDAzwxRdfYMeOHawg2dzcHJmZmfD29kZ6ejrUajUcHR2hUCiwcuVKHDlyhBUkm5iYICIiAlOmTGHF/HZ2dlAoFJgzZw6uXbsGAHB1dYWRkRF+//13LFq0CEVFRWjTpg1at24NrVaLCRMmICAgAIaGhnB1dYVSqcShQ4ewfv16VsxvaWmJyspKeHp6Ijo6GqampiyGb775Bt988w0r5rewsEBOTg48PT2RmpoKtVoNBwcHKBQKrFmzBgcOHGDF/KampoiOjsakSZOQk5PDxTBv3jxcunQJRARXV1cYGxvjzp07mDdvHivmt7a2BhFh0qRJePjwIZRKJVxdXWFoaIjjx4/j/fffZ8X8UoG6p6cnIiMjYWJiAhcXFxgYGGD79u3YsmULK+a3sLBAfn4+PD09kZycDJVKxf4OGzZswJ49e1gxv5mZGRISEjBhwgRkZ2ejVatWaNOmDRQKBRYvXoxz586xRhjGxsZ4+PAh5syZw4r5bWxsAABTpkzB3bt3YWBgwGI4c+YM3nvvPVbML30l3MvLC2FhYTAxMYGzszOUSiV++uknfPbZZ6yYX6VSobi4GB4eHkhMTISFhQUcHR1hYGCAzZs34+eff4ZGo4GzszPMzMyQkpICQRCQmZkJKysr2NvbQ6FQ4K233sKpU6dYQwITExM8fvwYr776Kivml2KYMWMGbt68CQMDA7i4uMDIyAi//fYbli9fztmpq6uDr68vnjx5AmNjY2Znz5492LRpE2enrKwM48ePR1xcHMzNzeHk5AQDAwN8/vnn+P777zk76enp8PHxQXp6OiwtLdl9t3LlShw9epSzExYWhqlTp8qK+V977TVcu3YNCoWCxXD9+nUsWbJEZkcURQQGBnL+Dxw4gA0bNqC8vBwODg7MjoeHB6Kjozn/X331Fb799ltUV1fDycnpuXbef/99HDx4kDWRao4dXf+3b9/GggULZHYmTpyIhw8fwtDQEC4uLjA0NMSxY8ewdu3aJu3o+t++fTu2bt2KqqoqFkNTdtavX4+9e/eitraW3Xfx8fF67bz55ps4f/48iBqaSBkbG+PBgwd4/fXXUVhYyN13r7zyCu7evQulUslikOxITaSkr+bps/Pjjz/is88+Q2VlJRwdHaFSqVBUVMTZcXJygkKhwKZNm5gdyX9ycjIEQWBNJCQ7y5Ytk9kJCgrCzJkzWQM2KYbp06czO5L/ixcv4u2332aNcCQ7Pj4+CA4O5uzs3r0bmzdvZg3Y1Go1SktLWd7RtfPpp5/ihx9+YE2kdO1kZGRw992KFStw7Ngx1oDNxMQEoaGhmD59Oss7tra2AIBZs2bh+vXrUCgU7L67du0alixZguLiYtjZ2bGv5omiiKCgIHbfNbYjxVBRUQEPDw/ExMRw993WrVuZHSmGrKwseHl5IS0tDSqVisWwevVqmZ2nT59i8uTJyM3N5ey88cYbMjs3b97EwoULWSOc59k5evQo1q5dy5pISV8J9/T0xNOnT9l9Z2BggG+//RZfffUVZycvLw+enp5ISUlhz9kKhQLr1q3Dvn37WBMpU1NTxMXFYeLEiawBi66dCxcucHnn/v37mDt3LmsiJd13kydPxv3797n77vTp003aCQ8PZ/edgYEBdu7cic8//5w1YFOpVCgsLISnpyeSkpI4Oxs3bsSuXbtYExkzMzP2VdusrCwu7yxduhRnzpxhTWSMjY0RGBiIWbNmsSZS0n03bdo03L59m913hoaGuHDhAt555x3OTm1tLXx8fBASEsLZ2bVrl8xOSUkJPDw8EB8fL7Ozc+dO7r5LTU2Fr68vMjIyuLzzzjvv4Pjx4+y+MzExQUhICKZNm8YasOna+f3337n77sqVK1i2bBmXd3Tt6Oad/fv3Y+PGjWzPprvvjI2N5fLOli1bsH379ibt6O47V61ahcOHD3N2IiMj8corr8jsSE2NdGO4ceOGzI5Wq8XLL78Mf39/bt955MgRrFu3juUdS0tLVFVVwcPDA1FRUZz/bdu24euvv+b2bLm5ufD09MSzZ8+4vLNu3Trs37+fPWebmpoiNjaW2dHNOwsXLsSFCxe4fee9e/fwxhtvyPZskh3dfefJkyexevVqLnfW1NTA09MTERER3L7z+++/x5dffimz4+HhIbPz0UcfYffu3VzeacrOkiVLcObMGc7/3200t0aUveL/37j69etHf+exevVqAsCuF198kTZv3kxmZmZsztLSkl577TV6+eWXubX9+vUjPz8/MjY2ZnO2tra0ZMkSGjJkCJszMDCgYcOG0fr168nQ0JDNOzk50fvvv08dO3Zkc0ZGRjR+/HhauXIlKRQKNt+hQwfatGkTqVQqNmdqakovv/wyvfnmm9zj6t69O23evJnMzc3ZnFqtppkzZ9KUKVO4tX379iU/Pz8yMTFhc9bW1rRo0SIaNWoUm1MoFDR48GD68MMPuRgcHR3pvffeoxdeeIHNGRoa0tixY2nVqlVcDO3bt6dNmzaRlZUVmzMxMSFRFGnJkiXc4+rWrZssBpVKRdOnT6cZM2Zwa1966SXatGkTmZqasrnWrVvT/Pnzady4cVwMgwYNoo8++oiMjIzYvL29Pa1YsYJ69+7N5pRKJY0aNYref/99MjAwYPNt27aljz76iOzs7LgYfH196a233uIeV9euXWnz5s1kYWHB5iwsLGjq1Kn02muvcWt79+5Nmzdv5mJo1aoVvfHGG+Tt7c2tdXd3l913dnZ2tHz5curXrx8Xw8iRI+mDDz4gpVLJ5l1cXGjdunXk7OzM5oyNjcnLy4veeecd7nd17tyZNm/ezN135ubm9Morr9Abb7zBre3Zsydt2rRJZmfOnDk0YcIEbm3//v1p48aNMjtLly6lwYMH67WjG4OTkxOtWbOGOnTowNnx8PCQ2enYsaMsBjMzM5o4cSItXLiQe1w9evSgjz/+WGZn1qxZ9Morr3Br3dzcmrQzYsQI7r4bMmQIbdiwQWZn1apV1K1bN5md1atX67VjaWnJ+ddn54UXXqBNmzbJ7MyYMaNJO7oxtG7dmhYsWPCX7PTs2ZO770aPHt2kHVtbW5mdZcuWNdvO7NmzZXb8/Pz02vHy8pLZ2bhxIxdDmzZtaPny5eTm5vandlxdXWn9+vXk5OTULDsff/yxXjuvv/66zM7HH3/M2bGysqI5c+aQKIoyO/ryzrJly2jgwIGcneHDh9O6deu4GJydnWnNmjXUvn37ZtlpnHfMzMxo0qRJtGDBApkdfblz9uzZNHny5D+1Y2NjQ4sWLaLhw4fL7DTOnY6OjrR69Wrq2rWrzM57770ny50ff/wxqdVqzs6ECRNo0aJFMjv68s6rr75K06ZN+1M71tbWtGDBAhozZgwXw+DBg2V2HBwc6N1336UXX3yRi2HMmDEyO+3ataONGzeSjY3N/9jOtGnTaNasWTI7jXNnq1ataN68eeTp6Smz0ziGNm3a0DvvvEMvvfSSzM7atWu5GFxdXenDDz8kBwcHzo63tze9/fbb3O/q0qWLLIam7PTq1Ut231lZWdHrr79OgiBwawcMGCDLO3Z2drRs2TJyd3eX2Wns39nZmdauXUvt2rXj7Hh6etK7777L/a5OnTo1aWf+/Pnc2qb2nbNnz6ZJkyZxa6V9Z2M7ixcvpqFDh3IxDB06VLZnc3JyotWrV1Pnzp25+278+PGyPZu072xs5+WXX5bZ6d69uyzvSPvOxnaa2ncuXLiQRo8eLbPTOHc6ODjQypUrqUePHs22Y21tzdkRBIGWLl3KPS5p39nYzvTp02nmzJnc2j59+jRpx8PDg4th4MCBTdrp06cPZ2fUqFFN2rG3t+fs+Pj4UFBQ0P/1yyhuAHhMzXht2PJCVGecP3+e3SiffPIJhYaGUnl5OfXq1YvatGlDb7zxBp05c4bKyspo586d7En2q6++opiYGCooKCBHR0dydXWlJUuW0OXLl6mqqorWr19PxsbG5OnpSd9//z2lpKTQs2fPyMLCgjp37kzvvvsu3bx5kzQaDc2dO5fMzc3p5Zdfpt27d1NWVhaFhISQgYEB9erViz744AN6+PAhaTQa8vDwICsrK5o+fTodOnSICgoK6MqVK+xJdvPmzRQcHEyVlZXk5uZGtra29Prrr9OpU6eotLSUdu/ezZ5kt2zZQlFRUVRYWEht27YlZ2dnWrRoEf32229UWVlJmzZtYi+Mt2/fTklJSZSenk6WlpbUqVMnWrFiBf3xxx9UU1NDb775JpmZmZEoivTLL79QRkYGRUZGkqGhIb344ou0du1aun//PtXV1ZGvry9ZWlrS1KlT6cCBA5SXl0c3btzgnmQfP35MVVVV5O7uTjY2NvTaa6/RiRMnqLi4mA4ePMieZL/44gt6+vQpFRcXU8eOHcnJyYnefPNNunDhAlVUVNAXX3zBNijffvstJSQkUFZWFrVu3Zo6dOhAb7/9Nl2/fp1qampo+fLlZGpqSr6+vvTTTz9Reno6xcTEkJGREXXv3p3ef/99unfvHtXW1tLkyZNJpVLRK6+8Qvv376fc3Fy6d+8ee5L96KOPKCgoiKqrq2no0KHUunVrmjVrFh07doyKioro+PHj7En2s88+o4iICCotLaVu3bqRg4MDLViwgM6dO0fl5eX0zTffkKGhIY0ePZq++eYbio+Pp9zcXLKzs6N27drRW2+9RVevXqXq6mp67733yMTEhLy9vWnnzp2UmppKCQkJZGpqSt26daNVq1bR7du3qba2lmbMmEEWFhY0efJk2rt3L2VnZ1NAQAApFArq06cPffjhhxQQEEA1NTU0atQoat26Nc2cOZOOHDlChYWFdO7cOc5OWFgYlZWVUc+ePalNmzY0b948ZueHH37g7MTGxlJBQQE5ODiQq6srLV26lK5cuUJVVVW0bt06mZ2UlBQyNzenLl260MqVK+nWrVuk0Whozpw5MjvBwcHMzrp16+jRo0dUW1tL48ePJysrK5oxYwazc/nyZc5OSEgIVVRUUN++fcnOzo7mzp3L7OzatYuzEx0dTYWFheTq6krOzs60ePFiZsfPz49t7nXtqNVqZufGjRtUU1NDCxcuJDMzM5owYQKzExERQUqlktl58OAB1dXVkY+PD1laWtK0adPo4MGDlJeXR3/88Qdn58mTJ1RVVUUDBgwgGxsbmjNnDp08eZJKSkro119/1WunQ4cOzM7FixepoqKCPvvsM712WrVqxez8/vvvVFNTQ8uWLSNTU1MSBIHZiY6Oltmpq6ujiRMnklqtpilTptCvv/5Kubm5dPfuXZmdqqoqGjJkCFlbW9Ps2bPp+PHjVFRURMeOHWMvUCQ7JSUl1LVrV2bn/PnzVF5eTl9//TXboOjasbW1ZXauXbtG1dXVtHLlSjIxMSEfHx/68ccfKTU1leLj48nExIReeOEFWrVqFd25c4dqa2tp+vTppFKpaPLkybRv3z7KycmhR48ekUKhoJdeeomzM3LkSGbn6NGjVFhYSGfOnGEv7j/99FNm58UXXyR7e3uaN28enT17lsrKymjHjh1sg/L1119TbGws5efn67Wzdu1a9sL4hx9+oJSUFEpOTtZr57XXXiNzc3OaOHEi7dmzh7KysujJkydkYGBAvXv35uyMGzeO2Tl8+DAVFBTQpUuX2AsUXTt9+vRhdk6fPk2lpaX0yy+/kIGBAY0YMYK2bt1K0dHRVFBQQC4uLuTi4kKLFy+mS5cuUWVlJXujwMPDg3bs2EHJycmUlpZGKpWKs6PRaGj+/PnMzq5duygjI4PCwsJIqVRSz5496YMPPmB2vLy8ODv5+fl0/fp1Ahpe3G/atInZ6d+/P9na2nJ29u/fz94Y+/LLL5md9u3by+x8+umnZGRkROPGjaPvvvuOEhMTKTMzU6+dpUuXMjs///wzpaenU1RUFBkZGVGPHj04Oy+//DJnJy8vj+7cuUNAw4v7jRs3MjuDBw/m7BQXF9ORI0eYnc8//5zZ6dKli8zO1q1bmZ1t27ZRfHw85eTkkI2NDbVv356WL1/O7KxYsYKzk5aWxtlZvXo1szN16lSZnYcPHzI7GzZsYHZGjBjB2SkqKqLTp09zdsLDw6msrIx69OhB9vb2NH/+fGZn+/bteu3Y29tT27ZtadmyZczOmjVrODvPnj2jpKQkMjMzo65du9J7771Ht2/fJo1GQ7NnzyYLCwtmJzs7m4KCgkihUFDv3r1p/fr15O/vTxqNhsaOHSuzc/HiRWbn448/ZvvOPn36sH2nZOenn34ipVLJ7MTExFBhYSE5OzuTi4sLLVmyhNnZsGEDGRsbc3ZSU1NJpVKxfadkZ968eSx37tq1izIzM2V2Hj58SLW1teTp6cn2nZKda9eucXakfWe/fv3YvlOys2/fPs5OVFQUFRUVUbt27WT7zk8++URmJyMjg6ysrKhjx470zjvvsH3n4sWLZXaePn1KhoaG1KNHD1qzZg3bd4qiSGq1mqZOncrs3Lp1i7Mj7TsHDRrE9p2SncOHD3N2IiMjqaSkhDp37kyOjo60cOFCOn/+PFVUVNCWLVtY7ty2bRslJCRQTk4OWVtbMzvXr1+n6upqeuedd9i+U7ITFxdHxsbGzM7du3eptraWpkyZwu07c3Jy/q9fQslGywvR/8GIiYmh7Oxsbk6j0ZC/vz/V19dz8xEREVRQUMDNlZSUUGhoKGm1Wm4+ODiYSktLubmcnByKiYmRPYaAgACqqqri5p49e0bJycncnFarpUePHpFGo+Hm4+LiKDMzk5urra0lf39/qqur4+YjIyMpPz+fmysrK6Pg4GBZDCEhIVRSUsLN5eXlUVRUlGxtUFAQVVZWcnNpaWmUmJgoi/fRo0dUU1PDzSUkJFBGRgY3V1dXR48ePZLF8PTpU8rLy+PmKioq6PHjx7LHFRoaSsXFxdxcfn4+RUZG6o2hoqKCm0tPT6eEhARZDP7+/lRdXc3NJSYmUlpaGjdXX1/PNnO6Izo6WvYkUl1dTYGBgbL7LiwsjIqKiri5oqIiCg8Pl8Xw5MkTKi8v5+YyMzMpLi5OFkNAQIAshuTkZHr27Bk3p9VqWULSHfrs1NTUUEBAgCyG8PBwKiws5OaeZ6esrIyby87O1msnMDBQZkd64do4hqbsZGVlcXPPs9PY//PsNPafm5ur105gYKDMTmpqKiUlJcni1WcnPj7+P85O4xgSExMpPT2dm6uvr9d730VHR1Nubi43V1VVRUFBQc2yU1hYSBEREbIYHj9+rNdOfHy83hga20lKSqLU1FRu7t9lp7i4mMLCwvT612cnNjZWFoO+vNOUHemNUN0RGxv7T9kpLS2lkJCQZuXO3Nxcio6O/lvaefLkSbNyZ35+Pj19+vSfsqMvhqbs6IshKirqv8JO49z577KTlZX1T9vRl3f02fkr+86/YicnJ+cv2WnuvvOv2NG37ywvL2+2nby8vGbb+av7zr9ip7H/yspKvXb05c6CgoJm28nIyGi2nb/baO4L0T/tmvuvHC1dc1tGy2gZLaNltIyW0TJaRstoGS3jv3f8K7vm/j8z/P39cfXqVdTU1LC52tpa7N69G6mpqdzaGzdu4Pbt26irq2NzpaWl2LdvH3Jycri1Fy9eREBAALRaLZtLT0/HkSNHUFRUxK09ceIEwsLCuI5Y0dHROHPmDMrLy9kcEeHXX39FbGws9/NBQUG4fPkyqqur2VxdXR12796NZ8+ecWtv376Nmzdvora2ls2Vl5djz549yM7O5tZeunQJDx8+RH19PZvLysrCoUOHUFBQwK09deoUQkJCuBji4uJw6tQplJWVcWsPHjyI6Ohobm1wcDB+++03VFX9//2v6uvrsWfPHiQnJ3M/f/fuXdy4cQMajYbNVVZWYvfu3cjMzOTWXr16FQ8ePOBiyMvLw4EDB5Cfn8+tPXPmDJ48ecI9rsTERJw4cQIlJSXc2sOHD+Pp06fc2rCwMFy8eBGVlZVsTqvVYu/evUhMTOR+/sGDB/j999+5GGpqarB7926kp6dza69fv4579+5x911hYSH279+PvLw8bu25c+cQFBTE3XcpKSk4duwYiouLubVHjx5FREQEF0NkZCTOnTuHiooKNkdE2LdvH+Lj47mf9/f3x7Vr1zg7Go0Gu3fvRlpaGrf2xo0buHPnDhdDSUkJ9u7d2yw7aWlpOHr0qMzO8ePH9do5e/aszM7+/ftldgIDA3HlypVm2bl16xZu3brVbDuPHj3Sa6ewsJBbe/LkSb12Tp8+LbNz4MABmZ0nT57g0qVLMju7d+9utp09e/YgKyuLW3vlyhWZndzcXBw8eFDm//Tp03rtnDx5EqWlpdzaQ4cOyeyEhobqtbNnzx6Znfv378vsVFdXY8+ePcjIyODW6rNTUFCAX3/9tdl2jh8/LvN/5MgRmZ2IiAicP39eZmfv3r0yO48ePWq2nT/++EOvnX379iE3lz/K+8KFC3/JTnh4OBdDVFRUk3bi4uK4n3+enca5U5+dsrIy7N27V2bnt99+k9nJzMzE4cOHZXZOnDghsxMbG9uknZiYGG7t48eP9drZs2cPUlJSuJ+/c+cObty4wcXQlJ3Lly/LcmdOTk6TdoKDg7nHlZCQ0KSdqKgobm1ISEiTdpKSkrifb8rO7t27ZXauXbvWbDtnz57F48ePufsuOTm5STuRkZFcDOHh4U3aSUhI4H7+4cOHuH79erPt3L17l4uhuLi4STuBgYFcDKmpqTh69Kgsdx47dkxm5+nTp3pzpz47AQEBuHr1KmenqX3nzZs3cfv27Wbb8ff352LIyMho0k5oaCgXQ0xMjMyOtO/UZ6fxvlPKO/rsNN53VlRUNNtOdnZ2k/vOxnbi4+Nx6tQpmZ2DBw/qtdN439mUnXv37uGPP/7g7FRVVem1c/XqVdy/f5+LIT8/X6+dM2fOyOwkJSU1ue9sbOc/djTnY9N/1fV3/2ruoUOHWEHypEmTaO/evRQbG8ua70i1cv7+/vTFF1+wguRXX32Vjhw5QuHh4eTo6CirM12+fDkrSJbqTIOCgsjCwkJWKyc1QZHqfS5fvkx//PEHGRgYcLVySUlJrAmSVO9z8+ZNOnr0KOEfxfxSrVxcXBxrgqBbK/fNN98Q/lHML9WZRkREkKurq6xWbtWqVayYX6ozffLkCVlaWspq5V599VVWzC993//27dtkaGjI1ZkmJyezRi66daanT59mxfxSnWl8fDwr5NatM/3+++9ZMb9UZ/r06VPWfEO3Vm7dunUEgNX7nDhxgoKDg6l169ayWrm5c+eyYn6pzvT+/ftkZGRERkZGrFYuMTGRxo8fz4r5pXqfCxcusGJ+qVYuPj6eNRDSrZX7+eefWTH/lClTaP/+/RQVFcUaCOjWyvn5+bFifqneJzQ0lOzs7GR1plLzHd16n0ePHpGpqamsztTX15eAhkY4Uq2cVG+sW2eakJDAGjlIdaZ37tyh/fv3EwBW77N3716KiYlhzXd060w///xzAsDVmYaHh5ODg4OszlRq+qRbKxcYGEjm5uas3keyIzVBadu2LauV+/3335kdLy8vZkdqgqRbK3f48GHmX6r3iY2NZU0QdO18/fXXzL9U7xMREcGaPunaWblyJbMj1co9fvyY1Gq1zI7UQEi3Vu7WrVukVCpZvY9kR2rkolsrd+rUKWZHqjONj49nzbd060x37NjB7Ei1ck+fPmXNN6RGOE+ePKEPPviAs3Py5EnOzrBhw5idOXPmcHYuXrxI9+7dY3Z0633Gjh0rs3P+/HnOzs8//0zx8fHUt2/fP7Xz66+/UlRUFHXq1ElmZ+PGjXrt2NrayupMpeY7jo6OzM7Dhw/JxMSEq5VLSEggHx8fmR2pZtLU1JTVyiUmJtKAAQMIAFdnunfvXs7Ovn37KCYmhjXf0a0z/fTTTzk7R48epbCwMGZHt85Uar6haycgIICzI9XKTZw4Ua8dhUJBJiYmrFYuMTGR2ZFq5ZpjR6qVe/ToEX311VfPtaNbKyc1fdFnp3Gt3PTp02V2bt68ydnZsWMHpaSk0LBhw6awy/0AACAASURBVAhoaCIl2Tlx4gTLnVKdaVxcHPXq1YsAcHWm3333ncxOZGQktW3bVlZnumbNGr12WrVqJauVkxrXSbnz4sWLdPfuXZY7JTtJSUmsCZJUK/f777/T2bNnmX/JTkJCArOjWyv3008/6bUjNUzUrZX76KOP9NqxsbGR1crNmzdPZufBgwd67UgNxHTrTH/77TeZnYSEBOrfvz+zI9WZ7tmzR6+dLl26MDsbNmygwMBA+uSTT5idWbNmMTtt2rSR1ZlKTd8cHBxYnam/vz+ZmZlxduLi4ljjSqnO9OrVq3Tt2jVmx9vbm3744QdKSkqiQYMGcXZu375NBw8e5Padkp3u3btzdvz9/WnLli2yfWdERARrmKZrR2qY1njfqVKpZHamTp3K9p1SfxN9dpKTk1kTJN3+JsePH+f2nZIdqXGdbp3pt99+y+07Dx48SBERETI7wcHB9P777zM7uvtOKysrljslO1LjOt195507d7h9p2RHaoKkW2d65swZ2b4zISGBNd/StbNz5069+06pYaKunQ8//JAAcP1NQkJCyNraWmZHavoo1ZlK+05jY2NZnanUQKxDhw6szrTx143/rwea+dVcQ7QMNqRPYyoqKnD37l2oVCrU1tayd1MiIiKgUqmgUqnYO/PFxcW4c+cO1Go1iouLUVNTAyLCkydP2Frpnbnc3Fzcvn0barUanTp1glarRX19PQICAtha6VO8tLQ03Lp1CyqVirWR1mg0ePDgAVQqFTsCAmh410daK72TUllZyWIgIvZuSmRkJPtd0qdtJSUluHPnDlQqFcrKytg7QiEhIWyt9IlQXl4eiyEzMxNarRZarRaBgYFsrfSOUEZGBltrb28PoOGdvocPH0KtVkOlUrF38RITE1kMSqUSQMM7TPfv34darYZCoWDv4kVFRbHfJb2TWVpayv4OlZWV7J3I0NBQtlZ6Zy4/P5/9ruzsbNTV1UGr1SIoKEj23yYzM5OtdXJyYjE8evSIxSC9i5ecnMzWmpmZAWh4h/nevXtQqVQwNDRkn7xGR0ez3yW9w1pWVsb+DjU1NeydyLCwMLZW+lSrsLAQt2/fhkqlQl5eHjQaDYgIjx8/Zo9LiiE7O5s9rrZt24KIUFdXB39/f1kMKSkpbK2lpSWAhk9nHzx4ALVaDRMTE/bfPDY2lv28dM+Ul5ezGBrbkdZKdoqKilgMRUVFzE5wcDBbK9nJyclhj6tjx44gItTX18Pf319mJzU1la21traW2TE3N9drR3rHUtd/fX09Z0d6XNI71cXFxSyG0tJS9o5wSEiIbG1eXh77XV27duXsSGslO+np6ezflexoNBo8fPiQxatrR1qra0e67xQKBfsELCoqiv0u6b+BZEelUqG8vJx9mqLPv66drKwsZkfyr1ar/9SObgy6dqQYTE1NZXaUSiXzHx0dzWLQZ6eyspJ9ihcWFsbWNmWntrYWRKTXf1ZWFmcHaPik79GjR7IYUlJS2L+rVqtZDPfv34dKpYKxsTF7BzwmJob9vPTfu7y8nMs7kv/w8HD2b0rvzOvaKSwsfG7eycnJYc/D7du3/1M70trWrVtz/qW/jXTfxMXFsf820qcbTdnRzZ3SvaRrp6SkhNkJDg5ma/XZ6dKly3Nzp2RHrVbDzs7uuXYSEhLYWoVCAaAhd+qz8/TpU9nfXDfvVFRU/Kkd6Xfp5p2mcmdTeafxY0hKSmJrTUxMZP517ejmTmlO105VVRXLnc/LO2q1Gnl5eairq2N5p3EMWVlZbK2rqyuz82d5x8LCgtmR8o6RkZFeO5JzyY5arYZGo5HZUalUeu0UFBSw3KnPjm7u1LUTEBDAYtCXd1q1asXsSP7NzMz02pE+VdO1o9Vq9dqR/g66doqLizk7jfNObm4u+12dO3dmdnTzjr59Z2M7arUa5ubmMjuSE8mOFIP0OCU7jX9XSUkJ+/mysjLOjrRWX97JzMxEfX19s+w4ODgwO5J/yV9jO0ZGRjI7BgYGevOO9Gmsbu7U3Xfq5h1p31lQUMDizc3N5ew0zv+6eUfXjj7/urnT3t4evXv3xn/aaHkhqjN69uyJNWvWQBRFDBo0CEqlErW1tQgNDcWgQYPg4+PDzoM6duwYnJycIIoi3NzcoFAoUFpaipCQEIwfPx4eHh6wsrICABgbG2PgwIEQRRE9evSAQqFAeno6nj59CkEQMHbsWJibmwNouFmnTZsGURTRqVMnAA03dXp6OkRRxIgRI2BiYgIiQkxMDDp06ABfX1+4uLgAaPjqRk1NDURRxODBg2FoaIi6ujqEhoZiwIAB8Pb2Rps2bQA0fJXBxsYGoiiiX79+MDAwQHl5OUJCQjBmzBh4enqyJ1SVSoWXXnoJoiiiZ8+eUCgUyM7ORkREBHx9fTFu3DiWQMrKyjBx4kQIgoAuXboAaEiAKSkpEEURo0aNYgkzISEBLi4u8PX1ZRu9e/fuoby8HKIoYujQoTA0NER9fT3Cw8PRt29f+Pj4sM35uXPnoFarIYoiBgwYAAMDA1RVVSE4OBijRo2Cl5cX21Dt27cP3bt3hyiK6N27NxQKBfLy8hAREQFvb2+MHz+ePYHW1NTAy8sLgiCgW7duABqSR2JiIkRRxOjRo9mGOTU1FYsXL4YgCGjXrh2Ahq/bFRYWQhRFDBs2DEZGRtBqtYiMjETPnj3h6+vLniQvXboEU1NTCIIAd3d3KJVK1NTUICQkBMOGDYO3tzd7QXXw4EF06tQJgiDgpZdeYi/Qw8LC4OnpCQ8PD7YJJiKMHj0aoiiiW7duUCgUSE5ORmxsLERRxJgxY9gL5qysLMydOxeCIKBDhw4AGr5uk5OTA1EUMXz4cBgbG4OIEBUVhW7dusHX15dtkqTzbHXtaDQahIaGYvDgwfD29mZ2jh49ChcXFwiCwOyUlJQgNDQU48ePh6enJ3sRbGRkhMGDB0MQBGYnLS0NUVFReu3MmDEDgiAwO6GhocjMzIQgCBg5ciSLITo6mv13dHZ2BgD2VTtBEGR23N3d4ePjw5LzyZMn0aZNG+ZfshMcHIyxY8dydiwsLODm5gZRFPHiiy9CoVAgKyurSTuTJk2CKIro3LkzgIYkrs9OfHw8XF1dIQgCS1Z3795FRUUFBEH4Uztnz56FlZUVBEFgdiorKxESEiKzs3fvXvTo0QOiKKJXr15QKBTIzc3Va6eqqgo+Pj4QRRFdu3ZldpKSkiAIAmcnOTkZS5cu5ew8fPgQxcXFzL9kJyIiAr169eLs/PbbbzA1NWX+lUolqqurERoaiuHDh3N2Dhw4gM6dO0MURfTp0wcKhQIFBQV67Wi1WowZM4azk5SUhLi4OOZfspORkYE33niDsxMUFIS8vDxmx8jICESEp0+f4oUXXuDsXL16FQYGBhBFEQMHDmR2QkJCZHaOHDkCV1dXiKKIvn37PteOUqnE0KFDIYoiunfvDoVCgdTUVMTExEAQBIwZM4bZycvLw8yZMyGKIjp27MjZkfKOZCcmJkavnbq6OpZ3lEol6urqEBYWBnd3d3h7ezM7J06ckNkpKytDSEgIxo0bB09PT5Y7zczM0K9fP85OZmYmnj59Cl9fX4wdO5bZKS4ultmJjIxEamoqRFHEyJEjmZ3Y2Fi0bduWs3Pnzh1UVlZCFEUMGTKE2QkNDYWbmxt8fX1Z7jxz5gxatWoFURTRv39/Zic4OBijR4+Gp6cns7Nnzx707NlTZic8PBw+Pj4YN24cs1NZWSmzExMTw/LOqFGjODuOjo7w9fVldh48eNCknd69e8PHx4fZuXjxIszMzCCKItzd3WFgYIDq6mqEhIRgxIgR8PLyYnZ+/fVXdOnSRa8dLy8vjB8/ntmpq6vDuHHjWO5UKBRITEzUayc9PR0LFiyAIAho3749gIaveefn5+u106NHD/j4+DA7V65cgVKp1Gtn6NCh8Pb2Zm/kHz58GG3btuXsFBcXIywsDB4eHvDw8ODsDB8+HIIgMDvPnj3Tayc3NxezZ8+GIAjMTnBwMLKysmR2oqOj0blzZ/j6+jI7v//+O7RaLcs70r4zJCQEAwcO5Padx48fh6OjI8udz7NjamoKd3d3bt+ZkZHRpJ0pU6ZAEARmJyIiQmaHiBAfH4927dpBEAS277x9+7ZeO2FhYejXrx98fHw4O9bW1hAEgdmpqKhg+04vLy+WO/fs2YPevXtDEARmJycnBxEREXrtCIIAQRA4O9LZ6bp2EhMT4eTkBEEQ2L7z/v37KCsrY7lTshMeHo4+ffrA19eX5c4LFy7AwsJC775z5MiRnJ39+/ejW7du3L4zPz8foaGhLHfq2hk/fjzLO0DDHrkpOwsXLuTs/KeOlmZFLaNltIyW0TJaRstoGS2jZbSMltEy/iWjpVnR/2DoFilLo66ujitIft7ampoariD5eWurq6u5guTnra2qqpIVJBNRk2sbj/r6eq6Y/3lrNRoNV8z/vLX/bAzPW9t4/DfEoNVquWL+562tra3livmft/av3Hd/JYbKysp/6r77d9mpqqpqsfOctY3Hf0MM/2l2/tn77t+Zd/6OMfxd77sWO02v/bvmnf+GGP6udv5fy53/LjvV1dX/lvvuP3Uo/fz8/td+2S+//OL35ptv/q/9vr86bt++jQkTJiAtLQ1mZmZwdnaGgYEBRo8ezToCOjs7w9zcHEeOHMH8+fORlZUFtVoNR0dH1NbWYsCAAXj06BFqa2vh4uICU1NTfP3111izZg3y8vLQunVr2NnZobi4GP369WPdFl1dXWFkZITVq1dj69atKCoqgp2dHaytrZGUlITBgwcjISEBSqUSLi4uUCqVmDNnDvbv34/S0lI4ODjA0tISDx8+hLe3N1JTU2FqagpnZ2colUp4enqybnrOzs6wsLDAqVOnMGfOHGRmZkKlUsHR0RFarRYDBw7EvXv3oNFoWAw7duzAypUrkZubi1atWqFNmzYoLy+Hm5sb67bm6uoKY2NjrFu3Dl988QUKCgpga2sLGxsbpKWlYeDAgYiLi4NSqYSrqysMDQ0xf/587Nq1CyUlJbC3t4eVlRWePHmCsWPH4tmzZzAxMWHx+vr64uzZs6ioqICTkxNUKhUuXryIGTNmICMjAxYWFnBycgIRYciQIbh9+zaLwczMDD///DOWL1+OnJwcWFlZwd7eHlVVVXBzc8OTJ0+g1WpZDJs2bcLmzZuRn58PGxsb2NraIisrCwMGDEBMTAwMDAxYDEuWLMHOnTtRXFwMe3t7tGrVCuHh4Rg1ahSSk5NhbGzMYpg8eTJOnDjBxXDt2jVMmTIFaWlpMDc3h5OTExQKBYYPH44//vgDNTU17L7bt28flixZgqysLFhaWsLBwQE1NTXo168fAgMDUV9fD1dXV5iYmOCzzz7DRx99hPz8fFhbW8PW1hb5+flwc3NDVFQUFAoFu+/efvttbN++HcXFxWjTpg1at26NmJgYDBs2DElJSTAyMmIxTJ8+HYcPH0Z5eTkcHR2hVqtx69atJu1IHQFdXFxgbm6Ow4cPY8GCBcjMzOTs9O/fH48ePUJdXR2L4auvvsIHH3yA3NxcZqeoqAhubm6IiIgAABbDe++9h6+//pqzk5iYiCFDhiAhIQGGhoZwdXWFUqnE7Nmz8euvv6KsrIzZefDgAXx8fPDs2TPOzvjx41k3PcnOyZMn8frrr3N26uvrMXDgQNy/fx+1tbVwdXWFqakptm/fjlWrVnF2ysrK0LdvX9blV7rvPvjgA3zxxRcoLCxkdlJTU+Hu7i6zM2/ePOzevZv5t7KyQlBQEMaPH4+UlBTOjo+PD86ePcv5P3/+PGbOnIn09PQ/tfPjjz/inXfe4exUVlbCzc0NwcHBnJ2NGzfi448/RkFBwZ/aWbRoEX788Ufmv1WrVggLC8Po0aORkpLC2Zk4cSJOnjzJ2bl69SqmTp2K9PR0zs6wYcOYHSmGvXv3YunSpcjOzmZ2qqur0a9fPwQFBXF2Pv30U2bHxsYGNjY2yMvLQ79+/RAdHc3ZWb58ObMjxRAdHY0RI0YwO66urjAwMMC0adNw5MgRlJeXw8nJCWq1Gjdu3MDEiRM5/wYGBhg1apTMzqFDh7Bw4ULOf1N2tmzZgnXr1iEvL4/5l+xERkZydlauXIlvvvkGRUVFzH9CQgKGDBmCxMREzs6sWbOYHUdHR1haWuL+/fvw9fWV5Z3x48ezTrTSfXfixAnMnTuX+XdwcGB2Hjx4wNn57rvvmB3Jf2lpKfr16yezs2bNGnz55ZcoLCxk/p89e4ZBgwYhPj4ehoaGcHFxgaGhIebOnYs9e/ZwdgIDA+Hh4SHz7+3tjXPnznF2zp07h1mzZiEjI4P5JyIMHjwYd+7c4ezs3LkTK1asQE5ODvNfUVEBNzc3hISEcHY++ugjfPLJJ1zuzMjIgLu7O2JjYzk7b775Jn7++WeUlJSwGEJDQzFmzBjmX4ph4sSJOHXqFGfn8uXLmDZtGvPv6OgIABg+fDjrpu3s7AwzMzPs3r0by5YtQ3Z2Npc7+/Xrx7p8uri4wMTEBB9//DH8/Pw4O7m5ucyOgYEBXFxcYGRkhGXLluH777/n7ERFRTE7kn8DAwNMmTIFx44d4+z88ccfmDRpkix3jhw5knXTlXLnwYMHZXY0Gg369++PgIAA1NfXsxi2bNmC9evXc3YKCwuZHV3/7777LrZt28bZiY+Px9ChQ5GYmMjlzpkzZ+LgwYMoLy9neefu3bsQRRGpqaksdyqVSowbNw6XLl1CdXU1nJycYGFhgWPHjmHevHmcnbq6Ori7u+PBgweoq6tje7Zt27bh/fffR15eHlq1asXsuLm5ITw8nPO/Zs0abNmyBUVFRbC1tYW1tTVSUlJkdpRKJV5//XXs3buXy50BAQF67Xh5eeH8+fOoqqpiMZw9exazZ8/m7Gi1WgwaNAh3797l9s47d+7Eu+++26QdXf8ffvghPvvsMxQWFrL7TteOtHc2NDTEggUL8Msvv6C0tJTtO6WvBje2M2HCBJw+fRqVlZVwdHSESqXCpUuXMH36dGRkZLD7DgCGDh2Kmzdvcv537dqFt956Czk5ObC0tIS9vT2qq6vh5uYms7N582Zs2rQJBQUFsLa2ho2NDXJyctC/f39mR/K/dOlS/PDDD1zu/LuNTZs2Zfn5+f3ypwub09HoX3X93bvmLlq0iACwy87OjjZt2sTNGRgY0CuvvMK6PUpX27ZtacOGDdycoaEhvfHGG6zrnnR1796dVq9ezc2ZmprSypUryc7OjpsfMGAA634oXWq1mnVP1b1Gjx5NM2fO5OZsbW1lMSgUCpo4cSLrWCddLi4uemN4/fXXWbdX6eratSvraCZdJiYm9Pbbb7Puh9LVt29f1v1UulQqFW3cuJEUCgU3P2LECNZ1U7qsra1l8SoUChIEgQRB4OadnJxYhz/pUiqVNHPmTNaxTro6depEa9eu5eaMjY1p6dKlrPuZdPXu3Zt1oZMuc3NzWr9+PZmamnLzw4YNY50DpatVq1ayvwMA8vb2pkmTJnFzDg4OrMOn7n03ffp01ilVujp06EDr16/n5oyMjOjNN99kXTelq2fPnqyDq3SZmZnRmjVryNLSkpsfPHgwvfnmm9yclZWV3vvOw8ODdd2TrjZt2uiNYcqUKazbo64dfTHMnz+fdd2Trh49erAOzrp23nvvPbK1tZXZWbx4cbPsjBkzhnV7bo4dDw8Pbt7V1VV230l2pI6V0tWtWzfWSbOxHan7oXS5ubk1aadxDCNHjmy2HVEUm21n1qxZNHDgQG6+c+fOeu0sW7aMdd2Vrj59+tDbb7/NzVlYWNCHH35IxsbGMjtS50Dpat26dZN2pG6vf2ZnxowZrFOqdHXs2JF10ta97xYtWsS6bkpXr169WAdX6TI3N6e1a9eSWq2W2ZG67ura2bx5s147U6ZMkdnRl3emTJlCo0aN4ubbtWvHujI2tiN1rP0zO6tWrSJra2tu3t3dXWbH0tJSr52xY8c2286kSZP02tGXd+bOncs6Vura0Zc7V6xYQY6OjjI7y5Ytk9nRdy+NGjWKdd2ULhsbG70xiKLIOiVLl7Ozs147s2fPZp2SpatLly4yOyYmJrRs2TLWOVS6XnrpJb12NmzYQEZGRtz88OHDWbf3P7Pj4+PDur1Kl6Ojo8yOUqmkV199lXVKfZ4dY2NjWrx4MetYrWtnxYoVMjsffPABWVhYNMtOU3lHOmVAuuzt7fX6nzp1Ko0cOZKbb9++vd68s2DBAr129OXO1atXU+vWrbn5gQMHyvaSTdkZN24c6/YsXXZ2dnqfsydPnkzjxo3j5p+375ROGZCuF154QbZnk+zY29tz8/3799drR1/eGT16tF47+mKYMGGCXjuNY1AqlfTaa681285bb73FTnuQrr59+7ITKxrbMTQ0/FM71tbWeu34+vrShAkTmm1H6jIuXZ06ddJrZ8mSJTI7vXv31pt3PvjgAzI3N+fmhwwZQkFBQf/XL6O4gWZ2zW15IaozLl++zLUBz8nJoZqaGurduzd3/ER9fT3t2rWLa6FfWFhIpaWl5OzszB0/odVqyc/Pj2uhX1ZWRpmZmWRlZcUdP0FEtHDhQnZ0y5UrV6iqqooiIyPJ3NycHT+RkpJCWq2WfHx8uOMnNBoN/fHHH2Rubs5a6GdlZZFGo6H+/ftT79692fET9fX19Ouvv5KVlRVroV9QUEDl5eXUvn17cnd3Z8dPaLVa+uyzz7gW+qWlpZSTk0PW1tasDXh0dDRptVpatmwZ10K/srKSYmNjydzcnGsDTkQ0ceJE7vgJjUZDd+/e5VroZ2RkUG1tLQ0ePJh69uzJjp+oq6ujY8eOcS308/PzqbKykjp37sy10NdqtfT1119zLfRLSkooPz+fbG1tWQv9p0+fklarpZUrV3LHT1RUVFBiYiJZWFhwx08QEU2fPp07fqKmpoa1epda6Kenp1NdXR2NHDmSevTowY6fqKurozNnznAt9PPy8qi6upq6d+/O2oAHBQVRfX097dixg2uhX1xcTEVFReTg4MDagEdERJBWq6W1a9dyR7eUl5fTs2fPSK1Wsxb68fHxRET02muvcS30q6urKTg4mMzMzFgL/bS0NKqvr6dx48ZxLfRra2vp0qVLeu306tWLtdCX7Pzyyy+cnaKiImZHt4W+VquljRs3yuxkZGQwO9LxE0RE8+fPl9mJiIggMzMzdvzEs2fPSKvVkre3N3f8hEajod9//507fiI7O5s0Gg25ublxx0/U19fT/v379dpp27Yta6Ev2fn0009ZC33JTnZ2NrVu3Zproa/Vamnp0qXk4uJCS5YsYXaio6P12nn55ZdZC33Jzp07dzg7mZmZVFtbS4MGDeJa6NfV1dGRI0f02unUqRPXQl+r1dLWrVv/1E5UVBRptVpasWIFd/xERUUFJSQk6LUzdepUroV+TU0NPXr0SGantraWhg8fzrXQr6uro9OnT5NaraapU6cyO1VVVdStWzeuhX59fT1t376dtdCX7BQWFpK9vT3XQl+r1dKaNWtYC/3z589TRUUFpaSkkFqt5lroExHNnj2b2bl+/TpVV1fT48ePyczMjHx9fTk7Y8eOZXbu3r1LtbW1dPHiRVKpVPTKK6/Q/v37KScnh6qrqzk7gYGBVF9fTz/99BM7fuLYsWNUVFREJSUl5OTkJLOzYcMGsre3p/nz59O5c+eovLyc0tPTOTtxcXFERDRv3jzu+Inq6moKDw8nc3NzdvzEs2fPqL6+nry8vLjjJ2pra+n69evc8RPZ2dlUU1NDffv25Y6fqK+vp3379rHjJyQ7ZWVl1LZtWxo4cCA7fkKr1dInn3zCHT+ha2fkyJHMDhHR4sWLmZ3Lly9TVVUVRUVFkbm5OTv2TLIjiiJ3/IRGo6Fbt25xx55lZmaSRqMhd3d3mZ3Dhw9zx57l5+dTRUUFdezYUWZny5Yt3PETpaWllJeXRzY2NtzxE1qtlt555x3u+InKykqKj48nCwsLdvyEZGfKlCkyOw8ePOCOn5By57Bhw+jFF1/k7Jw8eZLZOXDgAGenX79+zI5Wq6Vvv/2WO35CstOmTRt27JlkZ/Xq1dzxExUVFZScnEwqlYodeybZmTlzpsxOUFAQs/PTTz9RWloa1dXV0ejRo9mb+JKdCxcucHZyc3OpurqaXnzxRXZ0k2Tnxx9/lNkpLi4mR0dHduyZZOfDDz+U2UlLSyNLS0t27Jlk54033pDZCQ0NJTMzM3bsWWpqKtXX15Onpyd169aNs3P16lXuyEBdO7pHBtbX19OePXu4o1sKCwuprKyMXF1duSMDtVotbd68mbNTVlZGWVlZ1KpVK3ZkoGRn0aJF3JGB+uxI+05BELgjAzUaDd28eZOzI+073d3d2bFnkp1Dhw5xdgoKCqiiooI6dOjAHXum1Wrpyy+/lNnJzc1ldqRjz7RaLS1fvlxmJy4ujtnZvn07JSUlERHR5MmTuSMDa2pq6P79+3rtDBkyhDsysK6ujk6cOMEd3SLZ6dKlCzsyULKzbds2srGxYUcGlpSUUEFBAdnZ2XFHBmq1Wlq1ahV3ZGBFRQUlJSXptfPqq6+yfeff8egWopYXov+jkZ6eTtXV1dycRqOh1NRU2dpnz55RbW0tN1dWVkbZ2dmytcnJyVRfX8/NFRYWUmFhoWxtYmIiabVabi4nJ4fKysq4Oa1WyxKS7sjIyKCqqipurra2llJSUvTGoNFouLmKigrKysrSG0NdXR03V1RURAUFBbK1SUlJshhyc3OptLRUtlZfvBkZGVRZWcnN1dXVsU2E7khNTZUBrKyspIyMDNnalJQUWQzFxcWUl5fXrBjy8vKopKSkWTFkZmZSRUUFN1dfX8+eCHVHWlqaLIbq6mpKT09vVgzSk7O+GBrfd/n5+VRUVNSsGLKysqi8vJyb02q1emPQZ6empuYv2cnJyZGt1WenoKCg2XayeAidJAAAIABJREFUs7P/1+yUl5c3aUef/+baycnJ+bfZaRzDX7WTn5/frBj+N+1UVVU1205JSUmT/vXZKS4ublYMTdnRd9+lpaX9W+zoi6GgoKDZ/v+KnfT0dL12nj17pjcGfXb+Su7UZ6ep3PnP2tHnvyk7mZmZemP4Z+zk5ub+03aamzv/LnYax9BU3mnKTlpamt4YGtuR3lBvTgxN2dH3N8vOzm62f312NBpNk3Yax/CvsNPcvPNXcudfsVNRUaHXjr77rqio6N9mp7H/pvJOU3aamzufZ0df7myunb/baO4L0ZauuS2jZbSMltEyWkbLaBkto2W0jJbRMv4lo7ldc1uaFemMO3fu4MaNG6yYH2johPXll1/C0NCQNZEAGs7gevz4MStIBhoOt/3qq69YEbl0yO+RI0cQFxfHmkgADWcA/fzzz6yoWlr7yy+/IDs7mxWRAw1noR0/fpwrSCYibNu2DZWVlayJBNBwjti1a9dYMT/Q0IHtyy+/hFKp5GK4fPky/P39WSMMoOFg6K1bt7LDgKXHdfz4cURHR3MxZGVlYefOnayYX1q7Z88eZGZmsoYEQMNhwEeOHGHF/NL47rvvUF5ezgrhAcDf3x+XLl1ijTCAhg5sW7ZsAQDWCAcArl+/jvv377MmEkBDx7otW7bA3Nyci+HUqVOIiIhgjTCAhvPzduzYwYr5pbX79u1DamoqK4QHGs5tPHDgAGuEIQ2p2YJUCA80nCN44cIF1kQCaOjAtnXrVtTX13Mx3LhxA3fu3OFiqKmpwZdffglTU1M4Ojqyx3X27FmEhYWxJhJAwyHj27Ztg5WVFdq0acPWHjhwAMnJyXBxcWExJCcnY+/evawRhjR27tyJgoICLoaQkBCcOXOGi4GI8NVXX6G2tpYV8wP67Wg0Gnz55ZcwMjJiTSQA/XZKSkrw9ddfs2J+XTvx8fH/H3vnHVbFtfX/76GKXUGl2hVQ0NhiizV2OYmJKXqNvSQxlhgRGwr2jgrYsaKCvSuICqLYsCOIIipI773D/v1B9npnMwPizb33zX1/rOeZf+bZcGad2Z+zNodZn03N/EDpptu7d++WsbNr1y4kJCQI8y4oKAjHjx9XZCc3N1eYd7dv38bVq1dJwASUsrN27VpFdu7fv08iDKBidkJDQ4UcymPHzc0NMTExAv8hISGK7GzZskXGzt27d3H58uVKsePt7Y07d+6QRAKomJ0XL16QRAIo3T/P2dmZJDJSdj58+CDk8Pr1a7i7u5MIg4eLiwvS09Nl7Fy4cIFEGEApO+vXr0dJSYmQw7Vr1+Dv7y/kkJeXVyE70hySk5OxdevWctmR8v/27Vvs37+/Uuw8fvwYZ86cIREGn3dK7Pj5+eHGjRsydtauXQsdHR2BnfPnz+PRo0cydpycnFCrVi2BnSNHjuDNmzdCDpGRkdizZw+JMPjYnTt3IiEhgUQYAPD8+XOcOHFCxo6TkxMJlHgOt27dgo+PT6XYuXTpEh48eCCwk5mZiU2bNsnY8fT0lLETExODHTt2yNjZs2cPYmNjZex4eHjI2Nm8eTOys7Nl7Fy5ckXIobi4GOvWrYNKpRLmnZeXF+7cuSPkUB47J06cQHBwsIwdFxcXGTv79u2TsfPq1SscPnxYVnecnZ1l7Dx48KBcdhhjlWZHT09PYOf06dPlssMlMnzswYMHERERIcy78PBwHDhwQMbOtm3bkJqaKsy7itjhMh6eg6+vL3x9fRXZ0dXVFdg5d+4cHj9+LLCTlpYGJycnWd05fPiwjJ2IiAi4ubmRgI3Hzp07kZiYKOTw7NkznDx5UpEdLlDj887f3x8+Pj6VWndevHgRgYGBMnaU1p0eHh6ydWd0dDR27typyE7ZdWdwcDA8PT0Fdhhj2LJlC3JycoQc7ty5Uy47GhoaH2UnOzsbGzZsIGkWv67jx48jJCREmHdxcXFwdXVVZCcqKqrS7GRkZAhr5/v37+PSpUsydtatWydjx8fHR7buzM3Nxfr162XsnDp1SrbuTEpKqjQ7b968qTQ7f7eokhX9E+Hm5kaNv7xH8vr169RALO2R5M3GmpqarHfv3mz9+vXMy8uLmr6lPZJcXKOjo0N9XufPn6dGfWmPJG/klvZ5eXh4MA0NDQaAnlX39/dnHTt2pEZ43ue1fft2yoE/q37jxg0S10j7vHhztYaGBvviiy/Y2rVrmbe3NwlTpD2SXFyhra3NBgwYwLZs2cIuXLhAkpvmzZtTjySXIEj7vI4fP04N4tIeSd6MLu2R3L17N+XQsWNHtnTpUubr68ssLS2piZz3SK5atYoa4Xmfl4+PDzWuGxkZUY8klz5oaWlRj+SlS5dINtC0aVM2Y8YM5u3tTfKdatWqUY/kqVOnSBAh7ZHkEhRpj+T+/fspB97ndfPmTZLvSHsk169fTznwPq9r166xpk2bMgBCjySXjWhqalKf15UrV0jU07hxY+qRHDNmDDXz8x7JM2fOkFypdevW1F/MBULSHkl3d3ehaX7x4sXs5s2brF27dgwoFTDxHsktW7YI7KxYsYJdv36dNW/enAGlApby2NmwYQO7cuUKa9iwIQNK5SW8R7I8dnijvrRHksu3pOwcPXqU2OF9Xv7+/iQQkrKzbds2QdawbNky5uvrS+IaKTtcTMLZWbduHbt69SoJU6TscHEFZ2fr1q3s4sWLJLnhfV4+Pj4kQSjLjqamJrEzf/58duvWLda5c+ePsuPg4MB8fX2ZhYUFSSR4j+SKFSsU2TE1NSV2eI8kFyaVZadu3brEDu8v5vKdatWqUY/kyZMnZez4+/uzHj16EDsjR45k+/fvZ/v27ZOx4+fnx9q2bUv8jxkzhnl4eLB169bJ2PHx8SFhkqGhIZs8eTI7c+YMmzt3roydy5cvM319fQaUin94nxeXvknZOX36NNPV1SV2eJ9Xv379iB3eI3no0KGPssN7JJ2cnD7KDu8v5qIOTU1N6pFUYufy5csk39DR0WGDBw9mLi4u7Ny5czJ2bty4wQYPHkzs8D6vo0ePkkxOiR1pn5erq6uMnRs3bhA7DRo0oD4vJXa8vb2JHWmfFxemaWtrU4/khQsXZOxcu3aN5Fu8z2vXrl3M09NTxs7t27dJvift89q1a5dQOx0cHJifnx8zNzcX2Dl+/Dixo6GhwXr27EnscFGftEeSS1+0tLSoz+vSpUusTp06DCgVzvEeSS7f4ezs3LmTnThxgmqnlB0uQZH2SO7du1eRHS7f4ex4enqytWvXEjvdu3cndrgwibNz9uxZEqZoaWmxfv36ETtcciVlZ9SoUcQO75GUsiPtkeQCIWmP5MGDBymH9u3bs8WLFzM/Pz+SPkp7JDk7KpWKeiSvXbtGskFpjyQXxHF2Nm7cyC5fvkyCSCk748ePF9hxdXVlZ8+eZXp6egyA0CPJ5VtSdg4fPkzs8B5Jf39/km9J2XF2dqZ8eY/k9evXWcuWLWXscDGZhoYG9Uh6e3szQ0NDGTtc+sTZcXZ2pn50oHTdydkZPny4wM7u3bvZsWPHiB3pulOJnZ07dwrs8HWnEjtc2sbZ4etOzo60R5KLOqXsXLx4UWCH90hy6WN57FhaWjI7Ozvm7+9P8r1atWoRO9L1P+8v9vPzE9adnJ01a9YI7KxevVpYd0rZ4aIuzo6TkxO7fPkyrTubNGnCZsyYwby8vEhcVZYdLvUzNzdntra2zM/Pj/Xu3VvGjtJj5v+bgUo+mvv3/DP6fymk+xjl5OQgNzcXubm5tN9Pfn4+cnJykJOTQ/sjFRcX09icnBza3ygvL4/O8b2FioqK6Oezs7Pptfjr5Obm0t5RhYWFNJZ/Y1N2LP+9hYWF9FrSPY+kY6U58LE8h5KSEiFfngMfK70ungP/HezPR7s/dl3VqlWjsdLX4u+5dKx0Lyal+1BQUEDneA6MMeG9LXsfpDnwe8bHVjaHnJwc4br4tSnlwL/hko7NycmhseXlIH2tsvdMOrakpITGSnOQ5iudd/xc2RzKy1f6fpeXrzQH6byT5qs0l6TsSPOV3gf+WtJ5J82Xh3SsUg78G8yyOSiNle7LJX0tpfvAr4vfh9zcXGHeKY3l+fKxlc2Bf4v6sXknfW+lv7fsXOI/rzTvyrJT9j6UzeFj90w6x5TmhzQHPpb/Tv57+e+uTA5lP8OkOZRlR+kzjF+XEjtl54cSO2Xvo3RsXl4enS8oKJBdV9nfW1G+ZeuOUg5K90Gp7kjzldYd6WeYUr48h/LqjtJnWNm6Ix1bmc/ssvNO6fNOeh/4fxU+NQfpe1tR/ZfWTiX+pfehbN1Ruq6y9ywnJ4f+a1R2rFLdke6vWN5cKnsfeO0sy055n2GVrf/Sz+zK1p2cnBzhvzt8rHTfRaW6I63/lak70rFKc0mp7khzqOgzW/o7eQ5lxyrV/7K/t6IcKlP/lT6zs7KyFOeH0uedjo6OsGarKAelz3fpvFPKV5pDWf7LvpZ0rVBe3anMeqeiNYx0/a9UOytas5Xl72P1X3pdSvmWV3c+toZR2vP0vyIq89fqv+r4u/9H9MaNG8zZ2Vlo7C8oKGBLliwhKyWPM2fOkFmLR3p6OrO3tyejK48DBw6wQ4cOCQ3WHz58YI6OjmR05eHi4kJWSh7Pnz8XzFqMlTaNr1mzhqyUPG7evMm2bNkiNJQXFhYyBwcHMrryOH/+PNu5c6cgJ8jMzGT29vZkdOVx+PBhstLxiImJYUuXLiWjK4/t27eTlZJHSEgIW716NRldeaxbt46MrjwCAgKYk5MTGV0ZK218d3R0JKMrj8uXL5OVjkd2djazt7cnoysPDw8PMrrySEhIEIyuPHbv3k1GVx6vXr0SbMg8Nm3aREZXHvfv3xdsyIyVNr4vX76cjK48vL29yUrJIy8vj9nb25PRlceJEyfISskjOTmZ2dvbk9GVx969e8lKyePt27eClY7H5s2byejK49GjR4KVjjFGJktudOVx/fp1GTv5+fmK7Jw+fZqMrjzS0tLKZYcbXXlERkYqsuPs7Cxj59mzZ4KVkuewevVqRXakVkrGStlZunSpIjvc6MojMzOTLV68WMaOu7s7GV15REdHV5qd4ODgCtmR5hAQECDYkBkrZcfBwUHGzqVLl8joyiM7O5v+eydl5+jRozJ24uPjBSslj507dyqyIzW68tiwYQM7c+aMwP+9e/cEoytjpewsW7asUuzk5uYye3t7slLyOH78uIydpKQktmTJErJS8nBzc5OxEx4eLhhdeSix8/DhQ8HoyljpvFuxYgW7dOmSkMO1a9cEGzJj5bNz6tSpctnhVkoe+/fvl7ETEREhGF15bN26VcbO06dPy2WHWyl5+Pn5lcsOt1LyOHfuHNu1a5dQOzMyMpi9vT1ZKXkcOnRIkR2p0ZXHtm3bZOy8ePFCsCHzWLt2rYyd27dvCzZkxv6HHW505XHx4kVFduzt7cnoykOJnbi4uHLZ4UZXHqGhoeWyw42uPO7evVsuO9zoysPLy6vS7Bw7dqzS7PAnUaRCuTdv3iiy4+TkREZXHoGBgeWyw42uPHx8fJiLi4sgxcnPz2f29vZkdOVx6tQpsiHzSE1NLZcdbnTl8f79+3LZ4UZXHk+ePFFkZ9WqVTJ2fH19BaMrY6XrTiV2zp49K1t3VsQON7ryiIqKUmTH1dWVjK48goKCZOyUlJSwtWvXktGVx61btypkR5rDxYsXZevOrKwstnjxYhk7R44cka07Y2NjFdnZsWOHjJ2XL18q1s7169crslN23VlcXMwcHR1l7Fy5ckW27szJyaH/3ktz8PT0JBsyj8TERMGGzGP37t0ydsLCwhTZ2bRpk4ydv1ugSlZUFVVRFVVRFVVRFVVRFVVRFVVRFf/JqKysSONjA/5/ivj4eOHf80Dpv70TExNlY+Pi4oTHYIDShuv09HTZ2JiYGJT9gz89PV14PIdHbGys7FxycrLw+AZQ+p9spbEJCQmyHIqKipCQkFCpHHJzc5Gamqp4XWVzyMjIEB71qCiHlJQUxccGlMYmJiYKj7YBpY81xMfHK+YgfYQUKH3UISUlpVI5ZGZmIjMzs1JjU1JShMckPjWHkpISxMXFycbGx8fLcsjPz0dycnKlrisrKwsZGRmVGpuWliY8FlJRDklJSfRYCY/y5p0SOwUFBX+ZnfJy+Duyk5OT81/HTtkc/hXsKH3epaam/qUc/tPslJdDZfn/VHbK5lBQUICkpCTF1/ordedT+P9Ps5OWlqZ4Xf/q2lneWKUcPoWdv2vt/Hexk5mZWem683dlJysr65PqzqfUzr/CzqesO/+T7DDGEBMTU6kc/n9jJy8v75PY+ZTaWVl2/lujyporidu3b6N79+548eIF2dm0tbXRp08fHDx4EAkJCWTqOn78ONRqNUJDQwEAZmZmAABra2tcuHABKSkpZOravHkzJk6ciPDwcGhpacHU1BSZmZkwNzfHzZs3kZGRQWZSW1tbzJs3DxEREahWrRpMTEwQGRkJS0tLBAYGIjc3lyx3//jHP7BhwwZER0ejZs2aMDIyQmBgILp06YLnz5+TnVFXVxcDBgzAvn37EB8fT6auc+fOYfDgwXj58iUYY2Sj69ChA86cOYOUlBQyk27fvh1jxozBmzdvoKmpCVNTU+Tm5sLc3Bw3btxARkYGWe4WLVqEOXPm4P3799DV1YWJiQliY2NhYWGB+/fvIycnB0ZGRqhZsyYmTJiA1atXIyoqCjVq1ICxsTGePXuGDh064NmzZygoKCBj4tChQ7Fr1y7Ex8eT5e7KlSv48ssvERISgpKSEjK5de7cGSdPnkRycjIZIt3c3PDDDz8gLCwMGhoaMDMzQ0FBASwsLODj44P09HQ0bNgQdevWxbJlyzBjxgy8e/cOOjo6MDU1RWJiIszNzXHnzh1kZ2eTIW7atGlYtmwZPnz4gOrVq8PY2BghISFo164dnjx5gvz8fLLcfv3113B1dUVcXBxZ7q5du4Y+ffogODgYxcXFNO+6d+8ODw8PJCUloV69ejAwMMChQ4fwzTff4PXr11CpVDAzM0NxcTHatGmDK1euIC0tDQ0aNEC9evWwZs0a/Pzzz3j37h3Nu9TUVLRu3Rq3b99GVlYW5TBjxgzY29vjw4cPNO/evHmDtm3b4tGjR8jLy6Mcvv/+e2zZsgWxsbFkubx9+zZ69OghsKOjo4PevXvD3d0diYmJxM6xY8dk7DDGYG1tjYsXLyI1NZXYcXJykrGTlZWF1q1b4+bNm8jMzCTL3dy5c2FnZ4fIyEiadxEREYrsjB49Ghs2bEBMTAyZ+u7fv4/PP/+c2OE5fPnll9i3bx8SEhLIrnrmzBkMHToUoaGhKCkpgZmZGVQqFTp06ICzZ88iJSWFLHeurq746aefEB4eTvMuJydHkZ2FCxdizpw5iIiIoHkXHR0Nc3NzYofbFcePH4/Vq1cjOjqa2Hny5Ak6duwoY2fIkCHYvXs34uPjUadOHTRq1AiXL1/GgAEDiB0zMzNoaGgI7HBD5J49ezBq1CiEhYXRvMvPz4elpSWxww2RDg4OmDlzJt6/f085JCQkoHXr1rh7967AzpQpU7B8+XJERUURO8HBwWjfvj2ePn1K865atWr46quvsG3bNsTFxaF27dowNDSEj48P+vTpg5CQEOEzu1u3bvD09ERSUhIZIg8ePIiRI0fi9evXNO+KiorQpk0beHt7IzU1lQyRq1evJna0tbUFdgICApCZmUk5/Pbbb8SOnp4eTExMEBYWBisrKzx+/Fhg57vvviN2atWqBSMjI9y8eRM9e/aUsdOrVy8ZOx4eHvjqq6/w6tWrj7KzceNGTJ48mdgxMzNDRkYGWrduDX9/f6o7tWvXxpw5czB//nxERkYS/+/fv0ebNm3w8OFD5OTkkOVy1KhR2LhxI2JiYqju3Lt3D127dkVQUBDNOx0dHfTv3x8HDhwQ6s7p06cxbNgwhIaGgjFG7LRv3x7nzp1DcnIysePi4oJx48ZR3TEzM0N2djbMzc3h6+sr1M4FCxbgjz/+QEREBHR1dQV2Hjx4ILAzduxYrFmzRmDn8ePH6NixI54/fy6wM3jwYBk7Fy9exMCBA/Hy5UtiR1NTE506dcKpU6eQlJRE7OzatQujR48W6k5+fj7Mzc1x7do1pKWlETtLly7FrFmzhLrD2bl37x6ys7MphylTpmDFihVC3Xnx4gWxw+tOtWrVoFarsWPHDsTGxhI7V69eRb9+/aju8By6du2KY8eOCewcOHCA2OH8FxYWEjtpaWnEzsqVK/Hrr7/i7du3xE5KSgqxI607v/76K5YuXYrIyEhi5/Xr1wI73Jj67bffwtnZWWDHz88PX3zxBbHDjak9e/bEkSNHBHaOHj2KESNGCOyUlJTAysoKly5dEtjZsGEDpkyZIrCTnp5O7HD+a9eujd9//x0LFy4U1mzv3r0jdnJzc4mdH3/8EZs2bRLYuXPnDrp164agoCAUFhaSMbVfv344cOAAEhISiJ2TJ09i+PDhAjsA0L59e5w/f16oO1u3bsX48eMRHh7+UXbs7Oxga2srsBMVFQULCwtihxtix44di3Xr1gnsPHr0CJ06dRLY0dHRwaBBg+Dm5ibwf+HCBRk7Ghoa6NixI06fPi3wv3PnThk7eXl5sLCwwLVr14S6s2TJEsyaNUuoO/Hx8TA3N5exM2nSJKxcuVKoO0FBQfjss8+IHc6/jY0NduzYIdQdLy8v9O/fHyEhIcSOlpYWPv/8cxw/fpz419fXx759+/D9998LtbOwsBCWlpbEDs9hxYoVmD59OtUdMzMzJCUlCezwHTF++eUXODg4CPxLnRh/h6iy5v4Twe2W/Khfvz5btmyZcA4A+/bbb9mXX34pnDM2NmZLliwRzqlUKjZp0iSyvfGjVatWbN68ecI5LS0t9scff5DBjR8dOnQgcxg/9PT0mKOjo+y6+vTpQ7ZHftStW1cxh6+++ooso/wwNDRUzGH8+PFkSuNH8+bNmZ2dnXBOU1OTzZ49m+xn/GjXrh1ZN/lRrVo15uDgQGY5fvTs2ZONGzdOOFe7dm3FfIcNG0amRH40bNiQrIzSY8yYMaxbt27CuaZNm5KFUprDb7/9RtY9frRt25bNnj1bOKerq8sWL15MFlp+dOvWjU2cOFE4V7NmTcX7MHjwYLK98cPAwICMxtLjxx9/ZL169RLONW7cmC1evFg4p6GhwX7++WcyJfPD0tKS/fHHH8I5bW1tNn/+fLIf86NLly5krORHjRo1FO/DgAEDyDIsZUcph5EjR5Khlx8mJiayHFQqFZs8eTJZhvnRunVrMgdL2Zk7dy6Zg/nRsWNHsj3zo3r16oo59O3bl40ePVo4V69ePcV79vXXX5MpkR9GRkayecfZ4ZZRfrRo0YIMjmXZ4cZqfrRv375cdspeV69evSrNzvDhw2XsNGrUqFx2uGWwMuxwYy0/rKysyFgtZcfe3p5sgPzo3r27jJ1atWop3ochQ4awESNGCOcaNGhQLjvcbi1lhxucy7LDba9Sdrg5lB86OjpswYIFZHDlx+eff07GSik73BZZlh1uGeaHvr6+Yr4jR45kffv2Fc6ZmpqSSVM676ZMmUKm1IrY0dbWZra2tmQ/5UenTp0qzU6/fv0qzc6IESMU2VGqOxMmTCDLqJQdpdo5Z84csu5K2eHGWn7o6ekpXlevXr3YTz/9JJyrU6eO4lgbGxuy23+MnZ9++onM8Pxo1qyZIjszZswgY+3H2FmyZAlZqKXscFPyx9gZOnQo2e0/xs7o0aNZz549K8XOr7/+SrsMSNnh5lApOwsXLqSdAypip2bNmorzbuDAgWQZlrKjlMP333+vyI5S3Zk6daoiO0q1c968eWQ/lbJTdi1ZHjv9+/cnU6qUHaWx33zzDRswYIBwrrx158SJE1n79u2F8y1btpSt2Tg7fLcHfnTo0EGRHaX3tnfv3orsKOWgVqsV2SmbAwA2duxYGTvNmzdXZGfmzJlkrOWHtbU1mzlzpiI73KTLj549e8rYqV27drnscLs9Pxo2bFguO9xuzY8mTZpUmp02bdoo1p2FCxeS/ZwfXbt2ZYGBgf/bf0YJgUr2iFb9ISoJb29v2oaAywmKiopY165daQsPLifYt2+foFIvLCxkOTk5zNzcnLbw4HKClStXkkqdN1jHx8czMzMz2oaAN1hPnz6dtiHgcoKXL18yY2Nj2oYgMzOTlZSUsG+//Za2IeByAl9fX9a4cWP222+/kdijuLiYffHFF2zo0KGCnODw4cPCNgQFBQUsLy+PtWnThrYh4A3W69evp20IeIN1UlISa9KkCW1DwBv7f//9d9a1a1ehwfrNmzfMxMSEVOq8sf/HH3+kbQi4nCAgIEBQqfMc+vbtSyp1LvY4ceKEsA1BQUEBy8/PZ9bW1qRS53KCLVu20DYEXE6QmprKmjVrRip1Lvaws7OjbQi4nOD9+/fMxMSEVOo8h3HjxrFevXoJcoLAwEBmampKKvWcnBxWUlLCBg0aRNsQcLHHuXPnhG0I8vPzWWFhIevYsSOp1LmcYPv27axt27a0DUFRURHLyMhgLVu2JJU6lxPY29vTNgRcThAdHc1MTU1Jpc7FHpMnTyaVOpcTPHv2jJmYmNA2BNnZ2aykpIQNHz6cVOpcTuDl5aXIzueff04qdc7O3r17ZexkZ2ez1q1bk0qdywlWrFjBOnToILATFxdH7EjlBL/++ittQ8DZCQkJIXa4nKCkpIR98803pFLn7Ny4cYPY4XKC4uJi1qNHD1Kpc3bc3d2FbQgKCwtZbm4us7S0JJU6Z2fdunWsffv2gpxAyo5UTjB79mzahoCzExYWxoyNjYkdLif44YcfaBsCzs7t27c/yg4Xexw7duyj7MTGxjLGSoU81tbWFbLD+Z83bx5tQ8ClWO/evVNk56effqJtCLgU68GDB4rsDBw4kLYh4GKPs2fP0vZXnJ2CggL22WefydjZtm2ym61JAAAgAElEQVQbbUMgZadFixYydhYvXkzbEHB2Pnz4wExNTdm4ceMEscekSZOIHS6Ue/LkCTMxMaFtCDg7w4YNk7Fz+fJlYRuC/Px8VlRUxLp06ULscLHHnj17aBuCW7duscLCQpaVlaXIzrJly2gbAi7FKo+dX375hbYh4GKP4OBgZmJiwqZMmSKw8/XXXxM7XOxx/fp1YRsCzk737t2JHS72OHTokLANgZSdb7/9VmBn7dq1xA4XyiUmJrLGjRuzf/zjHwI7s2bNIna4UO7169fMxMSETZo0SWDn+++/J3a4UO7WrVvMzMyMtr/i7PTu3VvGjqenJ23hwYVy+fn5zMrKSsbOpk2baAsPLpRLSUlhTZs2ZaNGjRLYsbW1LZedCRMmCOyMGTNGxs79+/dp6zgpOwMGDGCDBg0S2Dl9+rSwdZyUna+++kpgx9XVldjhQrn09HTWvHlz2v6Ks7Nw4ULWuXNnQSgnZUcqxZowYQJtHcfZefz4MbHDhXIlJSVs6NChtP0Vr52XLl0idrhQrrCwkHXu3Jm2v+Ls7N69W2CnqKiIZWVlsVatWtH2V5wdR0dHGTsxMTHMzMyMto7jtfPnn39mPXr0ENgJCgoidriMkbPTv39/gR2+3RTfOo7Xzu7du9O6k7Nz4MABZmFhwWxtbUkol5OTwywsLGTrztWrV7PPPvtMYCchIYHY8fDwIHZmzJhB607OzqtXr4gd6brzu+++o3UnZ8ff31+RnV69etH2V5wdDw8PGTt5eXmsbdu2tHUcZ2fjxo2sXbt2AjvJycnEjnTd+ccff9C2i5yd8PBwYkcqlBs9ejRtHcfZuXv3rrDtYk5ODisuLmb9+/enreP4uvPUqVMCOwUFBaygoIC1b9+eto7j7Dg7O9O6szx2+LpzwYIFtO7k7ERGRjITExMZO+PHj6ftr6Qi079TVP0h+k9EWlqa7GYWFBQIZi3p2LKRm5srmLUqGpuVlSWYtSoam5GRIZi1GCu1lymNTU9Pl+VQWFioaNYqLweple5jOUitdJ+aQ3ljlXLgi0alny87Ni8vT7DSVfRa2dnZn5SD1Er3qTkUFxcLVrqKcsjPzxesdBW9Vk5OjmClq2hsZmbmJ+WgNO8qm0NBQcEn5VDFzn+enbKRl5dX6Rw+hZ1PnXd/lZ3K8v/vZKfsdf3/yM7fsXaWN7Y8dirL/7+LnX9F3als7fwUdrKzs/9PsPMpOVR23pVXO5XGKuXwd2XnU/ivYqfiHP4d7PzdorJ/iFZZc6uiKqqiKqqiKqqiKqqiKqqiKqriXxKVteZWyYok4ePjgyNHjlBDskqlQmFhIWxtbZGVlUXNywBw/PhxXLp0iZr5VSoVMjIyMG/ePGpe1tbWBgDs3r0bAQEB1MwPAFFRUXBwcKBmfk1NTQDAhg0bEBwcTM38APDs2TNs2bKFmvk1NDTAGMPSpUsRFRVFjfAA4Ovri4MHD1Izv0qlQlFREebNm4eMjAxq/AeA06dP49y5c9TMr1KpkJWVBVtbW6HxHwD27duHmzdvUjM/UGrtsre3p2Z+nsPmzZvx/PlzEmEAQEhICDZs2EDN/Lyp2tHREREREdQID5RKo9zc3KiZX6VSobi4GPPnz0dqairMzMwoh/Pnz+PUqVPUCK9SqZCTkwNbW1sUFBRQ4z8AHDp0CNevX6dGeKDUlLZw4UJqhOebaTs7O+PRo0fUzA8Ar1+/xpo1a6iZn+ewcuVKhIeHUyM8ANy7dw87d+6kZn6VSoWSkhIsWLAASUlJMDU1hZ6eHgDg8uXLOHbsGIkwVCoV8vPzYWtri9zcXCGHo0eP4urVqyTCAErNcPPnzwcAIYft27fjwYMH1AgPAO/evcOKFSuomZ/fszVr1uD169dCDg8fPoSrq6vQCM8Yw6JFixAfHy/kcPXqVRk7BQUFsLW1RXZ2NszMzCpkJz09HXZ2diQvkLJz584dgZ0PHz4osrN+/XqEhIQI7Dx9+lSRnSVLliA6OhqmpqYCO4cOHZKxY2tri4yMDCGH06dP4/z585ViZ+/evbh165aQQ0xMjCI7Tk5OeP78OYkwACA4OBgbN26sFDv+/v7Yu3evjB07OztFdk6fPi1jZ+7cuTJ2Dh48CF9fX4GdhIQERXa2bt2KJ0+eCOy8evUK69atk7GzYsUKvH37Vsjh7t272L17t4yd+fPnK7Jz/PhxIYe8vDzMnTsXeXl5Qg5HjhyBj4+PkENycjIWLFggY2fbtm0IDAwU2Hn79i1WrlxJIix+z1avXi1jJzAwENu3bycRVkXseHt7w8PDQ+C/oKAAc+fOlbFz7NgxXLlyhUQYFbGza9cu3L17V8ghMjISjo6OJMIoyw4XYXB2tm7dKuPf3t4eMTExAjs3btzAoUOHBP7LY+fUqVO4cOGCwH9mZibVTi6cqoidJUuWkLyM57Bp0yYEBQUJ7Lx48QKbNm0S+AcABwcHREZGytjZt28fSeQqYufs2bM4c+aMwH957Bw4cAC+vr5C7YyPj8fixYtJ/FcRO6GhoVi3bp2M/+XLl8vYuXPnDnbv3i3wz9lJTk4maRYAXLx4ESdOnFBkh8taeA6HDx8ulx2VSiXk4OrqiocPH5KADQDCw8OxatUqRXbCwsJIXggADx48IHY4/4wxLFy4EAkJCZVmJycnR1izeXp6ythJS0uDnZ0diX94Djt37pSxExERgWXLlslq57p16xAaGirUncePH8PZ2VmRndjYWGHNdu3aNbi7u8vWnfPmzUNmZqaQw8mTJ3Hx4kWSF5ZlR8q/m5sbbt++TfJCAIiOjsbSpUtl7GzcuBEvXrwQcggKCoKTk5OsdnJBjjSHmzdvYv/+/TJ25s2bh/T0dGHdqcROdnY2bG1tSdbEczhw4AD8/PxgYGBA7MTFxSmys2XLFjx9+lRYd758+RLr16+XsbNs2TK8f/+e5IUAEBAQADc3N/rM5uzY2dkhJSVFyOHixYs4efIkyQtVKhVyc3Nha2uL/Px8gX93d3fZujMpKanS7ISFhWH16tUydlatWoU3b94IdefvFlWyon8itm7dSo2/JiYm7Oeff2aHDh1ipqam1JzOe5R+/fVXGtuiRQs2e/ZstnfvXqavr0+N3bxHSSqj4P19O3fupGbj2rVrU4+SVEbDe5S2bt3KNDQ0GP5sxh87dizz9PRk5ubm1OjMe5SkQgxjY2M2depU5u7uTgIRLS0t6lGSyneaNWvGZs6cyfbt28caNmzIgFIpCu9RkkqQLC0t2bx589iuXbtYzZo1GVAqReA9SlIZDe+zcHZ2pgbx+vXrU48SlwKoVCrqUVq1ahX9vKGhIZs8eTI7fPgwCYS0tLSoR2nu3LlCE/iMGTPY/v37maGhITWn8x4lqciF9yjt3r2bRD01atSg/j6pyIn3KLm6upIgol69etSjxIUaKpWKepTWrl0rNONPmjSJHTlyhJrRNTU1qUdJKq5p3Lgxmz59Ojt48CCJa3R0dKhHafLkyTSW91m4ubmRMKF69erUo6RWq4XG/UWLFrHt27eTXKlOnTrU3yeVAvAepU2bNtG5Bg0asAkTJrCjR4+yli1b0rzjPUpSYQrvs6gsO7///ruMHd6jJJVR8B6lHTt2COz88MMP7NChQ4KMhrOzefNmYsfAwICNGzeOeXh4kMhJyo5UrmBsbMymTZvG3N3dSSCira1N7EglCLxHaf/+/SQbk7IzatQogR07OzsZO9999x07cOAA69evnyI7mpqaxM5PP/3EPD09maWl5UfZmTJlCnN3d2dNmzYldniPklS+0bRpUzZjxgx24MABElfo6uqyYcOGVYqdmjVrUn+fVEbDe5SU2PHw8GDt2rWjHLp168ZWrlzJ1q1b91F2+vbtWy47Bw4cIHGNrq4uGzJkSIXs1K1bl/gfMWIEc3NzE0ROUnZ0dXUZUCqB4z1KUnZ4j9LGjRsrZEdTU5P17t2brV+/XhCmKLGjo6ND/X1SCUrLli1l7FSvXp16lKQSNCsrK2JHT09PYMfd3Z316NGDxvL+vi1btpBMrjx2eI+SEjuHDh0S2OH9fVJ2mjdvzmbNmsX27dtH7Ojp6VF/n1Tk0qZNG2ZnZ8d27txJkhvOzsGDBwUZTceOHdnSpUvZ1q1bZewcO3aMWVhY0Lzj/X0rV66knzcyMmJTpkxhhw8flrGzefNmQSDC2dm/fz+xU61aNervk4pceH/f7t27SXLF2dm/fz8bOHCgwM6SJUuYi4sL1U4pO1yCyNlZtWoVW7NmjSI7zZs3F9jZtGmTIK6piJ1t27axSZMm0Vgu7tmzZ4+Mnb1797Lhw4fTWO6V2LZtmyI7Ugni559/zlasWME2bNhA5xo2bEjsSPnn/X1S6QvvjT906BAJEzk7Li4uMnbmzJnD3NzcSNRVETsLFy5k27dvJ3Z47XR3dxdkNLy/z8nJSWBn/Pjx7OjRo4rsSCVX0nUnl+9I2ZEKhLhXYt++fSTqk7Lzww8/COzMnz+f7dq1S5Gd3r17C+w4ODgI7PB1p4eHh4ydNWvWsBUrVgjsKK07OTtScRX3Suzfv1+27lRih687peyMHDmyUuzwdaeHhwdJEMtjh687y2NHKkxr0qQJ++2339iBAweEdSdnRypB4k6WPXv2sDp16hA73MkiFTlxdrZv305Sv7p165KTpWPHjjJ2QkJC/rf/jBIClXw0t/TP8KoAAPrmS0dHB1ZWVrC2toa1tTV969O0aVNYW1vDysqK9p6qXr26MJZ/k9OyZUs69/TpUwBAnTp1aGzjxo2hUqkAAObm5jSWf2NiYGAAKysrWFlZ0bd/GhoaaNOmDY3l12tkZETn+D5G2traaNu2rSyHJk2a0Dm+V5eenh5dl5WVFX2T06JFCxrLt9qoVasWjW3evDl9w9S6dWsay/9Tp6+vT7+Tf7ujoaEBS0tLGsu/qZPmwPeI0tLSEnLg31yZmZnROf4eVqtWjd4va2tr+gaxefPmNPb9+/cAgJo1a9LY1q1b0zdM0hxu3LgBAKhfv77s3qhUKlhYWNBr8W/qGjVqJHtvtbS00KZNG1hZWaFdu3b0baOpqSmNDQsLAwDo6urSdVlZWdG3b82aNaOxfE+rGjVq0DlLS0v6Rq1Vq1Z0/s6dOwCAevXq0TkjIyMhh7K5NWzYUPbeampqUg7W1tZ0L01MTGhsVFQUsdO2bVvZ3OXsWFtb055n1atXp/lhZWUlsMNf68mTJ8QO/3lTU1PwMDc3p7E8hwYNGtBYPg84O3ysEjt83zZtbW0a165dO2KncePGNJbvTaanp0fn2rZtq8hOSEgIAKB27dp0rlmzZvT+tm7dml6vLDvW1tY0Zzg7fKwSO3xfP54Dn3f8G1MzMzP6eR6cHZ6DlB1+/t27dwBK+eev1apVK4EdPvbatWvETtl7o1KpiH8rKyuBHT6W711Xln+eg6mpKY3lW7FwdvhYKTv8PN93rWbNmjTOwsJCkZ2AgAAZO4aGhorsKOXAQ1NTk3Jo164dsWNsbExjIyMjiR1pDpydJk2a0Hm+x6u07lhZWVEOvO5YWVmBt8FI646pqSnNOyX+GzRoQGP5XC6v7hgbG9Nr8f1Cy2NHWnf4Xoxl6w7nX8pOcHAwscPHNm3alOqOtHZydnjtlM6ZsjlI2eFjpezwe2ZlZUV1h/NvZWVFewhK2ZG+Z9K68+bNG2KHjy3LTtkcODtSRqTsSOedoaGh7HOpPHaktZNfa0Xs8HPR0dHEDh9rYWFBOUjZ8ff3F9ixsrJCo0aNPsoOP8f+bBfjdYefV6o7vKZXpu7wtVGNGjWEOluWHWtrawQGBgIoXRPyHD5Wd6S1k89lae0syz8fy2s655+PVWKHr4147eTXplR3goKCAIi1s2nTporrTik7/Byf99K6065dOxn/1tb/U9M5O/y9KcuOtbU17TfKayfPWanu8LWRtO60aNFCWHdWVDv5tZatnUrs8L06K7Pu5HOmLP9K7Hz48IHY4efMzc0FdvjvuHnzpsCOtbU1GjRoILBT0bqzcePG+K+Myvy1+q86/u7/EQ0ICBDMWoyVNr67uLiQlZKHl5cXu3TpktBgnZ6eLhhdeZw6dYrMWjw+fPjA9uzZQ0ZXHu7u7mSl5BEcHCyYtRgrbRrftWsXGV153Lt3TzBrMVba+O7q6kpGVx4+Pj7swoULQoN1ZmYmc3FxISsdjzNnzpCVjkdsbCzbtWsX2cF4HDlyhKyUPEJDQ9nBgwfJrMdjz549ZKXkERgYKFjpGCttfHd1dSWjK48bN26wc+fOCXKCnJwc5uLiQlZKHhcuXCCjK4+EhATBhszD09OTjK48wsLCBCsdj71795LRlcfjx48FGzJjpY3v27dvJ6Mrj5s3b5KVkkdeXh5zcXEhoyuPS5cukZWSR3JysmBD5nH8+HGyUvJ49+6dYEPmsX//fjK68nj27Bk7cuQImfUYK513O3bsIKMrj9u3bws2ZMZKm/fLY4cbXXmkpaUJVkoep06dIqMrj8jISEV2Dh06JGPnxYsXgpWS57Bz504ZO3fv3hWslIyVsuPi4qLIDrdS8uDscCsljzNnzpDRlUdMTIwiO4cPH5ax8/LlS0V2du/eLWPnwYMHgg2ZsfLZuX79OhldeWRnZyuyc/78eTK68oiPjxeMrjw8PDwU2ZEaXXm4ubnJ2Hn06JFgdGWslJ1t27bJ2PHz85Oxk5uby1xcXMhKyePixYsydpKSkgSjK49jx47J2Hn79q1gdOWhxM7Tp08FoytjpfNu+/btMnZu3bolGF0Z+x92uJWSx5UrVxTZkVopeZw8eVKRHanRlcfBgwcrzc6uXbvISsnjzp075bLDrZQ8rl69KmMnIyODubq6ytg5ffq0jJ3o6GjB6MrD3d1dkR2pDZmHEjv3798XbMiM/Q87Za2Un8LOuXPnKs3O0aNHyejK4/Xr1+Wyw42uPB4+fFguO9zoyuPfyQ43uvIIDw9n+/btk9XOffv2kdGVR0XscKMrj09lhxtdeaSmpiqyc+LECTK68oiIiCiXHW505REUFFRu3VFip7x1Z1l2vL29yejKg7NTdt15+vRp2bozKiqqXHa40ZVHSEgIO3TokGzduXv3bjK68rh//75s3VlUVMRcXFxk7Fy7do1syDyysrIU153nzp2TrTvj4uIqzc6rV68Ua2d57JRddxYXFzNXV1cZO76+vmRD5pGTk8OcnZ1l7Fy4cIFsyDwSExMV2fH09PxL7PzdAlWyoqqoiqqoiqqoiqqoiqqoiqqoiqr4T0ZlZUUa/4mL+W+Jt2/f0iMGPAoLCxEUFISyf7C/evUK2dnZwrnMzEx6lEAawcHB9LgZj8TERHokSxrPnz+nRxd4REdHIz4+XjjHGMPTp09RUlIinH/37h1SU1OFc0VFRXj+/Lksh9evX9OjHjyys7Px6tUr2XWFhITQYz88kpOTERERIRsbFBSEwsJC4VxMTAw9giKNZ8+e0WNOPN6/f0+P0fAoLi7Gs2fPZDmEhYUhMzNTOJebm4uXL1/Kxr58+ZIev+CRmppKjx1K48WLF/R4LY+4uDjExMRUKoeIiAgkJSUJ50pKSvD06VPZdb1584YeC+ORn5+P4OBg2djQ0FB6tI1Heno6wsPDK5VDfHw8PUYrDaV59+HDB3pclUd58y48PFzGTkFBQaXZycjI+CR2+OMuH8shOjqaHhv8WA5/lZ2srKz/KDtPnz5VZIc/vsnjU9jJycn5JHb4o3EfyyEuLo4ejZVGeeyU5f9T2MnLy0NISEil2ElLS8Pbt29l11UeO/wRxbI5/FV2eKsHj4KCArx48UIxByV2+OOf0vir7ERFRf1ldpT4L48d/pi1NJTYSUpKKrd2/m+zExoaKhsbEhIiYyclJaXS7MTGxv5ldpRy+BR2Xr58+W9jp2wOkZGR/zF20tPTK81OQkJCpWvnp7DzV9ed/y52oqOjZexUxP9fYSc7O7tcdsrm8J9mp7J1Jzc3t1x2lGpnZdmJi4urNDv/rVFlzZVEQEAAOnXqBD8/P6SkpMDAwAC1atXC0KFDsX79erx58waampowMzPD2bNn0a9fP9y5cwcZGRkwNDSEjo4OOnfujD179uD9+/dkiNy+fTu++eYbPHz4EDk5OTAxMUFBQQEsLS1x/PhxREVFkSFu8eLFmDRpEp4/f46CggKYmpoiLi4OFhYWuHz5MuLj48nUNWnSJNja2uLly5dkTHz27Bk+++wz3LhxA8nJydDX10edOnXw9ddfY9WqVQgLCyPL5eXLl9G7d28EBAQgPT0djRo1QrVq1dC9e3fs2LED79+/J0Ocm5sb1Go1AgMDkZ2dDWNjY5SUlKBt27bw8PBAVFQUGeKWLVuGcePG4enTp2TfS05Ohrm5OS5cuIC4uDgyxE2bNg1z5sxBcHAwWd9CQ0NhbV3aa5aUlEQ5jBw5EsuXL0dYWBhUKhXMzMxw/fp19OjRA7du3UJaWhoaNWoEPT099OnTBy4uLnj37h3ZVd3d3TF06FDcv38fWVlZMDY2BgBYW1vD3d0dHz58IEPc2rVr8Y9//ANPnjxBXl4eTE1NkZ6eDgsLC5w9exaxsbGUw8yZM/Hbb7/hxYsXZEwNDw9H27ZtcfXqVSQmJqJ+/fqoV68eRo8ejSVLllDhMDMzw61bt9C1a1fcvHkTqampaNiwIWrUqIEBAwbAyckJb9++Jbuqp6cnBg0ahHv37iEzMxNGRkbQ1NREhw4dsH//fkRGRpIhzsnJCT/88AMeP36M3NxcmJiYICcnBxYWFjh16hRiYmLIcjd37lz88ssvePHiBZnrIiMjYWlpCS8vLyQkJKBevXrQ19fH2LFjsXDhQrx69Ypsgw8ePEDnzp2JnQYNGqBmzZoYMmQINmzYgPDwcDL1nTlzBv3795ex06VLF+zZswcRERGUw7Zt22Ts5OfnEzvR0dFkiFy4cCGmTJkisBMbGyuwU7duXTRo0AATJ06EnZ2dwM7Tp08FdgwMDFC7dm2o1WqsWbMGb968IXYuXbqE3r17486dO0hPT4ehoSF0dXUFdrjlbs+ePfj6668FdoqLi9GmTRtih5v6HB0dMWHCBDx79gwFBQUwMTFBUlKSwA43RHJ2QkJCUFJSAlNTU4SEhKBdu3YVsqOhoQFTU1P4+PigZ8+eMnZ69+5N7HD+Dxw4gGHDhuHBgwfEDmNMYIfzv3r1aowZM4b4NzExQXp6Olq3bo1z584J7Pz222+YOXMm8W9qaoo3b96gbdu28PHxIXbq1q2LH3/8EUuXLsXr16/JNujv749u3brB39+f2KlevTr69++PLVu24O3bt8S/h4cHBg0aRPwbGhpCU1MTn332GQ4ePIjIyEjif9OmTfjxxx/x+PFj5OXlwdjYGNnZ2TA3N8eZM2fKZaeoqAimpqaIiIiApaUlvL29kZiYiLp160JfXx8//fQTFi1aRD33ZmZmuHfvHjp37kz8GxgYlMvO6dOnMWDAANy9exeZmZkwNDSEtrY2OnXqBDc3N4EdFxcXjBw5Eo8ePUJubi6MjY2JnRMnTgjsLFiwgNgpLCyEqakpYmJiYGFhgStXrpTLDuf/8ePH6NChA3x9fZGSkgJ9fX3UqlULNjY2xA63XF68eBF9+/ZFQEAAMjIy0KhRI+jq6qJr167YtWuXwM7u3buJnZycHBgZGaGoqAht2rSBp6cnoqOjad4tXboUEydOJHZMTU2RmJgICwsLXLx4EfHx8ahduzYaNWqEKVOm4I8//hDYCQ4ORrt27XD9+nUkJyejfv36qFOnDr755husWLFCqJ1Xr17FF198gdu3b1Pt1NPTQ8+ePbFt2zYZOzY2Nnjw4AGys7NhZGRE7Bw5ckRgZ9WqVTJ2UlNTYW5ujvPnzyMuLo7m3fTp0zFr1iyBnbCwMFhZWcHHxwdJSUmoV6+eIjtmZmbw8/ND9+7d4e/vj7S0NDRo0EBg5927dzTvjh49iiFDhuDevXvIysoiq2j79u1x8OBBfPjwgebdhg0bMGrUKGLHxMQEWVlZsLCwwJkzZxAbG4uaNWvC0NAQc+bMwfTp0xEUFCSw06ZNG2KnXr16qFevHsaMGYPFixcLdefu3bvo0qULsdOgQQPUqFEDgwYNwsaNG/H27Vuad6dOnSqXnb179yIyMpLmnbOzM7777juBnby8PFhYWODkyZOIiYkhdubPn4+pU6cK7ERHRxM7CQkJqFu3LgwMDDBhwgTMnz8foaGhVHcePXoksMPXnZyd8PBwmnfnz5+XsaOjo0PsRERE0LzbsWMHRowYgYcPH1LdKcsOX3cuWbIEEydOxPPnz2nNlpCQAHNzc1y6dElYd06ePBlz587Fy5cvac324sULtG/fntjR19dH7dq1MWLECKxcuVJgx9vbG7169RLYqVatGr744gts27ZNWHfu379fkR0rKyscOXJEWHeuWLECY8eOxdOnT2nepaSkwMLCgtjhdeeXX37B7NmzERISQvPu9evXAju87nz//fdwdHQU1my+vr7o3r07bt26JdSdvn37YuvWrcK688iRIxgyZAju379PazYNDQ20a9cOhw4dEtad69evx+jRo2ndaWJigszMTKo7sbGxZPWfPXs2pk+fLtQd3qP6d4kqa+4/EVKLLFBqw1y+fDnZHvGn0WvUqFGC3Qp/WskcHBzIMoY/rWRTp05lnTt3FsZ26tSJLViwgGye+NPoZWtrS6Y0/Gn06t27N5s1a5bw84aGhszR0ZEsdPjTSjZ06FA2ceJEYWyTJk3YsmXLhBx0dXXZDz/8wL7++mthrLm5OXNwcCDLGP60kk2ePFmwKgKlRs+FCxcKOdSrV4/NmTOHLGM8h549ewqmNPxp9HNwcCALHf60kg0aNIhNmTJFGGtmZibLQUdHh3377beCVRUotWE6OjoKOVSvXp1NmDCB9enTRxjbvn17tnjxYiGHOnXqsJkzZ5IZjh/du3dntra2ZMIDSm2Y9rww2u4AACAASURBVPb2ZA7Enza8AQMGCIY+oNSGuWzZMrKf4U8b3ogRIwQzJFBqki2bg56eHhs7diwbMGCAMNba2potWbJEmHe1a9dm06dPJ6siP7p27crs7OyEHAwMDNiCBQvIWMlz6N+/v2DoA0ptmI6OjrIc1Gq1YLfj7JS9Z9WqVWOjR49mQ4cOlbFTNodatWqxn3/+WbAqAqVWwvnz5ws51K9fn82bN48so3ze9enTp9LsDBs2TLDbAaVGv7L8c3akRmKg1Ibr6Ogo5MDZ6datmzC2Y8eObNGiRYrscDM0z+GLL74QDJ2cHUdHR7Ifc3YGDx6syI6jo6OMnZEjR8rYad26tWze1ahRg02YMEGwKn6MHW6G5EePHj3Y3LlzhXvWsGFDZm9vT9ZdnkNl2dHR0VFkp2XLluWy8+WXX36UnTp16pTLzrx582TsLFy4kIyVUnamT58u/LyJiQlbvny5IjtSIzlQasNUqjujR49mgwcPFsa2bduWLV26VJEdqVWxPHb09fXZvHnzyNBdETtGRkaK7AwfPpyNHz9exo4S/z/++KMiO2VrZ82aNdmUKVMU2VGqO3PnziW7rZSdsjW9UaNGbNmyZUIOnB2pGRYoNckq8f/dd98JVtWPsSO1eQOlRs+y7NStW5fNmjVLYIdbSZXYWbJkCZlDeQ4DBw5k06ZNqxQ733zzjWBVLY+d6tWrs3HjxgkmfM6Ovb29jJ0ZM2awtm3bytgpWzsNDAzYokWLyFgrZUdqVefsKNWdr776SpGdZcuWyfgfM2aMIjtKdeeXX35hHTp0EMZ26dJFkR07OzuyDPMc+vbty2bMmKHIjjQHLS0tZmNjIxjJK2Jn1KhRgpEYUF531qxZk02dOpV9/vnnwthOnTop1p25c+eS3ZrPu169epW7ZlNad0qN5JwdpXXn999/z0aMGCGMVVp31qhRg02aNEmRnbI51K1bl82ePZu1atVKyKFnz56CGZ6zs3TpUjLWc3YGDRokY8fMzEz2mc3XndKdMIDy153jxo0TTPhAqQ3X3t5eVjtnzJhBu0jwo1u3bop1R4mdL7/8kgUGBv5v/xklBKqsuZ8egwcPxsOHD6FWq6FWq2FpaYmSkhL4+fmhRYsWUKvV+PLLL1G9enXs27cP+fn5UKvVsLGxQYsWLZCdnY0rV66ga9euUKvV6NOnD3R0dLBmzRo0atSIxpqYmCA2NhZXr17FgAEDYGNjg+7du0NLSwuFhYWIioqCWq3GsGHD0KBBA7x48QIBAQEYPnw4bGxs0KlTJ2hoaODVq1fQ0NCAWq3G4MGDUbduXVy7dg2hoaH0WlZWVmCMISAgAI0bN4aNjQ0GDBiAGjVq4PDhw8jIyKCxrVq1Qm5uLq5evYpOnTrBxsYGffv2ha6uLjZu3Ig6derQWDMzMyQmJuLq1avo168fbGxs0LNnT2hpaUFTUxNv376FjY0Nhg0bhkaNGuHVq1fw9/fHsGHDoFar0blzZ2hoaOD9+/coLCyEjY0NhgwZgnr16uHWrVsICgqi+8AtlPfv34ehoSFsbGwwcOBA1KxZE8ePH0dSUhKNbd26NfLz8+Hj44P27dtDrVajb9++qFatGpydnVGtWjXKoUmTJkhJSYGXlxf69OkDtVqNnj17QltbG4sXL0ZwcDDUajWGDx8OQ0NDhIeH48aNGxgyZAjUajU+//xzaGhoIC4uDllZWbCxscHQoUNRv3593Lt3D48fP6brat++PYDS/cXq1asHGxsbDBo0CLVq1aL/sPCx5ubmKCoqgq+vLywtLWFjY4P+/ftDT08PO3bsgIaGBmxsbGBjY4NmzZohPT0dXl5e6NmzJ9RqNb744gvo6OjA0dERzZo1g42NDYYPHw5jY2NERkbi2rVrGDRoENRqNbp27QpNTU2kp6cjOTkZarUaQ4YMgYGBAR4/foz79+/DxsYGarUaHTp0gEqlQlBQEGrUqAG1Wo1Bgwahdu3auHz5Mt69eydj5+bNm2jZsiXUajX69++P6tWrY+/evSgoKBDYycrKgre3N7p16wa1Wo3evXtDR0cHq1evhpGREeVrYmKCmJgY+Pj4YMCAAVCr1ejevTs0NTWRn5+PmJgYmncNGjRAUFAQsaNWq9GxY0doaGggNDQUWlpasLGxIXZ8fHzw+vVryrdt27ZgjOHWrVto0qQJ8V+jRg24u7sjOzubxrZs2RK5ubnw8vJC586diX9dXV1s2LAB9evXp7lkZmaGhIQEeHl5oX///lCr1ejRo4fADue/YcOGCA0Nxc2bN2XsvH37FkVFRcR/vXr1cPPmzXLZMTIyglqtxoABA1CzZk14enoiOTmZcqiInS1btqB69ep0H5o0aYLk5GRFdhYuXEifQcOGDSN2fH19ZezExMQgJyeH5l39+vVx9+5dPHnyhK6Ls/Pw4UPo6+tDrVZj4MCBqFWrFk6fPo3Y2FiaS5yd69evo23btlCr1ejXrx/09PSwfft2aGpq0timTZsiLS0NV65cwRdffAG1Wo1evXpBW1sbDg4OaNasGeVgbGyMiIgIXL9+HYMHD4aNjQ2xk5qaipSUFKjVagwdOhT6+vp4+PAhAgMD6f3q0KEDgNLHqcqyc/HiRURGRtJ1WVpaori4GL6+vmjVqpXAjpubG4qLi2ls8+bNkZWVBS8vLxk7K1euhLGxMc07ExMTREdHK7KTl5dH7+OwYcNgYGCA58+fIyAggHLg7Lx8+RLa2to07+rUqYOrV68iLCyMrkvKTtOmTQV2Dh06hOzsbBrbsmVL5OTkwNvbG126dIGNjQ2xs379emLHxsYGpqamiI+Px9WrV9G/f3/Y2NgQO4wxvH//XmDn5cuXuHXrFtVOzk5YWBhKSkpo3tWtWxd+fn4ICQkhdqysrACU7s3J30fOjoeHB1JTU+m6Wrdujby8PFy9ehWfffaZwM7mzZtRs2ZNGtu4cWMkJSXBy8sLffv2pdpZlp3hw4ejUaNGCAsLg6+vL4YOHQobGxtiJyoqCrm5uQI7AQEBePr0Kb2WlB0DAwOqnbVq1cKpU6cQFxcn1M7CwkJcv34dVlZWsLGxIXa2bdsGLS0tGTteXl7o1asXbGxsiJ2lS5eiZcuWVHeMjIzw/v173LhxA4MHDyb+NTU1kZycjLS0NKqd+vr6CAwMRGBgIF3XZ599RuzUrl2bamft2rVx4cIFYketVsPCwoLYMTc3J3b09PSwZ88eGTuZmZnw9vZG9+7diX8dHR2sWLECJiYmAjtRUVHw8fHBwIEDoVar0a1bN2hqaiInJwfx8fFUdwwMDPD06VPcvXtXqJ2cHR0dHao7derUgZeXF968eUM5tGnTBiUlJbh16xbV7wEDBqB69eo4cOAA8vLy6Pe2aNFCYIfzr6uri3Xr1qFBgwbEL3+6zsvLC19++SXxr6WlhZKSEnofhw4dioYNGyIkJAT+/v5UO/m6kz/KLF13+vr60nqJs8MYw507d2Bqakrs1KhRA0ePHkVaWhqNbdWqFfLy8uDj44MOHToQO7q6uti8eTP9d1jKjre3N/r27Ut1R0tLC7q6uggLC6N5x9nx8/PD0KFDoVar0aVLF2hoaCAyMhL5+fm07qxfvz5u376NZ8+e0Xvbrl07qp0NGzakHGrVqoWTJ08iMTGRxpqbm6OgoADXrl2DtbU11Z1q1arB1dUVOjo6NJeaNm2K1NRUXLlyBb1796Y1m7a2NpYsWUKf+cOGDYORkRHevXuHa9euCbVTU1MTSUlJSE9PJ/65vfm/MapkRZIoKioiLTOP4uJiqFQq0kV/bKyGhgbpsSsaq3TuU8YyxlBcXFypsfx5/r9bDp8y9v9CDowxlJSUkLb7X5mDpqbmf2ze/V/IoYqd/74cGGP/9fPu38HOf7ruVDaH/yvzriqH/7vs/F1z+LvOu6ra+a/L4d8x7/5uUVlZUdUfolVRFVVRFVVRFVVRFVVRFVVRFVXxL4nK/iFaJSuSxJUrV7Bx40Zq5tfW1kZhYSEmTpyIyMhINGzYkDbCdnd3x759+6ghWVNTExkZGRg/fjySk5NhZGSE2rVrAwC2bt2KM2fOUEMyf6xm2rRpyMnJgbGxMW2au3TpUvj5+ZGQQKVS4dmzZ5g3b57QkMwYw6xZs/Ds2TPUq1cPDRo0gEqlwrVr17BmzRoAoByKioowefJkvH//HgYGBrQRrqenJ3bt2kVCAi0tLWRlZWH8+PFISkqCoaEh5bBt2zacOHGChAQaGhqIjY3FlClTqBGe57BixQpcv36dBCwqlQohISH4/fffqZmfN1XPmTMHjx8/pkZ4lUqFmzdvYsWKFSQk0NHRQXFxMaZOnYrw8HAYGBjQYwinTp3Ctm3bSEigpaWFnJwcjB8/HvHx8WjUqBFtIr1r1y54eHiQkEBTUxOJiYmYNGkSMjMzYWxsTBt/r1mzBl5eXtTMr1Kp8Pr1a8ycOZOa+fmm2XZ2drh//z6JMFQqFQICAuDg4EBCAh0dHZSUlODnn3/Gq1evUL9+fejr60OlUuHcuXPYunUrNfNraWkhPz8fEyZMQExMDBo1akQbM+/btw/u7u7CvEtJScGECROQnp4OIyMj1KpVCwCwYcMGXLp0CXp6ejA2NoaGhgbevXuHX3/9lRrh+abZixYtQkBAADXzq1QqBAYGYtGiRSTC0NXVBWMM06dPR0hICOrXrw8DAwOoVCpcvnxZxk5BQQEmTJiAqKioj7KTnp6OCRMmICUlRchhy5YtOHv2rDDvPnz4gGnTppGAieewdOlS3Lx5k0QYKpUKT548gZ2dnYydmTNn4vnz5wI7Pj4+WLduHc07zs6kSZPw/v17NGjQgNjx8PDAnj17hHmXlZWFcePGydhxdXXFyZMnK8XO8uXLcf36dRJhqFQqBAcHY86cOeWyU7duXWLHz89PkZ0pU6bI2Dl58iS2b98uzLuK2PH09CSJhIaGBhISEhTZWb16Nby9vQV2Xr16hVmzZsnYsbW1xYMHD0jAxNlxdHQkEQZnZ9q0aXj9+jX09fVp8/Jz587B2dlZyCEvLw/jx49HbGyswM7evXtx+PBhyoE/Gjhx4kSkp6cLOXB2uAiDPwo9ffp0ksjwebdw4ULcuXNHYOf+/fuwt7enHDg7v/76q4ydS5cuwcnJqVLsHDx4EAcOHKgUO5s3b8a5c+eEuhMZGYmff/6ZxF88hyVLlsDf359EGJyd+fPnV4qdq1evYt26dbK6M3HiRERERAjsHD16FHv27CEBm6amJjIzMzFhwgQkJycL7Li4uODUqVMCOzExMZg6dSqys7NhYmJC7Cxbtgw3btwQ2AkKCsLcuXNJwMbZmT17Np48eSKw4+vri1WrVsnYmTx5Mt6+fSuwc+LECezYsYPkhZydcePGISEhAYaGhsTOjh07cOzYMZIXStnh4i8+71atWoWrV68K7ISGhmLWrFkkYKqIndu3b8PR0VFWd6ZNm4awsDCBnTNnzsDFxUWRnbi4OIEdNze3ctnJyMgQcli3bh2uXLkisBMeHo7ffvtNxv+CBQtw9+7dSrHzyy+/IDQ0FPr6+lQ7L168WC470dHRQg4HDhyQsZOWlobx48cjLS0NxsbGxI6Tk5OMnYiICPzyyy/Izc2FqakpsWNvb49bt24J7Dx69AgLFiwgeSHPYcaMGXjx4oXAjre3N9avXy+wU1hYiEmTJsnWnUeOHMHevXtl7CitO52dnXH69GmBnejoaEydOpX45+w4OjrC19dXWHcqscMYw++//46nT58KOdy4caNcdt69eyfwf/z4cRk72dnZGD9+PBITE2XsHD9+XGAnLi4OkydPRlZWlpDDypUr4ePjI7Dz8uVLzJ49W8bO3Llz8fDhQ4H/W7duYfny5TJ2pk6dirCwMIH/06dPw9XVVWAnNzdXkZ09e/bg6NGjwrozKSmpQnb42pk/Cq3Ezvz583Hv3j2B/79bVMmK/olYvXq10OBuY2PDnJycBJFLmzZt2Pz584UG81q1arHvvvuObdiwQZBvdOzYkTk4OAhyFn19fTZ27Fi2evVqko38P/buOzzKatsf+HfSe4NAgITeRBGkI70jmQEBARUURUCkqPReA9K7SBHpNXRCTSe9915m0nufSUISyPr9wXn3nZ13gvGee+/xnB/7eXye4z4bnWXez6y198xeEZoS7N27l2sw0apVK1qwYAFt27aNXWzW0dGh0aNH05EjR7jmLO3bt6dly5bRqlWruAvukyZNosOHD1OLFi3YfPfu3Wn16tVccwYTExOaNm0aHThwgGu+07t3b9q8eTNNnjyZu+D+5Zdf0u7du8nIyIjFMGjQINq9ezfXYMLGxoa+++472r59O7tQr62tTSNHjqSjR49Su3bt2Np27drRkiVLaO3atdwF94kTJ9Lhw4fJxsaGzXft2pVWrlzJNTYxNjamqVOn0oEDB8jS0pK7HL5x40bugrmFhQV98cUXtGfPHjI2NmbzAwYMoJ07d3LNWVq0aEHffvstOTg4sMv32traNGLECDp06BDXYMLOzo5++OEH2rBhA3fBfcKECXTkyBGusUHnzp1p+fLlXFMgIyMjmjJlCh08eJCaNWvG5j/44ANav349ff7559wF91mzZtG+ffu4xhX9+vWjHTt2cM1ZrK2tae7cufTLL7+wy/daWlo0dOhQOnDgANdgok2bNvT999/T5s2b2Zyuri6NGzeOjhw5Qm3atGHzHTt2pJ9++olrCmJoaEgymaxRO1999RWbMzMzoxkzZojs9O3bl7Zt20YTJ058qx0tLS0aMmQI7d27l2swIdjZunUrZ2fMmDGiGDp06EDLli2jlStXcnbs7e0btaPeFMzExISmT5/eqB315ixWVlY0e/Zs2rNnD2vUJZFIaPDgwbR7924aOHDgW+3o6OjQqFGj6OjRo1yDCcHOmjVrODuffPKJyE63bt1o5cqVXHMGwc7Bgwc5O0JTomnTpons7N27l9mRSCQ0cOBA2rlzJ9dg4m12Dh8+TJ07d26SncOHD3N2unTpQsuXL+eaAjVmp2fPnrR+/XqusZG6HfXGFf3796cdO3ZwzVkEOzt37uTsDBs2jA4cOMA1mBDsbNq0SWTn6NGj3HPXqVMn+umnn7imQIKdw4cPc02Q3n//fVq7di3XFOzP7Kg3Z3mbnX379lHv3r3Z2tatW9PChQtp69atrEnG2+z8+OOPXFOQxuy89957tGbNGs6Oqakps2Nubs7mP/roI9qyZYtGO7t37xbZ2bNnD/Xv319kZ5taAzHBzrFjx7jc+TY7R44coZYtW3J2Vq1aRQsWLGiSnU2bNnGNjYTcuXfvXi53Dhw4kHbt2kVDhgxha1u2bEnz5s2jHTt2sCYo6nY6derE1rZt25YWL15M69evb5KdFStWcE2B1O2oN0Hp2bMnbdiwgWtsJNjZu3evyI6DgwONHDmSs/PNN9+Qg4ODyM7Bgwe5poC2tra0aNEi2rhxo8jO4cOHuYZanTp1op9//pmWLVvG2Zk8eTIdPHhQZGfdunU0e/Zszs7MmTNp3759Ijvbt2+n8ePHs7nmzZvT119/Tbt27WKNeoTcuW/fPurVq5fIzpYtW5gdXV1dGjt2bKN21JvRGRgYkFQqpcOHD3O5U7Cj3lBPqDsbs6Pe2MjKyormzJnTqB31hpqtWrWi+fPnN7nuXLp0Ka1evZqzM2nSJDp06JBGO+oN9dTrTnU7vXv3btTOnj17RHXnrl27aPDgwX9qZ+TIkXT48GGuKaBgZ926dVwMEydOpCNHjnC5U7CzaNEizv+nn37aqJ0ZM2awOQsLC/r8889FdgYMGEAODg5cQ03Bzs6dO7ncOXz4cDp48CB169ZNZCckJORfvY3iBprYrOjdRlRt3Lx5k3uI7927R1lZWdSjRw/2EB88eJASExPp0KFDBLwpnhYvXkxPnz4luVxOrVq1Ij09PZo4cSKdOHGC0tPTWYErPMQeHh4UExNDxsbGZGRkRJ9++in98ccflJeXxzYawubJ39+ffH19SUtLi8zNzenzzz+nq1evUmFhIXtohYc4IiKC7t27xz3Ed+7coZycHPrwww9JS0uLhg8fTvv376eEhAQ6ceIE9xA/fvyYFAoF2dnZka6uLo0fP56OHz9OCoWCFYdCAnBzc6OEhAQyMzNjCeD333+nnJwctkn/4IMPaN26deTr60uBgYGkra3NEsDly5epqKiIbZb69etH27dvp9DQUHr8+DGXAG7dukW5ubnUp08flgD27t1LcXFxdObMGS4BODk5UXp6OnXo0IElgKNHj1Jqaipt27aNgP/aPLm4uFBSUhJZWlqyBHD69GnKyspihYawefLx8aHQ0FDS1dVlCeDixYtUWFjIOigLBw8hISH0/PlzLgHcvHmT8vPzacCAAezgYffu3RQTE0MXLlxgCWDBggX08OFDyszMpC5durAEcPjwYUpJSWGHJcLBg7OzM6WkpJC1tTVLACdPnqTMzEy2wRU2T15eXhQZGUkGBgYsAZw/f57y8/NZJzth8xQUFEQeHh5cArh+/ToVFBTQxx9/zCWAqKgoun79ukY77733HmcnKSmJDh48yBLAkiVL6NmzZ5SamqrRjlDgCgcPnp6eFBMTQ0ZGRiwBCHaEjYZgJyAggHx8fEhLS4ttnq5evUpFRUXsoEHdzp07dwj4r83T3bt3KScnh3r27MkSgGDn+PHjzM4PP/xAT548obS0NLKzsyM9PT3OjpDghIMHd3d3io+PJ1NTU5EdYZMuHDz4+flRQECARjvCZkmwExYWRo8ePWJ25s6dS7dv36acnBz66KOPRHZOnz7N7Hz//ff06NEjjXbkcjlt3bqVs+Pq6kqJiYlkYWHBNk+nT5+m7Oxs1kFR3U5ISAizM2PGDLp06RIVFhaygwZNdoTNk6OjI+Xl5VH//v1Fds6fPy+yk5GRQZ07dxbZ2bVrl0Y7zZs3F9kRNrjqdsLDw0lfX58dPFy4cIEKCgpY93F1O25ubszO7Nmz6caNG5Sfn0+DBw8W2bl69Sqz891339H9+/c5O6NGjWJ29u/fL7Ijl8vJxsaGbZ5+++03Sk9PZ10vG7MzdepUOnfuHOXl5bFiSTh4CAgIIG9vb5JIJMzOtWvXqLCwkIYNG8YdPERERNDt27dFdrKzs+mDDz5gm6cDBw5QYmIiHTt2TGRHoVCQra0t2zz9+uuvlJaWxg4l1e3ExcWRiYkJ2zydPXuWcnNz2SZd3Y6/vz9pa2uzzdOVK1eouLiYdbLs378/s/Pw4UORndzcXOrduzfbPO3bt4/i4uLo5MmTBPzXwYNgp3379mzzdOzYMZLL5exA7212zpw5Q9nZ2exwWNg8CXZ0dHREdoSDBuHgITQ0lJ49e6bRTr9+/djBw549eyg2NpbOnTv3VjvCwUNKSgrt3LlTZCc5OZmaNWvGDh5OnTpFWVlZrEh/7733/tSOcNAgbJ7eZmfQoEFs8/TLL79QdHQ0XblyRWQnMzOTunXrxuwcOnSIkpOTad++fQS8OXhYunQpyzstW7bk7GRkZLCDVWHz9OLFC4qOjiZDQ0POTn5+PjvgFg4eAgMDycvLS2SnoKCAhg4dytmJjIwkR0dHZkfInY3ZOXLkiKjuVCgU1KZNG5EdYXOoXnc2ZkfoPixsnvz9/cnf35/VnYKdoqIidtAgHNqFh4fTgwcPNOadXr16cXbi4+Ppt99+Y3aEujMtLY3atWvH2VEoFOxAT73uTExMJHNzc5Ed4YBLsOPr60tBQUGko6PDcuelS5eoqKiIHTSo23ny5AmzI9SdeXl51LdvX5Gds2fPiurOjIwM6tSpE2cnNTWVduzYQcB/HTy4uLhQcnIyWVlZiewIH6wIBw/e3t4UHh5Oenp6IjtSqZSzExwcTK9fv/5Xb6O48W4j+t8YISEhFBAQwP0wa2trydHRkUpKSri13t7eFBERQfX19WyuvLyc7t69S0qlklvr7OxMCQkJ3Fx2djY9efKEqquruXknJydKS0vj5hITE8nd3Z1qa2vZXH19Pd25c4dyc3O5teHh4eTn50evXr1ic3V1deTo6EjFxcXcWl9fXwoLC+NiUCqVdPv2baqoqODWurm5UVxcHLc2NzeXHj16RFVVVdzax48fk1wu5+ZSUlLI1dWVampquHmhYFEfkZGR5OPjw8Xw6tUrcnR0pMLCQm6tv78/hYSEcK+rsrKSbt26ReXl5dxaDw8Pio2N5dYWFBTQw4cPqbKyklv79OlTSklJ4ebkcjk5OzuLYhA2XeojJiaGvL29uRhev35Njo6OVFBQwK0NCgoSvYm8fPmSHB0dqbS0lFsrJET1GIqLi+n+/fukUqm4tc+ePaPk5GRuLj09nZ49e0YvX77k5h88eEAZGRncXFxcHHl6elJdXR2bq6+vp1u3blF+fj63NiQkhAIDA7kYampqGrUTGRnJxVBWVtaoncTERG4uKyuLnj592mQ7Hh4eIjtCkak+wsLCyN/fn4uhrq6Obt68qdFOeHh4k+y4urpSfHx8k+w8evSIFAoFN5ecnExubm5cDEREd+7c0WjH19dXZOfmzZtUVFTErfX396fQ0NAm2XF3d9dox8nJSWTnyZMnlJqays3J5XJycXFpkp3o6Ogm2wkMDBTZqa6uJkdHRyorK+PWenp6iuwUFRXRgwcPmmzn+fPnIjv3798X2YmNjaUXL16I7Dg6OorsBAcHN2qnoX/hMKmhnXv37onsPH/+vMl2Hj58SOnp6dxcQkJCo3by8vK4tY3Z0ZR3fHx8RHYqKirozp07TbKTk5NDjx8//qft5OTkcHMREREa7Tg6Oors+Pn5abRz+/ZtkR03NzeRnfz8/P9zOw1zZ2N2bt269ZfsaMqdDe2kpaU1aiczM5Ob+9+0ExUVxcVQWlraqJ2kpCRuLjMz8y/Z0ZQ7NdkJDQ1ttO7UZKdh3dmYHRcXF1HdKdjRlDsb2klKShLZEepOp7OiaQAAIABJREFUTXYa1p2N5R0/Pz9R3alSqRq107DuzMvLIycnJ411Z0M7qampTa47o6KiRHVnY3YCAgJEdWdVVZVGO8IHT+prCwsLG7XTsO5MS0sjZ2fnJtn5u42mbkTfNSt6N96Nd+PdeDfejXfj3Xg33o134914N/5HRlObFWn92YL/n0Z0dDQSExO5ubq6Ojx//hwvX77k5oODg5Gens7NVVRUwMPDA3V1ddy8j48P8vLyuLnc3Fz4+/vj9evX3LyHhwdKSkq4OblcjvDwcKgfGhARnJ2doVQqubWxsbGIj4/n1r569QrPnz9HdXU1tzY0NBQKhYKbU6lUcHNzQ21tLTfv5+eHnJwcbq6goAC+vr6iGDw9PVFcXMzNpaWlITQ0FA0PPlxcXFBRUcHNxcfHIzY2llv7+vVrPHv2DFVVVdza8PBwpKamcnNVVVVwcXERxRAQEICsrCxurqioCN7e3nj16hU37+XlhcLCQm4uIyMDwcHBrKW3MFxdXVFeXs7NJSYmIjo6mouhvr4ez549Q2VlJbc2MjKS/W4uYdTU1MDZ2Rk1NTXcfGBgIDIzM7m50tJSvHjxQhSDt7c3CgoKuLmsrCwEBgaKYnBzc0NpaSk3l5ycjMjISNFz9+zZM6hUKm6tJju1tbVNtlNeXv5P23F3dxfZSU1NRUREhCiG58+fa7STkJAgsvPs2TONdtLS0rg5wU7DGPz8/JCbm8vN5efnN9mOQqHQaMfZ2Vmjnbi4uCbbkcvl3Fxjdvz9/ZGdnc3NFRUVwcfHR/TcvXjxQqOdkJAQ0XPn4uKi0U5MTEyT7ERERIjsCL+Tril2SkpK4OXlpdG/JjtBQUFNthMVFdUkO1FRUUhKSuLmGrMTFBSEjIwMbq68vByenp5NspOTk4OAgABRDP+snZiYGI12NMUQEhIisqNUKuHu7i6KwdfXV6MdPz8/jblTk52wsLAm2YmLi2vUTkP/YWFhGu24uro2yU5hYSF8fHxEMbx48QJFRUXcXHp6ukY7mvJOQkJCo3Ya+v8rdjTlzr9iJzMzs1E7ZWVl3FxSUlKjdhr6f5udhjFoslNWVgZPT09RDD4+PsjPz+fm3manof+UlJRG7TT0HxMT0+S6MyQkRJQ7/4qdvLy8JtuRy+UiO0Ld+c/aaVh3VlZWNmpHU92pyY6np6dGO6GhoU3KOwkJCaK68212Gtad1dXVGms2TXaKi4sbtdMwdzZmx9XVVWTn33W865qrNvz8/DBs2DBcu3YNaWlp0NfXh5WVFb744gusX78ewcHBrMuli4sLJkyYgLt37yIrKwvGxsYwMTHB+PHj8csvvyAyMhK1tbVo06YNLly4gKlTp+LJkyfIy8uDubk5tLW18fHHH+PYsWOIi4tDfX09bG1tsWvXLnz11Vdwc3NDUVERmjVrhvLycgwYMABnz55FcnIytLS0YGtri6VLl2Lp0qXw8fFBWVkZ+wW+Q4YMwZUrV6BQKKCnp4fmzZtjzpw5WLNmDYKCglBZWYlWrVrB09MT48aNw+3bt5GZmQkjIyP2y4MdHBwQERHBOkReu3YNU6ZMwaNHj5CbmwszMzPo6upi6NChOHz4MGJjY1l31f3792P27NlwdXVFYWEhrKysUFlZiYEDB+L06dNISkpiXe5+/vln/PDDD/Dy8kJZWRmsra2Rnp6OwYMH49KlS5DL5dDV1YW1tTXmzZuHlStXIjAwECqVCjY2NvD398fo0aPh6OiIjIwMGBoawtzcHJ9++im2bduGsLAw1iH29u3bkEqlePjwIXJycmBqagp9fX2MGDECBw4cQExMDOsQeezYMcyaNQvOzs4oKCiApaUlamtrMWDAAJw6dQoJCQkA3nS5W7t2LRYsWIAXL16gtLQUzZs3R25uLgYOHIiLFy8iNTUVOjo6aNmyJRYsWIDly5fD398fSqUSNjY2CA0NxciRI3Hz5k2kp6fDwMAAFhYWmDFjBjZv3ozQ0FBUV1ejdevWcHJywqRJk/DgwQPk5OTA2NgYRkZGGDNmDPbu3YuoqCjWXfXUqVOYMWMGnj17hoKCAlhYWKC+vh6DBg3CiRMn2IGFnZ0dNm/ejHnz5rGDkObNm6OoqAj9+/fH+fPnkZKSAm1tbbRu3RqLFi3CTz/9BF9fX1RUVKBly5aIiYnB8OHDRXY+//xzbNiwAcHBwaxD9PPnzzFhwgTcu3ePszNhwgTs3r2b2bG1tcX58+cxdepUPH36FPn5+TAzM4OWlhYGDx7M2bGzs4ODgwPmzp0LNzc3FBcXo1mzZigrK9NoZ8mSJVi2bBl8fHxQXl6Oli1bIjExEUOGDMHVq1eRlpYGXV1dNGvWDHPmzMG6des4Ox4eHhg3bhzu3LmDrKwsZsfe3l5k5+rVq5gyZQoeP36MvLw8mJmZQUdHB0OHDsWRI0c4O/v27WN2ioqKYGVlBZVKhQEDBuDMmTNvtdOiRQsoFAoMHjwYly9f5ux8++23WL16NQICAqBSqdCqVSv4+vpizJgxuHXrFjIzM2FgYNConVu3bkEmk8HJyQm5ubkwNTWFnp6eRjtHjhzB559/DmdnZxQWFsLS0hI1NTXMTmJiInvu1qxZg4ULFzI71tbWyM7OZnbkcjl0dHTQokULzJ8/HytWrODshISEMDsZGRkshs8++4yz06ZNGzx48ICzY2JiAkNDQ4wePRr79u1DdHQ0e+5OnjwpsvP69WsMHDgQv/32G9t02dnZYdOmTSI7BQUFGDBgAM6fP4/U1FRoa2vDxsZGZMfGxgZRUVEYPnw4rl+/jvT0dGZn1qxZ2LhxI2fn2bNnmDhxIu7du4fs7GwYGxvD2NgY48aNE9n5448/MG3aNGbH3NwcEokEgwcPxvHjxxEfH8/s7NixA998843ITv/+/XHu3Dlmp3Xr1o3aGTp0KLOjp6eHZs2aYfbs2Vi3bh2Cg4NZh1h3d3eRHRMTE0yaNAk7d+5kdmxtbXHlyhWRHW1tbWYnLi6OdVfds2cP5syZw9lRKpUYMGAAfv/9d87Ojz/+iMWLF3N25HI5Pv74Y1y+fBkKhQK6urpo3rw55s6dK7Lj4+PD2TE0NISZmRkmT56MHTt2IDw8nD13jo6OIjv6+voYPnw4Dh48yOzY2dnh8OHDIjsvX77EgAEDcPr0abZhsbOzw6pVq7Bw4UJ4eXmhpKQE1tbWyMrKwqBBgzg7LVu2xHfffYcVK1YgICAASqUSrVq1QlBQEEaNGiWyM336dGzZsgVhYWEshvv378Pe3l5kZ9SoUdi/fz+io6NZd9UTJ05g5syZeP78OfLz82FhYYFXr15h0KBBIjsbNmzA/Pnz4enpKbJz4cIFlndsbGywcOFC/Pzzz/Dz82N2IiMjMWLECM6OpaUlsxMSEsI6xD558uStdqKiopids2fPYvr06Xj69Cmr2QBotLN9+3Z88803cHd3Z3ZKS0sxYMAAkZ3Fixdj2bJl8PX1ZXbi4+MxdOhQXLt2jdVsVlZWnB2h7nR1dcX48eNZ3SnY+eSTT7Br1y7OzqVLl/Dpp5+K6s4hQ4bg6NGjLO/Y2dlh9+7dorpTkx1bW1ssW7YMS5Ysgbe3N6s7U1JSMGTIkEbtCDVb69at4e3tjTFjxuD27dusZjMzM4NMJmN2Xr58CVtbW9y4cQMymYzVnYKdYcOG4dChQ5ydgwcP4ssvv4SLiwurO6urq1nuVLezcuVKfP/99/Dy8kJpaSlatGiBjIwMDBo0iNWdQt4R6k51O4GBgRg1apSo7pw2bZrIzr1792Bvb8/VnQYGBhg5ciQOHDjA2fn111+ZHaHurKurw8CBA3Hy5Mm32lHvTPx3GU3tmvtuI6o2rl+/zt7UAwMDkZKSAqVSicePH0OlUiExMREhISHIy8tDYmIiYmNjUVBQgICAAMjlcpSWlsLFxQUqlQoxMTGIiIhAUVEROwHOycmBv78/0tPTUVhYiBcvXkCpVCIiIgIxMTEoKyuDm5sbCgoKkJGRgYCAAGRmZiIvL4+9cYWEhCAhIQEqlQr37t2DUqlEamoqgoKCkJWVxU7tS0tLERgYiOTkZFRUVIhiyM3NRUpKCqKjo1FYWMhiKCsrg7OzM1QqFWJjYxEeHo7CwkJ2AiR8GpWWlobCwkJ4enpCqVQiMjIS0dHR7IQxLy+PiyE/Px8+Pj6oqKhAaGgo4uPjuRjkcjkCAwORlZXFTh7LysoQFBSEpKQkKJVKODk5QaVSISkpCcHBwcjNzUVqaioiIyNRVFSEgIAApKamory8nH3yEBcXh7CwMBQUFCAqKgrJycnIy8tDQEAA0tLSUFRUBA8PDyiVSkRFRSEqKgolJSXw8fFBdnY2MjMzERAQgIyMDHYSV1FRgbCwMMTFxUGlUsHJyQllZWVQKBRcDP7+/igrK0NwcDCL4eHDh1CpVEhOTkZwcDBycnKgUCgQHh6OoqIiBAYGcjEolUrEx8cjNDQUBQUF7FO7hjG4u7tDqVQiOjoakZGRKC4uhr+/PzIzM5GVlYWAgAD23Hl5eaGiogLh4eGIjY1FRUUFnj17huLiYqSlpbFPjtSfu+DgYCQmJkKpVOLBgwdQKpVISUlBUFAQcnJy2Cdegh0hhqdPn0KpVCIhIQGhoaHIy8tDQkIC4uLikJ+fj4CAACgUChQXF8PV1RVKpZLZKSwsRHBwMNLS0pCdnS2KQbATGxuLsrIyuLq6oqCgAOnp6SI7FRUVCAkJQWJiIlQqFe7fvy+yk5mZieDgYJSUlCAoKAgpKSnMjlKp5PwnJSUhJiZG5F+THeHTE+G5Fn5mmux4eHhwdho+d6GhoUhISEBlZaVGO9nZ2QgMDERpaSmCgoKQnJwMpVKJR48eQalUMjs5OTmQy+WIjIzk/JeWlrJTe3U70dHRSE5ORm5uLouhuLiYsxMdHY2SkhJ4e3sjJyeHs5Ofnw9vb29mJz4+nnkoLy9ndjIzMzXaUalUePjwIZRKZZPsPH36FCqVCvHx8QgLC0N+fj775EGwo1AoUFJS0mQ7BQUFGu08ffoUJSUlnJ3c3Fz4+flxdlQqlchOdnY2O7UvLi5meaeiogJPnjyBSqX6UzslJSWcHeH9MCgoCOnp6RrtVFRUcHlHKN7S09MRGBiIjIyMRvNOQzvC+6S6HU15JzQ0FLm5uRrtCK9BqVQyOwUFBY3aEXJnQzv5+fmcHXX/Qt6pqqrC3bt3m2RHeH8X8o567oyKikJhYSF77oTcqVQqERcXx2IQvvHyNjtC3vHy8kJubi6z0zB3quedBw8eMDvCe5h67lTPO05OTsyO8J79trwj2FHPO0214+fnx2oRTf4FO0qlEk+ePGF2hE+ONNkR3iuaYqesrIz5V7cTHx+P+Ph4Zkf4Obi5uXF5p7i4WGRHeB9WzzsxMTEoLy+Hs7MzioqKuLyjHkNjeScwMJC9TzaWdxrWnQ3tNPSvnneEb7w1rDs15R13d3eRnYZ5R6jZhBjeZkeI4dGjR1zNlpOTg9TUVM6OXC5HSUkJ8y/kHaHuFOwIMTSs2d6WdxrWbEIMDx48QEVFhSjvqNedgn9NNZtcLmf1vaa6U91OdHQ0kpKSkJeXx2pnTXZKSkrg6+vL7Pj7+yMjIwOFhYWcnbi4OPZ8lJaWMjuZmZlo3749Wrdu/a/eSrHR1I2ozv/Fi/l3GQMHDsTMmTMhk8nwySefoFmzZqirq0NQUBA+/PBDyGQyfPTRR5BIJLhw4QIMDAwgk8kwfvx4mJmZoaKign2qKpPJ8N5770EikWD//v3o0qULZDIZRo8eDSMjI7ZhnDhxIqRSKTp27AjgzVdjxo4dC5lMhuHDh0NPTw+RkZGIiYmBTCaDvb092rRpAyJCamoqrKysIJPJMHjwYGhra8PFxQV5eXksBmtra7x69QphYWHo0aMHpFIp+vTpAy0tLVy9ehUSiQQymQwTJkyAubk5VCoV/P39MWTIEEilUrz//vuQSCQ4cuQI7OzsIJPJMGbMGBgbGyM3NxeBgYEYP348pFIpOnfuDODN1zeGDx8OqVSKESNGQF9fH3FxcYiMjIRUKoVUKoWtrS2AN1+dED6F/fjjj6GjowNPT09kZGRAJpNh0qRJaNGiBV6/fo3IyEh06dIFUqkU/fr1g5aWFhwdHVFXVweZTIaJEyfCwsICVVVV8Pf3x6BBgyCTyfDBBx9AIpHgxIkTaNmyJWQyGcaOHQsTExNWhI8dOxZSqRRdu3YFAOjr66N///6QyWQYOXIkDAwMkJSUhLCwMNjb20MqlaJt27YA3nzdRU9PD1KpFEOGDIGuri58fX0hl8vZz6xly5aor69HbGws2rVrB6lUigEDBkBLSwv37t1DZWUli8HKygo1NTUICgpC3759IZVK0atXL0gkEpw5cwaWlpaQSqUYN24cTE1NUVJSwj4Zlslk6Nq1KyQSCXbt2oVevXpBKpVi1KhRMDQ0hEKhQHBwMCZNmgSpVIr27dsDAPtqkVQqxbBhw6Crq4vg4GAkJCSwGFq1agUiQkJCAlq3bg2ZTIYBAwZAW1sbjx49QklJCWentrYWISEh6NWrF2QyGXr37g2JRILz58/D0NCQs1NeXg5/f3+MGDECMpkM3bt3Z3a6desGqVTK7GRmZiIwMBCffPIJZ6e6upo9i4IdoehpaEf4vWBSqZTZEU4hpVIpJk2ahObNm3N2BP9aWlq4cuUKdHR0IJVKNdqRyWTo0aMHJBIJDh8+jPbt20MqlWLs2LEwMjJiiXXChAmcnfr6evbfYPjw4dDX10dsbKxGOwqFgp0kDx48GDo6OvDw8EBmZqbITkREBLp27QqZTIa+fftCS0sLN2/exKtXryCVSjk7AQEBIju//vorbGxsWAwmJiYoKCiAn58fxo0bB5lMhi5dugAAdHV12Z8fOXIk9PX1kZiYiPDwcJGdnJwc9j46ZMgQ6OjowMfHBwqFAlKplLMTFRWFDh06QCaToX///tDS0sLdu3dRXV3N3sOsrKzw8uVLBAYGol+/fpDJZPjwww8hkUhw+vRp9n45duxYmJqassJZsNOtWzcAb36fY+/evSGTyTBq1CgYGBhALpcjJCQE9vb2sLe3Z3ZKSkrY++jQoUOhq6vLDgGFn4NgJy4uDm3atOHsODk5oby8nPkX7AQFBbHXINj5448/YGxszOyYmpqivLwcfn5+Ijt79+7Fe++9x/KOoaEhMjIyNOadyspKTJw4ETKZDMOGDWN24uLimJ3WrVszO9bW1pDJZBg0aBBnR/Av2AkNDcX7778PmUyGPn36QCKR4PLly9DR0WExmJubQ6lUwt/fH0OHDoVUKmV2Dh06xH7mY8aMgZGREXJychAYGMjsdOrUCcCbrwKPHDmSsxMdHY3o6GgWg2AnNTUV5ubmnB03NzdkZ2ezn5m1tTVev36N8PBwkZ0bN26gvr6ePXdvs3P8+HH2fjl27FgYGxujoKAA/v7+GDduHKRSKbOjo6ODwYMHa7QjeBDsZGVlsfdRwY63tzfS0tJYDIKd6OhodOzYEVKplNm5c+cOszNx4kT26WtgYCD69+8PqVTK7Jw6dYrZGTduHExMTJidMWPGQCqVMjsODg7o06cPyzsGBgZITU1FaGgo89+uXTsAb77er62tDalUyuwEBAQwO/b29rCxsWF27OzsWO7U1tZmB1nCc2dlZcXyzkcffQSZTMZy5x9//AETExPOTllZGfz9/dlz061bN0gkEuzZs0dkJz09HcHBwSzvdOjQAcCbKxnC+6hgR9i4NbSTmJiIli1bQiqVMjtPnz5FYWEhZ6eurg4hISHo2bMnq9kkEgkuXbrEao0JEybAzMyM2WlYdx48eBCdOnWCVCpldoSNteBfsFNXV4fRo0ezmk1PT49tkGQyGaRSKcudcrkclpaWzL+Ojg5cXV0btdO9e3fmX0tLC9evXxfZqaysREBAAD7++GPIZDJWdx47dgy2trYs7xgbG7MN3fjx4yGTyVjuFL5lKJVKmZ34+HhmRyqVws7OjtkxMjJiNZuOjg68vLyQnp7O8r9gJzIyEp06dYJMJmN15+3bt1FbW8typ6WlJaqrqxEQEIABAwZAJpOhZ8+ekEgkOHnyJKytrVnNZmJigqKiImZHqNmAN79HvG/fvlzdmZKSwvKOup3CwkL2PirUnf+u40+bFUkkknMApAAKiOiDf8xZAbgJoD2ANAAziai0sX+GMN41K3o33o134914N96Nd+PdeDfejXfj3fjPHf+TzYouAJjYYG4dADci6gLA7R9//28/NG3KG9uo/6vXCm2P/26v639r7d/1df2Vtf8JP7N3Mfz7rf27vq6/svY/4Wf2LoZ/v7V/19f1V9b+J/zM3sXw91j7nxDDX1n77xbvv+v40zui27ZtS9++fbs+gC+3bdv2GwBs3779VwDLt23bptq+fXsqgD3btm379c/+ZX/3O6KPHz/GihUr2IVkMzMzvHr1ClOmTEFERAQMDAzQpk0baGlp4fz589i1axe7kGxsbAylUolJkyZBLpfDxMQErVq1Yl+ROnXqFLuQbGBggOzsbEyePBm5ubmwsLBAixYtIJFIsGrVKty6dQtEby4k6+npISoqCrNnz2aX+Zs1awYA7IK8trY27OzsoKOjAxcXFyxbtoxd5jc3N8fr168xdepUhIWFQV9fH7a2tuzrhdu3b2eX+Y2NjVFZWQl7e3skJyfD2NgYrVu3Zl+R+vXXX9llfkNDQ/YV4OzsbC6G9evXs69fCDHEx8dj5syZKC4u5mJYsGABnj9/Di0tLRaDp6cnfvjhB3aZ38LCAkSE6dOnIygoCHp6erC1tYW2tjZu3ryJTZs2scv8JiYmePnyJezt7ZGQkAAjIyO0bt0aWlpaOH78OA4fPswu8xsaGqKoqAhSqRSZmZkwNzdHy5YtIZFIsGXLFly+fJld5tfX10dycjKmT5+OwsJCNGvWDM2aNYNEIsHixYvx+PFj1ghD+Gru/Pnz2WV+CwsLAMCsWbPg5+cHXV1d2NnZQVtbG3fv3sX69evZZX5TU1PU1tZCJpMhNjaWi+HUqVM4cOAAu8xvZGSE0tJS2NvbIy0tDWZmZrCxsYFEIoGDgwPOnTvHLvPr6+sjLS0NU6dORX5+PqysrNC8eXNIJBL8+OOPePDgAWtIIHw1d+7cuewyv6WlJQBg9uzZ8PLygq6uLvs5PHr0CCtXrhTZmTx5MqKiomBoaMjsnDt3Drt37+bsVFRUwN7eHnK5HKampiyGPXv24MyZM5ydrKwsTJkyBbm5ubC0tIS1tTUkEglWrlyJ27dvc3YiIyOZHfXL/HPnzoW7uzt0dHRga2sLHR0dPH/+HD/99JPIzqeffoqwsDDO/+XLl7Fjxw7WREqwM2nSJCQnJ3P+Dx48iBMnTqCurg5t2rR5q51169bhxo0bICLY2tpCT08PcXFxmDVrlsjO/Pnz4ezsDG1tbRaDh4cHFi9ejPLychZDfX09pk+fjuDgYOjr66NNmzbQ1tbGjRs3sGXLFs5OdXU1s6Pu/9ixYzh69ChrwGZoaIjCwkKNdjZt2oQrV66wBmz6+vpISkrCjBkzRHYWLVqEJ0+esCZSgp0FCxagvLwcLVq0YP5nzZoFf39/zr9gR2giZWpqipqaGkilUpGdkydP4sCBA6yJlJGREUpKSmBvb4/09HTOzo4dO3D+/HnWREpfXx9yuRzTp09nTSQEO8uWLWN2BP9BQUH49ttvWQM2wc6XX34Jb29vzo6TkxNWrVrFGuGYmpqirq5Oo52zZ89iz549rImUkZFRo3Z++eUX/P7776yJlIGBATIzMzFlyhTk5eXBwsKC2VmxYgXu3LkDACyGiIgIzJkzhzVgE+x8/fXX8PDw0GhHaCJlZmbG7ISHh7PnTktLC5cuXYKDgwNnR6VSwd7eHikpKTA2NmZ2Dhw4gN9++401YDMwMEBubi5kMhlycnJgbm7O7Kxdu5bZEfzHxMTgiy++ENmZN28eXFxcODvu7u5YsmQJa8Am2Jk2bZrIzvXr17FlyxbWRErdTmJiInvuJBIJjh49yuwIeaewsBD29vbIysqCmZmZRjtCDImJiZgxYwZrwKRu5+nTp+y5E76au3DhQlHunDlzJgICArjn7vbt29iwYYNGO3FxcTA0NGR2fvvtNxw8eFCjnYyMDM7Otm3bcPHiRfbcCXamTZuGgoICLu8sXboUTk5O3HMXGBjI7KjnnS+++AI+Pj7suRO+mrt69WqRHZlMhujoaO49+/fffxfZKS8vx6RJk6BQKER2zp49yz13GRkZ+PTTT5GXl8flneXLl+Pu3bvsudPV1UVYWBi++uor1oBNsPPVV1/B09OTe+6ePn2K5cuXs7wj2NFUd164cAG7du3iajZ1O+p5Z//+/Th58iR77gwMDJCTk4PJkycjJyeHyztr1qyBo6Pjn9qRSCSYN28eXF1dubrTzc2tUTshISFc3Xnt2jVs27aNyztVVVWwt7dHUlISl3eOHDmC48ePczVbfn4+pFIpsrKyuLyzceNGXL16ldVsenp6SEhIwMyZM1kDpubNmwMAFi5ciGfPnnF1p5eXFxYtWsTVbESEGTNmIDAwkMs7t27dwsaNG7kYampqYG9vj/j4eC7vnDhxAocOHeLsFBcXY9KkSY3aUa87U1NTNdpZsmQJnJycuLzzdxtNvSPKdvxv+wtvvoIbo/b3ZQ3+/9Km/HP69u1Lf+exbt06AsD++uijj8jBwYFMTEzYnJWVFX377bc0bdo0NieRSGjw4MG0fft2MjAwYPM2Nja0dOlSGjp0KJvT0dGh0aNH06ZNm0hXV5fNt2/fntatW0ddunRhc/r6+jRp0iRavXo1SSQSNt+tWzdycHAgCwsLNmdiYkKfffYZLVq0iIuhV69eohgsLS3p66+/plmzZnExDBw4kHbs2EGGhoZsvmXLlrR48WIaPXo0m9PW1qYRI0bQ5s2bSU9Pj823bduW1qxZQz3sD5nKAAAgAElEQVR69GBzenp6NHHiRFqzZg1paWmx+S5dupCDgwNZWVmxOWNjY5o6dSotXbqUi6Fnz57k4OBApqambM7CwoJmz55Ns2fP5tYOGDCAduzYQUZGRmzO2tqaFi5cSBMmTOBiGD58OG3ZsoWLwdbWllauXEkfffQRF8P48eNp3bp1pK2tzeY7d+5MW7duJRsbGzZnZGREU6ZMoZ9++ol7XR988AHt3LmTzMzM2JyZmRl98cUXNHfuXG5tv379aMeOHWRsbMzmmjdvTvPnzyepVMrmtLS0aOjQobRt2zbS19dn861bt6aff/6ZBgwYwOZ0dXVp7NixtHHjRtLR0WHzHTt2pE2bNlHbtm3ZnKGhIclkMlq5ciX3unr06EEODg5kbm7O5kxNTWnWrFk0f/58bm2fPn3IwcGBi0GwM3XqVO65+/jjj0V2WrVqRcuWLWvUjnoM7du3p/Xr11Pnzp3ZnIGBAdnb29OqVas4O927d2/Uzvfff8/F0Lt3b9q5c6fIzty5c2nGjBlcDIMGDaLt27drtDNq1CjuuRs5ciRt2bKF86/Jjr6+Pk2cOJHWrl3L2enatSs5ODiQpaUlZ2fatGm0ZMkSLoYPP/xQo505c+bQl19++ad2WrRoQd9//z2NHz9eZGfr1q0a7fTq1atJdrZt20YtWrRokh0HBweNdr7++muNdtRjEOzY29s32U7//v012lGPoWPHjrR582ays7MT2Vm+fLnIzs6dOzXamTdvnsjOzp07OTvNmjWjefPm0ZQpU5ps5+OPP26SnQ0bNlDHjh3/23ZmzJih0Y6m3NlUOzY2NrR48WIaOXKkyM7mzZs5O+3ataO1a9fSe++9J7KzevVqkZ2dO3dyMQh2Fi9eLLKzc+dOkZ2vvvqKvvjiC4121GNo0aIFLVq0iMaOHcvFMGLECJEdOzs7WrlyJX344YecnQkTJtC6deu4GDp37kzbt28na2trzs6nn35KP/74o8hOw7xjbm5OX375pUY7Dg4Ooty5YMECmjRpksjO1q1bOTtt2rSh5cuXU9++fTk748aNow0bNojsbNmyhdq0acPZmTx5Mv38888iOw3zjpmZmUY7ffv2FeVOTXa0tLRoyJAhtHXrVpGdH3/8kQYPHszZGTNmjCh3dujQgTZu3EgdOnTg7EilUlqxYgVn57333hP5F+wsWLCAi6GxuvObb76h6dOnc3YaqzuXLFlCw4cP52IYNWpUo3a6devG2Zk0aZKoZuvWrRvt2LFDZGf69OkiO0LdqcnO559/zsWgqe58m52GNZudnR2tWrWKevbs+ad2unTpQtu3b6fmzZtzdqZOnUrLli3jYhDqzoZ2Zs+eTXPmzOHW9u/fX6OdhQsX0ieffMI9d8OGDWvUTp8+fUR2GuadTp060ZYtW6h169YiO8HBwf/qbRQ3AIRQU/aYTVr0T2xEASwEEAIgpG3btv8nwf93x/379wl4k0Q3b95MQUFBVFFRQT179iRLS0uaPXs2Xb9+nUpLS+nEiRMsie7atYuioqKosLCQWrVqRS1btqTvvvuO7t+/TyqVir0Jjxo1ig4ePEhJSUmUlpZGxsbG1LZtW1qyZAk9e/aMqqurae7cuaSvr0+ffPIJnThxgtLT0yksLIy0tLSoa9eutHLlSvL09KSamhoaN24c27ydO3eO8vLy6MmTJyyJbty4kQICAkilUlGfPn3IwsKCvvjiC7p27RqVlJTQ77//zpKog4MDRUREUHFxMbVt25ZatGhB3377Ld29e5eUSiVt27aNFaD79++nhIQEyszMJDMzM7K1taUffviBnjx5QtXV1bRgwQL2RnD8+HFKS0uj6Oho0tHRoc6dO9Py5cvJ3d2damtradKkSawAPXv2LOXm5pKrqytLouvXryc/Pz9SqVQ0YMAAMjc3p1mzZtGVK1eouLiYLl26xN4Itm/fTmFhYVRaWkodO3ak5s2b09y5c+n27dtUUVFBu3fvZm8Ee/fupbi4OMrOziZLS0tq06YNff/99/To0SOqqqqipUuXsjeCY8eOkVwup/j4eNLV1aWOHTvSTz/9RK6urlRTU0NTp05lBeiZM2coOzubvLy8CAC9//77tHbtWvLx8aGqqioaMmQImZqa0owZM+jSpUtUWFhIN27cYEl027ZtFBISQuXl5dStWzdq1qwZffXVV+To6EhlZWV08OBBlkT37NlDMTExlJeXR9bW1tSqVStasGABPXz4kCorK2nFihUsiR45coRSUlIoOTmZDAwMqH379rRs2TJydnammpoamjVrFitAT506RVlZWRQQEMCS6OrVq8nLy4uqq6tpxIgRZGJiQtOnT6cLFy5QQUEB3bt3jyVRdTsffPABs3Pjxg0qLS2lX3/9lSXRX3755a121q9fz+wcOnSIkpKSSKFQkJGREWfn5cuX9NVXXzE7v/32G2VkZFBoaChpaWlRt27daNWqVczO2LFjRXYeP37MkuimTZuYnd69e4vsnDlzhiXRnTt3UmRkJBUXF5OdnZ3IztatW1kSPXDgACUmJlJmZiaZmpqSnZ0dZ2f+/PnMzq+//kppaWkUFRVF2traIjuffPKJyI6LiwtLohs2bGB2+vfvL7Jz4cIFZmfHjh1vtbNr1y5mZ9++fRQfH8/ZWbRoEbOzePFikZ24uDjS1dWlTp060c8//8zsTJkyRWTnxYsXzM66devI19eXqqqqaPDgwSI7169f5+yEhoZSWVkZde3albNTXl5OBw4c4OzExsZSbm4uNW/eXGRn+fLlIjtJSUmkr69PHTp0oB9//JFcXFyopqaGZs6cKbLj5+fH7KxZs4a8vb3p5cuXNHz4cJGdO3fuMDtbtmyh4OBgKi8vp/fff5+srKxozpw5zM6xY8c4O9HR0VRQUEA2NjZkY2ND8+fPZ3bWrl3LCtBDhw5RcnIyyeVyMjIyonbt2tHSpUvp+fPn9PLlS5ozZw4rQAU7ISEhJJFImJ0XL15QTU0NjRkzhm3ezp07R/n5+fTo0SPOTmBgICmVSurVqxdZWlrSl19+SdevX6eSkhI6ffq0yE5RURHZ2tpSixYtaN68eXTv3j1SKpW0ZcsWkZ2MjAxmZ/HixfT06VOqrq6mefPmiexERkaStrY2denShVasWEEeHh5UW1tLEyZMYJs3wY6zszNnx9/fnyorK6lfv35kbm5On3/+ObNz/vx5zk54eDiVlJRQ+/btydramr755hu6c+cOVVRU0M6dO0lLS4uGDx/O7GRlZZGFhQWz8/jxY6qqqqIffviBdHV1afz48XTs2DFSKBQUGxtLOjo6zI6bmxvV1tbS5MmTWQH6+++/U3Z2Nnl6ejZqx8zMjGbOnEmXL1+moqIiunr1qkY7Xbp0oWbNmtHXX39Nt27dovLyctq3b59GO82aNaPWrVvTwoULycnJiSorK+mnn35ihzdHjhyh1NTURu189tlnbPN2+vRpysrKIl9fX5Gd6upqGjZsGJmamtJnn31GFy9epMLCQrp9+zYBbw5v1O306NGD2bl58yaVlZXR0aNH2eGNYCc/P59atmzJ7Dx48IBUKhWtWbOGHd4cPnyYkpOTKTU1lQwNDUV2Zs+ezeycPHmSMjIyKCgoiCQSCXXv3p3ZefnyJY0ePZpMTExo2rRpdP78ecrPz6eHDx9ydWdjdkpLS+nkyZNc3SnYadOmDbVs2ZKzs2nTJnZ4c/DgQUpMTKT09HQyMTER2fn222/ZhwZC3RkRESGyU1NTQ+PHj2d2/vjjD8rLy6Pnz5+zulOwo1KpqG/fvszO1atXqbi4mM6dO8fVnW+z4+DgwOzs37+f4uPjKTMzk8zNzcnW1paz8/333zM7x48fJ4VCQTExMVzdKdiRSqWcnZycHHJ3d+fqTl9fX6qsrKSBAweK7Fy5coUd3gh1Z1lZGXXu3JmaN2/O2dm7dy87vBHqzpycHLKyshLZ+fHHH5mdo0ePUmpqKiUmJpKenp7IzvTp00V2/m7jf3sjmgig1T/+dysAiU355/zdPxGNi4ujjIwMbq62tpa8vLyorq6Omw8PD6f8/Hxurry8nAIDA+n169fcfFBQEJWWlnJzeXl5FBkZSfX19dy8r68vKZVKbk6hUFBiYiI3V19fzzYG6iMhIYHS0tK4ubq6Onrx4gXV1tZy85GRkZSbm8vNKZVK8vf3F8UQHBxMxcXF3FxBQQGFh4eLYvDz86OKigpuLj09neLj40Vrvby8qKqqiptLTEwkhULBzb169UpjDFFRUZSTk8PNVVVVka+vL7169YqbDw0NpaKiIm6uqKiIQkNDRa/L39+fysvLubnMzEyKjY0VrfX29qbKykpuTkhc6uP169esmFMfMTExojeRly9fkre3tyiGsLAwKiws5OZKSkooODhY9DMLCAigsrIybi47O5uio6NFMfj4+IhiSE1NpeTkZG6uvr6eJVX1ERcXR5mZmdxcTU1Nk+2UlZU12U5ubi5FRUU12U5SUpLGGBraiY+Pp/T0dG7ubXby8vK4ub9iJz8//y/ZSUhIoIZDk/9/1k5lZSX5+fmJnruQkBCNdsLCwppsJy4urkn+/6qd7Oxsbq66upp8fHw0+tdkJyQkpMl2YmJimuQ/NTWVUlJSuLn6+nry9PQU2YmNjdVox9vbu8l2goKCRDEEBgb+JTsqlYqbe5udhjE0ZkeT/4iICJGdiooKCggI0Oi/pKSEm8vPz6eIiAiNMTS0k5aW9pfsNMyd/1N2GvovLCxs1E7DGDIyMppsJykpieRyOTfXmJ3o6Oh/yk5xcTGFhISIXpcmO1lZWU22k5KSotGOphj+qp2CggJurrS0tMl2cnJyNNrx8fER2ZHL5U3OnfHx8U2uO/837TTMnZrsNJY7NdWdb7PTsO5UqVRNtvNX6s6MjIwm152N2REOr9WHJjtVVVX/tB1NuTMrK6vJdeffbTR1I/qnXXMBQCKRtAfwiP6ra+5+AMVEtEcikawDYEVEa/7sn/Oua+678W68G+/Gu/FuvBvvxrvxbrwb78Z/7vgf65orkUiuA/AH0E0ikWRJJJLvAOwBME4ikSQDGPePv/+3H0FBQXB3d0ddXR2bq6urw8WLF5Gbm8ut9fDwgJ+fH16/fs3mKioqcOXKFRQXF3Nrnzx5gvDwcK7LVXZ2Nm7fvo2Kigpu7Z07dxAfH8+tTUhIwKNHj1BdXc3miAhXr16FQqHg/nxoaChcXV1RW1vL5l69eoWLFy8iJyeHW+vl5QUfHx8uBpVKhcuXL6OoqIhb++zZM4SEhKC+vp7N5eXlwdHREeXl5dzae/fuITY2loshOTkZDx8+RFVVFbf2+vXrSE1N5ebCw8Ph7OyMmpoaNvf69WtcvHgRWVlZ3FofHx94e3vj1atXbK6qqgqXLl1CYWEht9bFxQXBwcFcDIWFhbhx4wbKysq4tQ8ePEB0dDQXg1wux/3791FZWcmtvXnzJpKTk7m5qKgoPH/+nIuhvr4ely5dQmZmJrfW398fL1684GKoqanBxYsXkZ+fz611c3NDYGAgF0NJSQmuXbvGfheoMJycnBAZGcnFkJ6ejrt370KlUnFrb926hcTERG4uNjYWT548wcuXL9kcEeHy5ctIT0/n1gYFBcHDw4OzU1tbi4sXLyIvL49b6+HhAX9/f+65Ky8vx5UrV1BSUsKt1WQnKysLd+7cgVKp5NY2Zufx48ciO1euXBHZCQkJgZubW5PsvHjxAr6+vk22Exoayr2u3NzcJttJSkqCk5OTyM61a9c02nFxceFi+J+w4+zsLLJTUFCAmzdvimK4f/++yE5qaioePHggsnPjxo1/yo6fn5/IzsuXL3Hp0iUUFBRwa11dXUV2iouLcf369SbZSUtLw71790R2HB0dRXZiYmLw9OnTJtkJDAzUaOfSpUsiO+7u7hrtXL16VWTn8ePHIjuZmZka7dy+fRsJCQnc2vj4eI12rl69irS0NO7PC3bUYxDsNMydmuwolUqNufPp06ciOzk5Obh165Yod969e/cv2ZHL5dxcWFhYo3ays7O5td7e3k228/z5c1HuzM/Pb9ROTExMk+2kpKRwc5GRkf8rdlxcXJps5+HDh4iKimqynaSkJG7ubXYyMjK4tQEBAfD09GxS3nF3d0dAQAAXQ1lZWaN2IiIiuBgyMjKabCcuLk5j7rxy5YrITnBwcJPrTk9PT1Hd+TY7YWFhTbYTFxfHrU1MTBTZEfxrstOw7nybnYZ1Z2Vl5V+yoyl3arKTkpLSaN3Z0E5ERISo7qyvr9eYO319feHl5cXZqa6uxsWLFzXaCQoK4mIoKirC9evXRXWnJjsKhaLRurOhnX/b0ZSPTf+n/vq7fzX32rVr7EKycJdKLpdT9+7dRXep9u3bxy4kC3ep4uPjqVWrVtxdqri4ONZ8Q/0eYnh4OBkbG3N3qRQKBWvkoH6XytPTk7S0tLi7VFlZWayRi3AfxMfHh27dukX4x2V+4S6VQqGgDz74QHQf5OjRo4R/XOYX7lIlJiaSnZ2d6D7ImjVrCHjTzEO4SxUZGUlmZmbcXarU1FTWQKhDhw7sHqKPjw/p6OiI7lIJzSiE+yBeXl7srq6pqSm7S6VQKKh3797cXaqgoCD67bffCP+4zC/cQ0xKSqL27duL7lJt2rSJ8I/L/MJdqujoaLK0tBTdpRKaIAj3QZ49e0b+/v6kq6sruocoNEFSv0sl3DcU7oOcO3eO0tPTqV+/fqK7VGfPniUA7D7ItWvXKDk5mTp37iy6S7Vjxw4CwN0HiY2NJWtra9FdKqFxVdu2bdl9kODgYDIwMODuUqWnp5NMJmOX+YX7IMKdKfV7iOnp6TRw4EDRXarLly8zO8JdqtTUVJGd8PBw2rt3L7PzzTff0O3btykuLo5sbGxE9xCF5hvq90HCwsLIyMiINcIR7Hz22WecHTc3N/Lw8GB2Jk+eTGfOnKHMzEwaMmSI6C7VzZs3mR3hPohCoaD3339fZOfw4cMEgLsPkpCQQLa2tiI7q1atYnaE+yCRkZFkampKurq6nB2hgZD6fRBvb2/S1tZm90EEOyNGjBDdpRLu6gp3qS5cuEByuZw1EFK/h3jixAlmR7hLpW5H/S7Vxo0bOTsPHjygqKgoZmf06NHMzjfffEPAm0Y4wl0qdTvCXarMzEwaN27cn9o5f/48paWlsSYo6naEe+7qd6mSk5OpU6dOIjvbt2/XaKd58+bsLpVgR2i+o24nKCiI9PX1WSMc4S6V0EBM3Y5wZ8rY2JjdpcrIyGB21O9SXbx4kfCPZh7CXarU1FTWQERohBMeHk67d+/m7Ny5c4fi4+PJxsaGu8MfHx/Pmr69zY5wl0povte5c2dmx93dnSQSCRkZGbG7VJmZmawJkvpdKuGeu7oduVzO7Ah3qUJDQ+nQoUMa7bRp00Z0l0pomKZuJyIigtkR7lLJ5XLWQKhjx47MjpeXF2lra5OhoSG7S5Wdnc0aufTo0YPZuXv3Lmfn4sWLpFAoWAOhPn360NatWyk4OJh+/fVXjXbatWvH7OzevZuio6Np/fr1BLxphCPYiY6OJgsLC+4eYkpKCmtcJ9zhf/78Ofn5+bHcqW5HaOTSvXt3Wr16Nb148YKcnJw02hGaoKj3vzhz5sxb7aj3v9i2bZtGO82aNePuISYlJbHmO02xIzRBEvpfNGYnPT2dNd8T+l/4+/uze+4N7XTt2pW7hxgREUG//PILAWB3+O/cuUNxcXHUsmVLUf8LwY5wh//x48cUGhpKhoaGnJ20tDTWfE/9Dr+bmxuzM2XKlEbt+Pn5iepOwY7QuE79HuKBAweYHaHubMyO0DBNve6MiIggExMTkR2hcaV6/4sXL16I7GRlZdGwYcOYHaH/hXDPXag7G7MTEhJCx48f5+rOmzdvUmJiIrVt25azExMTwxqIqt/hj4qKInNzc1Z3CnaE5lvq/S98fX25ulOwM2bMGM6Ol5cXu6urfoc/LS2NNa5Ut3Pq1ClR3ZmcnEwdO3YU2dmyZQvLnUL/i5iYGLKyshLZEZo+tmvXjvW/CAwMJD09Pa53TEZGBmuCpN47puFXuf/VA038aq7OW/ao/98N4dSjvLwcz549Y/9bOPELDg5ma4VTrcLCQjx+/BjAm9Om6upq1NfXw9fXl60VTo+ys7Px6NEjAECXLl1QX1+Puro6eHp6srXCaXlqaipra25tbQ3gzYmLq6srgDcHCMLrjY2NFcVSUVHBYlCpVOy0LDQ0lK0RPuUpLi7GkydPALz5lLOyshL19fXw9/dna4XTo5ycHBZD9+7d8fr1a7x69QovXrwQ/bdRKBR49OgRJBIJWrVqBSLCy5cv4ebmBgCQSCTslDY+Pp79eaENtVKpxPPnzwG8OW0WTsvCw8PZWiGukpISFkNRURFUKhWICAEBAWyt8MlLXl4ei6FHjx6oq6vDq1ev4O3tzdYKn5alp6ezn4OtrS2AN59Wuru7sxiEU1r1T0WMjY3Zf3shhpqaGvYJZ2RkJFsrnLCWlpbi6dOnLJ6KigoQEYKCgtha4QQsPz+fxfDhhx+ipqYGr1+/ho+PD1srPHcZGRkshg4dOoCIUFtbCw8PD1EMycnJbK3wK2eqqqrg4uIC4M2nHMJzEx0dzf5dwkloeXk5i6GsrEyjHeG/rbqdrKwsvHz5slE7WVlZ7HV17txZFAPwX89dY3aEGP6KHaVSyU7L1e0Ip7xFRUUshtzcXFRVVYnsCJ9aarJTV1fXqB0hBhsbGwBvPq0Q/P9VO8KntOp2BE/qdgoKCqBUKkFEXAya7Lz//vvMjpeXF1sr/HzT0tI02hH8A2AxJCYmQiKRAPh/7L1nWFRX1///HXpHRDoIGqPYO/beZUZjNDEaTdREE6NJNEXEEntXRNSo2HvvJRZir9Eoig1UQHrvHWb2/wX/vZ6z5xwU7/tOntzPj3Vd+82+1sgsz/7MWnPmrO8CLCwsAJSzc/78eYpdyg735Xf2peykpaUJ7HBfKTv8mjVu3BglJSXQarUC/0rseHl50bnj/HMf/n/EfW1tbQGU3+nnMZSWltIvHI8ePaLX819NsrKyBHb43XIp//x9SdmJj49HUVFRhfzHxcXRNatTpw50Op2MHZ53Xr58STHwUQdS/rVaLZ39x48f0+v53f6K2JG25HD20tLS6NxJ2bl58yb5KrFTt27dN7ITGRkpY0eaO6Wfd0+fPqXXGxoa0vtWYuf+/fvky3/10GeH5x2l3JmYmCiwU1ZWJmOHxyBlx83NDQAqzJ3Pnz+n15ubmwOQs8Pfb2hoKPny81URO3fu3CFfJXaaNGmiyA7nPyYmhvJ/zZo1ZexIrwP/5RoArK2tAZSzw89daWkp/cIpZYf/Wi9lJzMzU5Edfh1SUlIohtjYWGJHKe/ExsYq5k6lmk3KDh/XImVHp9MpssN/GZTWnTk5OYrs8P8vad6Jj49/IzsV1Z1SdngMUnacnJzAGJPVnfzcKbGjX3cqscM/x6V1Z3JyMvLz8yvFTv369YkdaQxKecfV1RWAnB3+/yhlx8zMjN4357+wsFCRHV7X6NedSuwo5c5GjRqhtLS0QnakdWfNmjUBVFx3StmxtbVFs2bN8N9mVV9EJdakSRNMnjwZGo0GHTt2hLGxMUpLSxEaGgofHx/4+vrCxcUFQPmjPU5OTtBoNPDx8YGhoSFycnJw//599OjRA/369aOZZebm5mjVqhU0Gg2aNWsGlUqFuLg4PHnyBL6+vujVqxdsbGwAlH8YDR48GBqNBt7e3lCpVHj48CFiYmKg0WjQvXt3mJubgzGGiIgI1KxZE2q1GrVr1wZQ/uhmYWEhNBoNOnXqBBMTE5SVleHhw4do2bIlfH19Cc6DBw/Czs4OGo0Gbdu2haGhIfLy8vDgwQN069YN/fr1o2Jkw4YNaNy4MTQaDZo3bw4DAwMkJSUhLCwM/fv3R+/evan44n9frVajQYMGUKlUePr0KSIjI6HRaNCjRw8qNl+9egVXV1eo1Wq89957AMofGc7JyYFGo0Hnzp1hamoKrVaLsLAwNG3aFL6+vlTYHj16FBYWFtBoNGjXrh2MjIxQWFiI+/fvo3Pnzujfvz99Gdm8eTPq1q0LjUaDli1bwsDAAKmpqXj06BH69u2LPn360JcvrVaLnj17QqPRoFGjRlCpVIiIiMCLFy+g0WjQs2dP+rIZFxcHe3t7qNVqvP/++wDKH3tKS0uDRqNB165dYWpqCp1OhydPnqBBgwbw9fWlD5iTJ0/CyMgIGo0GHTp0gJGREYqLi/HgwQN06NAB/fv3h5OTEwBg+/bt8PLyglqtRuvWrWFgYICMjAyEhoaid+/e6Nu3L81dMzQ0ROfOnaFWq9GkSROoVCpERUXh2bNnUKvV6NWrF6ysrACUJ4KRI0dCrVajXr16AMq/PPKZfd26dYOZmRkYY3j27Bnef/99qNVqeHp6Aih//FSr1QrslJSUIDQ0FG3btoWvry8Vhbt374azs7PATnZ2NkJDQ9GzZ0/069ePErm5uTl8fHygVquJndjYWGKnd+/eVLhkZWXh448/hlqtJnZCQ0MV2QkPD6f/x1q1ahE7RUVFUKvVAjuhoaFo1aqVwM6BAwfomkvZuX//Prp37y6ws379ejRt2hRqtRotWrSASqVCYmIiHj16JGOnoKAAAwYMgEajQf369aFSqfDkyRNERUVVip0rV64QO126dIGJiYnAjlqtpsL2yJEjsLa2hlqtJnYKCgpw//59dOnSRWBn06ZN8Pb2hlqtJnZSUlIQGhqKfv36CeyUlpaiT58+0Gg0aNiwIbHz8uVLqNVqgZ2YmBg4ODhAo9GgTp06xE5GRgbUarXAzuPHj9GwYUOo1Wp4eHgQOyYmJlCr1cROUVERQkNDZexs27YNtWrVgkajQatWrWBgYID09HSEhoaiT58+AjsGBgbo0qULNBoNGjduDJVKhcjISISHh1MMnJ2kpCR89gBg/IoAACAASURBVNln0Gg0qFu3LoDyAjg5OZn45+w8ffoUdevWFdjhBTTnn7Pz4MEDGTu7du2Cq6srsWNgYIDs7Gzcv39fxo6pqSnatm0LjUaDpk2bUvGixE5GRgaGDh0KjUaDevXqQaVS4cGDB4iLi4NarZaxU6tWLYGdkJAQFBcXE/9vYmf//v2wt7eHRqNBmzZtYGhoiNzcXDx48ADdu3dH3759iZ1169ahWbNmlHdUKhUSEhLw+PFjioHnzry8PAwcOFBg5/Hjx4iOjib+OTsRERFwd3cX2Ll8+TLy8/Mp73B2Hj58iGbNmgnsHD58GNbW1pR3DA0NK2Rn48aNqF+/PjQaDVq0aEHsPHz4EP369UPv3r2JnZKSEhk7z58/x8uXL4l/zk50dDQcHR0Fdm7cuIGMjAziX8pOo0aN4OvrS+wcP34cpqam0Gg0aN++vcBOx44d0b9/fzg6OgIAtm7ditq1a1fITp8+fYgdAOjWrRvUajWx8+rVK4SHh1Pu5OwkJCRg9OjRUKvVxM6dO3eQkpKiyE69evXg6+tL7PAvAfrshIaGol27dujfvz+xs3PnTri5uQnsZGVlITQ0FL169ULfvn2JHRMTExk7r1+/FnInZyc9PR3Dhg2j3KlSqXD//n3Ex8dT7uTsPH/+HLVr14ZarYaXlxeA8rYHPje8U6dOVHc+fPgQrVu3Rv/+/Ymdffv2wdHREWq1WsaOft3566+/omXLllCr1cROfHy8Iju5ubkYNGgQ1Go1sRMWFiZjhzGGly9fwsPDQ6g7L126hLy8PBk7YWFhaN68OXx9fYmdQ4cOwcbGRmAnPz8fDx48QNeuXdG/f3/if+PGjfSZz9lJTk7Go0ePKO/w3FlcXIz+/ftDrVYTO8+ePcOrV68U2XFycoJarSZ2rl+/jqysLKjVaoGdsLAwNG7cGGq1murO48ePw9zcHGq1mtjhdWenTp0EdrZs2YI6depArVYTO2lpaQgNDUXfvn3Rt29f4p8xhu7duwt158uXLytkZ8yYMQI7/61WKbGi/5RViRVVWZVVWZVVWZVVWZVVWZVVWZX937X/mFjR/0smbVLmxh8BqIxvSUmJ0JD8Jt/i4mIo3QSoyFffGGOV9uWPMVXGt7S09C+L4d+Jlz9OUhlf/shDZXxLSkr+1hikzfxv8i0rK3unGP6J5+7/CjuVjeGvZEfJqtj5z7Dzd8XAH+urjG8VO29+X38XO++aO/+J566KnYp9q9h5s6++/ZV1Z2XPXVXdWbHvf6sZzp49+2/7Y8HBwbPHjRv3t/29d7Xff/8dH330ERISEmBlZQUXFxeoVCp0794dISEhKC0thbu7O8zMzLBr1y6MHz8eKSkpqFatGhwdHVFaWoq2bduSuqSHhwdMTEywbNky/PLLL8jIyECNGjVgb2+PjIwM+Pj44NmzZzAwMICHhweMjIzw008/YdWqVcjJyYGTkxNsbW3x4sULdOnSBVFRUTAxMYG7uzsMDQ0xcuRI7NmzB/n5+XB1dYWVlRWuXbuGDz74APHx8bC0tISrqysMDAzQp08fnD17FsXFxXB3d4e5uTn279+PsWPHIjk5Gba2tnByckJZWRnat2+P27dvQ6vVUgyrVq2Cv78/0tPTYW9vjxo1aiA7Oxs+Pj54/PixEIO/vz8CAgKQlZUFJycnVKtWDdHR0ejUqRNevXolxDBmzBhs374deXl5cHFxgbW1Nf744w/0798fcXFxsLCwoBh8fX1x6tQpFBUVwc3NDRYWFjh27Bg+//xzJCUlwcbGBs7OztDpdOjQoQMpM7q7u8PU1BTr1q3DTz/9hLS0NFSvXh01atRAXl4efHx88OjRI6hUKnh4eMDY2BizZs3CkiVLkJmZCUdHR9jZ2SE+Ph7t2rXDy5cvYWxsTDF8/fXX2LRpE3JzcymGBw8eoE+fPoiJiYG5uTnc3NxgYGCADz/8EEePHhViOHPmDD799FMkJCTA2tqa+mm7dOlCqob83G3evBmTJk1CSkoK7Ozs4ODggKKiIvj4+FD/H49h/vz5mD9/PjIzM+Hg4IDq1asjOTkZbdu2RXh4OIyMjODh4QFDQ0N8++23WL9+PXJzc+Hs7AwbGxs8efIE3bt3x+vXr2FmZgY3NzcYGhri448/xsGDB1FYWAg3NzdYWloiJCSkQna4mqaHhwfMzMywc+dOTJgwAcnJycROSUkJ2rRpg3v37oExJrAza9YspKenEzvp6enEjqGhIZ27H374AatXr0ZOTg6cnZ1ha2uLiIgIYsfU1JSu2aeffoq9e/eioKCA2Ll69SoGDRqEuLg4gZ1evXrh3LlzKCkpEdgZN26cwA7nn6tL8hgCAwMxbdo0gZ2srCz4+PjgyZMnAjtTp05FQEAAsrOziZ2oqCh07NgRkZGRAjujR4/Gjh07BP5v374NtVqN2NhYgZ3+/fvj9OnTAv9HjhzB6NGjkZiYSOxotVp07NiR2PHw8ICpqSnWrl2LKVOmVIqdmTNnYunSpcjKyiJ24uLi0L59exk748aNw+bNmwX+79+/jz59+iA2NlZg54MPPsCxY8dQVFQEd3d3WFhY4PTp0xgxYgQSExMFdjp37kzs8Bg2bdqESZMmITU1ldgpLCxE69atZezMmzcPCxYsEPhPSkpCu3btEBERIbAzceJEYsfFxQU2NjYICwtDz549ERMTI7Dz0Ucfydg5f/48hg4dSvzzRwmV2Nm+fTsmTpwo8F8RO0uWLMHs2bORkZFB/KelpaFt27Z4/vy5wM7kyZOxZs0agZ3w8HB07doV0dHRAjvDhw8ndngMV65cwYcffijkHZVKhV69etGjh/zc7du3j9jRz51cXZLHsHLlSkyfPl3gn7Pz9OlTgZ0pU6Zg5cqVAjuRkZHo1KkTIiMjYWpqStfh888/x86dOwV2bt26BY1GQ/y7uLjAwMAA/fr1k7Fz+PBhjBkzBklJScS/VqtFhw4dSNWUn7s1a9YQO/b29rC3t0dubi5at26NsLAwgZ0ZM2YQOzyGmJgYdOjQAa9evYKxsTGdu7Fjx2Lr1q3Iy8uDq6srrK2tce/ePfTt21fG/8CBA3HixAmBnZMnT2LkyJEC/5wdrgjKYwgODsbkyZORmppK/BcUFMDHxwehoaFQqVRwd3eHsbEx5s6di4ULFwrsJCYmEjtS/r/55hsEBwdXyI6U/8GDB+Pw4cOVYqdbt264dOmSkDu3bdsmY6e4uBht2rSh/n93d3eYmJhg8eLFmDNnjsBOamoq2rRpg+fPn8PIyAju7u4wMjLCpEmTsHbtWoGd58+fEztS/ocPH459+/ahsLAQrq6usLS0xKVLlzBkyBDEx8cLubNnz564cOECSktL4ebmBnNzc+zZswdff/11hewwxiiGFStWYObMmcjIyKBzl5mZSewYGhpSDFOmTEFgYKBQd7569QqdOnWi3CllZ9euXSgoKICLiwusrKxw8+ZNgR1+7vr27YvffvtN4P/QoUP44osvZOy0b98et27dgk6no5ptzZo18PPzE9jJycmBj48PwsLCBP6nT5+O5cuXIzs7G46OjjJ2pLnzyy+/xNatW5Gfn0955969e+jXr5+MHbVajZMnT6K4uJhqthMnTuCzzz5DUlISnTudToeOHTvi2rVrQt25YcMG/Pjjj0hLS4OdnR1q1KiB/Px8tG7dmvQOOP9z5szBokWLkJWVBQcHB9jZ2SEhIQHt2rXDixcvFNmR5s5/ms2ZMydx9uzZwW91rIyi0X9q/dNVc7/55hsGgJaLiwubM2cOU6lUtGdkZMSGDBlCao981a5dm82cOVPYMzU1ZWPGjCG1V74aNWpEKrR8WVpassmTJzNnZ2dhv02bNmzChAnCXrVq1disWbOYgYEB7alUKtazZ082cuRIwdfJyUkWg6GhIRs0aBDz9fUVfD09Pdkvv/wi+JqYmLDPP/+cFOv4ql+/PvPz8xP2LCws2Hfffcc8PDyE/VatWrFvv/1W2LO1tWWzZs1iRkZGwn63bt1IdZMvBwcHNnv2bOF9GRgYMI1GwwYOHCj4enh4sFmzZgm+xsbG7NNPPyXFOr7q1atHioZ8mZubswkTJrA6deoI+y1atGCTJk0S9mxsbNi0adOYpaWlsN+5c2dSP+OrRo0abM6cOcI1MzAwYL6+vmzw4MGCr5ubmyxeIyMjNmzYMFJK5ev9998nRVO+zMzM2FdffcXq168v7Ddt2pRUKPmytrZmU6ZMYXZ2dsJ+hw4dSDmUr+rVq7PZs2fLzl3fvn3ZJ598ImNH/zoYGRmxjz76SJEdrmgsZeeLL74gtVcpOz///LOMnR9++IE5OTkJ+23btpUxbWdnpxhDz5492YgRIwRfZ2dn2XUwNDRkH374ISnW8eXl5cVmzpwpY2fUqFGklMxXgwYNSA1Qys7333/P3N3dhf3WrVuTcrA+O4aGhv8yOwMGDGADBgwQfGvWrCnj39jYmI0YMUKRHf0YODu1a9euFDvTp09n5ubmMna++OILGTtKMfj6+pLaK1/u7u6K/A8bNoyUUqXsTJs2TZEdrvbMV7NmzRTZ8fPzY9WqVXsrO/b29jL+OTsff/yx4Ovq6qqYdz7++GNSe+TrvffeU8w7X375JWvcuLGw37hxYxk7VlZW7Mcff2QODg7Cfrt27SrNTq9evUgpvTLs9O3bV8aO/rkzNTVlo0aNIqVkKTv6ecfS0pJNmjRJkR2ufspXtWrVZNcBAOvevTupbvLl6OiomDsHDhxIKuNSdvTPnYmJCRs5ciRr27at4Ovt7S3LOxYWFmzixImsVq1awn7Lli0V2ZkxYwYzMzMT9rt06aLIjn4MBgYGTK1WK7Kjf82MjY3Z8OHDK8WOubk5Gz9+PCnWStn54YcfZOxMnTqV2djYCPsdO3Zk48aNk7GjdO769eunyI5S3vn4449Z9+7dZewo5c6xY8fSlAEpO1z9XMrOTz/9xGrUqCFjhyvWv42d3r17k1L629gZPHgwKfTzVatWLUX+R48eTWqvfDVs2LBCdlxdXYX9Nm3ayGo2pboTAOvRo4ciO0oxfPDBB6QyLmVHqe787LPPSGWcr/r16yvmzm+//ZZ5eXkJ+61ataKJFXzZ2tqymTNnMlNTU2G/a9euNCmBrzfVnR988IHgW1HdOXz4cJpuwVfdunUrZOf9998X9ps3b14hO9bW1sJ+p06d2N27d/+3v0YJhkqq5lZ9EZXY6dOnZeNFioqKWJMmTYTxIqWlpSw4OFiQeU5JSWHZ2dnM1dVVGJGg1WrZrFmzSOZ93759LDMzk8XHxzNra2thvIhOp2NffvmlMF4kLy+PhYWFMVNTU2G8iE6nY/3796fxIufOnWNFRUXswoULsvEixcXFrGXLlsKIhNLSUrZt2zZmaWnJBg0axLZs2cKSkpJYbm4u8/T0FEYkaLVatmDBAlatWjU2bNgwtmfPHpaRkcGSkpJYtWrVhBEJOp2OffPNN8zR0ZFk3nNzc9nz58+ZmZmZMF6EMcYGDhzIPDw8SOa9sLCQXblyRRgvEh0dzUpKSljbtm2FEQklJSVs7969zMLCgn3wwQds06ZNLDExkeXn57P33ntPGC+i1WrZ8uXLhfEi6enpLDU1ldnb2wvjRXQ6HZs8ebIwIiEnJ4e9fPmSmZubs86dO9N4EZ1Oxz7++GPm5uZGIxIKCgrYrVu3ZONFSktLWefOnYXxIiUlJezw4cM0XmTjxo0sPj6eFRYWMm9vb2G8SFlZGQsKChJGJKSlpbGMjAzm6OgojBfR6XTMz8+P2dvb04iE7OxsFh0dzSwtLYXxIjqdjo0YMUIYkZCfn8/+/PNPZmJiwnr27EnjRcrKyliPHj2E8SLFxcXs1KlTsvEiRUVFrHHjxsJ4kbKyMrZhwwZhRIKUnRYtWgjs/PLLL8KIhKysLBYXF8esra2F8SI6nY6NGTNGGC+Sl5fHHj16xExNTWlEAmenb9++MnbOnz8vjBfh7LRo0ULGztatW4URCcnJySw3N5d5eHjI2Jk/f74wIiEzM5MlJSUxW1tb1rZtW4Gd8ePHCyMScnNz2bNnz5iZmZkwXoQxxgYMGCBj5/Lly8zExIRGJHB22rRpI2Nn9+7dxM7mzZuJndq1awvjRbRaLVu6dCmxs3v3bmKnevXqNCKBs/P999/L2Hnx4gWxw8eL6HQ6NmTIEGG8SEFBAbt586ZsvEhpaSnr2LGjjJ1Dhw4J7CQkJLCCggJWt25d1qhRI4GdVatWydhJT09nDg4OwngRnU7HpkyZIowXyc7OZlFRUczCwkIYkaDT6dinn34qY+fu3bvEzqpVq4id7t27y9g5ceIEscNHJBQWFrJGjRrRFy/Ozrp16wR2UlNTWVZWFnNxcRHGi2i1WjZjxgwZO7GxscQOH5Gg0+nY6NGjaUTC8ePHWX5+Pnv48KGMHa1Wy/r06SOMFykqKmLnzp2TjeYpLi5mzZs3F0YklJaWsi1btsjYycnJYR4eHsKIBK1Wy+bNmydjJzExkdjhIxJ0Oh376quvZOw8efKEmZqaCiMSGGNMrVazmjVrsgkTJhA7Fy9elI0XKSkpYT4+PsJ4kZKSErZr1y5hvEhSUhLLy8tjtWrVovEit2/fZlqtli1ZsoRyJ2cnJSWF2dnZCeNFdDod++6774TxIjk5OSwiIoKZmZkJ40UYY2zw4MHM3d2djR8/np05c4YVFhayGzduKLLToUMHYbxISUkJO3DgwBvZ4eNFysrK2MqVK9/Kzv3795lOp6MvZ3y8yJvYGTZsGHN1daXxIgUFBeyPP/5QZKdr167CeJHi4mJ2/PhxGmvHR/MUFhayBg0aCONFysrK2K+//sqsra1pvAhnx9nZWRgvotPp2PTp04WxdllZWSwmJoZZWVmxDh06COyMGjVKGC+Sn5/PHjx4wExNTYXxIlqtlvXu3VsYL1JUVMR+++03oe6MjY1lRUVFrFmzZjJ2Nm3aJNSdnB13d3cZO3PmzGF2dnY0XiQzM5MlJCQwGxsbGTvjxo1jTk5ONF4kLy+P2OnWrRuxo9PpmK+vL7Fz9uxZVlRUROzw8SKvX79mxcXFrHXr1rLxIjt37pTVnXl5eczLy4s1bdpUYGfx4sWyujM5OZnZ2dmxNm3aCOxMnDiR2Dly5AjLzc1l4eHhQt3J2Rk0aJCMnWvXrsnqztLSUta+fXsZO/v37xfG2iUmJrKCggJWp04dGTsBAQHCSMj09HSWnp7OatSowVq3bi2w8+OPPwrs5OTksMjISGZhYcE6deoksPPJJ58Io3kKCgr+F741vdmqvoj+C/b69WuWn58v7JWUlLCXL1/KfF+9esWKioqEvdzcXBYbGyvzjYiIkM33SUtLY8nJyTLf58+fM61WK+wlJiayzMxMYU+n07Hnz58znU4n7MfExLC8vDxhr7S0lBKw1CIjI1lhYaGwl5eXx16/fi3zffHiBSspKRH2+JdRfQsPD5fFkJSUxDIyMmS+vCCVWmxsLMvJyRH2ysrKqACXWlRUlCyGgoICFhUVJfN9+fKlLAb+4awUQ1lZmbCXnJzM0tLSZL5K1yEuLk4Wg1arVfSNjo6WfYgUFRWxyMhIxRiKi4uFvezsbBYfHy/zjYiIkMWQkpLCUlNTKxVDfHw8y8rKEvYqOndK7BQXF1fIjn4MOTk578ROSkqKYgz65y4hIUGRHaVz967s6PP/Jnb0Y0hPT1dkRymGd2UnNzdX2HtXdqKjoxVjUGInMTFR5lsRO+np6ZWK4V3YiYqKkrFTWFhYaXaysrIU2VGK4V3Zyc7OFvYqYic6OvrfZicuLk7m+1exUxH/Suy8ePFCMQal3BkTE1OpGNLT0xVzp1LeSUxMrDQ7MTExiuxUNnfm5+f/R9jRj6EidpSug1Lu1Gq1LDw8vNLsVJQ7/1123iV3/rvsvHr1Sva3lNjJzs6ukB39GFJTU9+JnXfJnfrslJSU/K3sVFR36rPzptz5d7HzrnVnZfPOX8mOfgxZWVmVrjvfhZ1/mlX2i2iVam6VVVmVVVmVVVmVVVmVVVmVVVmV/Uessqq5VWJFErt27RquXr1KzfxAuRJWQEAAzM3N4ezsTMPRT58+jYcPH1IzP1A+zDcoKIgakrnv/v37ERUVRQ3JQPnsya1bt1IzP7fNmzcjIyODGpKB8uHHR48epWZ+oPyX7DVr1lAju4FBuQDyzZs3cfHiRWrmB8pV5AICAmBiYiLEcPbsWfz5558khAGUz2JbtWoVbG1t4eDgQL6HDh3CixcvSEQCKB8yvGnTJmrm57Zt2zakpKRQIzxQPjj44MGDQgwAsHbtWhLu4THcuXMHFy5cEGLQarVYuXIljIyMqJkfKJ9fd+fOHSGGgoICrFy5EtbW1nB0dCTfo0ePIjw8XIghNTUV69evJyEMbjt37kRiYqIQw4sXL7Bv3z4SJOC2fv165OXlUTM/APz55584e/YsCWEA5QpsK1euhEqlIjEPoHwG161bt6iZHyhXRAsICIClpSWcnJzI98SJE3jy5IkQQ0ZGBtauXYvq1avD3t6efHfv3o24uDhq5gfKBybv2rWLhDC4BQcHIzs7Wzh3oaGhOHnyJAlh8HO3atUq6HQ6auYHyme/Xrt2jZr5gXJluBUrViiy8+jRI2rmB8rn565evVqRnejoaIGd2NhYbNu2rdLsHDt2TGjmZ4xh9erVMnZu3LiBy5cvCzGUlZVhxYoVMDU1lbFz//59EsIAytkJDAyUsXPw4EG8evVKiKEidrZu3YrU1FTh3D179gyHDx8mESlua9asUWQnJCSEhDCAcnYCAgJk7Fy4cAF3794VYqiInSNHjsjYSUlJwYYNG2Ts7NixA4mJicK5e/HiBfbv309CGNzWrVuH/Px8uLu7Uwz37t2rNDsXL16UsVNUVISVK1fCyspKYOf48eN4+vSpEEN6ejrWrVtHIlLclNiJjIzE7t27Zexs2LABOTk5wrl78OABTp8+LcTAGENgYCAYYwI7V65cwfXr12XsBAQEwMLCQjh3p06dwqNHj4S8k52djTVr1sjY2bt3L16/fi2cu5iYGGzfvl3GzqZNm5CZmSnEEBYWhuPHjyuyU1ZWVml2zMzMhHP322+/4cGDB8K5y83NRVBQEKpVq/ZWdhISErB582YZO1u2bJGx8/Tp0wrZ4eIjPIbbt28jJCRElncCAgJgbGwsxHD+/PkK2bGxsRHYOXz4MCIiIirNTlJSknDuIiIisH//flne+fXXX1FQUCCwc/fuXZw7d06RHQMDA4Gd33//Hbdv35axExAQIGPn2LFjlWZn165diI+PrzQ7ubm5lWYHgCI70hh43lFiJywsTGAnKysLq1evJgEmKTsxMTHCuXv9+jV27NhRKXYePXqEEydOyHJnUFAQtFqtcO6uX7+OK1euKNad+uycOXMGoaGhQgwVsXPgwAFERkYKMcTHx2PLli2K7KSlpZEQFqDMDq87S0pKhBhu3bolqzvfxM69e/eEmi0/Px+BgYGK7OjXnUlJSQgODpaxs337diQnJwvnLjw8HAcPHqw0O+fPnxdi0Ol0CAgIgKGhoYydO3fuCOeusLBQMe8cO3YMz549E2JIS0vDr7/+Wil2Xr16hb1798rY4QJ50nP3T7MqsaJ/wbZs2UINybyX4caNGyRcw5/HPnnyJPvll1+oIZn3Mly+fJkEU3gvw4ULF9jYsWOpIZn3AZ07d45EbqS9DLyR28bGhnoZDh8+TA3ivJfhzp07JILCexn279/PgoODqRGe9wHduHGD1atXjwEQehnmzZtHzfy8D+jKlSvMzc2NARB6GbhgkpmZGfUBnT9/nsQGpL0MXARB2gd0/PhxEiaS9jJwIQfey7B37162detWioH3Mty8eZM1aNCAmvm/+OILdvToUbZkyRJqhOd9QFevXiXBJGkvA2/6lvYyhISEkFCPtJeBi+/wXobNmzezkydPMmNjYwZA6APiAkLSXoZdu3ZRDLyX4datWyQgIu1lWLlyJcXQpUsXtmzZMnbt2jUSrvDw8KBeBi42IO1l+P3330kwQdrLwAUEpL0MZ86cIZELaS9Dz549qZmf9zLs379faPyfM2cOu337NolvOTg4UC/D2rVriR3ey3D9+nUZO6dOnSJxBWNjY9arVy+2atUqdvHiRRk7ISEhJPrE+4CCg4PZ2bNnmYWFhSDAcP36dda/f3+BnR07drBDhw4ROy1btiR2uAiKtA+Is2NgYEA9tDdu3CDxDSk7c+fOJXZ69OjBAgMD2eXLl0n0oVatWsQOF32R9gGdP3+exAak7AwaNIjY4X1Ax44dI2Gi5s2bEztcyKF69erUByRlp127dhWyc+zYMbZ48WKKgfefX7lyhdjx9PQkdrhgirT//MKFCyTUU69ePWJn6NChAjtbtmwR2OE9tLdv32adOnWSsbNz506Bnfnz57Nbt26RgIiUnYCAAIGd5cuXs2vXrpFwhZQdLhAnZSckJITZ29szoFyAhbPDRd+k7Jw+fZpELqT951xASMrO3r17iR3ef37nzh1FdlavXi2ws3TpUnb9+nX23nvvydjh4iqcnaCgIHbp0iXm6OjIAFAPbUhICAnXvImdqVOnsuvXr5P4lj47XHyD959L2eE9tAcOHGAbNmx4Izu8h/bEiRNszpw5iuy4uLgQO7yHdvz48W9kR9p/zoXrrK2tiZ2jR48K7PD+89atW8vY4fmfs7Nw4UJ28+ZNEn2TajcsWrRIxs7Vq1dJMIn3n589e5YEU/TZsbW1JXZ4/zkX3+G5c8uWLezEiROUO6X951wEhffQ7tmzh+3YseON7Eh7aJcvXy5j5+rVq8zT05NyJ+8/50I9+nlHyg7vP+fCVZVhhwsISbUb9uzZI2Pn9u3bJFzH+88PHTrEgoKCZOxcu3aNBNOk/edcIEaq3XDx4kUS6pL2n3PhGt5DGxwczH777TcSV5NqN3DxLWkP7YEDB4idVaFh9QAAIABJREFUVq1asdmzZ7Pbt2+zFi1aCOwcPHiQrVu3Tqg7OTtcuEbafz579mzFulOJHS6YJu0/P3fuHLOyspKxw4XrpP3nSuzcuXNHYIf3n2/evFmoOxcuXMhu3LhBom8uLi6k3bBw4UKh7uR5h7Pj5eVF2g1cqE/af37+/Hlix9vbm9gZMmTIW+tOzg4X35P2n2/fvl1Wd966dYs1bNhQxs6yZcsU686aNWvK2OEid9L+85CQEFa9enUZO1y4Stp/fvr0aWZiYkJ1J2enW7dulDu5doNSG8L/pqGSj+aWf+WuMgDldzSA8rsgKSkpSE5ORlJSEs0RyszMRHJyMlJSUpCdnQ2g/M5VSkoKUlJSkJiYSPOc0tPTyTcvL4/+fe7L7wQB5b/KJScnIzk5Gfn5+QDK7xDx1/P3BYDeV3JyMgoKCgCU3xHjvnyPMUZ+ycnJNIMrKyuL9nJycgCU37nm/25iYiLNr8rIyCBfHkNRURHFYGlpWd5ojPI7PPq+BQUF5FtaWkq+SjHk5eVRDPz/mzFGr09OTqa5STyGlJQUZGVlASi/+ya9DjwGfs2k8RYXF9PrbW1t6ZpJY+DXoaCggHz5++fXjL8v7stjSE5Oprth/Dpw36KiIgDlv2Jw38zMTIqB+yqdO2kMJSUltFe9enXZuZNeh8LCQtqT3jmTxqB/HZKTk+mOK79m3Jefx5ycHNrLyMgAUM6ONAbpueO+UnakvnwGV0ZGBvkqxcDvKlYUA2cnOTkZVlZWdN3435IyxdmRXkceg/55zM7OlsVQVlYmcKYUQ25uLoBydrifPjv6Z4mzI2VX/zpI+ed7Unak/7ecnbfFkJSUJPCvHwNnJzk5GTY2NrIYpJ93nJ3k5GRhzh3/N1NSUgR2+D43/c8wzo703Omzo/SZzX2l7PA9Ozs7gX+lc8f3+J1zaQz67PB9/gsEP3f8fSmxw2OQ5h3pteTspKSkUAw87yQnJ8PBwUEx70jPHX+9Pjv61yE/P1/4fH9TvDk5ObK/JWVHn3/93Kmfd6Ts8H9DP4bk5GRYWFjQuZPmTin/+jlDPwYp/zxe7ltR7uSf2dK8w2PQzzs8Buk1Ky4uJl99dpRyJ3+9EjsV5X/+b0pjSEpKUsw7/Drw3Mn3lfI/vw6cHT4CRSl3KtU7UnbeVu/wX4J4vPwzTMoO99Vn511yZ0U1mzQG/pmdkpIiMP22vMN/JQOU8w6PQXod9HOnlH99X547+fV9GzvS9/WmvCONoaioSKjZ3pR3+PnSzztK+V/KjtRXKe/o12z6OV2pDpPmHeksVh5DRfmfnwN9/pVyp7TulPpK68435U5p3Zmeni7LO9L8z2tJ/euglDszMjKEX+v/a6wy31b/U+uf/otoSEiIoErJWHnTuL+/PylrcTt8+DApa3HLzs5mfn5+pKzHbcuWLaSsxS02NpbubEibkwMDA0lZi9ujR48ERVfGypvG582bR8p63K5cuSIoujJWLhoxbdo0UqXkdvz4cRYUFCQIe+Tm5jI/Pz9SpeS2Y8cOFhwcLIgTJCQkMH9/f1Kl5LZ69Wq2c+dOQdjjyZMngqIrt4ULF5IqJbfr168Liq6MlTe+T58+nVQpuZ06dYoUXbnl5+czPz8/UqXktnv3blJ05ZaSksKmTp1KqpTc1q1bR4qu3MLDwwVFV25LliwhVUput2/fFhRdGWOkAssVXbmdPXuWVCm5FRUVMT8/P1Kl5LZv3z5SdOWWnp7O/Pz8SNGVW3BwMKlScouMjBQUXbktX76cVCm53bt3T1B0Zaz83M2ePZtUKbkpsVNcXMymTp1KqpTc+C+oUnaysrLYlClTFNnhiq7cYmJiBEVXboGBgaRKyS00NFRQdOUxKLFz+fJlQdGVsYrZOXbsGKlScsvNzWVTpkyRsbN9+3ZSpeRWETtBQUGkSsmtInYWLFigyM6SJUsqzQ5XpeSWn5/PpkyZosgOV3TllpycrMjO2rVrSZWSW3h4uKDoym3x4sWK7EhVKRljpAKrz85vv/0mY6ewsPCN7EhFsdLS0hTZ2bBhg4ydV69eCaqU3JYtWyZj5+7du4IqJWPl527WrFkydi5cuCAoujJWMTsHDx4kVUpuWVlZinln06ZNpOjK7fXr14IqJbeAgIAK2eGqlDyGuXPnyti5dOmSoOjK2P+wo587jx49KmMnJyeH+fn5kSolt23btsnYiY+PF1QpuSmxExYWJqhScps/f76MnWvXrgmqlIyJ7Ej5P3HihCI7fn5+pOjKbefOnaToyo2zwxVduSmx8/z5c1J01WeHK7pyu3XrliI7M2fOJEVXbpwdqSgWZ4crunLbu3dvhexwRVdu69evJ0VXbi9fvqyQHa7oyu1N7HBFV27nz5+vkB2u6MrtwIEDMnYyMzOZn58fKbpy27RpEym6couOjq6QHa7oyu3+/fuK7MyZM4cUXbldvHhRUHRlrOK688iRI7K6Mycnh02ZMkXGztatW2V1Z1xcnCI7q1atktWdSuzodDo2f/58UnTldvXqVUV2pk2bJlN0PXHihKzuzMvLY1OmTFFkR7/uTExMrJCdHTt2COw8e/aMzZ49m9SQuS1atEjGzs2bN9nixYsV844+O2fOnGGBgYECOwUFBcSONIY9e/bI6s7U1NQ3siOtO1+8eKHIztKlS2Xs/NMMVWJFVVZlVVZlVVZlVVZlVVZlVVZlVfZ3WmXFigze5vD/kqWlpQmPwQDlj0Dwxz+klpqaCv0v8QUFBfTTur6vvuXk5NDjDG/zzczMpMc0uDHGFH3T09PpMQ1uZWVl9Ojk22IoLCykRwne5pubmys8NvymGLKysmQxVOSrFINWq0V6enql3ldRURE90vE237y8PHrUpDIxSB+TfJNvRkaG8FgIUP7oTVpamsxX6dwVFxfTYzhviyE/P58e03jb+8rOzhYeV3vXGCo6d/9X2NGP4Z/AjlIMFfm+CztpaWn/Njvvwv+7sKMfw1/JTmX5/zvZKSkpoce/3hZDQUFBpfn/u9mpLP+FhYUV8q/Ezr8TQ0W+f3fe+SvYUYrhr2LnXXLnP5Wdf0LuVGLnvzF3/jt556+sO/8qdvTf1z+Bnf9Wq1LNldi1a9fQqVMnPHv2DIwxuLu7w9jYGF26dMGePXuQnp5OSl379+/HoEGD8PLlSxgaGsLd3R2MMTRp0gRnz55FdnY2KXUFBARg7NixiI6OhqmpKdzc3JCXl4d69erhxo0byM/PJ4W4n376CdOmTUNcXBwsLS3h6uqKmJgYNGzYEA8ePCC1MnNzcwwfPhyBgYFISkqCra0tnJyc8Mcff6Bt27Z4+vQpdDod3N3dYWJigp49e2Lnzp1IS0uDvb097O3tcezYMfj6+uLFixcwMDCAu7s7VCoVmjdvjlOnTiE7OxuOjo6oVq0a1q5di1GjRiEqKgomJiZwd3dHQUEBvL29cfXqVeTn55O64rRp0zBlyhTExsbCwsICrq6uSEhIQP369fHnn3+SWqGFhQVGjRqFZcuWITExETY2NnB2dkZoaChatWqFJ0+eQKvVUgz9+vUjdTeuEHnmzBn07t0bERERUKlU8PDwgIGBAVq3bo1jx44hKysLDg4OsLOzw8aNGzFixAhERkbC2NgY7u7uKC4uRv369XHp0iXk5eWRQtzs2bMxefJkxMTEwNzcHG5ubkhJSYG3tzfu3r1LaqUWFhYYN24cFi5ciISEBFhbW8PZ2RlPnjxB8+bNERYWhrKyMlKIHThwIDZs2IDU1FRSuQsJCUGPHj3w/PlzACDFtLZt2+LQoUPIzMxEjRo1UL16dWzfvh1Dhw7Fq1evYGRkBHd3d5SVlaFhw4YICQlBbm4uxbBw4UJMnDgRMTExdO4yMzNRr1493L59G4WFhaSuOnHiRMyZMwcJCQmwtLSEi4sLXrx4gSZNmuDhw4coLS0lhcghQ4Zg7dq11GPr6OgoY4fH0LlzZ+zbtw8ZGRnEzr59+2Ts6HQ6YicnJ4fUVVesWIFx48YJ7OTk5MDb2xs3btxAQUEBsfPDDz9gxowZiI+Pp3MXHR2NRo0aETs8hmHDhiEwMJB6HZ2cnHD79m20a9eO2OFqgz169MDOnTuRnp5OysRHjhyBRqPBixcv6NwBQLNmzXD69GlkZ2eTyt3q1asxZswYREdH07nLz8+Ht7c3rl27JrDj7++PKVOmIC4uDubm5nB1dUV8fLwiO59//jmWLVuGpKQkYufBgweK7PTt2xdbt25FWloaKUSePn0affr0kbHTqlUrHD9+HFlZWaQQGRwcjBEjRiAqKorOXVFRkcAOj+GXX37BDz/8gNjYWJiZmb2RnS+//BKLFi1CYmIisfP48WO0aNECjx8/pnNnamoKjUaD4OBgpKamws7ODg4ODrhw4QJ69OiB8PBw4dy1adMGhw8fRmZmJilEbtu2DUOHDkVkZCSdu9LSUjRo0AC///47cnJyiJ0FCxYQOzyGjIwMeHt7486dOygoKCB1xQkTJhA7VlZWcHFxQUREBJo0aYJHjx7RuTM1NRXYqVatGhwdHXHlyhV06dIFz58/pxiMjY3RsWNHGTt79uzB4MGDiR0PDw/odDo0atQI586dE9hZtmwZvvrqK7x+/RqmpqZwd3dHdnY2vL29cfPmTSHvTJ48mdjheScqKgqNGjVCaGgoiouLiZ1PPvkEq1atol4nJycn3Lp1C+3bt8ezZ8+g1Wophm7dumH37t2Ud2rUqIHDhw9jwIABlHek7Jw5cwZZWVnETlBQELHD805eXh68vb1x/fp1IQY/Pz/4+fkhLi6O+I+Li0ODBg1w//59gZ2RI0di+fLlAjt//vknfHx8iB0eQ58+fWTsnDx5Ev369ZOx07JlS5w4cQKZmZnEzvr16zFy5EhERUUR/0VFRfD29saVK1eQm5tL7MycOZPY4XknOTkZ9evXx7179wR2vvjiCyxevJjyjouLC8LCwogdad5Rq9XYtGkT9XY6ODjg/Pnz6NmzJ8LDwynvGBoaok2bNjhy5IjAztatWzFs2DDKOx4eHgI70rwzb948fPfdd3j9+jWxk56eTuwUFhYSO+PHj8e8efMQHx9P7ISHh6Np06Z49OgRSktLSW30ww8/xLp16wR2Ll++jK5du8rY6dChAw4cOCCws3v3bgwZMkRgR6vVolGjRjh//jzxb2tri6VLl2L8+PGUdzg79erVw61btwT+J02ahF9++UWo2SIjI4kdad4ZOnQogoKCBHZu3LiBDh064NmzZ5R3TExM0LVrV+zevRvp6enEzsGDBzFw4ECBHcYYmjZtijNnzgh5JzAwEF9++aXADs87+uxMmTIF/v7+AjuxsbECO1whdsSIEQgICBDYuXfvHtq0aSNjp1evXti+fbtQd544cULGjkqlQosWLXDy5EmB/3Xr1uHzzz8Xajaed65cuYK8vDxSJp4xYwZ++ukngZ2kpCR4e3sTO1yZeMyYMViyZAnlHRcXFzx69AgtW7Ykdvh18PX1xaZNm4S8c/bsWfTq1QsRERECOz4+Pjh69KjA/+bNmzF8+HBERkYSOyUlJWjQoAEuXrxI/NvY2GDu3Ln4/vvvhbyTlpYGb29v/PHHHwI7X3/9NebPny/UndJ+0n+CVanm/gvGVcb4srOzI4U/6Ro0aBApJfLl6upKaqDSNXr0aFJK5atOnTrs559/FvYMDQ3ZDz/8QApufDVr1oxUN/kyMzNjs2bNkv2tzp07k+oWX7a2tooxDBgwgNTe+HJyclKM4bPPPiOlRL5q1apFKpTSGL7//ntS3eWrcePGbOLEicKeqakpmzVrFinL8dW+fXtSe+XL2tqa1OKkq3///qQyzJeDgwMpGkvX8OHDSaGXL09PTzZ16lRhz8DAgE2YMIEUa/lq0KABqR/yZWJiwqZPn04qtHy1adOGjR49WtizsrJSvA69e/cmpVS+7O3tFa/v0KFDSWWULw8PD1ID5EulUrGvvvqKFCv5qlevHikH82VsbMz8/PxI/ZivVq1asXHjxgl7FhYWitehR48e7KOPPpKxoxTD4MGDSSlRyg5XA5WuL774gtQe+Xr//fdJwZEvIyMj9uOPP5JyMF/NmzdnX3/9tbBnbm6uGEOXLl3YsGHDZOwo+Q4cOJD17t1b2HN2dlZk5/PPP2fNmzcX9mrXrk3qx/rscNVdvpo0aVIhO/p/q2PHjjJ2bGxsFGPw9fWVsePo6KgYw6effkoKvZVhh6tu8tWwYUNSP9Rnh6sB8tW2bVtFdpRi6NOnD/vggw+EvRo1alTIDlcZrQw7XLGSL29vbzZ58mQZO1OnTiUFV75at25Nas98WVpaKvLfo0cPUnvkq3r16oq+gwcPZl27dhX23Nzc2IwZMxTZ4UrJlWGHKzjy1aJFi0qz07VrVxk71apV+7fZGTVqFKkMS9lRyp2TJk0i5VApO1ztnS8zMzPF/9uOHTuyESNGyNhR8vX19SWFbik7Snnn008/JZVRvry8vBTZmThxIqluvo2dGTNmkAq1lJ1Ro0bJ2FGKoW/fvqQy/DZ2PvnkE9ahQ4dKsTN+/HhSe5ayw1W3pez4+/vT5IC3saN0lnr27MkGDx4sY0cphiFDhiiyo593VCoVGzt2rIydunXrynKnkZER+/nnn0l1X8qOfi35Jna4yvjb2Bk0aBCp2/Pl4uKiyP/o0aNJZZiv9957T5GdyZMnk2I9X82aNVNkR+n/tlOnTorsKMWg0Whk7FRUd44cOVKRHf3caWBgwL799ltSe+erUaNG7NtvvxX2TE1N2cyZM0lJl6/27dvL2Kmo7uzXrx+pDEvZUeJ/2LBhrF27dsJezZo1K81O/fr1FfOOv78/qZ/z5ePjw+7evfu//TVKMFSyR7Tqi6jEzp07J0hl5+fns7KyMtaqVSvWs2dPQRRny5YtglR2cXExy8/PZ++99x5JZfPm5Hnz5glS2WVlZSw5OZm5uLiQVDZvsB4/fjxr0aKFIIrz7Nkz5uDgQFLZWVlZTKfTsQ8++IBGtHBRnEuXLpHMPBf2KCsrY+3ataMRLVzYY9euXSQzz4U9CgsLWb169Ugqm4sTLFmyRJCZLy0tZWlpaczNzY2ksrk4wffffy+MaNFqtezly5fM0dGRpLJ5g/VHH31EUtlcnODGjRuCVHZubi7TarWsc+fOJJXNxQkOHjzIPDw8SCq7sLCQFRcXswYNGpBUNhcnCAwMFKSyS0pKWGZmJvPw8CCpbC5O8PPPP9OIFi6KEx0dzRwdHUkqmzf2jxgxgvn4+AjiBHfv3mWOjo5s1KhRJOyh1WpZz549WefOnQVhj+PHjzN3d3c2fvx4dvr0aVZYWMhKSkpY06ZNWe/evQVhj19//VUY0VJSUsJycnKYl5cXGzBggCDsMX36dGFES1lZGYuLi2NOTk4kM8+FPUaPHk0jWrg4wcOHD5mDgwPJzGdnZzOdTsf69etH4424OMHZs2cFdgoKClhpaSlr2bIlycxzdjZv3iyMN1Jih4sTzJ07VxhvVFZWxpKSkhTZ+eqrr2i8ERf2ePr0qSI7AwYMIHa4OMHFixeFES2c/7Zt2xI7XJxg586dwngjzk7dunVl7CxevFgY0VJaWspSU1OZq6urjJ3vvvtOxk5ERARzcHCQsTNkyBAZO9evXxfYycvLY1qtlnXq1EnGzv79+4XxRm9iJyAgQBhvVFpaWiE7P/74ozDeSKvVsqioKObo6MiGDRsmyMwPHz5cxs4ff/whjGjh/Hfv3l3GzrFjx4gdLuxRUlLCmjRpwvr06cNWr15Nwh5r166VsZOdnc08PT1pzAQX9pg2bZqMndjYWObk5EQjWjj/o0aNkrHz4MED5ujoSCNacnJymE6nY3379pWxc+bMGWFEC2enRYsWxA4X9ti4caMw3qi4uJjl5eWx2rVrM41GI7Aze/ZsGTuJiYnMxcWFRrRwdsaNGyewo9Pp2JMnT5iDgwONN+LsaDQa1qFDB4Gd33//XZGdNm3a0IgWzs6OHTsEdoqLi1lBQQF7//33aUQLz52LFi2qkB0+ooULe0ycOFGRHUdHRxrRwtn58MMPZexcu3aNOTk50Xgjzk7Hjh1Zt27dBHb27dsnsFNUVMSKiopY/fr1aUQLZ2fFihUydjIyMpi7uzuNN+Ls/PDDD6xp06YCO5GRkcSOVBRn2LBhNKKFs3P79u0K2eEjWrig3JEjRxTZady4MY1o4eysXr260uxMnTpVGNHyJnY+++wzGtHCBeXu378vY0er1bLevXvTiBYuKHf69GlFdpo3b07jjTg7wcHBMnZyc3NZrVq1aLwRZ2fWrFnCeKOysjKWkJDAnJ2dZeyMHTuWxhtxQbmwsDCBHZ471Wo1jTfignIXLlxQZMfHx0fGzrZt22R1Z0XsLFiwQFZ3pqSkKLIzYcIEYbyRVqtl4eHhzMHBQWBHp9OxQYMG0XgjXndevXpVGA3G684OHTrQeCNed+7du1cYb8TZ8fb2Jna4GOPy5ctldWd6errADs+dkyZNEsYbabVa9urVK0V2hg4dSuxwMcZbt24p1p1du3aVsXP48GHFurNhw4YydoKCgmR1Z1ZWFqtZs6aMHT8/P4EdrVbLXr9+zRwdHWXs8C/q+kKm/ySr+iL6L1h6errsYvJDo29paWky34KCAkFZS+qrbzk5OYKy1pt8MzMzBWUtxsrVy5R809PTBWUtxhgVjZWJobCwUFCle9P7ys3NFVTp3uSblZUli6Ei34yMDFkMZWVlijOSlGIoKioSVOne9Lfy8vIEVbq3xSBVpXtbDFJFN8bKFdikqnTclM5dcXGxoEon/Vv6vvn5+YIq3ZveV3Z29judO/0YdDpdpWPgxUplY/ir2FGK4a9gp6Cg4L+encLCwn8EO/oxaLVaxRj+XXby8vLeiZ3KxlDFTjk775I7K8tOTk7O38rOu+TOyrKTm5v7v85ORbnzf5sdpdz5LuwUFxe/Ezt/Z+78q9h5F/4ry86/W3dWxI7SNXvXuvNd2Pl3+H+XvPMmdvTtXXLnu7DzT7PKfhGtUs2tsiqrsiqrsiqrsiqrsiqrsiqrsv+IVVY1t0qsSGIhISE4cOAANSSrVCqUlpbC398fRUVF1IANAIcOHcL58+epmR8oVySbNm0aNZEbGhoCADZv3ow//viDmvkBIC4uDvPnz6eGZD7weeXKlYiIiKCGZAB49OgR1q5dS838KpUKjDHMnTsXycnJ8PDwgJmZGQDg8uXL2LNnDzXzq1QqlJWVwd/fHwUFBdSADQDHjh3DmTNnqJkfKFfz8vf3B/A/ojkAsG3bNty8eZOa+QEgMTERc+fOpWZ+HkNQUBCePn0qxPD06VOsWrWKmvl5U/X8+fMRHx9PjfAAcP36dezYsYOa+VUqFbRaLaZPn47c3FwhhlOnTuHEiRPUzA+Uq8hNnTqVGv95DLt27cK1a9eoER4oVx6bNWsWNcLza7Z27VqEhYVRMz8AREREYMWKFdTMz+NdtGgRYmJihBhu376NLVu2UDO/SqWCTqfDjBkzkJWVBQ8PD5iamgIAzp49i6NHj1Izv0qlQnFxMaZOnUpiDfzc7du3D5cuXRJiyMjIwIwZM6gRnsewYcMGPHjwgJr5ASAqKgpLliyhZn4ew9KlSxEZGUnN/ADw559/Ijg4mJr5+bn75ZdfkJ6eLsQQEhKCgwcPkpiHSqVCSUkJpk6diuLiYhk7Fy5coGZ+oFwZbvr06TJ2Nm3ahLt371IzPwDExsZiwYIFMnYCAgJk7Dx8+BDr1q0TmvkZY5gzZ44iO3v37hX4Lysrw9SpU2XsHD16FGfPnhX4fxM7t27dEthJSEhQZGfVqlV49uyZEMOTJ08QFBQkY2fevHlISEiQsbNz506Bf61Wi2nTpsnYOXnyJE6dOiXwXxE7O3fuxPXr14UYUlJSMHv2bJiYmMDNzY2u2Zo1a2TshIeHY+XKlbIYFi5cqMjO1q1bBf51Oh2mT58uY+e3337DsWPHBHaKiooU2dm7dy8uX74ssJOeno5ffvmFBJh4DOvXr5ex8+rVKyxbtkzGvxI79+7dw8aNGwX+GWOYOXOmjJ0LFy7g0KFDMnb8/f1l7Bw4cAAhISEydmbMmEGCczyGjRs34t69ewI7MTExWLhwoYz/FStW4MWLF8K5Cw0NrZCdlJQUEmABgEuXLmHfvn0ydvz9/VFYWCjEoMRObm4upk2bBpVKBXd3dzp3W7duxe3bt4UYEhISMG/ePBIv4zEEBgbK2Hn8+DFWr14t5E4AmDt3LhISEgT+r127hl27dimyk5eXJ7Bz4sSJCtlhjAkx7NixQ8ZOcnJyhew8fvxYYOf58+cVshMbGyuwc+vWLWzbtk2RnezsbCGGM2fOVMgOF2vhMezZs6fS7Kxbtw4PHz4kAaY3sbNkyRJER0eTABMA3L17F5s2bVJkJyMjgwSYAOD8+fOK7EydOhUlJSUydn7//XeBnaysLEyfPp3Ey6Ts/Pnnn0IMr1+/xqJFi2TsLF++HC9fvhRiePDgAdavXy9jZ/bs2UhNTRXYuXjxIvbv369Yd+qzc+TIEZw7d65S7GzZsgV37twR6s74+HjMnz9fkZ3nz58L7ISFhWHNmjWKdWdSUpIQw9WrV7F7924SL+Ts+Pv7Iz8/X8bO6dOnBXby8/Ph7+8vCM5xdm7cuEECbACQlJRE7Ehz5+rVq/HkyROBnWfPninWnQsWLEBcXJzAzs2bN7F9+3YZO9OmTUNOTo4Qw+nTp2V1Z2FhIaZOnUpiTTyG3bt34+rVqwI7aWlpmDlzpqzu/PXXX/Hw4UMhhpcvXyqys3jxYhk7/zSrEiv6F2zNmjXU+Mufw+d9VPj/m7XVajVbv3690ATNn8PftWsXCaZYW1uzIUOGsG3btgnN6Pw5/C1btlCzcfXq1amHjTfUq1Qq1r59e7Zw4UK2du1aZmBgwABQ/+eRI0dY/fr1qWm+e/fuLCAggC1cuFBo7J4HdV/hAAAgAElEQVQ4cSI7cOAA8/LyomZt3sMmbb7nz+Hv3r2bGtetrKyoh03ajM6fw9+6dSsJddjZ2VEPW69evSgG/hz++vXrqUFc+hw+F3IyNDRkXbt2ZcuXL2dLly4VGru/+eYbdvDgQWrkNjExYX379mVr1qwRRB/4c/i7d+8m4QpLS0vqYRszZgz5NmnShE2bNo1t27aN2drakkgA7//09fUVmsDnzp3LgoODSSDCwcGB+j+5kJOhoSH1sAUEBNDr3d3d2ddff80OHTrE6tSpQzHw/k+p2ECdOnXYpEmT2N69e0n0ycLCgvo/pSIIvIdtx44dJDZiY2ND/Z9SESTew7Zx40YSV6pRowb1f/KGegMDA+phCwoKotfz/s/Dhw+TCJKxsTH1sEkFMWrXrs2+++476qMCysUaeP+nlJ0GDRqwKVOmsB07dsjY2b59u8AO72HbtGmTIjudO3cW2Fm0aBFbs2YNsePi4lIhOytXrmQLFiwQ2Pn222/Z/v37iR0zMzNiRyogwHvYdu3axRwdHWXsfPrpp+TLe9i2bdvGrKysZOxwMQqVSkU9bOvXr2eGhoYydriQE2dnxYoVbMmSJTJ2Dhw4wGrXrk388/5PqdgY72HbvXs3c3Z2lrEjFRDi/Z8VsSMVo+D9nxs2bCB2eA/b4cOHSchJys6KFSvo9R4eHmz8+PHs4MGDiuxIxUZ4D1tF7EjFtzg727dvJ7ERKTtSESQpO6ampsQO72HjImhSdgIDA+n1vIetInakghi8h23fvn0kviFlRyogwvs/d+7cyezt7SmGjz76iG3fvl0QEOPsbN68mdixt7dnI0eOZPv37ycRNH12uJgc72E7cuQI8/b2JnZ69OjxRna4cJWZmRnz9fVl69atE4RrKmKH97ApsbNlyxZip3r16tTDxkXQpOysW7eO2JH2sHExmorY8fT0ZBMmTGAHDx4U2OnXrx9bu3atIPpSETuDBg1imzdvFkRQpOxwgbhq1apRD1u/fv2E3MnZ4blT2v/JhZwMDQ1Zly5d2LJly9jy5ctl7OjnHd7DJhVM4ezs2bOHBNMsLCyoh23s2LGK7FSrVo0B5cJuvIdNKuSixI6DgwOx4+PjQ+x06tSJLVmyhK1cuVLGzqFDh0hAzNjYmPXq1YutWrVKEM+RsuPu7k7s8P5Pqehjw4YNK2Rnx44dgoBYy5Yt2axZs9jGjRuZubm5wM6BAwdIBM3AwID6P4OCgogdV1dXNnbsWHb48GEZO4GBgWzevHn0t2rVqlUhO+vXrxcEE6V1Jxe5lLIjFRCT1p1cIKoidnj/pxI7R44cIXaMjIyo/3Px4sUydg4cOECij5ydX3/9VRBMq1evHvvxxx/Zrl27qO7k7GzZsoV9/vnn5CutO5XY6dOnj8COft0pZadJkyYCO8uXL2fLli0T2FGqOzk7/v7+5MvrzorYkYpv8f7PitjRaDTky/s/g4ODSdRPyg4XcuLsLF26lHrY/ymGSj6aW/6VvcoAgO4EGRoawsvLC15eXvD09KS7II6OjvD09ISXlxeSkpIAAKampoIvv7Ph4uJCvvwuiKWlJfnWrFmT7s64u7vD09MTnp6edPfN1taWXs/vdqhUKvLz9PSkOybVq1cnXz57ytDQUPDld654DJ6enjQf0cTERHhf/E6Os7Mz+fI7iBYWFm+Ngd99s7GxIV9bW9vypmQANWvWpP8vHoOdnR3FwOcrGRgY0J6XlxfF4ODgQPt8JpaxsTH5eXl50R1EJycnel9Pnz4FAJibm9PrPT096Q6Tm5sb+fK7b9bW1uTL73zpx8CvWbVq1ej1fIaYfgz8Wtrb25MvnyFmZGQk+OqfO09PT0RGRgIAzMzMaM/Ly0uIgb8vfh2srKzI18XFhWLw8PCQXQd+7qRnmZ877ss5sbe3lzHyphi4b0JCArEj9eV/z9XVlXz5dbC0tKT3xcc9SGPw8vKSsePp6Ul3O1UqFV0zLy8vioGzI+VByk6tWrXo7ruDgwO9Lz4fzcTERLgOnB0XFxfylbLDffXZ0b9mnB3p/4H03Hl5eQn8c18+E0967mrVqkXs1KhRQ+ZrbGwsxMDZcXZ2pr/1+PFjAP/DDl88Bn7uvLy8hBi4H7/zza8Z/1tSdvj7krJTs2ZN8uXXUhoDn/vGzx1fUv6576tXrwCUs8P3lNiRxmBtbU2+zs7Oshik7Ehj4P8v0s9sff753+JnxsjISHhf+ux4eXkhLi4OgDzvSM8dfz0/N1ZWVuTr7u5OMfDPbKXr4OXlReees8PjkPLPX89n7fHcyfel7Oj78ryj/3nDY/D09KTcKc07np6eshgqyjv82gAQYtBnx8vLi2aAStnx9PRUjIHPbdTPO/q5U58d7iflX5p3pOeOv57/8qUfA79m0tzJZybyGPQ/B2vUqEF73FcaQ61atejcSXMnH1PB2eGLX7OKcif3c3JyohikeUc/d3p5eZGfNO94ST6zpeeO/33Ojv7ZlebOmJgYAGLekZ47V1dXWQw8d3p5ecHNze2NMUjzDv8/rCjvSPN/SkoKgP/JOxWdO6mvNO9I+ZfmTmndqfSZLc07PAbpZ7aVldUbazZp3uHsSGPw0qvZ9H15DNyXf2Yr5c6K8g6PwUvvM5v78ddLY5B+3nF2PD09qZaUsuNVQd7hcz3fljs9PT1pPJK0ZvP09FSs2fTZ8fT0VGRHPwbu6+joiP9Kq8y31f/U+qf/Inrt2jVBlZKxctGIgIAAUtbidubMGVLW4padnc1WrlxJylrcDhw4QMpa3GJjYwVVSm5bt24lZS1ujx8/FlQpGStvGl+7di0p63G7efOmoOjKWHnj+8qVK0lZj9u5c+dI0ZVbbm4uCwgIIFVKbocPH2anT58WGvsTExMFRVdu27dvJ2U9bs+fPxcUXbmtW7eOVCm53blzR1B0Zay88T0wMJBUKbmFhISQoiu3goICFhAQQKqU3I4dO0aKrtxSUlIERVduu3btImU9bi9evBBUKbkFBweTsh63e/fuCYqujJU3vq9atYoUXbldunSJVCm5FRUVsYCAAFKl5Hby5ElS1uOWnp4uKOtx27t3Lym6couKihIUXblt2rSJVCm5hYaGCoqujJWfu6CgIFKl5Hb16lUZO8XFxSwgIIBUKbmdOXOGlPW4ZWVlsZUrV8ru6B04cIAUXbnFxMQosrPl/2PvPsOiut61gd9D79KkYzQ27IIFu4IGBWaDDewl9h57Q0VU7F3UmJgYE7F3wS5KLyoi0nvvRRAEaev9oHtds9hDgud/ck5yXp7rmi/rWjrzzOzfrAXsfe9ff6WplHy9e/eOSaXke/Dw8JBqRzJZj5DPdg4fPiyw8/DhQ5pKyVdTdq5fv05TKfnKyclptp3Y2Fipdk6dOiXVzoULFwR2jhw5IrDz5MkTcv36dcZOZWUlOXTokMDOrVu3aColX/n5+UwqJV9//PGHwE5CQgKTSsnXmTNnpNqRTKUk5LOdo0eP0kRXvqTZqaqqIocOHRLYuXv3rsBOUVGRVDsXL16kia58paSkMKmUfP38888CO2/evGFSKQlp2o6vry+T6EpI03a8vb2bbefKlSs0lZKvjIwMJpWSr//UTmBgoFQ7R44cEayd0uyUl5eTw4cPC9ZOaXays7OZVEq+fvvtN4GdmJgYJpWSL2l2QkJCmFRKQv7ajuTaWVlZSQ4fPkwTXfm6efPmf2QnPj6+STuBgYFMDy9fvpRq59ixYzTRlS8fHx+a6MpXVVUVOXz4ME105evOnTtfZYdPdOUrOTm5STv+/v7NtsMnuvL1Z3b4RFe+vLy8BHZKS0uZOwnwdeXKFXonAb7S0tKk2vnll19ooitfkZGRTKIr34OHhwdNdOUrICCAXLp0ibHT1L7zwYMHgn1nU3auXbsm2HdmZWU1aafxvjM6Olpgp6GhgZw6dYomuvIVHBzcpJ3Gia6PHz8W7DsrKiqatNN435mXl0eOHz8uWDt///138uzZM6aH+Ph48vPPPwvs/Pjjj1LtNN538utOYzvPnj2Tuu88dOiQVDv8XTj4KiwsZO7CwZenp6fATlJSklQ7P/30E01D/qcWWsKKWqqlWqqlWqqlWqqlWqqlWqqlWup/spobViTzP/Fi/i2VlpZGT7nhq7a2lv5pXbKSkpLon/L5+vDhA9LT0wVz4+PjUVtby4wVFRUhNzdXMDcmJoaebsZXTk4OPRWQL0IIoqOj0fgXCenp6fTUB77q6uoQFxcnmJucnIyqqipmrLKyEqmpqVJ74E/l4aukpISeZilZsbGxgh7y8vLoKVmSJa2HjIwMlJWVMWP19fWIiYkRzE1JSaGn8vJVVVVFT8OTrISEBHpKBV+lpaX0dDfJiouLo6cI8pWfn4/CwkLB3JiYGHp6LV+ZmZl4//49M9bQ0CC1h9TUVHqaJF+fPn1CYmKi4LkSExMFPZSVlSEzM7NZPRQWFiI/P79ZPWRnZ9NTvflq6riTZqempuZvs8OfGt+4B2l2+FNu/6qH9PR0fPjwgRmrq6tDbGzsf2QnISHhP7KTm5v7VXYa+/8aOx8/fmzSTuMeSktLkZ2dLbWH5tqJjo6Waqex/6+xU11djaSkJMFz/ad2CgoK6KlxkvV32eFPh5Ssf5ud5q47FRUVSEtLa1YPxcXFUtfOpuw0XjuBr7PTlH9pdvhLJyTr77LT1LrTXDspKSn/SDtZWVnNtpOamtpsO4mJiQI75eXl9JRdyZJ23BUWFjZpR5r//8RObW1tk3Ya9/A/aaepHr7GTkpKisD/19gpKSlp0s7X7Dv/UzvS9p3NtfP+/ftm7zu/xs6/tVpScyUqKCgIFhYWCAwMRFlZGfT19aGqqgobGxscOXIEqampNKnr9u3bsLa2xsuXL1FZWQkjIyPIy8vDwsIC58+fR2ZmJk25OnnyJCZMmICIiAh8+vQJJiYmqK6uRufOnXH79m3k5ubShDgXFxfMnz8f0dHRNH0rNzcXnTt3xpMnT1BUVARtbW3o6Ojg+++/x8aNG5GQkACRSARTU1NERESgV69e8Pf3x/v376Gnpwd1dXXY29vjwIEDSElJoUld9+/fx7BhwxAaGoqKigoYGhpCUVER/fv3xy+//ILMzEyaEPfzzz/D0dERb968QXV1NUxMTFBXV4cuXbrg+vXryM3Npemq27dvx+zZsxEVFUXT9woLC9GpUyc8fPgQhYWFNCFuwYIFWLt2Lf2BxdTUFDExMejRowd8fX1RWloKPT09aGhoYNy4cdi9ezdSUlJoQuzTp08xaNAghISE4MOHDzA0NISSkhIGDx6MH3/8ERkZGTRd9ffff4e9vT1ev36NqqoqGBsbgxCCbt264cqVK8jJyaEJcXv27MH06dPx7t07mr75/v17dOzYEffv30dBQQHtYfny5fjhhx/owmFqaoqkpCR07doVz58/R0lJCVq3bo1WrVrB2dkZbm5uSE5OhqysLExNTeHn5wdLS0sEBQWhvLwcBgYGUFZWxogRI+Dh4YH09HSarnr58mXY2Njg1atX+PjxI02+69mzJzw9PZGdnU0T4g4dOoTJkycjMjISNTU1MDExQUVFBTp16oR79+4hPz+fJkSuWbMGS5cuRWxsLE1MzcjIgJmZGZ49e4bi4mLo6upCS0sL06ZNw7Zt25CUlERTbkNDQ9GnT58m7aSlpdGkvlu3bgnsyMnJwdzcHOfPn0dWVhZUVVVhaGgIDw+PP7WTl5dHU+42bdqEBQsW0E21qakpcnJy0KlTJ2qHT4icPXs2Nm3ahMTERGonPDwcvXv3pnb09fWhpqZG7aSmpkJeXh6mpqbw8vLC8OHDERYWhoqKCuq/X79+1A7v/6effsLYsWMRERFB7dTW1sLMzAw3btxg/Lu6umLOnDmIjo4W2Hn06BEKCwtpQuT8+fOxdu1a6t/ExARRUVFS7YwdOxZ79uxh/D9+/BiDBw8W2Bk0aBDOnDmDjIwM6v+3336DWCxGeHg4tdPQ0MDY4RMid+/ejRkzZlD/JiYmKC0tRadOnQR2li5dilWrViEuLg7A52t+EhMT0bVrV7x48YKxM3HiROzcuRPJyck0qdPX1xeWlpYIDg6mdlRUVDBs2DCcPHkS6enp1P+lS5cwZswY6p9PUezZsycuXryI7Oxs6v/gwYOYMmUKIiMjUVtbC2NjY2rHy8uLsbN69Wpqh3xJTE1LS0OXLl3g4+ODkpIS6OjoQEtLC1OnTqV2+KTO4OBg9OvXD4GBgSgvL4e+vj5UVFQwatQoHD16lLFz48YNjBo1Ci9fvsTHjx9haGgo1Y6RkRGOHz8OJycnvH37lvqvqqpC586dcefOHcbOxo0bsXDhQrq5MTExoXaePn1K7Whra2PWrFnYvHkzEhMTqf/w8HCYm5sjICAAZWVl0NPTg6qqKuzs7HDo0CFm7bx37x5GjBiBsLAwVFZWwtDQEAoKCujbty/OnTvH2Dlz5gy18+nTJxgbG6OmpgZmZma4efMm8vLy6HG3detWzJ07l66dJiYmKCgoQKdOnfD48WMUFRVBS0sLurq6mDt3LtatW8esne/evUPPnj3h5+eH9+/fo3Xr1lBXV4ejoyP27t0rsDN06FCEhIQwa+eAAQPw888/M3bOnTtH7VRXV1M7Xbt2xdWrVxk77u7umDlzJmOnpKQEHTt2xIMHD1BYWAhNTU20bt0aS5YsYeyYmpoiPj4e3bp1w4sXL1BaWgpdXV20atUKEyZMwK5duxg7L168wMCBAxEcHIwPHz7AwMAASkpKGDZsGE6dOoWMjAx63Hl6esLW1lZgp0ePHrh06RJycnLod/b+/fsxdepUasfExATl5eXUTkFBAU1XXblyJZYtW0btmJqaIjU1lbGjq6sLTU1NTJ48Ga6urkhOTqYJ0U3Zsba2xvHjx5Genk6Tia9fv47vvvuO2jEyMoKsrCx69eqFP/74A9nZ2fS4O3bsGJydnRk7Hz9+pHby8/OpnQ0bNmDRokXUjqmpKbKystC5c2c8ffoUxcXF1M7MmTPh4uLCrDuvXr2ChYUFtcOvnba2tjh06BDS0tLocXfnzh1YWVk1aScrKwvKysowMjLC6dOnMX78eLruSLPDrztbtmzB3LlzERMTQ4+7xnb4fefcuXOxYcMG+sO+qakpIiMjGTt6enpQU1ODg4MD9u3bR9dOExMTPHz4UGBHQUGB2pHcd/7666/gOI6xU19fj65du+LatWvMvnPHjh2YNWsWoqKi6HHX2A6/7ixatAirV69GfHw8Pe7i4uLQvXt3aqd169bQ0NCgdlJSUuh39vPnzzFw4ECEhIQwe7YhQ4bg9OnTzL7zwoULsLW1RXh4ON2zAUD37t2pHX7d2bdvH6ZNm4Z3797R466srIyxw687P/zwA1asWMHsO/lrk/8p1ZKa+1+oZcuW0cQq4HPaqZubG03dxJfENmdnZ5rQBYnkrG3bttGkNHxJbJs7dy5NhuQfvXr1Ihs2bGDGNDQ0yOrVq2nqFv8YNGgQkzKKL4ltrq6uNNEMX5KzbGxsyMyZM5m5RkZGxM3NjZkrLy9PJkyYQMRiMTP322+/Ja6urky/SkpK5Pvvv6fJkPyje/fuZOPGjUy/6urqZOXKleSbL2lv/MPS0pKsWLGCGdPW1iaurq40DQxf0s5GjhzJJHTiS2Lb9u3bmR7k5OSIo6MjkwwLfE5sbNyDoqIimTFjBk234x9du3YlmzdvZnpQVVUlS5cupQl9/KNv375MUirwOe3UxcWFJgfzPYwYMYJJGQQ+p502/hxkZWUJx3FMuiXwOe10+/btTA8KCgpk6tSpxMrKipnbuXNnsmXLFqYHFRUVsmjRItKtWzdmroWFBZNYhy+JbRs2bKCpu/xj2LBhZPHixcxY69atBZ+DjIwMsbOzI1OnThXYadyDvLw8mTRpklQ7W7duFdiZP3++wE7v3r2ZtFfeztq1a2lSMv8YPHiwwLSurq7UHkaPHk1mzJgh1U7jHiZOnMikKgMg7du3J9u2bZNqh0+G5B89e/YkmzZtkmqHTxnmHwMGDGCSEiXt8Cm0/HE3atSoZtsZN24ckwzL22ncg6KiIpk5c6ZUO417UFNTI8uWLaMJnfyjf//+TdrhExz5HqysrJiUQd5O4x54O5LplsDnxMbG/hUUFMi0adNoIjn/MDMzIy4uLgI7ixcvpsmQ/KNPnz5kzZo1zJimpibZuHEjTd2VtCOZbg18TmyU5t/Ozo5MnjyZmWtqaio47hQUFMikSZNoIjn/6NSpU5N2evXq1Ww7fGKlpB3JhN6vtWNsbCzV/8SJE5lUZUk7jXuYM2cOTYaUtCNt3Vm1ahVNGZa003jd0dHRIW5ubjRJU9KOZEIn8DkpuPFnxtuRTIYFPqedSlt3Zs6cSQYNGsTM7datm2DdUVNTI8uXL6cJnX9lZ8uWLTT9WNLO3LlzBXakHXcODg5S7TT+zBQVFcn06dPJ8OHD/9KOqqoqWbJkCU2G/Ss7mzZtosmhf2VHmn87OzsmVZ23I23tnDx5Mk0kl7Qjbe1csGABTVWVtCOZlAx8XjvXrVtH0575x5AhQ5iE3j+zM2bMGCYZmrcjbd1xcnKiqcr8o0OHDk3uO/k0/8Z2JMfU1dXJ6tWracow/xg0aJBUO66urowdft8pmQz9Z3bGjx8v1Y60tXP27Nk0zZ9/SNt3qqmpkRUrVtB0a0k7kgndvJ2tW7fS9GPezsiRIwV2pK2dsrKyxNHRkYwfP15gR5r/6dOn0zR//tG1a9cm7XTu3JmZ27dv3ybt8In1fA8jRowgL1++/N/+MYoptKTmfn3Z29sjJCQEHMeB4zj07t0bhBD4+Pigbdu24DgO3333HTQ0NHDu3DlUVlbSuWZmZqiqqoKXlxf69esHjuNgbW0NZWVl7NmzBzo6OnRuu3btkJ+fD29vb4wcORIcx2Ho0KFQUFBAfX09UlJSIBaLIRaLYWRkhJiYGDx//hz29vbgOA4DBgyArKws4uPjUV9fD47jYGtrC11dXfj4+CAqKoo+l4WFBYDP90gzNDQEx3GwsbFBq1at4OnpiZKSEjq3a9eu+PTpE+7fv4/evXuD4ziMHDkSKioqOHjwIFRUVOjc9u3bo6ioCN7e3hgxYgQ4jsPw4cOhoKAAOTk5xMbGguM42Nvb079y+Pj4wNbWFhzHYeDAgZCTk6OnOPA96OnpISAgAG/evKHP1adPH4hEIoSEhND3cfTo0dDU1KS/FePndu/eHbW1tXj06BG6desGjuMwatQoqKqq4vjx45CXl4dYLAbHcejYsSPev38PLy8vDB06FBzHYcSIEVBUVISLiwt9Dfb29mjTpg1SU1Px+PFjjBkzBhzHYfDgwZCTk0NeXh59H+3s7KCvr4+wsDCEhYXR5+rXrx9EIhFevXoFNTU1cByHMWPGQEtLC3fu3EFGRgY4joNYLEbPnj1RX1+PJ0+eoFOnTvS4U1NTw48//oiGhgbab6dOnfDhwwd4eXlh4MCB4DgOVlZWUFJSwvbt22FiYkL/32+++QZZWVl48OABbGxswHEchgwZAnl5eZSVldH30d7eHgYGBoiIiEBAQADtoX///pCVlUVkZCTk5eXpZ6atrY0HDx4gMTGRzu3duzcaGhrw/PlzasfGxgbq6ur49ddf6WcuFothZmaGjx8/wtvbW2Bn9+7d0NXVpXPbtWuHvLw83L9/X2Dn06dPSEtLoz0YGRkhOjoavr6+sLe3h1gspnb4v/xK2nn27BliYmLoe2tubg5CCHx9fWFsbEyPOw0NDVy4cAHv37+nc7t06ULtmJubM3YOHDgAdXV12gNv5969e7CysmLsyMrKIi4ujs41NjZGQkICnj17JrDDn+LIH3etW7eGv78/IiIi6L/n7QQHB9P3kbdz9epV5Ofn0x66detG7XTv3p2xc+zYMfqZcxyHDh06oLS0FN7e3hg2bBjEYjG1s2nTJrx9+5a+BlNTU6SkpODJkyfUzqBBgyAnJ4ecnBz6PvJ2QkND8fLlS/pcffv2hUgkwsuXL6GhocHYuX37NjIzM+ncHj16UDtmZmYQi8XUzunTp0EIYeyUl5fD29sbgwYNglgspnZcXV0RGhrK2MnMzMSjR4+oncGDB0NeXh6lpaXIy8tj7ISHhyM4OJixIyMjg4iICCgoKDB2vL29kZycTF9Xr1690NDQgGfPnqFdu3aMnbNnz6K6uprO7dy5M7XTv39/6l9ZWRm7du2Cnp4endu2bVvk5ubi/v37GDVqFLUjLy+P6upqpKenM3aioqLg5+dH1x1LS0vIysrS9HGxWAw7Ozvo6Ojg6dOnUu34+fnR7yAbGxtoaGjgjz/+QFlZGWOnuroa9+/fh4WFBfWvoqKC/fv308+c4zh8++23KCwshLe3N7UzbNgw+peAhIQExk58fDx8fHxgZ2dH7cjKyiIhIYG+j7wdX19fREZGMmunSCRCYGAgfR9Hjx6NVq1a4fLlyygsLGTs1NTU4MGDB+jZsyf1r6qqiqNHj0JRUZGxU1JSgnv37mH48OHUv6KiIlRUVPDu3Tu6/puamiI5OVmqnaysLJSXl9Me9PT0EBwcjFevXgnshIWFoVWrVtSOpqYmbt68KbBTV1eHx48fw8zMjPpXU1PDyZMnAYCxU1ZWBi8vLwwePJiunUpKSti6dSt9Dfb29jSx9uHDhxg9ejRjp6ioiL6PdnZ2MDAwwOvXr6XaefPmDZSVlWkP2tra8PLyQkpKilQ77du3p2unuro6fv75Z9TU1ND/t3PnzqisrIS3tzcsLS0ZOzt37oSBgQE9ltq2bYucnBw8ePBAYOfjx4/0fbS3t4ehoSEiIyPh7+8vsBMdHQ2RSET96+jo4PHjx4iPj6fPxdt58eIFTE1NGTvnz5/Hhw8faL9mZmaorq6Gt7c3+vTpw9jZt28ftLS06P/77bffoqCgAF5eXrC2tmbsNDQ0ICkpifZgbGyMuLg4qVlW+ZIAACAASURBVHYSExNRU1NDPzNdXV1qh39veTsBAQHQ19dn7Fy6dAlFRUX0dfF2Hj58SO2MGjUKKioqOHLkCP3MxWIxOnTogOLiYnh7ewvsKCkp0b2vWCyGiYkJkpKS8PTpU9ja2kIsFlM7GRkZ9H3k7QQFBeH169f0veXXztDQUPo+8nZu3LiBnJwcOrd79+7UTpcuXRg7Hh4ekJGRoXM7duzYpJ0tW7bQ1yAWi9GmTRukp6dLtVNYWEjfR3t7eyZd999WLWFFElVTUyP40zZ/zjkf8f1nc2trayEnJ0ejpf9sbk1NDeTl5Zs9t/EYIQS1tbXNmvu1PcjKytJo6b+zh6+Z29DQgIaGBhpT/mdz6+rqICMj06wevvYz+097qK+vpxHf/1s9/KfHXV1dXbN6aLHz9/XwNXP/r9j5t/fwf8XOv72Hr5n7f+G4+7/Qw9ccd3V1dRCJRP+44+7vXHf+qT0QQpp13LWsnf89PfzTqrlhRS0/iLZUS7VUS7VUS7VUS7VUS7VUS7XUf0s19wfRlrAiiXr48CGOHTtGL+aXk5NDbW0t5s+fj9zcXBgYGNCb5np6euKPP/6gFyTLyMigvLwc8+bNQ3l5OYyMjOjNi0+cOAEvLy96QbJIJEJWVhaWLl1KL0jmb/y7Y8cOBAYG0guSRSIR3r59CxcXF+aCZEIIVq9ejZiYGOjq6tIbxj979gyHDh2iQThycnKoq6vDwoULkZWVBX19fXrT3CtXruDcuXM0CEdGRgYVFRWYN28eSktLYWRkRG9efPr0ady+fZsGYYhEIuTm5mLJkiU0gIW/8a+7uzv8/PzoxfwikQgxMTFYv349vZif/03OunXrEBkZCR0dHejq6gIAfH19sW/fPhqEIScnh/r6eixevBjp6enQ19enN2u+efMmfvrpJxqEISsri48fP2LevHkoLi6GoaEhvfHv2bNncf36dXoxv4yMDAoLC7Fw4UJ6ETl/w/n9+/fj2bNn9GJ+kUiEhIQErF69mgbh8Dec3rRpE8LDw2mIjEgkQlBQEHbt2kUDCeTl5dHQ0IClS5ciOTkZenp69GbLd+/exenTp+nF/LKysvj06RPmzZuHgoICpofffvsNly9fphfzy8jIoKSkBPPnz0dFRQXTw+HDh/Ho0SN6Mb9IJEJqaip++OEHejE/f9xt3boVYWFh9GJ+/lRI/vuB74EQguXLlyMhIQGtW7emN1t/8OABTpw4QS/ml5OTQ01NjVQ7Fy5cwIULFxg7ZWVl1I6xsTG1c/z4cXh7ezN2MjMzsWzZMoGd7du3IygoiLETERGBLVu2COysWrVKYOfp06c4fPiwwM6CBQuQlZUFAwMDxs5vv/0msDN37ly8f/+esXPq1CncuXNHYGfx4sXNshMdHY0NGzYI7Kxdu1Zg58WLF9i/f7/AzqJFiwR2bty4gbNnzwrszJ07F8XFxUwPP/30E27cuEHDPGRkZFBQUIBFixahqqqK6WHv3r3w8fFh7MTHx2Pt2rUCOxs2bMCbN28YO4GBgdi9e7fAzpIlS5CSkvKXdqqrq6XaOXfuHK5cucLYKS4uxsKFC1FZWQkTExNq59ChQ3j8+DFjJyUlBStXrqQhUnwPW7ZsEdgJCwuDm5tbs+zcv38fJ06coAFssrKyqKmpwbx585CXl8fY+eOPP+Dp6SmwM3/+fHz48IGxc+zYMdy/f5+xk5GRgeXLl6OmpgampqbUjqurK4KDgxk7b968wdatW6XaiY2NZXp48uQJjhw5ItVOdnY2Y+fy5csCOx8+fMC8efNQVlbG9HDy5EncvXuXsZOTk4MlS5bQ8DL+uNu5cyf8/f0ZO+/evcOmTZsEdtasWYN3794xdp4/f44DBw5ItZORkcHYuX79epN2SkpKGDtnzpzBzZs3BXYWLlwo1c7z58+ZHuLi4pq0ExERQQPY+FMhm7KTmprK9HD79m38+OOPNIBN0k5hYSGMjIyonV9//VWqnQULFgjsHDx4EE+ePGH8JycnY9WqVQI7Li4uePXqFeM/NDQUO3bsENhZtmwZkpKSGP/e3t7w8PCQaic/Px+GhobUzu+//46LFy8ydt6/f4958+YJ7Bw9ehQPHjygIVIikQjp6elYvnw5DS+UtBMSEsL4f/36NbZt2yaws3LlSsTFxTF2Hj9+jKNHjwr2nQsWLEBOTg5j5+LFi/j999+ZHpqy4+HhgXv37jH+s7OzsXTpUql2AgICGP/S7BBCsGbNGkRFRTFrp4+Pj1Q7CxcuRGZmJtPDtWvX8Ouvv9IgLFlZWVRWVmLevHlS7dy6dYvxn5eXJ3Xd2bNnD168eMHYiY2NpftOExMTetytX79eYMff3x979+5lemhoaMCiRYuQlpYmsHPmzBnGf1VVFebNm4eioiLGzi+//IJr164x/ouKiqTaOXDgAJ4+fcrYSUpKkrrubN68WWDnn1YtYUX/hdq7dy9zAfSECRPI8ePHmSAHc3NzsnXrVubibG1tbTJt2jRy5MgRevG9SCQiAwcOJO7u7kywiYGBAZk7dy7Zv38/vWBaTk6OWFlZkcOHD5O+ffsyF0AvXbqU7Ny5k14EraioSGxtbcmpU6eYYJPOnTuTNWvWMCFIqqqqZNy4ceTEiRPEwMCAjvfq1Yts2bKFCdTR1NQkU6ZMIUeOHKHhGyKRiFhaWpJdu3YxoUB6enrk+++/JwcOHKCBCbKysmT48OHk4MGDzAXmpqamZPHixWTXrl30IncFBQUyevRocurUKdKuXTs6t2PHjmTVqlVk8+bNTHiAo6Mj8fDwYIKcevToQTZt2sQE6rRq1YpMmjSJHD16lOjo6NDxfv36kR07djChQK1btyazZs0iBw8eJGpqavTC+6FDh5L9+/cz4QzGxsZk4cKFZPfu3TQgRl5ennz33XfkxIkTTDhD+/btycqVK8nWrVuZ8ACO44iHhwcTCtCtWzeyceNGJoxKQ0ODODk5kWPHjpHWrVvT8T59+pDt27czoUC6urpk5syZ5NChQ0RDQ4P2MHjwYLJ3714mnMHIyIgsWLCA7N27lygqKtLjbuTIkeTYsWOkR48eTHjAihUryPbt25nwAHt7e3Ly5Emmhy5dupD169eT1atXMwEIvB3JIAdzc3Oybds2JhRE0g5/8T1vZ/fu3UywiYGBAZk3bx7Zt28fUVJSYuwcOXKECWf45ptvyLJly8iOHTsEdk6ePCmws3btWiaMQk1NjYwfP75JO5LBBlpaWmTq1KlN2nF0dKRz9fX1yZw5c8jBgwcFdg4dOsTYadOmDVmyZAlxd3engQmSdtq2bcvYWb16tVQ7J06cENjZvHkzWbRoEWNn8uTJzbYze/ZscuDAAal2JMMZTExMyKJFixg7CgoKxMbGhpw4cYJ06tTpL+04ODiQEydOEGNjY4EdyTAqDQ0N4uzsTI4dO0Z0dXUFdqZMmSLVDh82JiMjQ4YMGfKndvhwNXl5eTJq1Chy/Phx0r17d4EdV1dXxo5YLCYnT55kAnV4O5KBGurq6mTixInkxIkTUu1IhgJpa2uT6dOnC+wMGjSI7N69m4wZM4bONTQ0lGrH2tqaHDlyhAkFa9u2LbXDB2ooKioSOzs7gR0zM7Mm7Rw/fpyx07t372bbGTBgAHF3d2eCTXg7+/fvZ+yMGDGCHDp0iAnU4+3s3LmT2lFUVCRjxowhp0+fZgL1eDuSQS6qqqpk7Nix5MSJE0wIWs+ePcnmzZuZQB1NTU1qRzL0rX///mTHjh1kwoQJAjsHDx6kQV2ysrJk2LBh5MCBA2To0KFS7UiunTY2NsTDw4MJ1OvQoQNZuXIl2bJlC+PfwcGBnDx5krHTvXt3smnTJiaMirdz/Phxxk7fvn2Jm5sbE6j1Z3b27dtHrK2tm21HMhTs22+/FdhRVlYmYrGYeHh4MHa6du3apJ3G646FhQVxdXWVaufQoUMCO3v27Gm2naNHjwrsLF++nLi5uVE7SkpKxM7Ojpw6dYrpwczMjKxbt44Jo5FcdyT3nb179yZbt25lwui0tLTItGnTyOHDh5l9J2+H4zg6V9q+k7dz+PBhJlCvTZs2dN/Z2M7JkycZO506dSJr1qxpth0XFxeyYMGCZtnZuXMnEwokue+UZkcyUI/fd7q7uwvsnDx5kgnU69ChA1m1ahVxcXFh7Ejbd/J2JMOo+H1n43WHtyMZqKWrq0tmzZrVpB3JMEp+39mUnS5dujB2fvjhBxIeHv6//WMUU2hmWFHLfUQl6ptvvgEAaGtrY+zYsXBycoKDgwO0tbUhEokwcOBAODk5wdnZGd26dQMAGBgYYPz48XB2doa9vT2UlZUhJyeHESNG0LmdOnWi///EiRPh7OyM0aNHQ0ZGBoqKivjuu+/g5OSEiRMn4ttvvwUAdO7cmf77YcOGAQBUVVVhb28PJycnjB07lr7eXr160bn9+vUDAGhpacHR0ZH2wP+mztLSEk5OTnByckKPHj0AAHp6ehg/fjycnJwgFouhpqYGWVlZDB8+nM7t3LkzgM+/oeR7sLW1hZycHBQUFJge2rdvDwDo2LEjfV3W1tYghEBFRQV2dnZwdnbGuHHj0LZtWwBAjx496NwBAwYAAFq1agUHBwc4OzvDwcEBenp6AIB+/frRub169QIAtG7dGuPGjYOzszM4joO6ujpkZGQwdOhQ2oOZmRmAz7eImDBhApydnWFnZwd5eXnIy8tj1KhRcHZ2hpOTEzp06AAAaN++PX2ukSNHAgCUlZVha2sLZ2dnjB8/nvbQrVs3+lwDBw4EABq04ezsjLFjx8LAwAAA0LdvXzrX3NwcAKCrq4uxY8fSfjU1NSEjI4MhQ4bQuV26dAEAGBkZ0c/M3t4eioqKkJeXh7W1Ne2hY8eOAIB27dph4sSJcHJygo2NDUQiEZSUlDBmzBg4OztjwoQJaNeuHQCga9eu9LmGDBkCAFBXV4dYLKY9mJiYAAAsLCzoc/GhWNra2nB0dKQ98HYGDRpE50qzY2dnR+1YWVnRuY3tODk5MXZsbGzg7OzM2DEzM6M98Hb427Dwx12bNm0AAL1796ZzJe04ODhQO/xvGwcMGEBfF29HX18f48aNo3ZUVVWpHX6upJ0JEybQHmRlZakd/nPge+jUqRN9XSNGjACAJu307NmTPlf//v0FdhwdHamd/v3707mN7Tg5OVE7srKyGDZsGJydneHs7Ex74O04OTnBzs6O+pe0w/tv3749/cwk7YwZMwZOTk6YMGEC7aF79+703/P+eTv8952kHX5uYzt8D61ataJ2+LmSdiR7kLTDv+e8/2+//ZaOjRo1itoZPXo0nJycMH78eMYO/1yDBw+mdiR7MDIyYuw4OztTOzo6OkwPje1IrjuGhoa0B8l1x8rKir5e3k7btm2lrjs2NjaCdYe34+zsjKFDhzJ2nJycMG7cOJiamjJ2nJ2d0bdvX2pHct3h/9owYMAAOrd79+7UjuR3mIqKSpPrTps2beixNGbMmD/tgbfj7OwMKysrAKC3kuF7aGzH2dkZlpaWAABNTU3Gv6Qd/v/t2bMngM9rJ7/uiMVixg4/V3Ld4T8Hft1RUFDAyJEjBWtnhw4dBOuOiooKbG1t6XEnaUfa2skfdw4ODn+57kh+h/F2JNdO3o6xsTGzdiooKEBeXp7pobEdZ2dnaof339S64+zszNiRXHcMDQ2pHX4u3wNvh1//NTU1qR2+h65duzJ2+M9MSUkJcnJyUtdOSTuSa+fo0aMFPfzVujN27Fhqx9zcnM5tbIfvgbfD7zudnJyk2uE4jq47I0aMEKydbdq0od8Vtra2kJWVZdZOyXWH33fy6w4hhNrh9zuS+87G6w5vh1//Jfed/Nym7EjuO/m5vB3JtfOv1p0OHTrQ7wpra2vGTuM9G7/vdHJyov4l7Tg6OlI7/fr1o8/Vu3dvakfyO1tDQ4PaadwDb4fvgd93jhw5ssl9p7S1s/Fx161bN8F7+6+r5vy0+t/1+Kf/RTQsLIz4+fmR2tpaOlZTU0MuXLhA8vPzmbkvXrwgYWFhpL6+no6VlZWRy5cvk9LSUmbugwcPSGRkJGloaKBjWVlZ5Pbt26SiooKZe+vWLZKQkMCMxcXFkYcPH5Lq6mo61tDQQC5fvkwyMjKYua9fvyYvXrxgeqitrSWenp4kLy+Pmevv709CQkKYHj58+EAuXbpESkpKmLmPHj0iERERTA+5ubnk5s2b5MOHD8zcO3fukPj4eGYsMTGR3L9/n1RVVTHjV65cIWlpacxYREQE8fHxITU1NXSsrq6OeHp6ktzcXGZuYGAgCQoKInV1dXSssrKSXLx4kRQXFzNznzx5QsLDw5keCgoKyPXr10l5eTkz9969eyQ2NpaZm5ycTLy8vMjHjx+ZudeuXSMpKSnMWGRkJHn69Cn59OkTHauvryeenp4kOzubmRsSEkICAwOZHqqrq4mnpycpLCxk5vr4+JDXr18zr6u4uJhcvXqVlJWVMXO9vb1JdHQ0Mzc9PZ3cvXuXVFZWMnNv3LhBkpKSmLHo6Gjy+PFjpoeGhgZy8eJFkpWVxcyVZufTp0/kwoULpKCggJn74sUL8vLlS+a4e//+fZN23r17x/SQmZnZpJ3ExERmLC4ujjx69KjZdnx9fQV2Lly4ILDj5+dHQkNDm23n7du3zbJz+/ZtgZ2EhIRm23nz5g15/vy5wM6FCxek2gkODhbY8fT0lGrnzZs3TA/5+fnkxo0bAjt3796Vasfb21tg5+rVq1LtPHv2jOmhKTvBwcECO1VVVVLtPHv2TGCnqKiIXLt2TWDHy8tLYCctLY3cu3dPYOf69eskOTmZGYuKiiJPnjxplp3Q0FDi7+/P9PDp0yfi6ekpsPP8+XOpdq5cuULev3/PzL1//75UO3fu3BHYuXnzpsBObGysVDuXLl0S2Hn16pVUO56enoK1U5qd8vJycunSJYF/aXZycnLIrVu3mm3nwYMHAjuXL18W2AkPD2+2nYCAABIcHMz00NS68/jx47/NTmpqKjP29u3bJu3k5OQwc//MTlFRETP3a+3ExMQwc1NTU//H7TT2L81OaWlpk3aioqKYHjIyMsidO3cEPUizExMT06SdzMxMZu7Lly+bve/09fUV7DubsvPw4UPBvjM7O7tJO433nfHx8QI7/NqZnp7OzP0zO43XzoCAAMG+s6Kiokk7jfedeXl5TdqJi4tjxpKSkqSunU3ZabzvbMpOUFCQYN/58eNHqXaePn0q2HcWFhZ+tZ3G/qXZ+acVmvkX0ZawopZqqZZqqZZqqZZqqZZqqZZqqZb6b6nmhhW1nJorUdHR0UhLS2PGamtr8fz5c9TW1jLj4eHhyM3NZcbKy8sRFBREo7f5CgkJQXFxMTOWl5eH8PBwNP5FgL+/P8rLy5mx1NRUxMTEMHMJIXj+/DmqqqqYubGxsUhJSWHG6urq8Pz5c9TU1DDjERERyM7OZsYqKioQEBAg6CEsLAyFhYXMWEFBAV69eoWGhgZmPCAgAGVlZcxYeno6oqKiBP2+ePECHz9+ZMbi4+ORlJTEjNXX18PHxwefPn1ixiMjI5GVlcWMffz4EX5+fqirq2PGX758iYKCAmasqKgIYWFhgh6CgoLw/v17ZiwzMxORkZGCHnx9fVFZWcmMJSYmIiEhgRlraGiAj48PqqurmfF3794hIyODGfv06RN8fX0Fx93r16+Rn5/PjJWWliIkJETQQ3BwMEpLS5mx7OxsRERECHrw8/NDRUUFM5acnIy4uDjBcSetB2l2ampqmm2nrKys2XZyc3O/yk5sbGyz7aSmpjJjdXV18PHxkWonJyeHGfszO0VFRczY32knOTmZGfs77bx8+VLQQ2BgoFQ77969k9qDNDuJiYnMGG+ncQ/S7FRXV8PX11fQw6tXrwR2SkpKEBoa2mw7b9++bZadpKQkxMfHM2N/Zic9PZ0Zq6mpwYsXL6TaycvLY8bKysoQHBzcbDtv3ryRaufDhw/MWEpKilQ7Pj4+zbYjbd158+aNwM6HDx8QGBgo6CE0NFRgJz8/H69fvxb0IM1OWloaoqOjBXOfP38usBMXF9dsO2/fvpVqx9/fX3DcSVs7/zvsSFt3EhISvspOZmYmM/bfYScoKEhgJysrS6odX1/f/8hOVFRUs+28fv1aYOf9+/dN2ikpKWHGcnJy/hY7MTExTe47pdlpvHb+mZ3G/v/MTuO1U5odfu38GjuNe3j79q1g31lZWSnVzsuXLwV2CgsLm7TT2H9GRkaTa6c0O433nU3ZiYyMFNipqqpq0k7jtbO4uPhvsfNvrZbUXIkKCgrCwIEDcePGDWRlZUFZWRna2tpwcnKCi4sLIiIi8OnTJxgbG+Phw4cYOXIkvL29kZeXBw0NDaipqcHa2hr79u1DdHQ06uvrYWJigl9++QVjx47F06dPUVRURNPS+vfvj1OnTiEhIYGm3O3YsQMzZ86En58f3r9/Dz09PZSWlsLc3By///47UlNTIScnB2NjYyxZsgTLli1DSEgIKioqYGhoiPj4eFhaWuLatWvIzMyEkpISdHR0MGXKFGzcuBHh4eGorq6GsbExfHx8YGVlhXv37iE3NxdqampQV1fH6NGjsXv3bkRFRdF01QsXLkAsFuPx48coLCyElpYW5OTkMGDAAHh4eCA+Pp4mxO3duxdTp06Fr68vSktL0bp1a1RUVMDCwgLnzp1DSkoKTVddsWIFFi9ejJCQEJSXl8PAwACpqano168frly5goyMDCgpKUFXVxczZszA+vXrER4ejo8fP8LIyAgBAQEYNmwY7ty5g5ycHKipqUFDQwP29vbYtWsX3r17R9NVr169Cjs7Ozx8+BAFBQXQ1NSEoqIiBg0ahGPHjtEfukxNTXHkyBE4Ozvj+fPnKCkpga6uLqqrq2FhYYFff/0VSUlJNCFy7dq1mD9/PgIDA1FeXg59fX1kZWWhT58+uHTpEtLT06GoqAh9fX18//33WLNmDV69eoXKykoYGRkhLCwMQ4YMwa1bt5CdnQ1VVVW0atUKY8eOxfbt2xEZGUlT7m7dugUbGxs8ePAA+fn5aNWqFZSVlTFs2DAcOnQIsbGxNF3x5MmTmDhxInx8fFBUVAQdHR3U19ejT58++Omnn5CYmEgT4jZv3ow5c+bQjZC+vj7y8/Nhbm4OT09PpKWlQUFBAQYGBpg/fz5WrlyJly9f0h7evn2LQYMGUTsqKirQ0tLCxIkTsXXrVsYOf1NwSTuqqqqwtrbGgQMHqB1TU1OcPXtWYIcQgn79+uH06dOMHTc3N8ycORP+/v4oLS2Fnp4eSkpKGDvy8vIwMjLC4sWLsXz5coSGhuLDhw8wNDREbGwsY0dZWZna2bx5M968eUPtPH36FFZWVvDy8kJOTg7U1dWhrq4OGxsb7NmzB1FRUairq4OJiQl+//13ODg44MmTJygoKICWlhZkZWVhaWlJ7QCfr4PZs2cPpk2bBj8/P2rnw4cPMDc3x/nz55GcnEwTIpctW4YlS5YgJCQEHz58gIGBAVJSUv7STlVVFYyNjeHv74/hw4cL7NjZ2VE7fELk5cuXYWdnh0ePHiE/Px+amppQUFCQaufQoUOYPHkyXrx4Qe1UVVVJtbNmzRosWLAAQUFB1H9GRgb69OmDy5cvIy0tjdqZPXs2tcP7Dw0NxdChQ3H79m1kZWVBVVUVmpqacHR0pHZ4/7du3cKYMWMEdoYOHYrDhw8jNjaWJkR6eHhQO8XFxdDR0UFtbS369OmDn3/+mbGzadMmaqesrAz6+vrIy8uDhYUFLl68+Jd23rx5g0GDBuHmzZt/asfExAReXl4YNWoU7t+/z9gZMWKEwM5PP/2EcePG4dmzZ9R/U3ZcXV0xa9Ys+Pv7U//FxcUwNzfHhQsXkJKSAnl5eRgaGjJ2KioqYGRkhOjoaAwYMADXr19n7EyaNImxY2JigidPnsDa2hpeXl7Izc2ldkaNGsXYMTU1xfnz56kdft2RkZGBpaUlTp48SX/ZZ2pqit27dzN29PT0UF5eTu2kpKQ0acfQ0BBJSUno378/rl69ytiZPn06NmzYgNevX1M7vr6+GDFiBO7evcv4t7W1hbu7O2Pn0qVLsLe3x6NHj6h/eXl5DBw4EMePH2fsHDx4EFOmTKF2WrduzdhJTk6mdlatWoWFCxcK7PTt2xeXL1+m646enp7AjrGxMUJCQqgdyXXHwcEBbm5ujJ2bN28ydvi1c8iQIThy5Ahj5/jx43BycqJ2dHV1qZ2zZ88iKSmJ2tm4cSPmzp2LoKCgJu3w/ufOnYvVq1czdsLDwzF48GBqh+9h/PjxcHV1xdu3b1FTUwNjY2N4eXnhu+++o3ZatWoFFRUVjBgxAgcPHkRMTAxNVz1z5ozATkNDA/r27YszZ85Q/yYmJti2bZvATlFREbWTmpoKBQUFGBkZYeHChVixYgXCwsKonaioKMaOiooKtLW1MWnSJLrv5O08evSIscPvO0eNGkX3nbydc+fOwdHREU+fPkVhYSG95lzSjkgkgomJCXbt2oUZM2YwdsrKymBhYUHt8MnkS5cuxdKlS6l/AwMDJCYmMnaUlZWhq6uLqVOnMvtOIyMjvHjxQqqdMWPGwN3dnVk7PT09m7Rz4sQJxMXFUf8HDhzAlClT4OvrS+1UVlbC3Nwc586do2uniYkJtRMcHEztpKenM3aUlJTQunVrzJo1C+vWraP+jYyMEBQURPed2dnZUFNTo9eW7tixA5GRkaitrYWxsTGuX78OW1tbPHz4kNpRUlLC4MGDcfToUfoLCxMTExw7dozZd+ro6KCmpgYWFhbUDr933rBhg2DfyScT/1OqJTX3v1CSiZP4ktzl7u5O063wJfVu3rx5TBIen9y1c+dOmkiGL6l3K1asYFIk+eSubdu20RRJfEnucnFxIZ07d2YS4xwcHMj69etpAhu+JHe5u7vTlEF8Sb2bNGkSk+aFL8ldu3fv7856EQAAIABJREFUpqmq+JLcNWfOHCZFkk/u2rlzJ00kxJfUu2XLljEpknxyl6urK03zwpfkrk2bNjEpknxi5IYNG2h6Kb6k3rm7uzMpY+rq6sTJyYlJkcWX1Dt3d3eabocvqXezZs1ikvD41LudO3fSVDV8Sb1bsmQJsbW1pWN86t327dtpiiy+pN6tX7+eWFhY0DE+MXLz5s00RQ5fUu927NjBpKrxacuSaX74knq3e/dumm6HL6l3M2bMYJLwJFPv+ERS4HNi5MKFC5kkPFlZWWJlZUV27NhB0/zwJfVuzZo1TIoknxi7ZcsWmiKHL6l3rq6uTAIrn7YsmeaHL6l37u7uTA+amppk2rRpTAIzb2fXrl2MHT09PTJ//nypdnbs2CGws3LlSiZFkk+M3bp1q8DOli1bmARWPvVu3bp1f2mHT4yVTGAGPifGNvbP25FMwuMTYxvbMTY2JsuXL2dSJPm05absdOvWjfHPcRzZuHGjVDuS6bbq6urE2dlZqp1du3Yx/nV0dMjs2bPJ9OnTmR4GDx7cpB3JFEk+bdnV1VWqHckUST5tubGdLl26kB07djCpqmpqamTixInkhx9+YHowNzcnu3btYvzzdiTTy/m05cY96Ovrk0WLFkm14+bmJtWOpaWlwI6Liwtjp3PnzmT79u1MimRTdnr16iXwz9uZN28e04OlpaXAP29HMr2cT1tubMfU1JSsXLmSSZHk7Uhbd7Zs2cKkSDZlp0ePHk3akUxg/is7zs7OUu1I9mBsbExWrFjRLDvt27cnmzZtYhJYeTuN151u3bqRPXv2MAmdvB3JFFngc9py47WTtyOZXs7b2bVrF+Oft2NjYyOw03jdadeuHVm/fj3p3bt3s+zs3LmTSVX9MzvS1s6ZM2c2y46BgQFZtGgREYvFTA9WVlZk+/btjJ1vvvmGrF27lvTr16/ZdiRTZHk7kgnsvJ2m1h3JBGbJpPLGdhYsWNCkHckeTE1NyapVq8jgwYMFdrZs2cLY6dixI9m6dStp3749Y2fs2LFk7dq1Aju7d+8W2JkyZQqTwMzbabx28vtOJ4n0chkZGalrJ29nxIgRjB1+39nYzubNm5kEVn7fKc2Ou7s7Y4ffd0qml/N23N3dBXa+//57qXZ27Nghdd8paaepfWe7du3Ihg0bSK9evRg7YrGYbNq0SaodyVRlft/Z2I6FhQXZvXu3VDszZ85kjrtBgwaRXbt2CewsXryYSf7n951ubm6Mf96O5F0z+H2ni4sL0wNvR/LuBfy+8+XLl//bP0YxhWZeIyqHlqI1aNAgODo6guM42Nvbw8DAALW1tQgNDUX37t3BcRz69esHWVlZnDt3DnJycuA4Dra2ttDW1kZ5eTn8/f0xZMgQcByHXr16QSQSYd++fWjXrh04joONjQ3U1dWRlZWFwMBAjB49GhzHoXPnzhCJRPj06ROsrKzAcRysrKygrKyMt2/f4s2bN+A4DmKxGO3atQMhBElJSfS3MEOHDoW8vDweP36MzMxM2oORkRHq6urw8uVLdO7cGRzHwdLSErKysvjjjz9QV1dHe9DV1aWnFw4cOBAcx8Hc3BwikQiHDx+GoaEhOI7D6NGjoaGhgby8PAQEBOC7774Dx3Ho0qULvZfRoEGDwHEcrK2toaKigpiYGLx+/RpisRgcx9GUtrS0NCgrK4PjOAwbNgwKCgp48eIFUlJSaL/GxsZoaGjAmzdv8O2334LjOAwcOBCysrK4cuUKPn78CI7jYGdnR3+DHBQUhH79+oHjOFhYWEBGRgYeHh7Q0dGhPbRq1QqFhYXw9/fHyJEjwXEcunXrBpFIBFdXV1hYWIDjOIwcORKqqqpISEhAaGgo7O3twXEcTTjLy8uDjIwMOI7D8OHDoaioiMDAQCQkJEAsFkMsFsPU1BSEEERGRsLExAQcx2HQoEGQk5PDzZs3UVZWRnvQ09PDp0+fEBQUBHNzc3Ach759+0JGRgZnzpyhSZxjxoyBpqYmSkpK4OfnhxEjRoDjOPTo0QMikQg7d+5E165dwXEcRo0aBTU1NaSmpiI4OBi2trbgOI4m65WWltJjYcSIEVBSUsLLly8RFRVFP4dvvvkGhBDExMRAX18fHMdh8ODBkJeXh5eXFwoLCyEWiwV2evToAY7j0L9/f8jIyODXX3+FvLw87UFbWxtlZWXw9/fH0KFDBXbat28PjuPw3XffQV1dHZmZmQgKChLY+fjxIz0WeDsRERF4+/Yt7aFt27YghCAhIQFaWlqMnUePHiE7O5vaMTQ0pHbMzMwEdggh1I6Ojg4qKirg7+9Pj33ezqFDh+hnbmNjAw0NDeTk5MDf3x82NjaMHUIIBg8ezNiJjo7G69ev6XHH20lNTYWKigpjx8fHB6mpqbQHY2Nj1NfX482bN/R95O1cvnwZ1dXV9LjT1dXFx48fpdo5fvw4dHV1GTsFBQUIDAzEyJEjIRaLqR0FBQX06dNHYCcsLAz29vYQi8XUTk5ODv0e5e0EBAQgMTGRfmYmJiZoaGjAu3fvYGpqKrBTXl7O2KmurkZISAj126dPH8jIyODHH3+Uasff359+53bv3p3a6datG2MnJSUFISEhsLOzA8dxNFmzuLgY9fX1jJ3Q0FBER0fTHtq0aQNCCKKiomBgYMDYuXv3LoqKiuhnpq+vj5qaGmpHLBZTO2fPnoWioqLATkBAALXTs2dPiEQi7NmzBx06dGDsZGRkIDAwEGPGjKF2gM+nlVZVVUEsFsPa2hpKSkp48+ZNk3a0tbXBcRyGDBkCeXl5PHz4EDk5OVLtdOnShfqXlZXF77//DgCMnQ8fPiAgIIDa6d2795/aCQgIoHbMzMwgEolQX19P196RI0dCWVkZUVFRCA8Pp9/DvJ2kpCSoqalBLBZTO8+ePUN6ejrt18jICPX19Xj9+jV9HwcMGABZWVlcunQJNTU1AjsBAQGwtLSk/mVkZHDs2DHo6ekxdvLz8+Hv749Ro0aB4zh07dqV2uHtjRw5EioqKoiLi6N2OI6j6aDZ2dn0e3TYsGFQVFSEn5+fVDtv377FN998Q/3Lycnh+vXrUu0EBwdTv7ydU6dO0RRr3k5xcTECAgIEdtzc3NCzZ09qR1VVFcnJyVLtFBUV0e/R4cOHQ0lJCSEhIYiJiRHYiY6OpnuQwYMHQ05ODnfv3kVxcbHATkhICHr16kX3bLwdJSUliMVi2NraQktLC+/fv4e/vz+GDRsmsNOpUydqR01NDenp6QgODhbYqaiooN+jVlZWUFJSQnh4ON69e0f3O/zaGRcXR/cgvJ0HDx4gLy+P2Xfydvj1m7dz/vx5utfg9528HX7d4O0cOHCAfub8vjM7OxuBgYECO3V1dfQ9sLa2hrKyMt69e0ftcBxHU1qTk5Pp9+jQoUMZO7wzSTsdO3Zk7Fy8eBG1tbXMvrOyshKBgYEYMGAAXXdEIhGOHj1K9xo2NjbUTkBAgMCOrKws+vfvL7Dz6tUruu7wdjIzM+n36PDhw6GgoAA/Pz8kJSVJ3Xe2bduWsXPt2jVUVlYK9p2BgYHo27cvY+fkyZN0rzF69GhoamqiqKgIfn5+sLa2Zuxs376dHre8naSkJKl2+FOW+XWHv7/ov7FawookihAiuCmstLF/wlz+c2vu3H9iD18z95/6ulp6+PfNbbHz75v7T31d/z/2ALTY+TfN/ae+rv8fewD+3Xb+L/TwNXP/qa/rz8b/SSVqCStqqZZqqb+j+MWopVqqpVqqpVqqpVqqpVrqv1otYUUSdf/+faxbt45eCK+mpoa6ujqMGzcO7969g4qKCoyMjCAjI4Nz585h7969NIBFRUUF5eXlcHBwQGpqKjQ0NGBgYACRSIT9+/fj559/piESioqKyMrKwvjx45Gfnw9tbW3o6upCJBJh/fr1uHnzJkSizyES8vLyePv2LWbMmEHDi7S0tAAAc+bMwYsXL+hF5LKysnjy5AlWrlxJw4vU1dVRX1+PCRMmICIiAsrKyjA2NoaMjAwuXLiAXbt20QAWFRUVeroBf/qFoaEhRKLPp+aePn2aXkSupKSE/Px8ODo6Ijc3F1paWvTmxZs3b8bVq1cBgPYQGxuLKVOm0IvI+cCmBQsW4OnTp/Qicjk5Ofj6+mLp0qU0gEVDQwOEEDg5OeHVq1dQUlKiPVy9ehWurq40REJVVRXV1dVwcHBAQkIC1NTUaA8eHh44ceIEDWBSUlJCUVERHBwckJ2dDU1NTejp6UEk+nyKhKenJwj5HCKhoKCAxMREODs70wAGHR0dAMDSpUvx4MEDGiIhJyeHoKAgLFq0CGVlZTAwMKAXkU+ZMgUhISFQVFSEiYkJZGRkcOvWLbi4uDDHXU1NDRwdHREbGwtVVVUYGRlBJBLhzJkzOHz4MA2RUFZWRmlpKTiOQ0ZGBlq1agV9fX2IRCLs2rUL58+fpyESCgoKSEtLw8SJE1FYWAgdHR3o6uoCAFauXIl79+7REAk5OTm8evUKc+bMoSESmpqaAIAZM2YgICAACgoK9Ljz9vbG+vXraQADb2fs2LGIiooS2Nm3bx8NYFFWVqaniKWlpTF29u3bh7NnzzbLzrp166TamTlzpsDO7Nmz4evry9h5/PgxVq9eTXvg7YwfP16qHXd3dxoiwdsRi8VS7fz44480REJRURG5ublS7WzatElgJzo6GtOmTftTO6amppCVlcXz58+xfPlyGsCioaGBhoYGODk54fXr14ydy5cvw83NjbFTVVUl1c6JEyeoHVNTUygpKaGwsBCOjo4CO9u2bcPFixcFdiZNmoTi4mKmhyVLluDhw4eMncDAQCxatIiGSLRq1QqEEEyePBmhoaGMnZs3b2LLli00gEVVVRWfPn2Co6Mj4uLiGDs//vgjjhw5wtgpKSmBg4MDMjMzGTs7d+4U2ElNTcXEiRNRVFTE+P/hhx8EdsLCwjBv3jyBnenTpyMwMJCxc+/ePWzYsIHxX1tbi3Hjxgns/PLLL9i/f7/AjoODA9LS0pge9u7di19++YWxk5mZifHjx6OgoAA6OjrQ0dGBSCTCmjVrcOvWLcZOREQEZs2aRQNY+B5mz54NPz8/yMvL0+Pu0aNHTdp5+/Yt08Mff/whsFNRUQEHBwekpKQw/g8dOiTVztixY5GXl8f437hxI65duybVDh/AwvufN28efHx8GDs+Pj5YsWKFVDvh4eFQVlamPUiz8/HjRzg4OCAxMRHq6uq0h+PHj8PDw4OxU1BQAEdHR+Tk5DD+t27dikuXLgEATExMoKCggPj4eEyePFlgZ/HixXj06BGzdvr7+2Px4sUCO5MmTUJYWBjj//r169i6davAjoODA+Li4hj/p06dwtGjR5u0I+l/x44d9NIFvoeUlBQ4OTkJ7KxYsQLe3t40gEVOTg6hoaHUjuTaOW3aNAQFBUFRURHGxsaQlZXF3bt3sXHjRoEdR0dHREdHM/7Pnj2LgwcP0vAiZWVleklMeno6Y2fPnj349ddfaXiRoqIiMjIyMGHCBKl2bt++zfgPDw/H999/L7Aza9Ys+Pn5Mf4fPHiAtWvXCuyMGzcOkZGRjJ3z589jz549zL6zoqICHMcJ7Bw8eBA//fQTDc1UVFRETk4Oxo0bJ7CzYcMGXL9+nfEfFRWF6dOnM3ZEIhHmzp0LHx8fZu189uwZfvjhB4GdiRMnUjv8cXfp0iXs2LGD2Xfyl9QkJSUxdo4dO4aTJ08y+86m7Li4uODy5cuM/7i4OEydOpWG5vF2Fi1ahMePHzN2/Pz8pO47nZ2d8fLlS4Gdbdu20fAiyX1nfHy8wM6xY8eYfSd/OnlWVhZjx83Njdrh153k5GSpdpYvX07t8MfdP61awor+C+Xi4iK4aNzNzY254Lp169bk+++/ZwJX+MAFV1dXQVjJ0qVLmbAiPnBh8+bNgovGN2zYQMzMzJiLxjmOI2vXrhVcNL59+3YmrERDQ4M4OTkJAlf69OlD3NzcmAuudXV1yaxZs8jkyZMFF427uroyF1wbGRmRxYsXM2FFfOCCi4uLIHBh3bp1pEePHsxF4/b29mTdunWCi8bd3NwEYUUTJkwQhEaYm5sLetDW1ibTp09nAldEXwIXGvdgYGBAFi5cKAgrsrKyEvTwzTffkNWrV5M+ffowF43b2tqSDRs2CC4a37ZtGzE2NmYuGh8/fjxZsWIF00OvXr2Im5sbE1agpaVFpk2bRmbNmsX0YGlpSbZv386EFejr65P58+cLAleGDx9Otm7dyoQVtGnThvzwww9MWBEfuLBx40ZB4IKLiwsTVsSHlaxatUoQuNC4Bz6sRDJwhbfTuIfWrVuTOXPmkPHjxwvsNO7BxMSELF++XGrQ16ZNm5ge/l97dx5XVbX2Afy3UHAs5wFTG0y72ajZzbrVvZl27c2b3fJWVuaUglPO4ixqZWpl2aCZc44oKIMDiICCKIIIgswyyTzDGZh53j/OOSs2+xxfvN0O8N7n+/n40bPZyF6fdX5nrQfOfhgwYAAtXbrUbKOvhQsXKsbw2GOP0dq1a1UNF959911Vw5Vhw4ap8t+9e3eaNGmSquHKiy++qMp/nz59aObMmaqGKyNHjqQVK1aoGi4sXrzYbKOvxYsXK/Jvyk7DZkXjxo1rdHYmTJhAH374oeJ598ILL6iyY29vTw4ODqpmRSNGjKCVK1eqmhUtWLBA0azI1HBhyZIlqkZfq1evJnt7e1V2GjZcevrpp8nZ2VnV6MtcdoYPH05r1qxRNfqaNm2aouFKq1at6G9/+xutWrVK1axo7ty5qmZFo0ePJicnJ0XDFVN2GjYreuutt1TNyp588klydnZWZKdz5840fvx4RcMVwNDoa82aNWaz89ZbbynG8PLLL1vMTsNmReay8/DDD9PSpUtp4MCBivy/+eabtGDBAlWjL3PZee+991QNV35vdkxrZ2Oy89BDD9GSJUtUjb7MZWfw4MG0bt06s9lp2Ohv6NChtG7dOrPZqd9wxZQdZ2dns9lp2KzIUnYWLlyoalZkKTtr1qxRNfqylJ1169apsvPRRx+ZzY6zs7MiO71796bp06c3Ojvz589XNSsyl51BgwbRypUrqX///o3Kzrp168xmZ8qUKarsNFx3evbsSVOnTjWbndWrV6safc2ZM0fVrMhSdpYtW2a20VdjstOpUyd67733aPr06arsODs7q7IzefJkGjdunCo7q1evNpudhs2KRo4cqdp3mrLTsFnRmDFjVPvOwYMHN3rfOXToUHJ2dlZkp1u3bjRx4kRFk8w7rTszZsygUaNGKbJjad+5aNEiVbOiN954w2J2Gjb6euedd1TZMa2d9bNj2nc2bJJp2neay07DZkWvvPKKKjv3338/zZ8/X9Ws6PXXX6elS5eazY65Rl/BwcFNXUYpoJHNirgQrcfNzY0AQ4GxaNEiCggIoOLiYnriiSfkRO/evZtycnLo+++/J8BQYKxcuZJCQkIoJyeH+vTpI18kDx06REVFRbR06VJFR7fIyEi6desWdejQgXr27EmTJ08mNzc30mg0NGHCBFlgfPXVVxQfH09hYWFkY2ND/fr1o5kzZ9Lp06dJp9PRyJEjZYHxww8/UGpqKp06dYoAwyZpwYIF5OfnRyUlJTRkyBD5Irlz507Kzs6mHTt2EGAoMJYvX07BwcGUm5tL/fv3lwXGgQMHqLCwkNasWUOAocBYt24dXb9+nVJTU+nee++lHj160KRJk+j48eNUVlZGU6dOlQXGpk2bKDY2liIiIqh169Z03333kaOjI3l5eZFer6fRo0fLjm5bt26l5ORkOnfuHAGGAmPevHl0/vx5Ki0tpWeffVYWGDt27KDMzEzau3cvAYYCY+nSpXTp0iXKz8+nAQMGyAJj//79lJ+fT59//jkBhuLc2dmZrl27Rrdv36YuXbpQt27d6OOPPyYXFxcqLS2lmTNnyuL8yy+/pJs3b1J0dDTZ2dlRnz59aPr06eTp6Uk6nY7Gjh0rXyS//fZbSkpKooCAAPki+emnn9K5c+dIo9HQCy+8IAuM7du3U0ZGBh06dIgAQ4GxZMkSCgwMpIKCAnrkkUfkJmnv3r2Ul5dHmzdvli+Sq1evptDQUMrMzKQePXrIF8kjR45QcXExzZs3T77Qf/HFFxQVFUXx8fHUtm1b6t27N33yySfk7u5OWq2W/vWvf8lN0jfffEOJiYkUHBxMQgi6//77afbs2eTt7U1arZZefvllWWD89NNPlJ6eTq6urorsXLhwgYqKiujxxx+Xm6Q9e/ZQbm4ubd261Wx27O3tqUuXLvTBBx/Q4cOHqaioiJycnFTZSUpKog4dOlCvXr1oypQpdOLECdJoNPTRRx/JTZIpO6GhoYrsnDlzhnQ6Hb366qtkZ2dHo0ePltnx9PRUZMff359KSkro6aeflt0Qd+3aRdnZ2bR9+3a5SVq+fDldvnyZ8vLyqF+/fjI7Bw8epMLCQlq1apXcJFnKjqurK5WVldGUKVNkN8TNmzdTbGwsXb9+nVq1akV9+/YlR0dHOnXqFOn1evr73/8us/P9999TSkoK+fj4mM3OsGHDZHZ++eUXyszMpD179pjNzkMPPSSz8+uvv1JBQQF99tlnik1S/ex0796dPv74Yzp27BiVlpaSo6Oj3CRt3LhRZsfW1laVnX/84x9yk/Tdd9/RrVu3yN/fX5WdsrIyev7552V2fv75Z8rIyKCDBw/KTZIpO4WFhTRo0CCZnX379lFeXh5t2rRJbpLWrFkjs9O9e3eZnaNHj1JJSQnNnTtXZmfDhg0UFRVFsbGx1KZNG1V2xo0bJ7OzZcsWSkxMpEuXLskNhik7Go2GXnrpJZmdbdu20e3bt+nYsWNyk7R48WKZnccee0yVnW+//VYWGKtWraKQkBDKzs6m3r17K7JTXFwsu96aunCbstO+fXtVdj744AOZna+//pri4+Pp6tWrquxotVoaMWKEzM6PP/5IaWlp5OHhITdJCxcuJH9/fyouLqannnpKFhi7du2inJwc2rZtm8zOihUr6PLly5Sbm0t9+/ZVZWflypUyO+vXr6fr169TSkoK3XPPPXLtNGVn8uTJssDYvHkzxcXFUXh4uMzOjBkzZHZee+01WWCYsnP27FlZYMyfP19m55lnnlFkJysri3bt2iULjGXLllFwcDDl5+fTgw8+qMrOunXrZHbWrl1L4eHhlJ6eTp07d1Zlx8HBQZGdmJgYioqKktlxcHCQ2RkzZowqO35+frLAmDt3rszO8OHDVdk5cOCAzI6Tk5PMzsCBA2Un0X379lF+fj5t3LhRkZ2wsDDKyMig7t27U7du3WjChAkyO3PmzFFkJzo6WmbH3t6epk2bRu7u7qTT6ejtt9+Wa6cpO0FBQQQYivM5c+aQj48PaTQaevHFF2WBYcqOi4uLIjsXL16kwsJCevTRR2WBYcrOli1bFNm5evUqZWdnU69eveQ3tkzZMXW9NWXnxo0blJCQQO3ataNevXrR1KlT6eTJk6TRaGj8+PGK7CQkJFBISAgJIah///40a9YsOnv2LGm1WnrllVdkgWHKzsmTJxXZMe07n3zySbnvNGXnxx9/VGTnypUrMjumfacpO8uXL5dr5/r16ykiIoKSk5OpY8eOin1nWVkZTZw4Ue47LWXn9OnTpNfradSoUXLfacrOmTNnFNkx7TuHDh2q2HdmZWXRzp07VdnJy8ujBx54QBbnBw4coIKCAlq7dq0qO2lpadSpUyf5AxXTvnP69Oly32nKTmRkpNx3Ojg4yH3nG2+8IX8oZMrO+fPnFdnx9fWlsrIyeu655+QPhUz7zv3798u108nJiYKCgqigoIAefvhhmR3TvnPDhg1y32nKTmZmJnXr1k1mx8XFhUpKSmj27NmKfWd0dDTFxMSQnZ2dzI6HhwfpdDr65z//qdp3NjdWKUQBjAYQDyAJwNL/6/zmXoiaXmzqq6qqIh8fHyovL1ccDw0NpbS0NMWx0tJSCggIoOrqasXxoKAgysnJURzLzs6mK1euUG1treK4n58fFRUVKY7dunWLIiIiqK6uTh6rq6uTL9D13bx5k+Li4hTHqqurydvbWzWGa9euUUpKiuKYRqMhPz8/qqqqUhwPDg6mrKwsxbHc3FwKDg6mmpoaxfGAgAAqLCxUHEtJSaHw8HDFGIhILpT1xcTEUExMjOLcmpoa8vb2Jr1erzg3PDyckpOTFcd0Oh35+vpSZWWl4vjly5cpMzNTcSw/P5+CgoJUY7hw4QLl5+crjqWlpVFYWJhqDL6+vlRSUqI4FhcXR9HR0Ypza2trydvbm3Q6neLciIgI1YtIRUUFnTt3TjWGkJAQysjIUBwrKiqiixcvqp53gYGBlJeXpziWkZFBV69eVT3vzp8/T8XFxYpjCQkJdOPGDdXzzlSQ1mcuO5WVleTj40MVFRWK46GhoZSenq44VlJS0ujsZGVlmc2Ov7+/2exERkY2KjvR0dEUHx+vOGYpO2FhYZSamqo4dqfsZGdnK47l5OT8YdmJjY21WnYuXbrU6Oxcu3bN7BhKS0sVx+Li4ujmzZv/dnbKy8sbnZ3CwkIKDAxUjeHixYuq7Ny+fZtCQ0MbnZ2oqKhGZycxMVFxzFJ2rl69ajY7Fy5cMJud3NxcxbGsrCwKCQlp1LqTlJRkNjumoro+S9kxt3aay05ZWRn5+/ursnPp0iWz2bl8+bLZ/DfMTnJyMl2/fl31vPPx8VFl5+bNm3eVnYZrp06no/Pnz6vGYC47eXl5ZrMTEBBABQUFimOWsuPr6/u7s3Pr1i3FsfLycrP5v3Llyl1lp2H+75Sdhmvn3WQnMjLyd2WnuLi40dnJzMy0mJ2G+U9MTGz0umP6BnF9VVVVFtedhvvOO2XH3L7z92THNIb/dHa0Wq3F7DTcd1rKzoULF1TZSU1Ntbh2NsxObGysat9pKTvXr19XZUev15tdd8xlp6CgoNHZSU9PN5sdc/vO5qaMxvf0AAAVVElEQVSxhei/3TVXCNEKQAKAUQAyAIQCGE9EMZY+p7l3zWWMMcYYY4wx9u+zRtfcPwNIIqJkIqoCcATA2N/x/zHGGGOMMcYY+y/wb3fNXbt27XAAPZ2dnT2Mjx8E8Kizs/NpS5/T3Lvmuri44ODBg4ouZTqdDg4ODtBqtbLDFwBs374dp0+fVnQpy87Oxty5cxUd/gDgyy+/RHBwsKJL2c2bN7F69WpFlzIAcHJyQmxsrKLD34ULF/Dtt98qupQREWbOnImsrCzZHRcATpw4gX379im6lJWXl8PBwQFlZWWKMezatQseHh6KDp/5+fmYPXu27PBnGsPmzZsRGBio6FIWHx+P5cuXA4BiDCtWrEB0dLSiw19wcDA2b96s6FIIALNnz8bt27dllzIA8PT0xK5duxRdyiorK+Ho6Iji4mLZ4Q8A9u7dCzc3N0WXsqKiIsycOROVlZWySyEAbNmyBf7+/oouZcnJyVi8eLGiSxkArFmzBhEREYouZVevXsWGDRtUXcrmzZuHlJQURYe/M2fO4Oeff1Z0+KyuroajoyMKCwsVYzh48CBcXFwUHf5KS0sxY8YMlJeXyy6FAPDDDz/g3Llzig5/6enpWLBggaLDJwCsX78eYWFhiu64169fx/r16xUd/gBg4cKFSEpKUnT48/X1xQ8//KDo8FdbW4sZM2YgLy9PdikEgKNHj+LQoUOK7Gi1Wjg4OECn0ynGsH37dpw5c0aRnaysLLPZ2bBhA65cuaLITnR0tMXsxMXFKcYQEBBgNjszZsxAdna27FIIAG5ubti/f7/F7Jg6fALAzp074enpqchOXl6exewEBQXdVXbq5//SpUv46quvVNmZNWsWMjIyZJdCAPDw8MDu3btV2XFwcEBJSYkqOydOnFBkp7CwELNmzTKbnYCAAMUYbt26BScnJ1V2Vq9ejYiICEX+Q0JCsHHjRlV25s6di9TUVEV2Tp8+jR07dijGUF1dDQcHB1V2Dhw4gGPHjinGYCk7W7duha+vryL/aWlpWLhwoSo769atQ1hYmCL/4eHh+OyzzxQdPgFgwYIFSEpKUozh3Llz+OmnnxQdPmtra+Ho6KjKzpEjR3D48GF06NAB9vb2d8zOtm3bcPbsWUX+LWXniy++wJUrVxQdPqOiouDs7AwbGxv07dtXPu+WLFmiyo6/vz+2bt2qyH9dXZ3Z7Li6uuLXX39V5F+v15vNzi+//AIvLy9F/nNzc/Hpp5/KzpKmMWzatAlBQUGK/MfGxmLlypUQQijGsHz5clV2goKC8PXXXyvyDxi6NTfMjru7O/bs2aPIv6Xs7NmzBydPnlR0+DRlx9RZ1pSdb775RpWdpKQkODk5AfitOy4ArFq1CpGRkYrsXLlyBRs3blR0+AQMHWcbZufUqVP45ZdfzGanqKhIdvgEgF9//RXHjx9XZKekpAQzZsyQHY1NYzCXndTUVCxatEiVnbVr1yI8PFw+7wDg2rVr+Pzzz81m59atW+jVq5ccg7e3N7Zt26bITk1NDRwdHZGfnw97e3uZncOHD+PIkSOKtVOj0cDR0RF6vV6RnR9//BHe3t6K7GRkZGDevHmKzrIA8Pnnn+Pq1avo2rWrzE5kZCTWrl2rWjsXL16MhIQE9OzZU2bHz8/PYnZycnIUe7Zjx47hwIEDZrOj0WgUe7YdO3bg1KlTiuddTk4O5syZIzvLmsawceNGBAcHo0uXLjI7MTExMjv1151ly5YhJiYGPXr0kNkJDAzEN998o1o7Z82ahczMTMUYTp48qcpORUUFHBwcUFpaqhjD7t274e7ujo4dO8oxFBQUmM3O119/jYsXL6Jz584yO4mJiVi6dCkA5dq5atUq3LhxQ5Gdy5cvY9OmTarszJkzB+np6Yp9p5eXF3bu3CmfdzY2NqiqqjKbnf3798PV1VW+ZgshUFxcjJkzZ6qy891338HPzw+dOnVSZGfhwoWqtdPZ2Rnh4eGKdScsLExmp/7zbv78+UhOTlZkp7lpbNfc39Pv19xvUlW9z1cIMR3AdADo37//7/hyf7z4+HgcOnQIGo0Gbdq0wdChQ1FeXg53d3fk5eWhoqICH3/8Mezs7BAREYGAgABoNBq0b98ejzzyCEpLS+Hq6orS0lJUVVXh3XffRatWrRAcHIz09HRoNBpMnz4d/fr1Q15eHlxcXKDRaFBXV4cxY8ZACIHz58/D1tYWGo0GDg4O6N69O27fvo0jR45Ao9HAxsYGr7zyCurq6nDq1CnExcVBp9Phk08+wT333IOEhAQ5Bjs7Ozz77LOoqKiAh4cHsrOzodfrMWnSJLRp0waRkZE4e/YsNBoN2rVrh8GDB6OsrAxubm4oKSlBZWUlxo8fj1atWiEkJASJiYnQarWYNm0a7r//fhQUFMgx1NbWYuzYsRBCwN/fH7W1tXK8PXv2REZGhhyDEAIjR44EYFg4o6Ki5P977733IikpCYcPH4ZWq4WtrS2GDx+OqqoqeHh44Pbt29Dr9Zg8eTLatm2L6OhouLu7Q6vVol27dnj88ceh1Wrh5uaGoqIiVFRU4MMPP0Tr1q0RGhqq+FoPPvggCgsLcezYMWg0GtTU1ODtt9+GEAIXLlyATqeTY+jduzeys7Nx9OhRaDQaAMBrr70GIQTOnDmDa9euyf+3c+fOSElJweHDh6HRaNC6dWv85S9/QXV1NTw9PZGamgqdTocpU6agffv2iImJwZEjR6DVatG2bVs89dRT0Ov1OHHiBAoKClBRUYGPPvoItra2CAsLQ2hoKDQaDTp06ICHH34YxcXFOH78OMrKylBdXY1x48bBxsYGgYGBKCwslGPo06cPcnJy4OLiAq1WCyLC66+/DiEEfHx8cO+998pzu3btitTUVHldrVu3xksvvYSamhp4eXkhKSkJOp0OU6dORYcOHRAXFyfnrG3bthgyZIgiO+Xl5TI74eHhCAwMlGMYNGgQSktLcfz4cVV2Ll26hMzMTHldffv2tZgdX19f2NnZyXPrZ0er1aqyEx8fD61WazY7bdq0wbBhw1BRUQF3d3ez2fHx8ZH5f/TRRy1m5/Lly7h16xY0Go3MTn5+Po4dOwatVqvIjp+fH+rq6lTZOXr0qBzDq6++KrMTHR2tyk79/D/33HOorKyEh4cHMjMzFdmJioqCh4eHzH/97BQXF6Oqqgrjx4+Xv44kOjpajqFhdky/bkAIgYCAAJSXlyuyk5WVpcj/a6+9BsBQdIaHhyuyk5ycrMjOCy+8gKqqKnh5eSEtLU0+79q1a4ebN2/K50Lbtm3x5JNPQqvV4sSJEygsLFRk59q1awgLC5NjGDBggMyOKf/vvPMObGxscPHiRRQXF6uyY8o/EWH06NEQQsDb2xtdunSBVqvF9OnT0aVLF6SmpsoxtGrVSpGd5ORk6PV6TJ06Fe3bt0dcXJzieTdkyBDo9XqcPHkS+fn5qKiowIQJE2R2goKC5PNu0KBBKCkpgaurq8z/u+++CxsbG1y6dAlZWVmK7OTm5sox1NXV4Y033oAQAufOnUPbtm3lutOtWzekp6crxvDXv/4VdXV18PLyQkJCgpyzjh07KtZOOzs7RXZycnLk2tmmTRtERETA19dXPu9M2XF1dZXZef/992V2UlJS5Bj69++vWnfefPNNuXYKIeQ89OjRQ7Xu1M9OTEyMXDsbZsfW1hbPPfecXDszMzNRXl6OSZMmyex4enrKMTz22GPQaDQyO6b8m34dSUxMjMXsmH5FnCk7lZWVch569eqlyI5p3TFlJyIiAjqdDtOmTUOnTp0U2bG1tcXzzz+PqqoqeHp6Ij09Xa47puyYruFO2TH9Ki9TTjt06CCzc+zYMfm8q5+d0tJSOWf29vaKtbN+ds6ePYuuXbvK55IpO/XXnRdffBE1NTXw9PREcnKyzH/79u0RGxurWHeefvppRXZM646trS3Cw8Nx+fJlOYaBAwcqsmNad2xsbBAUFITc3Fw5hvvuuw95eXkWs9O+fXt5rqXs1NbWyuyYxtCxY0ckJCTIMbRp0wbPPPMMysvLcfLkSeTk5KC8vBwTJ06U+04/Pz+Z/z/96U8yO6WlpYrsBAcHIy0tTT7v+vfvj/z8fIvZsbGxkWPo0aOHau0cMWIEiAheXl6IiYmRc3bPPfcgMTFRjsHOzg5//vOfZf5N644pOzdu3MDp06flGAYPHnzH7MTFxckxPPDAAxaz4+/vj6qqKjkGU3ZMa6cQAqNGjZLZiYyMlGMwZad+/k3Z8fDwMJsdV1dXmf8nnngCOp0Obm5uquyEhoYiIiJC7ncGDBiAoqIiHD9+HFqtVu47TdkpKyszmx3TGEz7zrNnzyI0NFSRnRarMTeSmvsD4HkA3vUeLwOw7E6f09ybFZWUlKhuaq6qqlLdIG86t6Hy8nLVDfKWztVqtaob5C2dW1paqrpRua6uzuy55sZQXV2tukH+TmNoeIP8ncbQ8OZyS+eWlZWpbsy2dK65MdTU1KhukLd0bkVFheoGeUtfS6fTqW4u/0+MobS0VHVdtbW1qhvkLY2hsrJSdYO8pa+l1+sbPQaNRmO1593dZEev1zc6O9YcQ3PJTsMxWDrX2tn5I/JvzezcTf41Gs1djYGzw9mx9LX+qOyYu667zU5zWDt/b3buZu1srtm5m32ntbJzN2O4U3YaqqioaPJ9539i3fkjsnM3605zAys0K2oNQ7OiVwFkwtCs6AMiumnpc7hZEWOMMcYYY4z9/9XYZkX/9ltziahGCDEbgDeAVgB236kIZYwxxhhjjDHGgN93jyiI6DQAi82JGGOMMcYYY4yxhn7Pr29hjDHGGGOMMcbuGheijDHGGGOMMcasigtRxhhjjDHGGGNWxYUoY4wxxhhjjDGr4kKUMcYYY4wxxphVcSHKGGOMMcYYY8yquBBljDHGGGOMMWZVXIgyxhhjjDHGGLMqLkQZY4wxxhhjjFkVF6KMMcYYY4wxxqyKC1HGGGOMMcYYY1bFhShjjDHGGGOMMaviQpQxxhhjjDHGmFVxIcoYY4wxxhhjzKq4EGWMMcYYY4wxZlVciDLGGGOMMcYYsyouRBljjDHGGGOMWRUXoowxxhhjjDHGrIoLUcYYY4wxxhhjVsWFKGOMMcYYY4wxq+JClDHGGGOMMcaYVXEhyhhjjDHGGGPMqrgQZYwxxhhjjDFmVVyIMsYYY4wxxhizKi5EGWOMMcYYY4xZlSAi630xIfIBpFntC9697gAKmvoi2F3hOWt5eM5aHp6zlofnrOXhOWt5eM5aHp4z67ifiHr8XydZtRBt7oQQYUQ0rKmvgzUez1nLw3PW8vCctTw8Zy0Pz1nLw3PW8vCcNS/81lzGGGOMMcYYY1bFhShjjDHGGGOMMaviQlRpR1NfALtrPGctD89Zy8Nz1vLwnLU8PGctD89Zy8Nz1ozwPaKMMcYYY4wxxqyKfyLKGGOMMcYYY8yquBA1EkKMFkLECyGShBBLm/p6mJoQop8Qwl8IESuEuCmEmGs83lUIcU4IkWj8u0tTXyv7jRCilRDiuhDCy/j4QSFEiHG+jgoh7Jr6GpmSEKKzEOK4ECLOmLfnOWfNmxBivvF1MVoIcVgI0Zaz1rwIIXYLIfKEENH1jpnNlTDYatyT3BBCDG26K//vZWHONhtfG28IIU4IITrX+9gy45zFCyH+3jRX/d/N3JzV+9giIQQJIbobH3POmhgXojBslAH8COB1AIMBjBdCDG7aq2Jm1ABYSESPAhgOYJZxnpYCOE9EAwGcNz5mzcdcALH1Hm8EsMU4X8UApjbJVbE7+Q7AWSL6E4CnYJg/zlkzJYS4D8CnAIYR0eMAWgF4H5y15mYvgNENjlnK1esABhr/TAewzUrXyJT2Qj1n5wA8TkRPAkgAsAwAjPuR9wE8Zvycn4z7S2Zde6GeMwgh+gEYBSC93mHOWRPjQtTgzwCSiCiZiKoAHAEwtomviTVARNlEFG78twaGzfF9MMzVPuNp+wC81TRXyBoSQvQF8AaAncbHAsAIAMeNp/B8NTNCiHsBvAxgFwAQURURlYBz1ty1BtBOCNEaQHsA2eCsNStEdBFAUYPDlnI1FsB+MrgCoLMQwt46V8pMzM0ZEfkQUY3x4RUAfY3/HgvgCBFVElEKgCQY9pfMiizkDAC2AFgCoH5zHM5ZE+NC1OA+ALfrPc4wHmPNlBDiAQBDAIQA6EVE2YChWAXQs+mujDXwLQwv/HXGx90AlNRbxDlrzc9DAPIB7DG+pXqnEKIDOGfNFhFlAvgKhu/0ZwMoBXANnLWWwFKueF/SMkwBcMb4b56zZkoI8SaATCKKbPAhnrMmxoWogTBzjNsJN1NCiI4AXAHMI6Kypr4eZp4QYgyAPCK6Vv+wmVM5a81LawBDAWwjoiEAdOC34TZrxvsKxwJ4EEAfAB1geMtZQ5y1loNfK5s5IcQKGG4ZOmg6ZOY0nrMmJoRoD2AFgNXmPmzmGM+ZFXEhapABoF+9x30BZDXRtbA7EELYwlCEHiQiN+PhXNNbKYx/5zXV9TGFvwB4UwiRCsPb3UfA8BPSzsa3DwKcteYoA0AGEYUYHx+HoTDlnDVfIwGkEFE+EVUDcAPwAjhrLYGlXPG+pBkTQkwEMAbAh/Tb70HkOWueBsDwTbpI436kL4BwIURv8Jw1OS5EDUIBDDR2GLSD4WZzjya+JtaA8f7CXQBiieibeh/yADDR+O+JANytfW1MjYiWEVFfInoAhkz5EdGHAPwBjDOexvPVzBBRDoDbQohHjIdeBRADzllzlg5guBCivfF10jRnnLXmz1KuPAB8bOzqORxAqektvKxpCSFGA3AC8CYR6et9yAPA+0KINkKIB2FogHO1Ka6R/YaIooioJxE9YNyPZAAYalzrOGdNTPz2jZz/bkKI/4HhpzWtAOwmos+b+JJYA0KIFwEEAojCb/ccLofhPlEXAP1h2JD9i4jM3ajOmogQ4m8AFhHRGCHEQzD8hLQrgOsAPiKiyqa8PqYkhHgahgZTdgCSAUyG4RuXnLNmSgixFsB7MLxV8DqAT2C414mz1kwIIQ4D+BuA7gByAawBcBJmcmX8hsIPMHT/1AOYTERhTXHd/80szNkyAG0AFBpPu0JEjsbzV8Bw32gNDLcPnWn4f7I/lrk5I6Jd9T6eCkOH8QLOWdPjQpQxxhhjjDHGmFXxW3MZY4wxxhhjjFkVF6KMMcYYY4wxxqyKC1HGGGOMMcYYY1bFhShjjDHGGGOMMaviQpQxxhhjjDHGmFVxIcoYY4wxxhhjzKq4EGWMMcYYY4wxZlVciDLGGGOMMcYYs6r/Bdo3LWHEbzamAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.vector_field(ch.velocity[:, :])\n", "np.max(ch.velocity[:, :])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Appendix: Strain rate tensor formula from Chapman Enskog\n", "\n", "The connection between $S_{ij}$ and $\\Pi_{ij}^{(neq)}$ can be seen using a Chapman Enskog expansion. Since *lbmpy* has a module that automatically does this expansions we can have a look at it:" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "from lbmpy.chapman_enskog import ChapmanEnskogAnalysis, CeMoment\n", "from lbmpy.chapman_enskog.chapman_enskog import remove_higher_order_u\n", "compressible_model = create_lb_method(stencil=\"D2Q9\", compressible=True)\n", "incompressible_model = create_lb_method(stencil=\"D2Q9\", compressible=False)\n", "\n", "ce_compressible = ChapmanEnskogAnalysis(compressible_model)\n", "ce_incompressible = ChapmanEnskogAnalysis(incompressible_model)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The Chapman Enskog analysis yields expresssions for the moment \n", "\n", "$\\Pi = \\Pi^{(eq)} + \\epsilon \\Pi^{(1)} + \\epsilon^2 \\Pi^{(2)} \\cdots$\n", "and the strain rate tensor is related to $\\Pi^{(1)}$. However the best approximation we have for $\\Pi^{(1)}$ is \n", "$\\Pi^{(neq)}$. For details, see the paper \"Shear stress in lattice Boltzmann simulations\" by Krüger, Varnik and Raabe from 2009.\n", "\n", "Lets look at the values of $\\Pi^{(1)}$ obtained from the Chapman enskog expansion:" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/latex": [ "$$\\frac{1}{\\omega_{0}} \\left(\\rho u_{0}^{2} {\\partial^{(1)}_{0} u_{1}} + 2 \\rho u_{0} u_{1} {\\partial^{(1)}_{0} u_{0}} + 2 \\rho u_{0} u_{1} {\\partial^{(1)}_{1} u_{1}} + \\rho u_{1}^{2} {\\partial^{(1)}_{1} u_{0}} - \\frac{\\rho}{3} {\\partial^{(1)}_{1} u_{0}} - \\frac{\\rho}{3} {\\partial^{(1)}_{0} u_{1}} + u_{0}^{2} u_{1} {\\partial^{(1)}_{0} \\rho} + u_{0} u_{1}^{2} {\\partial^{(1)}_{1} \\rho}\\right)$$" ], "text/plain": [ " 2 2 ρ⋅D(u_0) \n", "ρ⋅u₀ ⋅D(u_1) + 2⋅ρ⋅u₀⋅u₁⋅D(u_0) + 2⋅ρ⋅u₀⋅u₁⋅D(u_1) + ρ⋅u₁ ⋅D(u_0) - ──────── -\n", " 3 \n", "──────────────────────────────────────────────────────────────────────────────\n", " ω₀ \n", "\n", " ρ⋅D(u_1) 2 2 \n", " ──────── + u₀ ⋅u₁⋅D(rho) + u₀⋅u₁ ⋅D(rho)\n", " 3 \n", "─────────────────────────────────────────\n", " " ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Π_1_xy = CeMoment(\"\\\\Pi\", moment_tuple=(1,1), superscript=1)\n", "Π_1_xx = CeMoment(\"\\\\Pi\", moment_tuple=(2,0), superscript=1)\n", "Π_1_yy = CeMoment(\"\\\\Pi\", moment_tuple=(0,2), superscript=1)\n", "components = (Π_1_xx, Π_1_yy, Π_1_xy)\n", "\n", "Π_1_xy_val = ce_compressible.higher_order_moments[Π_1_xy]\n", "Π_1_xy_val" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This term has lots of higher order error terms in it. We assume that $u$ is small in lattice coordinates, so if we neglect all terms in $u$ that are quadratic or higher we get:" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/latex": [ "$$- \\frac{\\rho {\\partial^{(1)}_{1} u_{0}}}{3 \\omega_{0}} - \\frac{\\rho {\\partial^{(1)}_{0} u_{1}}}{3 \\omega_{0}}$$" ], "text/plain": [ " ρ⋅D(u_0) ρ⋅D(u_1)\n", "- ──────── - ────────\n", " 3⋅ω₀ 3⋅ω₀ " ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "remove_higher_order_u(Π_1_xy_val.expand())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Putting these steps together into a function, we can display them for the different cases quickly:" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "def get_Π_1(ce_analysis, component):\n", " val = ce_analysis.higher_order_moments[component]\n", " return remove_higher_order_u(val.expand())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Compressible case:" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/latex": [ "$$\\left ( - \\frac{2 \\rho {\\partial^{(1)}_{0} u_{0}}}{3 \\omega_{0}}, \\quad - \\frac{2 \\rho {\\partial^{(1)}_{1} u_{1}}}{3 \\omega_{0}}, \\quad - \\frac{\\rho {\\partial^{(1)}_{1} u_{0}}}{3 \\omega_{0}} - \\frac{\\rho {\\partial^{(1)}_{0} u_{1}}}{3 \\omega_{0}}\\right )$$" ], "text/plain": [ "⎛-2⋅ρ⋅D(u_0) -2⋅ρ⋅D(u_1) ρ⋅D(u_0) ρ⋅D(u_1)⎞\n", "⎜────────────, ────────────, - ──────── - ────────⎟\n", "⎝ 3⋅ω₀ 3⋅ω₀ 3⋅ω₀ 3⋅ω₀ ⎠" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tuple(get_Π_1(ce_compressible, Pi) for Pi in components) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Incompressible case:" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/latex": [ "$$\\left ( \\frac{2 u_{0} {\\partial^{(1)}_{0} \\rho}}{3 \\omega_{0}} - \\frac{2 {\\partial^{(1)}_{0} u_{0}}}{3 \\omega_{0}}, \\quad \\frac{2 u_{1} {\\partial^{(1)}_{1} \\rho}}{3 \\omega_{0}} - \\frac{2 {\\partial^{(1)}_{1} u_{1}}}{3 \\omega_{0}}, \\quad \\frac{u_{0} {\\partial^{(1)}_{1} \\rho}}{3 \\omega_{0}} + \\frac{u_{1} {\\partial^{(1)}_{0} \\rho}}{3 \\omega_{0}} - \\frac{{\\partial^{(1)}_{1} u_{0}}}{3 \\omega_{0}} - \\frac{{\\partial^{(1)}_{0} u_{1}}}{3 \\omega_{0}}\\right )$$" ], "text/plain": [ "⎛2⋅u₀⋅D(rho) 2⋅D(u_0) 2⋅u₁⋅D(rho) 2⋅D(u_1) u₀⋅D(rho) u₁⋅D(rho) D(u_0\n", "⎜─────────── - ────────, ─────────── - ────────, ───────── + ───────── - ─────\n", "⎝ 3⋅ω₀ 3⋅ω₀ 3⋅ω₀ 3⋅ω₀ 3⋅ω₀ 3⋅ω₀ 3⋅ω₀\n", "\n", ") D(u_1)⎞\n", "─ - ──────⎟\n", " 3⋅ω₀ ⎠" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tuple(get_Π_1(ce_incompressible, Pi) for Pi in components) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the incompressible case has some terms $\\partial \\rho$ which are zero, since $\\rho$ is assumed constant.\n", "\n", "Leaving out the error terms we finally obtain:\n", "\n", "\n", "$$\\Pi_{ij}^{(neq)} \\approx \\Pi_{ij}^{(1)} = -\\frac{2 \\rho_{(0)}}{3 \\omega_s} \\left( \\partial_i u_j + \\partial_j u_i \\right)$$" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.9" } }, "nbformat": 4, "nbformat_minor": 2 }