diff --git a/doc/notebooks/03_tutorial_lbm_formulation.ipynb b/doc/notebooks/03_tutorial_lbm_formulation.ipynb index 6bee62ef94e6f09c70d962bd14cc9022e2c0f357..c3263a4d02dcd91db01ee341fd5a2d11653f1372 100644 --- a/doc/notebooks/03_tutorial_lbm_formulation.ipynb +++ b/doc/notebooks/03_tutorial_lbm_formulation.ipynb @@ -140,7 +140,7 @@ " " ], "text/plain": [ - "<lbmpy.methods.momentbased.momentbasedmethod.MomentBasedLbMethod at 0x7f1be00e30d0>" + "<lbmpy.methods.momentbased.momentbasedmethod.MomentBasedLbMethod at 0x7f6ca1147f40>" ] }, "execution_count": 2, @@ -233,7 +233,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXMAAAF5CAYAAABtIcr0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAg5ElEQVR4nO3deXRlVYGo8W8nNc9AiqEoQApKVJRBWkGQQRww4mucQG2ccVZEQV83jd363lNpVKAFBBHHtsHXOLc2QW1BQUSeouKMIMhoUaSoEWpKst8fN7cquZWb3PGM328tlubmnGTrOvk4d599zwkxRiRJ+daT9gAkSe0z5pJUANNqXwgDgwF4DnAssBAIdfaNwDrgBuD7sb9vpFuDlBoRBganA/3AkcBcPHaVE2FgcBZwInA4MJvJj901wPWxv++6sd/YIebAPwGnNjGOlwFXj+4npeli4FlNbP8y4CvA+7szHGlqYWCwF7gCeHoTu50SBgY/F/v7zqu+MG6aJQwMLgZe2cJ4Tg4Dg3u0sJ/UEWFg8CCaC3nVyWFgcEmnxyM14Rk0F/Kq14aBwUXVL2rnzJ8ywWuNCMDBLewndcohbezrsas0HdTifr3Ak6tf1IZ7ZsvDaW9fqV0z2tjXY1dpauf423bcTzRnvqMzn78Xd/5mFr29la932nWIz/387jYGIHXfVy5exPVfWcj9d87gGS9Yz9mfWZH2kKSmfO+q+fzHhbuwasV0Fu4yxBn/uoKnHrdxok0biznAaR9YyUlvXtuxQUrdtsseQ5xyxipuvX4uWzbVWx0gZdNPr53Dl85dzPs+9SBPPmITDz84aa8bj7mUN8e/bAMAf/rVLFb91WNd+XLVx/o4+V2rOOioTQDsttfQZJs3frHzyo/1ccr++/Gu5+zNz38wu71RSpLqGh6Cu38/i7Wrenndofty6oHLuPBdu7LpsbrvMBuL+ev/+WE+f+td/Ptv7+KEU9fw4Tcs5b47pnds4JKk7Vat6GV4CG6+Zj4f+869XHL9Pdz9+1l88SO71NulsZg/5chNzF0QmTErcuLr1/H4Qzby04G5HRu4JGm7mbMrd0A88fWrWbznMDvtOsyL3vIIv/xh3e62eG+WEPFui5LUHQt3GWGnXYcIY2dVJr+GP3XM1z3Sw83XzGHzxsDQVrj2S/O5/dY5PP15j7Y5XKm7hrbC5o2BkWEYGWbbMSzlwbNeupbvfH4Rq1b0snZVD//56Z047PgN9Taf+gr/0NbAl87r46Nvm0lPT2SPfbfwD1c8wOOe6F+Fsu2LH96Fr31y+xzjTd9ZwEvfsYrTPrgqxVFJjXnt+1exbnUvb37GvkyfETmifz2vOfuReptPHfOddxvm0h/d29FBSkk47YOGW/k1fQacefFKzrx4ZSObez9zSSqA2pi3c1XTK6LKK49dpakjx19tzCf8zH+DHmtnIFKb2rkg77GrNHWku7Ux/wXQyoXNYeDnbQxIatctLe43DPyskwORmtTqsbsRuK36xbiYx/6+9cDHW/ihF8T+vjUtDkhqW+zvuwv4Ygu7XuixqzTF/r5fAV9rdjfgvNjft+2sPsQJPvwTBgaX0cQzQGN/351NDkTqijAweCBNPAPUY1dZEQYGDwaOYOpngK4Gfhj7++4Zt/9EMZck5YtLE1V4IYSvhRAuTnscUjd5Zq5CCyHsAdxN5ULnrjFGb0OhQvLMXEX3RirzjCPAKSmPReoaz8xVWCGEHmAFsHj0pd/HGA9McUhS1yR2Zh5C2DmE8N0QwmtDCLOS+r0qtecCY4+1x4UQDk5rMCqPEMK8EMI7QgjfTqp3SU6zbASOAi4HVoYQzgsh7Jng71f5vAeYP+brmcDpKY1FJRBC2C+EcCnwEHAh8FRgSxK/O7GYxxg3Ap+isn5yPnAGcOfov7mOCiH49HR1zOiFz+NqXu4FXhlC8ClZ6phQ8bwQwvXAb6lcp5lD5dP058UYR5IYR9IXQC+iciEKKmdJs4ATge8CtzsFow6qXvis5YVQdUR1KgW4l8onOI+j0rTq85ED8IXExpP0BdAQwgBwAhN/wmkDlT/Ay4CLYowPJDk2FcMEFz5reSFULQsh7AecBbyWSq8meqc3BHwuxviWpMaVxtLEc6l/h7t5jJ+C+Y5TMGpB7YXPWl4IVVMmmUqpN2W3FTg/qfFBOmfmAbgD2K+BzSOVWzw+ADwzxvhwN8emYgghXEvl3V89w8AXYoxvTGhIyrEQwv7A9cAiKiecjfhxjPHorg1qAomfmcfKvz0+QmVKZSqByk1ndsYPOKkBdS581vJCqJoRqNx0sNGQb6DSuESlFcgvN7jdCLAKODzG+FAXx6PiqHfhs5YXQtWQGOMdwNFU7rTZiHVUFnUkKpWYjy5TvJzJ119WQ35EjPGuRAamXBu98Hk6k8+XV80D3tvdEakoYoy3AccwddAfI8HliGOl9nH+EMLewO1M/Ic3AqwBnmbI1agQwvOA/wKmNbjLCHBojPHX3RuVimT0wvlPqX/CsBHYPcbY6Fl8xzR60HdcjPHe0SvDz2f8MsURKu8YdgY2pzE25dYfgKsneP3vRv/zqprXh6msEZYaNUT9kA8BX0oj5JDyjbZCCMdQOZOqXlioTq0cQ+UPE2Cp683VjhBCBB6KMe6e9liUXyGEA6ksS4TKx/R/CCwYs8km4OAY458SHhqQ/gqRG6ncwwDGz5H/ke3/9rvfe7hISlNNyHtjjL9kxzn0n6cVckg55mOWKW6l5mJnjHEzBl1SyiYI+QjscFF0MyksRxwr7TNzqCxT/DwTrFox6JLSVC/kVWOC/mlSWI44Vi4eThFCmEllPgqcQ1eTnDNXK6YKedZk4cx8Sp6hS0pS3kIOOYk5GHRJychjyCFHMQeDLqm78hpyyFnMwaBL6o48hxxyGHMw6JI6K+8hh5zGHAy6pM4oQsghxzEHgy6pPUUJOeQ85mDQJbWmSCGHAsQcDLqk5hQt5FCQmINBl9SYIoYcChRzMOiSJlfUkEPBYg4GXdLEihxyKGDMwaBLGq/oIYeCxhwMuqSKMoQcChxzMOhS2ZUl5FDwmINBl8qqTCGHEsQcDLpUNmULOZQk5mDQpbIoY8ihRDEHgy4VXVlDDiWLORh0qajKHHIoYczBoEtFU/aQQ0ljDgZdKgpDXlHamINBl/LOkG9X6piDQZfyypCPV/qYg0GX8saQ78iYjzLoUj4Y8okZ8zEMupRthrw+Y17DoEvZZMgnZ8wnYNClbDHkUzPmdRh0KRsMeWOM+SQMupQuQ944Yz4Fgy6lw5A3x5g3wKBLyTLkzTPmDTLoUjIMeWuMeRMMutRdhrx1xrxJBl3qDkPeHmPeAoMudZYhb58xb5FBlzrDkHeGMW+DQZfaY8g7x5i3yaBLrTHknWXMO8CgS80x5J1nzDvEoEuNMeTdYcw7yKBLkzPk3WPMO8ygSxMz5N1lzLvAoEvjGfLuM+ZdYtClCkOeDGPeRQZdZWfIk2PMu8ygq6wMebKMeQIMusrGkCfPmCfEoKssDHk6jHmCDLqKzpCnx5gnzKCrqAx5uox5Cgy6isaQp8+Yp8SgqygMeTYY8xQZdOWdIc8OY54yg668MuTZYswzwKArbwx59hjzjDDoygtDnk3GPEMMurLOkGeXMc8Yg66sMuTZZswzyKArawx59hnzjDLoygpDng/GPMMMutJmyPPDmGecQVdaDHm+GPMcMOhKmiHPH2OeEwZdSTHk+WTMc8Sgq9sMeX4Z85wx6OoWQ55vxjyHDLo6zZDnnzHPKYOuTjHkxWDMc8ygq12GvDiMec4ZdLXKkBeLMS8Ag65mGfLiMeYFYdDVKENeTMa8QAy6pmLIi8uYF4xBVz2GvNiMeQEZdNUy5MVnzAvKoKvKkJeDMS8wgy5DXh7GvOAMenkZ8nIx5iVg0MvHkJePMS8Jg14ehrycjHmJGPTiM+TlZcxLxqAXlyEvN2NeQga9eAy5jHlJGfTiMOQCY15qBj3/DLmqjHnJGfT8MuQay5jLoOeQIVctYy7AoOeJIddEjLm2MejZZ8hVjzHXOAY9uwy5JmPMtQODnj2GXFMx5pqQQc8OQ65GGHPVZdDTZ8jVKGOuSRn09BhyNcOYa0oGPXmGXM0y5mqIQU+OIVcrjLkaZtC7z5CrVcZcTTHo3WPI1Q5jrqYZ9M4z5GqXMVdLDHrnGHJ1gjFXywx6+wy5OsWYqy0GvXWGXJ1kzNU2g948Q65OM+bqCIPeOEOubjDm6hiDPjVDrm4x5uoog16fIVc3GXN1nEHfkSFXtxlzdYVB386QKwnGXF1j0A25kmPM1VVlDrohV5KMubqujEE35EqaMVciyhR0Q640GHMlpgxBN+RKizFXooocdEOuNBlzJa6IQTfkSpsxVyqKFHRDriww5kpNEYJuyJUVxlypynPQDbmyxJgrdXkMuiFX1hhzZUKegm7IlUXGXJmRh6AbcmWVMVemZDnohlxZZsyVOVkMuiFX1hlzZVKWgm7IlQfGXJmVhaAbcuWFMVempRl0Q648MebKvDSCbsiVN8ZcuZBk0A258siYKzeSCLohV14Zc+VKN4NuyJVn02pfCAOD04GXAM8EFgChzr4RWA/cBHw99vdt7tYgpbFijJtDCLOATVSCvjTG+EDdY/esS2DajIVhYPDfqj8CWA1cD3w79veNGHKlKQwMzqZy7B4JzKN+d0eAVcB/x/6+gbHf2CHmwEXA8U2M47mj27+piX2ktkwUdK55+Bzg2TtsfMBh0NM7HTi85jv9wFNDCFdjyJWSMDAYgE8BRzSx2wvDwOCBsb/v49UXxk2zhIHB5TQX8qpjwsDgk1rYT2rZuCmXJcvuZ2jrCU3/kC2bXsW8RYZcaTqU5kJe9ZowMDin+kXtnPmT2xjQU9rYd5wQQr23GNI424K+zxNgxT3LGNo60bvNiW3ZPIOV9y9j7wPAkKsJHW5Uq92dCSyvflEb8xktD6e9fQkVzwwhfBVYFULYt52fp/KIMW7mrE++Cmg86Fs2z2DlfY8D4NyvP8eQq1EhhMOA1SGEL4QQntqBH9mR7ja2muVDr9udVz5hP16yz/68/rB9+danF7bxy8cJIewcQng38BdggMpFgOnAzp36HSqBOfOG2HPZHcD4oK8d7OHSv4e3H9PLq5+yjO/++/xxId9zvz8xfUZMa9jKpd2BXuBVwI0hhD+GEN4UQpjfld92zx+n87d7LudDr9t9ss0ae0v6ijMfYe/HP8SMWZG7fzeDs1+yF8sP2cSTnt7SCpbRtyhHAe8GTqRyhXbOmE2GW/m5KrnQE9lz2R08cNdyVtyzjN33uYtPnLmYadPhgmuHWTv4Vz702qXstGtgybJKyJ3RU2uGqQR9DnAAcAHwidGL6RfFGH/Rsd/0yfftxrIDN021WWNn5vsftIUZsypnLyFEQoAH7mr6rUGds/BZjA+51Lpq0AHu+eMyfvb9+Zz0Zpg1Bw48YpiDjg789FpDrk6bB8xmx7P1eW391O9dNZ85C4Z5ypGPTbVp4x8auuD0XXnR0uW8/dh9WbR4iKNO3NDIbjVz4Q8AHwb2ZvK1lFLrqkF/6F7o6YXd9gYirLzvcey1P6y451FDri6pPVtfOTq3fmjTP2nDmh6+fH4fbz334UY2b/zK/5kXr+SMC1fy65tmc9uNs5k+c8p5xtGz8PdQmf+eS+Px7gGOCSEsbnh8Krf3XXYwRzx//Du83mkPM3tu5RgaGekFYGHfGjZumM3GDdu3Hfi3p4UXfKCtC/gqlSNorGXVs/JXASeHEO4Dzo8xXtHQb/ns/+rj+FPWsvveQ41s3njMAXqnwaHHbuQHVy/gG5ct4pQz1kyxx4VU5sObvW3AfCr/VpMac8t3Yfkh418bHoKNj45/be2qRcycDatWLN322s++/y/dH6BKrHq2vhy4HJg65rffOpPf/GQOl97wl0Z/SXMxrxoZgr/+pZEzmScA7wReN/p1o/NHa4FnxxhvbWF0KqEwMPhy4H+Pe3H+TjMZGd6Hh+6D3faqvPbXuzewzxO3sHT/wW3bnfuNt8X+vusSHK5yLIRwInAl0OiqvvVULpheRiXmU/vlDXMYfHA6rzloPwA2b+xhZATedvRMLrvxnol2mfqMedWKXr531XweWx8YHoKbr5nDT65ZwCHHPDrVrjHG22OMpwOLgTcDvwA2Alsb+h8ktWrL5hmsX70Phx4H/3kFbN0yzJ23wa3Xz+PZp0x57Ept2kLlVhM3AK8GFscY/zHGOGGId3DSm9fwmVvu4pLr/8Il1/+F57x8DYcc/Sgf/ur99XaZ+sw8BBj44iIuP2c34gjssscQr3v/So59ccN/EDHGTcCXgS+HEA6gtbN1qTFj15GfedGdnPfW/XnPCb3MWzjEqe+bxpz5ezG09S6mTW9oLlJqwriz8IbjXWv23MjsuduXaM+aO8L0mSPsvFvdZdtTx3zn3Ya58Lv3tTSgCcQYbwdODyG8D3gx8F7giaNjmd6p36OSqv1AUAjwjvOgp3eYJfveRRwJ49ahG3S1bwuVa4M/A84H/ivG2Nnj6rQPrppqk9TuZx5j3BRj/HKM8TAqN5q5HNgw+s+sSXeWJjJRyGuNXYfe7L1cpO1mUTkLX0NlscYTYozHxBi/1fGQN6g25u18rLnlfSeYW/8WlQ8WSY359U17Thnyqtqg/+6WvgRGqOL4DfBtts+Fn93ydEpFR7pbG/N2Lgw19CGiyYw5W395jHHKtxUSjD4h6KuXnA80/snOsUG/4p/+I4mHRKsYYoz3xhhP7uBZeDvd3bZvbcxvoTL306wI3NzGgKSWbHtC0O23wp77/aGpT3aGnsiSZb/irt9Blx8SLU3iJy3uNwjcXv1iXMxjf98g8NEWfugFsb/voRYHJLVk3KPe1q/uJYSPNfkjhunp+QBDW7r6kGhpMrG/717gkiZ32wr8c+zv23byHWLccbomDAwuYftzFCezDrgp9vc90ORApLbUe2bn6LF7FGM/0PGJ91zBtOnreMdHzxrzIx4Bbhg9gSGEMJPKumCApTFGj2klKgwM7s32Z4DWE6mckd8Q+/tWj9t/ophLWdbsw5dDCBF4KMY46f2gDbryLLWliVIrmg15M8Y9U9QpF+WMMVdudDPkVQZdeWXMlQtJhLzKoCuPjLkyL8mQVxl05Y0xV6alEfIqg648MebKrDRDXmXQlRfGXJmUhZBXGXTlgTFX5mQp5FUGXVlnzJUpWQx5lUFXlhlzZUaWQ15l0JVVxlyZkIeQVxl0ZZExV+ryFPIqg66sMeZKVR5DXmXQlSXGXKnJc8irDLqywpgrFUUIeZVBVxYYcyWuSCGvMuhKmzFXoooY8iqDrjQZcyWmyCGvMuhKizFXIsoQ8iqDrjQYc3VdmUJeZdCVNGOuripjyKsMupJkzNU1ZQ55lUFXUoy5usKQb2fQlQRjro4z5Dsy6Oo2Y66OMuT1GXR1kzFXxxjyqRl0dYsxV0cY8sYZdHWDMVfbDHnzDLo6zZirLYa8dQZdnWTM1TJD3j6Drk4x5mqJIe8cg65OMOZqmiHvPIOudhlzNcWQd49BVzuMuRpmyLvPoKtVxlwNMeTJMehqhTHXlAx58gy6mmXMNSlDnh6DrmYYc9VlyNNn0NUoY64JGfLsMOhqhDHXDgx59hh0TcWYaxxDnl0GXZMx5trGkGefQVc9xlyAIc8Tg66JGHMZ8hwy6KplzEvOkOeXQddYxrzEDHn+GXRVGfOSMuTFYdAFxryUDHnxGHQZ85Ix5MVl0MvNmJeIIS8+g15exrwkDHl5GPRyMuYlYMjLx6CXjzEvOENeXga9XIx5gRlyGfTyMOYFZchVZdDLwZgXkCFXLYNefMa8YAy56jHoxWbMC8SQayoGvbiMeUEYcjXKoBeTMS8AQ65mGfTiMeY5Z8jVKoNeLMY8xwy52mXQi8OY55QhV6cY9GIw5jlkyNVpBj3/jHnOGHJ1i0HPN2OeI4Zc3WbQ88uY54QhV1IMej4Z8xww5EqaQc8fY55xhlxpMej5YswzzJArbQY9P4x5RhlyZYVBzwdjnkGGXFlj0LPPmGeMIVdWGfRsM+YZYsiVdQY9u4x5Rhhy5YVBzyZjngGGXHlj0LPHmKfMkCuvDHq2GPMUGXLlnUHPDmOeEkOuojDo2WDMU2DIVTQGPX3GPGGGXEVl0NNlzBNkyFV0Bj09xjwhhlxlYdDTYcwTYMhVNgY9eca8ywy5ysqgJ8uYd5EhV9kZ9OQY8y4x5FKFQU+GMe8CQy6NZ9C7z5h3mCGXJmbQu8uYd5AhlyZn0LvHmHeIIZcaY9C7w5h3gCGXmmPQO8+Yt8mQS60x6J1lzNtgyKX2GPTOMeYtMuRSZxj0zjDmLTDkUmcZ9PYZ8yYZcqk7DHp7jHkTDLnUXQa9dca8QYZcSoZBb40xb4Ahl5Jl0JtnzKdgyKV0GPTmGPNJGHIpXQa9cca8DkMuZYNBb4wxn4Ahl7LFoE/NmNcw5FI2GfTJGfMxDLmUbQa9PmM+ypBL+WDQJ2bMMeRS3hj0HZU+5oZcyieDPl6pY27IpXwz6NuVNuaGXCoGg15RypgbcqlYDHoJY27IpWIqe9BLFXNDLhVbmYNempgbcqkcyhr0UsTckEvlUsagFz7mhlwqp7IFvdAxN+RSuZUp6IWNuSGXBOUJeiFjbsgljVWGoBcu5oZc0kSKHvRCxdyQS5pMkYNemJgbckmNKGrQCxFzQy6pGUUMeu5jbsgltaJoQc91zA25pHYUKei5jbkhl9QJRQl6LmNuyCV1UhGCnruYG3JJ3ZD3oOcq5oZcUjflOei5ibkhl5SEvAY9FzE35JKSlMegpx7zEMIeIYT7QggvrvN9Qy4pcY0GPYTwlhDCn0MI85Ib3Y5SjznwTmA34MoQwovGfsOQS0rTVEEPIbwFuABYArw64eGNE2KM6f3yEGYCK4EFoy9tBP4uxvhNQ65OCSFE4KEY4+5pj0X5NNqqTaNfLo0xPjAm5HNGX78XeFxMKappn5mfXDOG2cBVIYT/iSGXlBETnKGfw/iQA+wMHJ/02KpSOzMPIQTgD8ABk2xmyNWwEMKRwLeBUPOtnUb/c3XN60PA0THG27s9NhVDzRn6RK6LMT47qfGMleaZ+eHA0km+vxH424TGomJYC8yjEu+x/1TVvr4IWJPoCJV3rwMem+T7R4YQ9k1oLOOkGfN/YPxblFrVKZcXJTMc5V2M8XfAH5vY5b9jjA91azwqlgnmyCfSC7wnmRGNl0rMQwhLgBPY8e1wLYOuZn0c2NDAdhuo/GFKU2ow5ADTgTeEEOZ2f1TjpXVm/g6mDnnVbOBrIYT9ujgeFcdXaezYehS4rstjUQGEEI4ALmPqkI+V+DLFxGM+egHhncDMBjbfAKyncrb1YDfHpWKIMW4EvkTl4mY9G4GLvLiuBt0OfIrKXPmjDWw/Fzh7dJFHYtI4M69djlgrUvk/7A7gdGDXGOPfj/6RSo24BNg6yfd7gM8mNBblXIxxdYzx7cDuwN8DDzD1VF7iyxQTXZo4xXLEzVRC/gPgXOAnaS2+V/6FEG4DDqrz7YEY4wuSHI+KI4TQAzwH+Efg6cA0KnPltRJdppj0mflEyxGrUymfAJbHGF8YY7zJkKtN9S6EeuFTbYkxjsQYvxdjPI7KCcNnmHgKJtFlikmfmX+T7WvHH6MyD/4R4P/GGCdbiC81JYQwG3iYyvzlWA8BS5wvVyeFEOYDr6Wy5Hohlc87bAU+FWN8VxJjSOzMPISwO/A/gGHgGipLEw+IMX7BkKvT6lwI9cKnuiLGuD7GeAmwN/BS4EdU1py/MYTQzCqYliV2Zh5C6AXeBHwnxnh/Ir9UpTZ6s7afUVneCpXrMvv4QSElIYSwHDga+HwS08ap3jVR6raaC6Fe+FRhpX3XRKnbqhdCvfCpQvPMXIU2eiF0kMqKKS98qrCMuSQVgNMsklQA02pfCAODs4FTgWey/XFu9awHfgxcGfv7JrvHr9R1YWBwPpVj90gq63wnswa4Ebgq9vdt7vLQpEmFgcHFwKuAv2H76qt61jDBsbtDzKncHewZTYzjCODY0YFIqQgDg9X7rRzcxG5HUflU8lu7MiipAWFgcB5wJbBPE7sdRaW9b6m+MG6aJQwMPonmQl71tDAwWO8+GFIS/obmQl71rDAwmMqTYaRRz6W5kFcdFwYGl1W/qJ0zf0IbA3piG/tK7Wrn+PPYVZo6cuzWxnyiO381akYb+0rt8thVXrVz7G7bd6I58/FevPfycV9v2Rx47ivW8O5PrGxjAFL3bdkUuPBdu/Lbm+eyYV0vuy7dwmvOHuSoFzbygAEpXQ/cNY2Lz9qNO2+bzbTpkcNPWM/p569k2sTtnzrm37j3jm3//bH1gVMP3J9jXrS+YwOWumVoCPqWDPEv37qXPfYZ4qbvzOXj71jC4550N3sum+xJRFL6Lj5rNxbuMsyVv/sz61f3cPZL9uLrly7ilDPWTLR5c+vMr//qfObvPMShx/rUH2XfnHmR0z64ij2XDdHTC0ef9CiLl2zh9ltnpT00aUoP3z+dY05az8zZkb4lwxxyzKPce3vdx202F/PrvrKAY1+0juBnjZRDq/7ay4p7Z7Dvk7akPRRpSi98w2p+9I35bHw08NB90/jVDXM57Nl1pwgbr/KDd0/jj7fO4YRXr+vIQKUkbd0C575pD445aR37HmjMlX0HH72R++6Yycn7Lef1T13Gsidv4rgX1332aOMx/96VC3j8IRtZut9kD8qVsmdkGD5y2h5Mmx4541+9l7myb2QYPvDKpRzx/PV8/S93cNXv72TD2h4uO3txvV0aj/mPvrGQ409e25GBSkmJI/DRt+7O2sFpfPDKB5nuKkTlwNpVvaxaMY2XvH0NM2ZFFi0e4bmvWMcvf1T7GMRtGov5bTfOYvXKaRx/iqtYlC/nn74b9/95Bh+6+n5mzfEWocqHnXYdpm/PrXzz8kUMbYV1j/Twg6sXsPfj695HaOqliQDf//JCnvac9cxd4B+D8uPBu6dx3dULmTYjcuqB+297/S0fXsHzX+2JibLtnM8+yOXn7Mq3Pr0zPT2RJx3+GG8/r+7nexqL+XsvdZ5R+bNk3yGuefhPaQ9DaskBh23mgmvva3Rz1xhKUgHUxrydaRSnYJRXHrtKU0e6WxvzduYRXX+uNLVz/Dl/rjS1c/xt27c25jcDwy38wBHgJ20MSGrXj1vcbwtwSycHIjXpxhb32wL8v+oX42Ie+/vWAB+guaAPA/8n9vcNtjggqW2xv+9B4DyaO3aHgHNif593UVRqYn/fz4EvNrnbEPD+2N+37ROhIcYdp2vCwOAiKo8kWgCEemOgcor/09jft7rJgUhdEQYGd6Fy7M5l8mN3LXBz7O9zelCZEAYGl1B5YtYsWjh2J4y5JClfXJooSQVgzCWpAP4/Vte8hUm3Po0AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXMAAAF5CAYAAABtIcr0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAg5ElEQVR4nO3deXRlVYGo8W8nNc9AiqEoQApKVJRBWkGQQRww4mucQG2ccVZEQV83jd363lNpVKAFBBHHtsHXOLc2QW1BQUSeouKMIMhoUaSoEWpKst8fN7cquZWb3PGM328tlubmnGTrOvk4d599zwkxRiRJ+daT9gAkSe0z5pJUANNqXwgDgwF4DnAssBAIdfaNwDrgBuD7sb9vpFuDlBoRBganA/3AkcBcPHaVE2FgcBZwInA4MJvJj901wPWxv++6sd/YIebAPwGnNjGOlwFXj+4npeli4FlNbP8y4CvA+7szHGlqYWCwF7gCeHoTu50SBgY/F/v7zqu+MG6aJQwMLgZe2cJ4Tg4Dg3u0sJ/UEWFg8CCaC3nVyWFgcEmnxyM14Rk0F/Kq14aBwUXVL2rnzJ8ywWuNCMDBLewndcohbezrsas0HdTifr3Ak6tf1IZ7ZsvDaW9fqV0z2tjXY1dpauf423bcTzRnvqMzn78Xd/5mFr29la932nWIz/387jYGIHXfVy5exPVfWcj9d87gGS9Yz9mfWZH2kKSmfO+q+fzHhbuwasV0Fu4yxBn/uoKnHrdxok0biznAaR9YyUlvXtuxQUrdtsseQ5xyxipuvX4uWzbVWx0gZdNPr53Dl85dzPs+9SBPPmITDz84aa8bj7mUN8e/bAMAf/rVLFb91WNd+XLVx/o4+V2rOOioTQDsttfQZJs3frHzyo/1ccr++/Gu5+zNz38wu71RSpLqGh6Cu38/i7Wrenndofty6oHLuPBdu7LpsbrvMBuL+ev/+WE+f+td/Ptv7+KEU9fw4Tcs5b47pnds4JKk7Vat6GV4CG6+Zj4f+869XHL9Pdz9+1l88SO71NulsZg/5chNzF0QmTErcuLr1/H4Qzby04G5HRu4JGm7mbMrd0A88fWrWbznMDvtOsyL3vIIv/xh3e62eG+WEPFui5LUHQt3GWGnXYcIY2dVJr+GP3XM1z3Sw83XzGHzxsDQVrj2S/O5/dY5PP15j7Y5XKm7hrbC5o2BkWEYGWbbMSzlwbNeupbvfH4Rq1b0snZVD//56Z047PgN9Taf+gr/0NbAl87r46Nvm0lPT2SPfbfwD1c8wOOe6F+Fsu2LH96Fr31y+xzjTd9ZwEvfsYrTPrgqxVFJjXnt+1exbnUvb37GvkyfETmifz2vOfuReptPHfOddxvm0h/d29FBSkk47YOGW/k1fQacefFKzrx4ZSObez9zSSqA2pi3c1XTK6LKK49dpakjx19tzCf8zH+DHmtnIFKb2rkg77GrNHWku7Ux/wXQyoXNYeDnbQxIatctLe43DPyskwORmtTqsbsRuK36xbiYx/6+9cDHW/ihF8T+vjUtDkhqW+zvuwv4Ygu7XuixqzTF/r5fAV9rdjfgvNjft+2sPsQJPvwTBgaX0cQzQGN/351NDkTqijAweCBNPAPUY1dZEQYGDwaOYOpngK4Gfhj7++4Zt/9EMZck5YtLE1V4IYSvhRAuTnscUjd5Zq5CCyHsAdxN5ULnrjFGb0OhQvLMXEX3RirzjCPAKSmPReoaz8xVWCGEHmAFsHj0pd/HGA9McUhS1yR2Zh5C2DmE8N0QwmtDCLOS+r0qtecCY4+1x4UQDk5rMCqPEMK8EMI7QgjfTqp3SU6zbASOAi4HVoYQzgsh7Jng71f5vAeYP+brmcDpKY1FJRBC2C+EcCnwEHAh8FRgSxK/O7GYxxg3Ap+isn5yPnAGcOfov7mOCiH49HR1zOiFz+NqXu4FXhlC8ClZ6phQ8bwQwvXAb6lcp5lD5dP058UYR5IYR9IXQC+iciEKKmdJs4ATge8CtzsFow6qXvis5YVQdUR1KgW4l8onOI+j0rTq85ED8IXExpP0BdAQwgBwAhN/wmkDlT/Ay4CLYowPJDk2FcMEFz5reSFULQsh7AecBbyWSq8meqc3BHwuxviWpMaVxtLEc6l/h7t5jJ+C+Y5TMGpB7YXPWl4IVVMmmUqpN2W3FTg/qfFBOmfmAbgD2K+BzSOVWzw+ADwzxvhwN8emYgghXEvl3V89w8AXYoxvTGhIyrEQwv7A9cAiKiecjfhxjPHorg1qAomfmcfKvz0+QmVKZSqByk1ndsYPOKkBdS581vJCqJoRqNx0sNGQb6DSuESlFcgvN7jdCLAKODzG+FAXx6PiqHfhs5YXQtWQGOMdwNFU7rTZiHVUFnUkKpWYjy5TvJzJ119WQ35EjPGuRAamXBu98Hk6k8+XV80D3tvdEakoYoy3AccwddAfI8HliGOl9nH+EMLewO1M/Ic3AqwBnmbI1agQwvOA/wKmNbjLCHBojPHX3RuVimT0wvlPqX/CsBHYPcbY6Fl8xzR60HdcjPHe0SvDz2f8MsURKu8YdgY2pzE25dYfgKsneP3vRv/zqprXh6msEZYaNUT9kA8BX0oj5JDyjbZCCMdQOZOqXlioTq0cQ+UPE2Cp683VjhBCBB6KMe6e9liUXyGEA6ksS4TKx/R/CCwYs8km4OAY458SHhqQ/gqRG6ncwwDGz5H/ke3/9rvfe7hISlNNyHtjjL9kxzn0n6cVckg55mOWKW6l5mJnjHEzBl1SyiYI+QjscFF0MyksRxwr7TNzqCxT/DwTrFox6JLSVC/kVWOC/mlSWI44Vi4eThFCmEllPgqcQ1eTnDNXK6YKedZk4cx8Sp6hS0pS3kIOOYk5GHRJychjyCFHMQeDLqm78hpyyFnMwaBL6o48hxxyGHMw6JI6K+8hh5zGHAy6pM4oQsghxzEHgy6pPUUJOeQ85mDQJbWmSCGHAsQcDLqk5hQt5FCQmINBl9SYIoYcChRzMOiSJlfUkEPBYg4GXdLEihxyKGDMwaBLGq/oIYeCxhwMuqSKMoQcChxzMOhS2ZUl5FDwmINBl8qqTCGHEsQcDLpUNmULOZQk5mDQpbIoY8ihRDEHgy4VXVlDDiWLORh0qajKHHIoYczBoEtFU/aQQ0ljDgZdKgpDXlHamINBl/LOkG9X6piDQZfyypCPV/qYg0GX8saQ78iYjzLoUj4Y8okZ8zEMupRthrw+Y17DoEvZZMgnZ8wnYNClbDHkUzPmdRh0KRsMeWOM+SQMupQuQ944Yz4Fgy6lw5A3x5g3wKBLyTLkzTPmDTLoUjIMeWuMeRMMutRdhrx1xrxJBl3qDkPeHmPeAoMudZYhb58xb5FBlzrDkHeGMW+DQZfaY8g7x5i3yaBLrTHknWXMO8CgS80x5J1nzDvEoEuNMeTdYcw7yKBLkzPk3WPMO8ygSxMz5N1lzLvAoEvjGfLuM+ZdYtClCkOeDGPeRQZdZWfIk2PMu8ygq6wMebKMeQIMusrGkCfPmCfEoKssDHk6jHmCDLqKzpCnx5gnzKCrqAx5uox5Cgy6isaQp8+Yp8SgqygMeTYY8xQZdOWdIc8OY54yg668MuTZYswzwKArbwx59hjzjDDoygtDnk3GPEMMurLOkGeXMc8Yg66sMuTZZswzyKArawx59hnzjDLoygpDng/GPMMMutJmyPPDmGecQVdaDHm+GPMcMOhKmiHPH2OeEwZdSTHk+WTMc8Sgq9sMeX4Z85wx6OoWQ55vxjyHDLo6zZDnnzHPKYOuTjHkxWDMc8ygq12GvDiMec4ZdLXKkBeLMS8Ag65mGfLiMeYFYdDVKENeTMa8QAy6pmLIi8uYF4xBVz2GvNiMeQEZdNUy5MVnzAvKoKvKkJeDMS8wgy5DXh7GvOAMenkZ8nIx5iVg0MvHkJePMS8Jg14ehrycjHmJGPTiM+TlZcxLxqAXlyEvN2NeQga9eAy5jHlJGfTiMOQCY15qBj3/DLmqjHnJGfT8MuQay5jLoOeQIVctYy7AoOeJIddEjLm2MejZZ8hVjzHXOAY9uwy5JmPMtQODnj2GXFMx5pqQQc8OQ65GGHPVZdDTZ8jVKGOuSRn09BhyNcOYa0oGPXmGXM0y5mqIQU+OIVcrjLkaZtC7z5CrVcZcTTHo3WPI1Q5jrqYZ9M4z5GqXMVdLDHrnGHJ1gjFXywx6+wy5OsWYqy0GvXWGXJ1kzNU2g948Q65OM+bqCIPeOEOubjDm6hiDPjVDrm4x5uoog16fIVc3GXN1nEHfkSFXtxlzdYVB386QKwnGXF1j0A25kmPM1VVlDrohV5KMubqujEE35EqaMVciyhR0Q640GHMlpgxBN+RKizFXooocdEOuNBlzJa6IQTfkSpsxVyqKFHRDriww5kpNEYJuyJUVxlypynPQDbmyxJgrdXkMuiFX1hhzZUKegm7IlUXGXJmRh6AbcmWVMVemZDnohlxZZsyVOVkMuiFX1hlzZVKWgm7IlQfGXJmVhaAbcuWFMVempRl0Q648MebKvDSCbsiVN8ZcuZBk0A258siYKzeSCLohV14Zc+VKN4NuyJVn02pfCAOD04GXAM8EFgChzr4RWA/cBHw99vdt7tYgpbFijJtDCLOATVSCvjTG+EDdY/esS2DajIVhYPDfqj8CWA1cD3w79veNGHKlKQwMzqZy7B4JzKN+d0eAVcB/x/6+gbHf2CHmwEXA8U2M47mj27+piX2ktkwUdK55+Bzg2TtsfMBh0NM7HTi85jv9wFNDCFdjyJWSMDAYgE8BRzSx2wvDwOCBsb/v49UXxk2zhIHB5TQX8qpjwsDgk1rYT2rZuCmXJcvuZ2jrCU3/kC2bXsW8RYZcaTqU5kJe9ZowMDin+kXtnPmT2xjQU9rYd5wQQr23GNI424K+zxNgxT3LGNo60bvNiW3ZPIOV9y9j7wPAkKsJHW5Uq92dCSyvflEb8xktD6e9fQkVzwwhfBVYFULYt52fp/KIMW7mrE++Cmg86Fs2z2DlfY8D4NyvP8eQq1EhhMOA1SGEL4QQntqBH9mR7ja2muVDr9udVz5hP16yz/68/rB9+danF7bxy8cJIewcQng38BdggMpFgOnAzp36HSqBOfOG2HPZHcD4oK8d7OHSv4e3H9PLq5+yjO/++/xxId9zvz8xfUZMa9jKpd2BXuBVwI0hhD+GEN4UQpjfld92zx+n87d7LudDr9t9ss0ae0v6ijMfYe/HP8SMWZG7fzeDs1+yF8sP2cSTnt7SCpbRtyhHAe8GTqRyhXbOmE2GW/m5KrnQE9lz2R08cNdyVtyzjN33uYtPnLmYadPhgmuHWTv4Vz702qXstGtgybJKyJ3RU2uGqQR9DnAAcAHwidGL6RfFGH/Rsd/0yfftxrIDN021WWNn5vsftIUZsypnLyFEQoAH7mr6rUGds/BZjA+51Lpq0AHu+eMyfvb9+Zz0Zpg1Bw48YpiDjg789FpDrk6bB8xmx7P1eW391O9dNZ85C4Z5ypGPTbVp4x8auuD0XXnR0uW8/dh9WbR4iKNO3NDIbjVz4Q8AHwb2ZvK1lFLrqkF/6F7o6YXd9gYirLzvcey1P6y451FDri6pPVtfOTq3fmjTP2nDmh6+fH4fbz334UY2b/zK/5kXr+SMC1fy65tmc9uNs5k+c8p5xtGz8PdQmf+eS+Px7gGOCSEsbnh8Krf3XXYwRzx//Du83mkPM3tu5RgaGekFYGHfGjZumM3GDdu3Hfi3p4UXfKCtC/gqlSNorGXVs/JXASeHEO4Dzo8xXtHQb/ns/+rj+FPWsvveQ41s3njMAXqnwaHHbuQHVy/gG5ct4pQz1kyxx4VU5sObvW3AfCr/VpMac8t3Yfkh418bHoKNj45/be2qRcycDatWLN322s++/y/dH6BKrHq2vhy4HJg65rffOpPf/GQOl97wl0Z/SXMxrxoZgr/+pZEzmScA7wReN/p1o/NHa4FnxxhvbWF0KqEwMPhy4H+Pe3H+TjMZGd6Hh+6D3faqvPbXuzewzxO3sHT/wW3bnfuNt8X+vusSHK5yLIRwInAl0OiqvvVULpheRiXmU/vlDXMYfHA6rzloPwA2b+xhZATedvRMLrvxnol2mfqMedWKXr531XweWx8YHoKbr5nDT65ZwCHHPDrVrjHG22OMpwOLgTcDvwA2Alsb+h8ktWrL5hmsX70Phx4H/3kFbN0yzJ23wa3Xz+PZp0x57Ept2kLlVhM3AK8GFscY/zHGOGGId3DSm9fwmVvu4pLr/8Il1/+F57x8DYcc/Sgf/ur99XaZ+sw8BBj44iIuP2c34gjssscQr3v/So59ccN/EDHGTcCXgS+HEA6gtbN1qTFj15GfedGdnPfW/XnPCb3MWzjEqe+bxpz5ezG09S6mTW9oLlJqwriz8IbjXWv23MjsuduXaM+aO8L0mSPsvFvdZdtTx3zn3Ya58Lv3tTSgCcQYbwdODyG8D3gx8F7giaNjmd6p36OSqv1AUAjwjvOgp3eYJfveRRwJ49ahG3S1bwuVa4M/A84H/ivG2Nnj6rQPrppqk9TuZx5j3BRj/HKM8TAqN5q5HNgw+s+sSXeWJjJRyGuNXYfe7L1cpO1mUTkLX0NlscYTYozHxBi/1fGQN6g25u18rLnlfSeYW/8WlQ8WSY359U17Thnyqtqg/+6WvgRGqOL4DfBtts+Fn93ydEpFR7pbG/N2Lgw19CGiyYw5W395jHHKtxUSjD4h6KuXnA80/snOsUG/4p/+I4mHRKsYYoz3xhhP7uBZeDvd3bZvbcxvoTL306wI3NzGgKSWbHtC0O23wp77/aGpT3aGnsiSZb/irt9Blx8SLU3iJy3uNwjcXv1iXMxjf98g8NEWfugFsb/voRYHJLVk3KPe1q/uJYSPNfkjhunp+QBDW7r6kGhpMrG/717gkiZ32wr8c+zv23byHWLccbomDAwuYftzFCezDrgp9vc90ORApLbUe2bn6LF7FGM/0PGJ91zBtOnreMdHzxrzIx4Bbhg9gSGEMJPKumCApTFGj2klKgwM7s32Z4DWE6mckd8Q+/tWj9t/ophLWdbsw5dDCBF4KMY46f2gDbryLLWliVIrmg15M8Y9U9QpF+WMMVdudDPkVQZdeWXMlQtJhLzKoCuPjLkyL8mQVxl05Y0xV6alEfIqg648MebKrDRDXmXQlRfGXJmUhZBXGXTlgTFX5mQp5FUGXVlnzJUpWQx5lUFXlhlzZUaWQ15l0JVVxlyZkIeQVxl0ZZExV+ryFPIqg66sMeZKVR5DXmXQlSXGXKnJc8irDLqywpgrFUUIeZVBVxYYcyWuSCGvMuhKmzFXoooY8iqDrjQZcyWmyCGvMuhKizFXIsoQ8iqDrjQYc3VdmUJeZdCVNGOuripjyKsMupJkzNU1ZQ55lUFXUoy5usKQb2fQlQRjro4z5Dsy6Oo2Y66OMuT1GXR1kzFXxxjyqRl0dYsxV0cY8sYZdHWDMVfbDHnzDLo6zZirLYa8dQZdnWTM1TJD3j6Drk4x5mqJIe8cg65OMOZqmiHvPIOudhlzNcWQd49BVzuMuRpmyLvPoKtVxlwNMeTJMehqhTHXlAx58gy6mmXMNSlDnh6DrmYYc9VlyNNn0NUoY64JGfLsMOhqhDHXDgx59hh0TcWYaxxDnl0GXZMx5trGkGefQVc9xlyAIc8Tg66JGHMZ8hwy6KplzEvOkOeXQddYxrzEDHn+GXRVGfOSMuTFYdAFxryUDHnxGHQZ85Ix5MVl0MvNmJeIIS8+g15exrwkDHl5GPRyMuYlYMjLx6CXjzEvOENeXga9XIx5gRlyGfTyMOYFZchVZdDLwZgXkCFXLYNefMa8YAy56jHoxWbMC8SQayoGvbiMeUEYcjXKoBeTMS8AQ65mGfTiMeY5Z8jVKoNeLMY8xwy52mXQi8OY55QhV6cY9GIw5jlkyNVpBj3/jHnOGHJ1i0HPN2OeI4Zc3WbQ88uY54QhV1IMej4Z8xww5EqaQc8fY55xhlxpMej5YswzzJArbQY9P4x5RhlyZYVBzwdjnkGGXFlj0LPPmGeMIVdWGfRsM+YZYsiVdQY9u4x5Rhhy5YVBzyZjngGGXHlj0LPHmKfMkCuvDHq2GPMUGXLlnUHPDmOeEkOuojDo2WDMU2DIVTQGPX3GPGGGXEVl0NNlzBNkyFV0Bj09xjwhhlxlYdDTYcwTYMhVNgY9eca8ywy5ysqgJ8uYd5EhV9kZ9OQY8y4x5FKFQU+GMe8CQy6NZ9C7z5h3mCGXJmbQu8uYd5AhlyZn0LvHmHeIIZcaY9C7w5h3gCGXmmPQO8+Yt8mQS60x6J1lzNtgyKX2GPTOMeYtMuRSZxj0zjDmLTDkUmcZ9PYZ8yYZcqk7DHp7jHkTDLnUXQa9dca8QYZcSoZBb40xb4Ahl5Jl0JtnzKdgyKV0GPTmGPNJGHIpXQa9cca8DkMuZYNBb4wxn4Ahl7LFoE/NmNcw5FI2GfTJGfMxDLmUbQa9PmM+ypBL+WDQJ2bMMeRS3hj0HZU+5oZcyieDPl6pY27IpXwz6NuVNuaGXCoGg15RypgbcqlYDHoJY27IpWIqe9BLFXNDLhVbmYNempgbcqkcyhr0UsTckEvlUsagFz7mhlwqp7IFvdAxN+RSuZUp6IWNuSGXBOUJeiFjbsgljVWGoBcu5oZc0kSKHvRCxdyQS5pMkYNemJgbckmNKGrQCxFzQy6pGUUMeu5jbsgltaJoQc91zA25pHYUKei5jbkhl9QJRQl6LmNuyCV1UhGCnruYG3JJ3ZD3oOcq5oZcUjflOei5ibkhl5SEvAY9FzE35JKSlMegpx7zEMIeIYT7QggvrvN9Qy4pcY0GPYTwlhDCn0MI85Ib3Y5SjznwTmA34MoQwovGfsOQS0rTVEEPIbwFuABYArw64eGNE2KM6f3yEGYCK4EFoy9tBP4uxvhNQ65OCSFE4KEY4+5pj0X5NNqqTaNfLo0xPjAm5HNGX78XeFxMKappn5mfXDOG2cBVIYT/iSGXlBETnKGfw/iQA+wMHJ/02KpSOzMPIQTgD8ABk2xmyNWwEMKRwLeBUPOtnUb/c3XN60PA0THG27s9NhVDzRn6RK6LMT47qfGMleaZ+eHA0km+vxH424TGomJYC8yjEu+x/1TVvr4IWJPoCJV3rwMem+T7R4YQ9k1oLOOkGfN/YPxblFrVKZcXJTMc5V2M8XfAH5vY5b9jjA91azwqlgnmyCfSC7wnmRGNl0rMQwhLgBPY8e1wLYOuZn0c2NDAdhuo/GFKU2ow5ADTgTeEEOZ2f1TjpXVm/g6mDnnVbOBrIYT9ujgeFcdXaezYehS4rstjUQGEEI4ALmPqkI+V+DLFxGM+egHhncDMBjbfAKyncrb1YDfHpWKIMW4EvkTl4mY9G4GLvLiuBt0OfIrKXPmjDWw/Fzh7dJFHYtI4M69djlgrUvk/7A7gdGDXGOPfj/6RSo24BNg6yfd7gM8mNBblXIxxdYzx7cDuwN8DDzD1VF7iyxQTXZo4xXLEzVRC/gPgXOAnaS2+V/6FEG4DDqrz7YEY4wuSHI+KI4TQAzwH+Efg6cA0KnPltRJdppj0mflEyxGrUymfAJbHGF8YY7zJkKtN9S6EeuFTbYkxjsQYvxdjPI7KCcNnmHgKJtFlikmfmX+T7WvHH6MyD/4R4P/GGCdbiC81JYQwG3iYyvzlWA8BS5wvVyeFEOYDr6Wy5Hohlc87bAU+FWN8VxJjSOzMPISwO/A/gGHgGipLEw+IMX7BkKvT6lwI9cKnuiLGuD7GeAmwN/BS4EdU1py/MYTQzCqYliV2Zh5C6AXeBHwnxnh/Ir9UpTZ6s7afUVneCpXrMvv4QSElIYSwHDga+HwS08ap3jVR6raaC6Fe+FRhpX3XRKnbqhdCvfCpQvPMXIU2eiF0kMqKKS98qrCMuSQVgNMsklQA02pfCAODs4FTgWey/XFu9awHfgxcGfv7JrvHr9R1YWBwPpVj90gq63wnswa4Ebgq9vdt7vLQpEmFgcHFwKuAv2H76qt61jDBsbtDzKncHewZTYzjCODY0YFIqQgDg9X7rRzcxG5HUflU8lu7MiipAWFgcB5wJbBPE7sdRaW9b6m+MG6aJQwMPonmQl71tDAwWO8+GFIS/obmQl71rDAwmMqTYaRRz6W5kFcdFwYGl1W/qJ0zf0IbA3piG/tK7Wrn+PPYVZo6cuzWxnyiO381akYb+0rt8thVXrVz7G7bd6I58/FevPfycV9v2Rx47ivW8O5PrGxjAFL3bdkUuPBdu/Lbm+eyYV0vuy7dwmvOHuSoFzbygAEpXQ/cNY2Lz9qNO2+bzbTpkcNPWM/p569k2sTtnzrm37j3jm3//bH1gVMP3J9jXrS+YwOWumVoCPqWDPEv37qXPfYZ4qbvzOXj71jC4550N3sum+xJRFL6Lj5rNxbuMsyVv/sz61f3cPZL9uLrly7ilDPWTLR5c+vMr//qfObvPMShx/rUH2XfnHmR0z64ij2XDdHTC0ef9CiLl2zh9ltnpT00aUoP3z+dY05az8zZkb4lwxxyzKPce3vdx202F/PrvrKAY1+0juBnjZRDq/7ay4p7Z7Dvk7akPRRpSi98w2p+9I35bHw08NB90/jVDXM57Nl1pwgbr/KDd0/jj7fO4YRXr+vIQKUkbd0C575pD445aR37HmjMlX0HH72R++6Yycn7Lef1T13Gsidv4rgX1332aOMx/96VC3j8IRtZut9kD8qVsmdkGD5y2h5Mmx4541+9l7myb2QYPvDKpRzx/PV8/S93cNXv72TD2h4uO3txvV0aj/mPvrGQ409e25GBSkmJI/DRt+7O2sFpfPDKB5nuKkTlwNpVvaxaMY2XvH0NM2ZFFi0e4bmvWMcvf1T7GMRtGov5bTfOYvXKaRx/iqtYlC/nn74b9/95Bh+6+n5mzfEWocqHnXYdpm/PrXzz8kUMbYV1j/Twg6sXsPfj695HaOqliQDf//JCnvac9cxd4B+D8uPBu6dx3dULmTYjcuqB+297/S0fXsHzX+2JibLtnM8+yOXn7Mq3Pr0zPT2RJx3+GG8/r+7nexqL+XsvdZ5R+bNk3yGuefhPaQ9DaskBh23mgmvva3Rz1xhKUgHUxrydaRSnYJRXHrtKU0e6WxvzduYRXX+uNLVz/Dl/rjS1c/xt27c25jcDwy38wBHgJ20MSGrXj1vcbwtwSycHIjXpxhb32wL8v+oX42Ie+/vWAB+guaAPA/8n9vcNtjggqW2xv+9B4DyaO3aHgHNif593UVRqYn/fz4EvNrnbEPD+2N+37ROhIcYdp2vCwOAiKo8kWgCEemOgcor/09jft7rJgUhdEQYGd6Fy7M5l8mN3LXBz7O9zelCZEAYGl1B5YtYsWjh2J4y5JClfXJooSQVgzCWpAP4/Vte8hUm3Po0AAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 1152x432 with 1 Axes>" ] @@ -326,7 +326,7 @@ " " ], "text/plain": [ - "<lbmpy.methods.momentbased.momentbasedmethod.MomentBasedLbMethod at 0x7f1b8f8e0400>" + "<lbmpy.methods.momentbased.momentbasedmethod.MomentBasedLbMethod at 0x7f6c98ef28b0>" ] }, "execution_count": 5, @@ -404,7 +404,7 @@ " " ], "text/plain": [ - "<lbmpy.methods.momentbased.momentbasedmethod.MomentBasedLbMethod at 0x7f1b8763a4f0>" + "<lbmpy.methods.momentbased.momentbasedmethod.MomentBasedLbMethod at 0x7f6c98f10af0>" ] }, "execution_count": 6, @@ -444,6 +444,151 @@ "ortho_mrt.is_orthogonal, weighted_ortho_mrt.is_weighted_orthogonal" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Central moment lattice Boltzmann methods\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Another popular method is the cascaded lattice Boltzmann method. The cascaded LBM increases the numerical stability by shifting the collision step to the central moment space. Thus it is applied in the non-moving frame and achieves a better Galilean invariance. Typically the central moment collision operator is derived for compressible LB methods, and a higher-order equilibrium is used. Although incompressible LB methods with a second-order equilibrium can be derived with lbmpy, it violates the Galilean invariance and thus reduces the advantages of the method." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " <table style=\"border:none; width: 100%\">\n", + " <tr style=\"border:none\">\n", + " <th style=\"border:none\" >Central Moment</th>\n", + " <th style=\"border:none\" >Eq. Value </th>\n", + " <th style=\"border:none\" >Relaxation Rate</th>\n", + " </tr>\n", + " <tr style=\"border:none\">\n", + " <td style=\"border:none\">$1$</td>\n", + " <td style=\"border:none\">$\\rho$</td>\n", + " <td style=\"border:none\">$\\omega_{0}$</td>\n", + " </tr>\n", + "<tr style=\"border:none\">\n", + " <td style=\"border:none\">$x$</td>\n", + " <td style=\"border:none\">$0$</td>\n", + " <td style=\"border:none\">$\\omega_{1}$</td>\n", + " </tr>\n", + "<tr style=\"border:none\">\n", + " <td style=\"border:none\">$y$</td>\n", + " <td style=\"border:none\">$0$</td>\n", + " <td style=\"border:none\">$\\omega_{2}$</td>\n", + " </tr>\n", + "<tr style=\"border:none\">\n", + " <td style=\"border:none\">$x^{2}$</td>\n", + " <td style=\"border:none\">$\\frac{\\rho}{3}$</td>\n", + " <td style=\"border:none\">$\\omega_{3}$</td>\n", + " </tr>\n", + "<tr style=\"border:none\">\n", + " <td style=\"border:none\">$y^{2}$</td>\n", + " <td style=\"border:none\">$\\frac{\\rho}{3}$</td>\n", + " <td style=\"border:none\">$\\omega_{4}$</td>\n", + " </tr>\n", + "<tr style=\"border:none\">\n", + " <td style=\"border:none\">$x y$</td>\n", + " <td style=\"border:none\">$0$</td>\n", + " <td style=\"border:none\">$\\omega_{5}$</td>\n", + " </tr>\n", + "<tr style=\"border:none\">\n", + " <td style=\"border:none\">$x^{2} y$</td>\n", + " <td style=\"border:none\">$0$</td>\n", + " <td style=\"border:none\">$\\omega_{6}$</td>\n", + " </tr>\n", + "<tr style=\"border:none\">\n", + " <td style=\"border:none\">$x y^{2}$</td>\n", + " <td style=\"border:none\">$0$</td>\n", + " <td style=\"border:none\">$\\omega_{7}$</td>\n", + " </tr>\n", + "<tr style=\"border:none\">\n", + " <td style=\"border:none\">$x^{2} y^{2}$</td>\n", + " <td style=\"border:none\">$\\frac{\\rho}{9}$</td>\n", + " <td style=\"border:none\">$\\omega_{8}$</td>\n", + " </tr>\n", + "\n", + " </table>\n", + " " + ], + "text/plain": [ + "<lbmpy.methods.momentbased.centralmomentbasedmethod.CentralMomentBasedLbMethod at 0x7f6c98f21790>" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "central_moment_method = create_lb_method(stencil=\"D2Q9\", method=\"central_moment\",\n", + " equilibrium_order=4, compressible=True)\n", + "central_moment_method" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The shift to the central moment space is done by applying a so-called shift matrix. Usually, this introduces a high numerical overhead. This problem is solved with lbmpy because each transformation stage can be specifically optimised individually. Therefore, it is possible to derive a CLBM with only a little numerical overhead." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAADhCAYAAACEL7KHAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2dUbLUNre2NxTXKQJVGUCYAYQRADOA/CMgzCAprvjuqDADwgg4YQaQEfDBDJIBpIp9qEzg/O/jbXUst91tt2W3Lb2qcsuSbVnrWcvqZUm2r7148eLuxcXFJy1d4d1//vOfJ10bnGcCJmACJmACJmACJnCcgHypP7XX9117atu1G40Nr7TOzs3wVzPhdRMwARMwARMwARMwgdEEfu044pHyHpPfdMZeyzuz89VBy1kmYAImYAImYAImcCoB+Ve/tY9VHll7zlh7v7OkVTmGTX/Xck/rX89SiUxOKn7BE/8ike5o+VV5drgT69echwEthVMpch7Tujn0EzKbmE0uPKbIcT1Gcp6UBLip5Xctr1WDN1o6x1XPU7ttnlUsmQf4UfEvWhiC/kXLe62bbUKVmvMwmKVwKkXOY1o3h35CZhOzyYXHVDnW4ox9lSBPtDyTmt7GqnJqLAFx/EnH4OC+C8dqnV5G0ji8DgkImPMwiKVwKkXOY1o3h35CZhOzyYVHCjlW4YzF6nEqAQGegP3cUc5H5T2U4dzs2Oas8QTMeRizUjiVIucxrZtDPyGzidnkwmOyHHbGYsPIJfVQglx2CBPmi7HdYToBcx7GsBROpch5TOvm0E/IbGI2ufCYLIedsdgwNp8a2Ot1a/OCnlkAcx6mgFI4lSLnMa2bQz8hs4nZ5MIjlRx2xmL7yCEVHK1DT6J6mHK6ps15GMNSOJUi5zGtm0M/IbOJ2eTCI4kcdsZi4ygldbsUQc8spzkPU0ApnEqR85jWzaGfkNnEbHLhcVQOO2Ox4nNIdc0VC3IFD573jjlMI2DOw/iVwqkUOY9p3Rz6CZlNzCYXHknksDMWG8fmUxq/DsOTXUORIS9M5N+8vOcSwJyHkS+FUylyHtO6OfQTMpuYTS48UslhZyy2j1xSHyTI9x3ChJ4xtjtMJ2DOwxiWwqkUOY9p3Rz6CZlNzCYXHpPlsDMWG0YuKT4n9UOHMPeU97nhyXfs4qwRBMx5GKxSOJUi5zGtm0M/IbOJ2eTCY7Ica3TGwkS30IsTq86powTkbPFB0kvF1QdIOUDrDFH+qOUpaYfpBMx5GMNSOJUi5zGtm0M/IbOJ2eTCI4UcN2I050tJGDxLAi9PI/CtSuY28T3Fva+dV3v45xABesH4MPh9xUzYJ36g9GfFDukImPMwlqVwKkXOY1o3h35CZhOzyYXHJDmuvXjx4q648FHpO7XzE2NyygRMwARMwARMwARMICkB+Vx8R/q14mtrHKZMKqwLMwETMAETMAETMIE1E7AztmbtuG4mYAImYAImYALZE7Azlr2KLaAJmIAJmIAJmMCaCdgZW7N2XDcTMAETMAETMIHsCdgZy17FFtAETMAETMAETGDNBOyMrVk7rpsJmIAJmIAJmED2BOyMZa9iC2gCJmACJmACJrBmAnbG1qwd180ETMAETMAETCB7AnbGslexBTQBEzABEzABE1gzATtja9aO62YCJmACJmACJpA9gdV8mzJ70mcSUJ9Z4HNXfPfznta/nqkaWZ9WXH+tBeQboHe08E1Qvqvq0CBQCqdS5GyotnPVHDqxVJlmE7PJhccUOdwzFttEFikZxE0tfGj9tQR6o+X7LARboRBizHddPyr+Rcsrrf+ihY/bm3lDX6VwKkXOhmo7V82hE0uVaTYxm1x4TJXDzlhsF1mkZBRftTzR8kwCvc1CqBUKIb585BXH912ontbpfSSNI+wgAqVwKkXOY0ZtDv2EzCZmkwuPFHLYGYttwykTGEPgiXb+3HHAR+U91AV6s2NbiVmlcCpFzmM2bA79hMwmZpMLj8ly2BmLDcMpExhD4KF2vuw4IMwXY7uDHFNBKIFTKXIes2lz6CdkNjGbXHhMluNGzOW8qbongaEfJkF/Uvq3Zo2UZiL6U8WeiN4E4/XFCdS2euy8t47tkPv2UjiVIucxezWHfkJmE7PJhUcqOdbWM/ZcgjEJ+r2W8IRapUHl46Q9VmxHrCLinzMTCI7WIXv0MOXFRSmcSpHz2GVnDv2EzCZmkwuPJHKspmdMTtZd6Ym5NoRHWtrDGuTtzc/RccFp47UCt5XmaTYHE1gDgdtrqMQG6lAKp1LkPGZy5tBPyGxiNrnwOCoHztg3tewhjlGMSMkRoifgDy1jegR46g8n66865ow/annJSiMwJhvlaX96y74opjftQjGTpnmtAI6bgwnMSeDyQOHhTokbhNJDKZxKkfOYPZtDPyGzidnkwmOKHN8FJEl7xuQEMWRzLxQ+Jq6PvVCM04Uzt5svprzv67wPrTLpFXsQ8rTfBy3VO54Uh0nUYbNjE0hGQPbF60Mor+vGI+QVb4OlcCpFzmMXkDn0EzKbmE0uPFLJwZyxf2pEIY6JLZ/iEVF6yXDsQnjMivI+hwytBwet/YfHcQx5OpjA3AS4OcAO2yH0jLVvHtr7lZIuhVMpch6zW3PoJ2Q2MZtceJwqx98BB87Y2gJ/bjunq64cw44Ii0P2kxZ6HkLvA9nNQJdh+DNs5nvdBFIT4OneHzoKpXf4s+y0eUPRsVsxWaVwKkXOY4ZrDv2EzCZmkwuPyXKs0RmLerr0h0YvF394wUG7c+RPDkesz1GLzaCMVJg4aAc1sb5lhwylXyquem4pXuvYHnMen5J2qJgUwcn2cGXt5tB/1ZtNzCYXHinkSDpnLMZ8coqnId9IOOaDMQEa54yeBj6+/LPit1oIfb0O/BlGDl21d2E/YoWnTmAOHoFvVcKFOXW7+XjVFv9MIRBs874KwV6JH4hxuHmYUnZOx5bCqRQ5j9mmOfQTMpuYTS48Jslx7cWLF/Q8fdJCj9OmnBjV939V7+iPT3n/t0VZVGcHEzABEzABEzCBQgjIX+GNEK8VX1vjMOUYNfCqi9DzcyGBWH+neFNO5RiBva8JmIAJmIAJmEBeBNY4TDmYsJyuV1oYvgxDmnxGyXN1BhP0jiZgAiZgAiZgAucmsGlnDHhyxPzG/XNbkc9vAiZgAiZgAiZwMoGtD1OeLLgPNAETMAETMAETMIE1ELAztgYtuA4mYAImYAImYALFErAzVqzqLbgJmIAJmIAJmMAaCOCM8eThMy28ud7BBEzABEzABEzABExgfgJ8WQj/6wJn7Hstr7X4De2C4GACJmACJmACJmACCxDgdVz4X5UztsD5fAoTMAETMAETMAETMIEuAp4z1kXFeSZgAiZgAiZgAiawEIHNv2dsIU6bPE39MlzqzjcTeSEuL8j11wkgkjiIK58V43ug97Te993UxGfdVnGl2GMpch6zPnPoJ2Q2MZtceEyRwz1jsU1kk5JR8L3Rj4p/0fJK67wcl4+EM0fQIQEBsbyphQ+wM+b/RovZ9nAVoyLssRQ5e9S8yzaHHYq9FbOJkeTCY6ocdsZiu8giJaPg46M4Cu+CQFqnt4Z0NVkw5Ds+nQBMtTzRwtMwb08vKe8jxacIeyxFzmPWag79hMwmZpMLjxRy2BmLbSOX1BMJ8rlDmI/KeyjDudmxzVkmMBeBUuyxFDmP2Yk59BMym5hNLjwmy2FnLDaMXFI8Ltv13rgwX4ztDiawFIFS7LEUOY/ZjTn0EzKbmE0uPCbLcSPmct5U3WPDkAaTzT8p/VuzRkozQfqpYk+QboJprNcMGzmdq36nXCcWZ6YmUIo9liLnMfswh35CZhOzyYVHKjnW1jP2XIIx2fy9ll+bqlM+TtpjxXbEmmD214OjdYiThyn3uTlnHgKl2GMpch6zEnPoJ2Q2MZtceCSRYzU9Y3Ky7kpPzGkiPNLSHmYjb28elI7DsfhRyzOt31PscJzA7eO7eA8TWIxAKfZYipzHDMcc+gmZTcwmFx5H5cAZ+6aWPcQxihGp2jH6Q4eM6XnhaTScrL/qmDPiXL1kpREYk43ytD8OHPmEMee8OiLP38sDYgUPnveOOZjAEgRKscdS5DxmM+bQT8hsYja58Jgix3cBCc7YP3UixGHb6FjO0VcddG/0gTqgPpYY5wrHajdfTHnf13l8VHMXlP9Zic+KH+8yC18RC163AIUu5zTkhYn8hdOy+HMTKMUeS5HzmL2YQz8hs4nZ5MJjohx/ByprmzNGvXhElF4yHLsQKmdLeThfDscJ4LTiwLZD6BmLnNr2Tk6bQGICpdhjKXIeMw9z6CdkNjGbXHhMlmONzhhORNvpYr4Ywl7IIftJS+jhIcthnwBPnf6wn131WtKT2HR0O3ZzlgkkJVCKPZYi5zHjMId+QmYTs8mFx2Q51uiMRUNochzuSnc4FsFBu2NnIrbmdkp8GOK9VLwbvtU6Dixz8Z6293c6CYEwQTP0PiYpNIdCSrHHUuQ8ZpPm0E/IbGI2ufBIIQdzxtYW+IbiGwnHqy2YaI5zxjw0PnL9s2J/dkYQBoTA7L72hSPxAzEMTu2AIrzLMQLiyR0RgbmOBL5Vic3yHdDdvMdqS9k/pdhjKXIes2Zz6CdkNjGbXHhMkuPaixcv6HniI770OEW9UjGv9aZUb3qAcNZ4WayDCZiACZiACZiACayagHwW3p/6WvG1NQ5TrhqeK2cCJmACJmACJmACKQmscZhysHzyJpns/0wLQ0TfK10NbSrmLf4OJmACJmACJmACJrB6Alt3xhhWZY6ZgwmYgAmYgAmYgAlskoCHKTepNlfaBEzABEzABEwgFwJ2xnLRpOUwARMwARMwARPYJAE7Y5tUmyttAiZgAiZgAiaQCwGcMeZdMQn+MhehLIcJmIAJmIAJmIAJrJwAXxbC/7pgAv/3Wl5rIXN1n8nRk5G8Of65FgJ1JTxV/urqelU1/5qACZiACZiACZjAUQK8CQL/67ctPE3Jy1wrzxGxtE7Fq5fUknYwARMwARMwARMwgS0T2MKcMT4MjvcYAu8S451ifDnAwQRMwARMwARMwAQ2TWALPWP0iv1305QXrLycVIZyw7vX+MA6cwF/Ub6/STmTHsSWGwQC3wDlk1z05m7y02IIMWcQF26i+J7nPa1nOdXA9nBlQebQfyWZTcwmFx5T5NjctylrYR8r9ncoY3u+EJNq/p/iR2GT1nEU+MD6I60zL9AhIQExZcj8peJ3FKuYOY7kwdsO2b9M3miVGwNuEHDIvhWf7JwxyWR7kHLNQRB6gtnEYHLhcYocOmab36ZUxWnE+Sg4X0d32CeA47WbX8dmMaOXjD89eiMcEhKoL6SbiitHjKK1DmvSzG10EAGYaHmiBdt8mysUyUfDWrw9mEO/hZtNzCYXHink2MKcsUp7EpZeH5yNbIc3YjM9KcXcuj/Fit6ZZqBHjD8JGDqkI/BERXUN/35U/sMOPaQ7s0taIwHbw5VWzKHfOs0mZpMLj8lybMIZq50I5j0x9MNdNhP47VjERk0Kp+svGO1vqnLaTlrPbs4eSADnl6G3dgjDk80HT9r7OJ0fAdvDlU7Nod+2zSZmkwuPyXLciLnMn5KjgENAdz5zvj4p/VvzrEoznLZ7j5jSOF0M+eCMhScoGe4Ik9S16gAB8cE77woVN22venEUj9JBV4Gl59UMj2G4dWwHb8+DgO3hSo/m0G/PZhOzyYVHKjnO0TP2XJV/JbW818Kw4y4oHyeNyfnNnh0mxOJ1EoeF110099Emhy4C4oQjhkPbdF7H6qCr6NLzgqN1yA5xeh3KIGB7uNKzOfTbu9nEbHLhkUSORXvGaseA+TQEnvhrD/GQF83B0THfsrPDyQToaXwnjjjAF6fooD4uOM5flL6tcprOHbs47BO4vZ/lnIIJ2B6ulG8O/ReB2cRscuFxVA6csW9q2UMco0ibYj5TcLZ+VNEvW8XTA9bOa+2Sb1Js6En5Q8uYHhWeUgtMIzjKZ3gX5s3hy9E60PH0WH5RHBw6Jqe/17J7hUZ04jISlwfEDHdKOK4OZRCwPVzp2Rz67d1sYja58Jgix3cBCc7YP3UixGFb8lh/3tWQjmKcLhyO3Xwx5TGURt7eu7C0rYhemZrPPTGYHFQWDtQtxZHDVJ/jQvEYHcD/QaiUjv2gBWeMBynCZPWwuYhYcvMgCbJ2Oc4hr0g2RRhAS0jbwxUQc2gZRiNpNg0YWs2Fx0Q5/g5UzjFnjHPTU9N+6o/3h6Ggz8QhKB16ZZjAX801U8x8M4ceAuIDyzuKdz1iWm8/gTpIBxynsnAu2o7FV+Xd1VJy4MYBPu0Qesb2bizaOzqdFQHbw5U6zaHfrM0mZpMLj8lynMsZ4w8scrqUpgcHgS7kADBBP/Qu0CtT5dfbWGeYrOtPkF2KDuKCg3RfcXtOFw5aszt1qA6CHtpcKSs4He1tpaSZj/dDh7D0bn6WDnBYHcohYHu40rU59Nu82cRscuExWY7rMZfFUlEvS+1A8KcWHDR6dar3iSkPZyDaX2n+5ErvlRGCOIgZDhZGwQteXzcX5T2DaeOIiKm2wXNPB43926s4Yuim2CBmDLNfKsbRrYLWYcJ8yKdXOf5tEQgTWbNz5G0PV5o2h5bFN5Jm04Ch1Vx4pJCDOWPnCPTavJEA9HoxyRnHgN4EPrDMdxTfaiH0/dm7V+aKT/uX4VscMoZ22yE4uiF/qA6aDlw4lhjdRA5dc2NB68Fu70tmbJn4gey4zbsgJPuiigc3CQTmKhJ+Vx72w9zD3dzRasu2f2wPV/ozh347NpuYTS48Jsmx6g+Fq5Gmt+aTluijwsr/X+Xxcebq6b5Yr06lJlDzjhwM5f2fzkMPph2y1MBdngmYgAmYQPYE9P9JxwmjWNfONUw5FLJ7ZYaSmnc/XjcSejQuZDis8+4yO2LzcnfpJmACJmACBRBYtTNW/9njkDH01g4eBmoTmSktPdADyYtewzAyT2J6TtRMvF2sCZiACZhAWQTONWdsDOXQK1M5X3II3Cszhl6ifcW9/XRmopJdjAmYgAmYgAmUTWD1zhi9MnWPTJjszwfG3StTtt1aehMwARMwARPIhsDqnTFIu1cmG3uzICZgAiZgAiZgAi0Cq54z1qqrkyZgAiZgAiZgAiaQHQGcMZ6Ie6blMjvpLJAJmIAJmIAJmIAJrJMAXxTC/7pgmJInFV9rIbPvVRLadJ6gIUpeLvq8Pnt4qvKp8ldX1/MQ8llNwARMwARMwAQ2SIAHEvG/ftvCnDFep1B5joDWOhXnRbBM5HcwARMwARMwARMwgU0T2MKcsZ/kgOE9hsBTld8rj7fzO5iACZiACZiACZjApglsoWeMXrH/bprymSovhxXHlcA3E+lJpJfRb82HyIQghgyXh/eu8XF15lv+ony/iPgA15LsUbJys8j3OO9pvcgpFSXp+4DZd24ymxhLLjymyLHqb1PG6rpK1cI+Vuxhyi5AdZ74MJTL9zvfkaWYuXfkPdK6HTKgnBDErppjqfhROFzrOL184B62zL10aBEQl+ztUTJyjb3RgnOOk45DFn1XV+kiQgn6PlWRZhOTy4XHKXLomM18mzLSmipO4/ZYC19Hd+ghUCv4puLKEWM3rXN3Tpo5dw6nE8Dx2s1hpBixpZcMvvSEOLQIiA8NTvb2yDWm5YkW7ONtC0MxyVL0fYpCzSamlguPFHJsYc5YpT0JS48Ef4TFdvvHZnwwxbcju4bMPir/oVhyB+9wGgHmL/7ZwZAeMRwO7NQhJmB7jHnknrK++zVsNjGbXHhMlmMTzlj9B8ecHIaBuPtkAr//9GKjbqZwGBgqaYcwPNl8IKK9j9OHCeB0/YUd9uxmR3cfjO1xn0nOOdZ3v3bNJmaTC4/JctyIucyf0p8Yf1YMWzDn65PSvzXPqjRDPbv3iCmN08XQGs5YeIKSYYAwgVqrDoGAGA1xBm6F/R2PIyC+3AF1hco2tb3qkaz1MNjOuwrMIc/2mIMWh8tgffezMpuYTS48Uslxjp6x56r8K6nlvRaGHXdB+fx5MTm/2evAxF+8TuKw8LqL5j7a5FATCI7WIT5DHDYDHUhAtogjxk1D8wZhrJ0PPNvmdrM9bk5lkypsfffjM5uYTS48ksixaM9Y/afFvCUCT6O1h9LIi+Y66Zhv2dkhKYHbSUtzYfTmvpOtcpNxcYqd18fhJP+o5ZnKKOkhFdsjBlBOsL77dW02MZtceByVA2fsm1r2EMco0qaYaxOcLf50XraKpwesndfaxckjBC4PbA8e/JcD+2S9SfaHw/OHljG9gzwhF+w24qN8htCx6+bw5Wg71/F3VQ72TxhTt6sj1vtre1yvbuaomfXdT9VsYja58Jgix3cBCc7YP3UixGFb8lh/OF8pVDF/Ovzh7OaLKY9hHvL23tOkbeSX2GMgsccFseIBBw6CWTuEvDCRv709+zR8JOS9FIKqLIbVbynevXOMcutzEA+2c+37WYd+VsyrW7IJksf2mI02jwtiffczMpuYTS48Jsrxd6CCM3aOQC9C+4m06k9IgvGntAtK59pjsJNxhhUcWpzbdrhVZ+w5vO0dnT5MQHaJvd5RvOsR03rFXHFwdgfb+eGzbX6r7XHzKhwlgPXdj8tsYja58Jgsx/WYy2Ip/rQip0tpehcQ6EJ/ZkzQr3pxFNNbwFyc8AfHLg6HCTCH6YeOXegRgie9Qw4nEhA/bhDuK25O2Kc0HLRml/VgO+fgjIPtMWPldohmfXdAqbPMJmaTC4/JcpzLGYscq/rPDechOGj0ONhhiI12cErsGP69VIxzUAWt49wy1Pv0Kse/pxAQRxwsLjxe8Pq6uSiPifdNu7WdC4qYlGiPYcJu6I0WiTJCofoepFyziTHlwiOFHOcapqRH4Y0E4NUWTCbnT4teGz5k/bPiYj8lItlThcDzvgqEMfED8Q0Ob6rzlFYOr2TBIWO+WDu02drO/yVUhD3q+sJRJzBfkPC78mjf3ivezZGttuT9U4S+T1Sh2cTgcuExSY7NfChcDRm9PDhr/kB4bMhOZUTAdp6RMi2KCZiACRwgoPaem3pGWK6da5jyQPW8yQRMwARMwARMwATKIXCuYcpyCFtSExhAQHdGDH3ymS+Gt/j2ajWEr7h6keyAIryLCZiACZjARgnYGduo4lztvAjI6WJeUfvpzLyEtDQmYAImYAKdBFbvjLnHoFNvzjQBEzABEzABE8iEwBacMfcYZGJsFsMETMAETMAETGCfgCfw7zNxjgmYgAmYgAmYgAksRgBnjJ4nJg433xy+WAV8IhMwARMwARMwARMokABfHcL/usAZ4ymu11qKe1O0ZHYwARMwARMwARMwgXMQ4Ol5/K/KGTtHBXxOEzABEzABEzABEzABEfCcMZuBCZiACZiACZiACZyRwOqfpjwjG5/aBEwgIYH6RbaUyLdS+awZnzdjzmpWoRQ5hyhNLO5qP77XeU/rX4ccU8I+tpFYy7nwmCKHe8Zim3DKBExgBgJqpD6p2I+Kf9HCVwV4wS0fz2bOajahFDkPKUwMbmrhA+nMhXmjJSsdH5J9yDbbSEwpFx5T5bAzFtuFUyZgAokJqJHiY7j8Qb8LRWudXhLS1eTVkL/luBQ5j+kI3Wp5ooWnxN4e27+k7baRWNu58Eghh52x2DacMgETSE/giYr83FHsR+U9VEN2s2PbFrNKkXOLullLnW0jsSZy4TFZDjtjsWE4ZQImkJ4Aj293vccwzBdjew6hFDlz0NW5ZLCNxORz4TFZjhsxl9NS9Z0tQxFMyv2k9G/NkpRmAudTxYMncM5RZrNOpayb4zKaNuduzjWX7o3/5m7+HYelyPmvyrw2loBtJCaWC49UcqTqGXuuCjEp972WX5vIlY+T9ljxYEesPn6OMptVK2XdHJfRtDl3cw6O1qHrP4dhylLk7Nayc4cQsI3ElHLhkUSOyT1jcrLuii9zPwiPtLSHI8jbmy+i44LTxmPut5Xm6aoqTCiTRv1HLc9Uxr2r0sr9NcdldD+Bc+81sEzNV3OW26upybwVKUXOeSnmXbptJNZvLjyOyoEz9k0te4hjFMdTf+nPKDhbOEIvW4cwlhrlaX96y74opjftQjGTeHnMHceNcEqZOIWci5DDnXYliJggyx8jZeJJJnRijhXF4z9n4HzsGjhe6W3scXmgmuGOkhuyrYdS5Ny6ns5Zf9tITD8XHlPk+C4gwRn7p06EOGwbFOtP7Cs7KsYRwnHYzRdT3vd1Hh/DbAZ6BB6EDO33QUv1ziHFOBCjy9Qxn1XeZ8WPQ7k5xDWLe6fIYo7DqS3NWTU7eA0Mr/m694SrFipJ29AOIS9M5G9v30y6FDk3o5AVVtQ2EislFx4T5fg7UEk1Z4zyeLRz50jVJ6gcI1UWR6kKWg8OWrsBxgGjd6sZBpXZPMDrnQTMsRNL8sxBnEdeA8kreYYCuRnjum+H0DPWvllr77eVdClybkUfa6ynbSTWSi48JstBz1iqQGO7c7rqQhl2pJIX+gNiWOZ/tIS7YbKbga6+0DiH/EFlqmwcOYd+AubYzybllkGcdcIx10DK+p2rLJ6mDvPjmnWgx5fe7Fyu31LkbOrQ6+MI2EZiXrnwmCzH9ZjLpFTU06UGll6uH7QEB+3OkUYXR6z9JzW1zEkCZXSwOS6jzKmcu66BZWo+41l03TN14VLxbgqB1rnWmWP6dMZTL1p0KXKOhBomLrdvtEcWk8futpFYj7nwSCFHyp4xnoZ8o0pxB8yEXP6YuPPlY8A/K36rhdB3F0zjHP2ZKT20TMp16Cdgjv1sUm4ZynnMNZCyfucsK7QF91UJ2gfiB2obws3aOeuW8tylyHmQmfRKTwGBucQEvlVJ+87c4N284mpLeT+2kVjnufCYJEcyZ0wXGH8wzJlphyiPC7Let2tIJ2qYh5bZPqHTMQFzjHnMlRrKWfsNvgbmquvS5dZs+FZh1qEUOY8pURyidv/Y/iVtt43E2s6Fx1Q5Ug5TxoQPp3jVRbhjupAQrL9T3O4ZO1yKt5rAdgn4Gtiu7lxzEzABE0hK4NqLFy+Y2/VJC3O6FnOGdK4woZchCz6j9Ivy+oZvtPlw0LH0tHHnjWOHTLzDbPcuM607DCBgjro08u0AABoCSURBVAMgJdol9TWQqFouxgRMwARMYAEC+g/gwcbXiq+dzRlbQE6fwgRMwARMwARMwARWSaDpjJ1rmHKVYFwpEzABEzABEzABE1iagJ2xpYn7fCZgAiZgAiZgAibQIIAz9k2dDnFjs1dNwARMwARMwARMwARmIJDu25QzVO5C46i8c+x5XTYT8wlPlX/yBP+rIvxrAssQsA0vw9lnMQETMIENE9h9mzLZe8YSw+BFsbt3Emn9tcqvnvhMfB4XZwJzEbANz0XW5ZqACZhAZgTWOmfsJzlgu/eQiTmvwfheebyywsEEtkDANrwFLbmOJmACJrACAmt1xugV++8K+LgKJnAqAdvwqeR8nAmYgAkURmCVw5TqAWt/u4w/Nj4hE30uKRddSS7mxfFdQwIfV7/Uwktws5QXIXMPpdlw7vocI590336hNUPWi71Qe0xdU+4rGd2OjQAqXoz08A3Pe1ovej605M/impkixyqdsaY91wb7GINt5ueyLvlowHgD76MgU63QT+Rp+RDyHW+TgHRIo5utDW9TK/PUWrpmbutLxe84g2IeRgrXcrYOmeR0O4bCj4TaHt5oN264ufGGW9FBTLK4ZqbKcX3NVlBf4HjMOd85IN/uYQX0IbnpJeNOibsmhw0TKMSGN6yhdFWXrvm0yU3FlSNGyVrnOibNQ0g5B7djA7SLPWh5ooU2/+2AQ7LeRRyyuGZSyLFaZ0zCccfAUB29QxgwE/hzvIvgQYU/JRt30M1AjxgNe44yN+XMdr3WXQk2nK0ORwr2RPt3TS34qPyHHdf4yOJXvbvbsVWrZ7WVy+WamSzHKocp6z8x7iT5IwtPUHInEeZVrdayTqgYTtddyckddFdoO2ld+zhvZQQKs+GV0T9bdXBI2vNdqUwYnmT7rteMDRkFt2MZKXNBUXK5ZibLcWMJ6PpjwqGgO/KOFuZPRA2W0gzHNV/qyhgyxxDvgvbbDeedUOaunDWtSA486q5QOaHaXt1pzyXvXOV2CbTlvBM4HbXhLfM4pe4nMDzlNGc5ppbt2LlvHdthq9sl/1nbsa1yK7neuVwzqeS4vpAxPFeFX+lc77Uwt2AXlI+T9ljxrmdI699qudZedgddrYwqs3XsqpOSG0eM4clmT+Bc8s5V7qoZn1C5UZwG2vAJ1dj0IaMYbkzS4Gjt2rGO+nODWUxYuB0rhmtGguZyzSSRY/aesfqCZM4EgScGeYqkGcjrmmfR3CdaP7VMHUdj+KOWZ1pf89OZ9BS+Ux1xYC8U45yNZqjjguP7RcffVrrp3E0pdyscwTc5nMp/8okzKuBUhjouJ1u7nZFKh4iySDs2pCLeZ7MEcrlmjsqBM8Z8Bob/2k7STnt1g/iHMsbc2fHECE5W8/1gOEIvdwVfrTDW2s5r7bKXHF1m/WfAuQhj5Lg6YqFf1ZO5csjX7PY/RV56HL+onODQMYH4vZbdKzTq8wRHeJBudDyO4eo5qo4pw2j+KU++lrKke66bxdqBjdlab/spZuHOmZuiVYaJut2TSeUt2Y7tnd8ZmyCw6WumQXiKHMy1rKZf4YwxHMaFQ+ZXLXtBFxb5J/Uk1cdeKOYPnMZ8N19MeZybPM4dBW3r7dXRtqqeY8rUvjgdnxXzvqdVBtUNB+qW4qbDdKH0aHlVDvweBEFVxgctOGM8lVpNKFY8ulwds3qOQeZU8SmcOLeO67XhVHVbspyaw2LtgM63GVuDjRbUQXvWDiEvTORvbz97eopu25VXWYu2Y+3zO70NAlu/ZgLliXLgF+F//bbUnDHqTU8PPQyVA0CGQuUYKY9GdxeUDr06PE1ZzTVTzHyzdhhcZvvAtaUlHyzuKN71iGm9/TqPQfJynMriD6Dd+MOenq12GFRu+6AC04M5SQdDbbg0jIMZbhAMN5Vce+0Qesb2bjrbO249Lbs/Zzu2dXwl1j+Xa2ayHEs6YzRSkdOlND1AVQPFn5eWcAdJj8Ku4VI+6wyztRu6MWWqiHUGyYWDdF9xNKdLeTRsl41aD5U3cGwcWq1SVvhjaG4bWm7zmBLXx3AaasOlcRzDcGtsmCP1Q0el6U2kV56boWzDCtqxbNlmLFgu18xkOa4vqOSol6a+cGm4goNGr1D1clfl4UxE+ytNQ9bu1Yn26StTx602qM78OaFIXvD6urkojwcNmg34VHlxxGDbDlPLbZeXa3oQp1qnQ204V1Z9cg1i2HfwmvOld6ZgXCrmJqoKWscOmI/59Conz9/a5s/djm0NbpjU3XWDvDVZTqpvLtdMCjmYM7ZUoNfnjSpNjwETWWmUuWPkI7o/K36rhdDlLJDf1asztEyOX2tg+BWHjGGtdgiOasgfKu/XcEAr7nIQ2GVoua3iiksO5TTGhkuDOJThVrmENu2+BKCdI36gNq59LW9Vvr56r6Ed66vbqvJlCzitBOYLEX5XHv+HzOndzamutpTxk8s1M0mOxZwxGRkOAvNF2qErr70P6b1enQRldp1n0TzJwItwB4Wh8mq/MDeva0ho709haLmDKpnxTgk47dlwxrg6RUvAsLPctWTW8lVPR62lTkvUQ3KfvR1bQs4U5xCrof95KU63+jJyuWamyrHkMOVQoxjbqzO03NL243Uh4c7rQobCOu8ui4aJSoOykLy24YVA+zTZE3A7lr2KLSAEFusZG4obZ0ELf2aDenVGlEt53LHilPCUYjVcqrh6D9fQcrayH3IhY5BT9ebOdfK8FZVXFMdT9C1Gs9jwKXXZ8jG2tS1rL03dZQOztGNpaudSTCAdgdU5Y7Vo4W6oGlLTBTm5V4c/SJXNfJVigmROLm+JHE80mOQ2fGI9NnuYbW2zqkta8TnasaQVdGEmkIDAKp0xXXy+G0qgXBdxPgK24fOx95lNwARMYGsEVumMAdF3Q1szJde3TcA23CbitAmYgAmYQBcBJvB/U28Icdd+zjMBEzABEzABEzABE0hH4LtQFD1j/9SJEIdtWcXqpbgpgZ7XQjEJnfBU+X1Pvl3tkdmvOWSmUItjAiZgAiawVQJ/h4qvdpgyVDBhzJOFPE1ZBa3zcc5PWga/H+fqyM3/msPmVWgBTMAETMAEciLAMGUp4Sc5YA8bwvJqC15xcbeRV8KqOZSgZctoAiZgAiawGQIlOWP0iv13M5qZr6LmMB9bl2wCJmACJmACowkUM0ypHrD2N79wSng5597ngUZT3NABJXOQ7MwVDO9e4yP1l6RLs4Fzmas40xtN4JuNTA9gyNxfhIBIBsHX13Al+lrYZyUmjFLx3c57Wt/kXO4pei3GGWuqvlb6Y5TezC9tvSQOkhVH7LXiR0HPWsc5+ESelg8h33F6AuLL/MyXit9RumIeqAns7ZABZcNB+vT1NVB/YuVroWZVtwNvlOTGmBtk7GiTYaper29S6gmVrhsN/oQ3631PEH93aIEc0PnuAQ5AiAG9ZNyBcTfmMBMBcf5JRd9UXDlinEbrcCfNgzQO2yfg62uADn0txJBoB7Q80ULb/Dbeup1UCr0W5YwJGF43w1L0hGAETODfrCd+qqnWMpfGgYc3/pTs9Mg0Az1iOArF2UETwszrT1R+13SAj8p/2KGTmavj4mcg4OtrGFRfC8M4bW2vyXotZpiy/rPlLhwnJDxBiTce5hBtTfkn1bdgDjhddyU/PTJdoe2kde3jvNMI8EfdnrNJSWF4ku27XjM2OGyOgK+vYSrztTCM09b2mqzXG0tIrD9A/ugYqmDSLvNEooZZaYaJRr2A9YQyGaenHsS7oHKioavdho2smMMwRYkTdy5doXLMtb3quTmBZ1eZUd4cZUYnWHGilv1YDW8d22Fr20vTueQ92/W1Fdso9VrYin5OrWcqvV4/tQIjj3uuCr/SMe+1MLdgF5SPk/ZYcV+PxW7f1sqoMlX+t1qutZdWmVtMmsOJWpMt4IgxPNnsHR3Fc+Cp5yhz4KnPvltwtA5d39wk5RZK1nmlywWvr63YTqnXwlb0c2o9k+h19p6x+oJkbgiBJ9l4aqIZyNubT6LjgtP2RdtvK737wzy1zOZJc1g3h8lapEf2nThyo3BxKk8dl9xWVSYOyo9anmk996d+b8M/lzCHHW2UTarry9fCRg3A1d4RONrG3VDDgSN0bXdIx0r9x/CHNo25g+UJCcpuvsuLP5eXrVMw1hrl6Th6y74oDn+STPJ9ryW8lmB0ma1z5pI0hxM1KVti/iD8msMro3nq+OS2qjLpseO6IIy55q6OWNdv++arWbtwR8kN16qCdAD3NbV5s/KZKO9e3VRequvL18IeXWesjMDJbZyuE6ZsVdO2cMYwduZR3dF6mFAbyar8r8o46e68PvZCMX8uNHC7+WLKY4iIvPY7nuhpeKClCtrvgxacMZ5+5A+T+lwoHlMm+3OubHobJI85VBYy7kfccKBuKQ7OfVXAiTyT26rqwU3MZ8W8C2/TAaZakIFrrx1CXme70955yTT11vlW0+bNLfsUedt1U1nJri+V5WuhDdjpVRHg2tFCnUJ71qxfyOts4+pr5bXia0vNGaNy9EDsHKm6ttWfjSrCBVcFrQcHrV15Gkccx2YYVCYHqFyOpZEATgCk1SyCOQxUo+wAm+PGY9cjpvX2K04G8eQ4lYUtJbXVgaJsaTdutmDVDrfqjPbNWHu/rabnsKNVs0h5fa1a0NMrV+q1cDqxbRw5Wa83FpSTxnjndNXnpWeiaoh1EeMo/Y+WPkfpUttC463VKgwqU2XjuWZzhxWEb8Tm0IDRtyobwCG/r3g3/7DeFwdt12Or9UE8td8stlrXKaeIuUNhXl1TLnqe6AH82szMaH0OO1otntTXV6Z2Ueq1sFq7TVSxyXq9nqgiQ4qJeg/qC/cHHRgcNHorDjXKOGLtP7+pZQ6p9xb2MYcjWpJt8cfIBcMLXukW3i3KY5J80/am8rStNvQhtji6l4qrnnA2aZ1rmSkDT0lnGuawo1Wikj6XvL5WyWBIpcSp1GthCJ4wyb3d6TLk2LPuk0KvS/aM0RvxRpXmDpkJuzRU3BnzseCfFb/VQmj+KV7lXP3SeEeNm9JDy2yWk+O6ORzXKq9V4Q+DHth2CDcEIX8oT9tqIHY8Dtf6fe3K9U/8QNd+m/3xkrazxxx2tFbp57i+1irr1HqVeC30MlMbwE0y4eFVdPG78vivZ554c8Si3rzaaJJeF3PGBJU/LuZQtEOUhxLqffnjbDfUUXpome0T5pY2h+MaFSNeODwoDOWp/Wyrg4hWPWFc/5t+wfJAUXe7zWFHu8JXtjLH9bUyEZNVp7aLoq6FQ/DEI/IBDu275m1T9Xp9pcLxqovgJV9ISNZ5H1S7Z2yl1Xe1CiJgWy1I2TOKajuaEa6LNoG1E1isZ2wMCDldr7QwfBmGNOnVyHluyRg83ndFBOawVZVJrzB3ztyE8KRndR1wrhWJ7qokJDCHHSWs3tmK8rVwNvQ+8cIEVumMwUAXIfMtHExg9QRS26rKowfY9r96zaetYGo7Slu785Tma+E83H3W5Qms1hlLjUIXtXsbBNUcUluWyzMBEzABEzCBaQRKcsbc2yBbkTNmDtOuGR9tAiZgAiZgAkkJrHUCf1IhXZgJmIAJmIAJmIAJrJXAWXrG1DvDO8Oe11AYPiQ8VX7fe5uu9jjwO0eZB07nTT0ErIcYjHnEPNqpUviUImdbv06bgAkMI3AWZ0xV40lJnhargtZfa6X6WHmddUo0R5mn1KP0Y6yH2ALMI+bRTpXCpxQ52/p12gRMYACBcw1T/iQH7GGjfjy6zyP8fDvw1DBHmafWpeTjrIdY++YR82inSuFTipxt/TptAiYwgMC5nDF6xf47oH5jdpmjzDHn975XBKyH2BLMI+bRTpXCpxQ52/p12gRMYACBswxTqges/b0pGio+LRN97mhA/Xe7zFHmrvAzr0g25tWF907xcfVL0lN4zSXSlvUwB+ct85jLRprllsJnS3KqroxQPFNMu+yQgIBYbqYNTyDuoCJyZVJfP3xv857WB8+DP4sz1tRUXfHHVLyZP2V9jjKn1GfKsZKFi/i14kehHK0zrPuJPC0fQv7aYtWNRj2pbueSUXWdnfOWeMzF+VC5pfDZgJz8kZx8Y3xIxyVuW6Jt2RrX3JhIHh5KfKOFjhI6TPg/GRWuj9o78c61QnAsRnmQh6oxR5mHzrfANvhEd6iSkV4yPO7wtfsFqjHuFBvUw6ycN8hjnMIn7l0Kn7XLqfr9PFGVPnyfwKxty/7pNpGTFRNdN1+1PNHCf/XbUzRwNmdMlcZzZKiN3h0EYQL/aG+yKXR9fNIym+WfaZ0HHf6UbHjezUCP2M2pzJoFplrfqB5m47xRHqnM4Wg5pfBZu5yqHz3Z3OSxOKQjMFvbkq6Ki5dkJi3kN1rpRZJ1o8TrLHCcwhOUeJRhXtToesxR5uhKzHMATtddydfXQLadtHlqMbDUDethFs4b5jFQ49N2K4XPRuT8f6onbXLUEz9Nwz5aBGZpWzZO1kxaCkzijOnixSH4ScsdLcxliiboK81wWvOlrrxTjGOId6HZCMxR5u5EG1oRhyc91a2cWG2v5nacwKun2Dj7hHKP6jY+wzpSM3I+yuMExuuA1lGLE2Q5yqfjNGfPyk1OycPwJDfIneEEeTvLaWbOUWaz/LWsS86ztuFr4dCsh5k0aVytJ3HGVNRzweWOisnaTGLbOWPKw0l73ISv9W+VdyzMUeaxc25iu/jhiFXDvI0Kj+LVOO7Y6qhyB+r22DlXsT0F54E8RjFeBZz+SoySZSCf/rOdb0s2ckoHtCVMFeG7tX1hlLx9hbTy5yizdYp1JsV6yTZ8nRBatSqdyWRnrAb4sebKE388TdAM5I16MmeOMpsVymCdnsZ34vQKWU7lpeOYREn4ouW20tEw8anlViXm8ZOE8yEUpzLWcfQs/6iFVxAkexL5UF2PbTtVlmPlrm17hnJiQ9G132R+qrw6rrd9mVDm6uy+yWrEepK2RRxz4QG6VEx67W6EfhbfdbIzpho33w/Gn8PLlhQPO/Jau+wl5yhz7yRLZNQXyx86FxfN0MBTGZ0OrPIZSoBPs+t7NC8dT4/lF8XBoXuo9fdadq/QqM8T6pFKt0MZjNpP9Ybv6jgPEOIU3XFXzXVFGGNXV0fM9ztalvmqMmvJ2cip64Z2oHd4sqY4Wt663EPtyyllnsXu19q2qF5n4YFNrJjJkP+12qzXFU12xqSUr7Vy+HPgj6E5REn3N3lM1ouCjuv1XieUybnW1lsAnyQ9F+KCod1S3HSYLk7kBf8HWqqgMj5owRnjqdZquEIxdb9QPFa3i+uhrusaOcMvqa2rPBzkz4qZFrCaoPpsxl6mQJsgZ68dTKnPqcdKjqp9VnxoePLiRHkPti+nlKljzmL3dV1X17aciwf2tlYmqtpBuzv1WlniuMnOWKOS9NRwt1M1yHV+9WdRG81uV6WHeq9jyjzbXcJOsBlXxAyWdxTvesS0TmN6oTg0poN41cfhMIXjKIaA7uDYzh9ULgWo7E3rQfVPxrnmkdzWKXfloRR7GSPnUDtYUrW0H/dl8wwPNQPXMDdl5NOmhyHMQfJq/3AT3m5HutqXQWU2K7fVdXFJ2rZslUOz3imZjLS7ZjVWsX49YS24AMOQViiWHpyqV0yg+FAuDgAB73XXW6Z81h/WMNkewuAydSw9BQy5tRuAUNZmY8lF40ijGRrFIAsX92VIKB7KK+ihcWi1Slm32plKDy33QnXcrB5m4AzK5LbeoZ+1ZRVhL4I+WM4RdrCYLmXv9IYzJSJaVAGcprCt2eYMlXdM+zK0zMW4zHGimdqWOaq6WJkzMBljd4vJOfREKXvGcIJ2f+Q16B+UF4Yt6dWpXu6qPKC1nSYaAJyOZv6gMnVMtkHMaKy4Q6VxbM/twIGt5nzVAAbx0jH17nsR+usy6EHl7pW2oYyZOKO7Em09e3upTXuQnLVtDbWDNVw11PXkdmBk+zKI4RqgnFqHOdqWU+uyluPmYDLS7uZEcbsunP/Tr0NPlNIZ4w7qjYDQE8DTeVxkjLP/qryfFb/VQui6yMnv6pUZWibH5xreSzD+1BnmaId2T+RQXn0Ggm7QWzsMLbd93JbSc3Au1dZLsBdse6icY+zgbNeM2mlu9mhrCNzocRP4UXG44Rsq75j2ZWiZVaU2+jNH27JRFLtqz8FkjN3tKpJqpb5eKO5hXebvyuP/lLnYoVOq3rQfJXPGdDJAMP7fDl157X1I7/XKJCiz6zybyhMDXqQ7KAzlpf3C3D4a3rZD105fDC13UCVXupNkTM75gKhZ23oJ9oJuE8i5ZwcHbGb2TZLn4Jv3h8qr/Qa3L0PLnF34GU8gGZdsW2aUJF3RczAZY3fpJPm3JJ1/qK/z70GNteuN9aVWz+q9LiXkBs7DK0iCB38hQ2Kdd5d19YxtQJxVVtG2vkq1LF6pEu3A7cviZuYTisBm7S5Zz9hQM+DPXguN06BemaHler9xBKSDV1oYQg7Dyty9PR1Xivc+REBsZ7F1lcu1Qy8GDjRPvVU6VByGkw5Vy9sWJjCXHSwsxqjTYYvYJYsOZNrK5PZFZdnuG1owjwaMelVMktvd/lnmyVncGavFCN5rNSQmgO6VmUe/B0sVd+ZrOMxLILmtS2/0Xlp38+otdenJ7SB1BVOXl7p9sd3HGjKPmEdIpba7UO7c8bUXL17c1Un4WC9POy42RKVzccdECHdNfNuyrzv/as8Dvzq2edeETPQS7N4AfeBQb0pIwHrYh5na1vfPsN2ckuzFdrBdO3XNTWAOAmoTeDDvteJrZ3PG5hDMZZqACZiACZiACZjAFgg0nbHmMOWf2tCuPxO6Jz0h0C7QaRMwARMwARMwARMoiYB8qT8lLyN4nQFnjKFJJgN3hcWGLbtO7jwTMAETMAETMAETyIBAmJrVKcr/B/cwelIWOd2xAAAAAElFTkSuQmCC\n", + "text/latex": [ + "$\\displaystyle \\left[\\begin{matrix}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\- u_{0} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\- u_{1} & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\\\\u_{0}^{2} & - 2 u_{0} & 0 & 1 & 0 & 0 & 0 & 0 & 0\\\\u_{1}^{2} & 0 & - 2 u_{1} & 0 & 1 & 0 & 0 & 0 & 0\\\\u_{0} u_{1} & - u_{1} & - u_{0} & 0 & 0 & 1 & 0 & 0 & 0\\\\- u_{0}^{2} u_{1} & 2 u_{0} u_{1} & u_{0}^{2} & - u_{1} & 0 & - 2 u_{0} & 1 & 0 & 0\\\\- u_{0} u_{1}^{2} & u_{1}^{2} & 2 u_{0} u_{1} & 0 & - u_{0} & - 2 u_{1} & 0 & 1 & 0\\\\u_{0}^{2} u_{1}^{2} & - 2 u_{0} u_{1}^{2} & - 2 u_{0}^{2} u_{1} & u_{1}^{2} & u_{0}^{2} & 4 u_{0} u_{1} & - 2 u_{1} & - 2 u_{0} & 1\\end{matrix}\\right]$" + ], + "text/plain": [ + "⎡ 1 0 0 0 0 0 0 0 0⎤\n", + "⎢ ⎥\n", + "⎢ -uâ‚€ 1 0 0 0 0 0 0 0⎥\n", + "⎢ ⎥\n", + "⎢ -uâ‚ 0 1 0 0 0 0 0 0⎥\n", + "⎢ ⎥\n", + "⎢ 2 ⎥\n", + "⎢ uâ‚€ -2â‹…uâ‚€ 0 1 0 0 0 0 0⎥\n", + "⎢ ⎥\n", + "⎢ 2 ⎥\n", + "⎢ uâ‚ 0 -2â‹…uâ‚ 0 1 0 0 0 0⎥\n", + "⎢ ⎥\n", + "⎢ u₀⋅uâ‚ -uâ‚ -uâ‚€ 0 0 1 0 0 0⎥\n", + "⎢ ⎥\n", + "⎢ 2 2 ⎥\n", + "⎢-uâ‚€ â‹…uâ‚ 2â‹…u₀⋅uâ‚ uâ‚€ -uâ‚ 0 -2â‹…uâ‚€ 1 0 0⎥\n", + "⎢ ⎥\n", + "⎢ 2 2 ⎥\n", + "⎢-u₀⋅uâ‚ uâ‚ 2â‹…u₀⋅uâ‚ 0 -uâ‚€ -2â‹…uâ‚ 0 1 0⎥\n", + "⎢ ⎥\n", + "⎢ 2 2 2 2 2 2 ⎥\n", + "⎣uâ‚€ â‹…uâ‚ -2â‹…u₀⋅uâ‚ -2â‹…uâ‚€ â‹…uâ‚ uâ‚ uâ‚€ 4â‹…u₀⋅uâ‚ -2â‹…uâ‚ -2â‹…uâ‚€ 1⎦" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "central_moment_method.shift_matrix" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -458,7 +603,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -477,7 +622,7 @@ " 3â‹…y - 4⎠⎦, ⎣- 15â‹…x - 15â‹…y + 9â‹…âŽx + y ⎠+ 2⎦⎦" ] }, - "execution_count": 8, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -502,7 +647,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -565,10 +710,10 @@ " " ], "text/plain": [ - "<lbmpy.methods.momentbased.momentbasedmethod.MomentBasedLbMethod at 0x7f1b874f5e20>" + "<lbmpy.methods.momentbased.momentbasedmethod.MomentBasedLbMethod at 0x7f6c98e48d90>" ] }, - "execution_count": 9, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -586,7 +731,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -649,10 +794,10 @@ " " ], "text/plain": [ - "<lbmpy.methods.momentbased.momentbasedmethod.MomentBasedLbMethod at 0x7f1b873e9cd0>" + "<lbmpy.methods.momentbased.momentbasedmethod.MomentBasedLbMethod at 0x7f6c98e4dac0>" ] }, - "execution_count": 10, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -696,7 +841,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -759,10 +904,10 @@ " " ], "text/plain": [ - "<lbmpy.methods.momentbased.momentbasedmethod.MomentBasedLbMethod at 0x7f1b8766a520>" + "<lbmpy.methods.momentbased.momentbasedmethod.MomentBasedLbMethod at 0x7f6c98cac970>" ] }, - "execution_count": 11, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -787,12 +932,12 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACi4AAAPhCAYAAABkQMVPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3gUVdvH8XsSkgChk1ATOtI70juE9ARQBBW72OVVHx8LoiAoIAiooIJUERBBQLqKggqIAgpIV6ogvXdCsvf7B+w+m767CTuz+P1c17mSsMnsz3F2ypl7zjFUVQAAAAAAAAAAAAAAAAAAALzBz+wAAAAAAAAAAAAAAAAAAADg34PCRQAAAAAAAAAAAAAAAAAA4DUULgIAAAAAAAAAAAAAAAAAAK+hcBEAAAAAAAAAAAAAAAAAAHgNhYsAAAAAAAAAAAAAAAAAAMBrKFwEAAAAAAAAAAAAAAAAAABeQ+EiAAAAAAAAAAAAAAAAAADwGgoXAQAAAAAAAAAAAAAAAACA11C4CAAAAAAAAAAAAAAAAAAAvIbCRQAAAAAAAAAAAAAAAAAA4DUULgIAAAAAAAAAAAAAAAAAAK+hcBEAAAAAAAAAAAAAAAAAAHgNhYsAAAAAAAAAAAAAAAAAAMBrKFwEAAAAAAAAAAAAAAAAAABeQ+EiAAAAAAAAAAAAAAAAAADwGgoXAQAAAAAAAAAAAAAAAACA11C4CAAAAAAAAAAAAAAAAAAAvCaP2QGQPcMwgkSkzo0fj4tIiolxAAAAAAAAAAAAAAAAAAD/Hv4iEnrj+82qejWnC6Rw0TfUEZF1ZocAAAAAAAAAAAAAAAAAAPyr3S4i63O6EKaKBgAAAAAAAAAAAAAAAAAAXsOIi77huP2btWvXSunSpc3MAgAAAAAAAAAAAAAAAAD4lzh8+LA0adLE/uPxrH7XVRQu+oYU+zelS5eWsLAwM7MAAAAAAAAAAAAAAAAAAP6dUrL/lewxVTQAAAAAAAAAAAAAAAAAAPAaChcBAAAAAAAAAAAAAAAAAIDXULgIAAAAAAAAAAAAAAAAAAC8hsJFAAAAAAAAAAAAAAAAAADgNRQuAgAAAAAAAAAAAAAAAAAAr6FwEQAAAAAAAAAAAAAAAAAAeA2FiwAAAAAAAAAAAAAAAAAAwGsoXAQAAAAAAAAAAAAAAAAAAF5D4SIAAAAAAAAAAAAAAAAAAPAaChcBAAAAAAAAAAAAAAAAAIDXULgIAAAAAAAAAAAAAAAAAAC8hsJFAAAAAAAAAAAAAAAAAADgNRQuAgAAAAAAAAAAAAAAAAAAr6FwEQAAAAAAAAAAAAAAAAAAeA2FiwAAAAAAAAAAAAAAAAAAwGsoXAQAAAAAAAAAAAAAAAAAAF5D4SIAAAAAAAAAAAAAAAAAAPAaChcBAAAAAAAAAAAAAAAAAIDXULgIAAAAAAAAAAAAAAAAAAC8hsJFAAAAAAAAAAAAAAAAAADgNRQuAgAAAAAAAAAAAAAAAAAAr6FwEQAAAAAAAAAAAAAAAAAAeA2FiwAAAAAAAAAAAAAAAAAAwGsoXAQAAAAAAAAAAAAAAAAAAF5D4SIAAAAAAAAAAAAAAAAAAPAaChcBAAAAAAAAAAAAAAAAAIDXULgIAAAAAAAAAAAAAAAAAAC8hsJFAAAAAAAAAAAAAAAAAADgNRQuAgAAAAAAAAAAAAAAAAAAr6FwEQAAAAAAAAAAAAAAAAAAeA2FiwAAAAAAAAAAAAAAAAAAwGsoXAQAAAAAAAAAAAAAAAAAAF5D4SIAAAAAAAAAAAAAAAAAAPAaChcBAAAAAAAAAAAAAAAAAIDXULgIAAAAAAAAAAAAAAAAAAC8hsJFAAAAAAAAAAAAAAAAAADgNRQuAgAAAAAAAAAAAAAAAAAAr6FwEQAAAAAAAAAAAAAAAAAAeA2FiwAAAAAAAAAAAAAAAAAAwGsoXAQAAAAAAAAAAAAAAAAAAF5D4SIAAAAAAAAAAAAAAAAAAPAaChcBAAAAAAAAAAAAAAAAAIDXULgIAAAAAAAAAAAAAAAAAAC8hsJFAAAAAAAAAAAAAAAAAADgNRQuAgAAAAAAAAAAAAAAAAAAr6FwEQAAAAAAAAAAAAAAAAAAeA2FiwAAAAAAAAAAAAAAAAAAwGsoXAQAAAAAAAAAAAAAAAAAAF5D4SIAAAAAAAAAAAAAAAAAAPAaChcBAAAAAAAAAAAAAAAAAIDXULgIAAAAAAAAAAAAAAAAAAC8hsJFAAAAAAAAAAAAAAAAAADgNRQuAgAAAAAAAAAAAAAAAAAAr6FwEQAAAAAAAAAAAAAAAAAAeA2FiwAAAAAAAAAAAAAAAAAAwGsoXAQAAAAAAAAAAAAAAAAAAF5D4SIAAAAAAAAAAAAAAAAAAPAaChcBAAAAAAAAAAAAAAAAAIDXULgIAAAAAAAAAAAAAAAAAAC8hsJFAAAAAAAAAAAAAAAAAADgNRQuAgAAAAAAAAAAAAAAAAAAr6FwEQAAAAAAAAAAAAAAAAAAeA2FiwAAAAAAAAAAAAAAAAAAwGsoXAQAAAAAAAAAAAAAAAAAAF5D4SIAAAAAAAAAAAAAAAAAAPAaChcBAAAAAAAAAAAAAAAAAIDXULgIAAAAAAAAAAAAAAAAAAC8hsJFAAAAAAAAAAAAAAAAAADgNRQuAgAAAAAAAAAAAAAAAAAAr6FwEQAAAAAAAAAAAAAAAAAAeA2FiwAAAAAAAAAAAAAAAAAAwGsoXAQAAAAAAAAAAAAAAAAAAF5jSuGiYRglDMOIMwxjoGEYSw3DOGEYht5oU1xcxoNOf5NdezCXcofcyPyHYRjnbrQ/bvxb8dx4DwAAAAAAAAAAAAAAAAAAbmV5THrfoya9r8cMw2gqIl+JSKk0L9W50R41DKOLqq71djYAAAAAAAAAAAAAAAAAAHyFWYWLzv4WkR0i0jkHy4gUkUNZvH4wB8sWwzDCRWShiISKSLKIjBSRRTdejhORF0SktIgsNAyjkarm6P0AAAAAAAAAAAAAAAAAALhVmVW4OFBE1onIOlU9ahhGBRHZm4Pl/amq+3IjWCbelutFiyIi96jqbKfXVhqG8ZuIfCEiJUTkLRF58CZmAQAAAAAAAAAAAAAAAADAZ/mZ8aaq2l9VF6mq5aeMNgyjlIjce+PHb9IULYqIiKrOEpFvbvx4342/AQAAAAAAAAAAAAAAAAAAaZhSuOhjEuR/62lyFr835cZXvxt/AwAAAAAAAAAAAAAAAAAA0qBwMXutnL7/MYvfc36t5U3KAgAAAAAAAAAAAAAAAACAT8tjdoBcMtkwjGoiEiIi50Rkl4h8JyIfq+o/OVx2zRtfz6rqkcx+SVUPG4ZxTkQKiUgNd97AMIywbH6FqacBAAAAAAAAAAAAAAAAALeEW6VwsZ3T98VvtKYi8h/DMJ5T1XE5WLa9qPCgC797QERqiUi4m+9xwM3fBwAAAAAAAAAAAAAAAADAJ/l64eIeEZkrImvkf8V/lUTkDhG5U0TyishYwzBUVT/x8D0K3vh6wYXfvXjjawEP3wsAAAAAAAAAAAAAAAAAgFuaLxcuzhORT1VV0/z7OhH5wjCMOLle1BggIqMMw1iQ1VTPWch742uSC7979cbXfG6+R3YjNJaS6/9dAAAAAAAAAAAAAAAAAAD4ND+zA3hKVc9mULTo/PoiERl448f8IvKIh2915cbXQBd+N+jG18vuvIGqHsyqiYgnBZcAAAAAAAAAAAAAAAAAAFiOzxYuuugTEbEXN7b1cBnnb3x1Zfrn4BtfXZlWGgAAAAAAAAAAAAAAAACAf51bunBRVY+JyMkbP5b1cDEHb3wNc+F37VM+H/DwvQAAAAAAAAAAAAAAAAAAuKXd0oWLN2Q6nbSLtt34WtgwjFKZ/ZJhGKVFpNCNH7fn8D0BAAAAAAAAAAAAAAAAALgl3dKFi4ZhhIpIyI0fD3m4mFVO32c13bTza6s9fC8AAAAAAAAAAAAAAAAAAG5pt3Thoog8JiLGje9/9HAZC0TEduP7h7L4vQdvfLXd+BsAAAAAAAAAAAAAAAAAAJCGTxYuGoZRwTCMBtn8TpyIvHHjx8siMjmT3/vBMAy90SqkfV1Vj4jI9Bs/RhqGcWcGy+guIpE3fvzsxt8AAAAAAAAAAAAAAAAAAIA08pjxpoZhtBKRKk7/FOL0fRXDMB50/n1VnZJmERVEZIVhGGtEZKGIbBKRYzdeqyQid95o9tEWX1TVf3IQ+TURiRKRUBH53DCMxiKy6MZrcSLynxvfHxeRfjl4HwAAAAAAAAAAAAAAAAAAbmmmFC6KyKMi8kAmr7W80ZxNyeR3m99ombkkIs+r6idupUtDVQ8YhhEvIl+JSCkReflGc3ZERLqo6sGcvBcAAAAAAAAAAAAAAAAAALcyswoXc+o3Eekl14sWG4tIabk+amMeETktIltF5HsRmaCqxzJbiDtU9VfDMOqIyP+JSBe5PuqjiMheEZkvIu+p6snceC8AAAAAAAAAAAAAAAAAAG5VhqqanQHZMAwjTEQOiIgcOHBAwsLCTE4EAAAAAAAAAAAAAAAAAPg3OHjwoISHh9t/DM+NWYn9croAAAAAAAAAAAAAAAAAAAAAV1G4CAAAAAAAAAAAAAAAAAAAvIbCRQAAAAAAAAAAAAAAAAAA4DUULgIAAAAAAAAAAAAAAAAAAK+hcBEAAAAAAAAAAAAAAAAAAHgNhYsAAAAAAAAAAAAAAAAAAMBrKFwEAAAAAAAAAAAAAAAAAABeQ+EiAAAAAAAAAAAAAAAAAADwGgoXAQAAAAAAAAAAAAAAAACA11C4CAAAAAAAAAAAAAAAAAAAvIbCRQAAAAAAAAAAAAAAAAAA4DUULgIAAAAAAAAAAAAAAAAAAK+hcBEAAAAAAAAAAAAAAAAAAHgNhYsAAAAAAAAAAAAAAAAAAMBrKFwEAAAAAAAAAAAAAAAAAABeQ+EiAAAAAAAAAAAAAAAAAADwGgoXAQAAAAAAAAAAAAAAAACA11C4CAAAAAAAAAAAAAAAAAAAvIbCRQAAAAAAAAAAAAAAAAAA4DUULgIAAAAAAAAAAAAAAAAAAK+hcBEAAAAAAAAAAAAAAAAAAHgNhYsAAAAAAAAAAAAAAAAAAMBrKFwEAAAAAAAAAAAAAAAAAABeQ+EiAAAAAAAAAAAAAAAAAADwGgoXAQAAAAAAAAAAAAAAAACA11C4CAAAAAAAAAAAAAAAAMBj165dMzuCR77//nv5+++/zY7htg8++EA+/vhj+eeff8yO4pYlS5bIu+++K/v37zc7CiyAwkUAAAAAAAAAAAAAAADcUlTV7AgemT9/vmzatMnn8r/11luSkJAgkydPlhMnTpgdx2Vnz56V8uXLS6NGjeStt96SrVu3+sS6b9asmTz11FMSFhYmt99+u7z11luyefNmy2dv0aKFvPnmm1KhQgVp3ry5vPfeez5XfIncY1h9g4WIYRhhInJAROTAgQMSFhZmciJ4atq0adK+fXspW7as2VFcduHCBTEMQ4KDg82OAgAAAAAAAAAAAADwstWrV0utWrWkSJEiZkdxy4ABA2T//v1yxx13SKdOnSRv3rxmR3LJwoULJSEhQSpVqiTdunWTbt26SdOmTcXPz9pjkx09elQqVKggV65cET8/P2nTpo107dpVunTpIuXKlTM7XqZsNpvUqVNHtm3b5vi3qlWrSteuXaVr167SpEkTy677qKgo+eabb1L9W8WKFSUhIUESExOldevWkidPHpPSZe4///mPjBw50vGzYRjSqlUr6dGjh9x5551SsmRJE9MhMwcPHpTw8HD7j+GqejCny6Rw0QdQuHjrGDx4sLz++usSExMjvXv3lpiYGEseJJxdvXpVatWqJfXr15fu3btLbGysFChQwOxY2Tpy5Ii8++670q1bN2nWrJllTyTS+vvvv2XPnj3SqlUry28bzk6ePCkBAQFSqFAhs6O4JSUlRfz9/c2OAQAAAAAAAAAAADds3bpVqlev7nP3eYYPHy6qKnfccYdUrlzZ7Dgumzhxojz55JPSqVMnueOOOyQxMVFCQkLMjpWt/fv3S5UqVSQ5OVkKFiwosbGx0q1bN4mOjrb0PW+bzSb169eXzZs3O/6tdOnS0qVLF+nWrZu0bdtWAgICTEyYuT59+sjo0aPT/XujRo0chYA1atQQwzBMSJe56dOnS69evTJ8rUyZMpKYmChdu3aVdu3aWWrdr169Wlq1apXp60WLFpXY2FhJTEyUyMhIKViwoBfTZe7AgQNSqVIlSU5OTvean5+ftGvXTnr06CHdunXziX3Nv8XNKFz0jUoe4Bbx8MMPi5+fnyxatEgSExOlfPny0q9fP9m7d6/Z0TIVFBQkjz32mMyZM0d69uwpJUqUkDvuuENmzpwpFy5cMDtepkqVKiU7duyQli1bSlhYmDz99NOyfPnyDA98VlKqVCl58MEHpUSJEtKrVy+ZNWuWnDt3zuxY2fLz85MqVapI586dZcyYMbJ//36zI7nkwIED0qhRI3nttdfkl19+EZvNZnYkl+zdu1fuv/9+mTVrlpw9e9bsOC7bt2+fDBw4UDZs2GD5Icqd/f333zJ+/Hg5dOiQ2VHccuDAAZk6dapPDcUvIvLPP//IhAkT5PDhw2ZHccvhw4dl+PDhsmPHDp/avo8dOyZ9+/aVn3/+WVJSUsyO47KTJ0/KM888I0uXLpUrV66YHcdlp06dkt69e8vcuXMtfR6V1pkzZ+Txxx+XefPm+VzuPn36+Nx2cvbsWenXr5/PfS7Pnj0ro0aNkj///NPsKG45d+6czJgxQ06dOmV2FLecP39eVqxYIdeuXTM7ilsuXrzoc8dKEZHLly/73DmViEhSUpJP7f/skpOTfebazJnNZvO5bVvEd6dNAwAAt7ZLly6ZHcEjK1as8Kk+e7vBgwfLe++9JwcP5rj2wKsWL14sZcqUkSeeeEK+//57y98DtOvYsaO8/PLLUqVKFWnYsKEMHjxYdu7caXasbN13331SokQJWbp0qTz66KNSqlQp6dSpk3z88cdy5MgRs+Nlqnz58nLvvfeKyPX+lJkzZ8pdd90loaGh0qVLF/nss8/k9OnTJqdMz8/PT1599dVU/3b48GH5+OOPJSIiQkqWLCkPPvigzJ8/Xy5fvmxSyoz997//zbCw77fffpN+/fpJrVq1pHr16vLKK6/Ir7/+apk+gB49ekilSpUyfO3QoUPy8ccfS+fOnaVEiRJy3333ydy5c+XixYteTpley5YtpUOHDpm+fvr0aZk2bZp0795dQkJCJCYmRsaNG2f6fc/w8HDp0aNHhq/ZbDZZvny5PP7441KqVCmJjIyUSZMmWfKzilygqjSLNxEJExEVET1w4IDCt3Xr1k3t/z/tzTAM7dy5s86ePVuvXr1qdsR0zpw5o4UKFUqXO2/evNq1a1edMWOGnjt3zuyY6axevTpd5uLFi+vDDz+sixcv1itXrpgdMUNjx45NlTkgIEAjIiJ09OjRun//frPjZer1119Plbtu3brar18//fXXXzUlJcXseJl69NFHHZlLlCihDz30kM6bN08vXLhgdrQsJSYmqohonjx5tGPHjvree+/p7t27zY6VJZvNpm3atFER0bCwMH3iiSd00aJFeunSJbOjZclms2njxo1VRLRRo0bav39/Xb9+vaW3a9XruRs2bKiGYWiLFi108ODB+scff6jNZjM7WpZsNps2bdpURUQbN26sAwYM0N9++83yuVVVO3XqpCKilStX1ueee06///57TUpKMjtWtrp06aIioqGhofrggw/qnDlz9Pz582bHylavXr1URDQ4OFi7deumkydP1mPHjpkdK1uPPPKIiogGBQVpTEyMjh07Vg8ePGh2rGz17t3bJ3M//PDDju2ka9euPrOd2LfvkJAQfeCBB/TLL7+05Pl2WnfccYeKiFatWlWff/55Xb58uU/sB6OiotTPz09bt26t77zzjm7dutXyxx2bzaatW7fWQoUK6V133aVTp07V48ePmx0rWzabTW+//XatXLmy/t///Z9+9913lrwGTislJUUbNGigLVu21KFDh/rENqKqmpycrLfffrtP7f9Ur+du3bq1PvLII7pgwQLLXy/YXbt2TSMjI/X555/XH3/8UZOTk82O5JLk5GTt2rWr9uvXz2fOu1Wv5+7Zs6e+9dZbum3bNrPjuCwlJUUfeOABfffdd3XPnj1mx3GZzWbTxx57TEePHu0T54B2NptN+/TpoxMmTPCJ46SdzWbTl19+WWfOnOkT54B2NptNBwwYoIsWLbJsv2tGbDabvvPOO7pixQq9du2a2XFcZrPZ9L333tPVq1dbvo8qrVGjRulPP/3kM8dKuyFDhui8efN85tzE7qWXXtJ33nnH8n3HaT355JMaFxenn376qZ4+fdrsOC4bOXKkBgYGanx8vH722Wd65swZsyO5ZOXKlY77JM2bN9eRI0fq33//bXasbKW9fxkSEqK9e/fWb7/91vL9EREREenuYdauXVsHDBigW7ZsMTtepkaOHJkut/1ed6tWrXTUqFGWvJe5bds2NQwjw+z2e22RkZE6btw4PXr0qNlxHZKTk7VKlSqZ5ra34OBgvfPOO3XGjBl69uxZUzOfP39eL126pA8++GC2ue2tTJky+tRTT5n62d2yZYtu3rxZ+/bt63Jue71EQkKCTp48WU+cOOH13N99950uXbpU33jjDbdy21uTJk30rbfe0s2bN3u1P2DVqlW6YsUK/eSTT9zKGxAQoLGxsTp16lTTt/V/qwMHDjj/PwnT3KiJy42F0ChcRPY2b96sb7zxhuMmZGYtNDRU//vf/+rOnTvNjqyq13N/9NFH2qJFi2wPylYqYvz777/122+/1cqVK2eauVChQnrPPffonDlz9OLFi2ZHVlXV48eP66+//qqFCxfONHf9+vX1jTfe0PXr11vmhsL58+d148aNGhQUlGHmUqVK6aOPPqoLFiywzLpWVU1KStLNmzerv79/usxBQUEaHR2tH330kSUv0H///fcM13XNmjX15Zdf1lWrVlmy82/58uXpMufPn18TEhJ0/PjxeujQIbMjZmjRokXpcpcuXVp79+6t8+fPt2yh64IFC9LlLl++vD799NO6dOlSvXz5stkRM/T1119neOFqX99W2o84c+7gcz7W3HXXXfrZZ5+ZctHqioz2J4GBgRoZGakffvihJTuaVFV37Nihfn5+qXIbhqEtW7bUd955R7dt22aZ46Sz3bt3Z3jcady4sQ4cOFA3btxoydx79+7VPHny+FzujNa3vaB7yJAhli0+ymj7DgwM1M6dO+vo0aN13759ZkfM0KZNm9JtI4ULF9YePXpYej/466+/pstdsWJFffbZZ/Wbb76x7I33tOdVvvKwwuLFi1PlLliwoN555506ZcoUSxfWzZkzJ1XuSpUqaZ8+fXTZsmWWLr6cPn16um1k6NChlj1O2k2ZMsWRO1++fJqYmKiTJk2y9Daiqjpx4kRH7pCQEH3ooYd0/vz5li9wcM5drlw57dOnj08U8EyYMMGRu3r16tq3b19dt26dpbdt1dS569evr4MGDbLsOYmz8ePHO3I3a9ZMhw0b5hNFMOPGjVMRUT8/P23fvr2OGTPGJ4ovP/roI0f/VFxcnGk3Qt01evRox/G9Z8+eOnv2bJ94MO69995z7LsfffRRXbJkiaWP73b23KVLl9annnpKv//+e8vvu1VVx4wZoyKiJUuW1CeffFK/++47n8g9depUFREtUKCA9uzZU7/88kvL9lE5c+5na9iwoQ4ZMkR37dpldqxsbd++3ZE7ICDAZ4oYz507p0WKFEl1Le8LRYw2m02bN2+e7tq4WbNmOmLECMv2D+7du1cfe+yxDO+VFCtWTB955BFdunSp5YoYFy9erK+99lqW912rV6+u/fr1s1Sf29ChQ10u6mrSpIm+8847ltjf9OrVS++44w4tWLCgS9n9/Py0TZs2+v7775t6f7B+/fpauXLlLO8ZZ9QCAwM1Ojpax48fb0oRZmhoqFt507YiRYpor169dM6cOV6991aqVKkc5RYR9ff31/bt2+sHH3zgtW2nZMmSOc7t3Nf1/PPP6w8//HDTz82qV6+e47xBQUHapUsX/fzzz33imuNWQeHiv7QJhYu3hMmTJ7u9s23btq1OmzbN1MISeyeCJweJ6dOnm1bE+OGHH7qVOV++fNqtWzedPn26qReP9s49V1vZsmX1iSee0CVLlph6Q9Xemerquo6Pj9fx48fr4cOHTcus+r/Oa1da/fr19fXXX9e1a9ea/hTzxIkTMyweSdtCQkL0/vvv19mzZ1viqZPp06en6rTJrDVu3FjffPNN/f333y1xQT5r1qxsT/zz5s2rMTExlip0nTt3rpYpUybL3Pnz59fExESdMGGCZYpGv/rqq2wvEJ3Xt1U6zebPn68hISFZ5vbz89NWrVpZajSvBQsWuNTxUa9ePUuNortw4ULNnz9/trmrVKmiL7zwglcutF2xZMmSTIv8nVu5cuX0mWee0W+//dYSN8u+/vprzZs3r8/l/u677zQ4ODjb3JUqVbLUKKkrVqzQIkWKZPkUuIhonTp1tG/fvrpmzRpLfC5XrVqlJUuWzDK3fT9opRHr1qxZo+XKlcsyt33EzokTJ5p+/mq3fv16rVatWrafyaeeekoXL15smaKpTZs2ab169TLNbBiGNm/eXN9++23dtGmTJbYR1esjM9hHhM6oFSpUSLt37265kS///PNPbd26daa5K1eurM8//7yuWLHCEvs/u927d2vHjh2z3I8MGzbMMg982u3fv18jIyMzPe/u0qWLTpkyxXKFRwcOHNDY2NgMcxcvXlwfeughS458efjwYU1ISMh0//d///d/+sMPP1jugb6jR49q165dM8xdrVo1ffXVVy1ZfHn8+HHHyMoZXSsMHDhQt2zZYrncJ0+e1O7du2eYu3nz5jp8+HBLFl+ePn1ae/bsmS6zv7+/durUST/66CPLXMM7O3fuXIYP7efNm1e7dOmiU6dO1VOnTpkdM50LFy7o/fffn+Hx/d5779W5c+dasjjt0qVL+tBDD6XLHRISoo888ohliy8vX77sGBk/7THHyrmvXr2a4chR+fPn1zvvvFO/+OILS94wt49QnNEDlA0aNNDBgwfrX3/9ZXbMdGw2m0ZERGTY92PlIkabzaa1atXKtDjKykWMBQoU0ICAgCyvMa1YxBgYGJhlZnsrWrSoPvTQQ7p48WJL7GNc6WdzblWqVNFXXnnF9AFNXOlny+x8cdCgQaaNlO5qwWJmrUmTJjp06FCv7y/dLVjMqPn5+Wnbtm31vffe89pnt2jRojnObW/2BxmnTJmiJ0+evKm5s7u/40lr3Lixvv322zd1289poWhmrVixYnr//ffrl19+eVPOccqXL5+refPly6fdu3fX2bNnW/Lc/VZC4eK/tAmFi7eEYcOGebyjLVq0qPbp00c3b97s9dwjRozI0UEiKChIExMTddq0aV4tnLI/bepJCwwM1JiYGJ06darXO7jdLVx0boUKFdIRI0aYcsPJ3UJRezMMQ3v37m3azT13ChedW9OmTXX9+vWmZFZNPTqDq61IkSI6evRoUwt3PCng7ty5s+7YscO0zKqqn376qVuZAwIC9MUXXzR99Nlp06a5lTs4OFgHDRpk+iiMn3/+udv77Jdeesn0zuFZs2a5vX336NHD9HO7tKNHudIaNWqkv/zyi6m5582b53busLAwnT17tqmdexmNgppdK168uH7yySemFqZlNOpsdi0kJETHjx9vau6MRm/NroWHh5u+nSxbtswnP5cZjaqcVTMMQ++++279559/TM39ww8/uJW7YMGC+s4775h+oyOjUX6zajVr1tRly5aZmllV9eeff3Yrd/fu3S3xUMjatWtdzpw/f359++23LTFS5/r1613OXb58eZ03b54lio42bNjgcu6WLVvq77//bnZkVc141NmMmr+/v3bv3t0yN3y3bNniUu7g4GB94oknLFN46TwKU1YtNDRUX331VdOvF+x27tzpUu5y5crp4MGDLbEvUVXdtWuXS7mrVaumY8aMscRDQ6rXR2FyJXf9+vV1+vTpltgHql6fScaVc6mWLVta4vhu988//2SbO0+ePBoTE6MbN240O67DkSNHXDq+33PPPbp3716z4zocP34829yFCxfW3r17W+bhG1XVU6dOuZT74YcfNr3PxNmZM2eyzW2flWrNmjVmx3W4cOGCy/vBYcOGWeZG/+XLl13KbZ8ucubMmZZ4oO/q1asu5Rb5XxHj9OnTTT9uJicnu5zb3po2barvvvuuqfuXlJQUt3Pb9zH333+/Lly40LSHXNLOsuFOq1Chgr744ou6du1ar+fOrrjVlVajRg3t16+fV+95u1somlWrU6eODhgwwCv3rVx5cN/d1rhxYx08ePBNnc0lp4WimTV/f3/t0KGDjhkz5qaMxOjKwCs5adWqVdNXXnkl14sYixcvflNzi1yv90hISMjVz+3NKrgUud5/cffdd+tXX31lmWvqW8nNKFzMIwC84tixYx7/7enTp+WDDz6QDz74QJo1aya9e/eWHj16SHBwcC4mzNiVK1dy9PfFixeXIkWKOJZVqFChXEiVvaSkJI/+rmLFihIZGSmRkZHSoUMH8ff3z+VkWdPrxcouK1y4sERFRUlsbKxERUVJaGjoTUqWe4KCgqRjx44SFxcnsbGxUq5cObMjZcswDGnatKnExcVJfHy81KlTRwzDMC1PYGCgFC5cWM6ePZvl75UtW1bi4+MlLi5OOnToIPny5fNSwozlz59fypYtK//880+mv5MnTx5p06aNxMfHS3x8vFSuXNmLCTNWqFAhqVKliuzatSvT3ylWrJjExMRIfHy8REZGSuHChb2YMGOFChWS2267Tf78889Mf6d06dKOdd2xY0fTtxERkYIFC0rVqlXlr7/+yvR3ihcv7vg8du7cWQoWLOjFhBkLDg6W8uXLy/79+zP9nbx580qnTp0kPj5eYmNjpWzZsl5MmHmmMmXKyKFDh7L8vcaNGzvWeYMGDUzdB4pc3w+GhobKiRMnsjx2li9f3rG+27VrJ3nz5vViyvQCAgKkWLFicvr06SxzlyhRQmJiYiQuLk4iIiK8dv6UmYCAAClevLicOnUqy9wlS5ZMldvsz2ZgYKCUKFFCjh8/nmXuihUrOo6Xbdq0kaCgIC+mTC8oKEjCwsLk0KFDYrPZMv29Jk2aOD6X9erVM/1zmS9fPqlcubLs3bs309z58+eXzp07Oz6XJUuW9HLK9AoUKCC1a9eWbdu2ZZo7PDxc4uPjJSEhQdq1a2f6NiJy/XjZuHFj+e233zLdvps2bSoJCQkSHx8vtWvXNn0bEbl+ftKqVStZtWpVhq/ny5cv1TZSqlQpLyfMWKFChaRDhw6yfPnyDF8vUaKExMXFOfZ/BQoU8HLCjBUqVEgiIyPlm2++yfD1ypUrO/Z/rVu3lsDAQC8nzFihQoUkNjZWFi9enOHrderUkdjYWImNjZVmzZpJnjzW6N4sVKiQxMfHy8KFCzN8/fbbb5fo6GiJiYmRxo0be72/ITMFCxaUhIQEWbBgQbrX7NfC0dHREhUVJY0aNbJM7gIFCkiXLl3kq6++Svean5+fNG/eXKKioiQqKkoaNmwofn5+3g+ZgQIFCki3bt1k7ty56V7LkyePtGjRQqKioiQyMlLq169vmdzBwcFy5513ypdffpnutcDAQGnTpo2jP80qxxyR67nvuusumTVrVoavtW/fXiIjIyUqKkqqVKliQsKM5c+fX+6++275/PPP071WrFgxiYiIkMjISOncubMlrivt8uXLJ7169ZJp06aley0sLMyxrjt27ChFixY1IWHG8ubNKw888IB8+umn6V6rVq2aY9tu27atV/rjXRUUFCQPPvigTJkyJd1rtWrVcuRu3bq1Jfp77AICAuShhx6SyZMnp3utatWq0rlzZ+ncubO0a9fO9GthZ/7+/pluJ0WKFJGOHTtKRESERERESKVKlUxImLnM9iciItWrV3fkbteuneTPn9/L6TKWkpIi0dHRsmzZMklOTs7wd+rVqyedOnWSiIgIadWqlSWOmcnJyVK3bl35888/s7y3VqFCBcd6b9++venns0lJSVKgQAG5dOlSlv0QItf3Pa1bt5ZOnTpJ+/btpUSJEl5KmZ4n9wFLlCjhyF6/fn1Tzm2Tk5OzXc+ZKV++vHTu3FmaNm3q9XsnqirXrl3L0TKqVq0qHTt2lCZNmkj58uVzKVn2PL1nnFatWrUkIiJCmjdv7pV7mzld384Mw5AmTZpIVFSUtGvX7qaeQ2a2386JwoULS0REhOPa9Gack6WkpOT6Mu0aN24sUVFREh0dLVWrVs3VZXu6P3FFSEiIREdHS2xsrHTu3DlXz+EvX76ca8tK6+LFi/L555/LzJkzpV27djJq1CipV6/eTXs/5ILcqH6kMeIisjdr1ix96KGHsp22M6tWuHBh7dixo7766qv6/fffeyX3+vXrdcyYMVq1alWXMhYoUEDj4+P1/fff123btpn2pPL+/fv122+/zXZY5+DgYI2Li9PRo0frn3/+afqT1adPn9aNGzdm+TRKjRo19MUXX9QffvjBMtN5Xb58Wbdv357p9JdlypTRxx57TBcsWHBTnoLJiZ07d2b4dFuBAgW0W7duOnnyZD1y5IjZMdP55ZdfMlzXt99+uw4cONAy0yyn9c0336TLXKxYMe3Vq5d+8cUXlpsiw+6rr77K8OmoF198UX/66SfTn4rNzNy5c9Plrl+/vr7xxhu6bt06SzyJnJGMRnerUaOGvvzyy7pq1SrLTfdml9FoY6VLl9bevXvrggULLPPUelpr1qxJl9s+jfj48eNNHw0tMxs3bkyX23kaWitOVaequnXr1gynpG3YsKG+8cYblpmOO60dO3ZkeLxs1KiR9u/fX9euXWvJ3Nu3b0+3vv39/bVNmzY6bNgwU89Xs7J58+Z0ue3TjE6YMMFSI6Y4+/3339NtI2XLltUnnnhCFy9ebPqovplZvXp1utyNGzfWgQMH6oYNGyy5jaimH50zX758mpCQYOltRFV1/vz5GV4rLFq0yHJT0TpLOyp03bp19bXXXtNffvnFkvs/O+fR2v39/bVdu3b67rvv6o4dOyy7baumHtU/f/78Gh8fr2PHjrXMKIWZGTVqlCN3kSJFtEePHvrpp59a8prS2fDhwx25S5Qooffff7/OmDHDMqMrZmbo0KGpjjePPPKIzp4925JT0TobMmSII3f58uX18ccf13nz5nl1phJPvPXWW6muh/v06aOLFy+2XD9PWgMHDnTkrlevnr700kv6/fffW37kjf79+zuucVq0aKFvvvmm/vrrr5a9Hrbr16+filwflaVz5846cuRI3bp1q6WPOaqqr7zyiopcn9Gma9euOnbsWEuNrpiZl19+2dG31qNHD504caJP3EPq27ev435Ht27ddOzYsbpnzx6zY2Xr7bffVpHrI4e2bt1aBw0apL/88ovlP5fOsw6VKFFC77nnHp08ebLlt5Vvv/021fl3eHi4PvzwwzpjxgxLn1vt3bs33fTFRYsW1TvuuEPHjh2ru3btMjtihq5evaqVK1fO8J5DgwYN9KWXXtJly5ZZ6potJSVFDxw4oHFxcZneT8ubN69GRETosGHDdOPGjZa4dktOTtalS5fqY489luX9S5Hrsz4kJCTomDFjTL+HmZKSooMHD9ann34629z2ZoX9vM1m0+7du2uXLl3cHjGyaNGi2r17d50wYYIp+8zq1atrpUqVNF++fG7ltrdSpUrpAw88oJ9//rlXr+1yY2ROe3953759deXKlV65B+fpes6oFS9eXO+++26dOnWqHj169Kbmzo0pxdOu99dff/2mn+P4+/vnam57u+222/TJJ5/UL7/80vJ9Gr6KqaL/pU0oXLxl7Nu3z+VhnQMDA7Vp06b6zDPP6NSpU3XHjh2mnVBv2bIl02HL/f39tUWLFtq/f39duXKlZQrpVFWnT5+eYeb69evryy+/rMuXL7dkJ2Xa6bkDAwO1c+fO+sEHH+ju3bvNjpepF198MVXuJk2aWLqAzu6+++5zZK5QoYI+++yz+s0331hy23AWHR2tIv8rLpowYYIeOnTI7FhZstls2rx5cxURrV69uv73v/+1dNGfnc1m0/r16ztu9I4YMUL//PNPs2Nly547MDBQo6Ki9KOPPrLEVIvZsdls2rhxY82TJ4926NBBR40aZdkOPWc2m03btGmjItc786xeHOosKipKRa53AD/11FO6ZMkSS3VCZqZr164qcr0o4O6779Zp06b5xIVojx49VOT6wxNdunSxdHGos3vuuSdVbl847qiq3n333So3OhrvuecenTFjhp48edLsWNm666670n0urVr05ywxMVFFrhe0DhgwwPLngXadO3fWvHnzamxsrI4bN84nPpM2m01btWrlKJBfuHChT+y7bTabNmzY0HGsXL9+vU8cK5OTk7V+/foaGRmpY8aMualTKuWmq1evauPGjfW+++7TL774Qk+fPm12JJdcvnxZW7durc8884wuXbrUJ/Z/qqoXL17UyMhI7du3r65atcry1zl2Fy9e1MTERB00aJDPfCZVr+fu3r27Dh8+XDdv3uwTxxvV67nvueceff/99y1fQOzs0qVL+tBDD/lMMZfd5cuX9YknntApU6b4xLmr3ZUrV/SFF17QL7/80mf23arXjzuvv/66fv311z5xXmKXlJSkgwcPtlzfdnaSkpL03Xff9YmCVmdJSUk6bNgw/fnnn33mWKl6PXe/fv10wYIFeu7cObPjuCwpKUkfeughHT58uGWKtlyRkpKiHTp00C5duuiYMWN0586dPnPMvO+++zQwMFA7dOiggwcP1nXr1vnEZ9T5waFy5crpI488ojNnztRjx46ZHS1LGd2/dC60tOq1RFJSklapUiXd/Us/Pz9t2rSpvv7665Y9Lj377LOZ3tv28/PTZs2a6RtvvKGrV6+21H7++++/z/bevD3/gAEDdM2aNZb47J4/f97lKXXz5Mmj7dq106FDh+rGjRtN229eu3ZNr1y54riP6WorVqyY9uzZU6dMmWLKA7k7d+7UrVu3au/evd0uljMMQ5s2bar9+/f3+kMNK1eu1OXLlzsexHG32QfymThxoteumWw2my5btkwXLFigjzzySI4KFcuUKaP33XefTpkyxSfugd4KbkbhoqHXC+NgYYZhhInIARGRAwcOSFhYmMmJ4KmuXbtmOIWNYRhSo0YNadKkiTRp0kRuv/12qVu3rmWmaUpMTEw1ZVC1atUcw9i3bdvWElOipnXt2jWpUaOG7N69W0JCQqRz586OKVSsMt1YRi5evCgVK1aUPHnyOKa+6tSpk2WmGsvM0aNHpW7dutKqVSuJi4uT6OhoS69nu927d8vDDz8s0dHREh8fLzVr1rTMdEZZ2bt3rwwfPlzi4+Olffv2pk996qr9+/fL3LlzJT4+3lJTMGXn4MGDsnLlSomKirLUVEbZOXz4sPzyyy+Wmq7QFYcPH5Yff/xRoqKipEiRImbHcdmRI0fkq6++kri4OJ86Vzty5IhMmjRJ4uLipE6dOj6xDxS5ftwZOXKkxMbGSosWLUyfUsdVx44dk8GDB0t0dLS0bdvWZ/bfx48fT5XbCtPkuuLUqVMybNgwiYmJ8ant5MyZM/Lxxx9LTEyM1K1b12c+l+fOnZMvvvhCYmNjpUyZMmbHcdmFCxfk+++/l06dOllq6r/sXLx4UbZt2yaNGjWyxJRorrp06ZKcPHlSwsPDzY7ilitXrsi1a9ekYMGCZkdxy7Vr18TPz88yU/u6ymaziWEYPrP/s1NVn8sMAABgRSkpKaKqPnMdb3ft2jX58ccfpUWLFpaZdtsVycnJ0qdPH6lTp4506tRJqlSp4jPntYmJifL777877ll27NjR1OmrXTVu3Dh54oknROT69M/2+5cdOnSw9D2Iffv2yW233ZZqCuPw8HCJjIyUyMhI6dChgxQrVszEhBlTVWnevLn8+uuv6V4LCwtz5O/YsaPl8r/99tvSr1+/TF+vUKGCREVFSVRUlHTo0MEy/RZr166Vpk2bZvk7hmFI48aNHdM/N2nSxPT+i7Nnz0rFihXl9OnT2f5uaGioREZGSnR0tHTu3FlCQkK8kDBjqiqNGzeW33//3aXfr1atmsTGxkpMTIy0bt3atJqUa9euSc2aNWXXrl0u/02RIkWkffv20rFjR+nYsaNUq1bNZ45Zt4qDBw869+2Gq+rBnC6TwkUfQOHirWHRokUSHx8vItdP4pyLFBs1aiSFChUyOWHGVq1aJXfccYd07NhRIiIipFOnTj5xk2nNmjWyYsUKiYyMlAYNGvjMzbx9+/bJqVOnpH79+j6TWUTk9OnTkj9/fp8pZLDjxhIAAAAAAAAAAIBvSU5Oll27dvlc0Yq9ULR27doSERHhU4WiDz74oMyePVvatWvnKLb0hfU/f/586dKli4iI5M2bV9q0aSORkZESFRUlNWrUsGz+U6dOSaVKleTs2bOOf8uXL5+0a9fOUaxYtWpVS+bv3LmzLFu2LN2/h4SEONZ9ZGSkhIaGmpAuc/3795eBAwdm+Jqfn580a9ZMoqKiJDo6Who2bGiZe/lfffWVdO3aNdPXAwMDpX379hITEyOxsbFSuXJlL6bL3IcffijPPPNMlr+TL18+ad26taNQsX79+qYXuP7bUbj4L0Xh4q1h0qRJEhoaKrfffrtPjERnd+rUKSlSpIhlDrwAAAAAAAAAAAAAAO9ISUmRVatWSbNmzXxqEBObzSZ33323lC1bViIjI6VNmzaSL18+s2O55NVXX5WhQ4dKzZo1HYWKrVu3tvwsPj/++KO0a9dORK6Pqti0aVOJjo52FPtZtejsxIkTUrFiRblw4YLj30qWLOkoVIyIiLDciJwi17fxBg0ayB9//JHq38PCwhyFih07drTcTDPnz5+XypUry/Hjx1P9u7+/vzRt2tRRqOhr+5x/g5tRuOhbY2wDPuzhhx82O4JHrHgABgAAAAAAAAAAAADcfP7+/tK2bVuzY7jNz89PvvjiC7NjuM1ms0nt2rVl//79Uq5cObPjuExVZcyYMXL//fc7iv2KFy9udiyXDBs2TC5fviytW7d2FCvWq1fP8oM7zZkzR/744w/x8/OTFi1aOIoV69SpY8nROO2GDx/uKFqsW7euo1CxTZs2lpnyHN5D4SIAAAAAAAAAAAAAAABgMj8/P7n33nvNjuGRL774wvLFfmmpqrRr10769u0rRYoUMTuOW3bt2iUzZsyQyMhInxmQ6vLly3L+/HmZOXOmtG/fXkqUKGF2JJiMqaJ9AFNFAwAAAAAAAAAAAAAAAADMcDOmivatUmcAAAAAAAAAAAAAAAAAAODTKFwEAAAAAAAAAAAAAAAAAABeQ+EiAAAAAAAAAAAAAAAAAADwGgoXAQAAAAAAAAAAAAAAAACA11C4CAAAAAAAAAAAAAAAAAAAvIbCRQAAAAAAAAAAAAAAAAAA4DUULgIAAAAAAAAAAAAAAAAAAK+hcBEAAAAAAAAAAAAAAAAAAHgNhYsAAAAAAAAAAAAAAAAAAMBrKFwEAAAAAAAAAAAAAAAAAABeQ+EiAAAAAAAAAAAAAAAAAADwGgoXAQAAAAAAAAAAAAAAAACA11C4CAAAAAAAAAAAAAAAAAAAvIbCRQAAAAAAAAAAAAAAAAAA4DUULgIAAAAAAAAAAAAAAAAAAK+hcBEAAAAAAAAAAAAAAAAAAHgNhYsAAAAAAAAAAAAAAAAAAMBrKFwEAAAAAAAAAAAAAAAAAABeQ+EiAAAAAAAAAAAAAAAAAADwGgoXAQAAAAAAAAAAAAAAAACA11C4CAAAAAAAAAAAAAAAAAAAvIbCRQAAAAAAAAAAAAAAAAAA4DUULgIAAAAAAAAAAAAAAAAAAK+hcBEAAAAAAAAAAAAAAAAAAHgNhYsAAAAAAAAAAAAAAAAAAMBrKFwEAAAAAAAAAAAAAAAAAABeQ+EiAAAAAAAAAAAAAAAAAADwGgoXAZP88ccfcuXKFbNjeOTUqVNy6dIls2O47dChQ3L27FmzY7ht06ZNkpSUZHYMt5w+fVp27txpdgy3bdq0SS5evGh2DLecPHlStm/fLqpqdhS3bNiwQc6cOWN2DLeoqvz0009y9epVs6O4RVVl+fLlPnnM+fnnn+XYsWNmx3Db4cOHZe3atWKz2cyO4raff/5ZTpw4YXYMtx0/flx+++03n1znq1ev9snzqk2bNvnktrJ9+3Y5fPiw2THctm3bNvnnn3/MjuG2P/74wyfX9/r1633y+PPrr7/KqVOnzI7htp9//tnnzgtFRNasWeOT15dr1671yfX9xx9/yMmTJ82O4bZdu3bJoUOHzI7hthMnTvjkNb3NZpN169b55Dnh5s2bffKc8O+///bJY31SUpL8/vvvPteXIiKyceNGn91W9u/fb3YMt6mqrF69Wq5du2Z2FLft3r1b9u7da3YMj6xdu1ZOnz5tdgyPrF69Ws6fP292DI/8/vvvcvToUbNjeOTMmTOyZs0aSUlJMTuKR/7880/ZvXu32TE8tmPHDtm3b5/ZMTx26NAh2bp1q0+eF4hcPwdeuXKlTx6r7P744w+fvE61O3LkiE9/Bq5everTn4GrV6/69D70yJEjcuHCBbNjeOTixYty+fJls2N4RFV9dpu/FVG4CJjkt99+k5CQEOnevbvMmDHDp07IbDabVKhQQXr27Clz5szxmc4yVZWwsDCJiYmRiRMnyvHjx82O5JLly5dLaGio3HPPPTJr1iyf6PgoVKiQJCQkSPXq1eWVV16RNWvW+MSNg23btklISIgkJibK5MmTfWIbKVy4sCQkJEi1atXkpZdektWrV/tEB83BgwclNDRUIiIiZPTo0T7ReW0YhsydO1dCQkLkjjvukE8//dQnthHDMGTevHlSvHhxSUxMlPHjx/tM8cuhQ4ekVKlS0qxZMxk4cKDPFKaFhIRIz549pXTp0vLggw/KrFmzfOY4v2/fPilRooS0aNFC3n77bdm0aZNPXLwVK1ZM7rnnHgkLC5PevXvL/PnzfaYQ/aeffpLixYtLXFycjBs3zmc+n2fOnJGSJUtK69atZfjw4bJjxw6f2FZERMLDw6VJkyYyaNAgn9nG/fz8pHz58tK4cWN58803ZcOGDT6R+9q1a1K2bFm5/fbbZeDAgT6T+/Tp01KqVClp3ry5vP322/LHH3/4RO59+/ZJaGiotGnTRoYNG+YzD7ds375dQkNDpUOHDjJy5Ej566+/zI7kkq1bt0pISIh07NhR3nvvPZ/pJN+1a5eEhob6XO6TJ09KiRIlpG3btjJixAif2U4CAgKkYsWK0qRJE3nrrbdk8+bNPvG5LFy4sERFRUn16tXl5Zdflp9//tknrjP9/Pzkgw8+kLJly8pjjz0mixcv9pkHuLZs2SIhISHSpUsXn+mPEBHJmzevVK1aVZo2bSpDhgyRbdu2+cQ2HhgYKK+99pqUL19ennnmGVm2bJnPPDS8YcMGx7YyadIkn3nYokCBAlKnTh2pX7++vPHGG7J+/XqfuL43DEOmT5/u6Jv9/PPPfeb6vkCBAlKrVi2pXbu29O3b16eKunbv3i2hoaHSvn17nzo/FLl+36d48eLSuXNnGT16tE8Vspw7d05KlSolTZs2lbfeestnrpdFrp+7PPvss46+uDlz5vjEfRQ7++e1Zs2a8tJLL8nKlSslOTnZ7Fguy5cvn9x2221Sp04defXVV33m3NGuWLFiEhERIZUrV5Y+ffr41HmByPVz4AkTJkiJEiUcxypfK/4+fPiwo19g1KhRsmvXLrMjuaVgwYLStGlTqVOnjrz22mvyyy+/+MR5jl1QUJA8++yzUrlyZXnuuefk+++/96lC2MDAQHnwwQelVq1aPrkPsvefxsbGyrhx43zq4Ud/f3+pV6+e4zrWV65NRK7XjSQkJMh//vMfWblypU9tM7ckeyUpzbpNRMJEREVEDxw4oLg1JCUlably5dT+/zYgIEA7d+6sH3/8sf7zzz9mx8vWM88848geHBysPXr00Dlz5uilS5fMjpal3r17O3L7+flpu3btdPTo0Zb+bF24cEFDQkIcuQMDAzUmJkY/+eQTPXz4sNnxMjVlyhRHZhHRUqVK6WOPPaaLFy/Wy5cvmx0vQ8nJyVq1atVU20jr1q11xIgRumvXLrPjZWrSpEmp1nWJEiX0kUce0YULF1r2M2mz2bR+/fqpctevX1/feOMN/e2339Rms5kdMUOHDh3SvHnzOjIbhqEtWrTQoUOH6tatWy2b+59//tGgoKBU67tBgwb6+uuv66+//qopKSlmR8xQSkqK1q1bN92+5OGHH9Y5c+bouXPnzI6YqcmTJ6fK7e/vr23bttVhw4ZZeltJTk7WGjVqpMoeFhamjz32mC5YsEAvXLhgdsRMTZs2LVXuoKAgjY6O1g8//FD37dtndrxMnTt3TosVK5Yqe8OGDXXAgAGW3h+qqrZt2zZV7qpVq+oLL7ygP/zwg167ds3seJnq2bNnqtzlypXTp59+Wr/55hu9cuWK2fEydffdd6f7bD7xxBOWPrdSVY2Pj880t5XPU1q0aJFuO3nqqad0yZIlll3fycnJWrNmzVS5K1WqpH369NFly5bp1atXzY6YoaSkJK1YsWKq3Lfddpu+8MILumLFCk1KSjI7YoauXr2qFSpUSJW7Ro0a+tJLL+lPP/1k2f1gcnKyVqtWLVXumjVr6ssvv6yrVq3S5ORksyNmyGazaevWrVPlrl69ur700kuWzq2q+uijj6bKXbFiRf2///s//f777y27fauqjhs3LsPrzAULFlh2/62qun37djUMI1WfVbdu3fTTTz/VEydOmB0vU8nJyXrbbbel649499139a+//jI7XpZeeOGFVNtKlSpV9D//+Y+uXLnS0p/N1atXp8pdqFAh7dmzp37++ed65swZs+NlKikpKdXxx94v8c477+iOHTvMjpelvn37plrnZcqU0ccff9zS51eqqvv379eAgABH7jx58mj79u111KhRlu4vVE3/+QwNDdUHH3xQ58yZo+fPnzc7XqaSk5O1evXqqbJXq1ZNX3zxRf3xxx8te56lqnrp0iUtXbp0quy1atXSV155RVevXm3p/aJq+uv88PBwffLJJy3/OVVVXbhwYarsAQEBGhERoR988IHu2bPH7HjZ6tOnT6r8xYoV03vvvVdnzpypp0+fNjteth5//PFU+UNCQvSBBx7Q2bNn69mzZ82Ol60PPvggVf6CBQvqnXfeqZ9++qkeP37c7HjZ+vPPP9XPzy9VX3S7du10xIgR+ueff5odL1s2m02bNWuW4fW11c8p7YYPH54qf8mSJfXhhx/WefPmWbpP3e6HH35Ilb9w4cLao0cPnT59up46dcrseNlatmxZunOehx56yGfWf9p9aOPGjXXgwIG6ceNGS98fUFV9//33U12btGzZUocNG2b5axPV1PeUQkJC9OGHH7Z8n4cVHDhwwHl7DdPcqInLjYXQKFyEZz766KNUByHn1qxZMx06dKju3LnT7JgZ2rNnT6qTYOcO4Z49e1q2iPGvv/7KMLeIaNOmTXXYsGGW7HAaPHhwhpntnZPDhg2z3MVHRjcg7a1AgQJ655136rRp0yx3wpu22Mi51alTR/v166fr16+31IliUlKSli9fPsPM+fPnt+xNmjlz5mS6rsPCwvSpp57Sb775xnI32dN2Ijm3SpUqWfYmZFa5S5QooQ899JAliwHnzZuXae6AgADt2LGjjhw50nLHy2vXrqUqhE7bKlSooE899ZQlC3dmzpyZae6goCCNiorS0aNHW67TN6MbG2n34X379tWff/7Zcp1db7/9dqa5y5Ytq48//rguWrTIctvK8uXLM81dtGhRvffee/WLL76w3I3frVu3pipoyOgcZerUqZY7bm7bti3T3Pnz59cuXbroxIkT9ciRI2ZHTWX9+vWZbif58+fXhIQEHT9+vB46dMjsqKmk7fBMmzsxMVEnTJhgudxffPFFprkLFiyod9xxh06ZMkWPHj1qdtRUJk6cmGnuIkWKaM+ePXXatGl68uRJs6OmMn78+ExzFytWTHv16mXJ/WDaYn/nZr/B+OWXX1ruvPC7777LNrcVCzF2796t/v7+mW7f99xzj86cOdNy28mVK1c0PDw8y+PO5MmT9dixY2ZHTadHjx4Z5rbfwB01apTlzmVV0z8A6txq1aqlffv2teSDZ4cOHUr3oJy92W8YfvXVV3rx4kWzo6bToUOHTK81IyIidMyYMfr333+bHTOdTz75JNNt5bbbbtP//ve/lrzJf/z4cQ0ODs4wt73IeMqUKZYsEEl7M9m51axZU1955RVLXmsePnxY8+XLl2HuwMBAjYqK0g8//NCS2/mMGTOyvd60akGX8w38jM5Z7r//fssWc61YsSLb6yArXr+pXi98aty4cZbH0ldeecWyD71k9OC5vdkLpkeOHGm5+0B2+/btS1XkndFx1cpFpJcvX05XdGxv9vtwQ4YM0S1btljq3pCz++67L9Pt3xeKv7/++utM8xcvXlzvu+8+y+47Va8PQhMaGpph/qCgII2JidGPP/7Y0rUeaYvX015HjRw50rIPVdlsNm3evHmW63/s2LF68OBBs6NmKKt9aLly5fSZZ57Rb7/91nL3S1WvP7RRsmTJTPc9Vn7g9Nq1a1q5cuUMz3m6deumU6dOtVwdgxVQuPgvbULh4i0rqxPhtJ0fffv21XXr1lnqhDjtaDUZdThZsYgxu9wionXr1tU333xTN2/ebIl1fvbsWS1SpIjL28ratWst0ZGddoSGzC66O3bsqKNHj7ZEJ1naJ9cza+Hh4frMM8/od999Z4kCtY8//jjbzPaLi/fee0/37t1rdmRNSUnR2rVrZ5u7YMGCetddd1nmya6sOpGcm9WeSEs7WmRmLSAgQDt16qTvvfeeJQq5bTabNmjQINvcItdH9ujTp49lRk3LqijAueXNm1djYmIsMzJgSkqK1qpVy6XsNWvW1P/+97/6ww8/WGJfmNWNDecWGhpqqae+z549m27UxYyac5GXFUZdzmj0q8yO9Z06ddL333/fMh3Ud911V7a57SMdWekJUVfOYw3D0GbNmunbb7+tf/zxhyXOZdOOuphZu/3223XgwIH6+++/m57bZrNpy5YtXc795ptvWiK3q/tw5+1k06ZNpufO6qGnzD6X27ZtMz13RqMuZrYf7NChg2VGZko7sltmLTAwUCMjI3XMmDG6f/9+s2NnOBpqZrmjo6MtdVPowQcfzDa3c6GUFda3quqYMWNc+ly2atVKhw8fbpkb6X/88YdL+2+rPZzo6r6wTJky+sQTT+jSpUstcd2jqvrss89mmztfvnyamJiokyZNskzBa9qRZTJr9hHRN2zYYIlt5erVq5kWFju3kJAQffDBBy010szLL7/s8n7FSufhWd1Mdm72Yt25c+dappA+7aiLmbX69evr66+/bpl+5eweTnQ+z7IXdFmlmCKjURczO/bbr5V3795tdmyHzApX0jYrXQfZLVq0yKXs9iKoWbNmWerhkawePHdu9iI0q814kVWRt3Oz6iikWRUdO7eKFStacmaDnTt3Zjpwi3NzHs3TStu/zWbTpk2burTvtBfCWuE+l7Nhw4a5fG7Zv39/y822k9VD6s7NPhqm1YrRsip+dW6NGzfWN9980zLn9nbOs0Zm1goVKqR33XWX5R7uHTFiRLbZQ0ND9eGHH7bcQ20TJkzIMre/v7+l6hisgMLFf2kTChdvaa7syJ1bWFiYPvPMM5YYzeu3335zOXeBAgW0Z8+eOnfuXNOLGDdt2uTWOq9ataq+/PLLunbtWlNPYPr37+9W7rJly+pTTz1l6hMYV65c0bCwMLdyN2zYUAcOHGjqjfaxY8e6lblIkSJ677336uzZs00bleTKlStatmxZt3LXq1dP33jjDVM7l7IaFSijZr/p+/7775t6UerKTZm0J7Zt27Y1fWqG5557zq3cIten4LN3hJl13Ek71YsrLTg4WBMTE/WTTz4x7Sk6VzvZ07ZatWqZXgz45Zdfup27SJEi2qNHD506dappI2RkNNV1ds0+cqfZxSRvvfWW2+v89ttv10GDBpk6ZURWo19l1mrXrq19+/bVNWvWmHZDbPPmzW7nrlq1qv7nP/8x9cZAVqNFZtYqVKhg+lO5WY26mFmzwlTYWY26mFmzj5K6cOFC0657Zs2a5XZuK0yFndWoi5k1+2jXZt4wymrUxcxajRo19L///a+pU0p/9tlnbueuV6+e9uvXz9QR37755hu3c9sLjsy87kk7dZsrrUGDBqbfzHL1gdu02/crr7xi6nFeVbVbt25uH3esMOp/ViPpZdScH/Qzc9SxAwcOaGBgoMu5rTQVtisP4ji38uXLa58+fUzvm81qJp+MWt68eTUuLs70h6COHTum+fPndyu7VUaRdOVmsnNzHl3JzNF9Dh8+7NKDrM6tVKlS+uijj+qCBQtMvbHs6sOJzq169eqmn2epul4A5dxq1qypL7/8sunbelajLmbWrDJbRHajLmbU7AMrWOEhblcfPHduRYoU0bvvvltnzJhh+sPzrhZ5OzcrjULqatGxcytUqJB2797dMlNKZzXqYmbbv5Ueslu6dKnb+x/7LDtmX3+oXh91MSQkxCf3n6quP6Se9jNslVkbXC1+dW7h4eH61FNP6ddff236Q2F79+7VPHnyuJzdeSRMsz+/WY04mlHLly+fJiQk6IQJE0yfPejq1atarlw5l7M3atRIBw0aZJnBr8xwMwoXDb1eGAcLMwwjTEQOiIgcOHBAwsLCTE4ET6xbt06WLVsm/v7+kidPHsfXK1euyEsvvSSefBaLFi0q8fHx0rVrV+ncubPkz58/13Nv3rxZli5dKnnz5k3XgoKC5P/+7/9k586dbi2zQIECEh8fL927d5eoqCjJly9frufetGmTLFmyRAICAtK1wMBA6d+/v+zatcvt5YaHh0vXrl3ljjvukJYtW4q/v3+u5t6wYYMsWbJE/P39UzU/Pz85d+6c9OvXz6PlFi5cWGJjY6VLly4SFRUlBQsWzNXcGzdulEWLFqXKa/+6ePFiWbZsmUfLrVixonTp0kUSExOlZcuWkidPnlzNvWnTJlm0aJEjr70lJyfLK6+8IikpKW4vMygoSDp27ChdunSRhIQEKVmyZK5mFhH5448/ZMGCBRmu6+XLl3u0zHLlykliYqIkJiZKmzZtJCAgIJdTX9+fzJ8/X/z8/MTPz08MwxBVlQEDBsjVq1c9WmbdunUlMTFREhISpFGjRmIYRi6nvr6+58+fLyLiWP6RI0fkww8/9HiZ1apVk/j4eElISJDmzZvn+rYtcj33vHnzREQcJ35Hjx6VcePGebzMIkWKSFRUlMTGxkp0dLQUL148t+I62HPbbDZRVbHZbGKz2eS9996Ty5cve7zc+vXrS2xsrMTGxkqTJk1yff+9efNmmTt3riOvPf/q1avlp59+8ni5hQsXls6dOzvWeYkSJXIxtcjWrVvlyy+/dKxr+7aSkpIiI0eOlKSkJI+WaxiGNGvWzLHO69Wrl6ufzx07dsisWbNERBznUPavq1atku+//97jZVevXl3i4uIkLi4u1489f/31l8ycOTPVv9nXy7lz52T48OEeLzs8PFzi4+MlPj5e2rdvL0FBQTnK6mz37t0yY8YMR1bDMBxNROSdd96Rs2fPerTskiVLSlxcnMTHx0unTp0kODg413Lv2bNHpk+fni6zPffHH38sBw4c8GjZRYsWldjYWImPj5eoqCgpVKhQruXeu3evTJs2zZE77dexY8d6nLtgwYISGRkp8fHxEhMTIyEhIbkTWkT27dsnn332Waavf/jhh3L06FGPlp0/f36JiIhwfDZLlSrlacx09u/fL59++qnjZ+frMlWVUaNGyblz5zxadr58+aRjx44SHx8vsbGxUrZs2Rzntfv7779lypQpjpzOX202m7zzzjse78Od13dsbKyULl06VzKLiBw8eFAmTZrk+Nl5fV+7dk2GDh3q0Tm4SOrtOzo6WkJDQ3Oc1+7QoUMyceLEDF+7du2avP3222Kz2TxadrFixSQmJkbi4+MlMjJSChcunJOoqRw+fFgmTJjg+Nl5X5KcnCxvvfWWJCcne7TsUqVKpdp/52Z/xNGjR+WTTz5Jtc923ocPGTLE489lWFiYJCQkSEJCgrRr1y5Xj5cnTpyQjz/+2HGtY/9q/37s2LGye/duy+U+deqUfPTRR47rNOf8fn5+snDhQlmxYoVHyy5ZsqTEx8dLYmKidOzYMVf7f06fPi0ffvihI6f9utjeduzYIWPHjvVo2YUKFZLo6Gjp0qWLREdH5+rn8uzZszJ69OgMc9v7I15++WWPPpt58uSRdu3aOa7tw8PDcy33uXPn5IMPPki1jtOu808++US2bNni0fJr1qzp6P9p3Lix+Pn55Uru8+fPy/vvv58qZ9q2bt06x7mXu4oUKSKxsbGSmJgokZGRuXZOeOHCBRk1alS6z6TzZzMpKUn69u3r0fHHMAxp2rSpJCQkSGJiotSoUSNXrtcuXrwoI0eOTLXvc95/23+eNm2abNy40aP3CAkJkdjYWElISJDOnTtLgQIFci23SMbXDfbvDxw4kKO+oIYNGzr25fXr18/xOr906ZKMGDHC8bPz8tJeR8yYMUO2bt3q0fvkzZtXOnXqJPHx8RIXFydlypTJQWqRy5cvy7vvvuvS76akpMjgwYPl2rVrHr1Xbp5nXb16Vd555x2Xf//y5csydOhQj9+vePHiEhMTI3FxcTnKnpSUlGmOrO5JjRo1yuPr/Hz58kmnTp0c12+ebDPJyckyePDgTF/PKvvatWtlyZIlbr+nXY0aNRzbu7v9tikpKfL2229n+TvZ3Qv8/PPP3b7nZufv7y+tWrVy9A/ddtttLv2dqsqgQYM8es+0PvvsM4/uvYmIBAQESNu2bR35K1asmO3fuJPblf3u0qVL5eeff3Z5mc78/PykefPmjvxZHV/feuutdNtCRr+b9t+y+509e/akugZ0l337j4+Pl+bNm6frQx88eLDjmj2j444r32f1uqrKW2+9JefPn/cof4kSJRz9dREREY7zhKFDhzqOJWmP8bn9de7cubJy5UqP8tv7YxISEiQ2NlamTJkiSUlJ6c5JnL/P6jVPvl+3bl2qfjJ3BAYGSocOHSRv3rxSuXJlKVKkSLpzq6zOtVxp2f3+6tWrU/U7uZu/atWqUqNGDalWrZoEBwdn+B5pz3Fz83feffdd2bBhg0f5Q0NDpWbNmlKrVi0pX758qus15+uItD9n9r27r02aNCndvQ9XlS9fXmrXri316tWTMmXKpKuTsDd7jU1ut4kTJ0rfvn3dzl25cmXp0qWLdO3aVZo1a5br9x2t6uDBg879DeGqejDHC82N6kcaIy4ie548YedOy5cvn3bp0kWnTJmSq0MDezLqhTutQIECevfdd+u8efNydWQPd59Q96SFhoZq79699euvv861p/HdHenPkxYYGKgxMTH6ySef5NoT1p6MMuJuK168uGN6m9x60nfSpEk3NbNhGNqiRQsdNmxYro6yN2XKlJua+2aNIDl16tSbmrts2bL65JNP5vp0WTc7d7FixbRXr146a9asXH2q9Gbn9vPz05YtW+qQIUNy9ckiT0b/cbeFhIRor1699PPPP8+1Y6YnowC42wzD0CZNmuiAAQN03bp1ufIEqSejcnnSwsLC9LHHHtP58+fnyhRlc+fO9Upu+1Pr06dPz5VtxZPRQz1pwcHB2rVrV508ebIePXo0x7k9edrZk5Y3b16NjY3VcePG6T///JPj3J6MyuVJy+0pajwZxdKTZp+C75133tHt27fneD/u6nQyudFyc0ppV6eIzI3WsGFDfeONN3JlH75y5Uqv5W7cuLEOGDAgV0Z9+/nnn72S2X4ePnjw4Fw5T1m7dq1Xcuf2aBfuzJKQk2YfxSu39t8bN270Su4CBQroHXfckWujo2zdutUruQsWLKjdu3fXadOm5cqoOjt37vRK7vz582vXrl11ypQpubK+//rrL6/kdp7COzemhdq7d69XcotcP+68+eabuTI69/79+72Wu3Tp0rk2FfbBgwe9ljswMFAjIyP1o48+yvHoeocOHfJabhHRKlWq6AsvvKA//vhjjkaoO3LkiFdz20c0HDt2bI7W+bFjx7yaW+T6NfKTTz6Zo9GuT5w44fXcIv+bXtHTc/FTp06Zkts+qp6n51lnz541JXdOs1+4cMG03PbWqFEj7d+/v65fv97l66DLly+bnlsk9ZS6roxsnJSUZHpm51a1alV94YUXdPny5VmOEpySkmJ61oyafRTSrKajNTtjVq1SpUqZTint7mjsZjTnKdXt9y3cHVHTzBYUFKTR0dH60UcfuT2SqRWaYRg+sZ3QaLTrrUSJEvroo4/qokWLTJvNxluYKvpf2oTCxVvCyJEjvbZj9Pf31w4dOugHH3yQ407VDz/80Gu5CxQooPfcc0+uFDF6M7eIaOHChbVXr145Lqrzdu7cKqzzRsGlc7MPIT1p0iQ9duyYx7m9UXDp3GrUqKGvvvpqjqdWu9kFl87NXug6bty4HBe63uyCS+dmv5n32Wef5bjY6NNPP/Va7oCAAO3UqZO+//77umfPnhzl9kYBoHMrX768Pv300zmeYnL69OlezW0v3BkyZEiOpqifOXOmV3OLiJYsWVIfeughnT17tp45c8aj3LNnz/Z67qCgII2KitLRo0d7vJ3PmzfP67n9/f21TZs2OmzYMN22bZtH24q3Chedm2EY2rx58xwV7yxZssTruUX+d0Nsw4YNHuX++uuvTcldp04dfe211/SXX37x6HjvyfTEudGqVKmizz//fLY3NDLjzcJF55bTKaW9Wbjo3OzT73311VceFXR7s3DRuZUpU0Z79+7t8bSB3ipcTNvsU6Z7OvWPtwoX07acTnXoyTTtudFyWtCwYcMGr2e2T1s7fPhw3bFjh9uZVVU3b97s9dz+/v7avn17HTVqlO7evduj3Nu2bTNlfbdp0yZH0wR7q+AybbMXA27atMmj7Xv37t2m5K5QoYL26dNHly9f7tH+xJsFl87Nfm3v6VTYf//9tym5Ra7vCwcNGuTRdaY3Cy7TtuLFi+v999+vc+bM0fPnz7uV+/Dhw6bltq/zgQMHul2se/ToUVNzBwcHa7du3XTy5Mlu9XOaVbjo3DwpwDSrcDFtq1Gjhr700ksuT8tsZuFiRtldPUe0QuGicytdurRL1xNWKVx0bnny5NH27dvryJEjM72XYrXCRedWpEgR7dmzp06bNi1df7lVCxedW0ZFdKrWLlx0bvYppadOnaonTpzwuYI0+30Lf39/07PQaDSa1VtwcLDeeeedOm3aNI+uY62OwsV/aRMKF28Jw4YNM23n2KhRI33rrbd0+/btbuceMWKEKZkLFiyo99xzj3711Vce3YB87733TFvf+fPn1zvuuENnzJjh9uhpo0ePNvVAWrNmTe3bt69u3brVrdwfffSRaZntN5hGjhzp9k1fbxdcOrcyZcroE088oWvWrHErs6r3Cy7tzTAMbdasmQ4fPtyjG9XeLLh0bvabed9++63bmVW9W7iYtkVERHi071ZVnTZtmimZ/fz8NCoqSrds2eJR7s8//9yU3Hny5NFOnTrp/PnzPboB6a2RCzNqt912m7722mseXQB9+eWXpuW277+XLFnidm4zChedW1BQkD777LNur/MFCxaYmltEtGnTprp+/Xq3ci9evNj03JUqVdI5c+a49fk0q3DRuZUpU0YnT57sVgGjWYWLzi00NFQnTpzoVm6zChedW6lSpXTatGlubSdmFS46twoVKri9fZtVuOjcqlevrkuXLnU5s6p5hYvOrU6dOrpixQq3cptVuOjcateurT/++KNbuc0qXHRuNWrU0GXLlrmV24zCxYy273nz5rn1ufzjjz9Mz127dm0dN26cSwUYdlu2bDE9d82aNXXQoEFuXdNv377d9NwVKlTQ5557zq2Hhv/880/TcxctWlR79eqlP/30k8u5zSq4dG72EcfGjx/vcvHlvn37TM8tcv1c9j//+Y/Lo6GbWXDp3OwjGrq6rXh7pMisWrly5XTYsGEuzZLj7ZEis2qGYWhsbKxLD5gfP37c9LzOrVChQjpixIhsH4KySuGic6tWrVq2/YZWKlx0bg0aNNDVq1dnmttqhYvOrVy5cjp79uwMz7esWLjo3Pz8/LR3797pRpG2cuGicytcuLCOGjXKcTz1hcJF51akSBEdM2aMXrt2zfQsnrTAwEA1DMP0HDQajUa7+S1PnjwaERGhH3744S1T63UzChfzCACvSElJMeV9y5YtKw0aNJAaNWpI6dKl3f77K1eu3IRU2Tt//rzMmDFDZsyYIWXKlJGRI0fKXXfdJYZhuPT3165du8kJM3fp0iX55ZdfpHDhwpI/f35JSEhwObdZ24mISO3atSUmJkYiIiKkSpUqbv2tWbmLFCkikZGREhMTI5GRkRIcHOzW35uVu27duhITEyMxMTHSqFEjt//eZrPdhFRZCwkJkejoaImJiZHOnTtL/vz53V6GXi/G95qgoCDp0KGDxMbGSkxMjFSsWNGj5Xg7d8OGDSUuLk7i4uKkUaNG4ufn59X390SBAgUkKipKEhISJDo6WkJCQjxeljf/ewsVKiQxMTGO3EWKFPF4Wd7MbRiGNG/eXBISEiQxMVGqV6/u8bK8vX0FBwdLZGSkJCYmSkxMjMfbiqvH1dxUokQJiYuLk/j4eImIiHD7mGOmunXrSnx8vMTFxUmTJk3c/v/u7f2gXUhIiMTExEhcXJx07txZChcu7Nbfm5W7UKFCEhUVJXFxcRIVFSWhoaFu/b1ZuYsXLy6xsbEer2+zVKhQQeLj4yU+Pl7atm0rgYGBbv29GfsTEZF69eo5cjdu3Njtz6UZuQ3DkKZNmzpy165d2+0cZuVu1qyZI3etWrVM+//urgYNGjhyN2zY0Gf2386fyzZt2khQUJBbf29W7sKFC6faf7t7nmLGdZrI9fO5Fi1aSGxsrMTGxrr92TQrt4hI+fLlHbnbt28v+fLlc/lvzcwdHBwsnTp1clzXh4WFufy3ZuY2DENuv/12iYmJkdjYWGnYsKHLf2tmbpH/bSsxMTHSvn17yZPHtdsaZucuWrSoREVFSUxMjFv7FbP2g3Z58+aV9u3bOz6fFSpUcOnvzF7ffn5+0rx5c8c5rav7Q7PXt4hI9erVHX1BLVq0kICAALMjuSSnx04z1ahRw3G+0rx5c/H39zc7kksMw5AmTZo4rvHr1q3rM+e2IiK1atVyrPemTZv6zHoX+d+1fnx8vERHR0vx4sXNjuSW8PBwR79W+/btJW/evGZHckvZsmUd2467541WkHb7KVGihCWOP66yX1evXbvW1PuYAOBrkpOTZdmyZXLs2DE5ePCg/N///Z+ULFnS7FiWQ+Ei4CXJycleeZ88efJIq1atJDo6WqKjoz26meTMjMJFf39/adq0qUREREinTp2kadOmbnfWeLtwMSgoSNq0aSORkZESGRnp8c0wb57wO3e0R0VFSbly5Txeljc7JuvVq+e4OdCsWTOXO6sz4q3cBQoUkIiICMfn0p2bGhnxVm77DY2YmBiPbqin5Y3c4eHhjo71Dh06eFRg6W358uWTTp06SVxcnMTGxkrZsmVzZbk3u9MyPDxcEhISJD4+Xtq1a+f2DenM3OxCuvDwcElMTJSEhASPClwyc7Nz582bVyIiIiQxMVHi4uJy7cLGG53bpUuXdhRZ5lbHqLc65WvXru3Yzj0p+DOLvXA7Pj5eYmNjc3SM97a6des6btg1adIkRzcxvNkBfNtttzlyt2rVymduNNauXdtxw8tXbhrZi7ftNyxq1qzpEzfqAgMDHZ/LuLg4n/lc5s+fXzp37uzYn/hKx1pwcHCq3CVKlDA7kkvy5s0rHTt2dOTO6XWDt9gL5+w3QmvUqJGjz6U399/2QpHY2Fhp2bJljvbf3sxdrFgxR6FIZGSkFCtWzONlefN63t/fX1q1auW4ZsvJtuLtAqmqVas6Cv48Kci183Zu5wc+o6KiPN4fejt3njx5pHXr1o4+CU+3FTMK6erWrevYxps2bepRv5UZuXOjP8WMAowiRYqkKpzzlUKigIAAadu2reMY5O5D5GaqWrWq45zWl6598uTJI23btnVkr1y5stmRXOar5+Qi/9vW7ddvnj5YbpZKlSo5srdu3TrX+hG95fbbb3fkr1evnk9cOzu7/fbbHdcY9evX97n8lStXTrX9+Mr+0q5gwYISGRkpcXFxEhMTI6GhoRIYGOhThYv2QSKGDh0qSUlJZscB8C9SsGBBiYiIcFyL59a931uV4UvV/P9WhmGEicgBEZEDBw74TMc1Ulu9erX8+OOPkpycLCkpKZKSkiLJycly5swZGTduXI6WHRYW5iiI6tixoxQqVCiXUousWLFCfvrpJ7ly5YpcvXpVrly5kqotXbo0V4oba9SoIZ06dZKIiAhp27Ztjv8bVq9eLStWrJBr165l2GbNmiVnz57N0XtUq1ZNoqKiJDIyUtq2bZsrBVJr166V7777zrGNOLfjx4/L5MmTc7T8GjVqOEbNa9WqVa4VGq1bt86R22azpfq6bNkyWb9+vcfLthf92Q/subkPXL9+vSxbtizdur506ZK89957OVp2jRo1HB3srVq1ytVOjd9//12++eabdOt76dKl8ttvv3m83LQjWOZ2J9imTZtk6dKlYrPZRFXFZrPJtWvXZMiQIR4Xd+d0dBFXbN68WZYsWSIi/+uEP3jwoHz44YceLzMsLMxR4NKhQ4eb8oTo9u3bZeHChY71YRiGHDlyREaMGOHxMhs3bizx8fGSkJBw0zq7du7cKQsWLBA/Pz8xDMPx9Y033pBz5855tMwGDRo4CuduVifXX3/9JV999ZX4+fmlyr5ixQr56quvPFpmSEiIxMXFSWJi4k0b4e+vv/6SefPmOTLbc6uqvPbaa3L58mWPllu3bl3HOvdkhKjs7Nq1S+bOnSsikmobNwxDli9f7vjMusveoZ6QkCBxcXG53qG+a9cumTNnjuNn52uxs2fPytChQz1edqlSpRz7lU6dOuXq9rJ792758ssvHcP2i0iqYfyHDRsm58+f92jZ9iJL+w278uXL51ruPXv2yOzZszPMLSLy0UcfyaFDhzxadp48eaRNmzaO3Lfddluu5d67d6/MmjXLkdf5q8j13AcPHvRo2YGBgdK+fXvHDS9XR89xxf79+2XmzJmZvj5q1Cg5evSoR8u2d5bbRyZwdxTLrBw4cEA+//zzVP9m36+oqrz99tseH39CQ0MlNjbWMVJrwYIFc5zX7uDBgzJjxgzHz877wpSUFOnfv79cvXrVo2U7j2TRoUOHXB2J49ChQzJt2rRU/2bPnpSUJP379/f4Jkh4eLgjd7t27XI19+HDh2Xq1KkZvpaUlCQDBgzwuMjEvv+Oj4+Xjh075ur+2zl32v1JcnKyDBw40OPzcOcRlnJ7xJkjR47IlClTMj3uvPPOO3Lx4kWPlh0QECDt2rVzXD/kZqHI0aNHZfLkyY5rnbRfJ0+eLAcOHPB4+c7FUM2aNcu1YnN7bpvNlq6pqnz99dc5uqYvUaKEREdHS2xsrERERORolHNnx44dk0mTJqXKa782ttlssn37dpk3b57Hyw8MDJR27do5ruurVq2aK7lPnDghEyZMSJfX/v2VK1dk1KhROXoP51kemjdvnqMHPu1Onjwp48ePT5fbOf8XX3wh+/bt8/g9SpUq5cjdqVOnXBn9+fTp0zJu3LgMt29727Bhg3z99dcev0f+/PmlU6dOjhEhc6Pf6syZMzJ27FjH/iOjfcrly5dzdH1/M/pTzp07Jx999FGGU3/Zs6uqzJ49W7Zv3+7x+9SsWdNxHt6iRYscb+MXLlyQDz/8MF1mkdTHn7///lsmTpzo8fvYzw3j4uIkIiIix/3fly5dktGjRzty2mV0DTFt2jSP17m/v7+0bt3acb6S02ufK1euyPvvv+/S7yYnJ8ubb77p8SAFxYsXl5iYGImPj8/xqPJXr151ObeIyOXLl2XAgAEev19YWFiq0eU8Pbe9du1alseVjD73qipDhgyRM2fOePSezus9MjLSo209OTlZRo4cme7fM8qb9t9WrVol8+fPd/s9Rf43cqt93btbOJ+SkuLSvjmrZU6ePNnjz2v+/PklIiLCcc1fqlQpl/5OVWX48OEevWdaEyZMkL/++sujv82XL1+q/K7MIvfOO+949F6ZWbRokaxatcqjv/Xz85OWLVs6tp9q1apl+v962LBh6Qr+M6vZcOffd+/eLZMmTXIz+f9UrFjRUeCd0UP/w4cPd1z7ZnTs8eR7559VVUaMGOFxP2Nmg0S8++67jmvftMfJ3P767bffyrp16zzKL3L9IWN7H+/PP//s6CPJ7Bwlt7/fvn27LFq0yOP8oaGhUr58ebntttukSpUqEhQUlO05lruvZ/U7O3fulG+//dbj/IGBgVK1alWpVq2aVK1aVYKDg7PN4nye62rL7G++++472bt3r8f5g4ODpWrVqlK1alWpWLGiBAYGprueyOhnV1/L6vf+/PPPHJ3ji1y/JqxYsaJUqFBBQkJCHNeaN7tduHBBTpw4kaPsIv+b3TI6OjrHD8da2cGDByU8PNz+Y7iqenazwpm7HyKa95uIhMmNOcJvlXnP8T+DBg3Kct77jFqePHm0ffv2OmzYMN28ebPabDZTsq9evdrt7PZWqlQp7dWrl3766ad68OBBr+Zeu3atR5kLFSqkXbt21XHjxum+ffu8mllV9ZVXXnE7c758+TQuLk4//PBD3bNnj9czX7x4UUuVKuV27ho1auh//vMf/f777/Xq1atez/3ee+95vK4/+ugj3bt3r9czX7hwQUuUKOF27rp16+orr7yiP/30k167ds3ruT/99FO3MxcvXlzvvfdenTFjhp48edLrmVVVn3jiCbdzN2nSRAcNGqQbNmwwbb/93HPPuZU5KChIY2NjdezYsV7fVztbvHix28fJiIgIHT16tO7fv9+03CkpKVqzZk23sletWlVffPFF/emnnzQ5Odm07F9++aXb67xjx476/vvvm7IPtEtOTtZq1aq5lb1YsWLaq1cvnTVrlp49e9a07G+++abb+5WGDRvqG2+8oevWrdOUlBRTcn/zzTdu5y5durT27t1b58+frxcuXDAl98aNG93OHRISovfff7/OmjVLz5w5Y0ruzZs3u527ZMmS+vDDD+u8efP0/PnzpuT+9ddf3c5dsWJF7dOnj3777bemnA+qqn799ddu565du7a++uqr+vPPP5u2H585c6bbuRs1aqQDBgzQ33//3bTzlPHjx7ud+/bbb9eBAweaen41duxYt3M3aNBAX3/9dV27dq1p++8pU6a4nfu2227TF154QZcvX65JSUmm5Hb3vNC+H3zooYd0zpw5eu7cOVNyb9++Xf38/NzKbb/G/Pjjj007p7148aKWLFnS7XXeuHFj7d+/v6nbeEJCgtu5w8LC9LHHHtP58+ebdsz86KOP3M4dHBysiYmJOm7cOP37779Nyb1v3z4NCAhwK7dhGNqsWTMdOHCg/vbbb6ZsKzabTVu2bOn2Oq9SpYr+3//9n37zzTd65coVr+dWVR0zZozbuYsVK2Z6f8qRI0c0f/78buUOCgrSqKgoHT16tCn9m3aPPvqo2+u8fv362q9fP/3ll19M2x/+888/GhQU5FbuokWL6r333quff/65nj592pTcqqqfffaZ2+u8Vq1a+sorr+iqVatM7VcZNWqU29mtcG6rqvrdd9+5nb1GjRr60ksv6cqVK01d7zabTevXr+9W9oIFC+qdd96pn376qR4/fty07KqqBw4c0MDAQLfyly1bVp944gldvHixXrp0ydT8e/bs0Tx58rid//HHH9dFixaZnv/SpUtu388qXLiw9ujRQ6dNm6YnTpwwNb+q6n333edWfj8/P23ZsqUOHTpUt27dauq+R9WzfkbnbejixYum5vdkGwoMDNTIyEgdPXq0qf3qdtHR0W7/P6hXr56+9tprumbNGlOPAZ7mr1Klij7//PP63XffmdYHqap68uRJLViwoNv5GzZsqK+//rr++uuvpp1v2mw2bdy4sdvZCxQooN26ddOJEyfqoUOHTMmu6tk9X3v+Ll26mHotboYDBw44r4cwzY2auNxYCI3CRXjm1KlTWrhwYZd2fGFhYdq7d2+dN2+eaR3tzmw2m7Zq1crlHXdwcLDGxsbqqFGjdMuWLaae/EZERLiU2TAMbdy4sb722mu6cuVK027MqKoePXrU5U69qlWrOjpPL1++bFpmVdV3333Xpcz58uXT2NhY0wosnV24cMHlGzNVqlTRPn366Ndff236uh46dKjLn8UuXbroJ598YvoxJSkpSStXruxS7vr16+trr72mq1evNv3CZ//+/S7dkLGfcE+aNEmPHDliamZV1cOHD2vevHmzzR0aGqoPPfSQzps3z7SCImc2m02bNm2abe7ChQvr3XffrZ9//rlpBUVpzZ4926VjTbNmzXTIkCG6bds20zuHVK8XXNatWzfb7IUKFdKePXvqjBkzTL2R4Wz69Oku7VOqVavmKBA1o2g7rdOnT2uRIkWyzZ03b16Ni4vTcePGmVpMbGez2bRZs2YurfPbb79d33zzTf3tt98ssZ137drVpdx169bVvn37mlqE5uzOO+90KbcViqKcxcTEuLQ/bNGihQ4ZMsT06wXV69t38+bNs80dEBCgERER+sEHH5h+HqvqetF83rx5NTY21jL7k6SkJK1QoUK2ufPly6cJCQk6fvx4Uzs07a5evarh4eHZ5g4KCtKYmBj9+OOPTT8HV1W9du2aS+fh/v7+2r59ex0xYoTu3LnT7NhudYTbi/utsh+8++67Xcpdvnx5ffrpp3XJkiWm37hVdf2avlChQnrnnXfq5MmTLXHt4+oDq/7+/tq6dWsdMmSIbtq0yfRjz+XLl7Vs2bIuZa9atao+99xz+u2335pWOOfM1YKuokWL6t13362fffaZ6cUhqq7fHA8ICNBOnTrpqFGjLLE/vHTpkpYpU8al7PXq1dO+fftaoj9FVfWFF15wKXeZMmVMf9jJmavFOPZrtrFjx1rimK+q2qdPH5fWeY0aNfS///2vZa6Tr127prfddptLn0/7+fju3bvNjq2qrheuWO3cVtX1+z558uTRDh066KhRo3TXrl1mx3b46quvXD7nevbZZy1zHLV7+umnXcrfuHFjffPNN0198Cwjrp4PWDW/qwNa2Iucvv/+e1PvG6a1c+dOlx6WKlSokN511106depUS5yP2bnaDyNyfZCIgQMHWm4bcrVo3QoPGWdkzZo1LuW39yl9/PHHlirW+vnnn13Kbx8gyip9HXZ9+/Z1KX/+/Pk1MTFRx48fr//884/ZsVVVdf78+S5lF7n+UKwVCkXt3C26r1mzpqmDL1kBhYv/0iYULt6ysjoABQQEWGJUxcwsWLAgy522v7+/tmjRQt944w1duXKlZXbcy5cvz/Zk8f7779fp06frsWPHzI7r8Pzzz2d5ghgdHa0ffPCB/vXXX2ZHdTh//ryGhIRkmrtSpUr67LPP6tKlSy1xQ8bunXfeyTRzUFCQRkZG6vvvv69//vmn2VEdzp49q8WKFcs0d7Vq1fT555/XZcuWWaojZuLEiZlmto8Y8cknn1jiZrqzxx9/PNPcFSpU0GeffdbUURcyk9XNgZo1a+orr7ximcIcZ99++22mucuVK6fPPvusLlu2zDLHGbusiv/sI1l+8sknevjwYbOjpjNv3rxM17m9Y9eK6zw5OVmrV6+e6XlJ27Zt9d1337VUZ4RdVqMt2p8aXrhwoelPDaeV1Wh0wcHB2rVrV504caLltvMNGzZkeayPjo7WDz/80JQRtrOyadOmLM8HrXaD1O6XX37JNLeVRrZIK6tChuLFi+t9991n+kitGfniiy+yvNZ59NFHdf78+Zbbn0yYMCHT3GXKlNHHHntMFy5caKnrBtWsR1ssVaqUPvroo/rVV19ZouDC2aRJkzLNbR+JeObMmZZ5MMFu4cKFmea2Yse93ZYtW9QwjEzPUdq0aaPvvPOOJYq2nWV3TV+jRg198cUXdcWKFZa6YauqGhUVlWnukJAQve+++3TmzJl66tQps6Om8v7772eaOzAwUDt37my5/ghV1V27dqm/v3+m2evXr699+/bVVatWWaIYys5ms2mTJk2yPP48+uijlnmI3FlWhRX58+fXhIQEHTdunOXOCw8fPqz58uXLMLdhGNq0aVMdNGiQ5YoQVFUffvjhTNd5WFiYPvHEE5YY6SmtrEZbtBfkvvfee5YqPLPLarTFkJAQfeCBB/TLL7+03Pm4ataFK1YaHS8jWY22aB+Jc+bMmZZ5aNiZzWbTBg0aZLqPadasmb799tv6xx9/WG4fo5r1aIv58uXT+Ph4/eSTTyx3rmuXVeGHL+TPquDYz89P27Rpo8OHD9ft27dbcvtRVe3Vq1emn9/KlSvrc889Z5lCoYxk1Q9jH5DDiv2MdtkVrVvtIeOMREZGZnn8smoftV3nzp2zPHcweyadrBw/flwLFCiQaf4KFSroM888Y4mBdNJKSUnRevXqZXktGxERoe+9956l6hjsHnzwwUyz26+v4uPj9eOPP7bc/QKzULj4L21C4eIt6ejRoxocHJxqxxceHq6PPfaYJTvEnCUnJ2c4ikeNGjX02Wef1fnz51uywyCjUYHsBaJDhw7VjRs3WvKC4+DBg+k6mCpVqqTPPPOMLl682LIniIMHD87wxMT+dLoV1/W5c+e0ePHiqXKXL19en3zySV24cKHlbjjaDRw4MFVmezHr6NGjLdnxqHp9dJq0o+pUrlxZ+/TpY8miP7u001/5+flpq1atdOjQoZa70ejsyJEjqW4O2EfPsdpT0WllNG1Xw4YN9c033zR92pzspH3Cu3jx4vrAAw/o3LlzLbsvUc24k7dx48Y6cOBAyx4n7WbMmJEqd6FChRxTtZg1DZorTp8+nW4EbvvohFa8YWeX0WioVi7edtalS5dUua0wdbUr7rjjDp/rMFRNP0WLfQpoKxZA22X0lL9Vpj7LSkajLdarV0/79etn6nQx2clotMWGDRtq//79df369ZbdD2Y02mL9+vUtfyMiKSlJK1WqlCp3zZo19eWXX9aVK1daqqjImc1m00aNGmXYcb906VLLddw76969e7rzQntxqNUK55wNGTIkVW57cb/ZU7VmZ/Xq1en6qxo1aqRvvPGG/vLLL5bdh2c0LXd4eLg+/vjjumDBAkufo9x///2pcttvLI8fP95yDyI6S1sM7efnpy1atNC33nrL0tebGW0r9oeDrXgj09lzzz2X7pqte/fuOmXKFD169KjZ8TKVtjjXXgD11ltvWf46+dlnn021zu0Ff7Nnz7Zk/73dtWvXtGrVqqmy165dW1999VVLPnTrLKPCFauOLpeWzWbT1q1bp8pun7Hixx9/tOx5ol3a0Z7sD1ROmjTJ0vsYu2eeeSZVfucHuKx8zW+XdrRFK00B7Yq0DwUULlxYe/bsafl+RbsdO3akGm3Rz89PW7durcOGDbN0saVdRvdvy5Urp08//bTlr/fsRo4cme4+nX3mHF+o78hotMImTZrooEGDLH1ubJfRdaB95HGrnzuoqr7yyiupsjs/5GiFadyzMmfOnHTr3vkhMCuNKppW2n2n8/nP888/b7mRma2CwsV/aRMKF29JL7zwggYEBGiHDh10+PDhli54Scs+OkOpUqW0V69eOmXKFEt3RNrZR4msXLmyPv3007pgwQJLHyztnnrqqVRFfzt27LD8tnLmzBktWrSohoWF6eOPP67z58/3iXU9aNAgx+fy3Xfftcy0rVmxTzlfoUIFffrppy1dzOps3LhxjilFRowY4RPbtarqY489poULF9YePXpYZmorV7z44ouOzpYZM2ZY+gaps+XLl2tAQIB27txZP/zwQ0tNO5AVm82mDRs21MqVK+sLL7zgE527dgsXLtTAwECNjo62zHSWrkhOTtYaNWo4CqKs/PRwWgMGDHCMEjVhwgTLTA+VnSVLljg6QX2hA8Xu999/V8MwLDd1dXY2btyofn5+lp0KJzO//PKL+vn5acuWLS1f5O/s22+/tezUZ1n54osvNDAwUCMjI3XMmDE+8xTwxIkTHVMpjx071ieuLVWvj7Zoz/3RRx/5zHnKxIkTLTmlYnbmz5/vOO740v5k06ZNahiG1q9fX1977TWfuGGi+r9R/cuVK+d4kM8XrjNVVTt27Jhq6mqrjsiS1vDhwx03p4YOHWrJ2Vcysn37dvXz83Pc2Pnuu+984saO/YGtYsWK6T333KPTpk3TEydOmB3LJe+++65jert3333XJ4oRVP838l+1atX0hRde0OXLl1tutNbMPPjgg46Rwq1eZOnM/jB8nTp1fKLgz9nUqVMdI82OHj1a9+7da3Ykl40aNconRpfLyPfff6/+/v7arl07HTFihOVG+M2Kfb8eHh6uTz31lM8UOtnZP6++8ABXRvbs2aMBAQHaqFEjHTBggM/0tdjZC47tU0D70jHKrlevXj5XbOns66+/VsMwtHnz5jp48GDLjoyaGfuDJVYehTk7ERERWqBAAe3WrZtOmjRJjxw5YnYkt3Tq1MmyU1hn59ixYxocHKzFihXTe++9V2fMmOEzn+GUlBStXbu248Eeq46enpm7775bRa6PDBwbG6tjxozxmX4yM92MwkVDrxfGwcIMwwgTkQMiIgcOHJCwsDCTEyGnVFWWLVsmzZs3l4IFC5odx21ffvmlVK9eXWrVqiWGYZgdx2XLly+X8uXLS+XKlc2O4jKbzSbLli2Tli1bSoECBcyO47I9e/bIpUuXfG4bWbFihTRq1EgKFSpkdhSX7dmzR65evSrVq1f3qXX9yy+/SM2aNX1qXauqrF69Wpo2bSoBAQFmx3HLr7/+Kg0bNvS53Nu2bZOyZctK4cKFzY7ilvPnz8vff/8tNWvW9KnPpYjIli1bpHz58j53fnL69Gk5dOiQT67zNWvWSIMGDSRv3rxmR3HLhg0bpFy5clK8eHGzo7hly5YtEhISIqVKlTI7ilu2bt0qxYsX97ncW7ZskVKlSklISIjZUdyyefNmCQ8PlyJFipgdxS0bN26UypUr+9w+/Pfff5dq1apJcHCw2VHcsm7dOqlZs6bP5V67dq3UqFHD57aT9evXS6VKlaRYsWJmR3HL5s2bpWjRoj7Xl7d37165ePGiz13TX7x4UdatWyctW7b0uWufFStWSIMGDXzu2LNp0yYpUKCAT/W1iYicOnVKtm/fLs2aNRN/f3+z47jlxx9/lPr16/vcdfLOnTvF399fqlSpYnYUt9hsNlm5cqU0b95cAgMDzY7jlr/++ksCAgKkQoUKZkdx22+//Sa33Xabz52viFw/R6xdu7bky5fP7Chu27x5s4SFhUnRokXNjuK2c+fOyd69e6Vu3bo+de5it2fPHgkKCpKyZcuaHcUjf/31lwQHB0uZMmXMjuKRQ4cOyfnz56VatWpmR/FISkqKrF69Wpo3b+5z58B269evl/Lly0toaKjZUTzy999/y6lTp6RevXo+uQ+6ePGi/Pzzz9KmTRsJCgoyO47bzp8/Lz/99JO0b99e8ufPb3Yct23cuFEuXrwoTZs2lTx58pgdxy179+6VVatWSVRUlM99fo8dOyZDhgyRqKgoadu2rc/dnzHTwYMHJTw83P5juKoezOkyKVz0ARQuAgAAAAAAAAAAAAAAAADMcDMKF/1yugAAAAAAAAAAAAAAAAAAAABXUbgIAAAAAAAAAAAAAAAAAAC8hsJFAAAAAAAAAAAAAAAAAADgNaYULhqGUcIwjDjDMAYahrHUMIwThmHojTbFxWXkNwyjm2EYHxuGsc4wjNOGYVwzDOOkYRhrDMMYYBhGqVzKu88pX1ZtX268HwAAAAAAAAAAAAAAAAAAt6o8Jr3v0Zz8sWEYdUVktYgUyODlYiLS7EZ73jCMx1T1i5y8HwAAAAAAAAAAAAAAAAAAyB1mFS46+1tEdohIZzf+ppD8r2hxtYgsEpH1InJSREJFpJuI9L7xe9MNwzinqktzIet8EemXxetJufAeAAAAAAAAAAAAAAAAAADcsswqXBwoIutEZJ2qHjUMo4KI7HXj720iMktE3lTVbRm8/q1hGEtFZJ6I+IvIaMMwqqqq5jD3GVXdksNlAAAAAAAAAAAAAAAAAADwr2VK4aKq9s/h3/8sIj9n8zvzDcOYKyJ3iEhlEWkgIr/n5H0BAAAAAAAAAAAAAAAAAEDO+Jkd4CZb4fR9ZdNSAAAAAAAAAAAAAAAAAAAAEbn1CxeDnL5PMS0FAAAAAAAAAAAAAAAAAAAQEZOmivaitk7fb8+F5bUxDGOjXB+90V9EjorIWhH5XETmq6p6slDDMMKy+ZVSniwXAAAAAAAAAAAAAAAAAACruWULFw3DqCcisTd+3KyquVG4WDHNzxVutLtEZLVhGD1U9R8Plnsgh7kAAAAAAAAAAAAAAAAAAPAJt2ThomEYQSIyQa6Piigi8loOF5kkIgtE5FsR2SIiZ0WkiIg0F5EnRSRcRFqKyDLDMJqr6tkcvh8AAAAAAAAAAAAAAAAAALekW7JwUUTGiEjjG99/qqoLc7i8Jqp6JoN//8EwjDEi8qWIdBaRGiLSX0RecHP54dm8XkpE1rm5TAAAAAAAAAAAAAAAAAAALOeWK1w0DONVEXn0xo/rROTpnC4zk6JF+2vnDcO4S0T2iEgxEXnMMIxXVDXJjeUfzOp1wzBcXRQAAAAAAAAAAAAAAAAAAJbmZ3aA3GQYxuMiMvjGjztEJEZVL97s970xNfTMGz8Gy/9GewQAAAAAAAAAAAAAAAAAAE5umcJFwzDuFpGPbvy4X0QiVPWEFyNsc/q+rBffFwAAAAAAAAAAAAAAAAAAn3FLFC4ahpEgIlPl+n/PYRHpmN30yzeBevn9AAAAAAAAAAAAAAAAAADwOT5fuGgYRkcRmSUieUTkpFwfaXG3CVFqOn1/yIT3BwAAAAAAAAAAAAAAAADA8ny6cNEwjBYiMl9EgkTkrIhEqupWE3IUFpGeN368JCLrvZ0BAAAAAAAAAAAAAAAAAABf4LOFi4Zh1BeRxSISLCIXRSRWVX/zYDk/GIahN1qFDF6PMgwjXxZ/X0Cuj/hY/MY/TVTVq+7mAAAAAAAAAAAAAAAAAADg3yCPGW9qGEYrEani9E8hTt9XMQzjQeffV9Upaf6+soh8IyJFbvxTPxE5axhG7Sze9piqHvMg7isiMt0wjLkiskpEdovIBREpLCItROQJESl343d3isgAD94DAAAAAAAAAAAAAAAAAIB/BVMKF0XkURF5IJPXWt5ozqak+bm1iJRw+nmUC+/5pnheVFhMrmd+NIvf+VFE7lXVUx6+BwAAAAAAAAAAAAAAAAAAtzyzChd9yYsi0lFEmotINbk+OmQREbkkIodE5FcR+VxEvlVVNSkjAAAAAAAAAAAAAAAAAAA+waDWzvoMwwgTkQMiIgcOHJCwsDCTEwEAAAAAAAAAAAAAAAAA/g0OHjwo4eHh9h/DVfVgTpfpl9MFAAAAAAAAAAAAAAAAAAAAuIrCRcAH/PTTT3Lo0CGzY7jtwoULsnLlSklOTjY7itsOHDggly9fNjuG286cOSN79uwxO4bbkpOTZdeuXWbHcJvNZpPDhw+bHcNtV65ckdOnT5sdw20nT570ydx79+6Vf/75x+wYbtu+fbv8+uuvYrPZzI7iliNHjsinn34qR48eNTuK2yZNmiQ//PCDXLt2zewobtm3b5988skncuDAAbOjuG3JkiWyZs0aSUlJMTuKWy5evCjz5s2T8+fPmx3FbWvWrPHJY+e+fftk69at4mszFly4cEF+/PFHnzsfV1VZsmSJT27jS5cu9clrtxUrVsiff/5pdgy3rV+/XjZs2OBzn83du3fL6tWrfe74c+HCBVm2bJlcvXrV7Chu++GHH+TChQtmx3Dbli1b5Pjx42bHcNuJEyd88hpfRGTDhg0+99kUEdmzZ4+cPXvW7Bhuu3Tpkk+eY4mIbNy4US5evGh2DLcdPHhQtm3b5pPrfNmyZT65ne/cudMnj/siIvPnz5ft27f73PaSkpIin3zyiU8ei5KTk2X06NGyefNmn1vvIiLTpk2Tr7/+2ifvrRw/flyGDRsmW7Zs8cl1v2nTJhk9erRP3h8Sud6HPmLECJ/c54hcv1c0bNgwn70nKnL9ODtz5kyfvAcjIpKUlCSjR4/22W1IROTHH3+UFStW+Nz9Abvjx4/LggULfPIcWUTk2rVr8u2338qVK1fMjuKRkydPys6dO82O4bF9+/b57Gf3r7/+8rl7qVZD4SLgA44fPy5ly5aVRo0aSf/+/WXt2rU+sfMLDg6Wfv36ScmSJaVXr14yc+ZMOXPm/9m76/Amsu4P4Cepuyt1b2mLlVKkSCkt9RZdXHcXX5yFxV0Xd9cFiru7u7s7xUuhUMn5/cE7eZM0MpOyncnvPZ/nuU/TJG2/DJOZO3fO3PnIdyxW3r17Bw4ODpCRkQFLliyBt2/f8h2JFQsLC0hISIDQ0FDo37+/zhRj6OvrQ7du3SAkJESaWxfWcbFYDL/++itERUXBmDFjdOaAyNDQEGJiYiA2NhZmzJihM8VGhoaGEBwcDLVr14Zp06bBo0eP+I7EiomJCfj7+0OFChVg6NChcOHCBZ1YT5ydnSEuLg6cnZ2hVatWkJmZqRMnCJycnGD+/Png7OwMERERMHjwYDh16pRObAtNTEygVq1aYGdnB/Xq1YP58+fDs2fFnmH9X+fp6Qlz584FDw8PCAsLg759+8LBgwchLy+P72gaWVtbQ5UqVcDR0RGaNWsGK1eu1Il9vpmZGSxcuBDs7e0hLi4Opk2bBvfv3+c7FisfPnwAV1dXqFixIgwbNgzOnz+vE/t8W1tbqF69Ovj6+kK3bt1gz549OlG4Y25uDkOHDgUHBwdo2rQprFq1Ct6/f893LI1EIhHs2rUL7OzspOu4rpx8efjwIZQqVQoiIiJgyJAhcPbsWZ1YxwsKCiAwMBACAgKgR48esG/fPp3Yjtva2kLFihXBzc0Nfv31V9i8ebNOFKe5uLhAgwYN5I6VdeHkkLm5OYwbNw7s7e2hfv36sHjxYp25WOTw4cNgZ2cHdevWhZkzZ8Ljx4/5jsTK58+fwdnZGapWrQpjx47VmQIvS0tLqF27NgQHB0O/fv3g2LFjOtEfB/hRcOHs7AytW7eG9evX60wR/ZcvX8DR0RFiY2Nh2rRp8PDhQ74jsWJiYgK//vor+Pn5Qffu3eHAgQM6c6L2ypUrYG9vD8nJyTB37lyduWDR1tYWatWqJV3murLPB/hxEZS9vT3Url0bJk+eDHfv3uU7EisuLi6QmpoKTk5O0KJFC53Z7wP8KC4OCQkBX19f6Nq1K+zatUsnTubr6enBrVu3wN/fHwIDA6Fnz546s67r6+vD06dPITw8HDw9PaFDhw6wdetWnSkCcXZ2hoSEBLCzs4Pk5GSYPXu2zvS7HBwc4MiRIxAWFgZeXl7QsWNHnVr2pUuXhunTp4Ovry8EBQVBz549Yf/+/Tqx3gMAeHl5wbp166TbnC5dusCOHTt0pghWLBZDXl4eVK9eHRwdHaFJkyawfPlynboIKTQ0FNq0aQMODg5QvXp1GDdunE4V8hoaGsKdO3fk9lu7d+/Wif0Ww83NDerUqQP29vbQqFEjWLZsmU6tQ/b29jB69Giws7ODxMREmDVrls7sAwAADAwMYMGCBWBvbw8ZGRmwaNEiePXqFd+xWLOysoKkpCQICAiAXr16waFDh3SqkDozMxM8PDygU6dOsHPnTp367G7ZsgVcXFygXbt2sGnTJp3pOwgKIlITeAMANwBAAMCnT58i+d9TWFiIZcqUQWY9AAB0cnLCNm3a4Pr16zE7O5vviCodOHBALreenh7WrFkTJ06ciLdv3+Y7nlppaWnS3GKxGKtVq4YTJkzAO3fu8B1NrWXLlsktc0dHR2zbti1u3LgRc3Jy+I6n0okTJ4qs4+3atcMtW7bg169f+Y6nkmJuf39/7N27Nx47dgwLCgr4jqfSqlWr5HKXL18ehw8fjleuXEGJRMJ3PJVGjBghlzs8PBwHDRqE586dE3Tu7t27y+UuVaoU/v7777ht2zZBr99DhgyRy62vry/dht+8eVOwy/zgwYNyuQEA7ezssGnTprhixQp88+YN3xGVKiwsxNDQ0CLZQ0NDsU+fPnjgwAH8/v073zGV2rFjR5HcFhYWmJ6ejvPmzRN0H7Zu3bpyuUUiEVauXBlHjBiB58+fx8LCQr4jKnXu3LkiyzwwMBB79eqFBw4cwLy8PL4jKiWRSLBSpUpyuV1cXLB9+/a4efNmQfdVRo8eLZfb3Nwc69Wrh4sXL8bXr1/zHU+lQ4cOFemPV69eHcePH483btwQ7Lb8+fPnaGxsLJc9ODgY+/Tpg4cPH8b8/Hy+Iyr17ds3dHd317ljN4lEgtWqVSuyHa9Xrx4uWrQIX758yXdEldq3by+X29DQEOPj43HatGl4//59vuOpNGXKFJ38bB47dqzI/icyMhKHDx+OFy5cEGzuDx8+oJWVlVzusLAw7N+/P544cULQx27x8fFyub29vbFbt264d+9ewfYNERHnzJlTpD/esmVLzMzMxE+fPvEdT6WXL1+iiYlJkW3KzJkz8cmTJ3zHU6t+/fpFjiP69++PJ0+eFGyfFhFx165dcrmtrKzwl19+wZUrV+L79+/5jqdSfn4++vn5FRlbGTJkiODHKCZNmiSX29LSEhs2bIjLli0T7PEyIuLHjx/R2tpa6THQwYMHBXsMhFj0WEJPTw9r1Kgh+P1+QUEBhoSEyGU3NTXFlJQUnDt3rqCP9V+9eoWmpqZFjuEyMjJwwYIF+Pz5c74jqpSVlYVmZmZy2Y2MjDA+Ph6nTp2K9+7d4zuiShKJBKtXr16kvxgSEoK9e/cW/Gf1/PnzRbIbGhpiXFwcTp06Fe/evct3RLVWrFhRJL+5uTmmp6fj/Pnz8dmzZ3xHVGvv3r1F8hsbG2NiYiLOnDkTHz58yHdEtT59+oS2trZFxhmjoqJw+PDheP78ecFu7xk9e/Ys8n/g4eGBHTt2xK1bt+KXL1/4jqjW8+fP0cjIqMh+KzU1FefNmyf4zwAiYtu2bZWuQyNHjsRLly4Jfh3auXNnkXUoLCwMBwwYIPhjb0TEq1evokgkUjrmcfHiRcEv/8WLF8tlt7a2xiZNmuCqVasEfWyFiJiTk4P29vbS7GZmZpiRkYGLFy/GrKwsvuOplZOTgw4ODnL9tsTERJw9e7ag+8vaevr0qex65oY/oybuZ/wSalS4SP59GzduLLKjZ5qBgQHGxsbilClTBHnQWqNGDZXZ/f39sUePHoI8wa6sIED2pGm/fv3wxIkTghv8VTZwKrujTEpKwrlz5wpycKZOnTpKc5uYmGBaWhouXLhQkIUBMTExSnM7ODgItviyoKAAAwIClOb29vbGHj164KFDhwRXFPDx48ciJxyZ5ubmhp06dcJdu3YJ7gTeixcvihRfyB44p6Wl4YIFCwRXFPDhw4ciJwVkm4+PD3br1g13796N37594zuuHFWfS+Zgv1KlSjhs2DA8e/asoLbj6vb3zGBjWloazpkzBx8/fsx3XCmJRIJVq1ZVm12oBZhnzpxRm9vZ2RnbtGmDmZmZ+PHjR77jyklNTVWZmzn5uGTJEsHtO5UNYMn2VRISEnDmzJn46NEjvqPKyc7OLjIArWwQ8fLly4IbxKpVq5bKZe7r64t//PGHIAtg/vjjD5W5bWxssEmTJrhy5Up89+4d31HlzJ49m9Wxm9BOeu3fv1/t9jAiIgKHDh0quH3nw4cPUV9fX+2xW+/evfHQoUOCOub8+vUruri4qMzt7e2NXbt2xV27dmFubi7fceWoOm4D+HGBzm+//YZbtmwR3EmtYcOGqczt4OCArVq1EmRRneLFcsr298uWLcO3b9/yHVXO9+/fixRyy24L69Spg9OnTxfc/h4RsUePHiqXedmyZXHQoEGC2xYiIl6+fFllbuai1k2bNgnuQhGJRIJRUVFKczMXQE+aNElw+01ExCVLlqhc5q6uroK9YPHLly/o5OSkNLdYLMaqVavi2LFj8dq1a4Lr1w4fPlzlMreyssLGjRvjihUrBLdNzM7OljsRq9h8fHywa9eughxfWbt2rdo+YpkyZQRbjNC3b1+12cuVK4cDBw7EkydPCi77gAED1GYPCAjAHj164N69ewW3zhw+fFhtdktLS6xfvz4uWrQIX7x4wXfcItLT09Xm9/f3xz/++EOQn1dlxcbKPrP9+/fHY8eOCW7sX1Xhq7LjO6GNLzLGjBmjNr+Liwu2bdsW169fL7jjDkTlRd+yzdjYGBMSEnDGjBmCLSRVN5bE9Of/+usvQW77EREfPHigdozDzc0Nf//9d8EWkqrr2wMA2tvbY8uWLXHt2rWCG2tnNGrUSO3y79ChgyD7+Ig/agR8fHw0HlsJdZKmsWPHKs0uEomwSpUqOGbMGLx+/brgjlEQEcePH69yvWEucNOFAnY2qHDxf7QBFS4S/LGjL1eunNrOFtOCgoIEdaWpspmvVB2wNmrUCJcvXy6YwaXExESNuR0dHQVXnKZu4FS2RURE4PDhwwVzlc7Ro0c1ZmY6J+PGjcObN2/yHRkR2a3jpqamWK9ePVy6dKlg1m8264mdnR22bt0aN27cKJiDoMGDB2vMbWFhgY0aNcKVK1fihw8f+I6MiIjdunVj9bmsVKmSoApfFGe5VNXMzMykV+8KoTD6+PHjrHIz2/GWLVvi6tWreb/qTCKRYEREBOvsISEh2KtXL9y3bx/vg6Vs9/fMZzQjI0MwszGqKwCUbcyso+PHjxfESbwLFy6wys0U6wplNixlsy6qakKbDUtxphRVzcPDAzt16oQ7duwQRMGR4qyL6j6bDRo0wCVLlgjiSlZ1hf+yTSwWY3R0NI4bN04Qg1ffv39HDw8PVstcSDOlSiQStRedyTZnZ2fpyRYhzCL5+++/s8rNFDQIZUap6dOn/7/uZxkbG2NSUhLOnj1bEDPVabooh2lMgfHUqVMFM2un4qyLqraF1apVE8y2EFF9Ibfi/n7AgAF46tQpQRQDvnz5ktX+x8XFBX/77TfcunWrYMaDMjIyNOZmLmqdM2eOYGadUXdhi2wLCgrCvn374tGjRwXRN8zPz0dfX1+NuU1MTDA1NRXnz58vmAsW//77b1bLXGizvH78+BFtbGx0cps4btw41vt9ZlZAIRR1FRYWYlhYGKvs9vb22Lx5c/znn394H19BRHzz5g2am5vrZPZ3796hpaUlq+zMjHpCmk0sNjaWVXaAHyfzBw0aJJgiInUXAig2ZiY3IV1grKnYWLbZ2NjgL7/8gsuWLRPEGAAi+/ELgB9jGPXr18eFCxcKYnuJiPj582e5WbfUNQMDA4yJicFJkybhrVu3BLGvQtRc9C3bQkJCsE+fPoK6UFBxBnVN2/4WLVrgmjVrBHMeCbHonSVUNdkZSYV0Qdju3btZ5dfX18eYmBj8+++/BVVIp2zWRWXNxMQEU1JScN68eYIYq2EsWrSI1fIPDAzE3r17C+rONp8/f0Y7OzuN2X18fLB79+64f/9+wWx7FGeMVNWYO/Jt375dEOcNtEGFi/+jDahwkfzH5s2bWXcWmSaUEzM1a9bklFsoV/eePHmSU25TU1NMT0/HRYsW8Xqgx3bgVLZ5eHhg586deb9SUN0sacpaQEAA9u7dm9dBa2W31lPXmKtaJk+ejA8ePOAlMyJiXl4eent7s87NzHzJ9/r97t07tLCwYJ1bX18fa9eujdOmTeP14E3ZbQo0NU9PT+zSpQuvn0tlt7hg05hBRz5PPiYkJHDOzex/Ro0axdvU/4q3SmPbzMzMMDU1FWfPns3bul67dm2tsvM9G+OlS5e0yu3p6Sm9VQpfM9fUq1ePc25XV1ds3749btq0CT9//sxLbm3WcyFckZudnc1q8ES2MTPrzp8/n9eBdHWzLiprzG3TR40ahVeuXOGtP65u1itVjZmpjs/957x58zjntrKywkaNGuHSpUt562txOUnENKbIa/LkybzNhvX48WM0NDTUah3n83ZLubm5WKpUKc7LvEKFCjh48GA8c+YMb/2suLg4zrnLlCnD+8wW6mZdVNVCQkKkhVJ8Dearm3VRVfPx8cE//vgD9+3bx9tA/rdv39DNzY1TbicnJ2zbti1u3LiR15kBNc3UotiYwjS+Z9K/ePGiVtuUYcOG8XqBi0QiwcjISE65mb7hunXreC2iV7wdG5tWsWJFHDFiBK8XEqubdVFVYy5yWbp0Ka/jzGwvsJRtTP9wz549vPUPFW8hx7ZFRETgkCFDeJ3pdcOGDZxz6+npYfXq1XHcuHG8ju9rmrlQVfbo6GgcM2YMr8dCQ4YM4Zwd4L+zYB47doy3PhfX8yqy2/bmzZvjqlWreJ1ZX91sW+paaGgo9uvXDw8fPsxb/6uwsBDDw8M5Z5e9Q825c+d4vZhE2/FFoRTBTpw4Uav8zOy7fM+6z6XoW7YJYUyD0atXL622/TVq1MDx48fjjRs3eC0kffjwIRoYGHD+N4SFheGff/7J6/Yf8UffvkqVKpzzMxf3CmFiJm32AxUqVMAhQ4bwvg3Ny8tTOeuiqmZra4vNmjXD1atX8z4TJtuJA2S3Pb/88osgbofN9kIlpjHnDRYuXIivXr3iNTsX/0bhogh/FMYRAROJRG4A8BQA4OnTp+Dm5sZzIqKNkydPwv79+7kWrcp9L5FIYMaMGfD9+3etMohEIqhcuTIkJydDUlIShIWFgUgkUvszp0+fhn379oHstkI2m7Kvyp67fPkybNmyRavcAADe3t6QnJwMycnJUKNGDTAyMlL7/vPnz8OePXtALBaDSCQCsVgs1xSfU/f9X3/9BY8fP+acWSwWQ5UqVSA1NRXS0tIgICBA48+cP38edu/eDSKRSNoAQO57ZU3Ze3bv3g1bt27lnBsAwMLCAurWrQspKSmQmJgIdnZ2at9/6dIl2Llzp3S5KX5V9pyq186ePQszZ87UKre9vT0kJydDamoqxMXFgZmZmdr3X7lyBbZv3w56enogFotVflX3GvP12LFjMHHiRK1yh4eHQ3p6OqSlpUG5cuU0fi6vXbsGW7duBT09PbkcyrJpen3Dhg2wePFizpnFYjFUrVpVmtvX11fjzzC51X322LwmEolgwYIFcPDgQc65AQDKlCkDaWlprJf31atXpZ8l2ffKfvZUPaf42pIlS+DatWta5TY3N4f4+HhITU2FxMREsLe315h78+bN0v2H7FdVj1W9vm/fPrh165ZWuQEAHBwcIDExEZKSkiAuLg6srKxUvvfKlSuwefNmKCwsLNIkEgnr5yUSCTx69AguXLigdW4AABcXF0hISIDExESIjY1Vmf3KlSuwadMmKCwshIKCAulX2cdsvxYUFMDhw4dBIpEUK3twcDAkJCRAQkICREdHK913Xrt2DTZs2CBdbkwOZd+reiz7/ZMnT4q1rgD82AfFxsZKsyvr+968eRPWrVsHEolE+v8v+1XVY3XP7dy5E3JycrTObWRkBDVr1pSu68q2i7dv34bMzExWn0fFx6peu3//PuzevVvr3IaGhlCzZk1p/9DHx6fIe+7duwdr1qxR2vfT1C9U9R5EhOnTp8OXL1+0yq2vrw/Vq1eH5ORkSElJAT8/vyLvefDgAfzzzz/S75X1Vdl8r/jatm3b4Pz581rlBgCIiIiAlJQUSE5OVrofks3Npp+t7jXZx1euXClWf9zT01PaH69ZsyYYGxvLvf7w4UNYtWqVxmMart9nZWXBsmXLtM5tZmYGcXFxkJycDImJieDs7Cz3+qNHj2DFihWsjs8UP5PqWl5eHsyZM0fr3CKRCKKioiApKQmSk5MhPDxcbl15/PgxLF++nNX2QlV2Ve9ZtmyZ1p9NAICAgADpNqVatWpgaGgofe3p06ewdOlSrXJp+n7Lli3w/PlzrXO7ublBYmIiJCcnQ+3atcHU1FT62vPnz2Hx4sWs//+5rDtHjhyBy5cva53byclJmrtOnTpgYWEhfe3FixdyuQFUf97YPJb9/saNG7B9+3atczP9w+TkZIiLiwNLS0vpa69evYKFCxdKv1e1TWa77ZZ9/OnTJ5g6darWuW1tbaW569atK9c3zMrKggULFqj9eU3HHupe//vvv+HNmzfcAv+HpaWl9Bg/ISFB7hj/7du3MG/evCIZuH5V9dr27dth3759WuU2MjKC2rVrS/ebsv3C9+/fS7ezysZGivv41atXMGrUKK1yAwBUqlQJUlJSIDU1FUJDQ6W/98OHDzB79mxWObTJLhKJYPz48VqNYwEAuLu7Q0pKCqSkpECtWrWkxxAfP36EWbNmSf+Wsr9f3OdOnjwp13fjwtDQEGrVqiXN7uHhAQA/PvOyY0zK1ldVj9m+t6CgAAYOHAj5+flaZVe2zLOzs2H69Ola/T4utm/fDidPntTqZ5lxZiZ7SEgI5OTkwLRp01T2V3/W1+zsbOn6qA1zc3O5/qGZmRlMmTJF6/08l3bo0CG4ceOG1tmdnZ2l+6GoqChYuHChXF9D3VgP26/KnissLIRVq1YVa5zC09MTkpKSIDY2Fi5dugR6enrSv6Gs/azXPnz4AAcOHNA6NwCAh4cH1KlTB75//w5eXl6gp6endOxBWVP3uqbXsrOz4fjx48XKbmNjA25ubhAQEADe3t5gbGys9G9rGk9h+1j2++PHj2u9bQT4sZ1xc3MDPz8/8PX1BQcHh2JnZPverKwsuHPnTrGWvZGREfj4+ICvry94eXmBiYnJv7rsZR8/fvwYXrx4Uaz8ZmZm4OPjA97e3uDp6QkGBgYq11tV6zLb9yo+9+LFC637MgwTExPw9vaW5jc0NFT7Wf2Z7evXr8Uek9bX1wdPT0/w9vYGLy8vMDMzU7qNk/3+Z7zGPL58+TK8f/++WP8GFxcX6f8Bcy5D9m+o2ucU5znm64cPH7Tu4zCsrKzAx8cHfHx8wM3NTbrfKu4YANt24MABePv2rdb5TUxMwMfHB/z8/KTbf23HApQ9Vvf6pUuX4OXLl/DkyROt8xsZGYGfnx8EBASAn5+f3BiN4liAsue0+f7MmTNQUFAAAADv3r3T+lwewI9zHEFBQRAcHAx+fn4q6xpUjQFwef7o0aOQl5cn99rdu3fh7t27WiT/cf7X19cXwsLCICwsDBwcHH7qMTfzdc+ePfD9+/ci78vLy4ONGzcq/X/WRCQSga+vL4SGhkqzK/5dbcY82L73y5cv0KVLF62zM+MIKSkpcuMIQvPs2TNwd3dnvnVHxGfF/qUlcTBGrXgNaMbF/xfGjh3LqcK6JJq7uzt27NgRt2/frvKWNpMmTeI9p2IzNzfHevXq4aJFi1RWn8+YMYP3nIotKCgI+/Xrh8ePH1d5pYsQc4vFYqxevTpOnDhR5VTdc+fO5T2nYmNufTRv3jyVsxuxnS67JJuHhwd27dpV7awYS5cu5T2nYgsNDcWBAwfiuXPnVF6JtmzZMt5zKjZ3d3fs3Lkz7tmzR+Usb0LMLTsrraqr/4S4ngD8mAGzVq1aOHHiRLx582aR7ELNzWSvUaMGjhs3Dq9evSqXffny5bznU9dMTU0xOTkZZ86cKTfT68qVK3nPpqmFhoZi37595a60zMzM5D2XphYQEIDdu3eXm9Fj48aNvOfS1IKCgrB3795yy3vbtm2859LUlF2Rq+3spSXZXF1d8bfffsMtW7bgly9fEBFxz549vOfS1JirQWVvX7dv3z7ec7FpFStWxGHDhuH58+dRIpHggQMHeM/Eprm5ueHvv/+OW7duxS9fvmg1MyIfjZmZafHixfjq1Ss8evQo75nYNCMjI0xISMAZM2bgw4cPtZ4xpqQbM/vllClT8O7du3jmzBneM7FpzAzpzKydFy5c4D0T29y1atWS3tbqypUrvGdi08RiMUZHR+P48ePx5s2beO3aNd4zsW3ly5eXzmBx69Yt3vOwbZ6entKZ3m7cuMF7HraNGX9bsmQJnj17lvc8XFqZMmVw0KBBWt29hs/G3CJYiOOxmpq3tze2adOG9xxcm0gkwnLlyvGeQ5umzUxM1KhRo0aNGjVq1KhRE37z8vKSjiPwcZcydehW0f+jDahw8f8FrlPDlnQzMTHB5ORknDNnjtx6JvSBMtF/pq8fMWKE3C09p02bxns2dc3R0RHbtWuHW7ZskSsanT59Ou/ZNLXAwEDs06eP3K2ZZ8+ezXsuTa1SpUo4atQouVuTzJ8/n/dc6pq1tTU2a9YMMzMz5W57JMSCS9nm5uaGnTt3xr1798oVXy5ZsoT3bOqapaUlNm7cGFetWoUfPnyQ5hZi4aJi8/X1xe7du+OBAweky1zohXSy2bt16ya9neeKFSt4z8S2ubu742+//YabNm0S/OdSsQUGBmL37t21ul0in83CwgIzMjKwQ4cOvGfh0pjbeHfq1In3LFwac4sXbW7Vy3fuxo0bY9++fXnPwqUZGxtjUlISduvWjfcsXFvFihWxVatWvOfg2lxdXTEpKYn3HFybsbExRkVF8Z6DaxOJRBgcHMx7Dm2at7c37xm0aZ6enrxn+F/K7eXlxXsGbZqHhwfvGbRpjo6OvGfQpmlz2z1q1KhRo0aNGjVq1KhRo0aN2v9ms7S0xIYNG+Ly5cvx7du3P7+QiSO6VfT/KBHdKvr/hQkTJkDfvn35jqERMw3t4MGDISEhAf7++2/o1asX37FY0dfXh+bNm8PYsWNh9erV0L17d74jsWJiYgJxcXHQpEkTyMrKgm7duvEdiTU7Ozto2bIllCpVCnr37s13HNZ8fX0hNTUVnJyc4M8//+Q7DiuGhoYQGxsLaWlpkJOTozOfSysrK0hKSoL09HR4+/YtdOrUie9IrOjr60PNmjUhIyMDjIyMoH379nxHYs3GxgYGDhwIdnZ20Lp1a77jsFauXDlo1qwZODo6QsuWLfmOw4qdnR2kpqZCeno6ZGdnQ4sWLfiOxIqtrS2kpKRARkYGfPnyBZo1a8Z3JNZKly4NGRkZYG1trVP7HYAft04tXbo0bNy4ke8onNnb2xfr1iSEEEIIIYQQQgghhBBCCCFEe2KxGKKjo2HEiBEQHR3NS4Z/41bR+sX9BYQQdoR6D3qAH4VzderUgdTUVEhKSgJnZ2fpa0LODQBgbW0NiYmJkJKSAnXr1gVra2sAAJBIJPwGY8nLywuSkpIgKSkJatasCQsWLOA7EiuhoaGQnJwMSUlJEBUVBXPnzuU7EitmZmYQGxsLSUlJkJiYCFu2bOE7Emt+fn4QEhIC/v7+cOPGDb7jsObu7g5ubm7g6OgIHz584DsOK9bW1hAfHw9JSUlQt25d2LlzJ9+RNDI1NYU6depIP5cuLi7wzz//8B1LLQMDA6hVqxakpaVBSkqKtJO7du1anpOp5+3tDenp6ZCeng5VqlQBff0f3ekNGzbwnEw9d3d3SE9Ph4yMDIiOjpbm3rx5M8/J1BOJRFC5cmXpMvf39wcAgK1bt/KcjJ2oqChIS0uD9PR0CAoKgu3bt+tM4WL58uUhNTUVUlNT4cWLF5CcnMx3JFbEYjFUq1YNUlNTwdraWqcKz0uVKgUpKSng5uYGAwcO5DsOazY2NpCUlATe3t4wYsQIvuOwZmtrC0lJSeDr6wtDhw7lOw5r9vb2kJycDAEBATBgwAC+47DGLO/g4GCdym1qagpxcXEQFhamU+u3SCSCqKgoqFChAsyYMYPvOJy4urpClSpVYN26dXxH4URfXx8qVKgAp0+f5jsKZ46OjpCVlcV3DM7EYrHOjP0QQgghhBBCCCGEaMvCwgLi4+MhOTkZEhISwNHRke9IPxUVLhJSQoRWAOjs7AwpKSmQkpICtWvXBlNTU74jsebv7y/NXrVqVTAwMCjyHqEOXuvr60O1atWkxYpBQUFy64ZQZ8E1MjKCWrVqSYuivLy85F4Xam6AH7MrMsu7Ro0aYGRkJH1NqOsJwI+C4tq1a0NiYiIkJCTILfNbt27xF0wDpjiUyS1zxQXcuXOHx2TqhYaGSteTypUrS4u6hMzd3R1SUlIgOTkZatWqBcbGxnKvC22/A/CjKDQpKQnS0tIgPj4eLC0ti7xHT0+Ph2TqlStXTlo4FxYWpnTZCnGdKV26tLRYsXz58kpzC3F5GxgYQGxsLKSnp0NqaqrcBRUMsVjMQzLNDA0NoXbt2pCeng4pKSng4uIi97oQP5cMAwMDiImJgdTUVLliYgCAV69e8ZhMM0tLS6hbty6kpKRAQkIC2NnZAQDA7t27eU6mWYUKFaT92nLlyoFIJIL9+/fzHUujwMBAaW6miPvQoUOCL+wKCAiQruNM7qNHjwq+cDEoKEhaSBwVFQV6enpw8uRJvmNp5OfnB2lpaZCamipd3mfOnOE7lkbMsXJaWhrExMSAiYkJnDt3TvDrN1NkmZKSAklJSeDk5AQXLlzQicLF8uXLQ0pKCqSmpkK5cuXg8uXLOlG4aGNjI3ch5ZMnTyA8PJzvWKxERERIjyUMDQ0hLCyM70isMMs8OTkZvLy8oHLlynxHYi0yMhKSk5MhLCwMMjIy+I7DmrOzMyQlJUGFChV05g4KAD/GsWJiYqBy5cowePBgvuNwEhkZCdHR0TBp0iS+o3ASGBgIMTExMHv2bL6jcOLi4gK1a9eGFStW8B2FEwsLC4iJiRH8xYiKRCIRREZG6mShv42Njc5clE0IIYQQQnSfj4+PdOymevXqYGhoyHekfw3dKloH0K2i/384c+YM7N+/H0QiEesGAHLfIyL07dsXcnNztcoQFhYmPeEVERHB6qQ/k5vJwpDNp+yr4nNnzpyBNWvWaJVbLBZD1apVpScyAgMDNf7MqVOnYP/+/SCRSKQNEbX6fsOGDcW6PaKjoyMkJCRAUlISxMXFgZWVlcr3nj17Fvbs2QOIKC0GZB6raqrec+rUKTh69KjWuV1cXCA5ORmSk5Ohdu3aYGZmpvK9586dg927d8stN9nlqficuvfcv38f9uzZo3VufX19qF69urQILSAgQGWhyLlz52DXrl0gkUigsLBQ7VdN73ny5AkcP35c69wAPzogzGyQNWrUABMTE6XvO3/+POzcuVPu76t6rOn127dvw+XLl4uVOzAwEBITEyExMRGio6PlikNlXbx4EXbs2CH3OVP22WPz2rFjx4pVwMkUhjLL28PDQ+V7r169Clu3bpUr0JX97Kl6Ttlra9eu1To3M3MO87lUVUDHuHHjBmzevBnEYrF0P8I8Zvsc83jBggVw4sQJrXL7+PhIixZUFZvLunPnDmzYsAH09PRUNrFYzOr1nTt3wtSpUzln1tPTgxo1akgL5zw9PTX+zL1792D9+vWgr68Penp6cl+5PpeXlweJiYla7e+Z2QkzMjKksxOqc//+fVi3bp102Snm4vp49erVWhVIWFhYQGJiImRkZEBCQoLSolbF3JmZmdL/b+b/XNlXNq+JRCJo164dvH79mnN2piA3PT0d4uPjwcLCQm3utWvXcv4Mqnv9zJkzMGvWLM65Af47U15qaqrKYmLZ3ADy/TtVj9k8BwDw119/QU5OjlbZvby8pAVoqg7aHzx4INf/VNZP1fSasseZmZlan2gzNjaG2NhYaWFRqVKlirzn0aNH0llzufS/Nb33zJkzWs/Gq6enB9WqVZMWKwYEBBR5z5MnT2DlypXSv6fuuIbL90+ePIFx48ZplZs5jmDWFWXHEU+fPoUVK1awOj6T/expal+/foXu3btrdYGP7Myhqpb38+fPYdmyZWq3D9q8BgDwxx9/wKdPnzjnFol+zJLLHHMqXqQFAPDy5UtYsmTJT8mq+P3o0aPh9u3bnHMDaD5WfvXqFSxevJj1/z+X9WbVqlVw4MABrXK7uLhIj5OZIktluQGUb7fZbNNV/cyZM2dg2bJlWuVmCv2ZwVfZYnkAgNevX8OiRYvknmOznWbzvvfv38Po0aO1yg2gvHCbkZWVxekuCly3D1OnToU3b95w+hkGc6eNlJQUSExMBFdXV+lrb968gfnz58tlYnO8w/b9hw4dgmPHjmmVGwAgODgYkpOTISUlRe4is7dv38K8efOUjo38jMfv3r2DhQsXap3b3Nwc4uLiIDk5GRITE8HJyQkAAN69ewdz587VmEOb7Mz3K1euhBcvXmidvUKFCtLjzvLly4NYLIYPHz7A7NmzVf79n/HclStXinXHA2XjWB8/fpTrKytbR4v7uLCwEMaNGwcFBQVa5TYzM5NbV5ydnSE7OxtmzpzJ+XcpbhM12bp1q9bH+np6ehAdHS3dJvr7+0NOTg5Mnz5dLgubr1zeC/BjW16cC0/Kli0r7WeVL18evn37BlOnTtVqP8+1LVy4UOttooeHhzR3jRo1ABFh8uTJao8fuX5V9dr379+hTZs2kJ+fzzm3iYkJxMXFQWpqKiQnJ4O1tTVMmjRJekyu2Ji/+bNeu379OvTu3VurZe7r6wtpaWmQlpYGkZGRMGXKFJV/X3acgctr6l6/du0adOnSRavsZcuWhbS0NEhOToa9e/cqHSMp7mN1r+Xn50NCQgJ8+fKFc3bmgrPPnz+Dl5eXdMyJbbaf8d41a9bA+PHjOWc3MTEBLy8vCA0NhZCQELC0tPxXlr2m/4fhw4fD+vXrtcofEhICYWFhEBwcDMbGxkrXT1XrLNv3avr5GTNmSPunXBgZGUFQUBCEh4dDaGgomJmZqf3s/Vvt8uXL0KZNG875AX6Md4WFhUGZMmXA1dVVbtumuJ1T9Rrb96l7rVWrVlqdxzA1NYXSpUtDeHg4hISEgKmpqcr9y7/53MmTJ7W+24OTkxOEhYVBWFgYeHt7S8eOf+Y4AJvWuXNnePLkCef8IpEIfHx8IDQ0FEJDQ6Wzsmlz/K/psarXd+zYAdevX4crV65o9X9gYmICwcHBEBISAgEBAWBsbFykn6v4vbLnuH5/6NAhaV/n9evXcO7cOa3yA/yYeCQwMBACAwPBwcFBaV5VYwJcnmfqAWT7aIgIjx8/hkePHmkXHn7c8cXX1xf8/PzA2dlZmr+4x9myz125cgUKCgqUvv/ixYtaZwf4cWzo5+cHvr6+0mNxdXl+1teCggKYP3++VuPBAD+OsapWrSodAwkMDFS67vDt37hVtNpiGGrCaADgBgAIAPj06VMk/7tWr16NzLrApunr62NsbCxOmzYNHz58yFtuiUSCVatW5ZTdwsICGzZsiMuXL8e3b9/ylv3GjRsoFos5ZQcArFChAg4ePBhPnz6NhYWFJZ67oKAAQ0JCOOeOjIzEYcOG4fnz51EikZR4bkTEevXqcc7t6OiIrVu3xszMTPz48SMvuRs1asQ5t6GhIdapUwcnT56Mt2/fLvFlLpFIMCoqinNuY2NjTEhIwOnTp+O9e/dKNDMi4pcvX9DZ2Zlzbm9vb+zSpQvu2LEDv379WuK5X758iSYmJpwym5ubY/369XHJkiX4+vXrEs+MiJiVlYWmpqacckdFReHo0aPx2rVrvG1LCgsLMTQ0lHVmU1NTrFevHi5btgzfvXvHS2bG1KlTOe3r4+LicPbs2fjixQtec+fl5aGXlxfr7E5OTvjbb7/hjh078Nu3b7xm37ZtG6d13N3dHbt27Yr79u3DvLw8XrPXqlWLU3YfHx/s0aMHHjp0CPPz83nLvWnTJk65RSIRRkVF4ahRo/Dq1au8bVs+fvyI1tbWnLI7Oztj+/btcfPmzfjlyxdeckskEqxWrRqn3JaWlti4cWNcsWIFr9vF3377jVNu5jhi2bJlvB5HTJgwgfM+v0GDBrzn3rhxI6fcJiYmmJaWhgsXLsRXr17xlvvatWsoEolY59bT08OYmBicOnUqPnjwgLfc2dnZaGtry2mZh4eH48CBA/HMmTO8HGsiardNcXBwwNatW+OGDRvw8+fPvORGRBw0aBCn3Hp6elijRg2cOHEi3r59m7fcJ0+e5JQbANDNzQ07dOiA27dv5+X4B/FH/9Db25tTbgMDA4yNjcUpU6bwcrzJGDBgAOdl7u3tjd26dcM9e/bw1r+9desW53EsU1NTTE1Nxfnz5+Pz5895yY2IWLNmTc7LPCIiAocOHYrnzp3jbZu4cuVKzrk9PDywc+fOuGvXLszNzeUl95cvX9DR0ZFTbhsbG2zatCn+888/+P79e15yIyL+9ddfnHIbGhpi3bp1cebMmfj48WPecr958wbNzMw4r+PDhw/HS5cu8XYMhIg4bdo0TrmdnJywffv2uGXLFt72QQyuY7aRkZE4atQoXse0GA0aNGCdm+nfTps2DR89esRrbkTEmTNnclruUVFROGbMGLx58ybf0TE/Px99fHxYZ7e3t8c2bdrweswv69WrV2hsbMw6v7e3tyDGiRifP39GOzs71vldXV2xY8eOuGvXLt7HFxlcznEZGxtjcnIyzp8/n9djalmHDx/m9PkVylijrJiYGNb5xWIxVq9eHSdOnIh37tzhOzoiIh48eJDT/4FQxvAY+fn56Ovry+nfEBgYiL1798YjR44IYj1KSUnhlN/MzAzr1auHixcv5u1cHqOgoACDgoI45Tc0NMS4uDicPn06r+NkiIgrVqzglJ1Z/unp6bhgwQJez5MtXbqUc3Zra2ts0qQJrly5UhCfXzaePn0q+29ww59RE/czfgk1Klwk/77CwkIsXbo0q41b06ZNcfXq1bwVcCnau3cvqw2zl5cXduvWDffu3Yvfv3/nOzYiIv7yyy+ssltYWGD9+vVx0aJF+PLlS75j46pVq1jlNjc3x3r16gkm94ULF1jvyCMiInDIkCG8nrBjXL58mXVuNzc3/O2333DTpk28nrBDRNy+fTvr3F5eXti5c2fcvn077wMwEydOZJVZX18fa9WqhRMmTMAbN27wPtjYs2dPVrl9fHzwjz/+EMy28M8//9SY2djYGFNSUnD+/PmC2JYgsiu8sLe3x7Zt2wpiIJ3x7ds3dHNz03gQ1qBBA1y5ciV++PCB78hSS5Ys0bjM/fz8sE+fPnj8+HHet90MiUSClSpV0pi9TJkyOHjwYLxw4QLv2xPGkSNHNOZmCv7GjBmD169fF0R2iUSC5cqV05jd1NRUEAVRskaMGMFqW162bFkcNGiQIPopiIj79u3jtA/at2+fIPZBjx8/RgMDA425PTw8sEuXLrh7925BnKhgWwjg5uaGnTp1EswJFrafTSGdiGawOW6ztLTEX375BVetWsVrsYWsMWPGsOrTCuGCRFn79+9ntU0JCQnBP//8E48fP44FBQV8x8b379+jpaWlxtxWVlb4yy+/CGrQuG7duqyWecWKFXH48OF48eJFQezzFyxYwCq3vb09tmrVCjMzM/HTp098x8Y3b96gubm5xtzMSc7x48cL4pgTEbFZs2aslrmHhwd26tSJtwv7FLE9Ocv0D/k+IcUoKCjAwMBAjblFIhFWrlwZR48ejVeuXBHEujJp0iRWyzwgIAB79eolmGKEd+/eoYWFhcbcTMH8+vXrMTs7m+/YiIjYv39/jbmNjIwwMTER58yZg8+ePeM7MiIi5ubmoqurK6v9fv/+/fHkyZOCOAZC/DEpgaaLW5hlPnfuXEFsVxjXrl3TuMzNzc2xYcOGuGLFCsH0bxERv3//ju7u7mqzGxoaCnK5IyIuW7ZM47L39fXFXr164ZEjRwTRz5XVp08fjfkjIiJwxIgRgtknyRo/frzG/KGhofjXX38JZsxF1pUrVzTmt7Ozw9atW+PGjRsxJyeH78hFxMbGavw3CKnIW9HRo0c15jczM8P69evj0qVL8c2bN3xHLoLNheqenp7YtWtXwZxHksWmeEu2YJTPiwSVOXfuHKt+suzFSEIY12OwvbBKiP3l/Px8DAgIYJXf09MTu3TpwuvFYIrZ/fz8WGUPCgrCPn364OHDhwVxjMUVFS7+jzagwkWCiGvXrlW5cWOuZjlw4ADvs/4oUjcTg+ygHZ8z56hy9epVtQMbgYGB2LNnT9y/f7+gOoWarqRgTkjzOQOAKqmpqSpzC604VFZ6errK3Hp6eli9enUcO3asoAYCJBIJVqhQQWVuAwMDrF27Nk6aNAlv3rwpmNyfP39GBwcHlbmdnJx4n31TGXWzLYrFYoyOjsZx48YJ5mQX4+3btypP2Dk4OGDbtm1x06ZNghtgkUgkWL58eZXbwJ49ewpyYBERcd68eUpzM0WWW7duFcRBmCJ1J+wqVKiAI0aMEORAFiLinj17VG6/a9WqhVOmTBFMoYgiVQOJTDHxggULBLfPRETcsmWLyu24q6sr/v7777zODqXKx48f0cbGRmluocziooxEIsHo6GiV/fEqVaoIqrBVVocOHVSuKxUrVsQRI0bwPvuMMuoKAcqXL49Dhw4VVBE0Q91ns3Tp0jhgwAA8deqU4E4M3bx5U+Vxm5AH8tXNJCLECxIZ6rYpzEw/kydP5nWmPFUGDx6sch339fXF7t274/79+wU3rqJutkXZIi6h7fM1zcYdHh6OAwYMwBMnTgiuX67u4i0hz4Zw8+ZNlbMtMvt8IRXOyapRo4bKZc6cENy5c6fgjoXUzQZiYWGBDRo0wKVLl2JWVhbfUeWou8hCT08Pa9asiZMmTRLcSWRExIEDB6pc5kIrmJf17t07teMrQpiVWJVZs2YpzS0Wi7FGjRo4adIkvHv3Lt8xlVJVzG1ra4stWrTAdevWCXKZIyI2adJEaXYXFxfs0KED7ty5U3Bj+wxVY1vW1tbYvHlzzMzMFEyBhCJ141tCLtRiqJrZlbljy8yZMwV9nlnV/okpcJo0aZIgjzNkNW7cWOn64+fnJ9hiV1nHjx9Xml+oRd7KxMXFKf03uLq6YocOHXDHjh2C61PKUnehOjMWdvnyZcFuh/Lz89Hf319l/7hRo0a8321RE3WzLUZGRuLIkSMF+3+g6cIq5jhcSBeayFJ38YBYLMZq1arh2LFjBbkvXrx4scrssneWEGq/mQsqXPwfbUCFi//zFG93yRT8CfUEoyzFmRjMzMwwIyMDFy1axPtUyZrUr19fLruhoSHGx8fjtGnTBH1wpDhoytzaasKECYIqQFN09uzZIjvygIAA7NGjh2Bm/VFG2ZU3zK2r165dK6jZ0GQpm43Ozc0Nf/31V9y4caNgB4/Gjh2r9GBt6NChePbsWUF2tBERu3fvLpeZmcVFKFP3q6J4+6Xg4GDs16+fIE8CyNqxY4dcbqZwTohF8rIUb0Xj6emJ3bt314mrrtasWSO336lVqxZOmzZNcAVcysgWXzC3dBDCLcM1URxIdHR0xHbt2gnm1kSqKCucL1euHA4ZMgTPnTsn6M+o4myLDg4O2KZNG8GeYGQcOHBALjcz4/aSJUsEdxJd1pMnT+RmW2RunzRv3jxBD5J//foVnZyc5I4hEhIScNasWYI+npdIJBgREVFkWy7UAjRZzZs317mBfETEcePGyeX28fHB7t27C/KCRFmK2xQrKyts0qQJ/vPPP4I99kEsOtsiM+AtxIuHFCnOtuju7o4dO3YU/Ak3xdkWjYyMMCEhAWfOnCmIW1iqkpWVVeSEf3BwsE7MhqBY5GJpaYmNGjXCZcuWCXqfr7hdkS2yFPIxXEFBQZHZQIR2BwVVFC+yYApyhTQrsTKK23J9fX2MiYnBKVOm4P379/mOp5ZiwaWujK98+/ZNbuY8c3NzbNCgAS5btkzQBQeIiLdv35Yr5hbirUxVuXXrllx25iKi06dPC3bsk5GXl4fe3t5yY1vdunUT5MUhyqxevVquyCA+Ph5nz54tmBlQNRkwYIBcP+CXX37Bf/75R3AXQ6kyZcoUaX5TU1PMyMjAJUuWCHJGPGUUZ3mtVKkSjh49WvDncWXJHnvY2dlhq1atcP369YIe95KleNFXeHg4Dho0SNDnjhTJXqhuZGSESUlJOHfuXHz+/Dnf0VhZvny53P+Bl5eXYC8oVUbxnK+QLxZURnG2RdmL7YV8HI6ofMZCKysr6W3Qhdz3VHZ7dKHdWeJnosLF/9EGVLj4P2/9+vVoamqK6enpOlHwx2BmYnBzc9OJQXVZFy9eRADAUqVK4W+//YabN28W3IxiyjBTKNva2mLz5s1x9erVgh5wlJWYmIiGhoZYp04dnbriIDExEUUiEVaqVAmHDRumEwdATDG0UGeDVOXTp09oa2uLlpaW2LBhQ1yyZIlgbh2qzosXL9DY2BgDAwOxV69eePDgQZ0YqHv//j3a2NhIp+u/c+cO35FYkUgkWL16daxduzZOnz5dJwrnGMuXL8ewsDAcPHiwYG7vx0ZhYSFGRUVheno6LlmyRNAHkIoOHTqEjo6O2L59e9y2bZvO9FMQEePj46UzighxpiJVtm3bJi1cmD17ts4c33z69AltbGwwNDQU+/fvr1PLvHr16uju7i7IW5eo06lTJ3RyctKJglxZU6ZMkRvcF+rFIIq2b98uvfJdaLeaU+f27dtoamoquFsqapKTk4NOTk4YFRWlcyeyatSooTNFlrKGDBkiN/uZrpz8PHnypPR4c+TIkYKcZVaZ79+/o5eXFzo7O2P79u1x06ZNOnOys2/fvmhgYIB16tTBqVOnCr54m3H9+nUUiUQYEBCAPXv21JnPJzN2KFtkqSufz+XLlwv6DgqqMLNZMbeA1pUxCsQfM+fKzkos5IJ5Wcz4CjM7oa6MryAizp07F0uVKoUdO3YU9Ax/yrRu3Vo6K5KQi6CVadu2rc7MLqdoyZIlWK5cORw6dKhOjW0h/hjfqlatGjZp0gTXrFmjc0UG79+/x5CQEOzUqRPu3r1bJwqEZOXm5mLZsmWxXbt2uGXLFsHdhYON9u3b68yshMqcPn1aOjOk0C/YUSU1NRVjY2Nx2rRpgr2DjjrHjx+XXigt1FuJq8PcETAqKgpHjRqlE+cdFaWkpGCpUqWwQ4cOuH37dp06X8DMtujk5IRt27bFjRs36sxxOOKPPgQA6Ny5VETERYsWSYulmRktdeXcgTb+jcJFEf4ojCMCJhKJ3ADgKQDA06dPwc3NjedEpKTdvHkTvLy8wMTEhO8onHz9+hXu3LkDZcqUAZFIxHccTo4dOwYWFhYQHh6uU9lfvXoF9+/fh6ioKNDT0+M7Dms5OTmwb98+iI2NBXNzc77jsPbp0yfYunUrxMfHg4ODA99xWHvy5AmcPn0a6tSpA9bW1nzHYe3GjRuQlZUFVatWBQMDA77jsHbnzh0QiUTg7+/PdxROXr9+Dfr6+mBnZ8d3FE4KCgrg8+fPYGNjw3cUzrKzs8HS0pLvGJzl5+dDfn4+mJqa8h2Fs6ysLLCzs9OpfSbAj/X80aNH4Ofnx3cUzq5fvw6enp46tb8HAHj27Bnk5+eDt7c331E4yc3NhTt37uhcnxYR4fLlyxAeHg5isZjvOJzcvn0b/Pz8dG678uDBA3BzcwNDQ0O+o3Dy7NkzsLa21rltytu3b6GgoACcnZ35jsLJt2/f4MGDBxAcHKxT2xQAgDNnzkDZsmV1bh2/fPkyODs7g5OTE99ROHnx4gW8ePECypcvr1PbcUSEPXv2QJUqVcDCwoLvOJxcuHABzM3NISAggO8onGRnZ8O5c+cgOjpap47zAQBOnDgBQUFBYGtry3cUTl68eAE5OTk6t64AAFy8eBFCQ0N1bl3JysoCPT09nRtfAfjv+Shd2+8D/Fjujo6OfMfQysePH3VqzFZWTk6OzvXNGQUFBSCRSHSuv8j4/v07GBoa6uTnFQAgLy8P9PT0dO5YWlZubq7OnceV9eXLFzA1NdXZdQgRITs7G6ysrPiOojVdHatm5OTkQE5Ojs6NdTAKCgrg2rVrOlnXAPBj/Xn06BFERETo1HE4Y8uWLRAcHKxz51IBAHbu3AmlS5cGDw8PvqOUiGfPnoG7uzvzrTsiPivu76TCRR1AhYuEEEIIIYQQQgghhBBCCCGEEEIIIYQQQvjwbxQu6l6pLSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQnQWFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiH/D+Tl5cHChQvhyZMnfEfhbN68ebB582bIycnhOwonN27cgMuXLwMi8h2Fk9evX8P+/fshLy+P7yicSCQSOH36NBQWFvIdhbNXr17xHUErnz9/5juCVt6/f893BK3cvn1b57Yn+fn5sH37dvj69SvfUTh5//49TJkyBe7cucN3FE7evHkD/fr1gwMHDujUNjw3Nxd69OgBGzZsgOzsbL7jcDJlyhRYt24dfPz4ke8onBw4cAA2bdqkc9vx58+f62SfUCKRwMaNG+HDhw98R+Fsz549Onn8cPz4cTh37hxIJBK+o3By8+ZNnd1vLlmyBF6/fs13FE4kEgksXLhQ5/b3AACbN2/WyXX87NmzcPjwYcjPz+c7CievX7+GHTt2QG5uLt9ROEFE2LFjh871UwAAzp8/D8+ePeM7BmevX7+GCxcu6NxxGwDA4cOHdW4dBwC4evUqPHr0iO8YnH3+/Bn27t0L379/5zsKZ7t374Z79+7xHYOzBw8ewLp16+DTp098R+Fs6dKlcPDgQZ3bf3748AGGDx8OZ86c0bk+y6VLl2Dw4MFw6tQpnRtrvnHjBnTp0kUnjysKCgqgffv2MH36dJ3czhw9ehRatWoFq1ev1snx5/Xr10Pbtm0hMzNTJ/uPZ86cgYYNG8KiRYvgxYsXfMfhrKCgAJo3bw5jxozRyfOKAABbtmyBTp06wdatW+HLly98x+EMEaFHjx4wa9YsnexfAvw4jtLV/RfAj/+D8ePH6+Q5asaGDRvg+PHjOrn8AQC2b98Oz58/5zuGVh4/fgy3bt3Sye3n/fv34f79+3zHEDwqXCTk/wFDQ0M4c+YMeHp6QlhYGPTr1w+OHDmiEwMe7u7ukJ6eDnZ2dhAbGwuTJk2CmzdvCn7HY29vD1WqVAEPDw/o0KEDbNu2TScGCxwcHKB79+5gb28PDRo0gCVLlkBWVhbfsTQSi8Uwa9YscHZ2hlatWsG6det0pgBmxowZEBISAv3794dTp07pzGDejBkzIDIyEkaPHg3Xr18X/GeSMW3aNChXrhwMHToULl68qDO5Z82aBZ6entC5c2fYvXu3TpzgMDAwgJUrV4KdnR0kJibCrFmz4PHjx3zH0sjW1hYOHToEgYGB4O/vD3/88Qfs3r0bvn37xnc0tRwcHODJkydQu3ZtsLW1hbS0NJgzZ47gl7mJiQmYmJhA/fr1wc7ODmrUqAFjx46FS5cuCf7z6enpCQ0bNgR7e3uoXr06jBkzRidyBwYGwi+//AJ2dnZQp04dmDx5sk4UR7u4uMDgwYPBzs4O4uPjYdq0aTpxQC8Wi2Hfvn3g4OAANWvWhAkTJuhEXxYAICsrCzw9PSE8PBwGDBigMwNvdnZ2UKlSJXB1dYW2bdvChg0bdKJQ18vLC9q3bw92dnaQlJSkU/vNf/75B5ydnaFixYowdOhQOHv2rOD7tGKxGB4+fCjd33fv3h327NmjM32sihUrStfx9evX68Sxj5ubG9StWxccHBygcePGsHz5cnjz5g3fsTRydHSEgQMHgp2dHaSkpMDcuXN1oqhOJBLBkSNHwMHBAWJiYuDvv//WmULdvLw8cHd3h3LlysHgwYN1pujF1tYWGjZsCO7u7tJxIF0pBty9e7d0HZ83b57OnKwyNDQEX19fCA0Nhf79++tMX8XCwgJGjx4N9vb2UL9+fVi8eLHOXADw5csX8Pf3h6CgIOjVq5fOFNR5eHjAwIEDwd7eHmJiYmDSpEk6c2LT0tISYmJipGO1ixcv1omLoG1sbODmzZtQqVIlcHZ2hpYtW+pMQVd4eDhs2bIFKleuDE5OTtCsWTNYsWKFTvRbgoOD4dq1a5CcnAy2trZQt25dmDp1Kty5c0fw67u+vj6ULVsWunXrBv7+/uDv7w/dunWDnTt36sT+tFq1anD16lVo0qQJODg4QOXKlWH48OE6cWwEAJCcnAz79++HRo0agb29PURHR8OoUaPgwoULOpG/YsWKkJWVBe3atYNSpUpB2bJloX///nD06FEoKCjgO55G+vr6UL16dRgwYACULVsW3NzcoH379rB+/XqdKbqPj4+Hbdu2QWpqKtja2kJ8fLx0cgChb38Afhw/VahQATp37gze3t4QEhICvXv3hoMHD+pMEV3ZsmVh/fr1ULlyZbl9r65cTC0SicDAwABiY2N1rt/DsLCwgGrVqoGTkxO0aNEC1qxZo1PF4I8fPwY3NzeoUKECDBkyRGf2YQA/+p5VqlSBgIAA6NmzJxw4cEAnjlMAfqw34eHhEBISAv369dOZfVeJQ0RqAm8A4AYACAD49OlTJESZx48fo6GhITLrCgCglZUVNmrUCJcuXYqvX7/mO6JSEokEq1SpIpcbANDT0xM7duyIW7ZswZycHL5jKtWnTx+5zMbGxpiUlISzZ8/GJ0+e8B1PpXXr1snlFolEWKlSJRw+fDheuHABJRIJ3xGVunPnDorFYmluAwMDjI2NxalTp+KDBw/4jqfS27dv0czMTJrbyckJ27dvj1u2bMGvX7/yHU+lT58+obW1tTS3n58f9urVC48cOYIFBQV8x1Pp/fv3aGFhIc3t4eGBXbp0wb1792JeXh7f8VR69uyZ3Dbc3Nwc69evj0uXLsU3b97wHU+lmzdvyn0uAQDDwsKwf//+ePz4ccGuK5cvXy6y3zExMcHk5GScNWsWPnz4kO+ISt26davI8gYADAoKwh49euCePXswNzeX75hFvH//Hq2srIrkdnZ2xtatW+Pq1avx3bt3fMcsQiKRYPny5YvkdnFxwbZt22JmZiZ++PCB75hK/fHHH0Vy+/r6YteuXXHnzp2C3f9s3LixSO7AwEDs1asXHjhwQLDb8adPnxbph/v4+GDXrl1x9+7d+O3bN74jKlVQUICBgYFyue3s7LB58+a4evVqwa7fiIjNmzeXy830CydPnox3797lO55K06ZNK7KOly5dGvv27YuHDx/G/Px8viMqdfLkySK5nZycsHXr1piZmYkfP37kO6JS79+/R0tLS7ncZmZmmJaWhvPmzcNnz57xHVEpiUSClSpVksutr6+PtWrVwokTJ+LNmzcFe8zWo0ePIseaUVFROGLECLx48aJgc2/ZsqXIOl6mTBn866+/8MSJE4Lt07558wbNzc3lcvv7+2OPHj1w//79+P37d74jqhQfH19km9K2bVvcsGEDfv78me94Ki1atEjpMcTcuXMFu01B/DEuobiulC9fHgcPHoxnz57FwsJCviOqpLjPt7OzwxYtWuDatWsFu/9BRDx8+HCR7UpkZCQOHz5c0NvDwsJCLFOmjFxuS0tLbNiwIS5duhSzsrL4jqjSqlWriixzXeiTSyQSLFeuXJHsFSpUwMGDB+OpU6cE+xlVNkYhFouxatWqOGrUKEGv68r2/SKRCCMjI3Ho0KF4+vRpwS73I0eOFMnOrO9dunTB7du345cvX/iOqdS3b9/Qw8OjSHZjY2OsW7cuTp06Fe/cucN3TJW2b9+udNk7ODhg8+bNceXKlYIex12wYIHS/E5OTtiqVStcvXo1vn//nu+YKqla962srLBBgwa4cOFCfP78Od8xVcrLy0MfH58i+fX19bFGjRo4duxYvHz5smC3m4iI8+bNU/p/wIw57tixQ7Bjjog/xsGCg4OL5LewsMB69erhggULBL0OISJmZmYWya+np4fR0dE4ZswYvHLliqDXoa9fv6Kzs3ORf0NERAQOGTJE8McmEokEq1atWmT516hRAydMmCDo8RrEH/thNzc3ufzOzs7Yrl073Lhxo6CPxRERR44cWWT737hxY1yxYgW+ffuW73hqKdaU2NraYvPmzXHNmjWCPq5V5enTp7L/Hjf8GTVxP+OXUKPCRSIMnTt3VtpplD3wHjZsmOB2/AcOHFCZGwDQ0NAQ69Spg3///begdvpZWVlyBWmqTnScPHlSUCc6CgsLMTw8XGXuUqVK4W+//YabN28WXNFoixYtVOYuXbo0/vnnn4IslurXr5/SzKamppieno6LFi0S5ODvkCFDVA7GtGnTBjdt2iTIgbABAwaoHMRo0qQJrl69Gj99+sR3zCJUbcPFYjFGR0fjhAkT8NatW3zHLKJZs2YqP5fMSaU1a9YIrgCmYcOGavc9ISEh2Lt3bzxw4ICgTvq2adNGbW5TU1NMSkrCGTNm4P379/mOKzVixAi1ucViMVauXBmHDx+OZ86cEUw/ZceOHWpzMwNDo0ePFtRJmZcvX6KJiYnK3LKFuo8ePeI7rpSqk3ZMs7S0xAYNGuDixYvx1atXfMeV06VLF5W5zczMMCMjAxcsWIAvXrzgO6qclStXql2/mYG3GzduCGb9RkS8ffu20kJupgUEBGDPnj0FV7iTm5uLpUqVUpnb2toaGzdujMuWLRPcCa/ExESVufX19bFmzZqCXFeGDh2qdjtepkwZHDBggOCOIXbv3q02N1OIsWvXLkFdtPDq1Su1+59SpUrhr7/+ips2bRLUsaZEIsGIiAiVue3t7bFly5aCHFDu37+/2v2mUIuNlBVEM83Q0BDj4+Nx+vTpgrugSNUJZ6aVL19esCfcVB0nA/y4MKd9+/aC+2wiqr54i9n/xMTECPbChZiYGLXbw99//x23bt0quHEVZRcTMY0pSB85ciReunRJUPt8VcUIsn1yoV68sHXrVrX7fQcHB2zRooUgi4patmypNrurqyu2a9cO169fL6ixOIlEgpGRkayW+6pVqwR3MlzxAgDFZmxsjPHx8YIsBFRVPCfbfH19BVmEqWoSDsXtZGRkJA4ZMgRPnTolqGOMvLw89PPzU5tfLBZjlSpVcMSIEYLsz2ha95ljvD///BMPHz4suAtgly5dqjF/qVKlsH379oLbbiJq7gsz25/ExETBjU0z1qxZo/H/oFy5cvjXX38JbpwAUfP5XQBAd3d3/P333wU7MZCyi3plm5OTE7Zp0wbXrVsnuM8AIuL+/fvV5vfx8cFu3brhnj17BHnhzKxZs1RmZ47FZ8yYIahzBoxPnz6hjY2Nyv1XdHQ0jh8/XlC1JIzXr1+jqamp0uyyx7X37t3jOyorVLj4P9qAChcJS8+ePUMjIyONnS5mxy+kGTLUDeYpNm9vb+zUqRNu3bqV906XqoI0xebg4ICtWrXCzMxMQXS0NmzYwCq3kZERJiQk4MyZMwXRSdF0klpxea9btw6zs7P5jq22QyLbqapWrRqOHz8eb9++zXdkRCw6e6GyZmJigmlpaYIqvnzz5o3aomKAHzMzxcfH46xZswQzYK1sxi5lLSAgAHv37o1HjhwRxMxMbD+Xenp6WLNmTZw4cSLeunWL9wOHGzdusMoNIKyrLh8+fIgGBgas95n+/v7YrVs33mfZy87ORnt7e9a57e3tsVmzZrh8+XJety1sBqVlm5BmY1S8ik9dYwp1Dx48yPugrrKZL5Q12Ytyzp07x/tg+vPnz1n3w4V0FbGmE7yyjRl4E8qMNa1atWKVW7bgVQiz0KsbIFRcx5mZ6oQwK/rZs2dZb1O8vb2xc+fOgpht4ePHjyoHNRWbra0tNm3aFFeuXMn7TMDKruJX1UxNTTE1NRXnzp0riDEjtvsfZkB82rRpgjihtW3bNla5ZWe/FEKf9u3btxqP2ZhtSuXKlXHUqFGCmcmlbt26rJZ5aGgo/vnnn3js2DFBnDhUnHVRXb+wffv2uHnzZkEUXbBdV4yMjDAxMRFnzZolmLuJKM66qKoFBQVh7969BTOL8dGjR1nlFtodXDRdTCTb3NzcBFWAyaYYgWlly5YVzAXnbIromMZcPDd27FhBzKp079491NPT47QPnTBhAl6/fp337Hv27GG9vjAXW44YMUIQx59nzpxhnR1AWIWAbIrnFPdLcXFxOHnyZEH0vQ4ePMhp2dvZ2WHTpk1x+fLlgjgeVXfxorLm6OgoqAJeruu+paUl1q9fHxcsWCCIcwAFBQUYFBTEOj9zkeC4cePw6tWrvK//iOyKL2VbYGAg9ujRA/fu3SuIsSQ2hX+yzdbWFps0aYIrVqwQzAWm6i4yUbYNFdJxN6Lmi3plm4GBAdauXRv//vtvwZw3lUgkWL16dVb5zc3NsV69erhw4UJ8+fIl39ERUfmsi6paaGio4O6upjjrorq+T/fu3XH//v28n+9gsB0vCwoKwj59+gjmHLAyVLj4P9qAChcJB927d+fUaZTt/PI5Q8bx48c552Y6XcyB6+3bt0s8u7JbM7FZ3jExMfj333/zdsWjRCLBsmXLcl7eQjhhoG7WRWXN0NAQ4+LicPr06bwWX/bq1YtT7sDAQOzbty/vHUJ1M3goNuaKlokTJ/I+2wGXgh2AH0UkI0aM4H3Qt2PHjpxy29raYosWLTAzM5PXIl1NV9gra35+fti9e3fct28fb7NhsT0BptjKli2LAwYMwGPHjvFy4KBuhmV1TfbWO3zsMydNmqRVbpFIhBERETho0CA8fvx4iS9zroPSTON7NkZt+igA/x3UXbhwIS+zA2qa9UpVc3Z2lt5ikq/tobJbdOtC7tWrV3POzcwiyefAG5eTpLLbE+Y2jefPn+dln6/q9miamqurK7Zv357XW7ekpaVxzs3M8Dp79mx8/PgxL7lHjRrFObfsbQ75mlFK01X8qhrfs0hqujOBqsYUHPFVRM+laES2+fr64h9//IF79+7lrU87cOBAzrnd3d2xY8eOuH37dt4KjE+dOsU5txBuE5yfn4++vr6ccjMzz/BdmPbXX39ptU0ZOHAgr7erZXuxnGyzsbHBpk2b4qpVq3idoS42NpbzMi9btizvy5ztxUTK1vNZs2bxts8vLCzE0NBQztnt7e2lMxrydQHarl27OOcGAPTw8MAOHTrwOqtS+/bttcru6emJHTt25G1yAolEgtHR0VplZ26tu2bNGt62Mdr0zZnPKt+3ZeZaPCfb+J7UQiKRcJqEQ7bJjm+dOHGixPvqhYWFmJuby6lwTraJxWKMiorCYcOGlfjdUiQSCRYUFOD3798xKSlJ6/UnPDwc+/Xrh4cOHeLlmKOwsLBY67+bmxv++uuvuHHjRt7GkLgWX8o2MzMzTE1NxTlz5vDWV0DkVvin+BmOiorC4cOH81rELpFIsHz58lr9GwIDAwVxhxK2F/UqNj8/P96PvxG1P19QsWJFQVyEr83yF8KxOKL6WRdVNUtLS2zUqBEuX76c1yJ8NpMcKTZbW1ts1qwZrl69WhATkTH+jcJFEf4ojCMCJhKJ3ADgKQDA06dPwc3NjedERBsnT56EQ4cOgUQi+Vfbmzdv4ODBg8XK6uXlBUlJSZCUlATGxsZw4sQJKCwslLaCggK57zU9z/ZnLly4AIWFhcXK7uPjAwkJCeDn5wefPn0CQ0NDVQXBrJ5j895t27bBnTt3tM4cEBAAycnJkJycDCYmJnDw4EG2Rc3F2gFcuHABjh07pnVuW1tbSEhIgOTkZHBxcYFTp06pfK9IJPpprz148ABmz57NLayMsLAwSElJgZSUFDA2NoY9e/aASCQCsVgMYrFY42Nt35uVlQXt27fXKrODgwOkpKRAamoq1KlTBx48eAA7duwAPT096e9nHit7TtVjNq+/f/8e0tLSQCKRcM5dunRpSEtLg/T0dKhQoQLcvHkTtm/fLv07ik02Q3HbmzdvoEmTJlotb29vb0hLS4O0tDSoVq0a3L59G7Zt2wYikUi6TjKPlbXivP7s2TMYPHiwVrkNDQ2hVq1a0vU7Ozsbtm7dCgDstnfKnmP73sePH8P69eu1yg0AYGFhAfHx8ZCcnAyenp7S/Y5EIpH7quw5bV8rLCyE169fw9WrV7XODQBgY2MD8fHxEBYWBjk5OWBkZCTdvzFN8Xtlz3H5Pjs7G169elWs3AA/9pmRkZFgYGAA7u7uIBaLi+T8mS03Nxdev35d7Nw2NjYQGRkJZmZm4OPjA6ampnLLSLGPwfY5da9fv35duu5ry8XFBapUqQKGhobg4+MDhoaGRdZNVY/ZPqf4+vnz5+Ht27fFyl2+fHmIiooCiUQCpUqVAoAfn3+JRMLqK5f3Ml+vXbsG586d0zqzgYEB1KhRAypVqgS5ublgZ2f3r15oxuTOysqCzMxMrXMbGhpCjRo1ICoqCr5+/Qq2trb/am6mFRYWwrx584rVD4+IiICqVatCfn4+uLq6AgAoXQeUfa/N+5jvt27dCllZWVrndnFxgerVq4OBgQH4+PiAgYGB3Pqobl0tznPnzp2D27dva53b0NAQIiMjwcrKCgICAsDGxkbu78m2n/E889zjx4/hzJkzWucG+HHs4+zsDAEBAeDm5gYikUjlsa2qjFxfy87Ohj179hQrt7OzM7i7u0NAQAD4+PiAvr6+yv9nZd9r8z6JRAKbNm2CvLw8rXPb2NiAh4cHBAYGgq+vL5iYmHDeZmuzjT9w4AA8e/ZM69wWFhbg5eUFgYGB4O/vD6ampqy3xdpuwxERrly5AidOnNA6t6mpKXh7e0NQUBAEBASAmZkZAPy33yz7WNP3XN774cMHWLx4sda5jY2NwcvLC4KDgyEwMBAsLS3l/gZD8bmf8dqcOXPg3bt3WuXW09MDT09PCA4OhuDgYLC1tZV7XfbvcP1e03sPHjwIhw8f1io3wI/9T1BQEAQHBysd51X8e2wysXnP+/fvYerUqdpEBgAAc3NzCAwMhKCgIPDz8wMjIyOVy03TY64/t2TJEnj69KlWuUUiEXh5eUFQUBAEBgaCvb299PcrWz9VPdb0urL3Xr9+HXbu3KlVbgAAMzMzCAgIkG7HVY1z/uwmkUhg8eLFkJ+fr3V2JycnCAgIgICAAGn/UNV+g+vxgrrfce3aNbh+/brWuUUiEXh4eICfnx/4+flJ++Sq+h1Mkz0m06YVFhbCgQMHQCLhPv7GYLaLvr6+4O3tDZaWlmrHShS/cnmv7M98+PAB7t+/r3VuJru7uzt4e3uDp6cnWFhYqDzP8DPb+/fv4ePHj8XKLhKJwMXFBTw9PcHDwwOsrKyky0fT2ENxHn/9+hW+fv1arOwAAFZWVuDh4QGlSpUCR0dHAACl4yOK41Nsv6p6rjjbF4ZYLAYXFxcoVaoUODs7g7m5udq/qSkTm9eLe/5KlqGhIbi6uoKLiws4OjqCvr4+64xsl7Psc8r6DsVhZGQEzs7O4OTkBA4ODqCvr68yo7r1hO1rP5u+vj44OzuDo6MjODg4gIGBgdz2Qdk5TS7nRpU99zOJRCJwcHCQLn8zM7Mi23LZpuw5rs8z/6bi7KtkWVpagouLCzg5ORUZ15DNoLifZfOc4mufP3+W6zd8//692PmNjY2ln2EnJyfQ09Nj1Wfg0l6/fl3kWFcikUBubm6x/w0GBgbg6uoK7u7u4OrqCiYmJqz7Xpre8/jxY+l2R1krKCgo9vkNAwMD8PDwAE9PT/D09GQ1bqCp3bx5s0huhmJ//86dO8X6XJuZmUn7m15eXmBgYCD93cq+qnvt/PnzUFBQUOR9qr4vKCiAs2fPap1dLBZLj6+CgoLAzs5O7d9T5eTJk1qNed24cQOeP3/O+ecA/tvXZ7I7ODiorVNQpjj709WrV8O1a9e0+ll9fX2oXr06JCcnQ0pKCvj5+Wmdo7iePXsG7u7uzLfuiKj9IOB/UOGiDqDCxf8fxowZAwMGDOA7BmfMwQYpGUZGRj+lw1zSRCLRTz/wLQkWFhbw+fNnvmNwYmJiAoGBgXDp0iW+o3Di6uoKwcHBsH//fr6jcGJrawvBwcFw/PhxvqNw5uHhAU+ePOE7BiGEEEIIIYQQQgghhBBCCCGEkJ8gKCgIUlJSIDk5GapUqQL6+vol9repcPF/FBUu/v8wbtw4+PPPP/mOQQghhBBCCCGEEEIIIYQQQgghhBBCCNFhsnfJrFu3LlhbW/+rf+/fKFwUF/cXEELYEYvp40YIIYQQQgghhBBCCCGEEEIIIYQQQggpnvfv38PKlSuhSZMm4O7uDhMnTtTqNtx8Krn5Ign5H0eFi4QQQgghhBBCCCGEEEIIIYQQQgghhJDicnR0hOTkZEhOToY6deqAubk535E4o8JFQkqInp4e3xE4sbe3h5SUFNDX14f58+fzHYe18PBwSE9Ph9zcXJgwYQLfcTgxMTEBPz8/uHr1Kt9RODEwMABfX1+4desW31E4MzAwgPz8fL5jEEJkeHl5waNHj/iOwUnFihUhMDAQVqxYwXcU1lxcXCA9PR1KlSoFAwcO5DsOa66urtLcf/31F99xWBOLxVCtWjUICgqCefPm8R2HEyMjIyhTpgycOXOG7yicWVhYwOfPn/mOQQghhBBCCCGEkP/Q19eHgoICvmNwoq+vD/r6+qCnpwcFBQXw/ft3viOxIhaL5bLr6+tDbm4ufPv2je9orDC5mex6enqQl5cHX7584Tsaa0x+ponFYsjOzuY7FmcikQjEYjEUFhbyHYUQQgj8qIlJSUmBlJQUqFixos5PokaFi4SUkCpVqsDIkSNBLBazbkwnlku7dOmS1ify/f39IS0tDdLS0qBy5cqgp6cH58+fBy8vL7mOtezBgmJT9Zqmn/n+/TvUqlWL8wGHSCSCatWqQXp6OqSlpYGvry8AAJw9exYsLS1BJBJJ36fYlD2vzXvnzZsHFy9e1GqZOzs7S3cqtWvXhhs3bsCuXbuUZmCblW3btWsXrF+/XqvcNjY2kJSUBCkpKRAfHw93796FnTt3Kn0vIqr8Pdq89vjxY1iyZAmnvLLc3NwgJSUFkpOTwcLCAg4ePAgSiQQQESQSCefHbN/77ds32LRpk9a5AQDc3d0hKSkJAgIC4N27d6CnpwcSiQQKCwulf+tnPy4oKIADBw4UK7ehoSHUrFkTwsLCID8/H2xsbJT+zZ/Z8vLyYNeuXcXKbWVlBXFxcRAWFgafP38GMzMzAPixbqpqml7X9J4PHz7AqlWrtM6sr68PNWrUgOTkZPD394eLFy9y2t4pe47Ne69fvw4zZszQKrOBgQHExMRIt4Vfv36F9evXS/eBsoM6mp7j+tqOHTtg1KhRWmWuVasWpKenQ2pqKpQqVQru3r0LwcHB0sFA2QFBbb9X9Z7MzEzo2bMn59z+/v6QkZEBGRkZEBkZCWKxGO7fvy83iPlvNAMDA9DX14fjx49Denq61rnr1asnPQC7f/8+AIBcH0PZYCab1zS9//Pnz1ClShXOg9JGRkYQFxcH6enpkJKSAg4ODnD//n3w8PCQ6+Mpe8z2OU2vd+nSBa5cucJ5mdva2kJycjKkpaVBXFwcZGVlwapVq0AsFksHKtV9ZfMedT+7ceNGWL16NefcAAC+vr7S/qyLiwusWbOmWP0lNo3Jfu/ePRg9erRWuY2NjSE2NhZSU1OhTJkysGfPnn89N9Py8vKga9euWp04EolEUKVKFUhJSYGIiAg4ceKEdD1UXD7KvtfmfbLfDxgwQOti98jISEhNTYXIyEg4deqU9HPD/H5VjzW9zua9M2fOhL1792qVOyIiAtLS0qBSpUpw+vRp0NPTk/vdsk3Z81zeq/j8zp07td7fh4eHQ2pqKlSpUgXOnz+vdHlzycXlPffv34cuXbpoldvDwwPS0tIgOjoabt68Cfr6+ir/bnG+V/ZaQUEBNG/eHL5+/co5t4WFBSQkJEDNmjXh2bNnYGZmpvV2Wpv3jBgxAi5fvqzVMo+KioKYmBj4/PkzODo6Fvn8q9sOa7v9ZtqOHTtgzZo1WuV2cHCA2NhYEIlE4OvrC0ZGRtLfCwBKH2v6nu17X758CcOHD9cqt1gshooVK4K1tTUEBgaCvb09iMVi6e+W/arsueK+Nnr0aHjz5o1W2R0cHMDd3R2Cg4PBx8cHDA0N5f6mYgau36t7bffu3bB//36tcovFYvD09ISgoCAIDAwEOzs7Vtl+xnvevn1brIt8bW1tISgoCIKCgsDT01N6kbaq5abpMZf3Tp8+Xet9vrGxMQQEBEBQUBD4+/uDqampys+bsue4vK743pMnT2p9gZuenh74+vpCUFAQBAcHg7W1dbG2cVxaQUEBdOzYUavCHJFIBB4eHhASEgIhISFy23J1X7U9flD8HYsXL4YNGzZotcxdXV0hJCQEQkNDoVSpUlqNzYvF2o3pf/nyBVJTU7W6pZuNjQ2ULl0aQkNDwdfXFwwMDH7auAmb19atWweDBw/mnNvQ0BCCg4MhLCwMSpcuDebm5irPH/xbrX///lqNMzs7O0NYWBiUKVMGvLy81I4z/FuP+/fvD9OmTeOc3cfHB8LDw6FcuXLg7OxcZPxJ8evPfk0sFsPBgwchJiaGc3Z3d3coW7YsVKhQAdzd3VWOn2l6zOW9TP9fVsOGDWHdunWcspuYmEB4eDhUqFABypYtC6amppwzcn2OOVaUhYgQGRkJ586d45TfysoKKlSoABUrVoTSpUuDsbEx5/E3ru9RXO6Mpk2bwj///MMpv6mpKZQvXx4iIyOhbNmyYGZmJrctUHb+UtU5TS7vZfZRsnbs2AFJSUmc8gP8GB+NjIyESpUqgZubW5G/o2o7p+o1rj/D/DvGjRsHM2bMgGfPnnHKb2xsDOXKlYOKFStCREQEWFhYKN3XqNr/aPOa7OPp06dDYWEh6OnpwcuXL2HWrFmc/w+Yz0FkZCSEhYWBsbGxXB/k32gLFiyAgoKCIv+eDRs2wPXr1zn/GxwcHKBChQpQoUIFCAwMlH7W2PS1uPTL/vnnH8jLyyvSx2Mev3r1SuuxX09PTyhTpgyULVsW3N3di9XnVWybN2+WTnbDrPOyx8eyfeV//vlHq7FUAwMDCAoKgtDQUAgJCQFLS0u5v6fN17179xaZpEfdseK3b99UntNngzkODwoKAkdHR1bHpcocO3ZM2vdl837mfdevX4fnz59zC/0fYrEYvL29pce1tra2RX4/V1x+ZtWqVVpPYGVoaAi1atWS1jh4enpq9XsES9PJdWr8NwBwAwAEAHz69CkSok5qaioy6wubFhUVhWPGjMEbN26gRCLhLfeUKVNYZzYyMsLk5GRcsGABvn79mrfMiIjPnz9HIyMjTss8PDwcBw4ciKdPn8bCwkJecufn56Ofnx+n3L6+vtizZ088dOgQ5ufn85IbEbFdu3accgMARkZG4ogRI/DixYu8reczZ87knFssFmO1atVwzJgxeOXKFV6yr169mnNuAEB3d3f8/fffccuWLZiTk1PiuRctWqRV7tKlS2Pfvn3x0KFDmJeXV+K5Bw0axDmzg4MDtm7dGtetW4efPn0q8cyIiBkZGZwy29nZYcuWLTEzM5O3zBKJBMuUKcM6s4WFBTZu3Bj/+ecf/PjxIy+ZERELCwsxJCSEde7y5cvjiBEj8Nq1a7zu5xER69Spo5O5hw0bxjq3lZUVNmvWDNetW4efP3/mNfe5c+c4fS69vLywe/fuePDgQV7383l5eejp6ck6t0gkwsqVKwuiP9uyZUvO2++2bdvipk2beNlXMmbPns0pt6mpKWZkZODixYt57YufPn2aU25jY2NMTk7GefPm4YsXL3jL/fbtWzQ3N2ed29DQEBMSEnD27Nn47Nkz3nIXFhZiWFgY69x6enpYq1YtnDJlCj548IC33IiIbdq04bSulC9fHocNG4aXLl3idZuyYMECTrnd3NywU6dOuHv3bvz+/TtvuW/duoVisZjTZzMlJQXnz5+PL1++5C13fn4++vv7c1rmISEh+Oeff+KJEyewoKCAt+x//PEHp9zm5uZYv359XLp0Kb5584a33EeOHOGUG0AY4yl5eXno5eXFKbe1tTU2bdoU//nnH/zw4QMvuRER+/fvzym3WCzG6OhoHD9+PN68eZO3beL169dRJBJxyh4QEIC9evXidQxLIpFgpUqVOOV2cHDANm3a4MaNG3k9nuC6DxLKduXz589ob2/POreBgQHGxcXhzJkz8cmTJ7zlRkQcN24cp2UeERGBI0aM4G28kFFQUIBBQUGsc7u6umKHDh1w165d+O3bN95yIyK+evUKjY2NWeUWiUQYHR2NkyZNwnv37vGaGxHxzZs3aGpqyiq7kZERJiUlCeJcCiMmJoZVduaYYurUqfj48WO+YyMi4o0bN1jvk1xdXbFTp064d+9eXsaZldm9ezfrz2tgYCD++eefvPa7FN25c4f1sYabmxt26dIF9+3bJ5jlL5FIMCoqilV+Zixg3rx5vB4nKdqzZw/rdcjZ2Rl///133LlzJ+/bfFkpKSms/w1BQUH4559/4smTJwXzObh79y6nY+7IyEgcNWqUIMbZGQ0aNGCd39DQEOvWrYuzZ88WTJ3M9OnTOfXbmP7Pjh07MDc3l+/4nM53APx3LHjRokW89yU+fvyINjY2nPLb2dlhixYtcO3atbydj0REfP36NZqYmHDK7ujoiG3atMENGzbwfr5J1tOnT2VzuuHPqIn7Gb+EGhUuEmG4ePGixg0cc6AqpM7ut2/f0NXVVW1uIRUCyOrWrZvGZW5gYIB16tTB6dOn46NHj/iOjIiIy5Yt05hbJBJh1apVcdy4cbwXAjDu37+Penp6rDpR6enpuHDhQkGs57m5uRrXcabZ2tpis2bNcNWqVfju3Ttec3MZfNTT08Pq1avjuHHj8OrVq7yuL9+/f2d9IsnExASTk5Nx1qxZvH8+3717hxYWFqxylytXDgcOHIinTp3i/YD58uXLrDIHBgZinz598MiRI7wWRTG2bNmiMbOrqyt27NhREAPqjPXr16vNLBaLsWbNmjhlyhTe12lZZ86c0Zi7evXqOHnyZHz48CHfcaWys7M1HggzA9F79uzhtVBEUXp6usZ1nCnOuXz5siD284jsTpIyRS4LFiwQxH4e8cegIZs+ilCKXBjfv39HDw8PjbldXFzw999/x+3btwtigA0RMSkpSWNu2ZP/fBaHyho4cCCr/mCLFi0wMzMTs7Oz+Y6MiIgbNmzQmNvc3BwbNmyIK1as4L0fy3jw4AHq6+urzc0cr82YMYP3ogVGXl4eent7a1zmZcuWxcGDB+P58+cFsx1v0aIFq8+mEAq3ZS1fvlxjbj09PaxZsyb+/fffePfuXb4jIyLiixcvWBVduLu7Y+fOnQXVr61du7bG3IaGhhgfH48zZswQTN+WbUGXEArnZL1584ZV4bylpSU2atQIly9fjm/fvuU7NiIi/vLLL6w+n9WrV8cJEybgrVu3+I6MiIi7du1ita6ULl0a+/fvL5j+Idt9EFMwL6TtyoQJEzTmtra2xmbNmuGaNWt4PXEpKycnBx0cHDT2V+Lj43HWrFm8XsyiaM2aNRqXeUhICA4YMEBQxU+IiH379lWbm5k8YeHChbyfpFek6ZjC0tISmzZtimvXrhXM8QTjxIkTarMbGxtjWloaLl68WDD7IVma+rpMsZ8QxmyViY6OVpu/YsWKOHr0aLx58ybfUZVq27Ytq+3N2bNnBXN8JGv//v0aP7tNmjQR1D5KkaZ1KCAgAPv16yeoQj9Zms6ji0QirFKlCo4fPx5v377Nd1ylNF2cyRS9zpkzB58/f8533CKuXr2qse/AjIutW7dOcPuxb9++YalSpTT+G5jxmnPnzglqe/Tx40e0trZm1dfv2LGjYIotGSNGjNCYHQAwODgY+/bti0ePHhXEMRYiYu/evVllDw8PxwEDBgh2O4pIhYv/sw2ocJGwVL9+fZU7+JYtW+L69esFVfTHmDNnjtLcpUqVws6dOwvqijRZ6k4Q2NjYYPPmzXHNmjW8zsylTEFBAQYEBCjNLZQZdFRRd2Dq7u6OnTp1wp07dwqqE4WoeUbRMmXK4IABA/D48eOC6UAhai5wdXR0xNatW+PatWt5nTVCkaptCtO8vb2xS5cuuGPHDvz69SvfcaUGDBigMrOJiQmmpKTg3LlzBdcXULXvYQrRhHTiiCGRSLBixYpKczMDXGfOnBHcQYFEIsFy5coVyWxkZIQpKSm4aNEiXme3UCctLU3pIEpiYiLOnz9fkPscRNWzXgjxqnNZqgqK9fX1MTY2FqdPny6Y2QpkqTtJKlvk8uXLF76jFtG6dWuluZkZIiZPniyImTkUzZ07V23/ZNCgQXj27FnBrednz55VmTsoKAj79esnuH4VIuL79+/R0tJSaW4fHx/s0aOHYApcZKna/wD896pxoc2gwPjtt9+U5rayssImTZrg6tWrBXe8hoi4ZMkStdvxadOmCaaIS5a6mR+CgoKwb9++gvxsFhQUYGBgoNLcFhYW2KhRI0EV5Mrq3r27yu1hREQEDh8+nNc7D6hy9OhRlbnt7e2xVatWgjxJpW62RSEWzslSN9uij48P/vHHH7hv3z5BXYiDqH62RUtLS2zcuLEgP58SiQQrV66sclteu3ZtnDJlCt6/f5/vqEUsXrxY5bpSvnx5HDp0KF64cEFw25UvX76go6Oj0txeXl74xx9/4IEDBwQ5xvz333+r7K80bdpUsAUsqmbkZi6GnzBhAt65c4fvmEq9ffsWzczMimS3trbG5s2bC27yBFkfPnxQekzh4uKCHTt25H32bU2UXYDGLPf169cL5qIWZVRNqhAREYGjRo3CGzdu8B1RrcOHDyvtv9SuXRtnzJghuDFnRY8ePVJ6UVpUVBSOHTtWsEVmsmrWrKn0s8vMRCvkzy6i8nUIALBSpUo4ZswYwRa8ylI20x9TqD5//nx89eoV3xHVUnVxpo2NjWAL/RSpuiiJuevf4cOHBTcuJmvWrFlK8zMXmcycOVOQ4+6M4cOHq+zrV6hQAYcNGybIvj6i+tkWZY+xhDgGr262RSFesKkJFS7+jzagwkXCguIVCkI+8SVLcdA3ODhYsAUjihRPEPj7+2OvXr0E36lasWKFXG6hTVGtiuLAgEgkwqioKBw5cqSgZopS9OXLF3RycpJb5qamppiamirIIjRGXl4e+vr6Fhl4jIyMxGHDhgmyiAHxx9VObm5uRTqsMTExOHHiRF5vb6WOstkv3N3dsWPHjrh9+3ZBFVjKunLlilxmCwsLbNiwIS5btkyQV0UzZGe+EIlEWK1aNUEPqDN27Nghzc1cPZ+ZmSnYwXSG7Hpibm6OjRs3xtWrVwvyxIusr1+/yp34ioyMFPRV57IaNWokt8wbNWqEK1euFFSRuTKKhTpCLkCTde/ePbk+CnMSfeXKlfj+/Xu+46n0/ft3udtyC3GWcFVSU1OluZlC+YkTJwr+RMXQoUOLDO4L7XY9ymzdulUud1hYGA4cOFCws1gwnjx5ggYGBnJ9qy5duuDevXsFfUJI8ZbFlpaW+Msvv+CqVasEvx2XnfmBucXshAkTBP/ZXLVqldw67uHhgV26dBHcbMqKXr58KXcxpbGxMSYlJeHcuXMFObOGrNjYWLllHhISgv369cNjx44Jep+vONuilZWVYAvnZCkeb4rFYqxatSqOHTsWr1+/LuhteZMmTYqMdwq1yFKW4m0UbWxssFmzZoItmGfk5+fLjQUxt+abNWuWYGYlVmXy5MlyyzwyMhJHjhzJ+62UNfn69Ss6OzvL7YO6du0qqFubqrJp0ya5og9mVnyhF30gIg4aNEiaXYi3k1Vn5MiR0uzMzGZCnd1P0YULF6TZhT5phTLMRVF6enoYExOD06dPF/y2UVZcXBwC/LhAPiMjA5ctWybo/ouiTp06Scf64+LicPbs2YLv88qSvXBH6LMSqsL04Q0MDKS37tWl/wPZC2JsbGwEPeGPKrIXZ3p7e2P37t3x4MGDgj4nLevGjRvS/wORSISVK1fGMWPGCP6YhPHt2zd0d3eX/h/I3jFF6Oc6EIsW/hkbG2NycrJOjCEgFp1t0dbWVrCTSClSnG3RwcEBW7dujevXrxd8sbEy/0bhogh/FMYRAROJRG4A8BQA4OnTp+Dm5sZzIiJETZs2hXv37kFaWhqkpaVB6dKlQSQS8R1Lo2XLlsHs2bMhIyMD0tLSIDAwkO9IrLx69Qr8/f2hbNmykJqaCqmpqTqRvbCwEEJDQ8HY2Fiau3z58jqxrrRr1w7Wrl0LcXFxkJycDImJieDk5MR3LI0mTZoEvXv3Bh8fH0hKSoKkpCSoUaMGGBsb8x1NrYULF0L79u3B2toa6tatC4mJiRAfHw+Ojo58R1NrxowZ0LVrV3B2dobExERISkqC2NhYsLS05DuaWv3794dx48ZB5cqVITk5GZKTkyE0NFTwn81GjRrB6dOnITU1FVJSUqBGjRpgZGTEdyy1EBHi4uLAxMQE0tLSICUlRfDrNcCP3A0bNgR7e3vIyMiAWrVqgaGhId+xWOnevTvk5ORARkYG1K5dW/DbP8acOXNg/fr1kJGRAampqTrTB7958ybUqVMHkpOTIT09HWrVqiX4zyUAQEFBAYSFhYGDg4O0jxIQEMB3LFbat28P+/btk+auXr26Tnw+Fy5cCH369IGkpCRITU2F+Ph4we8vAQAuXrwI1atXh/j4eEhNTYWkpCSws7PjO5ZGnz59gqCg8hpbaQABAABJREFUIKhQoQKkpaVBcnIyuLi48B1LI0SEqlWrgrGxMaSlpUFqaip4e3vzHYuVrl27wvHjx6W5y5YtK/i+FQDAypUroX///tLcNWrU0IltysOHD6F8+fIQExMj/Wza29vzHUujwsJCCA8PB1NTU+l2PDw8XCfWlV69esGKFSsgJSUFUlJSIDY2FszMzPiOpdHx48ehZs2aUL16dWl2X19fvmNplJ+fD4GBgSAWi6W5o6OjwcDAgO9oGg0YMABmzJgB8fHxkJKSAomJiTrx+bx58yaEh4dDpUqVpMs8ODhY8J9PRIRq1apBVlaWdLtStWpV0NfX5zuaRsuWLYOePXtK+4dxcXFgYWHBdyyNcnNzoXTp0hAcHCztZ7m6uvIdi5UZM2bAokWLpGP6ZcqUEfw6DvBjPa9bty44OztDeno6xMXF6cQ+COBHvzw5ORlq1qwJ6enpOjM2DgDw5csXaNSoEVSrVg3S09MhODiY70icDBo0CAoKCiAjIwMiIiJALBbzHYm1d+/eQefOnSEhIQGSk5N14hhU1r1792DkyJGQkZEBderUAVNTU74jcfLp0yfo2rWr9DyFtbU135E4Gzx4MJiYmOjkZxcA4MaNGzBixAhIT0+HunXrgpWVFd+ROBs4cCDk5ORAeno6VKtWTSf6ZrKePXsGjRs3hoSEBEhLS9OJ80eKfv31V3j9+jWkpaVBUlISODs78x2Jk7lz58KkSZOk55WqVKmiU+vRyJEjYcaMGXJjCLqyP/j06RN4e3uDs7MzJCcnQ0pKClSuXFknln9WVhZ4e3uDr6+vdNlXrFgR9PT0+I6mtWfPnoG7uzvzrTsiPivu76TCRR1AhYtEE0SE169f69wOHgDg27dvOlPAIOvZs2dgbGysEwO9srKzs+Hjx4/g4eHBdxROJBIJHDp0CKpWraoTxRcMRIQVK1ZAxYoVITAwUKcOIubNmwchISEQFRWlEx0/xsKFC6FcuXJQtmxZnRn8QkTYtGkTREdH69Q2RSKRwPXr13XuALmwsBC+ffumMwPqDOaqI11Zr2VJJBKdzJ2fn68TJ6IVZWdng7m5uc4t85ycHMjNzQUHBwe+o3CCiHDr1i0ICgrSqW0hAMCdO3fAx8dHp/bzAADPnz8HOzs7nTuG+PDhAxgYGIC5uTnfUTjJy8uDnJwcsLW15TsKZ1lZWTpxcYKiV69egZOTk85tU7KyssDS0lLnPps5OTnw6dMnKFWqFN9ROLty5QqEhobq3D7/5s2b4OLionMnnN+8eQNv3rzRicI5RadOnYLy5cvrRBG0rLt374K1tbXO9Q9zc3Ph8ePHOjcOBADw4MED8PT01LmTaJ8/fwaRSKRz/SyAH8dvunDxkCKJRAISiUTnjiUAdHeMAuDH8aeubVcIIYT8HLq8/2Loak0A4+3btzp1Dk/RnTt3wM/PTyfXo6dPn8L379/Bz8+P7yicPXjwAMRiMXh5efEd5aehwsX/UVS4SAghhBBCCCGEEEIIIYQQQgghhBBCCCGED/9G4aLuldMSQgghhBBCCCGEEEIIIYQQQgghhBBCCCFEZ1HhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEKICIvIdoVgkEgnfEYpF1/Mjos6vQ7qenxBCiDCVeOGiSCRyFIlEySKRaLhIJNopEoneikQi/E9bosXvSxCJRBtFItEzkUj0/T9fN4pEooSfnNtUJBL1FYlEZ0Ui0XuRSPRFJBLdEolEk0QikefP/FuE/EybN2+GrVu3wpcvX/iOwsmmTZtg4MCBcPz4cSgoKOA7Dmt37tyBo0eP6lRmAIDbt2/DsWPHdC7306dP4cmTJ3zH4Ozz5886t6wBQCczAwAUFhbyHUErubm5fEfQysOHD3VuAOPDhw9w6NAhyM/P5zsKJzt27IADBw5AXl4e31FY+/79O4wbNw7OnTunU4ONly9fhoULF8KLFy/4jsLJoUOHYP/+/Tq1jgAAHD16FK5fv65z25IzZ87AvXv3+I7B2eXLl+HKlSs6t7wfPHigc9tAAIDs7GxYsWIFvH37lu8onCAiLF68GG7evKlz68rmzZvhyJEjOteXPXv2LGzevBlycnL4jsJJVlYWLF++XCfX8RUrVujk8eX+/ft18rN5+/ZtOHnypM4dr3379g22bdsGX79+5TsKZ/v27YPnz5/zHYOzq1ev6uS68vXrV1i1apXObQ8BADZs2AAnTpzQuWV+584dmD17tk5uy6dNmwaZmZnw8eNHvqNw8ubNG+jatatOnn84e/Ys/Pbbb7Bx40bIzs7mOw4n165dg/r168OCBQvg2bNnfMfhpKCgAOrXrw/9+vWDgwcP6tzx3JkzZ6BWrVowbtw4uHz5ss71v3bt2gUxMTEwfvx4nRwHuH//PlSqVAkGDhyok+ezAACaNWsG7dq1g3Xr1uncNh8A4Pz58xAbGwuTJk3SyWMQAIDBgwfDH3/8Abt374Zv377xHYezt2/fQvPmzWHp0qWQlZXFdxytzJo1C2bOnAmPHj3iO4pWDh8+DAsXLoSXL1/yHUUrBw8e1MnzYQAAOTk5Ons8/u7dOzh9+rROnRcrUUx1f0k1AEA1bQmH3yMGgAUaft98ABD/hMx+AHBHzd/5BADJ/+Iyc2P+1tOnT5EQLq5evYoikQgNDQ0xLi4Op06dinfv3uU7lkbZ2dlob2+PAIDW1tbYqFEjXLx4Mb548YLvaGp9/vwZ7e3t0cbGBps2bYorV67Ed+/e8R1Lo+zsbLSzs0NbW1ts2rQprlq1Ct+/f893LI3evXuHlpaWWKZMGRw4cCCeOnUKCwsL+Y6l0evXr9Hd3R1btmyJ69atw8+fP/MdiZUXL15ghQoVcMCAAXjmzBmdWNaIiA8ePMCKFSvisGHD8PLlyyiRSPiOxMqRI0cwJCQE+/fvrzPrNiLimDFjsFSpUtihQwfcsWMH5ubm8h1JI4lEghUrVkQrKyts3LgxLl++HN++fct3LI0uXryIAIAWFhZYr149XLhwoeD3k4iIXbt2RQBAR0dHbNWqFa5Zs0bw+5zv37+jp6cnAgCWK1cO//rrLzx+/DgWFBTwHU2t+/fvo56ennQdWbBggU6sI6dOnUIAQC8vL+zcuTPu3LlTJ7Yl586dQwDAwMBA7NWrFx48eBDz8vL4jqXRkydP0NDQEN3d3bFjx464fft2/Pr1K9+xNMrNzUU3Nze0sLDABg0a4OLFi/H169d8x2IlKSkJxWIxVqlSBUeNGoWXLl3Sif7JqFGjEADQ29sbu3TpojP7+SNHjiAAoJWVFTZq1AiXLl2KWVlZfMfS6P3792hlZSU9lp8yZYpOHMtLJBKsVq0aikQijIqKwhEjRuCFCxd0Yh0fMGAAAgCGhYXhn3/+iUePHsX8/Hy+Y2m0b98+6Weza9euuGvXLp34bH769AltbGzQ3t4eW7RogWvWrMEPHz7wHYuVtLQ0NDY2xoSEBJw5cyY+evSI70isLF26VNqf1aUxlDdv3qC5uTna29tjy5Ytcc2aNfjx40e+Y7HSoEEDuX2+roxJ7Nq1CwEA7ezssFmzZrhq1SqdGN8sLCzE0NBQBAAsXbo09u3bFw8dOqQTffKtW7ciAKCenh5GR0fjmDFjdGZ9adGiBQIAGhoaYp06dfDvv//GmzdvCj67RCLByMhIBADU19fHmjVr4rhx4/DKlSuCz46ImJiYKD1HGRoair1798b9+/fjt2/f+I6m0YoVK6TZzc3NMS0tDWfPno0PHz7kOxor8fHx0vwuLi7YunVrXLNmjU5sJ5kxUCa/q6srtm3bFteuXSv4sTlGmzZtpPmtrKywQYMGuGDBAnz27Bnf0Vhhjk+ZbX61atVw1KhReOHCBZ3olyEi1q1bV/pv8PT0xA4dOuDmzZt15jzXrVu3UCwWIwCgiYkJJiUl4YwZM/DBgwd8R2Ptt99+k/4fVKxYEYcMGYKnT5/WmXXo0qVL0vwhISHYp08fnemzISJ+/PgRbWxsEACwQoUKOHjwYJ1a/rdv30axWCwdJ1u2bBm+efOG71is1alTB01MTDA5ORnnzJmjM/VTzLGKo6MjtmnTBjds2KAz201FT58+la2Vc8OfURP3M34Jpz8oX/D3GAB2a1m4OEbm5y4AwC8AUPE/Xy/IvDa6mHktAOC2zO+bBwAxAFAZAAYAwOf/PP8FAMr+S8uMChdJsfzyyy9FCm4DAgKwe/fuuGfPHsEezE6aNElpsXDZsmWxf//+eOTIEUF2YsaPHy+XVywWY3R0NI4bNw6vXbsm2IGPsWPHyuXW09PD6tWr47hx4/D69euCzT1w4EC53E5OTti2bVvcuHEj5uTk8B1PpZ49e0ozGxkZYWJiIs6ZM0fwBSWdO3eWG9jo2LEj7t69G79//853NLVatmwpze3l5YXdu3fHQ4cOCf5EZI0aNeQGwn7//XfcsWOHYLfbiD8KoW1tbaW5zczMsF69erh48WJBFwls3769yLa7WrVqOHbsWEFvu+vXr19kP1m+fHkcNGgQnjp1SpCFdS9evEBjY+Mi+xyhn5xZsGBBkWVta2uLTZo0wRUrVgj24L59+/Zq1xGhDqjInoQBADQ1NcXU1FScN2+eoAejU1NT5XLLFkQLdR1BROzUqZNcbl0Z/Jk1a5ZcbpFIhJGRkTh8+HA8f/68ILcliP8tcpVtbm5u+Ntvv+HmzZsF24eVvbhMcV2ZPXs2Pn78mO+IKtWpU0fpujJs2DA8d+6cYLeFw4YNU3os36NHD9y7d69g++AHDhwoktvV1RXbt2+PGzduFOzA7Lt379DCwqLIvl7oFyVKJBKMjo6Wy21mZoZpaWk4f/58fP78Od8RVRo5cqRcbqZwZOLEiXjr1i3BbseZC4hkW1hYGPbv31/QF7fk5+ejv7+/XG5HR0ds3bo1rlu3Dj99+sR3RJX69+9fZF2pVasWTpo0SdDrCnNBuWx2d3d37NChA27duhW/fPnCd0SlJBIJVq1aVekx8pgxYwRd2LV+/foin08rKyts2LAhLlmyBF+9esV3RKUkEglWqlSpSPZSpUrhr7/+ihs2bMDs7Gy+Yyp179491NPTK5Ld29sbO3XqhFu3bhVs/3bPnj1Kzz+UKlUK27Vrh+vWrRNsofT58+eVZjczM8PU1FScNWuWYAsBCwoKsHTp0krzBwUFYffu3QV9IYay4zlmO1m5cmUcNmyYoAtYdu/erTJ/lSpVcMSIEXj27FnB5n/48CEaGBgo/TeEhYVh37598cCBA4I9VkKUL36VbU5OTtiqVStcvXq1YI89EBHPnj2rNL+hoSHWrl0bJ02ahDdu3BBsXwERsVWrViq3QczxtpDPwTAXISvmd3BwwJYtW+Lq1asFX4zcoEEDtX02oV+czFzcq+zYKjMzU9DHVoj/vfBEdpysSpUqOHr0aEH39RERT5w4UWTZlytXDgcNGiTo/S8iYmZmZpHtZnx8PM6YMUNnLohE/P9TuDgMAJIBwOk/33vJ/KNYFS4CQAAA5P/nZ84CgInC66b/eR7/8z6/YuQdLpOvj5LXq8hkOfQvLTMqXCTFInv1iKqD2bS0NJw7d66g1rGvX7+iq6urytxMJ6Z+/fqCuqIqJycHHR0dVWb28vLCLl26CG72IGa2SFW5mZlVhDZooOzkEtOMjIykMyA8efKE76hylBXuMC0yMhJHjhyJV69eFVzn8PHjx0oHBiwtLfGXX37B1atXC7JDfuvWrSInCwB+zB7QunVr3LRpkyBPGOzfv1/pOmJubo4NGjTA5cuXC/IAVNlBG3PwU7VqVRw3bpzgrr6XvdJe3bZ7165dghq0UHYiTLYxM9gIbbCiV69eavfvzMmZjRs3CubkTF5eHvr6+qrMzMwsNXz4cEEVwagb0AWFAS0hzXJ05swZteuIUGcKunDhgsrMzEkAIQ4APX36VOmAJ9PKli0ryOX97ds39PDwUJmbKZTatGmT4Aql0tLSVOY2MjLC+Ph4nD59uuCu+Fe8SEuxhYWFYb9+/fDIkSOCukDk5MmTanM7OztjmzZtBFe4w8xIpyq3ubk5ZmRk4IIFCwRXnFazZk2VuZkZmYQ4i+TgwYPVbseFWrRz8OBBtes4c9GC0AbxP336JHfRk2Lz8/PDP/74Q5CFuhkZGSpz29nZCXYWyeXLl6vMbWBggLVr18bJkycL7rP59u1blWM/zLrSvXt3Qa4ryi4oZ5qQZ+5UNR7BNKEWYBYWFmLZsmXVZo+IiBDkzESqiuhkP6MxMTE4ceJEwRWE/Prrr2qzGxkZSWeQvn37tmCySyQSrF69utrs+vr6WL16dRwzZozgZkpXdjGrYgsMDBRkIeCGDRs0ZjcxMcGEhAScOnWqoNYbRMR69eppzG9vb49NmzbFZcuWCapoWiKRyF0sr6o5ODhgs2bNcMWKFYK7GF12cgV1x0ppaWk4Z84cwe1jVRX+KR57VK5cGYcPHy7IQtL09HSN/wYhz8Z4//591NfXV5ufKQSfM2eOIC/U7NKli8Z1qFq1ajh69GhBThSg6byGSCTCihUr4tChQwX5GWDuZKiu/xATE4OTJk3C27dv8x23iDt37ii98IRpHh4egr4zj6oCcID/TnAkxBkNZWeIV9aYCyJPnDgh2AsiEf+fFC4WCaBd4eIsmZ+JUvGeKJn3zNQymwEAfPzP77gBKm47DQBzZP5WxX9hGVHhIik22dnGNLXw8HDs37+/IG6LpDiLCpvsffv25f3WfBMnTmSV19TUVFCzIGg6ESnbYU9PTxdMbsVZF1U15pbSQhmY7Natm8bMPj4+2L17dzx48CDvn0eGstm7ZJuBgQHWrVsXZ8+eLYj1g9G4cWO1uU1MTDAtLQ0XL14smFmxJBIJVqlSRW1uPT09rFWrFk6ZMkUwV1JrOsnOND8/P+zZs6dgZr/csWMH621gRkYGLly4EF++fMl3bLUnwhTXlejoaBw7dizvJ9uzsrLQzMyMVW7mBOqkSZN4L3hdtmwZ6z4JUwSTmZnJ+wwNHTp0YL2OMLMtC2Gm0ZSUFFa5HRwcsFWrVrh27VrelzUiu8FbgB8DQJ06dRLM7XY1DXgqLm+hXD08d+5cVrmZK1inTZuG9+/f5zu20tm6VLXg4GDs3bs378c4iIhfvnxBJycnVrltbGzwl19+EcyMo4ozuapqzCxeEydO5H2/g4g4evRo1usKU9R98uRJ3gc4ZW+Bpqkxs0ju27eP94KjDx8+oJWVFevteIcOHXDbtm2CKNpRVywq24Q2CwTbddzCwgLr16+PixYtEsTJ/8uXL7PuXwlpFsmCggIMDAxklT0wMBB79eoliP0PIvuxH6GtKzdv3lR7QblsCw0NFcwFAGwLWwD+W4AplNssbtmyhfU+SEgzEymbQVdd8/Lywk6dOgliP/T48WO1F0IpNh8fH+zSpQtu376d9+xc+iwAP+6I0qZNG1y7di3vxenXr19XW/Sh2JhCwGnTpuGdO3d4zS6RSDAiIoLTsvfx8cFOnTrhli1beC9EuHbtGqdlD/DjQpIBAwYI4rzbsWPHOGUXiUQYERGBAwcOxOPHj/Oe/8WLF2hiYsLp38DMpLd7925BjMGouwhG1f6qefPmuHLlSkEcX1+5coXTZ8DQ0BBjY2MFNRuj7O2W2bTSpUtjnz59BDOjp7rJUZQ1IU4UwPa8BsCPYjShjLUzFO9kqK4J8aK81q1bs+4/pKSk4Ny5cwUziZSmC5Rltz3MxeFCOX+qOOuiuu1+q1atBHeRNSIVLjLvFwHA8/+8/6aG9976z/ueAYBIi2xxMtn6qXmfbJFksW5NreL3U+EiKba7d++qrZxX1ZiTTcuWLePlqqrv37+jl5cX59wAPwYqMzIycO7cuSU+2x6XE3qyrXz58jh48GDeCus0zRapqlWoUAEHDx6MZ86c4SW3ulkXVTVnZ2ds164dr7eUfvbsGadBPRsbG2zevDlmZmbyemCh6hYwqlqlSpVw9OjRvB+QXrlyhXVmsViMNWrUwMmTJ/M+6L5r1y5O63aZMmVw8ODBvN8ic8SIEZz3N82aNcM1a9bwduCp6tZMmlrFihVx2LBhvC1zLifCZBtzsp2vGTIGDBig1f7d29sbO3fuzMsJjoKCAgwKCuKcWV9fH2vUqIHjxo3jZTZdVbcP0dQ8PT2xY8eOuG3bNl6urFR16ytNy5q5bSBfV7NeunSJc27mVth8DgA9f/4cjYyMOOUWwsxM2h4vBAcHY58+ffDQoUO8FWOwmSFFsVlZWWGjRo1w6dKlvM16MXnyZM65mVlpR4wYgRcuXOBlf8lmVgtljTmxzteM+ZpmxlfV7O3tsXnz5vjPP//wVoiheItuNs3CwgLr1avH6wUiw4cP55zb2NgYExMTeZ017fDhw1rtN2NiYvDvv//mbb+p7Db0bFpkZCQOHz6ct20KonbbcSHMDLhq1Sqt9j+NGzfmtRj9/fv3aGlpqdW6wufxGiJis2bNOOe2sbHBJk2a4IoVK/Dt27e85D506JBW+06+L7rQdEcFVY252I/PmXW1XebMjN1Tp07lrV/etWtXrbIbGxtj3bp1cerUqbwV06mbtUfTOlOtWjUcNWpUie+PCgsLMS8vj1PRh2Lz9fXFzp0747Zt2/718XGJRIJ5eXn49etXzM7Oxnfv3uGKFSu0zs7cknbChAn/2jiLRCLB/Px8zM3Nxc+fP+OHDx8wKysLX7x4gU+ePGF9YZSyxtxJbP78+f/KeV/Z5f3p0yd89+4dvn79Gp8/f46PHz/Ge/fuabWdZJq1tTU2bNgQFy5c+NMnLlC23N+8eYMvX77Ep0+f4sOHD/Hu3bta7VuZZmJigomJiTh9+vR/ZZvJLH/Ff8OrV6/w2bNn+OjRI9y8ebPW+UUiEVaqVAmHDBmCp06d+tcuWpNIJFhQUIDfvn3DL1++YHZ2Nr5//176bynOZ4Cv2RiZbWdubi7evHlT46yLqhpz3Dp//nxeC7l69uypVX4DAwOMjY3Fv//+m9eLq7Q9ryF7wSmf5x0/f/6MDg4OnPMzd8/ge2IMrud6mSaU2zLXrVuXc/bQ0FD8888/8dixY7xd8FtYWIhhYWGcP7N16tTBqVOn8n7OGvHfKVwU4Y/CON6IRCIvAHj4n2+XImJrDe/3AYD7//l2LiJ2UPPeuQDw23++9UHEh6req+LnhwPAoP98WxkRT6l4nz4AfIIft6g+gog1uPwdFjncAOApAMDTp0/Bzc3tZ/56UkJOnToFhw8fBolEIm2FhYWcvi/uz5w+fRpycnKK9e9wdXUFHx8f8PLyAjs7O5BIJFBQUAAFBQVQWFgofaz4varHbF7Lzs6GvLy8Yv8fODo6QkBAAPj5+YGHhwfo6en9q4XZhw8fhuvXr2ud19zcHAIDAyEwMBB8fX3B0NCwRArKDx06BDdu3ChW7uDgYAgODoaAgAAwMjJi/bMikUjrv7t69Wo4d+6cVj+rp6cH/v7+EBYWBmFhYWBrawtisRjEYjGIRCLpY8XvVT3m8r6RI0fC3r17tc4cHh4OZcqUAVtbW9DT0wOxWAx6enrSJvv9z3zctWtX2LZtG+fc9vb2EB4eDuHh4eDn5wf6+vpqMyv7ns17VP1M69at4cCBA5xzu7i4QFhYGJQpUwbc3d2lv0+xqXq+OK+JxWJo0KABPHjwgHNuKysrKF26NISGhoKvry8YGBiASCRS2wDgp7wnOzsbOnbsyFyEwYlYLAZfX18ICgqCkJAQsLa2lv4eZlvF5TGX9168eFGrzyTDwsJCuu329vYGPT29IvtlRCzyHJum7ucOHjwI2dnZWufW09MDHx8f8PPzAz8/P7C0tJTrQxQWFso95vKaqvd8+vQJLl++rHVmAAB9fX3w9vYGf39/lbkV+0PFfe3u3bvw9OnTYuW2srKCwMBACAgIAC8vL9DX11f7//wznjt48CC8ffu2WMua+VwGBASAtbW19Pcraz/rtdWrV8PHjx+1zm1nZwfBwcHSz6RYLC7y+Zdtyp7X5r3Lly+HN2/eaJ3b1dUVgoKCIDg4GEqVKsUpQ3Fe37RpEzx69Ejr3Pb29hAUFARBQUHg6ekJYrFY5f/3z3z+1KlTxdqeGBsbQ0BAAAQGBoKfnx+YmprKfX5UfWXzHnXvffz4MRw9elTr3AAA7u7u0uxOTk5FtgOq9h1styHKnv/69Svs2LGjWLmZ/aW/vz94e3uDgYFBsfeTbP4te/bsgdzcXK1zM9vCgIAA8Pf3l+53tN1/s33PuXPn4NmzZ1rnFolE4OnpKc3t4OCgdh1V9j2bx4rfP3jwQOtjNIarq6t0n+nq6goAoPKzpu5zyOW17Oxs2LRpU7FyOzk5SfuEbm5uIBKJirW9Y/velStXwtevX7XObWdnB0FBQRAYGAheXl7S/aa2DUD9fohpBw4cKNY4hIWFhXT/4+PjAwYGBmr/tqrXuP7M/fv3tTouZhgaGkq34QEBAWBmZsZquRX39cLCQpgzZw4UFhZqlVskEoG7u7u0X+jo6Kjxb/6stnfvXrh3757Wy5zZ/wQEBEj3P6q2B2wfs3nf06dPtRqLUFzm/v7+4O/vD/b29gAAavclst8X57Xt27cXa1zWyMgIfH19wdfXF3x8fMDExITVmLeq59i+99GjR/DwIafTQUVYWlqCj48P+Pj4gJubm7RvyxzfqjreVXzM9X3Xrl2Tfpa1ZWNjA15eXuDp6QlOTk4gEomkf4MZc5dt2j4n+/3Xr1/hw4cPxcoN8ON42cPDA9zd3aXbF03nGYr7el5entbbRFkmJibg7u4Orq6u4OTk9H/s3Xd4FGXXBvB7S3rvvfcKIQkQEKSXVBBQAQERAUGKiGBDRFSa9F6kSZMivYhUUYrSRUBE6b1DKCFlz/cH7+67SbbNBjKz33t+1zVXtkyy905mZ5555syzkMvlpc51mDOVPV+inlQqVYXzapPL5fDx8YGvry98fHxgb2+PoqIina8t5HH1Y887b1l2dnbw9fWFl5cX3NzcIJPJ9ObSvm/oueLi4heaWZuzszO8vLzg4eEBJycnqFQqk5arWMu7LCcnJ3h6esLd3R2Ojo5611tT3sPz+CwKZW9vDw8PD7i5uWmO8Uw5n6nvfmUvfysrK3h4eMDd3R2urq56t/lCblfmeiSTyeDu7q55D7a2tuX2P7qmsvtQQ1NxcXGF962GODs7w9vbG56ennBxcdG0ubXbKIb6m/U9dv/+faPHr8/j/+Tg4KDZd3l6ekImk5nVd6Ge5+rVq6Xu62tDExEePHhQ4f+No6MjgoKCEBgYqNn/ll1OprTbz5w5g5KSEqPHWuplrlKpcPv27Qr1MwHP6hfCwsIQGhoKLy8vAOXPaxk67jt+/HipdVzX72rfV1Mf01Ykv729PSIjIxEVFYXQ0FDY2NiUy1E2k/rnoUOHUFRUVG4efb9T9vGbN2/i9OnTZme3s7PTHBtGRUXB1tZWbxZTHzP19/bs2YOtW7eaExsAkJCQgOzsbOTk5KBmzZpQKBRm/y1zXLp0CUFBQeq7QURkfqflf1hi4WI2gHX/uduPiMYbmLcfgLH/uZtFRIJ61mUy2QoArf5z142I7hmY9yiAZAA3ichbyOuYkIMLF/8fGD58OD755BOxYzDGGGOMMcYYY4wxxhhjjDHGGGOMMcYslIeHBzIzM5GTk4MmTZrAxcXlhb/miyhcVFb0D4hAu2rP2ALQHgolSO9cxl/rkaGiRa3XSgbgJZPJbIjoqakv8p/CREN8Tf1bTLrkcrnYERhjjDHGGGOMMcYYY4wxxhhjjDHGGGMW7Pbt21iwYAEWLFgApVKJl19+GTk5OcjOzkZERITY8UxmiZVUTlq3jX3n7SOt244VeC1Tvlu3Iq910ci0X+DfYxLEhYuMMcYYY4wxxhhjjDHGGGOMMcYYY4yx56W4uBjbtm3De++9h9jYWPTq1Qt3794VO5ZJLHHERVut24VG5tUe9dCuAq9l7HWex2ux/+cq+7vlGWOMMcYYY4wxxhhjjDHGGGOMMcYYY/9/ubm5oXnz5sjJyUGzZs3g6uoqdiSTWWLhYoHWbWsj89po3X5Sgdcy9joVfS1jX2PtCx510eLxiIuMMcYYY4wxxhhjjDHGGGPSIZPJQERixzCJlZUVlEqlZiouLkZ+fr7YsfRSKBSarGWzKxQKnD9/XuyI5chksnJZy95XKpXIz8/HlStXxI5birHM2o/dvHkTV69eFTuyhva6YsqUn5+PM2fOiB27lLLrt67b6vt//fWXJLc7MplMk1ehUJS7ff36dUnm1kf9foqLi8WOwhhjL0R0dDRycnKQk5OD2rVrQ6m0xBJAyyxc1G6BG/tKZget26Z83bO+1zLlq5/Nfi0iumToeZlMJuTPMYnKyMjAF198AYVCAblcDrlcXur2i74vk8nQunVrsw6knJycEB8fj6SkJMTExMDW1lZvo1tXA7yizzVt2hS7du0SlNnGxgbh4eGIi4tDTEwM7O3tIZPJKnWaM2cOfvnlF8HLGwCcnZ0RGxuLuLg4hIWFwcrKqtJyz549G7/++qvZuWNiYhATE4OQkJBK3TmuWbMGR44cMfv3AwICEBkZiYiICLi7uwMAVCqVZiIio7fNme/48eO4cOFChd67r68vwsLCEBoaCk9PT6hUKpSUlGh+vojbV69exZ07dyqU28rKCsHBwQgNDUVQUBDs7e3LvZ4p94X8ztWrV3H//v0K5VYqlQgJCUFYWBhCQkLg6Oio+b+qX8vQZMo8Zef7448/8ODBgwrl9vLyQlRUFCIiIuDv71+qU5aIdE6GnjP2fHFxMebNm1ehzH5+fpptSkBAgOYiAPX2SshtU+f9+eefsWLFCrPyKhQKREREIC4uDnFxcXBzcyu1XzY0yWQyk+fV9bsdOnTAtWvXBGd2cHBAWFgYEhISEBsbCwcHB00bQt2O0PXT3Oe059m3bx/effddwZmVSiWqV68Od3d3xMfHa5azvtd73s8NHz4cq1evFpzb2dkZderUgZ2dHWJiYmBnZydoXRDyuK7H+vbti9OnTwvObWNjg1q1asHR0RGxsbFwcnLS/H19bYnn+dyAAQNw48YNwbkBICkpCZ6enoiNjYWPj0+5vw9AZw5djwudd+jQoWafAAgODoa/vz9iY2MRHBwMpVJpsO2mL5s5z0+YMAEnTpwwK7e/vz8CAgIQGxuLsLAwWFtbm/Q/fh6PLVy4EJs3bzYrd0BAAAICAkq1u7U/R/p+mjKPsXl37tyJSZMmmZ07MDAQ8fHxCA0N1eR+ntsSfY9fvnwZXbt2NSu3r68vgoKCEB8fj/DwcFhbWz+XfaEpv09EeP3113Hv3j3BuV1dXRESEoK4uDhER0fD1ta2wnmEzDdkyBDs2bNHcG4rKytN7ri4OLi6uupcLw3dNnU+Xb+zdu1azJo1S3BuAPDx8dEcEwcGBpb6u6Z+9spuO0yd9/z58+jfv79Zue3s7BAdHY3Y2FhERUXBzs5O0P5QyONlHyMi9OrVy6zjBplMhqCgIM0y9/LyErQvqej07bffmrWOA//th4iNjUV4eHip/hNDufU9J+R3Dh48iBkzZpiVW6lUIiIiArGxsYiJiYGzs7OgZV6R5wsLC9G3b1+zT+Cq9/dxcXHw9fXVu96aMgn93YkTJ+LgwYNm5XZ3d9dsD8PCwqBQKPRuJwzdNud39u7di3HjxpmV29HRUZM7OjoaNjY2mr9fkW24KfMWFxfjtddew+PHjwXntrW1RWxsLBITExEbGwt7e3vN3y7bh63rsYrOM2HCBCxatEhwbisrK0RHRyMxMRGJiYlwcXHRe7xr6La58927dw+1a9dGYaEpXwL2XzKZDBEREUhOTkZycjK8vLxKvYZ20Ymhx4Q+rv3Y7NmzMWDAAMHL3NvbG8nJyUhJSdG0x8ueI9B1HuF5PSaXy/H2229j9uzZgnIrlUrExcUhJSUFVatWhaurq6CiK13nRIxNcnn5wTF69eqFKVOmCMpub2+P5ORkpKamIjk5GQ4ODjpfT1fhm7Hnyv7/1PskXbZs2YImTZoIym5tbY2kpCSkp6ejWrVqcHFxMZrNlCJE7cd0LWddXn31VSxfvlxQ/oCAAFSvXh01atRAREQErKysjOYxNbt6220KIsJLL70kuN8iKioKNWrUQEZGBoKCggSv84Y+C6Yud7WuXbsKLlwMDAxEzZo1UatWLcTExGiW3fM4jyk0/7vvvoupU6cK+h0bGxukpaWhVq1aqFGjhmYfZajQ0Njtstt2Y+9j5MiRKC4uhkKhwMKFC3H8+HFB78HT01PzP6hSpQqsra117nN07S/NmU/9mRg1ahSKiopKtRXy8/Px9ddfo6SkRNB70F6PoqOjS63DhvqVzXls4sSJmuWt63+1fft2bNiwQVB+AAgLC9Nsi0JDQ3W2qcpOZduNhuaZM2cOCgsLdb4/mUymuV1YWIgxY8aY1e6JiYlBtWrVkJaWBl9fX71tcSHt9qVLl6KwsFDv75d9XC6XY9myZWbVXtja2iIpKQlVqlRBYmKi3joG9fs1dNy3fv16zTJUf4bVz2nf1/4d9XOrVq0y6wIImUyG8PBwJCQkICEhAd7e3qVet+xPXY9t27YNT58+LTdP2X2Zvr9x7tw5s+sClEolIiMjNXUkLi4uOt+jOY+ZMs+OHTvM+uwCz85DvvTSS5pixejoaLP+juQYOhldGROAUAD0n2meCfNna83/npF5+2nNm2lGthVav+9qZN6j/5nvxgtYRoHqHBcvXiTGzLF69WrSWp+NTomJifTpp5/S77//TiUlJaLl3r17t8mZ3d3dqVOnTrR69Wp69OiRaJmJiG7fvk1OTk6Clnlqaip98cUXdPjwYVKpVKLkvnXrFjk6OgrKnZaWRkOHDqUjR46IlvvevXvk5uYmKLejoyO1atWK5s2bRzdu3BAld2FhIYWGhgrKDYCcnZ2pdevWNHfuXLp27Vql5y4uLqa4uDjBuQFQbGwsvf/++7R161YqKCio1NyFhYUUFhZmVu6YmBh677336Keffqr03FeuXCFbW1vBme3t7Sk3N5emT59OFy5cqNTMRERz5swRnNnBwYFatGhB3377LV25cqXSM5eUlFBycrKgzN7e3vTWW2/R6tWr6eHDh5WemYho3bp1gjIHBQVRr169aMuWLfT06VNRMhMRNWnSxOTMTk5O9Nprr9HixYvp7t27omW+ceMG2dvbm5w7ICCAevbsSZs3bxZ1We/du1fQOuLh4UGdOnWilStXirZeExFt2bJFUG4bGxvKzMyk6dOn06VLl0TLvWfPHkG5ZTIZ1apVi0aMGEEnTpwQrT31zz//kEKhEJQ9PT1d9HbggwcPyN3dXXDuL7/8ko4ePSpabpVKRdWrVxeUOy0tTfTcRES9evUSlDs5OZk+++wzOnDggKi5Fy1aJCh3WFgYvffee7Rjxw4qKioSLfe///4r6LPp5uZGb7zxBi1fvpwePHggWu7i4mKKiooyObdCoaAGDRrQ+PHj6cyZM6LlJiLq2rWroHUlIiKC3n//fdq5c6eo68qKFSsE5XZwcKBXXnlF1GNiIuHtKwBUrVo1GjJkCB06dEjU7UqjRo0E5fb19aW3336b1q5dK2q/1dSpUwXltrW1pZycHJo1a5Yox2lqFy5cICsrK5NzS6WNRUT08ssvC1rmiYmJ9Mknn9C+fftE7ZedNWuWoNyhoaHUt29f2r59OxUWFoqW+969e+Ti4mJybm9vb3r77bdp3bp19PjxY9FyExENHjxY0Ha8devWtGDBArpz546ouQsLCykkJMTk7DVr1qQRI0bQX3/9JWpuIqLz58+bvG1xdXWlDh060A8//CDqsbLa1atXycbGxqTsAQEB9O6779LWrVtF/XxqM3Xb6O7uTm+++SatWbNG9M+o2smTJ0kmk5m8vo8aNYpOnz4tdmyNnTt3mpRdqVRS48aNaerUqXT58mWxY2sIaRPUqFGDRowYQadOnRI7dinZ2dkm5ff09KS33nqL1q1bR0+ePBE7tsaxY8dM3uYnJCTQoEGDRO8TKOu9994zKb+6TTlq1ChJrUcPHz4kT09Pkz/LDRs2pEmTJtH58+fFjq4xbNgwQe2eV155hebPn0+3bt0SOzoREf32228m5wf+21betm2bJPbFmzdvFpTf2dmZXnvtNVq4cCHdvn1b1OwqlYrS0tIE5ff19aWuXbuKfjxeXFxMsbGxgrK7uLjQ66+/TosWLRJ92RMRXbx4UTtfID2Pmrjn8UcqFEB44WK41vzTjcw7Q2veMDOyDdX6/ZoG5lPi2SiLBODnF7CMuHCRVYhKpaJq1aoZ3ODJ5XKqW7cujRkzhv755x+xI2tkZmYazB0YGEi9e/embdu2iXqCoKxBgwYZ3clI5eS6tk8++cQic3/55ZcmNwp79+4tSvGZLjNmzDC5URIbG0v9+/en7du3i1r8QkS0cOFCk3Pb2tpSZmYmTZ48mf79919RcwtZ3ra2ttS8eXOaNGmS6NvEPn36mJw7IiKC+vTpQ5s3bxa1I0NIkWhoaCj16tWLfvzxR9E7X1auXGlSZvVJpL1794p6EonI9MKXqlWr0ueffy76yV01Uw7q/fz86J133qFNmzZJYptNRPTRRx+ZtH58+umntH//fkksayLj7SkAFBkZSf3796ddu3ZRcXGx2JFJpVLRSy+9ZDS3p6cnvfnmm7Ry5UrKz88XOzYRETVt2tRobgcHB2rZsiXNnTuXrl+/LnZkIiLq3LmzSfvHrKwsmjFjhmROWowYMcJobim2Xzdt2mQ0t7W1NTVv3pymTZsmmdyXL182enJUXYA2YcIEOnv2rNiRiejZxQmmXHiTnp5OX331FR07dkwy2/C3337bpPaUFApFtJlSKOrk5ESvvvoqLVy4UPSCC7Vz584ZPQkqk8moZs2aNHz4cDp+/Lgk1hVTL8Dx9/end955hzZu3Ch621vNlPaV9vZQKn2jpl5om5ycTJ9++in99ttvoh87EBEVFBRQUFCQ0dw+Pj709ttv05o1a0S/OFitZ8+eRnPb29tTixYtaM6cOZJpY5lSHKJQKKh+/fo0btw40ftO1Ew9rpfKhRXavvrqK6O5Y2JiaODAgbR7925JHP8QmVZw6e3tTV27dqX169dLZjtORDR37lyDua2srKhp06Y0ffp0UQugdTF2UY6/vz/17NmTtmzZIpl2ltqAAQOMrucfffSRZPZB2n799VeD2QMCAqhXr16SO++j1qlTJ4Pb9EaNGtGUKVMkcxxXVuPGjfXmt7OzoxYtWtB3330nmTZ6WYb6yxUKBTVs2JAmT54s2eV/+PBhg+t/SEgIvffee6JfGGVI27Zt9ebXLvT7+++/xY6q0/Xr18nOzs7g8UdWVhbNmjVLlMFDTDF69GiD65GjoyO1adOGFi1aJMnPcn5+Pnl4eBh8D76+vtStWzfasGGDpNo9aqYUIFevXp2++uor+uOPPyTTViZ61vdeq1Yto/lDQkKod+/eog+CUdaGDRuMZgdAVapUoc8++0z0gbq0LV682KTskZGR1K9fP0n19alx4eKz+WUALv9n/pNG5j35n/kuAZCZka2JVrYPDcxXU2u+YS9gGXHhIqsQfRtv9QHI3Llz6ebNm2LHLOfQoUM6c8fFxdEnn3wiqYIAbXfu3CFnZ2ed2aV4cl3N0CiRXl5e1LlzZ1q1apXkchsabVF9gDR8+HBJnXwkMn6ywMbGhpo2bUoTJ06UTKc1EVFRURFFRkYabEyFh4dTr169aOPGjZK5CvbJkycUGBhoMHdYWJjkcl+8eJGsra31ZraysqJGjRrRuHHjJHW137fffqs3s1wupzp16tDIkSMlc6KX6NmBWtWqVXVmViqV1KhRI5owYYLoIwCV9eOPP+rN3LBhQ5o4cSKdO3dO7Jjl6Duoj4uLo48//liSneq3b9/WOSqxVC/+UDtw4IDefaS66ELsEWh02b59u97tSGxsLA0cOJB+/fVXyZxkVNu3b5/e3FIsFlEzNKKbFEaW1Sc/P1/v1eVSbnerVCqqWbOmztzu7u7UoUMHWrFihaij5emjb0QCKRagaVu2bJnO3NbW1tSsWTNJFYdqM1REpy4UkVrnN5HhEdoDAgKoR48e9OOPP0rmwgRtPXr00Jlbe8S5q1evih2znFWrVund/6g76qU2wgmR4W998PT0pE6dOtEPP/wgue04kf4LFdTHDhMnTpRM8ba26dOn611XkpKSJDHKny6XLl3Se2zs5+dH3bt3pw0bNkjmWF5bgwYNDO47pXoyWV8hmtT3nfpG45bJZJSRkUEjRoygkydPih1TJ30Fl1FRUTRgwABJFVlq0zfKsvqbE5YsWUL37t0TO6ZOV69e1fktJ1Iu+FPT10eRmppKX331FZ04cULsiAY1b968XPbo6GjJL3ciorNnz5Y7fra1taW8vDyaP3++JEZCMuT3338vt+xdXV3pjTfeEP2bN0yhq+DM1taWWrRoYRHLn4ioTZs25f4HiYmJ9Nlnn0nmonNDTp06RXK5vFR+Kysrat68Oc2YMUOSx0tl6bp4ysXFhdq1a0fLli2TZH+MtsePH5OPj0+59+Dr60vdu3enjRs3SvJ4W9uoUaN0tnsSEhLo448/luQxiTZ9fe42NjaSu+hbF0PfdCTVYks1Q4N5qI9VpkyZIqnRRdUMjbaoPnc6atQoOnnypCSXvRoXLv73d6Zq/Y7OkRBRuphwipnZrAHc+8/fOAE9xY8Apmu9VvoLWEZcuMjMVvakmJeXF7311lu0du1aSXbmaWvVqlWpneTw4cMl8fURxpT9So+4uDj68MMPJXlyXVvZUSLVuaXaKaZWdrRFJycnat26tehfd2XMlClTyjVKAgICqFu3brRmzRrJdhDMnj1bZ0OwcePGNG7cOPrrr78k2ZiaOHGi3txjx46VbG5dJ04DAgKoa9eutHr1akmewHv69Gm5r0B3c3Ojtm3bSmYYc11Wr15dLnP79u1p6dKlku1gL3tVnFS+TtkY7QsTpPpVG7po79/t7OwoLy+P5s6dK+l9DRFRXl5eqY6T7OxsmjlzpuQ7EevVq1fqoL1u3bo0evRoya8nZU++pKSk0Oeff04HDx6U5H5GrUuXLjo7CaUwsqwh33zzTanc6pFzpN7uLts5KJWvmTXm2rVrpU7sSr0ATa2kpISSkpJKnZRr3769RZyM0G4Lqkcqmjp1qiQLRbQtXbq01Dou5cI5bWUvGlL3n6xevVoyI87polKpKCUlpdS60rhxY5o0aZIkL2DRVvZbH6R8cYK2shcqWMKxA9GzY7Xg4GBNbvXFTlK8QKus3r1769yu7N+/X9JtlV9++aVU7uDgYOrVqxf99NNPkhqxpKyyF626ubnRG2+8QcuXL5f8vnPkyJHljn+kPFqSWtlRh6pXr07Dhg2T5EVmZS1ZskST28fHh7p162YRBRNEpUcsTE9P1yxzS/D5559rjpfr1atHEyZMkOQJel20+4WqVatGX375paQubjZGPQKws7MztW/fnlasWCHZvnxdWrRoQcCzAqd33nmHfvrpJ8mN5GSIuuBMXWwpla9uN5X214xnZGRI7mvETaH+xg7tAvX79++LHctk2oXfAQEB9O6770q+bVaW9vku9UAAUi/00/bo0SPy9vYu1e87ZswYi/osaPe5a188bQnbo7LfdKR9oabURsbWZePGjaWOsdTL/4cffpD8sYp2u1ndlnj11VdpwYIFkvkKdFO8iMJFGT0rjBONTCYLBXD2P3fnE9GbJvxONJ4VEioAHABQl4ieaD1vB2AXgDQAxQDiiei0jr8zD0Cn/9ytT0Q7dcwzFMBn/7k7kIi+KfN8xn9eS4lnXxNdz1h+oWQyWSCAiwBw8eJFBAYGPu+XYP+Pbd26FT179kSLFi2Ql5eHmjVrQqFQiB3LqNOnT6NXr17Iy8tDXl4eAgICxI5kknv37iEyMhKJiYnIzc1FTk4OoqKixI5l1N27dxEZGYnk5GRN7sjISLFjGXX//n2EhYXBxcUFOTk5yMnJwcsvvwxra2uxoxlUUFCAiIgIXLt2DTVr1kRWVhaysrKQnJwMmUwmdjy9CgsLER0djfPnzyMoKAiZmZnIzMxEgwYN4OjoKHY8vR4/fqxZ3paU+/z584iKikJJSQkyMjKQlZWFzMxMya8ns2bNQrdu3RAfH4/s7GxkZ2cjIyMDSqVS7Gh6ERFSU1Px8OFDzTawdu3aks4MANu3b0enTp2Qm5uLvLw81KtXT/LbPwBo3749Hjx4gLy8POTk5MDHx0fsSEbdv38f6enpeOmll5CXl4fGjRvD3t5e7FhGHTlyBI0bN0ZWVhby8vLQpEkTODg4iB3LqF27diEzMxPNmjVDbm4usrKy4OHhIXYso37//XfUrVsX9evXR25uLrKzsxEUFCR2LKPOnTuH+Ph4ZGRkaLaB4eHhYscy6vHjx4iMjERkZKQmd0xMjNixjCIi1KtXD4WFhcjLy0Nubi7i4uIkvW9XGzhwIDZv3qw5RqtWrZpF5F69ejX69eunWd516tSBlZWV2LGMunTpEtLS0tCoUSPk5eWhadOmcHZ2FjuWUSqVCmlpaXB3d9fs60NDQ8WOZZLevXtj27ZtyM3NRW5uLmrUqGER/Sfr1q1Dx44dkZWVhdzcXDRt2hQuLi5ixzLqzp07iIyMRFJSkmY7Hh0dLXYsk2RmZuLvv//WbFcs4dgBeHasNnDgQGRmZiI3NxfNmjWziHXlypUriIuLQ40aNTTrSkhIiNixTNKsWTPcunVLs12pUqWKRew7Fy1ahM8++0yzz69du7ZF7DsfP36MtLQ0pKena45/pNzvo23ixInYuHEjWrRogdzcXPj7+4sdySQqlQqtW7dGZGQkWrRoYTH7TgB48OABOnbsqGlrWcKxm1pBQQG6d++Ol19+GTk5OfDy8hI7kiATJkwAEaFFixYW005Ue/ToET799FM0b94c9evXt4h+OG03btzA6NGj0aJFC9SsWRNyuVzsSIIUFRXhs88+Q8OGDVGvXj2L2DeVNW/ePBQUFCAvLw9+fn5ixxHs3r17GDRoELKystCgQQPY2NiIHUmwJUuW4Pjx42jRogVSU1Mtom2mraioCB06dEBqairy8vIs5hhK26xZs7Bp0ybk5eUhKysLnp6eYkcS5MiRI2jbti1ycnKQm5uLjIwMi2n/AM/OK7Vr106Tv2HDhhZxrgN41q+akZGBhw8fauoCLKX9WVJSgqSkJDx9+lSTvU6dOhbXlgCe9VlqtZ2DiOhSRf9mpRcuymSylwBoV8N4AlAXA+4G8K32/EQ0T8/fGQ7go//cPQxgJIB/AUQA+BBAyn+eG05En+j5G/NgvHDRCc+KI9Vb/ZkAvgfwBEB9AJ8AcPzP/VpEdETXa1UEFy6yisjPz4ejo6PFNbyIyOIyA88O/BQKhUWcXNd248YNKJVKuLu7ix1FkLNnz+Lx48eIj4+3qPXl6NGj+PPPP9GsWTOLWlf27t2LX375BZmZmUhISLCYZb5jxw4cOHAAmZmZFrWurFu3Dg8fPkTTpk0t6rO5du1aJCUlISwsTOwoJnv48CEuX75sEQUv2m7fvg13d3eLWafVHj9+bDEHwmpPnjyBtbW1RRwAa7t16xbc3NwsLve5c+fg6+sLW1tbsaMI8u+//8Lb2xtOTk5iRxHk4sWLcHJygqurq9hRBLlz5w5UKpXFdW4WFRXh9u3b8PX1FTuKYDdu3IC3t7fYMQSz1P3lvXv34ODgYHEn4woKClBQUGBx2xTg2fbQkooW1M6fPw9/f3+LW1euX78OpVJpUcfEAFBcXIzTp08jNjbW4rYrp06dQnh4uMWtK1evXoW9vb1FFFlqKykpwdWrVy2yL//mzZvw9PS0uHW8oKAASqXSIgqJyyoqKrK4zyYA9TeGWdy6whhjjDHxWGoNgNqTJ09gZ2cndgyz3bhxA56enhZXvA48W/ZXr161iIvuy7p79y6uXr1qMRewG/L/pXBxHv5bLGgUEen8r8lkMjmAWQDeMvDrswF0IyKVCVl0Fi7+Z75IABsB6Bs27QGA9kS03kAWs3HhImOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxMbyIwkXLK6P9DyJSEVEXAFkA1gC4AqDwPz/XAMgkorf1FS0KfK1/8GwExw/xbPTFewAeAzgFYByA5BdVtMgYY4wxxhhjjDHGGGOMMcYYY4wxxhhjjP1/UukjLjLheMRFxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGNi4BEXGWOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxZtG4cJExxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOVhgsXGWOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxVmm4cJExxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOVhgsXGWOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxVmm4cJExxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOVhgsXGWOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxVmm4cJExxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOVhgsXGWOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxVmm4cJExxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOVhgsXGWOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxVmm4cJExxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOVhgsXGWOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxVmm4cJExxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOVhgsXGWOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxVmm4cJExxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOVhgsXGWOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxVmm4cJExxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOVhgsXGWOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxVmm4cJExxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOVhgsXGWOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxVmm4cJExxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOVhgsXGWOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxVmm4cJExxhhjjDHGGGOMMcYYY4wxxhjTg4jEjlAhlp4fsPz3YOn5GWOMsReBCxcZ+x+zdetW/PDDD3jw4IHYUQTZuHEjvvjiC/z+++9QqVRixzHZmTNncOXKFbFjCHbmzBk8fvxY7BiC3bt3T+wIZuGDVcako7i42CI/k3fv3hU7gmDnzp2zqH06AFy4cAGPHj0SO4Ygjx8/xoULF8SOIdj58+dRUFAgdgzBTp06heLiYrFjCPbHH3/g6dOnYscQ7ODBg7h9+7bYMQT7448/cPz4cYvb31y+fBk//vijxX02i4uLsXDhQly7dk3sKIKtWbMGx44ds7h1Zd++ffj5559RVFQkdhRBLl68iLVr11rcvr64uBjff/89bt68KXYUwTZt2oR///1X7BiCHTx4EL/99pvFtWWvX7+ONWvWWNw6TkRYtGgRzp49K3YUwTZv3owdO3ZY3Pbw7NmzmDlzJi5duiR2FEGICOPGjcPmzZstrr3y+++/46uvvsKhQ4csbtsyevRojB8/HqdOnbKoNotKpUKPHj0wduxYnDx50qKyExF69uyJQYMGYffu3RZ3DLpo0SK0a9cO3333Ha5fvy52HMHeeOMN9OrVC+vXr7e4fapKpUJeXh569eqFDRs2WFx+AHj//ffRsWNHLF68GLdu3RI7jmD79u1Do0aNMGbMGJw4ccKitj1qffr0Qa9evbBx40aLPI949epVtGzZElOnTsW5c+fEjmOWefPmYdCgQdizZw9KSkrEjiPYvXv30K9fP2zatAlPnjwRO45gRISxY8di27ZtKCwsFDuOYMXFxZg1a5ZFHosDwN69e/HHH39Y5PZz//79Ftl3Uxm4cJGx/zGxsbFo3749PDw80KBBA4wZMwZ//fWX5DfuL7/8MqZOnYoaNWrA19cXHTp0wOLFiyV/otLGxgYRERFIS0vDkCFDcPDgQckva+BZw93T0xM5OTmYOXOmxRRfzpkzB1WrVsXgwYNx4MABi1jWAPDhhx+id+/e2LZtm0V1Zn/00UeYMGGCRRXEqFQq9OvXDwsWLLCoQq+7d++ic+fOWLFiBR4+fCh2HJMtXboUXbp0wbp16yzmALSwsBC1atXCe++9h507d1pM52+/fv3w0ksvYdSoUTh16pTYcUyyYcMGBAYGolu3bli/fr1FrCN3796Fl5cXsrOzLWb/aGdnh5YtW2r2j/v377eIE2HqtkjLli0xd+5c3LhxQ+xIJtm2bRt8fHzQoUMHLFu2DPfv3xc7kkl27doFT09PtG7dGvPnz7eYDpQrV67A29sbdevWxahRoyym09/V1RUpKSkIDw9H7969Lebkuq+vL95//314eHggLy8PM2fOxOXLl8WOZZRSqcSePXvg5+eH9PR0DBkyxGK2hYWFhUhOTkZoaCh69uyJDRs2WMSJocDAQDRp0gTe3t54/fXXsWDBAos4qejv74+PP/4YHh4eaN68OSZPnmwRhVJKpRI7duyAj48PMjIy8PXXX+PIkSMWsT28f/8+IiMjERsbiw8++MBiCrx8fHxQt25d+Pr64s0338Ty5cstYp/v7e2NL7/8Eh4eHmjWrJnFrOMymQz//vsvwsPDkZCQgIEDB1pMcbS/vz8aNGgAT09PtGnTBvPmzbOIIp3Q0FBMnz4dQUFBqFKlCj7++GP8+uuvkj8+lslkcHZ2RrNmzeDu7o6cnBxMmzYN58+fFzuaUdWqVcP8+fORmpqKgIAAdO7cGcuXL7eIi7Tr1q2Lfv36ITY2FpGRkZqCKKm3WeRyOWrXro3+/fsjPj4eYWFheOedd7BmzRrJ973JZDK0aNECX3/9NV566SV4eXnh1VdfxZw5cyyin6JVq1b45Zdf0KlTJ/j6+iI1NRWffvopfvnlF4vYznTu3BlTpkxBTk4O3N3d0bhxY4wZM8YiLk5TKBTo2LEjpkyZguzsbHh4eKBJkyYYO3asxRxP9+zZE4sXL0b79u3h7e2NGjVqYMiQIdi3b59FFHBlZGRAJpPhgw8+QEJCAkJDQzXbnvz8fLHjmaRTp06YMmUKsrKy4O7ujmbNmmHChAk4ffq02NFM4ufnBy8vL7z77rsICwtDfHw8+vfvb1FFaJmZmRg3bhxq164Nb29vtGvXDosWLbKI427gWb9Yfn4+MjMz4eHhgZycHEyfPt1izjXKZDLY2dmhUaNG8PT0RKtWrTBnzhyLuWBWqVTi+PHjiIyMRFxcHAYMGGAxx1cA4OjoiCpVqiA0NBTvvvsuNm3aZBH9qsCziwl9fHxQu3ZtjBgxAn/++adF7HsrBRHxJPEJQCAAAkAXL14kxiqqT58+pF6n1FNYWBj16tWLNm7cSI8fPxY7ok7jxo0rl1sul1PNmjXpiy++oP3791NJSYnYMcvp1atXqcz+/v7UrVs3Wrt2LT169EjseHo1bty4VO7U1FT64osv6NChQ6RSqcSOp9PDhw/Jy8tLkzkgIIDeeecd2rRpExUUFIgdT68//vhDk9nV1ZXat29Py5cvp/z8fLGjGbRmzZpS68dXX31Fx48fl+z6oTZp0iQCQEqlkho3bkxTp06lK1euiB3LqC5duhAAsrW1pZycHJozZw7dvHlT7FgGPX78mHx8fAgAOTg4UKtWrWjhwoV09+5dsaMZNGrUKM267e7uTh06dKAffviBHj58KHY0vf766y+SyWSa3NHR0TRgwAD65ZdfqLi4WOx4Oj158oT8/f01me3s7Cg3N5e+/fZbunr1qtjx9GrRooXF7R9Xr15dKrOvry917dpV8m2RJk2aaDLLZDLKyMigYcOG0Z9//inZZV1QUEABAQGa3Eqlkho1akQTJkygM2fOiB1Pr7KfR5lMRrVq1aLhw4dLenmrVCpKTU0ttX6Hh4dTnz59aMuWLfT06VOxI+r1zjvvlMrt4OBALVq0oFmzZkm6XfL999+XOyarWrUqDRo0iPbu3SvZfc7FixfJ2tq6VG4fHx968803acWKFXT//n2xI+pUUlJCSUlJpXLb2tpSZmYmTZkyhc6dOyd2RL3KHgfLZDKqWbMmffnll3T48GHJbleWLVtWbh2Pi4ujAQMG0M6dO6mwsFDsiDqdP3+erKysSuUOCAigbt260Zo1ayTbji0uLqb4+PhSuZ2dnalNmzY0f/58unHjhtgR9Sq7jiuVSqpfvz6NGTOG/vrrL8mu4xs2bCi3jsfHx0t+Hb937x65urqWyu3q6kqvvfYafffdd5I+Nn711VfLLfP09HQaMmSIZPsyiYjWrVtXLrebmxu9/vrr9N1330n281lYWEgRERE61/MPPviAtm/fLtk24qJFi8rlVigUVKdOHRo2bBgdOXJEstuW3NzcctltbGyoSZMmNG7cOMluF3XthwCQlZUVNWjQgEaNGkXHjh2TZHaVSkV169Ytlx0AJScn04cffkg7duyQ7HZ95syZOrO7uLhQq1ataNasWZI+H9qgQQOd+YOCgqhr1670ww8/SPYYQ6VSUbVq1XTmDw4Opm7dutGqVaskm5/ov/3kZScPDw9q27YtzZ8/n65duyZ2TL327dunM78lbHvUXnnlFZ3vISIiQvLnmomeHT+V7SMAQI6OjtSiRQuaMWMGXbhwQeyYBn344Yfl8quPu4cOHUoHDx6UbDuTiOjs2bPljmEBUGJiIn344Yf0888/U1FRkdgx9SooKKDg4OBy+dPS0ujzzz+XdDufiOjKlStka2tbbh/82muv0YIFCyR9fEVE1KZNm1LZ7e3tKTc3l2bNmkWXL18WO55euvqyQ0NDqVevXrR582ZJ1zJou3jxovZ7CKTnURP3PP4IT1y4yCzL1atXyc7OTmejEnhWOJCVlUVTp06V1ImQJ0+elDoRrGvy9vamDh060JIlS+j27dtiRyYiokuXLulsAAPPTjplZ2fTjBkz6NKlS2JHLeXXX3/Vu5wDAwPpnXfeoQ0bNtCTJ0/EjlrKyJEjdWZ2dHSkVq1a0XfffUe3bt0SO2Y5LVu21NnBl5WVRbNmzZLkgbauE6nAs4KpDz/8kPbt2yfJhrl2MZ32lJGRQaNGjaLTp0+LHVGn06dPk1wuL9eBXb9+fZo4caJkD6S/+eabcstaXTQ6ZcoUyW37iIjy8/PJw8ND52cyOztbsp/Jtm3b6tz+eXp60ptvvkkrV66UXEH0xIkT9e5ratSoQV9//TX98ccfkuqoO3TokMH9Y48ePWjjxo2S2j+qVCqqWrWq3nZfTk4OzZo1S3IFo7t379a7rMPCwqhv3760detWyZ2ImTx5st7ciYmJ9PHHH9OePXskV+Bl6PMYFhZGffr0oZ9++klyJ3p1nVRXT05OTtSqVSuaN2+e5E6uX7hwQe8xAvCsKFqKHZ0lJSWUkJCgN7eXlxd17NiRli1bRvfu3RM7billi4y0J/UJojFjxtCpU6fEjlrKypUrDR4DJyQk0MCBAyXXqX/58mWysbHRmzsgIIC6du1Kq1evllT7RN8xjnpycXGhV199VZJFOz169NCb28bGhpo1a0aTJk2SXCG9rmJR9STlgldj63hkZCT17dtXcoX0KpWKatSooTe3lIsBv/rqK6PryldffSW5deX48eOlLjIrO6kL6ZcvXy6pIhGVSkXVq1c3uMxr1KhBQ4cOpQMHDkiqvfLdd98Z3Hc6OTnRK6+8Qt9++62kTmwWFxcbbGcBzy6I79Kli+SKoo4cOWIwN/DsAqN3332X1q9fL6kL6FasWGE0u7oYbeXKlZJa7r/88ovR7E5OTpoinPPnz4sdWaOwsJAiIyON5k9MTKQPPviAtm7dKqmT+Xv37jWaXalUUt26dWnYsGGSu9h148aNJuV/+eWXacSIEZIrnNZXdFZ2Sk1NpU8//ZR+/fVXSR0rERHl5ORY7LaHiOjYsWMG2zfAs/OfzZo1owkTJkjynIuhPgL1lJSURAMHDpTkBT63bt0iJycng/l9fX2pc+fOtHz5csn10RCVv6jX0LGJ1I6/ifQX4Wu38zt37izZC2bff/99vdnlcjnVqlWLhg0bJrnzM0TGt0FS7VclMtyX7ejoSK+88grNnTuXrl+/LnZUvbhw8X90Ahcushfggw8+MNogU0/qEyFSaJhNmzbN5NxyuZwyMjLoyy+/FL0DzZQGMACqVq2apHakjRo1MprZ3t6eWrRoQbNnz5ZEIY++gqOy60bdunVpzJgxkjlgOnDggMHMMpmMateuTd98841kMhMRLVmyxGBuf39/6tmzJ23ZskX07Yc2fQWu2gekgwcPltwJD32FaeopLS2Nvv76azpx4oTYUTXy8/PJ3d3dYO7q1avTsGHD6OTJk2LH1TB0Ukz9maxVqxaNHDlSMgUOxk6IAf8tiJ4xY4YkRvR68uQJ+fn5Gd3XhIaGSmoEtby8PKOZHRwcqGXLljRnzhxJHGSuWrXKpLZIeno6ffnll5LplDalLaK+GnTRokV0584dsSOXG71Q3+Tt7U2dO3eWTFGxqZ9HJycnat26Nc2fP18SBQ0qlYrS0tKM5laP2imlguiePXua9Ln09fWlLl26SGZdWb58uUm5lUol1atXj0aPHk0nT54UfZkbKzLSntQFRz/99JPoJ0hVKhWlpKSYlFvdqS+Vq+Pfe+89k3JbW1tTkyZNaMKECfTPP/+IHdtosaj2dkVKRXW6RhbVN8XHx0um4NVYsaj2JLVRJPv27WtSbvXJh9mzZ0viQpEff/zR5HVcve+UQtvwwYMHRo8ttdeVrl27SmZdadeuncn7zvr160tm32nquqJur0jlxGxxcTHFxsaanD0lJYU+/fRT2r17t+gXF/3www8m51a3tUaOHCmJkblee+01k7NLaTRGIW0t9XJXF3MdPXpU9OXerFkzk7Or2wDvv/8+bdmyRfR2rq5RRg1NDg4OlJOTQ1OnTpXEhRjZ2dmC8vv6+lKnTp1oyZIlog+soFKpqHbt2oLy+/n5UefOnWnp0qWS6Hvp3bu3oPyurq7Upk0bmjNnjiSK1g8fPiwov3qbL5VtD5Hp7Rv1FBkZSb1796ZNmzZJYjRGXSPOGZqcnZ2pdevWNHv2bEn0qxMRffbZZ4LXoVGjRknm21WMXdSrPWlfNCOV0SQLCwspNDTUpPxWVlbUsGFDGjt2LP39999iRyciomvXrhkc6Ep7Cg4Opp49e9KGDRsk8fkl0j2yvb7919tvv02rV6+WxLGhkL5s9cV5Utnuq3Hh4v/oBC5cZC/AjRs3yMHBQVCjEvjv6ALz5s0T5ST806dPTW4ElJ18fHyoU6dO9P3331f6gZWhURcN7UjF/hpHU67a1NVwFHsnOmzYMEG54+Li6KOPPqI9e/aI2tjNzMw0OXNCQgJ9+umntH//flEbK8XFxRQVFWVSZjc3N+rQoQOtXLlS9CurHzx4UO5rpvRNYWFh9P7770viK3ePHTtm8joSGxtLH3/8Mf3++++iN2iHDh1qcu6YmBj66KOPRB+xU9dXkRlb3h999BHt3btX1NymHqypp+rVq9NXX30l6kmO8ePHC8rs7OxMr732Gi1cuFC00ZUPHjwoeP+YkZEh6tfuqlQqqlKliqDcwcHB9O6774r6NQVC2yIKhYLq1asn+sUJhkYv1DXZ2NhQ8+bNadq0aaIe8wnNLZfLqXbt2jRixAg6fvy4aNuR9evXC8qtXr979uxJmzZtEm2EVCFFRupJXeA1ceJE0U7WlZSUUHJysuBlHhERoRm5U6xtiqmFdNqTo6MjtWzZkr799lvRTk4Yuhrb2L5HzNHHjH3bg74pJiaG+vfvT9u3bxfl4iehBQzqSXsUSbE6w4WewAWencR9/fXXRS14FVKoo73vbNasGU2ePJnOnj0rSm5z1/G0tDRRvyZYpVJRRkaG4NyBgYHUvXt3Ufuphg8fbta60rRpU5o4cSL9+++/ouQ+depUuW9QMGUKDw+nXr16idZeMaewBfhvAeY333xDJ06cEGUftHTpUsG5AZC7uzu1bduWFixYIMrIPubug4BnI3N169ZNtNGMT548adZ6rl7XxRyNccOGDWblBp5dtP3WW2/R8uXL6e7du5WWWaVSUXFxscFvKjA22dvbU3Z2Nk2ePLlSto8qlYoKCwvp8ePH9ODBA7p165ZJoy7qm6Kjo6lPnz4vvAiqpKSEnj59So8ePaL79+/T7du36fr16yaNWqhvksvlVLNmTRoyZAjt27fvhfQ5q9eRgoICevjwId27d49u3bpFV69epYsXLxodndZY/lq1atHQoUNfWHtGpVJRUVERPXnyhPLz8zX5r127RpcuXaJ9+/aRUqk0+z1UqVKFPvzwwxc6YIv2e9D+H1y/fp0uX75MTZo0MTt/QEAAdenShVasWPHCR9JTr0tPnz6lx48fU35+Pt29e5f27t1r9CJ6fZOtrS01b96cJk6cKMrFa+r/jTl9BOopJSWFPvnkE1FH9Lx7966gcxjaU0hICPXo0YPWrVsnajGXOcewwLNi8Lfeekv0Uahnz55tVv6oqCh67733RB+oQchAV+pJ/Q1O06dPF7Uf25SBPMpO6j74KVOmiPqtoxXpy5bCt329iMJFGT0rjGMSJpPJAgFcBICLFy8iMDBQ5ETMHL/99ht++eUXqFSqSptKSkoMPn/o0CHcuXOnQu/L19cXoaGhCA4OhoeHh+Z1i4uLUVJSUmp6Xo/dvXsXT548qVBumUyGkJAQxMXFITY2Fv7+/pDJZIL+htDt57x583D8+HFBv6OmVCoRHR2NhIQEJCYmwtXVFQA0mbWzG3rMnOcHDx6Mq1evmpXb3d0dycnJSE5ORkxMDKytrSGXyyGTyTQ/tW+b8pwp8z98+BAtW7ZEcXGx4MxOTk6oWrUqqlWrhuTkZNjb20OhUJSa5HJ5ucf0TULm/f3339GwYUPBmd3c3FCtWjWkp6cjMTERNjY2UCqV5SaFQiHo8bLPqZdzWXPnzsVbb70lKLOVlRUSExORlpaGtLQ0uLm56c2gVCphZWUl+Hl9edU+//xzDB06VFBuJycnpKSkID09HUlJSbC1tTWYS+ikXt4KhUJv9pYtW2L16tWCcru6uiIlJQWpqamIi4uDjY2NZr1Tv545t02d78GDBwgJCcGDBw8E5XZxcUFycjKqVauG2NhYWFtbl/pcyeVyvbcr+rxcLsc333yD6dOnC8oMPFtPkpKSUKVKFU1uods6c587ceIE+vTpIzgz8GybnZiYiOTkZERERGjWQ+0JgMH75sxTUFCAbt26mbXNlslkCA8PR2JiIhITE+Hl5VVuP2bop5B5y/788ssvcfbsWcGZgf8u64SEBERGRpZa1hXJauy57du3Y8GCBWZltra2RmxsLBITExEfHw9HR0e9r20sk9DnP/nkE1y+fNms3N7e3pr2U2hoKBQKRbnXexE/nz59ij59+qCkpMSs3AEBAUhISEBCQgICAwPL7ROMtVvNfb6goAAff/wxVCqVsMD/4e7ujoSEBMTHxyM8PBxyuVzznHbbWX1b12PGntf32KhRo/Do0SOzcltbWyMqKgrx8fGIjY2Fo6Nj2YsJDV1oKOjxss/98MMPOHfunFm5gWfruPqYJjg4GDKZDEQElUpV6jWf9/1Dhw5h//79ZudWL/PY2FhER0fD0dFR8xov8ufNmzexceNGs3MDgL+/P2JjYxETEwN/f38AKPUahl7f1Md0Pff999+bvU0BAGdnZ8TExCAmJgYRERFQKpVmLUOhv7Nt2zZcuXLF7Nw2NjaIiopCTEwMoqOj4eDgoPe1DOUQ+twff/yBQ4cOmZ1boVAgPDxcs664urrq/Uzpu23OfNevX8e6devMzi2TyRAcHIyYmBjExsbC29sbAMq9njnbDUPzqFQqzJ07t0LruI+PjyZ3UFCQydvDis7z448/4uLFi2bndnR01OQODw+HtbX1C19PiAjHjx/Hvn37zM6tVCoRHh6OmJgYREVFadZxodsIob/z8OFDrFq1yuzcAODp6anZpqjbWWW3c2W3d/rumzKP+v62bdtw//59s3NbWVkhPDwckZGRiIyM1Ow7tSdjfcGGntf33NmzZ3H69OkKLXMXFxdERUUhPDwcQUFBkMvlmtcz5aeQedU/i4uLceDAgQrlBp7t98PCwhAaGgpPT0+dmZ73dPPmTdy9e7dCueVyOQIDAxESEoLg4GA4OTlBpVKV6mNX39b1mLHn9T12+/ZtEFXsnKNCoUBAQACCgoIQEBAABweHUq+l/Xq67ht6ztC8RUVFFcoNPNuP+vj4ICAgAP7+/nB2di712qZOZTPrm543Z2dn+Pv7w8fHBx4eHiAina9bVFRkMJe+5yuynzdGLpfD29sbvr6+8PLygq2trd4chvLrek6lMu/4WAhra2t4e3vDy8sL7u7uUCgURpezKe+pslhbW8PLywuenp5wdXWFXC4XtC7rmu9Fri9lKZVKeHh4aPIrlcpy27ey2z9D2xT1z8pYd4Bn2x43Nzd4eHjA3d0d9vb25c6zVvT+i+bg4KBZh1xcXEBEBve3+vbB+h5/+vRpqXbZ82ZlZQUfHx94e3vDw8MDVlZWpdpWum4be16lUuHu3bul2pS62tHPY/8ll8vh4+MDPz8/+Pr6wt7eXme7UFdbWNc8V65cMdj+154KCwvN7s9Tk8lk8PX1RVBQEAIDA+Hk5GRWf8CZM2dQUlKiM6e+qaSkpEJ9HsCz9Sc4OBihoaEIDQ2FnZ2dwdcESvc5njhxQrPN1zefvuceP35s9jkONR8fH80xiq+vr6bfWft1dGU5evSoZv0tO6+x31c7evQoHj9+XKHssbGxiIuLQ0BAQKm+7LJ5dN039TFd97/55huzszs4OKBx48bIzs5GVlYWfH19zfo75rp06RKCgoLUd4OI6FJF/yYXLloAGRcu/r8wfPhwfPLJJ2LHYIyxCtFV0CiTyXDr1i2xo+lkqLCxuLjY7KLcyqCvoLSgoKBCJzvEoD5pyBhjjDHGGGOMMcYYY4wxxhhjrOLS09ORk5OD7OxsVK1a1eigBhX1IgoXlRX9A4wx05St0GaMMUtU2VdrVpQ6b0FBgdhRBNO+GtDScdEiY4wxxhhjjDHGGGOMMcYYY4w9P/v378f+/fsxePBgBAQEIDs7Gzk5OWjQoAHs7OzEjmcSrqRirJJw4SJjjDHGGGOMMcYYY4wxxhhjjDHGGGPsebp8+TJmzJiB7OxsJCYmYt26dWJHMgmPuMhYJeHCRcYYY4wxxhhjjDHGGGOMMcYYY4wxxtjzVKVKFeTk5CAnJwdpaWkWU6PEhYuMVRJL2SgwxhhjjDHGGGOMMcYYY4z9fyeXy6FQKFBUVCR2FJPI5XIolcpS0927d0FEYkfTq2xe7en+/fvIz88XO6JOVlZWOjNrP/7PP/9ApVKJHbUUXeuIrkmhUODkyZNixy1HoVCUymjoPfz77794+vSp2JHLKZtdfVv7sXPnzkn6cws8+19oZ1coFLh3757YsRhjjGmxtrZGgwYNkJOTg+zsbAQHB4sdySxcuMhYJalZsyY+//xzyOVysyeFQlGh3y87denSxawDEzs7OyQkJKBKlSpITEyEg4ODptGqqyH7vB/Lzc3Frl27BGWWyWQIDQ1FbGwsoqOj4eLiIvj3K2rZsmVmHwjKZDIEBwcjKioKUVFRcHNz0xzUaB/cGHrM3OcXLVqEmzdvmpUbAHx8fBAREYGwsDB4eHgAAFQqFYhI81P7dkWfU9/+8ccfK9RpYG1tjaCgIAQGBsLPzw9WVlYoKSkxaVKpVCbPqz0VFRXh7t27ZmdWs7W1hb+/P3x8fODp6Qm5XI7i4mKUlJSguLhY5yT0uRfVIePu7g4fHx94eXnByclJb66ioiK9eXU9/6I7kFxdXeHj4wNvb2+4uLhApVIZXa6mTiUlJS8ks1wuh6+vL/z8/ODr6wt7e3vNuqh+XaG3DT1fUFDwXHL7+vpqPpvqbaH6c6f+7Gn/rMhjt27dwrVr1yqUV6lUIjg4GGFhYQgJCYGTk5Og7ZzQefPz87Fz584KZXZyckJkZCQiIiIQHBwMpVKpeW0AmtuGHhMyr0qlwnfffVehdd3HxweRkZGIjIyEn58fZDJZuX2arp8VmWflypW4cuWK2Zk9PT0RFRWFyMhIBAQEaNoa+l6zIo+pf548eRLbt283O7ONjY1mOYeHh8PW1lbn6z7v2ytWrKhQW0R7WQcGBpZa1i/qZ0lJCaZNm2b2/ke77RcdHQ13d/dS63VZz+vxoqIijB071uzcVlZWiIiIQHR0NKKiouDo6AigdFva2G0h86pvExG+/vprPHz40Kzc9vb2iIqKQkxMDCIiImBrawuZTFZqUr+WqY+b+tzEiRPNPkZwcnJCTEyMJreVlZXm78vl8nKvWfaxisyzatUqrFy5skK5Y2NjNbnVr6P9emUfM/bTlHlOnDiBIUOGmJXbzs5OkzsqKkqznpiST8h70fVYYWEhOnXqhMLCQsG5lUolIiMjERcXh5iYGDg6OgpethX5OXjwYBw/ftysZR4cHIyYmBjExcXB29vb6P/7eT62fPlyLF++3Kzcbm5uiIuLQ2xsLEJCQqBUKvV+rvTdNne+kydP4ssvvzQrt42NDaKjozX9JnZ2doK3GeY+VlRUhO7du5tVNCKT/be/Jy4uTrPPFJrH3OzDhw83ex338fFBbGwsYmNjERgYCIVCYfI22dj22ti869evx6JFi8zK7ezsrFne4eHhsLa2NmsbYc7vXLp0CX379jUrt3o7rt4e2tnZldv+Cr1v6rwymQxdunQx6/jBysoKUVFRSEhIQFxcHJycnDR/39S+4orMN2vWLMyfP19wboVCgYiICCQkJCAxMRFubm6lXkPdz1v2MaE/9T137do1NG3aVHBRiEwmQ0hICBITE5GUlAQfH59y/dRCJu2cpk79+vXDihUrBC9zX19fJCYmokqVKggJCYGVlZXOvnVdt409b8q8jx49QmxsLB48eCAot/pcQ9WqVZGYmAg7O7tyxVX6ipgq+pz6f3T48GFUq1ZN8DL39/dH1apVUa1aNQQHB+stdDN1Mlakpc6r7a+//kJ8fLzg7OHh4ahWrRpSU1M1fd/6XtfY+zL0vHrfpgsRISUlBUePHhW83FNTU1G9enWEhYWVen1z3oeux9XbbkMOHjyItLQ0Qdmtra2RnJyM9PR0pKWlwcXFxaxlbmgqu47os3nzZjRr1kxQfjs7O1SrVg01a9ZEamoqHB0dTVpvTX3e0PpS1oULFxARESEov0KhQHJyMjIyMlCjRg14enoaLTAU+pipy//rr7/GggULcOrUKUHvwcfHBzVr1kRGRgYSEhJgbW1t8Pyqsfv65tH3PoYNG4bi4mIoFArcuXMHY8eOFZQfAGJjY1GzZk3UqlVL0wY2Zf9ZkcdGjhyJoqKicm2ezZs3Y9u2bYLyKxQKJCUloWbNmqhRowa8vLxKtaHKtkkqcnvSpEma5V32PSqVz/rsR4wYIbig1MrKClWrVkX16tWRlpYGV1dXve3ZspMpz8+ZMweFhYWl3pO+9/n7779j06ZNgvIDgKOjI6pWrYrU1FRUqVIFtra2Jh1vGHpsyZIlKCoqMulYRX379u3bWLhwoeD8ABAQEIAqVaqgatWqCAkJ0WwDTZmA//Y5rl27FoWFhZrH1Z/fsvNr79vU81y+fBlbt241K7+TkxMSExORmJiI6OhoTb+k+rW1M5R9DAC2bNmCp0+fltrul53H0GMymQxbtmwxuz/Y09NTczweEhJSbruna3/0vB4jIgwdOhSPHj0yJzq8vb2RlZWFnJwcNG7cWNMHb9F0nWTkSVoTgEAABIAuXrxIjD0Pu3fvJvV6ZcoUFhZG7733Hu3YsYOKiopEy713716TM9vb21OrVq1owYIFdOfOHdEyExFdv36d7OzsBC1zNzc3ateuHS1ZsoTu3r0rSu5jx46RTCYTlNvBwYFatGhBs2fPpqtXr4qSe+PGjYIyq6eEhAQaOHAg/fzzz6Ks5wsXLjQrt0wmo5o1a9LQoUNp//79VFJS8sKzlpSUUGFhIT158oRGjx5tVm4A5OnpSe3bt6cFCxbQ9evXX3jex48f04MHD+j27dvUp08fs3O7urpSmzZtaM6cOXT58uUXlpuISKVSUVFRET158oQePnxI9evXNzt3ZGQk9e7dmzZs2ECPHj16obm1nTlzhqysrMzK7O3tTR07dqTvv/+ebt++XWmZiYiaN29uVuaIiAjq06cP/fjjj/TkyZNKzfzVV18JziuXy+mll16i4cOH0x9//EEqlapSM//www+CM9vZ2VF2djZNnz5dlPbxmTNnSKlUCspsbW1NTZs2pUmTJtGZM2cqPTMRUaNGjQQv69jYWPrggw9E2zf+9ddfJJfLBS/rJk2a0MSJE+nff/+t9MxEREuWLBG8rN3c3Kh9+/a0ZMkS0dquc+bMEZw7JCSEevXqRZs3b6aCggJRcq9fv15w7sTERPr4449pz549VFxcLEruf/75hxQKhaDc1apVoyFDhtDBgwcrfXut9vTpUwoKChKUOyUlhT7//HNRcxMRvfrqq4Jyx8TE0IABA+jXX38VbT0hIpo6daqg3L6+vtStWzdav359pbdFtB07dkxQbnt7e2rZsiXNnTuXbty4IVrugoICCgwMNDm3TCajjIwMGjFiBJ04ccKi1nF1X8/27dupsLBQtNzTpk0TlNvZ2Zlef/11Wrx4saj9PULbKUqlkho2bEgTJ06ks2fPipa7qKiIoqKiLHI7/u677wrKHRERQe+//z7t3LlT1P7MH3/80SK3448ePSJvb2+Tc7u6ulL79u1p2bJl9ODBA9FyE5GgPh87OzvKy8sTff9DRHT+/HmT+09kMhm99NJLNHr0aDp9+rSouYmIhg0bZvIyDwoKot69e9P27dtF/WyqtWrVyuRlXqdOHRo7dqxox/VlderUyaTsVlZW1KxZM5oxYwZdu3ZN7NhERLRu3TqT15mMjAwaNWqUJNZ1tVdeecWk7G5ubtSpUydavXo1PX78WOzYGnXq1DF5n/TOO+/Q5s2b6enTp2LH1ujVq5dJ+Z2cnOi1116j77//nu7fvy92bI0jR44Iaod98cUXovTbGmLq9sfa2poyMzNp5syZktn+EBHdvXuXnJ2dTV6PXn/9dfr+++/p3r17YkfXmDlzpsnrkZeXF7311lu0du1ayWyLnj59SsHBwSa/B3XbXqx+al06duxocn718eCECRNEPR7UJvQcWJUqVWjQoEH0+++/V8q5aEN27twpKLtCoaB69erRmDFj6O+//xY1+5o1awRlB0BJSUn0ySef0N69e0Vf9hcvXtTOFkjPoybuefwRnrhwkVmeZs2aGd0ApqWl0ZdffimpxnB2drbBzJ6enpJreBERffDBBybtdGJiYkQtDiirTZs2JuUODg6md999lzZt2iRqhyrRsyKvtLQ0k3Lb2NhQ8+bNafLkyaI3EgsLCykyMtLkBoq64G/RokV08+ZN0XI/fvyY/P39Tc6tLrL84osv6LfffhPtBPCNGzfI0dFRUKMwLS2NBg0aRLt37xbt8/nrr78KymxnZ0dZWVk0adIkUTv23nzzTZMzy+VyqlWrFn355Zd04MAB0Rrge/bsMTmztbU1NW7cmMaNG0enTp0SbZ957949cnV1NSmzu7s7tWvXjhYtWkS3bt0SJS/Rs6LixMREkzIHBQVRjx49aMOGDaLv47t06WJSZh8fH3rrrbdo5cqVop+4++WXX0zKbGVlRY0aNaLx48dL4oRAu3btLG5ZFxcXU2xsrEm54+PjaeDAgbRr1y7R236FhYUUFhZm0r48IyODhg0bRseOHRP9OEGlUlF6errJ6/aECRMkc5Kxc+fOJu1jmjdvTtOmTZNMf8CMGTNMWt5NmjShyZMn0/nz58WOTEREx48fN3pRlroAYNSoUfTXX3+JHZmInhXRmVIompiYSJ988gn99ttvondgqr322mtGc/v6+lLXrl1p/fr1ou/f1UwporOzs6Pc3Fz69ttvJXPyzZR1HABVr16dvv76a0lsw4lMP1kVEhJCffr0oa1bt0rmpHmHDh2M5nZxcaG2bduKelFqWQsWLLDI7filS5fI2tra6Ha8Zs2aNGzYMDp+/Lgk1nGVSkUZGRlGl3lCQgJ98skntG/fPslsx8eNG2fyZ3Pbtm2iFkBru3r1Ktna2hrM7eHhQZ07d6bVq1dX6oWdxhgrxLGxsaHs7Gz69ttvX+gFwEI9fPiQPD09ja7jgwYNogMHDkjis6l24sQJg/tPa2trysrKolmzZklqmRMRnT171uCFUA4ODtSmTRtavHixpAptiJ5tG2vWrKk3u1KppMaNG9PUqVNf+EXj5jh+/LjB9d3f35/effdd2rp1q2S2jdp27dplMH9ERAR98MEHtHv3bsnsk7RdvXqVbGxs9Ob38vKit99+mzZs2CDaBZbGGLrgSC6X08svv0zjxo0T/byVPmfOnDG4/XF2dqa2bdvS0qVLRe+n02fo0KEGPwd+fn70zjvv0I8//ijJ9ciUfryoqCj64IMPRL8YU59Zs2YZbWvWqFFDUm17badPnzZ6QbL2RXdSOR5U++2334wufysrK2rcuDFNmjSJzp07J3bkUkwZ5MXZ2Zlee+01WrRoUaUPjKKPSqWilJQUk5Z9kyZNaNKkSZLbF3Dh4v/oBC5cZM/Z77//rncD2LRpU5o6dSpdunRJ7JjlHD58WGfu0NBQ6tevH+3atUuSDS9Doy0qFAqqX7++JKr7yzI0Oob2CWspFbYSGb9SMzAwkLp3705r166lhw8fih1X49tvvzXaSElPT6fBgwfTvn37JLOumzLaonrEvCVLlohaIKWtf//+RnNX1miQplKpVPTyyy8bzR0XF0f9+vWjn376SfRCYiLTRiHRXkekcvDQsGFDo9uSbt260erVqyk/P1/suERENGTIEIOZk5KS6KOPPqJffvlF9AIptWXLlhnd13z99dd09OhRyexr/v33X4MdEikpKfTZZ59J4qpDbYbWaS8vL+rUqROtWLFCUlefGzuBlJKSQoMHD5bcsl60aJHBDofGjRuLOhqkPrNnz9ab28nJiVq3bk3z5s0TfRSasjZs2KA3t7u7O3Xo0IGWLVsmqXWbyPC2xNPTk95880364YcfJLOPUSssLKSQkBCdud3c3OiNN96Q5PIm0l8IbW9vTy1atJDEKEu66CsUVV8pPm7cOPrnn3/EjlmOoW24FItz1AwV0Xl7e1OXLl1ozZo1kipyUWvbtq3O3La2tpSdnU0zZ86kK1euiB2zHEOjhKSnp9NXX30luX4HIqK///5b73FOaGgo9e3bV1KFXGrFxcUUExNjkdtxfSPo2draUk5ODs2aNUu0b/4wZOvWrTpzq4sSxowZI8nt+JMnT8jPz09vO3zIkCF0+PBhyX02ifRfQB4eHi65UXq0XblyRWchjqurK73xxhu0YsUKybUN1caOHavzmL5WrVo0atQoyfV7a9NVhK4eWUvKBTdERD169CiXXV2UK7WBHcratm1buex2dnbUsmVL+u6770T/Bi1j3njjjXL5o6KiaODAgZJs45bVtGnTcvmrVKlCQ4YMkVQfnD4DBgzQ2f6S8nlCbX/99Ve5YyV1Yfrs2bMleVxaVvfu3cv9D7QL/aRyoZE+Dx48IHd393LvIS4ujj766COL+BzPmzdPZ3tHXegn9rcBGKOv8NLGxoYyMzNpxowZkjx+1abvguSQkBDq3bs3bdmyRdKfBX2DRamPC5cuXSq5Cx/Ufv75Z739CGFhYdS3b19JXfSozdBoi56enprzNFJug3Lh4v/oBC5cZM9Zbm6uZmPi4uJC7dq1o6VLl0qyU1Kb9uh/VatWtZiDqLKdZVL4CmhTlB1tUconrNV0XaWgHr1NaoUv2goKCnSeHHNzc6PXX3+dvvvuO0kUzpX14MEDnVdTKxQKeumll+irr76igwcPSu4A7/LlyzqvvFevK0OHDpVcEQwR0U8//aSzIevo6Eh5eXk0bdo0yV11Q0T0+uuv61zWGRkZoo+qqI+uIeYVCgXVqVOHRowYIckTp3fu3Cn31Rbqr1OeNm2aZEZJ0VZSUkIJCQmlMjs7O1ObNm1o/vz5kt3XvPXWW6Uyq4sBZsyYIdm2uq4r6atUqUKffvop7d27V7IdumW3H3Z2dpSTk0MzZsyQ5EU2RLqLAby9valz5870ww8/SLbDQVdnYVhYGPXp04d++uknSXbyEOkebTE2NpYGDBggiVEsDSk7cmtcXBwNHDhQslfBq5W92CY8PJz69esn+ldwGlP2QgopjvKnS9lCUUdHR2rTpg0tWLBAMhd76NO+fftS7ah69erR2LFjJVmco63siA/x8fH00Ucf0Z49eyTXZtV28uTJUic/vby8qHPnzrRq1SpJXbBXVmFhIYWGhpY6SZWVlUUzZsyQ5OhK2sqOKl+9enX66quvJDOSpT5LlizRuR3fsWOH5IostV25cqXUcbx6HV+9erWk13Eiorp162pyOzg40CuvvELz58+XzIWd+kyePFmTW6lUUqNGjWjSpEmSPLbUdvPmTXJwcNBkV3+jkNQ/m0SlL7INDAykXr16SXa0Nm3aRa7aX0csxULisrQvJvL29qauXbvSxo0bJTmyVlnaha7qr97esWOHpNvk2ho0aEDAs8LcDh060MqVKyV5YYgu2utNSkoKDR06lP7880/Jb2PU9u/fT8Cz4uLatWvT6NGjJXdhpSG3b9/WfJNSUlISDR48WLKF9Pqov2JZfX52+fLlki1M1+XixYuaUbCjo6Ppww8/lMRXlwoxcuRIzT43IyODRo4cKZlvXTBFcXExRUdHE/Dfb+qYPn265I+htGkXXrq7u1PHjh0leQGvPmVHHU1LS6OhQ4dK9jx0WQcOHCh1XKj+Gm6p9++pqdsR6v1ZrVq1aPjw4ZLfH6tUKqpWrVqpZZ+QkEAfffQR7d69W9J9wtq4cPF/dAIXLrLn6PDhw5pKf0vo+FD7+++/qX79+jR+/HhJFuboox5tMTo6mvr3728xO/w//vhD04Hdt29fyV8VorZq1SpNh8frr79OCxculHxHMBHRlClTNDv4atWq0aeffirq1xGbSnsofT8/P3rrrbdo2bJlkr8iVvtqZD8/P+rcuTMtXbpU0id/yxZmJCUl0YABA2j79u2S/mwePXq0VOGO1EZV1EWlUlGdOnU0mTt16kRLly6V/Ho9aNAgAp5dzdezZ09JfJ2yMd9//z0Bz65I79evH23btk3S6zMR0T///EMKhYICAwPpnXfeofXr11tEx3r9+vU1V6tOnTpV8icbiYj+/PNPkslkkvqKcFMsXLiQgGcX2QwaNMgirtAmejbaolwup9q1a9OIESMk38mjtnHjRk1BlBRHMNfn7NmzZGtrqxllyVJyFxYWUmRkJGVkZNDw4cMl+TU9+nTo0EHzVcqW8rkkevbZDAgIoB49ekj266l0OXXqFLm4uFDr1q0toshSTb2O161b16I+m0TPRv2JjY2lDz/80KI6u2fPnm0xRZba/vnnH3J0dJT0SJa6lJSUUGJiouS+StkU77//PsXGxtLAgQMtah3fuXMn+fn5Ubdu3WjDhg2S+FYEUxQUFFBCQgK9+uqrtGjRIklfeF3WkCFDqHHjxjRlyhSLOpdy8+ZNqlGjhiS/StmYhQsX0muvvUZLliyR/MAIZY0cOZL69+8v+YuHdJk1axZ98skntH//fotaX4iefbVmjx496KeffrKY81Pa5s6dS2PHjrWo81TapkyZYjHFxbqsXr2aRo0aRadPnxY7ilnu3r1LvXv3ps2bN0u+H1SfefPmWcSIfvoUFhbSm2++aREj+umzadMmat++PS1btkyyF0kbUlxcTM2aNbOIC2H16dWrFzVv3pymTZsm2QvsDWnZsiXVrl2bRo4caXGf5V27dpGDgwO1bNmS5s6dK8mBf/RZu3YtWVlZUaNGjWjChAkWdeGAthdRuCijZ4VxTMJkMlkggIsAcPHiRQQGBoqciFmy/Px8ODo6QiaTiR1FECKyuMwAcPr0aRARoqOjxY4iyO+//w4nJyfExsZa1HJftGgRgoODkZGRAaVSKXYck5SUlKB///6oUqUKmjVrBj8/P7EjmSQ/Px8dOnRARkYGmjVrhuTkZItYVy5duoS33noLDRs2tKjcP//8MyZNmoTmzZujadOmFtMWGDFiBIqKipCZmYmUlBTI5XKxIxl15swZLFiwAJmZmUhNTbWIzCqVCjNmzEDdunURHx9vEes0AGzYsAFRUVEWtY88cOAAlEolqlSpYjHL+f79+9i1axcaNGgABwcHseOYbN++fbC3t0dSUpLFLGsA2LJlC2JjYxEUFCR2FEF+/vlnJCQkwNPTU+woghw5cgQhISFwc3MTO4og58+fh5OTE9zd3cWOIsiDBw/w5MkT+Pj4iB1FECLChQsXEBISInYUwS5fvgx/f3+L2g4CwPXr1+Hq6gobGxuxowiSn5+PwsJCeHh4iB1FECLC2bNnER4eLnYUwc6ePYvg4GAoFAqxowhy5coVuLi4WFTbCgAePXqE/Px8+Pr6ih1FsIsXL1pc+woAbt26BXd3d4s4rtRWUFAAmUxmcdtxAHj69KlF5i4pKbG4baGapfbbM8YYY0wcKpUKMpnMotsPBQUFsLW1FTuGWYgIt27dgpeXl9hRzHL+/Hn4+PhY5PI/evQowsLC4OzsLHaUCrl06ZL28XkQEV2q6N/kwkULwIWLjDHGGGOMMcYYY4wxxhhjjDHGGGOMMcbE8CIKFy3rUj/GGGOMMcYYY4wxxhhjjDHGGGOMMcYYY4xZNC5cZIwxxhhjjDHGGGOMMcYYY4wxxhhjjDHGWKXhwkXGGGOMMcYYY4wxxhhjjDHGGGOMMcYYY4xVGi5cZIwxxhhjjDHGGGOMMcYYY4wxxhhjjDHGWKXhwkXGGGOMMcYYY4wxxhhjjDHGGGOMMcYYY4xVGi5cZIwxxhhjjDHGGGOMMcYYY4wxxhhjjDHGWKXhwkXGGGOMMcYYY4wxxhhjjDHGGGOMMcYYY4xVGi5cZIwxxhhjjDHGGGOMMcYYY4wxxhhjjDHGWKXhwkXGGGOMMcYYY4wxxhhjjDHGGGOMMcYYY4xVGi5cZIwxxhhjjDHGGGOMMcYYY4wxxhhjjDHGWKXhwkXGGGOMMcYYY4wxxhhjjDHGGGOMMcYYY4xVGi5cZIwxxhhjjDHGGGOMMcYYY4wxxhhjjDHGWKXhwkXGGGOMMcYYY4wxxhhjjDHGGGOMMcYYY4xVGi5cZIwxxhhjjDHGGGOMMcYYY4wxxhhjjDHGWKXhwkXGGGOMMcYYY4wxxhhjjDHGGGOMMcYYY4xVGi5cZIwxxhhjjDHGGGOMMcYYY4wxxhhjjDHGWKXhwkXGGGOMMcYYY4wxxhhjjDHGGGOMMcYYY4xVGi5cZIwxxhhjjDHGGGOMMcYYY4wxxhhjjDHGWKXhwkXGGGOMMcYYY4wxxhhjjDHGGGOMMcYYY4xVGi5cZIwxxhhjjDHGGGOMMcYYY4wxxhhjjDHGWKXhwkXGGGOMMcYYY4wxxhhjjDHGGGOMMcYYY4xVGi5cZIwxxhhjjDHGGGOMMcYYY4wxxhhjjDHGWKXhwkXGGGOMMcYYY4wxxhhjjDHGGGOMMcYYY4xVGi5cZIwxxhhjjDHGGGOMMcYYY4wxxhhjjDHGWKXhwkXGGGOMMcYYY4wxxhhjjDHGGGOMMcYYY4xVGi5cZIwxxhhjjDHGGGOMMcYYY4wxxhhjjDHGWKXhwkXG/kctW7YM+/fvh0qlEjuKIAsXLsSWLVvw9OlTsaMI8ujRI7EjmIWIxI7AGGOMMWYxSkpKxI5glvz8fLEjmOXKlSsWucwvXbqE27dvix1DsPz8fBw6dMgijxF27Nhhkev5b7/9hjNnzogdQ7AzZ85gz549Fvf5fPz4MdasWYOHDx+KHUWwdevW4erVq2LHEGzXrl04duyYxW1XTp48ie3bt6OwsFDsKILk5+dj0aJFFrkPWrRoEY4fP25x68rWrVuxadMmPHnyROwogly8eBFTpkzB2bNnxY4i2MSJEy1ymR8+fBjDhw/H0aNHLW49nzp1KqZPn47z58+LHUUQIsLHH3+MmTNn4uLFi2LHEWzIkCEYPXq0RW4bN2/ejF69emHDhg14/Pix2HEE++yzz/DFF1/g999/t7jzawDQv39/fPnllzhw4IBF5p86dSoGDBiAHTt2WFxbDHjWH/DGG29gwYIFuHnzpthxzDJt2jR88cUXFnmOGQAKCwvRu3dvLFmyBHfu3BE7jll+/fVXDB8+HH/88YfF7QMAQKVSYcSIEdi2bZtFfo4BYPny5RZ5TKi2YsUKnDp1SuwYZjl16pTF7sNOnjyJS5cuiR1DkrhwkbH/UXK5HNWrV4e/vz86d+6MFStW4MGDB2LHMsrLywtNmjSBh4cHWrRogZkzZ1rEBn7y5MnIyMjA8OHDceLECYtpSPbq1Qu9e/fG1q1bUVRUJHYckxQUFOCdd97B8uXLLeqE05kzZzB9+nRcu3ZN7CiCHDp0CD/99JPFrB9qv/76Kw4fPmwxn0W1DRs24PLly2LHEOT27dtYu3YtCgoKxI4iyPLly/HPP/+IHUOQVatWYdeuXRZVJLBo0SKsWbPGok4qzZw5E3PmzMGtW7fEjmKyJUuW4JNPPsGBAwcsZrt369YtZGVlYdKkSbhw4YLYcUy2cuVKNGzYEBMnTrSoE3dLlixB1apV8fnnn1tUYdrRo0fh6+uLzp07Y9WqVRbT9lMoFAgJCUGdOnUwatQonDx50iKWuaOjI3r06IHAwEB0794d69evt5gTjT///DM8PT3RtGlTTJo0yWIKMWQyGSIiIhAfH4+BAwdi165dKC4uFjuWUb6+vnjllVfg4+ODjh07YunSpbh3757YsYyyt7fH7Nmz4eHhgWbNmmHy5MkWs66cOnUK/v7+SEtLw+eff24xJxFtbW2RnJyM0NBQ9OzZExs3brSIdmFQUBBee+01eHp6onXr1pg3bx6uX78udiyjnJycsHTpUnh7e6N27doYNmyYxRRJ3bt3D4mJiQgLC0PPnj2xYcMGi1hXwsPDkZOTAw8PD2RnZ2PatGkW0UYMDAzE4sWLER4ejri4OPTv399iTsy6u7sjMzMT7u7uyMrKspgCzOTkZCxYsABVq1ZFYGAg3n77baxcudIi+utr1KiBHj16IDQ0FPHx8fjggw8sohBBJpOhatWq6N69O4KDg5GYmIgBAwZYzLpev359DBgwAImJiQgNDUX37t2xevVqi7hYp0GDBti0aROys7Ph7u6Opk2bYvz48Th16pRF7JOysrIwZMgQ1KhRAz4+PnjjjTewaNEii+knat68OQYPHoz09HT4+fmhU6dO+P777y2mgKtly5aYPHkyGjRoAA8PD7Rs2RKzZs2yiPOEwLN9LBGhY8eO8PHxQY0aNTBkyBCLKoTNzMzE119/jerVq8PX1xedOnXC0qVLcffuXbGjmcTa2ho+Pj5o164dvLy8NO3iI0eOWMQ2CADS09Mxffp0VKlSBcHBwejevTvWrl1rMf1icrkcSqUSjRo1gqenJ1q1aoW5c+da1PlRLy8vNGzYEJ6enmjTpg3mzZuHGzduiB3LZHfv3kVsbCyioqLQr18/i2i7qXl7e6NRo0YIDAxE165dsWbNGosZQEqhUCA0NBTVqlWzqL6bSkFEPEl8AhAIgADQxYsXibHnoaSkhJKTk0m9bgEgpVJJ9evXp9GjR9PJkydJpVKJHbMclUpFtWrVKpUbAFWpUoU+/vhj+vXXX6m4uFjsmOXcv3+f3NzcNHkjIiKoX79+tHPnTioqKhI7nl6//fabJrOrqyu1b9+eli1bRg8ePBA7mkEDBw4kAGRjY0PZ2dk0e/ZsunHjhtixDCopKaGkpCSSyWRUu3ZtGjt2LJ09e1bsWEbduXOHHB0dyc3NjTp16kRr166lJ0+eiB3LqGPHjhEACgsLowEDBtC+ffskuc0ra+bMmQSAMjIyaMyYMXTu3DmxIxmlUqmoevXq5OjoSK+//jqtWLGCHj58KHYso6ZNm6bZvwwdOpROnDghdiSjdu7cSQDIx8eHunfvTlu2bKHCwkKxYxm0Z88eAkAODg7Upk0b+v777yW/jzlw4AABILlcTvXr16dJkyZJvo1++/ZtcnR0JAAUFBREffr0oR07dki6DUJE1KtXL007JDU1lb766iv6888/Jb29Li4upqioKE3ulJQUGjJkCB05ckTSuQsKCigoKEiTOzAwkHr27EmbN2+mp0+fih1PL5VKRenp6ZrcNjY2lJmZSdOmTaNLly6JHc+gvn37ljqeiYiIoPfee4+2b98u6W33xo0bS+W2tbWl7Oxsmj59uqSX+d27d8nFxaVU9vj4eBo4cCDt2rVL0tvDzMzMUrldXV3p9ddfp4ULF9KtW7fEjqfX2LFjS+VWKBRUr149+uabbyTb30BEdPDgwXL9DfHx8TRgwAD6+eefJbuuPHz4kLy9vUvl9vHxoc6dO9OKFSvo/v37YkfUKysrq1RuOzs7ysrKomnTptGFCxfEjqfXN998U25dSU9PpyFDhtCBAweopKRE7Ig66VrHAwMDqXv37rR27VrJHqsVFBRQYGBguX1QZmYmTZkyRdLHxm+//Xa5ZZ6QkEADBgygnTt3Sna/v23btnK5HR0dqWXLlvTtt9/S5cuXxY6oU3FxMcXFxZXLHhsbS++//z5t3bqVCgoKxI6p07Jly8rlViqVVK9ePRo1ahQdO3ZMsvvPV155Ref6kpeXR9OnT6fz58+LHVEndX+sruwtWrSgGTNmSHpf1KhRo3LZraysqH79+pJfZ7777rty2dV9tT179qR169ZJdp9ERJSdnV0uu0wmo+rVq9Pnn39O+/btk+R5KqJnx9Evv/xyufxyuZwyMjJo6NChkm7LEBF98MEHOtefxMREGjhwIO3YsUOy+1ciolOnTpFCoSiX38vLi9544w1avHixpI/1iIh69uypcx166aWXaNiwYZLvB3vw4AF5eHiUew/+/v709ttv08qVKyXfR60+V6Q9WVtbU5MmTWjChAl0+vRpsSMa9OjRI/Lx8Sn3HtLS0ujzzz+n33//XdLbISKi+vXr69wPDB06lA4ePCjpz0BhYSGFhoaWyu/k5EStW7emefPm0fXr18WOaNDnn39eKruNjQ01a9aMJk+eLOljQyKiDh06lMru6+tLXbp0odWrV0u67aPt4sWL2u8hkJ5HTdzz+CM8ceEis0yrVq3S2bhXT+Hh4dS7d2/68ccfJVWIpKvjTHtyd3entm3b0sKFC+nmzZtix9UYOnSo3rwdOnSg5cuXS7Ih3KRJE52N38zMTJoxYwZdvXpV7IjlXLt2jWxtbcsdNL388ss0btw4yTZaFi1aVG5Zp6am0tdff00nT54UO55eZTsKnJycqG3btpIvUMvJySmVOygoiPr27Uu7du2SbMdSQUEB+fn5lTuQGz58uKQPRFeuXFkqs52dHbVq1YqWLFkiye0eEdGTJ0/KHTjHxcXRZ599JtmOF5VKRRkZGeX2MZ07d6b169dL9uRMvXr1yh1k5uTk0Lx58+jOnTtix9OpadOm5bbXNWrUoJEjR0r2s6gu6teePD096a233qL169dLqq2ndv78eVIqleVyR0VF0cCBA2nPnj2S7MCaO3euzjZfaGgo9e3bV7JFo5MnT9aZ28nJiV599VVatGgR3b17V+yY5axfv17vcUFqaip98cUXdPjwYcltt69cuVKuvaqeXFxc6PXXX6dFixZJbjuoviBB3zJPSUmhwYMHS7KD+YsvvjB4DNm+fXtasmSJ5Jb577//rje3+sTQiBEjJHdi+vHjx+Tr66s3e0REBPXp04d++uknybVRWrRooTe3unB0wYIFkupvICpfLKo9WVlZUcOGDWncuHH0999/ix21FPVFIfqm5ORkSV6oqu9Em3ry9fWlt956S5InPQ2t4+oTPpMmTaIzZ86IHbWU6dOnG1xXEhISaODAgZIrMj537hxZWVnpze3i4kJt2rShefPm0bVr18SOW0rZY7WyU9WqVenTTz+l3bt3S+rzuXTpUoO51UVpM2fOlNT5lpKSEqpSpYrB7EFBQdS9e3davXo15efnix1Z49ixYySTyYx+Rj/44APavn27pC6OWr16tcHc6uwDBgyQXPZ9+/YZzR4UFERdu3aV3P5IX5Gx9mRtbU2NGjWiMWPG0IkTJyTV1j18+LDRZe/h4UHt2rWjBQsWSG5QhV9++cVofm9vb+rYsSMtWbKEbt++LXbkUm7cuKG5QFff5OTkRC1btqRZs2ZJ8iK7zp07G8yvLiT98ssv6eDBg5I7vr58+bLePg31pF0EKMULqUaOHGkwv/oYasyYMZK8+K6wsJDCwsIMvofo6Gjq168fbd26VVL7LzVDx7DAs4vx3nzzTclejLdr1y6TPgNSa7epffvtt3qzy2QyqlmzJn355ZeS7FfVdYGy9pSUlEQff/yx5I5TiJ4Vr8vlcp25bWxsqHnz5jR16lRJXzzDhYv/oxO4cJG9ICqVilJSUoweoAAge3t7ys3NpRkzZojeyNd3RZi+Hau6cX/o0CFRd6zGdqLqg/FmzZrR1KlTRV/OasYOYtWNlxEjRtBff/0ldlyN3r17G8ydkpJCQ4cOldQJvqKiIgoPD9ebOT4+ngYNGiT6ulzW5cuXydraWmdmOzs7euWVV2jRokWSO7DYvXu33mXt6+tLPXr0oK1bt0rqhAeR7pE91JNURwcsKSmhmJgYvQ3x3Nxc+u677yRXEDNixAi9yzoyMpI+/PBD+v333yX1eVy7dq3ezM7OztSuXTv64Ycf6NGjR2JH1di8ebPezEqlkho3bkzTp0+X1Em8n3/+2eA+Jjk5mYYMGUJ//PGHZNYPXUX92pOjoyO99tprkhv1skuXLgaXta+vL3Xv3p1+/PFHyXTA6bpitezk7u5OHTt2pJUrV0qmyP/JkyfliuN1fSYbNGhAEyZMkMzI0CqVitLS0oweFwQFBVHPnj3pxx9/lEyRVJ8+fYzmVigU9PLLL9Po0aPp1KlTYkcmovKjLhr6fHbp0oVWrVolifX83r175OrqavIyl9LIgLpGdNE1hYSE0LvvvkubNm2SREH6hAkTTMqtHsFr9uzZkrgw7siRIybllsvlVKtWLRo2bBgdPXpU9HXFWLGo9qQ+gbVt2zZJ7D/z8vJMyu3h4SGpIuNx48aZlNvKyooaNWpE48aNk8RFLqau48Czi7c++OADSYwM+PTpU6NtLPXk4uJCr776Ks2fP18SxSI9evQweZmrR+6UwkUAxk7Gak9SupBc1zcNGZqSk5Ppo48+ksQozGvWrDE5t3ZRlxTaLO3atTM5u5SKR8uO4m5qdqmMxlj2wmxDk3oEz5EjR0qiv2L58uUmZweeXQz4zjvv0Jo1ayRRANKmTRuTs8tkMkpPT6fBgwfT3r17JVFE0axZM5PzS3E0xkGDBglaf5KSkujDDz+URJuGiOjs2bMGL2woO6kLuJYuXSqZPvR+/fqZnF89Guw333xDx48fF337Q6R71HpDU3h4OPXq1Ys2btxIjx8/Fjs+Eem/eFrf/ktqI2cLOYa1srKiBg0a0JgxY+ivv/6SxDpEpHv0Y12TtbU1NW3alCZOnEj//vuv2LGJ6FkftqFz0tqTepT+devWSebc0pAhQ0zK7unpSR07dqRly5bRvXv3xI5NROVHXdQ3ValShQYNGkT79u2TxL5XjQsX/0cncOEie4HWrVsnqHGvvaH85JNPRKtUN1YwoG/y8/OjLl26iHaF4eDBgwXlTU1NpaFDh4o+upephaIAKCYmhj788EPRR0G6cOGCyQd+kZGRNGDAANEzExHNmDHDpMxhYWHUv39/2r17t+iZiYi6detmUsM8KyuL5syZI5mvOqhbt67R3B4eHtSlSxfatGmTJE7q3b9/36ST7urRAaVwEpWIaM6cOUYzW1lZUfPmzWn27NmSWEfu379vtOAceFYk0K9fP0l8HktKSigxMdFoZnt7e2rVqhUtXrxY9KJilUpF1apVM5pZJpNRnTp1aPz48aJ/zZRKpaLatWubvI8ZOHCgJA4utb962ZTt9ezZs0U/6Xj69Gm9VyCWnZydnalt27a0bNky0YsvTd2fA8++5jAnJ4dmz54t+tdwjB8/3uTcwLOTvJ999hkdOHBA1H2NoaJtXZOjoyO1bt2a5s+fL+o6fvnyZbKxsRGUPTo6mvr37087d+4U7cS6SqWiGjVqCMqtHsFrypQpom7Dv/zyS0G5gWcjA/bt25e2bNkiWlvQ2Ih0+vb1eXl5NHPmTNFOSjx58oT8/f0FZ09LS6MhQ4bQ/v37Rdt3tmrVSnDuoKAgeuedd2j9+vWincgytVhUe1J/HdTcuXNFu1DElFGLyk4KhYLq1q1LI0eOpD///FOU/dDjx4+NFv3r25aLXTjaunVrwbmlUAw4e/ZswbllMhnVqFFD1K9su3TpkuB9PvBstKtOnTqJepKtcePGZi1z9QgtYo0SZcooevrW8zZt2tDcuXNFKaYXWkSnPam/Ynf9+vWinFDW99WnpkxJSUmifr2roQsqjU2JiYmijsZozj5UPQUGBoo6GlpJSYnJA2uUnaytralhw4Y0evRo0YqgTpw4YXJ/RdnJw8OD2rZtS999951o/QD79+83e92RwmiMd+7cManfVtfk7OxMrVq1Er2A65133jErv0KhoDp16oj+lczXr18ne3t7s95DSEgI9ejRQ/SvhTf1QqSyk52dHWVlZdGUKVNEvbC3qKiIoqKizHoPKSkpNGjQINqzZ4+oxdQTJ040K7/6Wxw2b94s6gXKhgZIMTTFxcXRgAEDRC+mNuW8XdnJ1taWsrKyaNq0aaJexHH37l2TzpVqT0qlUvNtFGJeVPj3338LbkP4+PhovtVB7As4XkThooyeFcYxCZPJZIEALgLAxYsXERgYKHIiZo79+/dj9+7dUKlUUKlUICKTbwuZ15zba9asgUqlMvu92dnZISIiAhEREQgNDYWNjY3mbxuaSkpKTJpP3/Tzzz+juLjY7NwKhQLR0dGoWrUqqlatCj8/PygUCshkMsjlcrN+Gpvn3r17yM7ORklJieC8Hh4eSE1NRVpaGhITE2FtbQ2FQgG5XA6FQlHqtqHHzJn/559/RosWLQRndnFxQXp6OmrUqIGUlBTY29tDoVBAqVSWmkx5TNd9uVxu8PXffvttzJ49W1BmV1dX1KhRA7Vq1UK1atVgb28PKysrwZNMJhO8vADg6dOnCAsLw9WrVwVnfumll5CSkgI7OztYW1vDysoK1tbWmkn7vvZthUJhVlZt//77L6Kjo03elshkMiQkJKBWrVp46aWX4OPjUyqrsUn9Wa2oH3/8Ec2bNzd5fjs7O6SlpaF27dqoXr06nJycymWzsbHR+VhF1ouyBg0ahK+//trk+b29vZGRkYHatWsjLi4Otra2RnOr7z+v3IWFhYiIiMClS5dMml8mkyEuLg41a9ZE7dq14e3tbdK6of0+nse6/cknn2D48OEmz+/i4oK0tDRkZGQgOTm53HLV9zl8np/LRYsW4Y033jB5foVCgfj4eFSvXh3p6elwd3fXbMvUuYTcViqVgteZH374Aa1btxb0O8HBwUhNTUV6ejoCAwPLbYeVSqXO7bMpj5uSf+PGjcjKyhKU2dfXF9HR0UhNTUVsbCxsbGw0r6u9jyt735x5dO0jL1y4gIiICEHtJ7lcjurVqyMgIAApKSnw9vbW7JO1f+p6TN9PofO++eabWLx4saBlbWNjg9q1a8PHxwdVqlSBi4uLoPZPRR8rLi5GRkYGbt++LSi3TCZDWloaAgICkJycDB8fH8jl8lLtyRd5v6CgADk5OXjy5Img3MCz9TsiIgLJycmIjo7WbAuETOplIHR+AOjRowdu3bolOLdMJkNYWBiSkpKQmJgIb2/vctuAF3l/5syZOHTokODcwLN2SXx8PBISEhAbGws7OzsAQNl+Hu37hp4TMu9vv/2GVatWmZUbAPz8/JCQkID4+HgEBQVplom6s0r7dtn7Fbn94MEDTJo0yezcNjY2iImJQXx8PGJjY+Hg4GDqBanmXMRa6v68efMEb1O0BQQEID4+HnFxcQgICNCbSd1fIHTS93s///wzjh49anZuJycnxMXFIS4uDpGRkbCyshKcW99zhn7n33//xaZNm8zOrVQqERUVhdjYWMTGxsLFxcXg6z6vx548eYK5c+eanRsAgoKCEBsbi7i4OPj5+Rl8fe37FX1u2bJluHfvntm53dzcNMs7LCwMCoXC4Os9r8d2796Nv/76y+zcNjY2iIqKQkxMDGJiYmBvb6/ztfT1FZrynK55zp8/j127dpmdG3i2rqhz+/j46Hy9532/sLCwQvsf4Nl2JTo6GtHR0QgLC4OVlZXZfZNC+jb37NmDO3fumJ1bLpcjODgYUVFRiIyMhLu7u2bZaOd43rcvXbqEv//+u0LL3NHREZGRkZq+Y6VSqfn72j/13Tb1sbK39+/fX6HcwLM2S3h4OMLDw+Hl5QUi0vx9Xa9pymRs/uvXr5vVrtWmUCgQHByMsLAwhISEwMnJSedrFRcXP9fHL126ZFa/tzZra2uEhIQgJCQEgYGBsLOzK/faum4be97YvDdv3qxQbgCwsrJCUFAQgoODERgYCFtbW6Ov+zx+5ufnVzi7TCaDn58fgoKCEBAQAGdn53KvY042Y/M8ffpU0/atCEdHRwQGBiIgIEBzTPc8l7G+n6b2hRvj6ekJf39/+Pn5wdXVFSqVyuR115z1Xf3zefHy8oK/vz98fHzg7OxcajsnZHsidNvzvN6Dm5sb/Pz84OvrC1dXV53benO25/qm4uJiFBUVoaSk5Lms/3Z2dvD394evry+8vLwgl8srtI819Hx+fn6p9llhYWGF34NcLoevr6/mf+Dg4KCznaV9X+hzt2/f1tkmLikpwePHjyv8P3B1dUVAQAD8/f3h6ekJmUxmdvtSO+eVK1fKtevL3s7Pz8fTp08rlN/W1haBgYEICgqCv78/rK2tTT6u0PXz3LlzmvVbvZ3Uzqw9FRcXCzofqotSqURwcDBCQkIQHBysOaYSemx96tSpUp9Lff0F2hPw7PxoRbZHNjY2CAsLQ3h4OMLCwmBra2s0g/Zzf/75J4qLi0s9XvZ3dT0OACUlJRXqswEAHx8fREVFITo6Gv7+/pDL5Tpfs+zPI0eOoLCwsNTf0je/vuf/+usv3Lhxw+zsXl5eiI2NRXx8PEJCQjTn5XRt1573Y99++y3OnTtnRupn7eX69esjJycH2dnZCAkJMevvmOvSpUsICgpS3w0iItNO/BrAhYsWgAsX/38YMWIEPv74Y7FjMPb/ikwmM1jwWFBQUOGOPnMpFIpyBT2mTn/++ScuXLhQaVnlcrnJxVSGnluzZk2lLW+ZTCao0FHfZGVlhZkzZ5ZrHL8o2stLX4GjKY/l5+dX+ISkOblNyWdonl27duHw4cOVllsul1d4HXnw4AFWrFhRaZnVyq7jQj6jcrkcP/zwQ6Vn1qZUKgUVPSoUCmzfvl3UzNrU23BDhY4KhQLHjh0TO6peMplMZ3Hj7du3n2vnNGOMMcYYY4wxxhhjjDHGGKt8SUlJmiLG6tWrP5dBXQx5EYWLyor+AcaYaYyNDMcYE46IUFRUhKKiIrGjlKO+Cq2goEDsKEapVCo8ffq0wldlVSYisrjMADTr66NHj8SOIoil5lapVCgoKLCIz2FZlrqOq6mvqrdUlrQN14eIUFhYWGmF2YwxxhhjjDHGGGOMMcYYY6zyHDt2DMeOHcOwYcPg5eWFzMxM5OTkoEmTJnBychI7nkm4koqxSvK8vh6UMcYYY4wxxhhjjDHGGGOMMcYYY4wxxgDg5s2bmD9/Plq3bo3Q0FDMnDnTIr6Bi0dcZKyS8IiLjDHGGGOMMcYYY4wxxhhjjDHGGGOMsecpODgYOTk5yMnJQb169WBjYyN2JJNw4SJjlYQLFxljjDHGGGOMMcYYY4wxxtj/OrlcDiICEYkdRTCFQgGlUomnT5+KHUUwuVwOpVIJhUKBJ0+eiB1HMJlMBoVCAYVCgaKiIqhUKrEjMcYYY6KRyWSoXr26plgxKSnJIr8JlgsXGaskNWrUwKBBgyCTySCXyyGXy43erujzpsz75MkTvPbaaygqKhL8nuzs7BAXF4ekpCTExsbC3t5e83fNmRQKhcnzFhQUICsry6wDK2dnZ4SHhyMsLAy+vr6QyWRQqVQgokr5uXPnzgodjCuVSvj5+SEwMBC+vr6wsbGBSqVCSUmJ5qf27Yo8pr5dWFiIW7dumZ1ZzcHBAT4+PvDy8oKLiwsAoLi4uNRUUlJi8L6+eV70AaqLiwvc3Nzg5OQEa2trFBUVGZwKCwvN+lw9bwqFAk5OTnB0dIS9vT2ICIWFhZp82relNlS0g4MDHBwcYGtrC4VCocmqPUktM/Bs2+jg4AAbGxvI5XIUFRXh6dOnpZa1FNnb25fKrZ1ZqrkVCgWcnZ1hb28PW1tbzfZKyuuJXC6Hi4uLJrdcLtf7mZRKdisrK7i7u8PV1RVOTk6QyWTltnX6bovFyckJXl5e8PDwgJOTE1QqFYqKilBcXKx3u63rucrqPFcoFPDx8YGvry+8vb1ha2tbaj+nzmfu/RfBzs4OQUFB8Pf3h6+vLxQKhabtoL2vfh4/Hz9+/FzWJ2dnZ4SGhiIoKKhcZqFtI1Oe//fff1FYWFihzI6OjggLC9PktrKygkql0kzq9uXzvL9z584KLW+FQoGQkBCEh4cjPDwcLi4umpNRz2MCoPPxtWvX4v79+2bndnJyQlRUFCIjIxEcHAwrKyvNa2l73vc3btyIkydPmp3b29sbkZGRiI6Ohr+/v+aCubIdVNr3DT1n6rwHDx7E6tWrzc7t6+uLqKgoxMTEwNfXV3Ocqv0aMpnsud++f/8+vvjiC7Nze3t7a3IHBARocpedtF/X0GTKfOp5vvjiC1y/ft2s3G5uboiOjkZsbCyCg4OhUChMyqdv0ve+dU2LFy/Gjh07zMrt4OCA6OhoxMTEIDw8HNbW1kZf25RspvyN/fv3Y9q0aWbltra2RmRkJGJjYxEVFQV7e3uDr/08H7t//z769u1rVm65XI7Q0FDExMQgNjYWrq6uOl9D+76h54Te79+/P27cuGFW9oCAAMTExCAuLg7e3t6l+r/0ZTb2vKnzzpgxAzt37jQrt6enJ2JjYzWfTVP69Uz9aWyeXbt2YeLEiWbldnZ2RmxsLOLi4hAeHg4rK6tyr63rvTyP+3fu3EHHjh3Nym1vb6/JHRUVBVtb2wr1YwqdunXrhn/++UdwbhsbG0RFRSE+Ph6xsbFwcHAo1Yeq77ah54TMN2/ePEyfPl1wboVCgYiICCQkJCAhIQEuLi6aQhPt1yn7mLHnTX3s9u3baNiwoVn9hSEhIUhISEBiYiJ8fHw0f1tXVn2TsXkMPT9o0CAsXrxYcG53d3ckJCQgKSkJERERsLKy0vn31QVLz/u5wsJCVK1aFXfv3hWUW6lUIjo6GsnJyUhMTISLi0up16qM2+fOnUPVqlUF9wE4OTkhKSkJVapUQUxMjKYPU/33n9dPQ8/dunULERERKCgoEJTdxcUFycnJSElJQUxMDGxsbF5IdqVSqfc5mUyGrKwsbNy4UVB2a2trJCQkoFq1aqhSpQqcnJwEL7eK/A/U+6erV68iLCxMcPGit7c3UlJSkJqaiqioKFhZWQlab81d35VKZanjrn/++QcxMTGCt5N+fn5ITU1Feno6IiIi9L6usW2HkMe1H1PnLygoQHh4OK5evSoov7OzM1JTU5GWloakpCTN57bsZMq23tz55XI5hg4dim3btuGXX34RlF8mkyE6OhppaWmoXr26ph+gbA5z9rGmPD9y5EgQERQKBYgI48ePx8OHDwW9BxsbG1StWhXp6emoVq2a5jMstJ0ipK0zceJElJSUlPtf/P3331i6dKmg/MCz7b/6c6Bej/S1h02Z9P3erFmzUFxcDJlMVu7/o56WLVuGM2fOCH4PXl5eSElJQVpaGqKjo2FlZSXoOMTQcwsWLEBRUVG559SfYe3Hr127hmXLlgnODwChoaGoWrUqUlJSyvXRaN829bh6+fLlKCoqKvc4gHLvRf1YSUkJFi5caFYfvJ2dHRISEpCcnIz4+HjY2dlp/rau7LoeB4D169ejsLBQ73zq+7p+v6CgAGvWrDFr+SuVSkRGRiI+Ph4JCQlwdnbW+XraP7Vvb926tVTfua55jT1+6NAhwfsBNXt7e02fU0REhGZkwrKvo++xis47a9YsnD17VmhsAM+yN2nSBDk5OcjKyoKPj49Zf0dKuHCRsUpSq1Yt1KpVS+wY5YwdO1bQicnw8HDk5eUhLy8PtWvXhlIpzmZk/PjxgooW09LSNLkTExP17jRetM2bN5t10iY8PBzZ2dnIysrCyy+/XOnD+s6cORPdu3cX/HtWVlZ4+eWXkZmZiczMTERHR7+wZa8uEtAuZuzRowe+//57s/5eQEAAmjVrhubNm6NRo0aaQkshiAglJSVGixzLFvp06tQJFy9eNCs3AFSrVg3NmjVD06ZNkZGRoTnxbow6q74CKkPFVfn5+ejWrVuFCjQCAwPRtGlTNG3aFA0bNoS7u7ugzOZMly9fxkcffWR2ZuBZZ02TJk3QpEkTNGrUCN7e3gbnJ6JyxYzqqexj+ubZvXs35s2bV6HcISEhaNq0KZo0aYIGDRrAzc3N4Pzqwi9T8um7P3LkSLNO1KgplUpkZGSgSZMmaNq0KapVqwaFQmH090pKSsxeR3766SfMmTPH7MwAkJKSoslcq1YtQdtw7W2IKZ/JwsJCHDhwAIMGDTI7r0KhKLWcU1NTTVrOZam3gcaKG4uKivDLL7/g/fffNzuzq6srGjVqpNmGBAUFmf23tGkv/7KFjVu3bkXXrl3N/tvx8fGabXWdOnVgZ2f3XDKXpf4/FBcX4/jx40hPTzerIFOpVKJ27dpo3rw5mjVrhuTk5EppTxER6tSpg927dwv+XRsbG9SrVw/NmzdH8+bNERUVVWltwH///RcxMTGCf08ul6NWrVqatlNlLWe1X3/9FVu2bBH8e8HBwcjKykJWVhbq168Pe3v7F5BOvz/++AMLFiwQ9DsymQwZGRnIyspCdna2KFej3rt3D99++62g37G2tkaDBg00HVMhISEvKJ1+RIS6desK+h1bW1s0bNgQOTk5yM7ORkBAwAtKZ9iQIUMEzW9lZYV69eohNzcXOTk5oixvAPjll18EFS3K5XJkZGQgNzcXubm5iImJEeUY+MGDBxg4cKCg30lKStLkTktLg1wuzrdXLFq0SND8wcHBmtwvv/wyrK2tX1Ayw4Su425ubsjKykJubi6aNm0KZ2fnFxPMiG3btgkqWrS1tUXjxo2Rm5uL7Oxs+Pr6vsB0+t26dQtvv/22yfPL5XLUqVNHs02Jiop6gen0IyJ88803gn6nWrVqyMvLQ25uLqpUqSJav5rQ45zo6GhNf2DNmjXNOq55Hn799VdBx8KBgYHIzc1FXl4e6tWrJ9o25enTp1i3bp3J87u5uSE7OxstWrRAkyZN4Ojo+ALTGfbhhx+aXIyj3qa0aNEC2dnZRvt1XqRr165h5cqVJs+flpaGFi1aoEWLFoiPjxftswkAkyZNMrlo0c3NDTk5OWjZsiUaN24MBweHF5zOsEmTJpl8nBwdHY2WLVuiZcuWSE9PF62tojZ+/HiTixbj4+PRsmVLtGjRAqmpqaKuLwBw6NAhk4sWvb29kZeXhxYtWqBhw4aS+NrDMWPGmFy0mJaWpln2cXFxoi97ABgxYoTJ28maNWtq8kdHR7/gZKaZO3euycUqUVFRms9t9erVRf/cAsB7772HcePGmTSvra0tmjRpotlPeXl5veB0+n311Vea25MmTTK5aNHX11fTJmvQoEGlf4Z1tX2JCNWrVzf5b8TExGi2QzVq1KiU9cjYhUZHjx7FiBEjTP571atX17QxExISXti2SEif0SuvvGLyvDY2NmjUqJHmeMrPz8+ceHrl5eUJ/p3JkycLOlenrrPIzc1F7dq1TT5/a8ibb75p9u8OHjxYUOGit7c3srOzkZubi0aNGlWoDWfuRZdq165dQ1hYmKDfiY+P16w/NWrUEO348PTp04KPbQMDAzWjKtavXx+2trYvKJ1InufIBzy9mAlAIAACQBcvXiTGnpfHjx+Tj48PqdcvfVONGjXo66+/pj///JNUKpXYsenJkyfk5+dnMLOVlRU1bdqUpk6dKpnPjUqlourVqxtd3gBIqVRS/fr1afTo0XTy5ElRl/uTJ08oMDDQpNwAKDAwkLp160arV6+mBw8eiJb777//JoVCYXJuKysrql+/Po0cOZL++OMP0Zb5unXrTM6snry9vemNN96ghQsX0vXr10XJPX78eMG57ezsqHnz5jRu3Dg6ceKEKMv8vffeE5zbxsaGGjduTKNHjxZlXVGpVJSRkSE4t6OjI+Xm5tLkyZPp77//rvTchw8fFpwZAEVFRdG7775La9asofv371dq5pKSEkpKShKc2dfXlzp27CjaZ7J58+aCM4eFhdE777xDK1eupHv37lVqXpVKRfXq1ROUVy6XU82aNenzzz+nPXv2UFFRUaVnFvo5dHFxoVatWtGsWbPowoULlZpX7bXXXhOUOTg4mLp3706rVq2q9M+f2qZNmwRljoiIoF69etGGDRvo0aNHomQmIurYsaOg/XinTp1o6dKldOfOHdEyExHVr1/fpMwKhYLq1KlDI0aMoGPHjol+jPDKK6+YlNvZ2ZleffVV+u677+jGjRuiZiYi+vzzz03K7ePjQ126dKFVq1ZRfn6+2LFp69atgnKvXr2aHj58KHZsunv3Lrm4uBjN7e7uTh06dKBly5aJtu0rq1GjRkZzOzg40CuvvELz5s2TxPpNRPT1118bza1UKqlRo0Y0ceJEOnv2rNiRiYjo119/NWkdT0tLo6FDh9KRI0dE3w4SEd27d8+kdTwiIoLef/992rlzZ6W3oXRRqVRUp04dk/aXXbp0oTVr1oi6j9f26aefGs3t6OhIrVu3pu+++45u3boldmQiIvrpp5+M5lb3q02ZMkUy/Wp37twhJycng7llMhnVqlWLRo4cSX/99ZfYkTWaNGlidJknJyfTZ599RgcOHJDENoWIaNq0aUZzh4aGUt++fWnHjh2S2KYQEd26dYscHByM7u87duxIK1eulEQ7RW3AgAEm7TcnT54s2nGlLgUFBRQQEGAwe1BQEPXu3Zu2b98umXWFiOjChQtkZWVlMHt6ejoNGzaMTpw4IXbcUkxZ12vWrEkjR46kU6dOiR23HGPHceHh4dS/f3/65ZdfqLi4WOy4pdy8eZPs7e31ZlcoFNSgQQOaNGmSpD6raufPnyelUmm0HTB9+nS6cuWK2HHLKSwspODgYJM/t1LZr2ozdqzk5uYmyf2Uminb/djYWProo49o7969VFJSInbkcoz1OcpkMsrIyKARI0bQyZMnxY6rU+vWrQ2+B2tra2revDlNnz6dLl++LHbcco4ePWq0renp6UlvvvkmrVy5UhJ9YtpM+Ryo16Phw4fT8ePHJbU9unPnDjk7Oxv9HyQkJNDHH38suc9yv379jGZXKpXUoEEDGj9+PP37779iR9Yw9dxBeno6DR06lA4fPiypdefixYvaOQPpedTEPY8/whMXLjLLNGHCBJ0bQRsbG8rKyqKZM2dK8qBkypQpOnO7uLhQu3btaOnSpZI5waRt/fr1Bnc+6pPWy5cvr/SiEUMmTpxoMLdCoaC6devSiBEjRC34K6tdu3ZGd/jaBRliFlmqlZSUUHJyskkNrZdffpmGDx9Ohw4dEr2h+ODBA/Ly8jKpkZWcnEwDBgygrVu30pMnT0TNfe7cObK2tjYpd2JiIvXv3582b95Mjx8/FjX3mjVrTMosk8koPT2dPv30U/r555+psLBQ1NyZmZkm5VYXd82YMYPOnDkjauaFCxealFldzPrNN9+Ivh3ctWuXSZkdHR0pJydHtEJWbaacOAWeFcZ36dKFli1bRrdv3xYtLxHR2rVrTf4MfvbZZ/Trr7+KfmLmyJEjJq3LTZo0obFjx4p+4QTRs0KG1NRUg5ltbW2pWbNmNGHCBPr7779Fzat28uRJksvlBteNGjVq0BdffEH79+8XfT+utn37doPL2sPDg9544w1asmSJ6AWW2owVxsfExFD//v1px44dou8LtRkroqtatSp99tln9Ntvv0lmHSEyXmBUpUoVGjRokORyExF98cUXBteTDz74gHbt2iX69rqs3bt3680dEBBAPXr0oI0bN4reti7rwYMH5O7urjO3q6srtWvXjr7//ntJHfuq6SswsrGxoczMTJo+fTpdunRJ7JjlDB06VO9+R6onSoiIduzYoXcdj4+Pp48++oj27NkjuYIFQ0V06s/mpk2bqKCgQOyopahUKqpdu7bO3G5ubvTGG29IqnBbm76Cfzs7O8rNzaXZs2eLdjGnIfv27dOZW6FQUP369Wn8+PGiH/vqUlhYSCEhITqzV6tWjYYOHUpHjx6V3DaFiGjQoEE6c0uxyFLbzZs3dRahOTg4UJs2bWjRokV09+5dsWPqNGPGDJ3LPCkpiT777DM6ePCgJNcVIqLevXuXy61dICrlc3KDBw/Wmb1JkyY0bdo0SZ7bUfvzzz/1HgcNGTJEstsXNV0XL9jZ2VGLFi1o/vz5ovdbGfPuu++Wy+/o6EivvvoqLV68WJJtdG1z5szR+7mV0kUX+uTn55OHh0e59xAcHEx9+vSh7du3S6r/Qpfp06frPe6Q2gUkuqhUKqpVq5bOYz71+fGrV6+KHdOgP//8k2Qymd42/fLlyyVx3tMQfYWXUVFRmj4aqR0Haps6darR45Nr166JHVMvfcdXUi3203bt2jWys7Mz2uckxbbz33//rffcgXrdmTVrlqTbcVy4+D86gQsX2Qvw5MkT8vf312xUPDw8qFOnTpK8YkHb06dPKSgoqFRDvnfv3rRlyxZJN+RVKhVVq1at3A4oNTWVBg8eLMkTe0REjx490jkqp4+PD7355pu0bNkySe70jx07prPBbm1tTY0aNaIxY8ZI8oTN4sWLdTZUgGdXmPbo0YPWrFkjuYMNfSfIAJCXlxe1a9eO5s+fL7lGVufOnfXm9vT0pLZt29K8efMkdSVacXExJSYm6s2tLuxaunSpZEbzIDJcTKdQKKhWrVo0ZMgQ2rt3r2ROHjx9+pTCwsL05k5MTKT333+ffvzxR9GLWdUMnYRU73M+/vhj2rlzJz19+lTsuET0LHNaWprOvLa2ttS0aVMaO3aspLbZhkbi9PX1pU6dOtHixYvp5s2bYkctJTs7W29HUO/evWnjxo2SGb1IbeXKlTozR0ZGSjYzke6RLd3c3Kht27a0YMECyYyEpk1fMVpKSgp9+umnkiwYUcvLyyuV2crKiho1akTjx4+n06dPix1Pr7InGW1tbSkrK4umTZsm6eP+bdu2lWtfq0fkOn/+vNjx9Lp37x65urpqcsvlcqpbty6NHj1akqPPaCtbRFetWjX6/PPPJV0AQEQ0YsSIUrnDwsLovffek/xJuL1795Y7LpDq6A7a7t+/T25ubqU6u/Py8iR/ooSISo28rVAoqF69ejR27FhJb8OJyp/kqVq1Kg0ePFhSo+XpUvZCBfVnU2oF/mWVHVHUy8uL3nrrLUmNwKlPVlaWJrd6BM4FCxZIvqhl9uzZmtxSHeVPl7t375YaOSYlJYWGDBkimdFxDdEuuPT29qauXbvShg0bJHdxQlmFhYUUGhpKwLOilZdeeolGjx4t+e04EdHVq1fJ1taWAJC9vT21atWKFixYIKkLtfTRbt9aQnFrWe3bty/VLh87dqwki7h10d7OuLu7U6dOnWjVqlWS3x+pXblyhWxsbDT707ffftsitjVqxcXFFBkZqVn3W7duTQsXLrSIz63a6NGjNdv75ORkGjx4MB06dEjy+yk17e2+tbU1ZWZmWkShnzbtvg03Nzfq0KEDrVixQtLHfGW1bdtW8x7UF2dI/Xhb27FjxzT51aOmq0e3tITPQkFBQal6BR8fH3r77bfp/9i77/Aoyq4N4Gd303vvvSck9E5CekJLghQpioAKKFhBAUURBUQQ6SBNehEEpVcRlC5VepMWQHoP6Xu+P3h3v02yPSEzq/fvuubaNrtzZzI7M88zZ2bXrFljEtuD8idUOzo6cpcuXXjp0qUmsS8xYMCACscL+vfvL/p2LTNz9+7dy2T38fHhPn368Lp160RzrFEXFC7+RwdC4SK8AFOnTuWwsDAeMGCA6M9YUDVz5kyuXbs2f/HFF6K7LK42q1atUnZQvvTSSzx79mzRFXGp8+233yp3Ghs3bsxfffUVHzx4UJRFlqpeeumlMp3wffv25bVr14q60VFUVMShoaHK3La2ttymTRuePHmyqDv67t69W6ZD2NzcnJOSknjUqFF86NAh0S4rJ0+eLHNGi6nkXrBgQZkdWhsbG27VqhVPnDhRtA06dcV0qj9LLNZGUPmr+yqKWefOnSvKK+wwV/ypeW9vb2URnRgLpZiZV65cWSZzjRo1uH///qK4uqkmqkXm5ubmnJyczN98842oD4SpFmHY2NhwVlYWT506lS9cuCB0NI1KSkq4Ro0ayoKuli1b8qRJk0S9TWQu+xMniqK/3bt3i6YoW5OtW7cq9z/atm3Ls2bNEu26TtWhQ4eUB3Z79OjBK1asEOUVospT/BSLt7c39+rVy2Q6NRUFru7u7tyjRw9euXKl6E6o0eSrr75ie3t7fvnll3nhwoWiOsFDm71797KFhQW3aNGCp02bJvpiEYUnT56wh4cHN27cmL/++ms+ceKEaLeR5bVs2ZIjIyN54MCBvGvXLpPpKxk5ciR7eXlxr169eO3ataLdjyrv999/Zzs7O+7YsaNJfTcfPHjA7u7unJ6ezpMnT+bLly8LHUlvycnJ3LBhQx45ciQfP37cZL6bI0aM4KioKB44cCDv3r3bZL6bBw8eVB6IEuPVcTUpLi7munXrKq+8JdZ2uzqjRo3ilJQUnjRpkkl9Nx88eMD169fnjz/+2KSWcWbmH3/8kVu3bs2zZs0SfbF8eaNHj+aePXvymjVrTGbbqTB79mx+4403eO3atSazblHIzc3lnJwcnj17tmj7q7SZP38+v/vuu7xt2zbRt/XVmTZtmmh/glsfW7duVS77pva9ZX5+snynTp143Lhxor2SmS6rVq3iV155xSSu6KdJz549RX0VZl3Onj3LjRo14uHDh4v+CrWavP766yZxVUJNZsyYwbGxsfzpp5/yvn37RHtMUZMvv/ySQ0JCTOIE0/Ju3rzJdnZ2nJCQwGPGjBHtsVF1zp8/z2ZmZlyvXj0eNmyY6E9K1uRFFC5K+HlhHIiYRCLxI6JcIqLc3Fzy8/MTOBH8G9y+fZvc3d1JIpEIHcUgT548IXt7e6FjGGzu3Lnk7+9PCQkJZGlpKXQcvZSUlNCAAQOoYcOGlJmZSW5ubkJH0svJkyfpo48+ohYtWlDLli0pPDzcJJbzWbNm0dSpUykzM5MyMzOpWbNmJrGsfPzxx7RmzRrKyMigzMxMSkpKIjs7O6Fj6dSuXTs6deqUMndiYqLocxcWFlJ0dDQ5OztTRkYGZWRkUNOmTUW/nKxbt466du1KqampytyhoaFCx9IqLy+PYmJiKCQkRJm5Tp06JJVKhY6mkVwupyZNmpCDg4NyPRIbGyvq9V9paSklJSWRj48PZWZmUkZGhuj3c4uLiykrK4tCQ0OpRYsWlJSUZBL7Je+//z5ZWFhQixYtKD4+XvTrDSKi3bt30/Lly6lly5aUmJhI1tbWQkfSy9y5c4mZqUWLFuTj4yN0HL0tWbKE3N3dqXnz5iaxfChs27aN7O3tqX79+qJeR5d39uxZevr0qei3LeXl5eXRsWPHqGHDhiSTyYSOY5BDhw5RXFwcWVhYCB3FIBcuXCBPT0+T2NaounPnDpWWlpKXl5fQUQxSUlJCFy9epIiICKGjGOzcuXMUFhZmUusUIqKrV6+Sp6enSW17iIju3btHZmZm5OjoKHQUg5SUlNCdO3fI29tb6CgGu3nzpsmtU4iIHjx4QI6Ojib33SwqKiJmNrnvJhFRQUEBWVlZCR3DYCUlJSSTyUTdhtdELpeb3DKuwMwmOc8BAKByTH39X1paanL9MuWZ6j6bwsOHD8nJyUnoGEa7du0a+fr6muT34MaNG2RhYWEydQuqzp49S3Z2duTr6yt0lEq5du0a+fv7Kx76M/O1yn4mChdNAAoXAQD+/fLy8sjW1lboGAYzxYMHcrmcrl27RgEBAUJHMcijR4+osLCQPDw8hI5ikKtXr5K3tzeZm5sLHUVvjx8/JqlUKvpiVlVFRUVUUlJCNjY2QkfRW0lJCUkkEpPqZDH1Ti0AAAAAAAAAAAAAAAAAY7yIwkWzyn4AAAAAVJ4pFi0SkckVLRIRSaVSkytaJCKTu5qHginOawcHB6EjGMzCwsLkriJlZmZ6TREULQIAAAAAAAAAAAAAAABUDdO8fjsAAAAAAAAAAAAAAAAAAAAAAAAAmCQULgIAAAAAAAAAAAAAAAAAAAAAAABAtTHZwkWJRLJDIpGwgUOSEdMZ9iI/HwAAAAAAAAAAAAAAAAAAAAAAAOC/xGQLF40gJ6LzQocAAAAAAAAAAAAAAAAAAAAAAAAA+C8zEzpAJfQkIlsd48QQ0bL/3d/GzNcrOc04Ha9fquTnAwAAAAAAAAAAAAAAAAAAAAAAAPyrmWzhIjPrLBKUSCTdVB4uqIJpnqjsZwAAAAAAAAAAAAAAAAAAAAAAAAD8l/1rfypaIpFIieiV/z18SkQ/CxgHAAAAAAAAAAAAAAAAAAAAAAAAAOhfXLhIRKlE5Pu/+yuY+ZmQYQAAAAAAAAAAAAAAAAAAAAAAAADg3124+JrK/Ur/TDQAAAAAAAAAAAAAAAAAAAAAAAAAVN6/snBRIpHYEdFL/3t4hYh2VNHnbpFIJLclEknR/253SCSSwRKJxLkqPh8AAAAAAAAAAAAAAAAAAAAAAADg385M6AAvSHsisv3f/UXMzFX0uekq992JKPF/wyCJRNKDmVcb86ESicRPxyhexnwuAAAAAAAAAAAAAAAAAAAAAAAAgNj8WwsXq/pnoo8T0Soi+pOIbhCRORFFEtErRJRBRE5EtFIikWQx80YjPj+3CjICAAAAAAAAAAAAAAAAAAAAAAAAiJ6k6i5GKA7/u3rhFXr+M9j7mLlJJT/PiZkfanm9DxFN/9/DG0QUyswFBk5D739Cbm4u+fnpukAjAAAAAAAAAAAAAAAAAAAAAAAAQOVdu3aN/P39FQ/9mflaZT/z33jFxVfpedEiEdH8yn6YtqLF/70+QyKRNCCiN4jIh57/TPViAyfjr+N1LyI6YOBnAgAAAAAAAAAAAAAAAAAAAAAAAIjOv7Fwsdv/bguJaFk1TXMGPS9cJCJKJAMLF3VVoEokEiNjAQAAAAAAAAAAAAAAAAAAAAAAAIiLVPcopkMikdQnopj/PVzHzA+qadKnVO77VtM0AQAAAAAAAAAAAAAAAAAAAAAAAEzOv6pwkYheU7lf6Z+JNgBX47QAAAAAAAAAAAAAAAAAAAAAAAAATNa/pnBRIpGYE1Hn/z28Q0Qbq3HyMSr3b1TjdAEAAAAAAAAAAAAAAAAAAAAAAABMyr+mcJGIWhKR+//uL2Hmkmqcdh+V+79X43QBAAAAAAAAAAAAAAAAAAAAAAAATMq/qXBR9WeiF+jzBolE0kMikfD/hmFqXo+TSCRhOj6jNxG9+b+HN4noFz3zAgAAAAAAAAAAAAAAAAAAAAAAAPznmAkdoCpIJBJnImrzv4cnmPlwFX10PSKaLZFIttPzn54+TkT36Pl8iyKiV4go43/jlhJRb2bOq6JpAwAAAAAAAAAAAAAAAAAAAAAAAPzr/CsKF4moExFZ/u++XldbNICMiNL+N2hyj4jeYOa1VTxtAAAAAAAAAAAAAAAAAAAAAAAAgH+Vf0vhYrf/3ZYS0eIq/NwNRPQGETUhojpE5ElErkQkIaL7RPQXEW0ionnM/LgKpwsAAAAAAAAAAAAAAAAAAAAAAADwryRhZqEzgA4SicSPiHKJiHJzc8nPz0/gRAAAAAAAAAAAAAAAAAAAAAAAAPBfcO3aNfL391c89Gfma5X9TGllPwAAAAAAAAAAAAAAAAAAAAAAAAAAQF8oXAT4D7pw4QLt2LGDiouLhY5ikGvXrtHJkycJV4oFAAAAAABTa88oPHz40CTbNI8fP6YHDx4IHcNgzEynTp0yyXl+6tQpevLkidAxDHblyhU6f/680DEM9uzZM9q+fbtJrls2b95M9+/fFzqGwXbu3Elnzpwxue/nyZMnTXJZefjwIS1evJju3bsndBSDMDPNmzfPJPsEN27cSJs2baKCggKhoxjk77//punTp9PVq1eFjmIQZqZJkybR9u3bqaioSOg4Bjl8+DBNnTqVLl26JHQUg82ZM4d++uknevjwodBRDMLMNGbMGFq7di3l5eUJHcdgU6ZMoeXLl5vk/vnevXtp/PjxdPbsWZNbrxMRzZw5k5YuXWqS+15ERNOmTaMVK1bQo0ePhI5ilLVr19KcOXPon3/+ETqKUR49ekQjR46kQ4cOkVwuFzqOUTZu3GjS3wFmpsmTJ9Off/5psv+Dc+fO0aJFi+ju3btCRzHa0qVL6cSJEya5HSAi+v333+ngwYMmuwz99ttvdOXKFaFjGOXatWt0+PBhk1x2Ll++TLm5uULHECUULgL8B/n6+lLXrl3J3d2dOnXqRAsXLjSJnRsXFxdKSUmh0NBQeu+992jLli1UWFgodCydrl69Sj169KBVq1bRs2fPhI6jt7/++otWrlxpch03Bw8eNLlOeCKi8+fPm9xOllwuN8kdrMLCQpNsVD99+pRKSkqEjmEwU1hPl1daWip0BIPJ5XKTW4eUlpaa3LwuLS01yYMC+/btM7kDd0eOHKE1a9aY3EHeadOm0fTp0+nmzZtCRzHIp59+SgMGDKCdO3ea1Pdy/Pjx1KJFC5o+fTrduHFD6Dh6O336NAUGBtI777xDW7ZsMZnvp6WlJdWrV49SUlJowoQJ9PfffwsdSS8SiYSmTJlCAQEB9Pbbb9OGDRtMZt2Sm5tLrq6ulJGRQZMnT6bLly8LHUkvTk5O1LBhQ4qKiqKPPvrIZE6ctLGxoW+++Ybc3NxMqq+E6HnBi7u7OyUkJNDo0aNNpsBLKpVSdHQ0hYeH0/vvv09bt241ifaDv78/tW/fntzc3Ojll1+m+fPn0+3bt4WOpZOTkxMtWLCAPDw8qFmzZvT111/TX3/9JfplRSKR0N27dyk2NpaCg4OpX79+tH79epPoYwsMDKRWrVqRi4sLZWVl0ffff28SxYDBwcE0Y8YMCgwMpLi4OBo0aBD98ccfol+XSyQSsrS0pJSUFHJzc6P27dvTnDlzTGI/MTY2lsaOHUshISEUHR1NAwYMoG3btpnEfmJERAS9/PLL5ObmRomJiTR69Gg6duyYSaxbPDw8KDs7m1xcXCgzM5MmTJhA586dE312IqKwsDDq1KkTubu7U/Pmzembb74xiflORFS3bl0aP348RUVFUVhYGL377ru0ceNGys/PFzqaXqKjo5XH1xTb06NHj5rEvCciCgkJoY4dO5KbmxslJyfTt99+azL7jkTPl5++ffuSj48P1atXj4YOHUr79u0zmb4MR0dHOnXqFNWvX598fX3p9ddfp5UrV9Ljx4+Fjqa32NhY6tGjh7L98c0339Dx48dNZhmSSCRUUFBAjRo1Im9vb+rRowf99NNPJlXMGxISQl999RV5enoq10Omsg1QePz4McXFxVFwcDC98847tHHjRpPpqyF63rZq0KAB+fr60ptvvkmrVq2ip0+fCh1Lb48ePaKgoCCKi4ujTz75hPbs2WMy61F3d3fKzs4mPz8/6tOnD61du9Yk2oZEz/udoqOjqXbt2vT555/T/v37Tbb4tcoxMwaRD0TkR0RMRJybm8sAVWHSpEmsWK6IiCUSCTdp0oRHjBjBR48eZblcLnREtb777rsyue3s7Lhdu3Y8Z84cvnnzptDxNMrJyWEiYmtra27bti3Pnz+f7927J3QsrfLy8tjNzY2tra35pZde4kWLFvHDhw+FjqXTunXrWCaTcXp6Os+YMYNv3boldCS9vP/++xwWFsaffPIJHz58WLTfwfLatGnDjRs35nHjxvHVq1eFjqMXuVzO9erV45YtW/KcOXP4/v37QkfSy507dzgoKIjfeust3r59O5eUlAgdSS9Tpkzh9PR0nj17tujXewo3b97kxo0b8zfffMOXLl0SOo5eiouLOT09nYcOHcqnTp0SOo5eSktLOSUlhd9//33eu3evyaz3kpOTuXXr1rxw4UJ+9OiR0HH0MnToUHZycuKePXvyxo0buaioSOhIOj169IidnJzYzs6Ou3TpwitXruS8vDyhY+l08OBB5b51fHw8jxs3ziTWI0ePHlXuX3t4ePCbb77J69at4/z8fKGjafXgwQN2cHBQZm/QoAGPHDmST5w4Ifp1SlpamjK3vb09v/zyy7xo0SLR75dMnTq1THssJiaGBw8ezLt37xb1vsmVK1fY3NxcmdvGxoZzcnJ49uzZom5HyuVybty4cZl5XqNGDZOY51999VWZ3E5OTty5c2detGgR3717V+h4Gu3du7dCX0nTpk3566+/5mPHjol23fL48WN2dXUtkz0oKIj79evHGzduFPX6PCMjo0xuW1tbbtu2Lc+ePZtv3LghdDyNRo4cWWFZadiwIX/11Vd86NAh0S4r5ZdxImI/Pz/u3bs3r169mp8+fSp0RLXy8vLY09OzTG4rKytu1aoVT5kyRdT7W6+88kqFeV6jRg0eOHAg79ixQ7T75mvWrKmQ29HRkTt27Mhz584V7fazsLCQg4KCKmSvU6cODxkyRNTbzzlz5lTIbWdnx23btuWZM2eK+thQ+XU5EbGvry/36tWLf/nlF378+LHQEdUqLi7miIiICtlDQ0P53Xff5Y0bN/KzZ8+EjqmWXC7npk2bqp3vb775Jv/888+ine/MzDNnzqyQXXW9/vfffwsdUav09PQK+b29vfmNN97glStXirq/SC6Xc5MmTSrkDwwM5LfffpvXrl0r+v6XDz74oEJ+Nzc3fvXVV3nJkiWi74M+e/YsS6XSMvnNzMw4OTmZx44dy6dPnxbtvqTCu+++W+F/4O/vz3369OE1a9aIfhl6+vQpe3h4VPgfJCUlmcz/YOHChWr36/v06WMS3+PCwkIODAwsk9/Gxoazs7N5xowZfO3aNaEj6tSuXbsy+S0sLDgzM5MnT57MFy9eFDqeVnK5nGvXrl0mv6urK3fr1o2XLVsm+nqA8v2TVlZW3Lp1a/7+++9Fvc/MzPzxxx+Xye7p6cmvv/46//zzz/zkyROh4+klNzdX9W/w46qoiauKD8GAwkUwPfn5+ezr61thp6b8zo3YdjDVdVSqDg0bNuThw4fzkSNHRLVT+eeff1bIKpPJOCUlhSdPnizagq/hw4eXyWxubs4tW7bk2bNn8+3bt4WOp5ZcLufY2FhlZqlUyikpKTxt2jT+559/hI6n0ZUrV1gmkylzm0oR4++//15mGWnSpAmPHz9e9NurBQsWlFmuW7VqxfPmzeMHDx4IHU2rfv36KXN7eXnxO++8w3/88QeXlpYKHU2jJ0+esJOTU5l5PX/+fNE3fN58803lvG7cuDFPmDCBr1+/LnQsrVSL+2vVqsWjRo0SfQNZtaM6KCiIBw0aJOoTKJiZV61apcxsaWnJL730Ei9btky0B3mZmW/fvs1WVlbK3M7Ozvz666/zpk2bRHuglJn5008/rdB51bFjR162bJmoG/GZmZkV9vvq1q3LI0eO5NOnTwsdT6OsrCy1B0o7duzIS5YsEe16+7PPPlPbLggNDeUBAwbwH3/8IcqD0zt37lSbWyaTcXJyMo8fP16U6/CCggKN7Uh3d3fu2bOnaDva3nrrLbW5JRIJN2rUiEeMGMF//fWX6LZBmzdv1tj+dXNz49dee42XL18uuoOjDx8+ZGdnZ7W5pVIpJyQk8OjRo/nkyZOim+ctWrTQOM8DAgK4b9++vGHDBtEVA37zzTcacysOAM2cOVN0+7TqCulUh3r16vHQoUP5zz//FFW7R12xqOqgKF4QY+FIq1atNOa2sLDgjIwMnjhxIl+4cEHoqGVMmDBB67ISExPDH3/8MW/fvl1U+7jqihNUB0Ux4Lx580RVDCiXy7lhw4Za53n9+vV56NChvG/fPlF9P9UVAKoOLi4u3KVLF164cKGo+jeLi4s5PDxca/aaNWvy4MGD+Y8//uDi4mKhIyvt379fa25zc3NOTU3l7777TnTFIIsXL9aa3draWllMJ7b9899++03nfE9JSeGxY8fyqVOnRDXfi4qKOCQkRGv+qKgo/vDDD3nr1q1cUFAgdOQy9u3bpzW7ogjt22+/Fd28Z2b+9ddftea3tLTkFi1a8KRJk0S3P8D8/KRzGxsbjfmlUik3a9aMv/76a9H2M3bv3l3r/yA4OJjfeecd0Z6EdP369TJ9jZqWITEXcI0bN07r/yAkJITfffdd3rRpkyj/ByUlJRwZGakxv6IYfOrUqXz58mWh46o1a9Ysrf+DOnXq8GeffSa6fU2Fv/76S2v+GjVq8KBBg3jnzp2i2m9TUD3OoWk79t133/G5c+eEjlpBQUEB+/n5acxfu3Zt/vzzz3n//v2iW3Zu3bqlcRtmYWHBLVq04ClTpoj2e8uMwsX/7EAoXIQXpHw1uradm5YtW4pm52b8+PF65VYUX65bt04UZ0aqO/NUdahfvz6PHDlSVAdu7t+/z3Z2dhobf8nJyTxlyhTRnfmyaNEitZklEgk3b96cJ02aJLqDNczMr776qtrcoaGhoi1ilMvl3KhRI7W5mzZtKtoixqKiIvb396+Q2dzcnNu0acMLFiwQZYHG33//rfaAh4+PD7///vu8Z88e0e2EMzN/8sknajsvcnJyeOnSpaIsbjh16pTadUhSUhJ///33ojq4ofDo0aMyVx5TDI0aNRJt4WV+fn6Fs1uJnndODxs2jM+cOSN0xApKS0vVHkyysbHhTp068S+//CLKzqy3335b7braxcWF33zzTd6yZYvoOlBu3rypsRPUysqKX3rpJV68eLHoinXKF/WXH6Kjo3nIkCGiuxqTrgMv5ubmnJmZydOnTxfVFbDu3r2rcX9VMbi5uXHPnj151apVojopKzk5WWebJjY2locMGSKqjrbJkyfrzG1pacmtWrXi77//XjRthfJXXdQ0BAQEcL9+/XjTpk2iOECq6Yoo6r6jaWlpPGHCBNFcoab8iXCahpCQEH7vvfd4y5YtopjnutaHqtt+MRUDPnnyhN3c3PTKXrduXVF14rds2VKv3J6entyzZ09esWKFKLb/o0eP1iu3hYUFp6en84QJE/j8+fNCx+YDBw7olZuIODIykvv378/btm3jwsJCQXPn5+ezj4+PXrnFdmXAHj166D3PGzRowF988YUoinU3bdqkd253d3fu1q0bL126VPArSOtTAKgYFCcwfPXVV3zw4EHB57muIjpNy7kYTtZWdyKUpiEoKIj79u3L69atE3z/vKSkhGvUqKF39qioKO7fvz//+uuvothv0adNIcb5zsw8f/58vbPb2tpyTk4Oz5gxQzQXgWjdurXJznu5XM6JiYl654+IiBBdEenAgQP1zq+4AuyqVatE0w994cKFMhey0DZYW1tzmzZt+Pvvv+crV64IHV3pww8/1Pt/EB0dzR999JGoTjB59uwZe3l56ZVf8asNM2fOFE0fBzPz0qVL9f4fxMbG8qBBg0R18kNRUREHBwfrld/Dw4O7d+/OP/30kyjaggodOnTQK7+zszN37dqVlyxZIvi+soJcLuc6derovR3o378///bbb6L5Dk+bNk2v7GK8omH5qy5qGuLi4vjTTz/lvXv3iurEfBQu/kcHQuEivCAFBQVqC3f02bkZPHiwYGcIGLIzWX7Hfvr06YLtVP7xxx96542IiOCBAwfy3r17Be8w07cB2KRJEx47dqwozp4qLi6ucIlxdUOzZs14/PjxounsOHbsmM7MoaGhPHjwYFEVMf788896zesJEyaIqlGn64w6CwsLzs7O5kWLFomqIdSxY0etuf39/bl///68f/9+0SwjN27cYAsLC63r6I4dO/KKFStEUWiu0KZNG42ZZTIZZ2Zm8ty5c0V1pc6PPvpIY2ZF4eWMGTNE9RONX375pdZlunbt2jx69GhRnDyhMH36dK2ZHRwcuFu3brx+/XrBD/AqnD9/XuuVXoieF3f17t2bt27dKpoOrL59++rcxlhYWHBWVhbPnz9fFN9HuVzOzZo102v/KSgoiPv378+7du0SfJ+PuezPF2sbJBIJN2nShEePHi2Ks24NOWBhbW3NOTk5PGfOHMGL0Ldv3653bqLnV+/q3bu34D/jbUjhiGKoW7cuDxs2TPB92D59+hiU287Ojtu1a8dz584VdHnRdtVFTUNMTAwPHDiQd+7cKVjn5qNHj9jFxcXged6+fXueO3cu37p1S5DczPoX0pVfzoW+MuCYMWMMzu3h4SF4MaCuK3WpGxRX7xo3bpxg26KnT5+yu7u7wdkVB32ELAbMzs42OLe9vT23b9+e58yZI1gxoL4nYZcfhC4GvHjxIpuZmRn1/ezevTsvW7ZMkP1cQ/ZrVQepVMrx8fGCXunKkAJA1cHT05N79OjBy5cvF2Sel5SUcExMjFHZ69Wrx59//rlgBzaPHDliVG7VK7sJVdy9YsUKo7KLoZhu165dRs/3zMxMnjhxomDzXdfVwrQNcXFxPGjQIP79998FK6A4dOhQpZd5Ia9maMjxKtVBLD9hf+fOHZ0nMaobFCeUjB8/XvD+DNVf/DFkEEsB2s2bN9na2trg/A4ODtyhQwdRnGAyceJEo/4HtWvX5iFDhvCePXsELSYydr/B2dmZu3TpwosXLxb8p9V1XSlb3WBmZsYpKSk8btw4Pnv2rKD5jx8/zhKJxKD8MpmMmzdvzmPGjBH8qryrV682eP47Ojryyy+/zAsXLuQ7d+4Ilt2YOhfVn/MW8niTtqsuahrc3d25R48evHLlSsF/1eFFFC5K+HlhHIiYRCLxI6JcIqLc3Fzy8/MTOBEY49ChQ7R79+4yX0C5XK71C6rt9cq8V/X1PXv20LFjx4z+u2xsbCgqKopiYmIoMjKSbGxsFAW3Bt8aMu7GjRtp3759RucODg6mBg0aUJMmTSgyMpIsLCxIJpORmZlZhVt1z2m7lclkJJFI1E63efPmtHPnToOyOjk5UePGjSkhIYHq1atHNjY2ZGFhQebm5mRubq7zvlQqNXo+ERHdvHmTgoKCqLCwUO/3BAcHU3x8PCUmJlJ4eDhZWlqSpaUlWVhYKO+rPrawsKh0zvKmTJlC7777rt7jh4eHU3x8PCUlJVFgYCBZWVmRlZUVWVpaKu8rHltaWlZ5XoXWrVvThg0b9BrXw8ODmjZtSomJiRQTE0PW1tZlspYfzMzMNC6blVFaWkoxMTF07tw5vcYPDw+nZs2aUVJSEvn6+irzacovk8mqPDMR0ZMnTyggIIAePnyoc1wzMzOqWbMmxcfHU3x8PLm6uirzWltbKwfFY3Nz8xeSmYjowIED1LBhQ73GdXFxoSZNmlBiYiLVqFGDbG1tydrammxsbJSZFfctLCxeyPKh8MYbb9CcOXN0jmdjY0OxsbEUHx9PjRs3JkdHR7KxsVE7WFlZvbDvIhHRjh07KDk5Wed4FhYWynVH48aNydXVVZnR1ta2zK1iHf6i5nVubi6FhIRQSUmJ1vHMzMwoPT2dWrZsSUSkzKyaU/W+jY0NWVpavpDcd+7coYCAACooKNA5bpMmTahz586UnJxM+/btUy6/qrfqnqvq72R+fj4FBgbSnTt3dI7r7OxM7du3p06dOlF0dDStX79e7TpP2+OqWg++/PLL9NNPP+k1rpubG7Vv355efvllioiIoPXr15fZjqtuw8tv49W9Zuw26NKlSxQeHk6lpaV6jW9ubk5paWnUoUMHaty4Mf3xxx9kZmam3D/SNugznmIcXeueDRs2UOvWrQ36W728vKht27aUmJhId+7cUc43Q/ZDK3u7a9cuSklJMSg3EVFMTAylpaWRpaUlBQUFkZmZGUmlUpJKpSSTyV74/bt371JiYqLey4mCVCqlBg0akLe3N9WuXZs8PDxIKpWSRCJR3qre13VrzLhvvvkm/f333wbPc2trawoPD6e4uDiKi4sje3t75ecSkfK+pucqO87y5ctpxYoVBucmet6+iY2Npbi4OIqIiCizji6/ntD22JjXrl69SsOHDzcqNxFRUFCQMruXl5fyc/XpW9M1jrbXmZm++uorvfZb1bGxsaGYmBiKjY2lyMhIsra2rtL2ubb3rFq1ig4ePGhUbiKiwMBAqlGjBsXExJC3t3eZ6SgGbY+NHffUqVP0yy+/GJ3bzs6OYmJiKCYmhsLDw8nCwuJFnexc5nFeXh5Nnz7d6NxSqZRCQ0MpOjqaoqOjydXVVWMfU/nnjBlH9fHixYvp0aNHRmd3c3Oj6OhoioqKoqCgIJJKpWWmoelWn3G0jbtz506928LqWFpaUkREBEVFRVFERISyX00ul5eZVmXvl3986dIl2rNnj9G5iYj8/PwoMjKSIiMjydvbu8L0NOXQNOgzXkFBAa1bt65Sue3s7CgiIoIiIiIoJCSELCwslJ9fWlqqcdqaXtP3Pbt3767UMi6RSCgwMJDCw8MpPDy8zPdTdTpVff/y5ct04cKFSs1zBwcHCg8Pp7CwMAoMDCQzM7My03gRt8XFxbR3795K5ZZIJBQQEEBhYWEUEhJCrq6uZeaP6vQ03Tdm3CtXrtDNmzcrld3a2lqZOygoiCwtLZXT05ZF38yaXjt+/DgVFxdXKruLiwuFhoZSSEgI+fj4kFQqrXR2XY9LSkro+PHjlcpNROTu7k6hoaEUHBxMXl5eREQGzVdD7ysenzhxguRyeaWyOzs7U0hICAUHB5OPjw9JJBKty2lVvXbt2jW6d+9epbIr2qFBQUHKfn1D1hmVWd+cOnVKZx+cvvM+KChI2cbQd11d2XX9sWPHKr3suLu7U3BwMAUGBpKHhwcRkcHbUn1fLz/OmTNn6OnTp5XK7+TkpMyvuuxrGvTdr9H2ntLSUrpx4wbl5eXp1beojaWlJQUGBiqXf0tLS7XT1XcfUddrV65cUd5nZrpx44ZefbraeHp6UnBwMAUFBZG7u7vB++j63F68eLFMbsXzJSUldOnSpUrlt7a2puDgYAoODqaAgABl20/d9DQ91vTauXPn1L5G9P/twNu3b1d6Perr66vcfrm6upb5fG1D+WyK4fTp01RaWqq17ap4rrS0lE6cOFGp/M7OzhQeHk6hoaHk7++vbAvqM33Vx8ePH1eu08u/Xn5cBWamEydOUH5+fqXzR0REUEBAAJmZmVWYrrZMR48epZKSkgq59HkvEdHevXuptNSwPlUFxf5yVFQURUVFkbu7u9q+MnX3Dx06REVFRRU+U9P71D137tw5unz5slHZiZ73xyv6nAICAjT2+avLUdnXFi9eTH/99Zf+YVUojklmZWVRmzZtKCgoyKjPMda1a9fI399f8dCfma9V9jNRuGgCULj47zB69GgaPHiw0DGgmkilUrUHhPPz8ykvL6/asxhS6Kju/vbt2+nWrVsvNKdiWrqKHPV9XFJSQl988cULy6uYXvmiRk2P9X3tyJEjNHr06BeSWSqVai1s1DToKoi0srKi1atX0+zZs19IbnNzc70Ke4x5/P3331fqgKQmMplMa2FjZR/36NGj0o258qRSaYViRnUFjsY+d/nyZcrIyKjSzERUplitqgdra2tKTk42uvGgiUwm01gkWBXP9enTh5YuXVqlmYmeLyPqihqr4v7gwYNp4cKFemeRSCRaG33lKea5voWO6p4r/9rMmTMNykz0vDPUmKITMzMztetiQ9d5586do2nTphk8fWNzq5JIJEYVPFpaWtKGDRuM6oCTSqWV7oDX9tnaChxlMhmdOXPmhUwbAAAAAAAAAAAAAAAgNjZWWcTYqFGjF3ZBIAUULv5HoXDx32HMmDE0aNAgoWMAAAAAAAAAAAAAAAAAAAAAAMC/hJubG7Vq1YqysrIoIyODHBwcqnwaL6Jw8cX9th4AlPEif34TAAAAAAAAAAAAAAAAAAAAAAD+e+7evUsLFiygjh07ko+PD40ZM0btT3KLjZnQAQD+K1C4CAAAAAAAAAAAAAAAAAAAAAAAVcnFxUV5xcXMzExydHQUOpJeULgIUE1QuAgAAAAAAAAAAAAAAAAAAAAAAJUVFRVFWVlZlJWVRU2aNCEzM9MrAzS9xAAmqmHDhjR48GCSSCQkkUhIKpUq76sbKvO6Ie9duHAh/frrr0b9TQ4ODhQREUEREREUGBhIMplMWaBp7K2+465bt4527txpVG6pVEqenp7k4+NDXl5eZGFhQaWlpVRSUvJCbpnZqJzamJmZkbOzM9nb25OtrS0RERUVFVFxcTEVFxervS+Xy6s8hzEkEglZW1uTlZUVyWQyKi0tpcLCQmVOMZNIJGRubk4SiUT5PzYViu99aWmp0FEMolhXiWX5BQDTJJFIXsj2+EWxsrIiCwsLkkqlVFpaSgUFBaLeRjo4OJCjoyPZ2tqSpaUlFRUVUVFRkXL7XlhYqBzE8H9wcnIiDw8Pcnd3JwcHB5LL5cr9JtWhpKRE7fOqQ3Vsn8zMzMjX15d8fX3J29ubrK2tte57GrKfWv654uJiysvLq5LMAQEBFBAQQP7+/mRra0ulpaUkl8tJLpdX+f3S0lL666+/Kp3b3d2dgoODKSgoiDw9PYmIiJlJLpcTM5e5r+tW33H37dtH9+/fNzqzTCYjf39/CgkJoeDgYHJyclJOXzEo/g5Nj/V9TvXxiRMn6NChQ0bnNjc3p6CgIAoNDaWQkBCys7OrsH7Q9tjY1x48eEALFiyoVO7g4GAKCwuj0NBQZVuMSL+TFXWNo+31qVOn0sOHD/XOqsrMzEyZOywsjOzt7ctMr7Ltc23vWbVqFf35559G5ZZKpRQUFETh4eEUHh5Ojo6OyvaB4vP1eWzMuEePHjV6WZFIJBQQEKDsL3FxcdHaR2PMUP5vUAyPHj2iTz75xKjcRER+fn4UERFBkZGR5ObmpmxHlu9n0vXYmHE+/vhjunv3rlG5vb29lbm9vLyU/VPl86v7e3SNo2vcadOmGd0/5e7uTpGRkRQVFUV+fn4klUrLDIppvIj727Zto6lTpxqV29nZmSIjIyk6OpoCAwPJzMysQnZNg2oWQweJREK3bt2inj17GpXb3t5emTskJIQsLS01Tksmkxn0vK7XpFIpde/ena5evWpwbisrK2XuiIgIsra2rjA9XfcNGbf8+2bOnElz5841OLdMJqOwsDCKjo6m6OhocnR0VJvpRd3eunWL2rRpY3BuIiJfX1+KiYmhGjVqkKenJ5mZmZX5fE33db2u77hffPEF/fLLLwbntrW1pejoaKpRowaFh4eTlZWVXpn0za5rvOLiYkpMTKTHjx8bnN3Pz49q1KhBsbGx5O3trfd0q+q1GzduUGpqqsHtValUSqGhocrsLi4uBs3Tqvg/PHnyhJo2bUqFhYUGZZdIJBQcHEyxsbEUGxtLHh4eOpfRF/Hc+++/Txs2bDAoO9HzbVFcXBzFxcVRaGiosg9F17qhKtcz+fn51KxZM6Pa0EFBQRQXF0c1a9Ykb29vjevjyqzDtd2XSqX0+PFjSkhIMOrnI4OCgqhmzZpUq1atCvkN3T5W5r3Z2dl04cIFg/O7uroq84eFhZG5ubnW6Uilxu3DaHvPtGnT6PTp07Rr1y6D88tkMoqMjKRatWpRzZo1ycXFRe30tD02dtzZs2dTaWkpyWTP97dXrlxpVDvVzs6O4uLiqFatWhQdHU1WVlYG7ZsbertgwQIqLS2t8Dfdv3+fVq9ebXB+ouf78orlKCQkhMzMzPRuC6k+1vbajz/+SCUlJVrbI/v27aOzZ88a9TcEBwcr10Wenp4VsugaNI2/cuVKKi4urjAeEVV4X35+Pq1atcqo/JaWlhQdHU2xsbEUExNDNjY2ered1T2/du1aKioq0jge0fNtf/nnNm3aZHR/qr+/P8XExFBMTAx5e3tXmG75aal7bvPmzcp1ubrxVG/L/w1yuZw2b95s9LFjLy+vMm1a1Vzlp1v+/rZt28oc81B9Xd1jdX/PuXPnjGpjET1flwYHB1NERASFh4eTg4OD1vHV5anMaytXrqTjx4/rF7YcMzMzSkhIUBYrhoWFGfU5YoLCRYBqkpCQQAkJCULHKOPx48f0wQcfGPSeBg0aUHZ2NmVnZ1NcXJzWFfGLkp+fT+PHjzfoPe7u7tS6dWvKzs6m9PR0srOze0HpKlIcTC0pKaH4+Hg6fPiwUZ9Tr149atmyJbVs2ZIaNmxocLV8aWlpmQPtugodFffz8/Pptddeo6dPnxqVm4goJiaGMjMzKTMzk5o3b07W1tZqx5PL5WoLHcoXPejz+NKlSzR79myjMxM932lp0qQJpaenU0ZGBtWvX7/MfC8pKaHCwkIqKChQ3pa/r+tx+deOHz9OBw8erFRuoucHbtLS0ig9PZ1SU1PJx8eHiP5/HqtOsyqGgwcP0t9//13p3G5ubpSWlkZpaWmUmppKQUFBRPT/8zo/P7/CtMs/Z8jj/fv3082bNyud29nZmVJSUpTZQ0NDSS6Xl5lefn6+cqjs4wMHDhjcIamOjY0NJSQkUGpqKqWlpVFsbKzye//s2bMyt5V97v79+5Sbm1vpzEREFhYW1KxZM0pJSaGUlBSKjY2l4uJievbsWZUMeXl5yvu3bt2qssIkR0dHSkpKopSUFGrevDkFBwdTfn6+cnqq0y3/nCGv3b9/v8oKq2UyGdWvX59SUlIoOTmZGjduTESkdl5py6jr/vXr16mgoKBKMltZWVF8fDwlJydTSkoK1atXj8zNzamkpETtMlp+eVV3q+65o0eP0u3bt6skc61atZTLc/PmzdU2khUFjJVZB+7atcvoA+uqoqKilOu7xMREcnJy0vu9JSUlWrf15W8fPnxIPXv2rNQy7enpqdyWp6Wlkbe3t9GfVZ5cLldb4Lhhwwbq1auX0Z9bu3ZtyszMpBYtWlDTpk3JwsKiyjJrs3DhQnrttdeMem9MTIxyXzU+Pp4sLS2rOJ1mW7dupYyMDIPfZ2dnR+np6dS6dWtq0aIF+fr6voB0mt24cYNCQ0MNfp+vry+1bt2aWrduTampqWWK56oDM1PDhg0Nfl9QUBBlZWVRmzZtKDExsVqXEYXPP//c4PcEBgYqcyclJQmSe9euXTRy5EiD3uPj46PswExJSdHYBnuRnj59St99951B73Fzc6M2bdpQVlYWpaenK4ssq5uh6xRHR0dq2bIlZWdnU4sWLcjZ2fkFJdPuyy+/NGh8GxsbyszMpOzsbGrVqhV5eHi8oGTabd261aCiRUtLS0pNTaXs7Gxq06ZNta+/FW7fvk2vv/663uPLZDJq3rw55eTkUFZWFoWEhLzAdJoxMw0fPlzv8SUSCTVu3Jiys7MpJyeHoqKiBOkPJCLq37+/QePXrFmTcnJyKCcnh+rWrStY7q1btxp0QC04OJjatm1LOTk51KxZM8GumPHs2TNav3693uO7urpSVlYW5eTkUHp6erXvo6j68MMP9R7XwsKCUlNTld9NRR+aEP755x+DirgiIyOpbdu21LZtW2rYsKHyQLQQpk6dqnfRorm5OaWmplLbtm0Fn+dERFOmTNG7aNHe3p5atWpFbdu2pZYtWwr+83sjRozQu4/Q2tqaWrRoQTk5OdS6dWtyc3N7wem0u3jxIm3evFnv8evWratc3mNjYwVbpyuMHTtW70IVS0tLSktLUy7zihPlhPTll1/qXbSoyK9YT3p5eb3gdLpt2rTJoKLFBg0aKPcJatSoIfjy8/3331NsbKze4zs7O1Pr1q0pJyeHMjMzBWsnNWnSRHl/y5Yt9MMPP+j93qioKOX+ZKNGjUgmk72IiGqlpaWpfd6QPjCJREJNmzalnJwcys7OpsjIyKqKp1F2drbW1+/fv0+BgYF6f56NjQ1lZGRQdnY2tW7d+oW1/zp37qz3uIMHDzboswMCApT/g+bNm1dpn6khbTuFzZs308qVK/Ue38rKitLT05X/g6rop3733XeNfu+8efMM2vc0NzenlJQUZT+ZIctfeYMGDTL6vUTP60UMbVN7enoq+5zS0tIEa6/cu3fP4P4yZ2dnatmyJWVlZVGLFi0MOiZjEsqfUY9BfAMR+RERExHn5uYyQFUZMWIEK5YtTYOlpSW3atWKp0+fzteuXRM6MjMzT5gwQWduIuIaNWrw4MGDeffu3VxSUiJ0bF67dq1euRWDi4sLd+7cmefPn883b94ULPfMmTMNyk1E7OzszB07duTZs2fz1atXBcn95ptvGpybiDgiIoL79evHq1ev5kePHlVrZrlczg0bNjQqt62tLbdu3ZonTJjAJ06cYLlcXm258/PzOSAgwKjc1tbWnJmZyd9++y0fOXKES0tLqy333bt32dHR0ajclpaWnJaWxt988w0fOHCgWtcxhw8fNiozEbFMJuOmTZvy559/zjt27OCCgoJqyz1w4ECjc0ulUm7YsCF/8sknvHXrVn727Fm1ZD5z5gzLZDKjc9vY2HBmZiaPHj262paTR48esbu7u9GZJRIJ16lTh/v378/r1q2rlvVgZTObm5tzQkICf/HFF9W2XD948IBdXV2NzhweHs59+vTh5cuX8+3bt194Xmbm4uJijoqKMiqvl5cXv/rqqzxv3rxqb4+MGjXKqHV0eno6f/vtt/zXX39V6zaR+fn2vF69egZldnV15S5duvD8+fP5n3/+qda8CkVFRRwSEqJ3ZltbW87JyeHp06fz5cuXBcnM/Hx+N2rUSO/cUVFRPGDAAN62bRsXFhYKlpuZ+d1339V73dykSRMeMWIEHzlypNqX6fLWrFmjV26pVMoJCQk8evRoPnnypOC57927x/b29nrN76ZNm/LXX3/Nx48fFzw3M3NaWppe87xevXo8bNgwPnTokChyf/PNN3rlFlvbfc+ePXrlDg4O5g8++IC3bdvGRUVFQsfmhw8fspOTk87cPj4+3KdPH16/fj3n5+cLHZvlcjk3a9ZMr21l9+7d+eeff+YnT54IHZuZ9Wvj2Nvb88svv8yLFi3i+/fvCx2ZmfXrn7KysuKsrCyePXu2oH1Sqm7dusXW1tZac8tkMk5OTuYJEybwxYsXhY7MzM+X8fj4eJ3zvH79+jx8+HA+duyYKNbhzMzjx4/XmTskJIT79+/Pv//+OxcXFwsdmZn1W1YcHR25a9euvHz58mrv/9Omf//+Oud548aN+ZtvvuHTp08LHVepsLCQ/f39teZ2cHDgLl268I8//iiqef7PP/+wpaWl1uze3t781ltv8aZNm6q1L02Xx48fs4uLi9bsbm5u3LNnT169ejXn5eUJHbmMXr16ac1uZmbGqampPHnyZL5y5YrQcct49uwZe3p6as3v7OzM3bp14xUrVohm30Xh0aNHOvcbxZxfLpdz06ZNtea3sLDgFi1a8Pfff8/Xr18XOnIFy5Yt07u98dtvv4mivaFKn/+BRCLh+Ph4HjNmDJ89e1boyBWcP3+epVKp1r/BxsaG27Zty3PmzOFbt24JHbmCzz77TOdy5OXlxb169eK1a9dW23EVfd25c4dtbW11/g0NGjTg4cOHC9LPq41cLucmTZrozO/p6clvvvmm6LbFxcXFHBoaqjO/q6srv/baa7xixQp+/Pix0LGVJk6cqDM7EXHNmjX5s88+4/3791frMWhthgwZolf2iIgIHjBgAO/YsUM0bS1m5tzcXNWcflwVNXFV8SEYULgIpkdbo9bNzY179Oghqs5ghfz8fPb29tbakJ0wYQL//fffQkcto7S0lGvXrq1zA1S/fn3+/PPPec+ePaI4YPPs2TP29fXVmVsqlXKTJk142LBhvHfvXsGznz59WmeDQzG4uLhwx44dedasWYIedGdmXrFihV6Zif6/AG3o0KG8c+dOQQ+8f/fdd3rnlkql3KhRIx4yZAhv375d0M4+fTqDFYNEIuH69evz4MGD+ddffxW0gafvgWvFEBsbyx988AGvXbtWsI7hK1eu6OwELj/UqFGD33vvPV69ejU/ePBAkNwvvfSSQZktLCw4MTGRv/zyS8G+l59++qlBmRXz+p133uGff/6Z7927V+2Z9W2kqa5HGjZsyIMHD+YtW7bw06dPqz3z4MGDDcrs4+PD3bp143nz5gnW2T5r1iy989rb23NWVhZPnDix2ovhVd2/f1+vAgyi5x0QH330EW/ZskXwTjh9tucymYybNWvGw4cP5z///FPwfSdm5hkzZujMHRMTI5qiP4V169ZpzWxlZcWtWrXiKVOmiKqNkJubyxYWFhpzOzk5cadOnXjBggXVVuCsD7lcznXr1tWau0uXLrx48WJBtinaaOvQt7e35w4dOvD8+fNFNb+ZmXfu3Kl1+W7Tpg3PmDFDNCcaKjx58kRjkb+Y2+7MzJmZmWpzK4qIR40aJej2UZPhw4drXFZq167NQ4cO5YMHD4ou97Zt2zTmjoyM5I8//ph37twpim2lKm0H2fz9/blfv368efNm0WwvFeRyOTdo0EBtbkVxy6pVqwTZx9ZFU6GonZ0dd+jQgRcuXCi6bQ8z8/bt29XmNjc354yMDJ42bZoo+/y19cHWr1+fR4wYIZoC//I0LSt+fn7cr18/3rp1q+i+m8zMt2/fZhsbmwq5LSwsuGXLljxjxgy+ceOG0DHV0nTiu4+PD7/99tuiXB8qDBgwQG326OhoHjx4MO/bt080B7nLGzNmjNrsioLiP/74Q3TbT4UrV66wubm52nV6x44dRVXwr46mYonAwEB+7733RFlopurrr79Wmz8oKIjff/99/u2330RVIFGepv1HJycnfuWVV0RXlF5eaWkpx8bGatzGiu1EBnU0/Q+sra2VhX5ia1uX17NnT7V/g6LITIyFfqru37/PDg4Oav+G2NhYHjJkiKgKtdTRdCzD0tKSW7duzTNmzBBl4bHCli1bNLZl4+LieMiQIaLej5g/f77G/NHR0Txw4EBRtsWZn9cvaGqrWFhYcGZmJk+ZMkXw4/7qaDuxWiaTcVJSEn/33XeiLPhWQOHif3QgFC7CC1D+6jVRUVE8cOBA3rVrlyg3QAqTJk0qk9vZ2ZlfeeUV/vHHH/nhw4dCx9No+fLlajdALi4u3KVLF16wYIEoz9YZO3asxp0WPz8/fuONN3j58uWi60Ro3769xtzm5uacmJjII0eOFE2hAPPzqxxFRERozK34nr7zzju8evVq0SzvDx480Hlmb0REBPft25d//vln0Swrly9f1losQPT8imhvv/02r1ixQjQHPzZv3qw1MxFxQEAAv/7667x48WLBrtpV3muvvaYzd3BwML/xxhu8ZMkSUVzRQ1uRgGJQFOIqrgQp9Nlyubm5bGVlpTN3WFgY9+7dm5cuXSr4MnLt2jWdV8IgIq5VqxZ/+OGHvHbtWsHXf1evXtU5n11cXLh9+/Y8bdo0PnPmjOAdjXl5eezj46Mxr5mZGSckJPCXX37Ju3fvFk3nurarGHl6enK3bt144cKFgi/HqkpKSjRe2dLf35979erFK1asEKwgW5P8/Hz28/OrkNnOzk55VUWxXeGCWXMRXVBQEPfr14/Xr18v+LpZk7fffrtC7piYGB44cKCorlhU3qpVqyrkjo6O5o8//ljUudV1CgYHB/N7770n2uIFhfInrXh7e3OvXr14zZo1ol2+mStebdFU2u779u0rk1vsV9hQePToETs7O5dp92ZkZPCUKVNEuf5WlZiYWGb/Oj4+nr/99ls+c+aM0NG0Kn+QrU6dOjxs2DA+fPiw4Pt+2mzcuLFCe/3jjz8WfX9g+UJRHx8ffuutt3jjxo2iuvqZOikpKcrcjo6OyivOiXldyMw8derUCuuUadOmia5Qvry7d++WWVbi4uL4s88+E2XhdnmffPJJmWVFcUVIMV3ZRp3i4mIODg4us0/76aef8p9//inaA/UKqsWiihMURo8eLfptEPPzdr6Hh4dyvterV4+HDx8u2oLi8vr161emfd+7d2/RXA1al4KCgjIXe6hduzYPGzZMFFfH18fTp0/Zzc1Nmb9u3br85Zdf8tGjR00iP3PZ/ceAgAB+9913+ddffxVNf5YuK1euLLONzczMFO2JDJokJSWV+Q6/+eabvGbNGlEX+qm6ePFimV9aqlGjBn/yySeiLjIr74svvlDml8lknJKSItqTA9Up30/j7u7OPXv25F9++UWUJ1GVV/6XA8zMzDgtLY0nTZrEly5dEjqeTsXFxRwWFlZmGUpKSuJx48bx+fPnhY6nU/kTCNzc3Lh79+6iuyqkOuVPrFacBL5kyRLRHEPXBYWL/9GBULgIVezJkyfs6enJzZs357Fjx4q6YltVfn4++/j4cHh4uCgvi6uJ6gFsiUTCDRo04KFDh4riyoTaPHr0qMwVMqysrDgzM5PHjRsnip9602T//v1qD6a+//77vG7dOtFdRVRh+vTpFXJ7eHhw165dee7cuYL95LYu6q465u7uzl26dOE5c+aI9iBZt27dNOb+4YcfRHkWjqYrt7q6unLHjh15+vTpfP78edF9N48cOcISiURt0VGXLl141qxZovkJLwW5XM6NGzdWW3gkpgK68nr06KGxWKp79+48f/580a1LNJ3ZGh0dzX379uUVK1bwnTt3hI5Zhrr5bGtry61ateKxY8fy4cOHRdfBNXLkyAqZa9asyR9++CGvX79elNvGa9eulSkQtbKy4oyMDB47dqyozzqfN2+e2n2nU6dOiTYzM/OECRPKdNZ+9NFHorqqoiY///yzsnMwJSWFx44dK/p5zfz8BApzc3O2tLTkli1b8pQpU0yiU1Mul3Pt2rXZ3Nyc09PTeeLEiXzhwgWhY+llyJAhovvpan0oTqSoU6cODx06lA8cOCC6bYw6T548YTc3N9H+pI02LVu2FN1PKetj5MiR7OLiwt26deOffvpJ1FeYUbVjxw62tbXldu3a8bx580R/VRaFe/fusaurK2dkZPDUqVNFt4+tieLgWtOmTU2mMEdhyJAhyivHmEIxlMKuXbvY39+f33nnHdEXyqsqLCzkuLg47ty5s0kUWaoaNmwYN2/enMeNG2cyB+6Zn69XYmJiRH1FSE0WLlzIzZo142+//ZbPnTsndByDfPnll9yqVSueOXOmqE6I08e0adM4LS2Np0yZYjLbIYUbN25wrVq1eODAgbxnzx6TWacr/PDDD5ySksITJ04UZR+yLhMnThTtT3DrY+fOncoTRkylWFSVXC7n5ORk7tq1Ky9btsxk9ttV/fHHH8qr0prid5j5+cmkiiItU+nXUPXw4UMOCAjgTp068eLFi02m2EnVZ599xtHR0Txo0CDevXu3qI+Xq/Prr78qr/K6bNkyk9pfZmZesGABOzo6cufOnU1uGVLUi9SoUYMHDx5sUsuPomA3PDyc+/fvz9u3bzeZontVL6JwUcLPC+NAxCQSiR8R5RIR5ebmkp+fn8CJwNTdu3ePiIhcXV0FTmKYmzdv0qNHjygyMlLoKAbZsGEDLV68mFq2bEkZGRnk4eEhdCS9DBs2jFasWEGZmZmUmZlJCQkJZG1tLXQsrZiZUlNT6fjx45Senq4cxL7ezMvLo/DwcHr06BElJiZSWloapaWlUVxcHEkkEqHjaXT9+nUKCwsjqVRaJndsbCxJpVKh42n0119/UZ06dcja2tqkci9atIi6detGNjY2lJCQQGlpaZSamkq1atUSde7MzEzasmULOTg4UFJSEqWmplJKSgrVqFFDtMv3ihUrqGPHjkREFBkZSSkpKZSSkkKJiYnk7u4ucDr1FMs1M5OXlxclJydTSkoKJScnU0hIiCjntWrmkJAQZd7k5GTy9vYWOp5aiszm5ubUtGlTSklJodTUVGrQoAGZm5sLHU+tu3fvUmhoKDk6OlJ6ejqlpaVRSkoKeXp6Ch1Nq7feeov27dtHGRkZlJGRQfHx8WRlZSV0LK2KioropZdeosjISMrMzKTmzZuLft+JiKi4uJjeffddqlu3LrVo0YICAgKEjqS3iRMnkr+/P6WlpZGDg4PQcfS2bds2evbsGaWkpJCtra3QcfR248YN2rdvH6Wnp5O9vb3QcfTGzLR27Vpq1rPi4AIAAQAASURBVKyZybWBDx48SF5eXqJvz5R37do1ysvLM7m2e1FRER0/fpzq1q0ryn0nbY4fP07R0dFkZmYmdBSDXLp0iby9vUW/jS/v7t27ZGFhYVLbHqLny/iDBw9Evx+ozu3bt02mP03VgwcPyMnJyeTWKQUFBSSVSsnCwkLoKAZ79uwZ2djYCB3DYIWFhWRhYWFyywrR8+yWlpZCxzBKUVGRSS7nRM/bcWLth9DFlLMTmX5+U17uiUw/f2lpKcnlcpNehkx1W6vqyZMnJtWvUd7Tp0/JwsLCpL8LN2/eJC8vL6FjGO3atWvk6elpst/lc+fOUXBwsEnmv3XrFuXl5VFISIjQUQx28eJFKi4uNrn+svKuXbtG/v7+iof+zHytsp+JwkUTgMJFABDCgwcPyNnZWegYBnn27BmdPXtW9IVc5Z07d45u3LhBTZo0MamOvv3791NBQQE1adLEpBpIW7duJUtLS2rcuLFJ5Z4zZw6FhYVRo0aNTGY5yc3NpUWLFlFKSgrVq1fPJA6kMjONGjWKAgICKDk5mXx9fYWOpJfvv/+e5HI5paSkUFRUlEkc7Jg3bx4RESUnJ1NgYKCwYfS0ceNGZdGiqXTQXbx4kUpLSyksLMwklguFe/fumVyBETOb1DwGAAAAAAAAAAAAAADQFwoX/6NQuAgAAAAAAAAAAAAAAAAAAAAAAABCeBGFi6ZzOSoAAAAAAAAAAAAAAAAAAAAAAAAAMHkoXAQAAAAAAAAAAAAAAAAAAAAAAACAaoPCRQAAAAAAAAAAAAAAAAAAAAAAAACoNihcBAAAAAAAAAAAAAAAAAAAAAAAAIBqg8JFAAAAAAAAAAAAAAAAAAAAAAAAAKg2KFwEAAAAAAAAAAAAAAAAAAAAAAAAgGqDwkUAAAAAAAAAAAAAAAAAAAAAAAAAqDYoXAQAAAAAAAAAAAAAAAAAAAAAAACAaoPCRQAAAAAAAAAAAAAAAAAAAAAAAACoNihcBAAAAAAAAAAAAAAAAAAAAAAAAIBqg8JFAAAAAAAAAAAAAAAAAAAAAAAAAKg2KFwEAAAAAAAAAAAAAAAAAAAAAAAAgGqDwkUAAAAAAAAAAAAAAAAAAAAAAAAAqDYoXAQAAAAAAAAAAAAAAAAAAAAAAACAaoPCRQAAAAAAAAAAAAAAAAAAAAAAAACoNihcBAAAAAAAAAAAAAAAAAAAAAAAAIBqg8JFAAAAAAAAAAAAAAAAAAAAAAAAAKg2KFwEAAAAAAAAAAAAAAAAAAAAAAAAgGqDwkUAAAAAAAAAAAAAAAAAAAAAAAAAqDYoXAQAAAAAAAAAAAAAAAAAAAAAAACAaoPCRQAAAAAAAAAAAAAAAAAAAAAAAACoNihcBAAAAAAAAAAAAAAAAAAAAAAAAIBqg8JFAAAAAAAAAAAAAAAAAAAAAAAAAKg2KFwEAAAAAAAAAAAAAAAAAAAAAAAAgGqDwkUAAAAAAAAAAAAAAAAAAAAAAAAAqDYoXAT4j7h9+zYdPXqUmFnoKAYpKCig4uJioWMAAAAAAABUiZKSEqEjGCUvL8/k2pNERMXFxfTgwQOhYxjl8uXLJjnPL1++TI8ePRI6hsHu3btHp06dMrl5LpfL6ddff6WCggKhoxjst99+o+vXrwsdw2AHDhygffv2UWlpqdBRDJKbm0s//fSTyX0/S0tLaebMmXTu3Dmhoxjs559/pt9++42KioqEjmKQkydP0rx58+jmzZtCRzEIM9OUKVPowIEDJJfLhY5jkEOHDtGiRYvo7t27Qkcx2I8//kg7duwwyT78H374gQ4ePGhyywsR0fLly2n//v0mmf3EiRO0Zs0aysvLEzqKUTZs2EBHjhwxuX1GhQ0bNtDp06dNNv+BAwfozz//NMlln+j5Mc9ffvmFnjx5InQUox0+fJj++usvk12GiIg2btxokttchRs3btCuXbtMtn+J6Hlb8M6dO0LHMNrRo0fp0qVLQscw2oEDB+j27dtCxzDK3bt36fjx4ya5Drpx4wbl5uYKHUOUULgI8B/h4uJCHTt2pICAAHrrrbdo/fr1lJ+fL3QsvdSuXZteeeUVWrZsmcl0rj59+pTmzJljcju+Dx8+pMePHwsdw2Cm2DFGRCbbuDbV3Ka4EwsAUFmmdkCd6Pl+1Pnz54WOYbDr16/TvHnz6P79+0JHMcjDhw+pb9++tHHjRiosLBQ6jt6Ymbp160ZDhw41uYNG48ePpzZt2tCsWbNMqiDgxo0bFBoaSu+88w5t3brVZIowzMzMKDs7m1JSUmjChAn0999/Cx1JbytXriQ/Pz+Ta8MXFBSQp6cnpaammtQ8d3R0pLZt21JoaCi9//77tHXrVpNYL0qlUlq2bBm5urpSTk4OzZo1y2SKAW/dukV+fn5Up04d+uyzz0ymGNDT05OaN29OXl5e9Nprr9Hy5cvp4cOHQsfSydfXl0aMGEFubm6UnJxMY8eONYnCBZlMRhcuXKDIyEgKDw+n999/n7Zs2WISxbqKdaGrqyu1a9eOfvjhB7px44bQsXSKiIig4cOHk7e3NzVo0IC++OIL2r9/v+i/nxKJhJ49e0YNGzYkLy8v6t69Oy1btswkTmCIjo6mjz76iDw8PKhJkyY0fPhwOnTokEn0wTk7O1NycjK5ublRhw4daO7cuSazj1tYWEgNGjQgX19fev3112nFihUmc/zB3NycGjdurFzWTWVbREQUEhJCffr0IVdXV2rRogVNnjyZLl68KHQsvZmbm1PdunXJz8+PevXqRatXr6anT58KHUtvRUVFFBMTQ6GhofTee+/R5s2bTWKbquDu7k7x8fHk7e1NPXv2pJUrV5rUMS0rKytatGgRubq6Unp6Ok2cONFk2ksKLi4uVL9+fQoICKC3337bpNqqCkeOHCFPT0+Kj4+nb775hk6cOCH6fWJVHh4e1LNnT/L09KRXX32VfvzxR5PY31F1/vx58vT0pGbNmtGoUaNMrhDNzMyMQkNDqUaNGjR48GCTKyS9d+8eeXl5UZMmTWjkyJF07Ngxk5n/Tk5O1K5dOwoODqZ33nmHNm3aZDLbMVtbW6pVqxbVrl2bPv/8c5M9CeWFYGYMIh+IyI+ImIg4NzeXAYw1f/58VixLRMTW1tbcpk0bnj59uqiXrfHjxyszm5ubc3p6Ok+ePJmvXLkidDStsrKyWCaTcWpqKk+bNo3/+ecfoSPp9PTpU/b19eW2bdvykiVL+PHjx0JH0svevXu5UaNGPH78eL527ZrQcfS2YsUKzsnJ4aVLl/LTp0+FjqO35cuXc1ZWFi9evJifPHkidBy9/fjjj9yxY0deuXIl5+fnCx1Hb7NmzeJPPvmEjx07JnQUg4waNYrXr1/PRUVFQkfR29mzZ3nJkiWcl5cndBS9yeVyXrx4Md+5c0foKAbZsGED79+/n+VyudBR9Hbu3DkeMmQInz59WugoBunXrx+/8cYbvG3bNi4pKRE6jl7kcjnHxsZy7dq1edSoUfz3338LHUkvcrmc69aty2ZmZpyZmcmzZs0yme9mjx49mIjYwcGBu3btyitWrDCJfZNly5Yp2wmBgYH8/vvv8/bt27m4uFjoaFo9ePCAHRwcmIhYIpFwkyZN+JtvvuEzZ84IHU2nV199VTnPHRwcuFOnTrxkyRJ+8OCB0NG02rBhQ5m2cI0aNfiTTz7hPXv2cGlpqdDxNHr69Cm7u7src9vY2HBOTg7Pnj2bb968KXQ8rbp27VpmnkdHR/PAgQN5586dov6OLliwoExuOzs7bt++Pc+dO5dv3boldDyNLl26xGZmZmWy16lThz///HPev3+/aJfzkpISjo6OLpPbzc2NX3vtNV62bBk/fPhQ6Iga9e3bt0xumUzGiYmJPGbMGD558qRo93N/+eWXMrmJiIOCgrhfv368YcMGfvbsmdAR1bp9+zbb2tqWyW1jY8PZ2dk8ffp0vnr1qtARNcrMzKwwz+vUqcNDhgzh3bt3i3YfvXw/suL72a1bN166dCnfu3dP6IhqPX36lD08PCp8PxMSEnjUqFH8119/ifb7OWHChArz3MvLi3v27Mk//fSTaNeJcrmcmzVrViF7vXr1+PPPP+e9e/eKdjkvKChgf3//MrnNzMw4KSmJv/32W1Gvz+VyOdepU6fCst68eXMePXo0nzhxQrTZmZknTpxYYZmJioriAQMG8G+//Sbq/kS5XM7x8fFlsltYWHBGRgZPnDiRL1y4IHRErdQtO7a2tpyTk8MzZ87k69evCx1Rpz59+pTJb25uzmlpaTx+/Hg+f/680PF0OnbsmMblf/v27aJe/hV69eplksebFR4/fsyurq5l/obAwEDu168fb9y40SSOH5XfV1O0R7799ls+ffq0qLcBzMyFhYUcGBhY5m8ICAjgvn37msz/oGPHjmXyu7i48Kuvvso//vij6PvJ5HI5N27cuEx+f39/fvvtt3nDhg2in//ll39bW1tu27Yt//DDD6LvLxs+fHiZ7J6envz666/zL7/8YjLH3HNzc1X/Bj+uipq4qvgQDChcBNNQXFzM4eHhFXaIFUPt2rVF2amdl5dXocNJNfPQoUP50KFDotsJ27NnT5msEomEExISeMKECaLuUB06dKgys5WVFbdr145//PFH0R+8btq0qXI+JyYm8vfff8+3b98WOpZWRUVF7Ofnp+xw79y5M69evZoLCgqEjqZVUVER+/r6KhukL7/8Mv/888+i35EtKChgLy8vJiK2t7fn1157jTdu3Cj6joAbN26wubk5ExHHxsbyyJEj+eLFi0LH0mnWrFnKAxv9+vXjPXv2iG49XZ7iO2lnZ8fdu3fnrVu3irZzXdWAAQPYzMyMc3JyeMWKFaJfhzAz7969m4mIIyIieMSIEXz58mWhI+kkl8u5du3aygMw48ePN4mTEg4cOKDcrnt7e/MHH3xgEkWj8+bNK7MfVb9+ff72229Fv6wsX768Qqdhamoqf//996LuNDlz5gxLJJIy2a2srLht27a8YMECvn//vtAR1SopKeHIyMgKbQRXV1fu0aMHr169WrQFGJ999pna9k1kZCQPHDhQtAV1p0+frrCsKA7wpqam8qRJk0T5PZXL5Vy/fn2189zDw4Nff/11XrVqlShPXvj222/V5pZIJNyoUSMeMWIEHzt2THTrdU3LimpnvhgL04qLizkiIkLjPG/cuDGPGDFClIUvvXv31tjf4+npyT179uSVK1eK7gRF1SJ0deuWpKQkHjt2rOgOvuXm5rKlpaXG7KrFgGJqK6srVlB30HnatGmiO2H4008/1ZibiDguLo4HDx4sugLp/fv3a83t4uLCXbt25cWLF/Pdu3eFjqukaT9LMUilUo6Pj+evv/6ajx49Kqrvp+pJ8OoGPz8/7t27N69atUpUBwfz8/OV/W3a1oljxowRXVHatm3btM5zNzc3fvXVV0VZ9Dpz5kyt2RXr8/Xr14uubbF27Vqt2QMDA7lv3768bt060WXPz89nHx8fjdkdHBy4Q4cOPHfuXFG2pXUt82IvQluzZo3W/IoTYPbt2yfKdumVK1fYwsJCY/6IiAju37+/qItgyxc8qQ6Ojo7cqVMnXrhwoWhPiL18+bLymIW6oVatWjxkyBBRF6+PGjVKY37FSYOzZs0SbTGvrmP+YWFh/MEHH/Cvv/7KhYWFQsdVS9s2WPV/cOPGDaGjqnXixAmN/R5mZmacnJzM3333HZ89e1boqGpt2rTJZOe/ruW/YcOGPHz4cD5y5Iio9pmZmR8+fMjOzs5qc1taWnKLFi146tSpomuPq0Lh4n90IBQuQhUqf/UATYOHh4eoOrU1HaxRHfz8/Pjtt9/mTZs2iaZoIzExUWPeRo0a8ZgxY0R3FaHbt2+zlZVVhbzW1tbcsWNH/umnn0R5QG/lypUVMstkMs7MzOS5c+eK9uyWsWPHqm2Y9uzZk7ds2SKqznZVY8aMUduh1L17d1EXA44YMaJCbjc3N37rrbf4999/F2VHDDNz9+7dK+Ru3LgxT5o0SZSdd8zMz549Yzc3tzKZQ0JC+LPPPhP1FevKd1j4+PjwRx99xH/99ZfQ0TT6+++/yzSQnZycuE+fPrxr1y7RNcoU5HI516tXr8y8bt68Oc+ePVt0BQyqyhfTSaVSzszM5IULF4rqgFd5zZs3r7AOCQ0N5c8++4xPnToldDy1CgsLNR60a9y4MY8fP16UbaOSkhIOCwtTm1txcsXkyZNF2emprdPczMyMMzIyePr06aIr2FV3NaDyHW3t2rUTXQHm3bt32c7OTmt2T09P7tWrF69bt05URS+dO3fW2TarVasWf/7553zw4EHRbIt0Hdglel6w26ZNG545c6ZoOmbLX3VR0xAYGMjvvvsub9myRTQHJcpfdVHT+iU1NZUnTJggmqvTLFy4UK9+E7FdjeDKlStaDx4qBsUvWUycOFEU/RGlpaUcGxur1zwPDQ3l9957j7ds2SKKfp/33ntPr9w2NjaclZUlmivQ6LM+VAyxsbE8aNAg/uOPPwTvn7h3757yisW6BmdnZ+7cuTMvWLBAFCe1tmnTRq/cUqmUmzRpwiNGjODDhw8Lvg1dunSp3suKr68v9+rVi3/55RfB+5J1FUSpDhYWFsqrdJ09e1bweT5t2jS953lgYCC//fbbvHbtWlH01SYlJem9nDdr1kw0Ra9FRUUcHBysV3Zra2tu3bo1T506VRQn68jlcm7YsKFe2a2srLhVq1aiyc7MPHXqVL2X9wYNGvCwYcP4wIEDoui/lcvlWo/9qA6Ojo7csWNHnjdvnmiu4K3txK7yg7u7O3fv3p2XL18uqj678le/1jQ4ODhwx44def78+aLYJ1DQVvBUfp3ZtGlT/vrrr0V3wlr5K1/qWoZ++uknfvTokdCxlZ48eVLh+IWmoV69evzFF1+IZh2koO8xf3t7e+7QoYOo1kPMz7fBQUFBev0N9evX52HDhvHBgwdF9T/o1KmTXvnDw8NFV1Ct7qqLuua/mC4kpe/y7+fnx2+99RavX79eFH03zBWvuqhpqFmzJg8ZMkR0JxKgcPE/OhAKF6EKabt6gKZBcZn7SZMmCXaVL0N2IIme/5xThw4deOHChYKexblx40a98tapU4dHjBghmmKet99+W2teW1tb7ty5M//888+iOVuzpKSEQ0NDtS7H2dnZvGTJElEVlzx8+JDt7e21Nur69u3LO3fuFNVOyYMHD7QebHd1deU+ffrwjh07RHVG3d27d9na2lpjbl9fX+7fvz//+eefotn5ZmY+evSoxsxSqZTT09N5zpw5ouo8YtZ8NSki4rp16/LYsWNFV7yjbRmJi4vj0aNHi3J/LDs7W23m0NBQ/uKLL0RTCKBKU7GRlZUVv/zyy7x27VrRNOIVCgoKNF4F2sbGhrt27cobNmwQ/KBueatWrdK6Xa9VqxaPHj1adGfxqSuSLz/Ex8fz5MmTRVVMN2PGDL32/5o1a8bjx48XzZW4Dx8+rFduiUTC8fHxPG7cOL506ZLQsQ3q5FRcAXPy5MmiWJcPHDhQ7/aNra0tt2/fnhcsWCD4VWpOnDihd27F/pUYTjBT/Jy7IdkbNmwoiisajh492qDc9vb23LFjR16wYIGgV+/SdtVFTYPqT0oL1Y4oKSkxuN9ELFcj0NWW1zTPP/74Y/79998F24dZsWKFwbnt7Oz4pZde4tmzZws2z2/cuKH2xE9dQ82aNfmTTz4R7GeCDSl0UR2cnJy4U6dOghYDfvHFFwbnVlyh9quvvhLsQKe++1nlB29vb37jjTcEO7HckMJi1cHc3JxTU1N53LhxfObMGUG2oYYURKkOoaGh/O677/KmTZsEObCp7mcT9RkUV2eZNGmSYO3/nTt3GjXPFUWvQl4Bc86cOUZlj4mJ4Y8//ljQq+ppu1qStqFGjRr88ccf844dOwTLru6nuvUZFD+hvmLFCkGLoHbs2FGpbZLQxR/r1683OL/qFcSEWr8r5Obmar3qoqb5r7iCuhiuwqVvwZPqoDh5SgxXgdX3xCnVQbGPIJaf9Ta0ra1YB73xxhui+FlXY475K74HI0eOFMUvCcyePdvg/4G3tze/+eabvGrVKsF/LfDkyZMG93uoXlVV6Cuub9682eD57+Pjw7179+Y1a9YIevKMrqsuqhtsbGw4Oztb8L4bbVdd1DQoLjr2888/C77ueRGFixJ+XhgHIiaRSPyIKJeIKDc3l/z8/AROBMY4cuQI7d27V1GMqlqYqvb2Rb72+++/07Zt24z+W7y9val27dpUu3ZtCg8PJzMzM5JIJCSVSsvcqnuuMq/NmDGD5s+fb3BeiURCMTEx1LhxY2rWrBkFBQWRhYWFXoPibzMWM1O9evXoyJEjer/Hx8eHGjduTAkJCRQZGUnW1tZkbW1NVlZWam/NzMyMzqfJhQsXKCIigvTZRtjZ2VFKSgoFBgZSgwYNyMnJiWxsbMjW1pZsbGwqDObm5pWap9pMnTqV3nnnHZ3jWVtbU1ZWFqWmphIRVchc/tbGxoZkMtkLyUxENGDAABo3bpzO8fz9/alTp06UlJREt27dIjs7O2U+dZltbW1faO4PP/yQJkyYoHM8Hx8fevnllyklJYXu3LmjzG1ra1smt2p2qVT6wnL369ePpk2bpnO80NBQ6ty5M6WlpdHly5fJ1taW7Ozs1N7a2tqSubn5C8tMRJSWlqZz3W1paUmtWrWirl27Uv369WnHjh1kb2+vHOzs7Mo8trCweKGZ//nnHwoMDKTi4mKN40gkEkpOTqZXXnmF2rdvT8XFxbR+/XpycHAoMzg6OpKDgwNZW1u/sHWIQu/evWnWrFk6M3fr1o3atWtHDg4OdP/+fVq3bh05OjqqHV7EulrVtm3bKC0tTes4TZs2pW7dutHLL79MLi4uRET04MEDWrt2rXL+ls/9IpfrwsJCCggIoNu3b2scx93dnbp06ULdunWjevXqKf/3Dx48oNWrVyuXD3t7+zK3dnZ2L2w98sUXX9BXX32ldRwPDw/q3Lkzvfrqq1S/fn1l7vv379Pq1au1rk/s7OyqfL6XlpZSVFQUXbhwQee48fHx1KVLF+rYsSO5u7sTEdHdu3dp9erVyn0STYPqPkpVzP9Hjx6Rv78/PXnyROe4EomEEhMTqVOnTtSuXTvy8PCg27dv0+rVq8nCwoIsLS3J0tJSeb/8rabnjPk7CgoKKDg4mG7evKn3exo1akQdOnSg9u3bk42NDa1atYrMzc2Vg5mZmdr72l5TN55MJtO6Dm3VqhVt3LjRoL+3Tp061K5dO2revDmdOnVKOR3FraH3jXnfDz/8QH379jUoNxFR/fr1KT09nczNzcnHx4fMzMxIKpWSTCYjqVRa5r6653S9ruu5e/fuUbNmzaikpMSg3DKZjBo3bkze3t5Up04dcnd3V7aZVNtPmu4bMq6m973//vu0f/9+g+e5ra0tRUZGUs2aNSkuLo7s7OyUbUBNg2o70ZhB9f2//vqrXvvd6ri4uFDNmjWpVq1aynYwESm/U/rcGjKu6m1eXh699dZbJJfLDc4tkUgoJCSEatasSTVr1iRPT0+jPsNY48aNo/Pnzxv1XltbW6pRowbFxsZSdHQ0WVlZEVHF/g5dzxnznu3bt9OmTZuMyk1EFBAQQDVq1KAaNWoo+/HK99moDvo8p884169fp7lz5xqd29ramqKjo6lGjRrK/ojy05TL5Wo7mSvzvFwup2nTphm8PlTl5+dHMTExFB0dTb6+vkREymmo3qp7rjK3mzZtomvXrhmd28bGhqKioigqKorCw8PJ2tpambN8XmOe0/T86dOnDeqrUicgIICioqIoMjKSvLy8KkyntLRUbR5DB9XPefToUaX6NImI7O3tKTIykiIiIigkJIQsLCw0Zq7Kx9u3b6f8/Hyjc0ulUgoODqaIiAiKiIggZ2dn5TxXnY66+7pe13b//PnzdPHixUrNcxcXF2XugIAAkslkRmUzZNyCggL6448/KpXbzMyMwsLCKDw8nMLDw8ne3t6geWfseKdOnarUeoWIyM3NjSIjIyk8PJz8/PxIKpVq/W7pel7fcbdt26a1D0gXmUxGQUFBFBkZSWFhYeTi4lIl6xFdQ1FRUaW2+0REVlZWFBYWRhERERQWFkY2NjYklxu2bjbmeblcTmvXrqXS0lKjs1taWiq/o+qyq9uG6npd3/ccOnRIr74KTaRSqXKZiYiIIBcXF7X7G+Vvq+q1lStXUkFBgdH5FdukyMhICgkJIXNzc437UOUfV8U4ixYtqtR31tXVVZk/MDCQZDKZ2gyGDvp+xrp16+jGjRtG53dwcKCoqCiKiIig0NBQMjMzUzsdoor74doGfcY/fvw43b17l06dOmV0fsV2SvE/cHBw0DuLuuf1ee6vv/4iuVyufP7YsWP08OFDo/8GNzc35f5kYGAgSaXSCtMtn0HTa9rGO3r0qHK5Un2+qKiI9uzZY3R+mUxGISEhyr9BsX+mT059Xj9y5Ihy/a7p/ZcuXaLLly8b/Tc4Ojoq2yMhISHK70H56WjLXf72yJEjyradrnFLS0vp999/Nzq/TCaj0NBQio6OLvM/0JVfQfW5w4cPU0lJicbX1T3HzPTnn3/S48ePjcovkUgoICBA2Zb18PAgiUSidbrl7x88eFBjbn3+hu3bt1NRUZFR+c3MzCg8PJxiYmIoJiaGHB0dy7yuOs3yjw8cOFBhG6RtfHWPz58/T2fOnDEqO9Hz4+6xsbEUGxtLfn5+Gvu/yk9XE33HIyJavny50esfCwsLSk5OpqysLGrTpg0FBgYa9TnGunbtGvn7+yse+jNz5RovRChcNAUoXPx3GDNmDA0aNEjoGGAE1UJGc3NzvYseFcOJEyfo0KFDLyyfTCbTWtiouNVnHNXbzz77jA4fPvxC8qoraKyKgZmpdu3aRu8gamNpaamxsLGyt/fu3aOoqKhKdTBpYmFhobWwUdNz+rzn9u3bFBcXp2yoViUrKyuNhY2antP39Rs3blB0dLRBO5D6sLCw0FqIpO9t+ecsLCxIIpHQhg0bqHXr1nrnsba21nlQxNzcvEwho7riRkOeU1cI+dprr9HChQv1ymxpaUmNGzfW2lCVyWQViho1FTlqG2xtbTUWJJ04cYLi4uL0ymxlZUU5OTnUsGFDGjBggMbxbGxslMWA6goE9Rm0FZoyM8XGxurV2WVhYUFt2rShbt26kaenJzVt2lTjuNbW1mUy6Mqu7nVFkYE6Q4cOpeHDh+vMTEQUHR1N3bp1o1deeYXu3LlD9evX1zq+nZ1dhcJGY+6XL5a9efMmBQQE6N2xGxERQa+++iq98sordO/ePWrYsKHO95ibm5cpjDZ2naJ6f8GCBfTRRx/plZno+XctPT2dunTpQr6+vjoLY8uztLTUu9BR2zB37lyDDzhKpVJKSUmhevXq0ejRow16b3kymcygQkfF/QMHDhh98CUyMpLOnj1bqdzaaCt+fPLkCd29e/eFTRsAAAAAAAAAAAAAAKpGXFwcZWVlUVZWFjVo0OCFXtSICIWL/1koXPx3QOEiAAAYw8zMTFl0+c8//wgdRyt1hZCPHz+mkydPCh2tAolEorWw8aeffnohRdCVYWVlpbVo8MCBA7Rr1y6DPtPBweGF/50WFhYaCxsLCgpo2bJlBn2eRCKhWrVq0dGjR19M4HKkUmmFgsYTJ07odRXA8mrUqCHK74Mu5ubmlToDHwAAAAAAAAAAAAAAAF4cd3d3at26NWVlZVF6ejrZ29tX+TRQuPgfhcLFf4dvv/2WBg4cKHQMAAAAAAAAAAAAAAAAAAAAAAD4F7KysqJBgwbRoEGDyNrauso+90UULppV9gMAQD+qPzEIAAAAAAAAAAAAAAAAAAAAAABQWTY2NpSRkUFZWVnUunVr8vT0FDqSXlC4CAAAAAAAAAAAAAAAAAAAAAAAAGAi/P39KSsri9q0aUPJyclkZWUldCSDoXARoJo0bNiQPv74YyJ6fvVFxRUYVW+r67nt27fTpk2bjPo7JBIJ+fr6UnBwMAUGBpK9vT3J5XJiZmJm5f3yt/o+p+21q1ev0rlz54zKrWBvb0/u7u7k4uJCNjY2VFxcTEVFRVRUVFTmfvmhpKSkUtOtSmZmZmRlZUUymYzkcjkVFBRQcXGx0LH0JpFIiJmFjgEAAABVyMzMjCwsLEgqlRIzU35+PsnlcqFjaeTg4EBOTk5kZ2dHVlZWyv3AwsJCKiwsVN5X7AsKzd7enjw9Pcnd3Z2cnZ1JIpFQcXExFRcXU0lJifJ++ceaXquOfVsXFxfy8/MjHx8fcnFxISKi0tJSKikpodLSUoPva3u9sLCQ8vPzK53Z2tqa/P39KSAggHx9fcnc3JzkcjmVlpaSXC4vc7+qnjt16lSl941dXFwoKCiIAgMDycvLi4hI2Y5SbVNpum/IuIr7J0+epFu3blUqt4eHBwUHB1NQUBB5eHgoc6sbVNuJxgyK99+4cYP27t1bqdxeXl4UEhJCwcHB5O7uXqZ9o+5W22v63paWltK8efMqtax4e3tTSEgIhYaGKnPro7LL58qVK+ny5ctGv9/b25vCwsIoNDSUPDw81PZzKGh7ztD37N69m7Zs2VLp3BEREeTu7k5SqVT52aqDuuc0Pa/Pc7m5uTR+/Hijc/v4+FB4eHiZ3IrPVr1f1c+VlpbSBx98QIWFhUbP74iICIqIiCBPT0+SSqXKz9d2q884um5HjhxJJ0+erFTuqKgo8vT0JJlMViab6lDVz//000+0ePFio3J7eHhQZGQkRUVFkY+PD8lkMrXTUh30GUef4fz58/Tee+8ZldvFxUWZOyAggMzMzNRmM/SxPuMQEXXo0IEePHhgcG5bW1tl7tDQULK0tFQ7nRd1f8KECbRy5UqDc5uZmVFoaChFRUVRVFQU2dvbG5yhMq9fvXqVunbtanBuoufb+sjISIqOjiYfHx/lsqJtmsbMX02vDR8+nDZv3mxwbnNzcwoPD6fo6GiKiooiGxubSi23hj5XXFxMOTk5lJeXZ3B2e3t7ioqKoujoaAoNDSVzc/MqWWfoO9y9e5c6d+5scG4iIicnJ2X24ODgMstLdazTCwsLqVOnTkZtQ62trZXrl4iICLKystK6jTT0vj7jTpgwgX799Vej5r2fnx9FR0dTdHQ0eXh4lPl8bdvvqnpNLpdTz5496enTpwZnl8lkZdaRjo6OaveZXuTjkpISevPNN6mgoMDg/FKplIKDg5XrG0U/ha6hfJ7Kjj98+HA6e/aswfmJnu/PKL67fn5+WqdFpH6fXdug6z0rVqygf/75h44cOWJUfgsLCwoLC6OoqCiKjIwkOzs7jdPVlEXfcVWfW7VqFcnlcuXz+/fvN2r/huj5+lPxHQ4MDCQzMzO1GVQfG/vamjVrqLS0lKTSsu2y/Px8+v33343KT/S8WEixHKlr9+m6r+v19evXU2lpqdr3KG7Pnz9PFy9eNCq/YjmKjo6miIgIsrW11ZpTW27V202bNin7HnV9TmlpKf32229G5Scq2zbx9/fXO7u62y1btlBxcXGF57W9h+j59+DJkydG5bexsVG2CUNCQsjS0lLjNDXd37Ztm7JOQNe46h7v3r3b6P5vW1tbioiIoPDwcAoODiYLCwut01J9vGPHDioqKqrwennaPi83N7dSfU6KPpCwsDByc3NTfod10ZVZn3E2b95MBw8e1Gt66jRs2JCysrIoKyuLatasqVcmMUPhIkA1ad68OTVv3lzoGFRaWkpz5swx6D3Ozs7UqlUrysrKohYtWpCjo+MLSqddSkqKwYWLlpaWlJycTG3atKFWrVpRcHCwUdOWy+UVChu1FTqqDqNGjaLDhw8bNV2i5xv95ORkysjIoMzMTAoPD6+w8SktLaWCggIqKCig/Pz8KrndvHmzUY3u8nx8fCgtLY3S0tIoJSWFfH19qbS0lPLz8+nZs2dVOuTl5VVqB6W84OBgSklJoZSUFEpKSiIXFxfldKry9smTJ/T48eMqy+3i4kJJSUmUnJxMycnJFBYWVmYeabuv73PPnj2jx48fG90oVcfT05NSUlKUuX18fDTON0339Xn9yZMn9OzZsyrL7eDgQImJiZSUlETNmjWj4OBgys/Pp6dPn1JeXp7WW33HeVEFJuHh4ZSQkEANGzakWrVqkZWVFT158oSePn1KT548UQ7lH2sbp7S09IVkVSWVSql27dpUr149iouLo5CQECopKaHHjx8bNBjTMVdZLi4uVKdOHYqJiaGQkBBydXWlJ0+e0KNHj3QOT548EazwWzV3aGioxtyPHz9W+5wQBWxOTk7UqFEjqlu3LsXExJCfnx8VFBQo//+Kda+u+48ePaqWIi8bGxtq1qwZNW/enBISEqh27dpUUlJSZp2ga32h7lZx/+7du1W67vPx8aHk5GTl9iYkJKTM/gkzU3FxMeXn55cZFPsa+g4//fQT3blzp9J5w8PDKTU1lVJTUyk5OZlcXV31fq/ibylf0KiuyFHx3Ntvv03//POP0XkdHR0pNTWVMjIyKD09nUJCQoz+LHUUhVDlCxrbt29Pu3fvNuozXVxcKD09nVq0aEEZGRnk4+NTpZm1+fTTT2nUqFEGv08ikVCjRo2oZcuW1LJlS6pXr57eHVRVYfv27ZSSkmLw+6ytrSk1NZVatWpFrVq1osDAwBeQTrO8vDyjlkl7e3tKT0+n1q1bU8uWLcnb2/sFpNOuW7duBhcu2tvbU0ZGBrVp04ZatmwpyE+s/PjjjzR37lyD3mNnZ6f8aRihcl+/fp0mT55s0HtsbW2VuVu1aiVIbrlcTrVq1TLoPTY2NpSenk7Z2dmC/hRPnz59DBrf2tqaMjIyBM89f/58gwourKyslPO7TZs2yqLt6nbmzBk6deqU3uNbWFhQamoq5eTkUJs2bcjX1/cFptOsqKjIoOI/MzMzSkxMpJycHMrOzq727Y4qQ4otFdv5tm3bUk5ODkVFRb3AZNotXbrUoP6T6OhoysnJoZycHGrYsGG17p+oevDggUFF3G5ubpSdnU05OTmUlpZGNjY2LzCddgsXLtR7XJlMRklJSaJYxq9fv07bt2/Xe3xvb2/lspKcnFzmYHd1mz59ukFFizVr1lR+P+vUqSPowdZBgwYZNH79+vWV8z02NlbQ7FOmTDFoGxoWFqbM3rRpU5LJZC8wnXa3b9+mPXv26D2+Yvuv2I4K/dOHixcvNuj4iaurK7Vp04ZycnIoPT2d7OzsXmA63WbPnm1Q36iTkxO1bt2acnJyKDMzkxwcHF5gOt1OnDhhUNGiYn8mOzubsrKyjD5WWFV69uxJ6enpBr3Hz8+PsrOzKTs7m5KSkgRZ5/fu3Vt5/9SpUxQbG6v3eyUSCTVu3JiysrIoOzubYmJiqm392bdvX7XPf/bZZwYVLiraq9nZ2dSqVSvlSZgviq599sLCQgoLCzPoMwMCApTfg8TExBeyHPXv31/vcSdNmmRQ4eKL/C4rLkBliKNHj1KdOnUMek9sbKzye1AV+/qffvqp0e/duHGjQfueRES1atVSFszVr1/f6PxffPGFUe9TKC0tpRo1ahj0HltbW8rMzFT2Ob3o77Am+fn59MMPPxj0HkW/k+InoIXqB3lhKnPGOobqGYjIj4iYiDg3N5cBKmPJkiWsWJ60DWFhYdy/f3/esWMHFxcXCx2bf/vtN71yExH7+vpy7969ec2aNfz06VNBc589e5ZlMpne2RVD3bp1+ZNPPuHt27dzYWFhtec+fPiwwZkVg6OjI7dt25YnT57Mp0+fZrlcXm25ly9fbnRuImJvb29+5ZVX+IcffuCLFy9WW+5JkyZVKre9vT23adOGv/vuOz5y5AiXlpZWS+5x48ZVKreLiwu3a9eOp0yZwqdOnaq2ZWX8+PGVym1jY8OZmZn8zTff8J9//lkt68jCwkL+4IMPKpWbiDg8PJx79erFixcv5uvXr1d5Trlczs+ePeNbt27x33//zUePHuXIyMhK5zY3N+dmzZrxp59+yps3b+YnT55USd7CwkK+e/cu//3333zkyBH+/fffee3atfzJJ59UOrNiCAgI4FdffZVnzpxZ6XViaWkpP3z4kK9cucLHjh3jnTt38rp163jx4sU8depUdnBwqLLcISEh3L17d549ezafOXOmUrnlcjk/fvyYc3Nz+eTJk7xnzx7euHEj//jjj5yQkFBlmf39/blr1678/fff84kTJ6psXSiXyzk/P59v377NFy5c4OnTp1dJXkdHR27Tpg2PGTOG9+3bx0VFRVWSV53S0lJu0KBBpfJ6eXlxly5deMaMGXzu3LlqWWcfP36cpVKp0XlfeeUVnjNnDl+5cuWFZ1W1bt06g/PKZDKOj4/nL7/8kvfu3SvI/vcff/xhUGapVMqNGzfmYcOG8b59+7ikpKTaMzMz37p1i21sbPTO7e7uzq+++iovWbKE7969K0hm5ufrlmbNmumdOzQ0lN977z3etGkT5+fnC5abmXnMmDF6546IiOAPP/yQf/31V0HaNapOnz6t9zolLCyMP/jgA1HkLikp4aioKL1yBwcH83vvvcdbtmzhgoICQXMzM7/zzjt65Q4ICOB+/frxxo0bBV++mZl/+uknvXL7+vryW2+9xevXr+dnz54JHZuvXLnC5ubmOnN7e3tz7969ed26daLIXVxczGFhYTpze3h48BtvvMGrV6/mvLw8oWMzM3O3bt105nZxceHXXnuNV6xYwY8fPxY6MjMzz5o1S2due3t7fvnll3nx4sV8//59oSMzM/O5c+d0rsctLS25devWPHPmTP7nn3+EjszMz/fFY2JitOaWSCTcrFkzHjNmDJ89e1boyErDhg3Ta5v50Ucf8c6dOwXbHywvNzeXLSwstOa2s7PjDh068KJFi0SzjDMzv//++zrneUxMDH/66ae8f//+ausD1KWoqIgDAwO15pbJZJycnMwTJkyo1n5XXe7cucO2trZas5ubm3NmZiZPmzaNr127JnRkpYKCAvb19dW5zDRu3Ji//vprPnnyZLX21esyaNAgndnd3d359ddf51WrVolm+8/8fB9dnz7P8PBw0a0jmZ9/Z4OCgnTmDwkJ4Q8//JC3b9/+QvutjPHyyy/rzO/k5MRdu3blpUuX8oMHD4SOXMbu3bt15icirlevHn/55Zd8+PBhUX1/mZk7d+6sM7+NjQ23bduWf/jhB75586bQkcu4d+8e29vb6/wbfH19+e233+YNGzaIor2q6vvvv9drOWrYsCEPHz6c//rrL1EtR/n5+ezj46Mzv7OzM7/yyiu8bNkyfvjwodCxy3jppZd05jc3N+e0tDSeOHGiqPaB5HI5N2zYUGd+CwsLzszM5ClTpvDly5eFjq2kb82Lv78/9+3bVzR9Tsz6H6f28/MT5fonNzdXNacfV0VNXFV8CAYULoJp0HbAQyqVckJCAo8ZM6bai810kcvlWgsbJBIJN2nShEeOHMlHjx4VVXZ9Gk9Ezw8cdO/enZcsWcK3b98WOjanp6frlVuxw5KcnMwjR47kffv2CVboWlhYyKGhoXrnJnp+AKF9+/Y8depUwZb7hw8fsqurq0G5ra2tOSMjg0eNGsX79+8XZJ7fv3+fnZ2dDcqtKLAcN25ctRZYVja3paUlp6Sk8PDhw3nXrl2CHLzOzc1la2trg3ITPS9yeOONN3jRokWC7EOsWbPG4MyKeZ6YmMhDhw7lbdu2VWvHpFwu59TUVKNyExFHRkZyr169eOHChdXaiNO3kaZpO1qrVi1+5513+Mcff3whRa3qXL161ajlWjHExMRwnz59qnVey+Vybty4sVF5PTw8uEOHDjxp0iQ+evRotXZYL1682OC8np6e3KlTJ54+fXqli1eN1bp1a73zOjg4cHZ2Nk+aNEnQgzGlpaUcFxenV+bw8HDu27cvr1q1SvBON7lczvHx8Toz+/j4cM+ePXnZsmV87949QTMrfPjhhzrXcY0bN+Yvv/yS//zzT9Ec3N20aZPW3BYWFpyens7jx4/ns2fPiqaN8/jxY637rorcEyZM4PPnzwsdt4wuXbpozG1mZsYpKSn83XffiapghFn7OlzRjh89erToDkRfu3ZNY9GI4ns5cuRI0R040bUer1evHg8bNowPHTokqtzMzG+99ZbG3LVr1+bPP/+cDxw4IJr1oMLChQu17u8NHjyY9+zZI6qD/czM58+f11hEFxoayv379+fff/9dFCcDqyoqKuLg4GC1uf38/Lhv3768efNmwYu21enZs6fa3Iri0JUrV1bZSW5VSVMxtJWVFWdlZfEPP/zAt27dEjpmBY8ePWInJye12Rs2bCjKIiiFd999V21uLy8v7t27t+gO/CncvHmTrays1G7v4+PjeezYsaLbv1L44Ycf1M5zW1tbbt++PS9cuFA07YfyhgwZoja7o6Mjd+3alZctW8aPHj0SOqZamgpWxFjEXZ62gtHIyEgeOHAg7969W3Tbf4WlS5dq3M9t1qwZjx49ms+cOSN0TI3mzJmjdT/966+/5hMnTohyHc/MfPLkSZZIJGr/huDgYP7ggw/4t99+E12xpaqMjAyNbeqWLVvy999/L+qagFOnTmn8H/j4+HCfPn1Ec6KUJp999pnGdkjdunVF2+5TKCws5ICAALX5ra2tOSsri2fNmsU3btwQOqpGkydP1vg/iIiI4AEDBoiyTaVw9OhRjfldXFz41VdfFWWxpcKGDRs05ndzc+MePXrwypUrRXMCnipdJ/kqinXFVjfCzPzs2TP28vLSmL1Bgwb81Vdf8ZEjR0SXXQGFi//RgVC4CFWkfGPK3t6eO3TowAsWLOA7d+4IHU+jrVu3VlhpOzk5cefOnXnhwoWizX7o0CGNGx0rKyvOyMjgsWPH8vHjx0W14dmyZYvG3IrGa7169XjgwIG8ZcsW0ZzpOHHiRK25iZ6fTd26detqvzKhNoMHD9aZ28LCgpOSkvjLL7/knTt3iuIAwkcffaQzt7W1NaenpwtaYGlMbnNzc46Pj+ehQ4fy9u3bRdGZ3b17d525FR0zr7/+Oi9YsICvXr0qaOaioiKOiIjQK7e1tTWnpKTwl19+yTt27BB0nq9evVqvzIr1YZ06dfi9997jFStWCHbWaF5eHvv5+emd28LCguPj43nw4MG8fv16wc441lZAUn4wMzPjhg0b8oABA3jVqlWCbfsNKRD18/PjV155hWfMmCHoSSH5+fkaO7FUB3d3d+7YsSNPmzatWq+Cq8mOHTu05lUUlQt94kR5ixYt0pjZycmJO3TowDNmzBDV2bXMzBs3btS4vkhNTeUxY8bwsWPHBF8uyrt27RpbWlqqXZ5fffVVXrx4sSjbCnK5XO1VUP38/Lh37968atUqURZeMDN//fXXFXL7+Pjwm2++yb/88otoc6s7sOXu7s7du3fn5cuXi7YTWd2VXBwdHblz5868aNEiQa8aqkv5qy3a2tpyu3bteM6cOaK70oaqlStXlsltZWXFrVu35hkzZojqCkvlXb16tczVFs3NzTkjI4OnTJlS7VceNkT5ZVwmk3FSUhKPGzdOtMU5CqpFdIqD/KNGjRJtIZfC3LlzyyzjtWrV4qFDh4r6oCwz88WLF8v8ooniClBi+aUYTeRyOdeqVUuZ29XVlXv06MG//PKL4L8So4vqNt/CwoJbtGjB06dPr7YT3Yx148aNMsV/0dHRPHjwYN67d68o+gG1+fjjj8v0k+Tk5PCcOXNEcZK7NsXFxRwSEqLMrigQXb9+vSj61LS5f/9+mV+vCAgI4HfffZd//fVXURc8MVcsWHF1deXu3bvzzz//LPr1C3PZglGJRMLx8fE8ZswYURf7KZS/kq7iinJz5swRZSF6ecXFxWUuAGFtbc3Z2dk8e/Zs0Ra6lqfap2gqxZaq9u7dW2Z/TFEg9PPPP4u2TV1e165dy/wNtWvX5qFDh4ryRCl1yq//LS0tuVWrVqIvGFU1Y8aMMv8DLy8v7tWrF69Zs0Y0x221KX+1RalUys2bN+dvv/3WJLYFzMzt2rUr8z+IjIzkjz76iP/44w9Rt1GYn7dTGjVqVCZ/jRo1ePDgwaI+cUCh/HEaGxsbzsnJMYltWfmrLSqyi73QWBUKF/+jA6FwEapASUkJx8TEcEBAAL/zzju8efNmUfx0lC5yuZybNGmi3GAOHDhQ1GdXqMrMzCyz4YmLi+MBAwbw5s2bRXuWUWlpKdepU6fCwciwsDB+6623eMWKFaI8OPbgwQO1V36xsrLi1NRUHjlyJO/du1d0HU5XrlxReya1mZkZN23alIcMGcK//vqr6JaXixcvqr16ioWFBScmJvKwYcP4jz/+EN06RlNumUzGjRo14sGDB/PmzZtF17l3+PBhjWcvBgYGco8ePXjevHmiukQ7s/ZiYltbW87IyOCRI0cKdhVLdQoLC7X+TJ25uTk3bdqUBw0aJGjBX3lffPGFxsxEz69E16JFCx45ciT/8ccfojhwoOvnUGxsbDg1NZWHDRvG27ZtE8X3Mi8vj/39/TVmDg8P5zfeeIPnz5/Ply5dEk1H6TfffKM2r5ubG3fo0IGnTJkiuo5ddUVdUqmUGzRowIMHD+atW7eKbtvI/HwdonoFIzMzM05ISOCvvvpK0J9S1qX8/l9YWBj369eP165dK/oO87ffflt5oKJRo0aiu6qiJoorEstkMk5ISOBRo0aJ7qpz6jx69IidnZ2VB4aGDx8uyp+rUkdxJfzatWvzZ599xnv37hXtd1KVohg6MjKSBwwYwDt27BBdm0YdxdUWFT8BvWnTJtG1DdQpLS3lmjVrsqenJ7/55pui+kliXfr27csuLi7crVs3/umnn0R7ZajylixZwvb29tyxY0detGiRaK/GVd7FixfZ3t5eeRUTsR8YUSguLuaYmBhOSUnhiRMn8qVLl4SOpLfevXtzgwYNeMSIEaI7AVib1atXi/oKnJo8ffqUw8PDuWvXrrx8+XKTWacwPz9htWnTpqL72W1d7ty5w0FBQdyjRw/R/SSuLgsWLDCpAlFVw4YN4zp16vCwYcNEfVUbdWbPnm2S6xfm5wVDXl5e3LZtW547d67oi3PL++mnn9jT05N79erFa9euFWX/hDbz589nDw8PfuONN0xqf1fh9OnTbGdnZ3LFlqpatmzJ0dHRPGjQIN61a5dJtE1VnTlzhq2trTkzM5OnTp0q6hOlNBk6dCi7u7tzz549TapgVKGwsJADAwO5Vq1a/Nlnn5lEX1h5U6ZMUbYFFy5cKMpjz9r89ddfbGZmxomJiTx27FiT2u9kfn4Su5mZmfInrP/++2+hI+mtpKSEo6Oj2dfXl9966y1ev369yWyLFVdbNMXsql5E4aKEnxfGgYhJJBI/IsolIsrNzSU/Pz+BE4Epun//Pl27do3i4uJIIpEIHUdvubm5tGbNGmrdujUFBQUJHUdvO3bsoI4dO1J6ejplZmZSeno6+fj4CB1LpyVLltArr7xCHh4elJaWRqmpqZSamkqBgYFCR9Nq8ODBNHr0aDIzM6NGjRpRSkoKpaSkUOPGjcnKykroeBq99tprtHDhQpJIJFS3bl1l7vj4eLKzsxM6nkZdu3alpUuXkkwmowYNGihzN2nShGxsbISOp5Eit0Qiodq1a1NKSgolJydTQkICOTg4CB1PLWam1NRU2r59OxER+fv7U3JyMiUnJ1NSUpJo14v379+nsLAwevDgAREROTg4UHx8PCUmJlJiYiLVrVuXzM3NBU5Z0bhx42jAgAHKx9bW1tS0aVNq3rw5JSQkUKNGjUS3jOfm5lJkZCTl5+crn/Py8qKEhATlEBcXRzKZTMCUZcnlcmrUqBEdPHhQ+ZybmxvFx8dTQkICxcfHU506dUS3jIwYMYI+//xz5ePY2Fhq3ry5cvkQ43b+zp07FBYWRo8fPyYXFxdKSkqipKQkSk5OppiYGJJKpUJHVGv58uXUqVMnioqKotTUVEpLS6PExERydnYWOppWU6ZMocmTJ1N6ejplZGRQUlKSaLcvqjZt2kTTpk2jzMxMyszMpLCwMKEj6eX+/fv08ccfU2pqKmVkZJCbm5vQkfQ2fvx48vHxoYyMDNEv16r27NlDf//9N7Vo0YLc3d2FjqO3vLw8Wrp0KbVo0cLk+lPWrVtHkZGRFB4eLnQUgxw/fpyInm8rTan/4f79+3ThwgWqX7++aLeR6jAzHThwgOrWrUtmZmZCxzHI2bNnKSgoiCwtLYWOYpB//vmHHBwcyNbWVugoBnn27BkVFhaa1LZH4c6dOya17VF48OABOTk5mdS6kOj5smJubi66Npk+Hj9+bBL74OXl5eWRlZWVqNru+nr48CE5OTkJHcMo9+/fJxcXF6FjGOXOnTvk5uZmcusXoufLjKWlJVlbWwsdxSjXr18nb29vk9pfVHXlyhXy9/c32fw3btwgJycn0fXR6qukpIQuX75sMn0v6ly9epWcnZ3J3t5e6ChGO3nyJEVFRZnkdpfo+fbryZMnoj92q83x48cpMjKSLCwshI5ilHPnzpGbm5vJ7kccP36cAgICyNHRUegoBrt37x5dvXqVateubXL7QVevXqV79+6ZZHZV165dI39/f8VDf2a+VtnPROGiCUDhIoDpuXPnDrm6uppc42/VqlUUGhpqUgeYCgoK6Ouvv6amTZuKvuBP1a1bt2j06NGUmJhIzZs3N5kDBzdv3qRx48ZRUlISJSQkmEzj9MaNGzR69GhKTk6m5s2bm0xj4uDBgzRx4kRloWJwcLBJfDe/+uorOnjwICUmJlJSUhLVqlVL9AdR79y5Qw0bNlQWoyUkJFDdunVF33Du2rUrHTx4sEyhYkhIiKiXk/nz59MXX3xRJnNUVJSoM9+6dYs6depE9erVo+bNm1N8fDy5uroKHUunVatW0ZUrVyg5OZliY2NNZr9k586dFBISQr6+vkJHMciDBw9MZnuuiplF/f0DAAAAAAAAAAAAAADhoXDxPwqFiwAAAGBKTLEI5tmzZ2RpaWlSZ1kyM92+fZs8PT2FjmIQU70CBgAAAAAAAAAAAAAAAMB/1YsoXBT3pW8AAAAAwOSYWtEiEZnkz4tIJBKTK1okIhQtAgAAAAAAAAAAAAAAAACZxm+FAQAAAAAAAAAAAAAAAAAAAAAAAMC/AgoXAQAAAAAAAAAAAAAAAAAAAAAAAKDaoHARAAAAAAAAAAAAAAAAAAAAAAAAAKoNChcBAAAAAAAAAAAAAAAAAAAAAAAAoNqgcBEAAAAAAAAAAAAAAAAAAAAAAAAAqg0KFwEAAAAAAAAAAAAAAAAAAAAAAACg2qBwEQAAAAAAAAAAAAAAAAAAAAAAAACqDQoXAQAAAAAAAAAAAAAAAAAAAAAAAKDaoHARAAAAAAAAAAAAAAAAAAAAAAAAAKoNChcBAAAAAAAAAAAAAAAAAAAAAAAAoNqgcBEAAAAAAAAAAAAAAAAAAAAAAAAAqg0KFwEAAAAAAAAAAAAAAAAAAAAAAACg2qBwEQAAAAAAAAAAAAAAAAAAAAAAAACqDQoXAQAAAAAAAAAAAAAAAAAAAAAAAKDaoHARAAAAAAAAAAAAAAAAAAAAAAAAAKoNChcBAAAAAAAAAAAAAAAAAAAAAAAAoNqgcBEAAAAAAAAAAAAAAAAAAAAAAAAAqg0KFwEAAAAAAAAAAAAAAAAAAAAAAACg2qBwEQAAAAAAAAAAAAAAAAAAAAAAAACqDQoXAQAAAAAAAAAAAAAAAAAAAAAAAKDaoHARAAAAAAAAAAAAAAAAAAAAAAAAAKoNChcBAAAAAAAAAAAAAAAAAAAAAAAAoNqgcBEAAAAAAAAAAAAAAAAAAAAAAAAAqg0KFwEAAAAAAAAAAAAAAAAAAAAAAACg2phs4aJEImE9hx1VNL0uEolki0QiuSmRSAokEskViUSySCKRNKmKzweoSlevXqXHjx8LHQMAAAAAAABUMLPQEYxWVFQkdASjPHnyxCTn+7Nnz+jJkydCxzDKhQsXTHKenz592iTn+eXLl+nMmTMmN8+fPXtGGzZsoPz8fKGjGOyXX36hK1euCB3DYNu3b6c//viDSkpKhI5ikIsXL9LixYvp7t27QkcxiFwup2nTptGxY8dM7vu5efNmWr9+PT179kzoKAZ59OgRTZs2jS5fvix0FINt3bqVtm3bZnL7W8xMixcvpgsXLggdxWAlJSW0dOlSun37ttBRjLJ27Vq6c+eO0DGMcuzYMTp79qzJrRsVdu3aZdLH3/bu3UsFBQVCxzDaiRMn6NGjR0LHMNrDhw/p3LlzQseolNOnT9PTp0+FjmE0uVxOhw4dIrlcLnQUo129epX++ecfoWMYjZlp//79JtcuUXX06FGTXhcdOHCA8vLyhI5hlOvXr5tke5yI6MqVK3Tv3j2hY4iSyRYuVheJRGItkUjWE9ESIkonIk8isiSiACJ6hYh2SSSSLwSMCFBBQUEBeXp6Unp6Ok2aNIkuXbokdCS9HDt2jDp16kQ//vijSTX8bty4Qbm5uULHMFhpaanQEcAEmGoHEgDAf52prr9v3bplkp0+T58+pblz59L9+/eFjmKwb775hhYuXEgPHz4UOopB1q5dS2+88QatW7fOpA66PH36lJKSkmjo0KF0+PBhk/quDh48mLKysuiHH36gW7duCR1HbydOnKCwsDD68MMPafv27VRcXCx0JL1YWFhQo0aNKDMzk6ZOnUpXr14VOpLepkyZQiEhIfTuu+/Sli1bqLCwUOhIerl+/Tq5ublRZmYmTZkyxWQKX5ydnalJkyYUHh5OH3zwAf36668mUfhiY2NDU6ZMIVdXV8rKyqLp06ebTN/K1atXKSgoiGJjY2nQoEEmUwzo7e1NycnJ5O7uTp07d6YFCxaYRNFLYGAgff311+Th4UFNmzalESNGmMQ2VCqV0q1bt6hWrVoUEBBAffr0odWrV5vEgf6QkBDKyckhV1dXatWqFU2ZMoUuXrwodCydHB0dacuWLRQcHEw1atSgjz/+2GS2/f7+/pSRkUGurq7Url07mj17Nt24cUPoWDpJJBLKzc2l8PBwioyMpA8//NBktkNmZmb0+++/k5eXFzVq1IiGDx9uEusWhSNHjpCnpyc1adKERo4cSUePHjWZ7HZ2dhQbG0sREREmtcwoHDhwgNzc3Cg9PZ0mTpxIf//9t9CRDPLrr7+Sq6sr5eTkmMy6RtU///xDbm5ulJqaShMmTDC5wml7e3vKycmhiIgIGjBgAO3YscMktlOqrly5Qq6urtSiRQuaOnWqyRUQSaVSGjt2LPn6+lKvXr1o9erVJlfAZWlpSeHh4dSgQQP68ssvTWr7RfR8/2HJkiXk7u5OXbt2pSVLltCDBw+EjmWQS5cukZubG6WlpZnktkCxLWvdujV9//33JtMWJ3q+H1GnTh2Ki4ujTz/9lPbs2WMyNQ8SiYT8/f0pISGBRo8eTadOnTKp7+4LxcwmORAR/2+YRkSxWobgSk5nqcq0fiOiHCJqQESvE9EFldd6v8C/1U8xndzcXAbQR7du3Vhl+eQaNWrwoEGDeNeuXVxSUiJ0PI0SExOZiNjCwoJbtmzJM2fO5Js3bwodS6vHjx+zs7MzN2vWjCdOnMg3btwQOpJejh49yomJiTxjxgy+d++e0HH0tm/fPu7e/f/Yu+/wpsr3f+DvtE13S3fpnrSlgwKF7kKhtBTaUjZCmaIioiCIIKAiW7YoICJDUAQEkb1l76UICsheyoZCgc7cvz8w+SVtkiah9Jx8vvfrup6rGSfJuycn5zznOXdOetC2bdtEvSyXd+HCBWrbti2tXLmSnj9/LnQcnT179oxatGhBX3zxBf37779Cx9GZTCaj3r1707Rp04zmMyk3btw4o1tOiIgWLVpEly9fFjqGXsrKymjHjh1GtS4hInr06BFdvHhR6Bh6u3z5Mp0/f17oGHo7ePAgrVy5kgoLC4WOopetW7fSa6+9RuvWraPi4mKh4+js9u3b5ODgQK1bt6alS5dSQUGB0JF0lp2dTWZmZpSRkUHffvst3b17V+hIOlm9ejUBIDMzM2revDl98803dPv2baFjVaqoqIh8fX0JANna2lKHDh1oyZIl9OjRI6GjVeqzzz5T7Kf5+PjQu+++S9u3bxf9Z/XKlStkZmZGAEgikVBiYiJNnDiRzpw5I3S0SjVr1kwxzx0dHSkvL4+WL19O+fn5QkfTav78+Sr79XXr1qVPPvmEjh49SmVlZULH0+iff/4hS0tLRW47Oztq3749LVq0SNTrRplMRklJSSrzPDIykj766CPav3+/qPuMY8aMUcltZ2dH7dq1o4ULF4p6nX7kyBGV3ACoTp06NHz4cFHP82fPnpGnp6dKbgcHB+rUqRMtXrxY1Mt5+fFCiURCcXFxNGrUKDp27Jho1y0rVqyosKx4eHjQ66+/TitXrhTt+vzhw4fk4OCgktvc3JyaNWtG06dPp3PnzpFMJhM6plq9evWqMM9DQ0Np4MCBtH37dioqKhI6olonT56skNve3p7atWtH8+fPF/UYUdeuXStkr1u3Lo0YMULU68QnT56Qq6urSm5bW1tq06YNzZs3j27evCl0RI2uXr1K5ubmFdYtvXv3plWrVtHjx4+FjqjRo0ePyNHRUSW7l5cXvfXWW7R27VrR70v37t3bKPsuRC/6ATVr1lTJX7t2bfrwww9p9+7dVFJSInRErdQtOzExMfTZZ5+Jui8gJ5PJKDExscL2afDgwbRr1y7Rz38ioh9//LFCP/K1116jH374wSiO1clkMoqLi1P5H6Kiomj48OF04MAB0W6vlP35558kkUgU+S0sLKhly5Y0e/ZsunbtmtDxdPLBBx+ovAeenp701ltv0bp16+jp06dCx6vUzZs3VcYNTE1NqXHjxjR58mQ6e/asaPvIcmVlZRQdHa12W7Bnzx7Rr4sKCwvJy8tLJX90dDR9/PHHdOjQIdFvC8qPgbi4uFCPHj1oxYoVot03lHv77bdVsgcGBlL//v1p27Ztot3HKu/69evK/4M3VUVNXFU8iRBNaUZ89gpfo6nS66wFYFrufhcAV/+7/yEAx1eUgwsXmd7OnTtHJiYmFQY75Cvv7t27i3LlvXXr1gp5JRIJJSUl0ZQpU0RbqDF06FCVvI0bN6bZs2eLfidbXigqlUqpVatWtGzZMtF3aGUyGUVERCgGkgYNGkTHjx8XfSeWiCgjI4MAUI0aNej111+nHTt2iL7zR0Q0fPhwAkAmJiaUnp5O3333nejWHep89913itzNmjWjhQsXGkXuH374QTFg8eabb9Lu3buNYjn5/PPPCQA1btyYFixYIOrBXWUdOnQgb29vGjFiBP39999Cx9FJaWkpBQYGUmpqKi1atEj0g9FyDx8+JGtra0pJSTGqZeTBgwdkbW1Njo6O1LdvXzp48KBRbHPkywkAcnZ2pnfeeYf2799vFNnfeustRb/K2tqaOnbsSKtWrRJ9QffevXtV+rCmpqbUrFkzmjNnjqj7hGVlZYq+lbyZmJhQo0aN6IsvvqCrV68KHVGjmTNnVth3kEql1Lx5c5ozZ45ov3Tx4MEDsrOzq5DdwcGB8vLyaMWKFfTkyROhY6pV/gCjvIWEhNCQIUNEe1B9z549anNLpVLKyMigmTNnivLgRHFxMQUEBKjN7unpSX369KH169fTs2fPhI5aQf/+/dXmNjExoaSkJPr888/pzz//FN12afv27WpzK4+l/PTTT6Lbr8jPzycnJye1ueWFaWPGjKHffvtNdPM8Oztb4zx3dnamrl270rJly+jhw4dCR1WhbhukPM/j4+NpzJgxdOLECVHN8/Pnz5OpqanG7DVr1qRevXqJrhhQ3YFB5WZmZkZNmjShKVOm0F9//SWqeT527FiNuQFQUFAQvffee7R582ZR9XcvXbqk+MKCumZra0utW7emuXPn0o0bN4SOq6JDhw5a53n9+vXp448/poMHD4qq3/L3339r/Xw6OztTXl4eLVmyhO7duyd0XBVTpkzROs/r1asnynlORNSvXz+Nuc3NzSk9PZ2++OILUX4RU9v6xcLCglq0aEEzZ84U5ReNL1++rHEdo9x3Edt2VO6LL77QOO8dHByoc+fOtGTJEtEWoZUv+FBuHh4e9Oabb9KaNWtEO+ao7jhi+fn/448/0oMHD4SOqlZpaSmFhYWpzW9qakqNGjWiSZMm0ZkzZ0S5/BMRbdq0SeN74OrqSj179qSVK1eKevy3c+fOGv+HunXr0scff0yHDx8W7bGZ27dvk5WVldr8lpaWlJ2dTXPmzBFdP03ZgAEDNL4HwcHBNHDgQPr1119F+0XfX375RWN+JycnysvLo6VLl4puX1Zu1qxZGvO7u7vT66+/TqtWrRLlGKW6Inx5k0ql1KxZM5oxY4Yo60quXr1KUqlUbXZj+eIvFy5Wf+Hixv9eo0TTDAfwmlKWD19RDi5cZAYp/y1qTSvv9PR0mjFjBl26dEnoyCSTySg2NlZr5jp16tDIkSPp999/F02n/ebNm2o3MiYmJpSWlkZz584V5QZGfoYd5WZjY0Ndu3aljRs3irYz+O2331bIHRYWRmPHjhXFcqzJxo0bK+T28vKiwYMHi/IAktyNGzcqDCRZWlpShw4daPXq1aI9C1lhYSG5ublpzC3Wb64UFRWRh4eHSm4/Pz8aMWKEqM9odO/ePZVvyFlZWVFeXh5t3bpVdIPSynbt2qUyr5OTk2nevHmiOkinjrxQVL4z88Ybb9CBAwdEux6Re+ONN1S2Nz169KBdu3aJPrdyIR3wokBn7Nixoi7oIlI/kB4QEEAjRoygv/76S+h4Gp09e1blW8/Ky3q3bt1o/fr1ol2Hl//Wv3KfsEmTJjRr1ixRFtPJi+Y1tYYNG9KECRPo3LlzQkdVoe5MF8pNIpFQQkICTZo0SXQHGuVfDNHULCwsKCsrS3RnoL9w4YLWA+oAyM3NjXr37k1r164VVUFdkyZNKt0/rlevHo0cOVJUB0jV7fuUb9bW1tS6dWuaP3++aJaXmzdvkoWFRaXZg4KC6P333xfNwQiZTEbJyck6jaU0a9aMvvjiC9EMhI8bN67S3PJ90D59+ojmTBzHjx/XKbf8DByTJk0SRWFaYWEheXt765Td09OT3njjDfrll19EcdDn9ddf1ym32IoB16xZo1NuAOTv70/9+vWjDRs2CL4tevz4MTk7O+uU28rKirKzs2n27Nl05coVQXMTEfXp00fneR4dHU3Dhg2jvXv3Cn6GmfJnUdLWXFxcqGvXrvTjjz+KosBI3Zku1TUTExNKTEykcePGiWJM8enTp1r75eXnebdu3WjZsmWiKCq6ceOGTn0W4MVYgLyIQgz7pI8fP9b4xYXyTf6LXGI6C9Sbb76pc99FfiZJMfRdiF7si5Yfv9X0WU1JSRFN/0VO25delJu8AHb27NmiGgNTd9ZFbf3HKVOm0NmzZ4WOraL8WRc1NbHtL8mpO+uiumZubk4ZGRn05Zdfiq6I+q+//tKpvyAv4BJLX17Z4MGDdVqO6tevT59++qnofr2h/K81aGr29vbUsWNH+v7770X15Q2ZTEZ169bVaV2UmppKU6dOFdXYqq77tObm5tS8eXOaOXOmKPZR5LQV4Su38PBwGjJkCO3du1c0xyrLn3VRUx8iKSmJJkyYQKdPnxZNH4KICxertXARgB2Aov9eY5OW6cwB5P833YFXlIULF5lBtJ11UVOLiIgQ/GeQ9BmIDAgIoEGDBoliY1PZwJKpqSk1b96cFixYIIpBGaIX3+wKDg7WmNnV1ZX69esnujM0PXv2TOugb1JSEn399dei6sASvThDQGhoqNbO0/jx40XV8ZPLy8vTmNvR0ZHefPNN2rVrl6h2eohUf4pRXe633nqL9uzZI7rco0eP1pi7QYMG9MUXX4jy7F2aDoB5eXnR0KFD6c8//xQ6YgXKZ3FVbtbW1tStWzf69ddfRbd8EBHduXOnws8ZAS+KuCdOnCjan7/67bff1C4jgYGBNHr0aFGu/4iI/vjjD42fySZNmtDChQtF+Q3i/Px8tWd1k7d69erRlClTRPnN29zcXK39KkdHR+rduzdt27ZNNAddiIjWrl1baf9VIpFQo0aN6KuvvhLNz6aVlJRoPKtb+RYZGUmffvqpaL5ENHnyZJ33HSIjI+mTTz4Rxdm679y5Q9bW1jrllv8s86RJk0QxwNm9e3ed57m8oG7hwoWCf5Fr586dOucGQN7e3vTOO+/Qli1bBD0wXVRURH5+fjrnlhfsimFgU9NZFzW1GjVqUKdOnQT/iTRtZ13U1GrXrk1DhgwRtBhAn+IoebO0tKSsrCz6+uuvBT3raGXbfXUtICBA8LPUzZkzR+/cYjh7V2Vn0tM2z999913auHGjIMWAMpmMGjRooHduS0tLatmypaBnHZs0aZLeuYEX47Qffvgh7dy5U5BihWvXrqnd76ysOTo60muvvUaLFy+mO3fuVHtuIqIuXbronVsMxYCGfj7FUCA9Y8YMvXObmppSSkoKff7553Tq1CnB+i369lmA///TxgsWLBD0iyMTJkww6DMqhjMCXrlyReMZh7St01u0aEGzZs0SfAzJkGVe/nOQW7duFfxkALp+6UW51alTh0aMGCGKs6du27ZN7/y1atUSzRncSktLqXbt2nrllxdvLV68WBTHvrSddVFTi4yMFPwYtDJtZ11U1ywsLCgzM5NmzZolimJebWdd1NQ8PDzojTfeEM1ZVbWddVFdMzExoeTkZJo4caIofsVB21kXNbWQkBD64IMPBOvjK5s9e7be+aOiomjYsGGC/zR8fn6+xrMuampOTk7UtWtXWr58OT169Eiw7NrOuqipycdAtm7dKvgXaF5F4aKEXhTGGZ3/KuABYBQRffYKnr8pgF//uzqMiD7XMu0WABkASgFYE1FJFWfxBnAdAK5fvw5vb++qfHpWTU6ePInDhw8b/HiJRGLQ46ZNm4azZ88a9FgXFxckJibC09MT0dHRsLW1hZmZmaKZmppW+XUTExPIZDLUq1cPf/zxh1553dzc0KpVK7Rp0wYBAQE4cuQIrKysdGpSqdSgeaTsr7/+QkREhE7TSqVSZGRkoFOnTmjVqhVq1KgB4MVnfPfu3bC1tVVpdnZ2isvm5uYGLw/qzJw5E++9916l0/n7+6Nz587Iy8ur8H/evHkTO3fuhJ2dHezt7WFnZ6do9vb2sLGxqdLMADBixAiMHz9e6zRSqRQtWrRAXl4ecnJyYGVlpXL/P//8gx07dqjkVW62trYwMTGp0txz5sxB3759K50uOTkZeXl56NChA5ydndXmVl42yv+timVa2fHjx9GgQYNKp/P29kbnzp3RpUsXREdHq7zvt27dwrZt27TOb1NT0yrNffv2bfj6+qK4uFjrdL6+vujSpQvy8vIQGRmpct+dO3ewdetW1KhRA/b29oomv25ubl6lmXXNbWpqioyMDHTr1g25ubmwtrZWuf/BgwfYvHkzHBwcKjQrK6sq/0wCwG+//Yb69etrnaZBgwbo3r07OnfuDBcXlwr35+fnY+PGjXB0dISTk5Oi1ahRo8qXD7nZs2ejX79+Gu/38/NDjx490LNnTwQEBKid5vHjx9iwYQOcnJzg7Oys+Gtvb/9K5jUAdO3aFUuWLFF7n6mpKVq0aIFevXohOztb43L65MkTrFu3TmVev+r5nZiYiIMHD6q9TyKRoGnTpujVqxfatGlTYbmWe/z4MdatW6d2+ba2tn4l8zw1NRW7d+/WeL+1tTXatm2LHj16oEmTJmrn38OHD7Fu3Tqt60EzM7MqzT1w4EB88cUXWqeRSCRo0qQJ8vLy0K5dO0W/RO7+/ftYv349rK2tYWVlBWtra42XLSwsqmT+79u3DykpKTpN6+rqivbt2+O1115DcnKyYtt99+5drFu3DhYWFno3Q/tbMpkMUVFR+Ouvv3SaXiKRICkpCe3bt0e7du3g7e2NO3fuYN26dZBKpVXWTE1NK/1/dO2jKAsKCkLbtm3Rtm1b+Pv7Y/369Sr9fOX+fmWX9ZlWed+hoKAAfn5+ePDggV7Z/fz80Lp1a6SmpuLWrVswNzdXPKepqWmFy1V1n/L1Tz75BHPnztUrNwDUrl0b6enpsLGxQUBAAMzMzGBiYlJpk7/2y7bz58+jdevWeuc2MTFBw4YN4ePjg3r16sHd3R0mJiaQSCSKv8qXK/ur77QSiQQ9e/bEhQsX9M5uY2ODsLAw1K1bF5GRkbC1tVV5XuUGQON9ht6/YsUKLF68WO/cwIv9+ujoaERHRyM4OFhlO6O8XtDlsr6P+eeff/DRRx8ZlFsikSA4OBh16tRBVFQU3N3dFfeVH8tUN7ZZ2TTarhMRRo8erfd6Rc7a2hqRkZGIjIxEeHg4LC0ty39B+aWua5tm3bp1OH78uEG5AcDLywuRkZGIiIiAj48PJBIJiAgymUzl9ar6+t9//40NGzYYnNvc3ByhoaEIDw9H7dq1YWdnp3gd+Wu97GV1txUVFeH77783ODfwoh8jz+3n56cYF1OXpSrb9u3bce/ePYNzS6VSBAcHo3bt2ggNDYW9vX2F1ygrK9N63ZBp/v77b537WZq4ubkhLCwMYWFhiuW8/Ovoc1mXaQsKCrBr166Xym1hYYGQkBCEhYUhODgYNjY2ryRr+cuHDh3Cw4cPXyq7j48PwsLCEBISAg8PDxCR1ve+suVCl8f++++/L7U+BAB7e3uEhYUhNDQUQUFBkEqlWpdVfZum59i1a9dLzXNTU1MEBgaidu3aCAkJgbOzs8b1SVXe9uzZM6xevfql5rmDgwPCw8MrzPPy6+Kq/ivfB3sZPj4+ivW5l5eXxoOy8tet7DZdpy0oKMDChQsNzi2RSODv74+IiAiEh4cr+lzq8mi6XZ9pyt+/fPlyXL161eD8Hh4eir6Lr68vTExM1L6W/LK62/S5X/lyYWEhJk6caHB2c3Nz1K5dW9FntLOzU8lRPlNl9+k7/ZMnTyo9vqKNra0tIiIiEBkZidq1ayv6vOVfT931qriPiDBu3Dg8evTIoPyWlpYIDw9HVFQUIiIiYGNjozGDPrfpOu2BAwdw9uxZvY+DykkkEgQGBiIyMhJRUVGoWbNmhX03ffLpevuBAwdUlqV169ahsLDQkH8BNjY2iIiIQJ06dRAWFqZy/E5TFl1zlnfgwAHIZLIK09+5c0freG9lPD09Fe+Bv7+/Yv9J13yVTXvo0CGUlZVpnf7QoUO4ceOGIfFhZmaGkJAQxWfZ0dFR42vpkl9+/ciRIygtLdXpefLz8/Hrr7/CUM7Ozor8gYGBijGPyl5X3fWjR4+itLRUr8cSETZu3IiSEsPKg6ysrBAWFobIyEiEhYWpHA/RdX149OjRCq+v6/tXWlqKjRs3av38aGNra4vw8HBERkYiNDQUlpaWOr2ucm5dX7v8Zxh4cUzy8uXLBiR/MU4ZHByMqKgoREVFwc3NTWPmyhjymDlz5uD06dN6Pw4A7Ozs0Lx5c2RnZ6Nly5ZwdXU16HkMdePGDfj4+Miv+hCRYSshJf8LhYt/AZAA8AdQBuAWgAMAviOinS/x/O8C+Oq/q22IaLWWaWcA6P/f1QgiernRk4rPz4WL/wOmTJmCDz/8UOgYoieRSGBmZqYYuDGUpaWlXp1lU1NTnYscraysYGlpqfb2CRMm4NKlS3pltbCwQGZmJjp16gSZTIauXbtqnd7MzExrYaO6pu1++QGh/Px8nTPXqVMHXbp0QefOneHr64u1a9ciNzdX4/QSiUSRQ11hY/nCjcqmMTMzw82bN+Hv76/o/FbGzs4O7dq1Q15enqKgZP369cjJydH6OBsbG40FJvo2KysrPHv2DD4+PjoPQEqlUmRmZqJr166K4suNGzciKytL6+MsLCy0Fjbq+9fa2hqNGjXCvn37dMoNAOHh4cjLy0Pnzp0REBCArVu3onnz5lofY21tXaGIR595rDy9jY0NTExM8Prrr+s1gFenTh1Fbh8fH+zatQtNmjTROq+VCxnLFzZqu035evnCsp49e2LRokU6Zba1tUW7du3QrVs3pKamwtTUFAcOHEBSUpLa6aVSaYViL0dHR7VFYOqapaWlxgKY5ORk7N+/v9LMUqkUWVlZ6N69O7KyshT/v7YiWQcHBzg5OVUoatR23dHRsULRcnlPnjyBp6cnCgoKKs3duHFj9OrVC+3bt1cZ0Dp58iTq1q1bYXpTU9MKxYzyv+puk//Vpfhu//79SE5OrjSzi4sLunbtitdffx1RUVEq9506dQp16tSp8BiJRKKY3/o0R0fHSgunlyxZUum2DnhxkOi1115Dr169EBcXpzI/NM1v4MV2Ur6s1qhRo9Llufw08m1jeT///DPat29faW7gRRF3165d0b17d9SuXVtx+4kTJxATE6P1sZaWljqv5yq739bWFlevXkVwcLDOO88WFhbIzs5GXl4eWrZsCQsLCxw5cgRxcXE6PV4ikagtaKys4FHd5ffeew83b97U6XXlPD090bFjR0W/StN6UBfm5uZaCxs13ffHH3/gxIkTBr1mQkICYmJiMHPmTINza1JZcSMR4dy5cwY/v4uLy0sVQBhCIpHA1NQUZWVlBg+wMcYYY4wxxhhjjDHGGGPGRiKRICEhAdnZ2cjJyUFERMQrO5mKHBcuKlEqXNRmNYCeRKR7Nc7/f/7PAQz972pDIjqmZdrBACb/dzWTiLbo+VqVVSLWBHAU4MJFY8aFi0wXUqnU4G9lCCUlJQXBwcEv9c1OfVlZWcHOzg4PHjzQuXBRmYeHh+Jsb8OHD38FCdUzMTGBnZ0dnj17ZtD7bGdnh7Zt28Lb2xvjxo17BQk1kxcGGDK/gRdnWAsPD8e8efOqOJlmEolEUbz4+PFjgx7fqFEjREREYPbs2a8goSoLCwuVQsZnz54ZdMZcLy8vdOnSBf7+/lrPIvgyzM3NNRaBnT17Fnv27NHr+ZydndG5c2d0794dDx8+rLTAVV+WlpYaixrllxctWqTXmZFtbW3RoUMH9OrVC8nJydi5cyfS0tKqLLOFhUWlBY9OTk545513cPv2bZ2fNyYmBr169UKXLl3g6OiI3bt3IzU1tcpyAy/WVeoKSuXNxsYG/fv3V/m2aGXCwsLQs2dPdOvWDZ6enq8kt5yJiYna4kZbW1uDzqjTsGFDdO/eHa+99hr+/PPPV5ZbE2trazx//tygoi4HBwe0b98eERERGDhw4CtI92q5u7vr9flgjDHGGGOMMcYYY4wxxhgzRv7+/ooixsaNG8PCwqLKX4MLF5VIJJKnANbixc85nwVQAMAVQGMAbwOQ/67mbgDppOfPN0skklkA3vnvam0i0lg5IJFI+gKQVzS0J6Kf9Xwtnd8ELlw0Xly4yBhjjFXOy8tL7zOsCS0oKAgNGjTA8uXLhY6iMwsLC7Ru3RqhoaEYPXq00HF0ZmJigszMTERGRmLSpElCx9GLVCpFTEwMDh06JHQUxhhjjDHGGGOMMcYYY4wx9j+qRo0a+PTTT/Hee+9V+ktp+ngVhYtmL/sEAvIiokdqbt8mkUi+ArAJQD28KGTsC+BLPZ9f+QfYiyuZtkjpsvbfImSMMcYYYxoZW9EiAFy8eBEXL14UOoZeioqKjKrQUk4mk2Hjxo3YuHGj0FH0VlJSwkWLjDHGGGOMMcYYY4wxxhhjrMrZ2tqiefPmyMnJQYsWLeDm5iZ0JJ0YbeGihqJF+X23JRJJe7w4E6MUwHvQv3CxUOmyeSXTKp9f87merwMAPpXcr/ipaMYYY4wxxhhjjDHGGGOMMcYYY4wxxhhj/3f5+fkhJyfnlf489KtmtIWLlSGiSxKJZBuAlgCCJRKJJxH9o8dTPFG6bFvJtDZKlwv0eA0AQGWnzpRIJPo+JROhmJgYDBw4sNpfd82aNbh06ZLBj69VqxYcHR3h5+cHBwcHyGQylJaWKlpZWZnG6y9zX3FxZSc61Y2trS1q1qwJJycn2Nraori4GM+fP1fbquo1q5pEIoGVlRWkUilkMhmeP3+O0tJSoWPpRSKRgIiEjsEYY+z/AGPe5piamqKsrEzoGHozMTGBhYUFzM3NFX0tMbO2toaDgwPs7OxgaWkJmUyGoqIitU0M74dUKoW7uztcXV3h7OwMc3NzlJSUGNSqqw8plUrh6ekJT09PuLu7w8rKqtJ9Avnlyu5XN21JSUmV5HZycoKPjw+8vb3h4uICACgrK0NZWRlkMpnicvnr2u7TNu2jR4/w6NGjl87t4eEBX19f+Pr6wsHBAUQEmUz2Spp8X+3kyZMvlVkikcDT0xP+/v7w8fGBg4MDgBdn1pXnV/6r622V3Xf8+HE8ePDgpXJ7eXnB398f/v7+qFGjBgAoXlP5srpW2f2aprl48SKOHz/+Urm9vb0REBCAwMBAxXIip8tlXadTvlxQUIAffvjB4NwmJibw8fFBYGAggoKCFPNb/j8pUzd2Vtk02q7PnTsX9+/fNyi3qakpfH19ERwcjKCgINjZ2UEikag0+etV1XX5batXr8bBgwcNym1mZgZ/f38EBwcjODgYtra2kEgkMDExUXmdqr4ukUhw4sQJzJ0716DcUqkUAQEBqFWrVoXc8tfS9bK+j3v8+DH69u1rUN9TnjskJAS1atWCra2t4nmrow0YMMCg8UJTU1P4+/sjJCQEYWFhsLOzU3leU1NTrddfdppFixZhyZIleueWSCTw8fFBaGgoQkND4eTkpPIa8svqbquKy5cuXcIbb7yhd24AcHV1VcxvLy8vrVkN+Z8qu7937964cOGC3rmtrKxQq1YthIaGIjg4GBYWFpW+9/pcr2za7du3Y8KECQbNcy8vL4SGhiIsLAyurq6VLq+amj7TyqeXSCTo06cPrly5onduqVSKoKAghIaGolatWrCxsVE8t/K661XddufOHbz11lsGzXPl5SUoKAjm5uYqr1NVfzXdd/bsWYwaNcqg7JaWlggODkZISAgCAwNhaWmpeN7yTd3tLzvt/fv3MXToUIOym5iYwM/PD7Vq1UKtWrVQo0YNtVm09T9edpqZM2fi3LlzBuW3tbVFcHAwatWqBT8/P0il0grPr+7yy94vv1xYWIiRI0caPAbl6OioyC9fvytnKJ9H3d+XmaagoACff/65QdkBwM7OTtFv9PX11Zpf3fWquO+rr77Cw4cPDcovlUoVfd/AwEBYW1trfE19b9Nl2l9//RX//vsvrl27pm90BRcXFwQFBSE4OBg1a9aEiYnJS+XT5fYdO3aoLPMnT55EUVGR2sdUxtTUFH5+for3wM7OTqcsuuQsb+fOnWo/qwUFBfjrr7/0SK1Kvh4KCgqCn58fzMzM9M6nbdqdO3eqjE2qm/bixYu4d++eIfEBAN7e3orPsrOzs86fRW3T7Ny5U2UMUtvzPH/+HL///rvB+eXrIuVtga75y1/XJ7f8OhHh6NGjBo9NWlhYICgoCLVq1UJQUBCsrFR/3FWX9eHOnTsrvL6u/7tMJjN4DAF4Mc4un//+/v4wNzfX6fUBYM+ePSq1Gdo+85qe6/Lly7h165Yh0QEAnp6eis+wk5OT2m2orvR9zJo1awzuA0kkEsTFxSmKFSMjIw3KLCb/s4WL//kLLwoXAcALgD6Fi8rFhN4AjmmZVvmMidf1eA32f0iTJk3QpEmTan3NW7duYc6cOXo9xtLSEs2aNUNOTg6ysrLg5eX1itJpVlhYiFq1auHGDa01vWpZWFigcePGyMzMRIsWLRAaGqrzirqsrAyFhYUaCxsra8+ePcOcOXNe+oCwRCJBTEwM0tLSkJaWhqSkpAo7TUVFRSgoKNDYnjx5ovP9T548MXjnTpOIiAikpqYiNTUVjRo1gpubG0pKSvDkyRM8efIEjx8/Vlw25HpBgd414joxNTVFgwYN0LhxYzRu3BhJSUmwsbFRzKeqaFV1YF2Zubk5YmNjFbkTEhJgY2OD58+fK+bXy/yVXzZ0B1QTa2trJCcnK3I3bNgQpqamePr0qd7zVdN7VFhYWHkQA4SEhChyp6SkwNHREY8fP8bjx4+Rn5+vuKzvbdVRbOXn54fk5GTExcUhKioKzs7OisIJfZpMJnvlWcuztLRE/fr1ERkZqdiRe/ToER48eIAHDx7g4cOHisvK16uiKKQqhIaGonPnzqhVqxYePnyI+/fv48GDB2r/Pnz4UDTFd9HR0Xj33Xfh5OSkdj6Xb69qHa0rIoK5uTnS09MxYMAA2NjYaF2W8/PzVa4/fPjwlayrtZFKpYiJiUFycjISExNRr149WFhY6L3OU3f706dPqzyvk5MTGjVqpFgP1qlTRzFADbwY8JD3qZ49e6Zoytcru1xQUIDly5dXyefAw8MDaWlpaNq0KZo2bQo/Pz+dH1tWVqaxqLF8Ky4uRlFREUaNGvVSg56mpqaIj49Heno60tPTERsbqxj4fFlEpCj0Uy5mLCkpwcKFCzFy5EiDnzsmJgaZmZlo3rw54uPjVQYKX6V//vkHQUFBBm3z7e3t0axZM7Ro0QKZmZnw9vZ+BQk1y8zMxJYtW/R+nJubG1q0aIGWLVsiPT0djo6OryCdZosWLULPnj31fpy7uztatGiBrKwspKenqxShVYc7d+4gICBA78e5urqiZcuWyMrKQkZGRrXnBoC0tDS9H+Pq6oqsrCxkZ2cjPT0d9vb2ryCZdpMmTdL7MW5ubiq5yx+8qg5Hjx7Vu9ilZs2ayM7ORk5ODtLS0mBjY1P5g6pYQUGB3vPc09NTMdDdtGnTCgdJqktGRoZe03t6eqJVq1bIzc1FamoqLC0tX1Ey7caOHatXX8XDwwM5OTnIzc1F06ZNBct94MABvYoWnZ2dFbnT09MFWb6BFwc1u3XrpvP0NjY2yMzMRG5uLrKysuDk5PQK02mnTxG3iYkJGjVqhNzcXOTm5hq07aoqe/bs0atoMSgoCK1bt0Zubi4SExNV9hGqExFhyJAhOk9vYWGB9PR05ObmIicnB+7u7q8wnXa7du3Sq2hReX3YpEkTQc+u8uGHH+o1fUhIiGI5j4+PF2x5AYDOnTvrNX1wcDByc3PRqlUrJCYmVtn+miGGDx+u1/SOjo7IyspCq1at0Lx5c0H6iHIXL17E+++/r9dj6tati1atWiEnJwf169dXW6hVXWbMmKFXP8DExARJSUmK/KGhoa8wXeUM6avHxsYiJycHrVq1QlRUlKBFEvv378fo0aP1eoyvr68iv9BnpBo7diwaNmyoV+GiVCpFamqqov/u7+//6gLqYP/+/UhOTtbrMR4eHir7TeWPfVa3t99+W+8xvAYNGijeg7p16wr6OXj06JHey4GdnR0yMzORk5ODli1bwtnZ+dWE09GwYcP0LlwU03uwadMmtGzZsvIJldSqVUuRPykp6aXHUA398gUAzJs3T+/CxTp16ijyN2zYULBt8bNnz/TeV7Kzs1P8jHLLli0VX1yvbvfu3cOsWbP0eoytrS0yMjIU2Y3lJ6B19b9euPgyR7mUt1JhlUwrv78UwPmXeE3GqtTkyZN1OuONp6enoqPYtGlTwTuKc+fO1atoMTAwEC1atECLFi2Qmppq8ACqqakpbGxsDH788uXLMXPmTIMeGxoaqihUTE1NrXQw1cLCAhYWFlXSoVy6dCm6dOnyUs8RGRmpUqjo6upaYRqpVAonJ6cqGSiWyWSYO3cu+vbt+1LPY25ujri4ODRu3BiNGjVCQkICbG0rnmTXwcFBcRaYl2VIJ7Y8S0tLJCQkKApG4uLi1B5gsra2hrW1dZUMuF67dg2hoaEvVQhoa2uL5ORkpKamonHjxoiJiVHbIbe3t6+yQbOCggKEhYXh5s2bL/U8ERERiuWkUaNG8PDwqDCNnZ3dSxV7y2QyPH36FI8fP8ajR4+QnZ1t0DfsywsLC1PkTklJga+v70s/JxGhoKCgQgHYw4cPMWDAgCorFHRzc0NycjKSk5ORlJSEevXqGbQTV1ZWhvz8fLVFjQ8ePMDt27f13kmojL29PRISEpCYmIjExETExsbqtVzLZDJFUeb9+/fVFjeeO3cO27dvr9LcEokEkZGRSEhIULSQkBC9dv6Li4u1Fjfu27cPu3btqtLcXl5einmdmJiIunXrKr7dpy8iQmFhYYXixu+++w7Lly+vkrw1atRAYmKiYvlu2LCh2vW4unWNvr744ouXPuu3m5ubSqFiRESE1gEJExMTxTbI0L7K999/j2XLlhn0WEdHRzRp0gRNmzZFWlqaXl9kKc/U1FTxv+ji999/N6hoMSQkRFGomJqa+soKoyQSCaRSaYV1aVFREebPn6/Xc7m7uyMjIwOZmZlIT09X2/+rDuPHj9erfxIdHa3Yd0hISKi2Asvy9u3bp3PRokQiQWxsLFq2bImWLVsKeoCupKRE54NDEokEDRs2RFZWluC5gRcH5p49e6bTtPXr10d2djaysrLQoEEDQXPv2bMHO3bs0GnaunXrIjs7G9nZ2YIOHgMv+uGTJ0/Wadro6GjFmITQuQHdB/2jo6MVg/VCLycAMHv2bJ3OEimmA/4AcPDgQWzbtq3S6eS5W7Vqhfr16wt+NoEnT55g2rRplU4XGRmpKG4Rw3ICAGPGjKl0GrEUoCmbN28ebt++rXUad3d3tGrVCq1btxa0OFTZlStXsHjxYq3TWFtbo3nz5mjdujWysrIEP4Asp8uy0rBhQ+Tm5qJ169YIDw8X/LMJAJs3b670TMVOTk7Izs5G69atkZGRIVhBbnm6zHP5eiU3NxcxMTGiWK/cvXsXs2fP1jqNRCJBQkKCIrvQRVtyZ86cqXRfXyKRID4+XlEkGhYWJopl/f79+/jqq68qnS4wMFCxLaqKAomqMm7cuEp/5UAqlaJp06aKPldVjGtWhefPn2PixImVTie2AiG5p0+f6tRXt7KyQnp6Olq1aoWsrCzUrFmzGtLpRpc+u3xfWr78CF1sqWzDhg06nVXf2dkZWVlZyMnJQUZGhqDFxuXput9Ur149xXsghv0PuatXr2LBggWVTmdlZaVywh9PT89qSKebGTNmID8/v9LpAgICFO9Bo0aNDB43r2r37t3TaTsm1veAiPDZZ59VOp2JiQmSk5MV74FY+kDFxcUYN25cpdOZm5sjNTUVrVq1QnZ2tl4nBXiV5syZgzt37lQ6nb+/v8rPKIth+Z86dapOJ5yQF9zn5OQgNTXVKH8CWmeV/USNMTcA6/GieJEAeOn5WDsARf89dpOW6cwB5P833YFX9H94y/+P69evE2O6+Pfff8nKyoqUPgMqLSYmhj777DM6fvw4yWQyoeMqFBQUkJubm8bcAMjS0pIyMzNpxowZ9PfffwsdmYiIioqKKDAwUGtu5ebl5UXdu3enRYsWCfq5fvbsGfn6+uqcW96ioqLovffeo59//pnu3r1b7bmfPn1K3t7eeue2srKitLQ0Gj16NO3atYueP39erblLS0upTp06eue2sbGhjIwMGjt2LO3du5cKCwurNTcRUZcuXfTObW9vT1lZWTRp0iQ6fPgwlZSUVHvuzz//XO/cEomEoqOjqX///vTzzz/TnTt3qj33Dz/8oHduAGRiYkL169en999/n37++We6ffu2UeSWt7CwMOrduzctXLiQzp8/X23bp0mTJr1UbgAUEhJCPXv2pG+++YZOnTpFZWVlrzx3165dXzq3o6MjtWjRgkaPHk3btm2j/Pz8V5q5pKTEoPWgcjMzM6PY2FgaMGAALV++nK5du/ZKMxMRPXr0qNL+ibbm6+tLXbp0odmzZ9PJkyeptLT0lWcmIrp//z45OjrqndfT05M6d+5MX3/9Nf3111/V3ld8/vw5+fj46JzXxsaGMjMzafLkyXT8+PFqm7/qtGjRQqfMTk5O1LFjR/r222/pypUrguWVmzFjhk6fvdTUVJowYQKdOHGiWtZzlbl8+TJJpVKtuWvUqEHt27en+fPn082bN4WOrJCamlrpMtKlSxf64YcfBOmLaPLtt99WOr87duxIixYtqvZ+iDb//PMPWVpaasxta2tLbdq0oXnz5olqOSHSvqxYWVlRTk4OffPNN6IbL5o4caLG3BYWFtSyZUuaPXs2Xb16VeioKo4cOaIxt7m5OWVmZtKsWbNEl7ugoIBcXV2NLjcRUWZmptrcUqmUMjIyaObMmaLMPWHCBLW5TU1NKTU1laZPn04XL14UOmYF2pbxuLg4GjduHJ0+fVpUY4VERIWFheTl5aU2d1hYGH300Ud08OBBUfRPyuvTp4/a3G5ubtS7d29at24dPXv2TOiYFRw8eFDjZ7N58+Y0e/ZsunHjhtAxK5DJZBQfH682e0BAAA0cOJB27dolyBhVZfbt26c2t4mJCTVu3JimTZsmyvUKEdFHH32ksa/SqlUrmj9/Pt26dUvomGrl5eVpzT5v3jzRZv/444/VZpdIJJSQkEATJkygP//8U3TrdCKiixcvkqmpqcZ9oe7du9OKFSte+TiVobTtQ/v5+dG7775LW7dupaKiIqGjqqVtLNTT05P69OlD69evF+X2iUjz+hIAWVtbU25urqjXOzKZjGJiYjT+D+Hh4TR06FDat2+foGNc2mh7D+T7e19//bXo9lOVaeqjyT8Hb731lmj7aUREDx8+pBo1amjcDiQmJtKECRNE2beX09R/KP8ePH36VOioam3cuFFjfnt7e+rYsSN9//33dO/ePaGjqqVtjM/FxYV69OhBK1eupMePHwsdtYKnT59qPF4j7weNHz+eTp06Jbrl/+7du2RjY6Mxe3x8PI0bN45Onjwpuuxy169fV87tTVVRE1cVTyLGBiAA/7/w8IKBz7Hxv8eXaJrhAF5TelM+fEX/CxcuMr0NGjSowo52Tk4OzZ07V3QHYpRpGvitVasW9e/fnzZt2iTKTmJlB3sdHByoTZs2NGvWLDp79qxoNjSa5nf5VqdOHerfvz+tWrVKkELF8kaNGqVTbjs7O2rRogVNmDCBDhw4IPhAQWUHepU7tC1btqSJEyfSoUOHqLi4WNDchw4d0im3g4MD5eTk0NSpU+nYsWOC71TfunWL7OzsKs1tYmJCMTExNGjQIFqzZg3dv39f0NwFBQUaD8iUb+bm5pScnEzDhw+nTZs2CTqY9+TJE/L09NQpN/DiYEdCQgJ9+OGHtGbNGsHWLTdv3iRbW1udcwMvCugbNWpEH330Ea1du1aQgpI9e/bolVm+0xMZGUlvvvkmLViwgM6cOVPtB/Zmzpypd243NzfKzc2liRMn0p49ewTpBwwePFiv+RwdHU39+vWjH3/8UdAD7QMGDNAps6+vL3Xr1o3mzZtXrUXDmlRWTGxubk6NGzemUaNG0b59+wTfvsvt2rVLa+YmTZrQ+PHj6ejRo4JvI5U9efJE40BPYGAg9e3bl9asWSPKQapevXqpzV2vXj0aPnw47d27V5QHpX/99Ve1uWNiYuiTTz6hAwcOiGoZkSssLFT7pafIyEgaMmQI7d69W5Tzm0j9+jA4OJgGDBhAW7duFeSLQbrYuXNnhdw+Pj7Ut29f2rBhgyj3jYlerFdcXFxUctesWZPeeOMNWrNmDRUUFAgdUaOsrKwK/ZBevXrRqlWr6MmTJ0LH02jy5MkquZ2dnUV9kEHu8OHDKrkdHBwoLy+Pli9fTo8ePRI6nkbll3FbW1vq0KEDff/994LvT1YmJydHkVt+UPmbb76hf/75R+hoWs2ZM0elv52UlESTJk2ic+fOCR1Nq+vXr5O5ubkie0hICH344Ye0f/9+UW7rlbVs2VKR297enjp37kzLli0T9WeTiGjbtm0V+ldjxoyhP/74Q/D9nMo0b95ckdvGxobatm1LixYtEu3Bbrl79+6pjKu4urrS66+/TqtXrxZtoYHcuXPnyMTEpEL2NWvWiD77gwcPyN7eXpHdGIpElfXu3VvlsxoSEkKDBw+mPXv2iHafQu758+cVxkDj4uJo7NixRrGuUfeFl/r169PIkSPp2LFjos9PRJSenq6S38vLi95++23asGFDtZ+swhDr169XyW9mZkZpaWn0xRdfiLZAvbzy74G7uzv17t2bVq9eLer9PbkrV65U+CKssX0OPvvsM5X8tra21K5dO/ruu+9E9QVYTe7evVvhuIwxvQcymYxiY2MrjKMOGDCAtm/fLprxak2Ki4vJ399fJX9ERAR99NFHRrGvMnXq1ArLf9u2bWnhwoWi+iK1OuULdm1sbKhNmza0YMECo+jDEXHhonIhXw4AMy33uwM4oTSzBqmZpqfS/Z9peJ6mStOsAWBa7n4XAFf/u/8hAMdX9P9y4SLTi/xsi15eXqL/ZpSyR48eKc4KZGVlRVlZWTRz5ky6cOGC0NG0ys/Pr3BQxsrKitLT0+nzzz8X3cFpOU1FXfKCiwEDBtAvv/wiusGxmzdvkrW1tdqDvY6OjpSbm6sonBPTIMfjx4/J3d1da+5p06YJfqao8mQyGSUmJqrN7eTkRK1bt6bp06fTb7/9JqrcRERvvfWW2tympqYUFxdHQ4YMoQ0bNohu0H3kyJFqc8s7sBkZGTRmzBjavXu3qAZiRowYoTE3/jsImZWVRePHjxes+EwdTd+sV24+Pj7UqVMnmjFjBh09elTwYmJdz1ro4OBAmZmZNGrUKNq6davgy/rdu3crPfufiYkJRUdHU9++fWnx4sV04cIFwQcpzp07p/WMblZWVpSamkojRoygTZs2CT6f5c6ePUtmZmZqMwcGBlKvXr3ou+++o8uXLwsdVcW9e/cqfFvYxMSEYmNj6aOPPqKtW7eK8gCSTCajuLg4ldyRkZE0cOBA2rhxo6gHbceNG6fIbG1tTdnZ2fTVV1/R+fPnhY6mlfJBRgcHB+rYsSMtXLhQ9IUXMpmMEhISCHhxdsIOHTrQwoUL6d9//xU6WqVmz56tWO9lZ2fT119/LYozhlbmxo0bZGFhQWZmZtS0aVOaOnWq6AtdiF4sK40aNVKcKWH8+PGi/ra1MvlZz+UHHY4ePSrKs6CVd/ToUQJe/MLA8OHDRXv2tvLkZxoICwujIUOG0N69e0W3b6ZJVlYWBQYG0sCBA2nnzp2C97N1NXnyZPLy8qK+ffvSpk2bRFv8XN6JEyfIycmJunXrRitXrhR1Ma6y4uJiCgsLo5ycHFGf+UydAQMGUHx8PE2YMIHOnDkjdBydHT16lLy9valfv36iPmOYOmlpaZSRkUGzZs0yqmMphw8fppo1a9Kbb75J69evF9V4T2U++eQTRVGumM8Opk6PHj2odu3aNHToUKM4SK9s5MiR5O7uTm+88QatXbtWlPvJmly+fJksLCwoJSWFJk+eTGfPnhU6kl6++uorlTNyGsO+nLIpU6YYzRnx1Nm/fz8BoAYNGtCoUaPoxIkTRrGPJCeTyahBgwbk5OREXbt2Ff0XdtSRn20xOjqaPv74Yzp8+LBR7Dcp69OnD1laWlJ2djZ98803ojyLtDbysy3Kz/C6ZcsWo9knkRs2bBhZWlpSVlYWzZkzx+jeg40bN5KJiQklJSXR559/LtozHGsyb948kkql1KxZM5oxY4bRFE0TvRgDcXd3J19fX+rXrx9t3rzZaJZ/+dkWfXx86J133qFNmzYZVb9f7lUULkroRWGcUZFIJFcASAH8DOAggCsAnuNFIWEqgD7/XQaAfQCaEVFRuefoCWDhf1dHEdFnGl5rKV6cVREAdgL4AsA/AKIAjAAQ9N99fYho7kv8WxpJJBJvANcB4Pr16/D29n4VL8P+h5w6dQolJSWoV68eJBKJ0HF0tmTJEhw/fhwtWrRASkoKLC0thY6kk48//hiff/45YmNjkZaWhrS0NCQkJMDCwkLoaFq9/fbb+OabbyCRSBAdHY3U1FSkpqYiJSUFTk5OQsfTqFevXvjuu+8AAG5ubmjUqBEaN26MRo0aITIyEiYmJsIG1GDEiBEYP348AMDV1VWRuXHjxqLOvWLFCnTs2BEA4OLigkaNGiE1NVX0uU+dOoW6detCJpNBKpUiLi5OMb8TExNha2srdES1rl+/jtDQUDx//hwA4OzsjJSUFKSkpKBRo0aoW7cuzMzMBE5Z0aVLlxAeHo6iov/f3fL390dycjKSk5ORlJSE8PBw0S0v+/btQ0pKisptZmZmqFevHhITE5GYmIiEhAT4+PgIlFC9WbNm4d1331W5TSKRIDw8HAkJCYoWGhoqqnnep08fzJ2r2l12cHBQ5E1MTERsbCzs7OwESqhednY2NmzYoLju6uqKpKQkxfJdr149mJubC5hQvdzcXKxduxYAEBISgsaNGyu2PWJbppUNGjQI06dPR2RkJJo2bYq0tDQ0atQIDg4OQkfTavXq1Xj77beRnp6O9PR0NGvWDJ6enkLHqtTDhw/Rpk0bxMbGIjMzE0lJSaLvw8pNnjwZjx8/RosWLRAbGyvK7aM6Z86cweLFi9GyZUvEx8dDKpUKHUknRIRJkyYhOjoajRs3hpWVldCRdLZ9+3bk5+cjPT0d9vb2QsfR2d27d7F582ZkZmbC1dVV6Dh6+eWXXxAbGwsvLy+ho+jl2LFjcHFxgb+/v9BR9PLPP//g6dOnqFWrltBR9FJaWoq///4btWvXNqqxKwC4fPky/P39jS73nTt34OTkZDTbTLlnz56BiGBjYyN0FL09fPgQjo6OQsfQ26NHj1CjRg2jW8bLyspQUFCAGjVqCB1Fb/fv34ejo6Oo9uF1dfPmTaPb5gMv+rdXrlxBQECA0FEMcubMGdGN++jqypUrsLW1hYuLS+UTi9CxY8cQERFhVPtEyg4cOIDo6Gij3K4CwIkTJ1CzZk2jGHNR5+HDhzh9+jQSEhKMrk8md/ToUbi7u8PX11foKAaRyWTYtm0bUlJSYG1tLXQcg1y8eBHPnj1DZGSk0fXX5Hbu3InY2FijXRcdO3YM/v7+RrstO3jwIMLDw42y33z9+nU8fPgQUVFRRrf8nz17FkVFRahTp47RZVd248YN5WNMPkR042Wf05gLF/10mPRnAG8Q0SM1z9ETuhUuWgFYCaClhteQARij6fFVgQsXGRMvIsLOnTvRoEEDozoI9vDhQ4wfP15REGUsg6jXrl3DiBEjFEVcoaGhRrFhz8/Px8CBAxEbG4vGjRsjLCzMKHITEYYNGwYfHx+kpqaidu3aRjMYNn78eBQXF6Nx48aIj483moGkYcOG4dq1a4plPCwszCjmeceOHXHx4kVFMVdSUpLoB63LysrQoEED3LhxQ1GkmJiYiJiYGFEPWNy9exchISEgIsTHxyuK/mJjY0Vd2HXs2DHExcUhNDRUUaSYkJAg+mV88+bN6N+/v6JIMTk5GbVq1RL9Ovz8+fOYPn26olDRw8ND6Eg6KSsrw9q1a5GYmAh3d3eh4+jlzp07cHV1Ff2yUR4RGV1mxhhjjDHGGGOMMcYYY4xVPy5c/I9EImkMoDGABACBeHF2RXsABXhR4HcAwCIiOqjlOXpCh8JFpem74MXPS0cDcABwG8BeADO1vU5V4MJFxhhjjIkVEaGgoEB0Z8mrTH5+Pu7cuYPg4GCjKtq5cOECioqKjKqQGHiR28nJSdRn9FWnqKjIaM4+xxhjjDHGGGOMMcYYY4wxxtirwoWL/0dx4SJjjDHGGGOMMcYYY4wxxhhjjDHGGGOMMSG8isJF4zlNC2OMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxoweFy4yxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOs2nDhImOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxqoNFy4yxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOs2nDhImOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxqoNFy4yxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOs2nDhImOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxqoNFy4yxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOs2nDhImOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxqoNFy4yxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOs2nDhImOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxqoNFy4yxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOs2nDhImOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxqoNFy4yxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOs2nDhImOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxqoNFy4yxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOs2nDhImOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxqoNFy4yxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOs2nDhImOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxqoNFy4yxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOs2nDhImOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxqoNFy4yxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOs2nDhImOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxqoNFy4yxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOs2nDhImNGqKysDLdu3RI6BmOMMcYYY4xVOyISOoJBSktLhY5gkNLSUqPNnp+fL3QEg9y7d88o5/nTp0/xzz//CB3DICdOnDDKeX7ixAn8+++/QsfQ26VLl7B//36UlZUJHUUvxcXFWLp0Ke7evSt0FL2tWrUKx44dg0wmEzqKXo4fP46ff/7Z6NbnRUVFmDlzJs6dO2d0/ZZ169Zh69atKCwsFDqKXh48eIC5c+fixo0bQkfR286dO7Fnzx6UlJQIHUVvP//8M65evSp0DL0REdasWYOHDx8KHcUgO3fuxKNHj4SOYZALFy7gypUrQscw2O+//47nz58LHcNgf/75p1Gua+QuXbpk1PP/6dOnuHbtmtAxXsqlS5eMro+gjIjw119/GV3/TNnNmzeNcn9Ejohw/Phxo9sXVHby5Ek8fvxY6BgGO3z4MJ48eSJ0DIP8888/OHPmjFF+hm/evIk7d+4IHUO0uHCRMSNkamqKnj17Ii4uDuPGjcOpU6eMZgU9ZswYLFu2DAUFBUJH0cvZs2eNZh4rKy4uFjqCQYzxgBHwYmDaWHf8je0ggFxRUZFRfjYZY+xVMdYDLzdu3MC+ffuM7mA6AHz77bf4+eef8ezZM6Gj6OXKlSvIy8vDypUrja5vPmDAALz33nv49ddfjarvtX//fiQmJmLixIk4d+6c0HF0JpFI0LhxY3Tr1g0rVqwwqsHNr776Cg0bNsSYMWNw8uRJo+k33r17FzVr1kTXrl2xfPlyo+mrW1lZITMzEw0aNMCoUaNw4sQJo5nnP/30E9zc3JCXl4elS5cazfb02bNn8PT0RMOGDTFq1CijKUzz8PBA+/btVeb5gwcPhI5VKXNzc2zevBnu7u6Ij4/HmDFjjGY5NzU1RcOGDeHp6YlevXphxYoVRrFuCQkJQZ8+feDi4oImTZpg8uTJ+PPPP0U/zy0sLPDHH38gLCwMwcHBeO+997Bp0yajKLbw9vZG8+bN4ezsjFatWuGbb74xiiILJycnrF69Gj4+PoiOjsbw4cOxb98+oxhjrFmzJpo0aQJXV1d06tQJixcvNpqDmlevXoW/vz8iIyMxdOhQ7NmzxyjmuUQiwa5du+Dq6orGjRtj0qRJRrFukfvtt9/g4uKC1NRUTJkyxaiOXVhbW6N27dqIiorCsGHDjO6LDEePHlWsH7/99luj+9LOli1b4Obmhs6dO+PHH380mj6v3I0bN4x6/ltZWSEnJwfR0dH4+OOPcfjwYaPouyu7fPkyXFxc0KZNGyxYsAC3b98WOpJeJBIJxo8fj4CAALz33nvYsmULioqKhI6lF6lUiqCgICQmJmLChAk4ffq00WwDgBfvwffffw83Nzd069YNP/30k1HslyiTfw7S09MxY8YMXLp0SehIejl58iRcXFzQvHlzfPXVV7h8+bLQkXTm6OiItLQ0BAcH4/3338f27duNphbCwsICwcHBiI+Px7hx4/DHH38Y1Wf3lSMibiJvALwBEAC6fv06MUZEtG/fPpIvFwDI39+f+vfvT9u2baOioiKh42m0ZMkSAkCWlpbUunVr+uGHHyg/P1/oWJUaPHgwBQcH08iRI+nvv/8WOo7ORowYQZ07d6bNmzdTaWmp0HF0tmLFCmrRogUtW7aMnj9/LnQcnRUVFVF0dDT179+fjh49SjKZTOhIOpsyZQolJSXR119/Tffv3xc6js7u3r1L0dHRNHr0aLp06ZLQcfQyZMgQmjBhAt24cUPoKHo5cOAAzZw506iWEyKi0tJS+vbbb40uN9GLbf4ff/whdAy9lZWV0RdffEHXrl0TOoredu3aRf3796djx44Z1bqciKhPnz6UlpZG8+fPp4cPHwodR2fFxcXk6+tLnp6eNGDAANq/fz+VlZUJHUsnv/76KwEga2trateuHf34449G0b8lImrVqhUBIAsLC8rJyaGFCxfSvXv3hI5VqaNHjyr2gxwcHKhr1660cuVKKigoEDqaVjKZjJKSkhTZQ0NDaciQIXTgwAHRL++LFy9W5DY3N6fMzEz6+uuv6ebNm0JH0+rhw4dUo0YNRXY/Pz967733RL/fTETUqVMnRW4zMzNKS0ujGTNmiL7P+9NPP6mMVXh5eVGfPn1o/fr19OzZM6HjaXT37l2ysbFR5DY1NaXGjRvT5MmT6ezZs6LuD6Snp6vM85o1a1Lv3r3pl19+oSdPnggdT6Mvv/xSJbeJiQklJyfThAkT6I8//hDtPD9//jyZmpqqZPfw8KDXX3+dfv75Z9H2AWQyGcXExKjkNjMzo8aNG9PEiRPp9OnTop3nkyZNUskNgHx9fentt9+mdevWiXb7f/XqVTI3N1fJbWlpSS1btqSZM2eKen3etm3bCvM8MjKShgwZQrt27aLi4mKhI6ql3EdU7it26tSJFi9eTHfu3BE6okZdu3ZVyS2RSCg2NpY+++wzOnr0qGj7ik+fPqWaNWuqZK9RowZ17NiRFi1aJOp5/u+//5KVlVWFYyz9+vWjTZs2iXpM+unTp+Tu7q6SPSgoiAYMGEBbt26lwsJCoSNqNWDAAJXszs7O1LVrV1q+fLnoxzGKiorIz89PJX9MTAyNHDlS1J9VuadPn5Kbm5tKn7dRo0ZG0eeVa9q0aYX5/9lnn9Hx48eNIv/PP/+skt/d3Z1ef/11+uWXX0Tbp1Emk8koOTlZZXsVFxdHY8eOpZMnTxrFe3DmzBkyMTFR/A+2trbUtm1bWrhwId2+fVvoeDr58MMPK2y/3n33XdqyZYvotwFERP/88w9ZWlqq7Jc0bdqUpk2bRufPnxc6XqVkMhnVrVtX5T2oXbs2ffjhh7Rnzx4qKSkROqJW6rZlERERNHToUNq3b5/o6wlmzJihkt3Ozo7at29P3333naj7nkREH330UYX92nfeeUf0fc/yrl+/rvx/eFNV1MRVxZNw48JFJoy0tLQKgzEAyN7enjp16kQ//PCD6Ao0SkpKyN/fXyWvubk55eTk0KJFi0S7Y3rlyhWVjmzDhg1pxowZdOvWLaGjaXX+/HmSSCSKgfQPP/yQTp06JXSsShUXF5OHh4disOvNN9+kffv2GcVOz+jRoxXLSVhYGI0bN46uXr0qdKxKPXjwgKytrQkASaVSat26Nf38889GsZPz+uuvK+Z5SkoKzZ07V7TrEmWbN29W7Nynp6fTDz/8QE+fPhU6VqWePn1KDg4OZG5uTh07dqRNmzaJfkdGrkePHmRhYUGvvfYabdu2TfSDiXJ//PGHYtszZ84cevTokdCRdPb222+TRCKhjIwMWrp0qdHsfJWUlJC3tzcBoPDwcPr888+Nph9++vRplT5WmzZtaMWKFaIuFpGbPn26Sh/R29ubBg4cSAcPHhR1H0Amk1FsbKxKdnkh4HfffUcPHjwQOqJGhw4dqrAvYWpqSk2aNKGvvvpK1Mt9ZmZmheyWlpaUk5ND8+fPF+1AlXz7X765u7vTG2+8QevXrxflurKkpISCgoLUZm/YsCGNGTNGtIVGn376qdb95h9//FGUfcfTp08r9uXUFY8MHz6cDh48KLr+TFlZGUVERKjNbW1tTa1ataJvv/2W/v33X6GjVlB+AFm5BQcH08CBA+nXX38VXcHOgQMHNOY2NzenjIwM+vLLL+nixYtCR1Xx/Plz8vLy0pjd19eX+vbtK8qi1969e2vMLZVKqWnTpjR16lTRFQBs2LBBY27gRXF33759RVcMqK5Ap3y/q3nz5jRjxgzRHeh89913tc7zsLAwGjRoEG3fvl1UBfWnTp3SuA2Sb0Pbt29PCxYsoH/++UfouCrkX8xR18RcDPj3339XKIou31fs2bMnrVixQnRjAuUL0cvP87i4OBo9erQoi4o++OADjdmtra0pJyeHvvnmG1HuF5Xff1Zu8iKcBQsWiPL4RfmCFeVmZmZGTZo0oalTp9K5c+eEjqrWt99+q3Hee3h40BtvvEFr1qwR1bZU2dSpUyvt8+7YsUN0fV653bt3a8zv6elJb731Fq1bt050/Ue5srIyioqK0tinadGiBc2aNUvUXwTftm2b1j68vAhHzMeW8vLyNG634uPjady4caId4yAiun37tuJ4nqZtgNgLMcsXsZfvIw8ePJh2794t2iLA1atXa8zv5OREeXl5tHTpUlGONxFp35Ypf6FAbP1OIqJnz54pagjUfYYTEhJE+xku/6VZ5WZjY0OtW7em+fPni7L/powLF/+PNnDhItNgz549Wge/gBcHHlNTU0X1LYWZM2dqzCuVSqlFixa0YMEC0RVdtm/fXu38bd68OS1evFi0ZzJo2bJlhdz169enGTNmiPaALhHRqFGjKuQOCgqiUaNG0eXLl4WOp9GtW7cqfKMeAKWmptL8+fNFe/YFIqK+fftWyO3g4EBvvvkm7dmzR1QDusp+//13tTv57du3pzVr1ohq8F9ZWVkZ1apVSyW3nZ0dvf7667R7927RdaiVDRw4UCW3t7c3DR8+XPRnpD148KBKbn9/fxo1apRRFBcrn6HLysqKunfvLvrlhIjo5MmTFdYpffv2pSNHjog++/jx4yvs9KalpdGiRYtEu82XU1fQZWdnR927d6fNmzeLdsDnyZMn5OjoqHHgc/DgwaJddn755ReN/VszMzPKyMiguXPnirLvpenLUPLWsGFDmjBhAp09e1boqCrKn4G+fDMxMaGUlBSaOnWqqIp11BW6qhuoateuHS1evFhU+0QLFiyodP8zICCA3n//fdqxY4do1jUPHjwgOzs7rbnl3+7/4osvRHUGrA4dOlQ6z93d3al37960evVq0RwcLX/WRW3rl9GjR9Nvv/0minX73bt3ydbWttLc9vb21LFjR1q8eDHdvXtX6NhERNS8eXOd5nl4eDgNGTJENAeAZs+erVNuS0tLysrKotmzZ4ui73758mUyMzPTKXtgYCC99957tHnzZsEL02UyGcXHx+uU28LCgjIzM+nLL7+kCxcuCJqbiOiLL77QKTcAqlWrlmjOOqatOKd8s7W1pdatW9PcuXNFcQygc+fOOs/z+vXr08cff0wHDx4U/IuN6saINDU3Nzfq0aMH/fTTT6I4qNyrVy+dcpuZmVFqaipNmjSJ/vzzT8G3oZUVois3Dw8P6t27N61atYoeP34saG4i7YUf5Vt0dDSNGDGCDhw4IPhyTqT9oL26PteoUaNEVTxafmxR2zpdbF8eKSoqqnByDk39l5YtW9Ls2bNFVYRW2RcC5K1GjRrUqVMn+v7770X3ywzlz7qorllZWSmKj8X2SwErV67Ueb3z8ccf0+HDh0V1bKb8r0loajY2NtSmTRtasGCB6Aroyp91UVPz8/Ojd999lzZv3ix4v7K88mddVNfEXIipaz/Z0dGRunTpQkuXLhXVl8NlMhnVq1ev0vzyOo0pU6aIqiC/uLhYp22Z/AsF06ZNE9XxP21fnCn/GRbb2bS1fWlWucXGxtKYMWNEM2amjAsX/482cOEi06JJkyY6rdzkrXbt2jR06FDav3+/YDvYT58+JVdXV502hvKDvGI4GFDZwVErKyvq3LkzrV+/XjQ70UREmzZt0jqPW7VqRStXrhRdp/vff/8lqVSqMXujRo1EWwjYvXt3jbktLS2pU6dOoltOiF7srFXWwRs+fDidOXNG6KgVNG7cWGNuZ2dn6tevHx06dEh0nTttB18CAgJo5MiRoiq2kDt37pzG3MnJybRgwQJRFnapO4W/fAe+efPm9NNPP4luXSj3/fffq53ftWrVogkTJojuLBfKlH8+RLlFRETQ1KlTRTdwJXf37l2ysLBQm93a2pq6detGW7duFcUBi/K2bNmidX3u6upK/fr1o/3794tuvTh8+PBK+4j+/v40ZMgQUf2Ud1lZGdWuXbvS7CYmJpSamkpfffWVaAbOd+zYode+xIgRI0Qz71NTU3XOXqdOHfr000/pxIkTgmdft26dzrnlZ8D84osvBP/yjq6DmvLm6OhIXbt2pRUrVgh+YHrEiBE65wZAUVFRNGLECMEPEJ06dUqv3JaWlpSdnS34wTltZ13U1Hx8fKhv3760ceNGQQeThw0bplduExMTSkpKogkTJgj6U7vqzqCry2e0c+fOtGTJEsGKpAsLC8nX11fv7JGRkTR06FBBf4arT58+eueWn71rzpw5ghUwaDtDjrYWGhpKAwcOpG3btgny5UB9CqPKz/NWrVrRnDlzBCt6HTRokEHzvE6dOvTRRx8JtpyfPXtWpwP65ZuzszPl5eXRkiVLBCt0Uffl88qa/OdSJ06cSKdOnRJkfX7p0iWdi6KVm7+/P73zzju0YcMGwc4wpmshunKTSqXUrFkzmj59uqAHwocMGaJ3dhcXF+rWrRstW7ZM0KLX8j+VqEuTnxFQ6C+93Lp1q8JPdVfWxPTlEW1nqtLU5MWvhw4dErwIbdq0aXplNzExoeTkZJo4cSL99ddfgu9TazvroqYm/0lpMYxnaDvroqYmtp+U1rdPKcaflNZ01kVNTWxnMtSn+F7e5EVcYinEfP/99/XKL7YiwDVr1ui9LqpVqxYNGjRIFGe2nTdvnt75Q0JC6IMPPqCdO3cKmv/58+fk6empV3b5GQ3nzZsn6K+AaDvroqYmHzPbsGGDKAowX0XhooReFMYxEZNIJN4ArgPA9evX4e3tLXAiZojTp0/j8OHDkEgkigZA5bqmpm26Q4cOYdKkSQZlcnV1RVZWFlq1aoX09HTY2tpWmOb8+fM4ePAgLCwsYGFhAXNzc8Xlym6TSqWK/OWNHTsWn3zyic5ZTU1NkZqaivbt26NNmzZwd3fXOv3169exb98+2NnZqW3W1tYas2lCRIiNjcWxY8cqndbFxQWdOnVCXl4e4uPjdX6tW7duYffu3XBwcKjQLCws9MorJ5PJEBYWhvPnz2udztHREa+99hp69OiB2NhYvebP7du3sWvXrirNDQB5eXn48ccftU5jZWWFNm3aoEePHkhLS4OpqanOz3/r1i3s2rULNWrUgL29PWrUqKFotra2MDExMSj38ePH0aBBg0qnc3V1RefOndGtWzfExMToPM9v376NnTt3wt7evkKzs7ODVCo1KDcAZGZmYsuWLZVOFxMTg27duuG1116r9PMod/fuXWzfvl1lPsvnu52dncHzGwBWrVqFdu3aVTpdSEgIunbtiq5duyIgIECn575//z62bdsGR0dHODg4KP46ODjA3Nzc4MwAkJ+fDy8vLzx9+lTrdCkpKejRowc6dOgAe3t7nZ97y5YtcHJygrOzM5ycnODk5ARbW1u913/qpKenY/v27Rrvt7GxQYcOHdCrVy+kpKTo/JpPnjzB5s2b4ezsDBcXF7i4uMDZ2fml1iXKvvnmG7z99tsa73d2dkbXrl3Ru3dvREVF6fy8BQUF2LhxoyJzVecuLCyEl5cXHjx4oPZ+U1NTtGzZEr1790bLli11Xg8UFBRgw4YNKsuIs7NzlS0nAPDjjz8iLy9P4/1mZmbIyspCr169dM6en5+PjRs3okaNGnBwcKiw/q6q7K+//joWLlyodRpPT0907doV3bt3R0REhNZpHz58iI0bN8LW1ha2trawsbFRXJZft7S0fOn8RISoqCj8+eeflU7r7++Pzp07o0uXLoiMjFQ7zb1797Bx40ZYWVnB0tISlpaWisvq/lpYWBi8Tr916xb8/f1RVFSk0/SBgYHo2LEjOnbsiLp166rMu7t372Ljxo2QSqUwNzfX2jRNI5VKdf5fFi1ahJ49e+r1/yYmJqJdu3Zo164d/Pz8AAB37tzBhg0bIJVKYWZmpra9zH2mpqYq/xMRISkpCQcPHtQru6+vL9q0aYM2bdogOTkZ9+7dw4YNG2BqagpTU1OYmZkpLuvSDJl+9+7daNWqlV655dlbt26NNm3aICQkBJs3b4aJiYli3ihfVnfby04rkUjQvHnzSvvn6kRHRyM3NxeNGjXClStXFM8nf37l9ipuX7JkCSZPnqx3bnNzc6SlpaFJkyYwMTGBo6Oj4rnlz2/oZV2me/DgAdq1aweZTKZ3dg8PD6Snp8PBwQFhYWGwsLDQur9e/rqut2ma5uOPP8Yff/yhd24AqFu3Lvz8/FC3bl14e3urvI466m439LZt27bhhx9+MCQ2rK2tERISgujoaERFRSn6v/IxTOWxTG23GfKY+/fvY8yYMQblBl70JaOiolCnTh3UqlULZmZmr+ILzmpvnz17Nu7du2dQbolEgqCgIERGRiIyMlKxjyeTyUBEGv9qu0/Xv3v37sVvv/1m8Dy3trZGeHg4IiIiULt2bVhZWUEmk2lt8tfXpWma9t9//8XmzZsNzg286EdGREQgPDwcPj4+inkub2VlZRqva7tP2/WysjKsXbsWJSUlBue2sLBASEgIwsPDERoaCjs7O5Xn1+evPtOePHkS165de6l57uHhgdq1ayMsLAw+Pj6QSCRqX0+f/6Oyae7fv49Dhw69VG4rKyuEhoYiLCwMISEhsLa2Niirvn/37duHJ0+eGJxbIpHAz88PtWvXRmhoKDw8PHRapl/28o0bN3D8+PGXmucODg4IDw9H7dq1ERQUBDMzM53XG+Vb+c+jtrZ9+3bcv3/f4NxmZmaKz2dYWBgcHR01rs+Ur+t6n6bpCgsLKx3DrYyrq6tinRgYGAgTE5MK25pXcfnevXtYunSpwbmVt6ERERFwc3MDoH5bXdm2XN/+wPPnzzF9+nSDs5uZmaFWrVqIiopCZGQknJ2d1WaUX9b1Nl3vX7p0qU7jFpoEBgYq+l0eHh6K/qgh/UJ9L5eUlGDEiBEoLS01KLudnZ0ie3h4OCwtLVVep7yqvu/Zs2f48MMPtT5WGxcXF0RHRyM6OlrR561un3zyCW7dumXQY2vUqKHIX7t2ba1j/FU1xljet99+a3D/wMzMDGFhYYr/wcnJSe10ryL73r17FZ/jVatWoaCgwKDncXJyQnR0NOrUqYPQ0NCXOqali/3790MmUx0PuH37tk7HwjQJCAhAnTp1EB0dDU9PT63zW5/PmvK0Bw8eRFlZmcZp9+/fjytXruj83MrMzc1Ru3Zt1KlTB5GRkbCzs1ObU5fbyl8/fPiwIre29enjx49f6j1wdXVV7MMGBgbC1NT0pdbxx44dQ2lpaYX7Nf2/RISNGzeiuLjYoPyWlpaoXbs2IiIiEBYWBhsbG63bKk23nThxQiW3pvzlby8rK8OmTZsM3hZYWVkhLCxMsS9ubW2t13b3+PHjFfZLK1u2lK+fPn0aFy5cMCg7APj5+aFOnTqIiopS7I9XRpd5pcs0ixYtwpEjR3R6zfKsra2Rnp6OnJwcZGVloWbNmgY9z8u4ceOG8jzzIaIbL/ucXLhoBLhw8X/D1KlTMXjwYKFjaGRhYYG0tDTk5OQgJycHXl5eAIB58+bhzTffNOg5JRKJSlGj8uXS0lKDDtQBgImJCRo1aoT27dujbdu28PDwqDDNypUr0aFDB63PYWtrqyhklBd8VdZ27tyJ2bNn65U3MDAQXbp0QV5eHsLCwrROu2HDBmRnZ6u9z9LSUm1hoC5t8eLFGDJkiM6ZQ0ND0b17d3Tr1k2njfXmzZvRokULtfdZWVkZnPvs2bNo3LixzrnlxSM9evRAeHj4S+WWSCSws7NTKYZRV+Co6bZ27drpdfCldu3a6NatG/Ly8uDr66t12q1bt6J58+Ya77eyslJb1CjPqek+e3t7HDp0CO+8847OuU1NTZGeno5u3bohNzcXNjY2GqfdsWMH0tLSNN5ffn4rz9fy87j8fba2tmjQoAFu3rypc/bk5GR069YNHTp0gKOjo8bp9u3bh5SUFLX3WVtbK5ZXdYWN2m6zt7eHiYkJ3nnnHXz99dc6ZdanUPfo0aOIjY2tcLtUKlUpUNP1so2NjcrO9y+//IK2bdvqlDs4OBg9e/ZE9+7dK12nnDx5EnXr1q1wu62tbYWiQOXr5W9zdnZWO+j05MkTeHp66jSo0rBhQ/Tu3RuvvfYaatSooXXa06dPqy10tLOzU5tV0//h7OyscaBm8ODBmDp1aqW53d3d0b17d/Tu3RuhoaFapz116hTq1KlT4XYzMzO1y4O2ZcXJyQl2dnYVBmmKiorg4+ODu3fvVprdzc0NXbt2Ra9evTQW0QHA77//jnr16qm9z9TUVLGOUC5q1OeypaUlAOC3335D/fr1K80tV79+fXTr1g2dO3dWW9R97NgxNGzYUOtzyPso6ooaNV1Xd9+aNWswfvx4nbMDQGRkJLp06YLOnTvD399fcfuhQ4eQkJCg13OZm5trLG6srPBx2bJlBvUTg4ODFUWMderUwYEDB5CcnKz385RnZmamtbhR3iQSCQ4cOGDw6zRo0ADt2rVTFJO+SiYmJioFjcXFxSgsLDT4+VxdXREbG4sNGzZUYcrqYWdn91IH5BljjDHGGGOMMcYYY4yx6tawYUPk5OQgOzu7wokdXpVXUbj40t/q4fbqG/inov8nTJ48We/T7QrZYmJiaNSoUTR06FDBs2hrEomEUlJSaMaMGSqfjwULFgieTdN8nTZtmsaf9Pzhhx8Ez1h+/jZt2pQWLVqk9Wdfly5dKnhWdfP6yy+/1PqzEcuWLRM8p7qWmpqq9WewV6xYIXhGdc3W1pa6d++u8adTV61aJXhGdc3c3Jzat29Pa9asUfuTV/r8nKM+TSKRkIODAzk7Oxv0eC8vLxo6dCj99ddfapeTzZs3V/l8qlmzJoWHh1NycjK1bNnSoP85IyODli1bpvF05tu3b6+yzHZ2dhQQEEANGzakFi1aUNeuXen999+nkJAQvZ7HysqKunXrRrt27dL4MxY7d+6sstw1atSgoKAgio2NpZYtW1L37t1p0KBB9Oabb+r9XElJSVp/unvXrl1VupyYmZmRm5sbhYWFUWJiIuXk5FCPHj30nucAqEGDBjR79mx68ODBK8+tbnl3c3OjWrVqkUQi0fvxpqamlJWVRcuXL1f5qa6qXE5edUtMTKSvvvqKbt++rddPCYulhYaGUrdu3QTPwY0bN27cuHHjxo0bN27cuHHjxo0bN27cuHHj9iqbt7c3vf3227R+/XqV41JV7VX8VLTgRXncuHDx/4pJkyYJvrL6v9ASExNp2rRp9NlnnwmeRVszMTGhZs2a0XfffadSnDZz5kzBs2lqNjY21L17d9q+fTuVlZWpLN9ff/214Pk0NalUSq1bt6ZVq1ZVKEr75ptvBM+nrVlaWtJrr71GGzZsoJKSEkXu+fPnC56tsubh4UEffPAB/fbbb4pCr4ULFwqeq7Lm7OxM/fr1o0OHDilyL168WPBclbWGDRvSzJkz6d69e4rlZMmSJYLn0tYcHBzonXfeoaNHj6oUAy5fvlzwbNpacHAwjR8/nm7evKmyPhFrQbG82dra0htvvEEHDx5Umd9iLShWbhYWFvTaa6/Rli1bFEXRq1evFjyXrs3e3p7eeOMN2rNnD61Zs0bwPPo2U1NTql+/vuA5uHHjxo0bN27cuHHjxo0bN27cuHHjxo0bN27cuGlvNjY2NGbMGI0nkXkZXLj4f7SBCxf/J0ycOFHwFZQhK7Tw8HDBc/yvN0tLS+rYsSOtWbOGRo0aJXgeXZqPjw8NGzaMzp49S0REEyZMEDyTLs3Z2ZneffddOnLkCMlkMqM6E6qbmxsNGDCAjh07RtOmTRM8jz4tIiKCPv/8c9EXFJdvISEhNHr0aBo5cqTgWXRtUqmU2rRpQ6tXr6YvvvhC8Dy6tsjISJo2bRrduXOHZs2aJXgeXZqJiQllZ2fTL7/8QsXFxaIu4C7fwsPDaerUqXTnzh2aN2+e4Hn0ad7e3jRixAij/UKIq6ur4Bm4cePGjRs3bty4cePGjRs3bty4cePGjRs3bty4/e80KysrysnJoblz51Y4+UpVehWFixJ6URjHREwikXgDuA4A169fh7e3t8CJmCEmTpyIjz76SOgYlfL390d2djays7PRuHFjTJw4EZ999pnQsfRiZWWFmjVr4vLly0JH0ZulpSUKCwuFjqGX2NhY1KhRA9u2bRM6il5q166NmjVrYufOnUJH0ZuLiwvu3bsndAwmctbW1nj27JnQMfRiZmaG4OBgnD17VugoenFzc0OtWrWwf/9+oaPoRSqVIjQ0FKdPnxY6CmOMMcYYY4wxxhhjjDHGGGNMR56ensjJyUFOTg6aNm0KKyurV/6aN27cgI+Pj/yqDxHdeNnn5MJFI8CFi/8btm/fjrVr15Y/m6YuZ9zUev+///6LHTt2GJzLxMQESUlJyM7ORlZWFsLDwyGRSBT3b9iwAevXr0dRURGKiopQXFysuFy+abrvVa9nJBIJ6tWrh4yMDKSnpyMpKQnr1q3Dxo0b8eTJE42tuLj4lebSl1QqRUBAACwsLGBrawszMzM8fvwYjx49wqNHj5Cfny90RK1MTExQq1YtuLm5GVVuAPD19YWfnx+eP3+O/Px8RSsqKhI6mkYSiQQODg7w9/eHubk5Hj9+rGhPnjwROp5WDg4OcHBwgJOTEwoKChTz2xiKdu3t7eHq6oqSkhI8fPhQ9PNazsrKCnZ2digrK8PDhw8hk8mEjlQpc3NzODk5wczMDPn5+UYzrx0cHODo6Agiwv37940mt6WlJVxcXBTrkwcPHhjFcgK82P44OjrC0tISRUVFyM/PR0lJidCxdCaRSGBnZwdbW1sUFhbi6dOnot7+AC8y29vbw97eHlZWVpBKpSgqKkJhYSGeP3+u+CumZcjOzg7u7u5wcXGBg4MDiAjFxcWKVlJSonJdXatujo6O8PLyQs2aNeHk5AQAKC0trdBKSkrU3q7LfWVlZVWaWSqVwsfHB97e3vDw8IClpSXKysqqpJWWlla4rbi4GPfv33/p3NbW1vD19YWPjw88PT1hZmYGmUyGsrIyyGQylcvqbjNk2itXrrz0Fwysra3h5+cHX19feHl5KXLLGxGpXK+K2+7cuYPz58+/VG4rKyv4+vrC398fXl5eMDc3V7ye8r6u8vWXvU8mk2HLli0vldvCwgJ+fn7w9/eHj48PLC0tte67V9X1ffv24cYNw8f/LCws4O/vj4CAAPj6+sLCwkLtdOr221/mtrNnz77Ul8QsLS3h7++PwMBA+Pn5KXLLxyuUxy203abvYwoKCvDll18anNva2hoBAQEICgqCn58fpFIpJBJJlTZ51vJtypQpuH37tkG5bWxsEBQUpJLbxMQEEomkwl91t73M3+XLlxv8RUhbW1sEBQWhVq1a8PX1VeQ2pMnz6NpOnTqFMWPGGDy/g4ODERwcjICAAJXcpqamKq9T1dfLysrQpUsXg7ZBlpaWivkdGBgIS0tLldfQ9FeXaXT5+/nnnxu0rJiZmcHf3x8hISEIDg6Gra2t1tfR9TZd7zt27BgGDx6sd24A8PDwQEhICEJCQuDq6vrS81CfaSUSCfLy8vDPP//ondva2hrBwcEIDQ1VjFupWx5e1eWtW7diypQpVTbPK2vlP2f6NuXH9+/fH5cuXdI7t5mZGfz8/FCrVi3UqlULdnZ2Kuu18us4TffpOl35648ePcLbb79t0DyXj4mHhIQgKCgIVlZWiufXtP2pyss3btzAZwaeuMHU1BR+fn4IDg5GUFCQYr5XRwOA58+fY/jw4QYff3F1dVVsj9zc3GBiYgIAKq9Rvu9RlfcvXboUp06dMii7fJkPCgpCYGAgrK2tK+0Lls+j67TqLpeVlWHy5MkoLS01KL+8jx4YGAh/f/8KfV11qvK+0tJSfPnllwaP20ilUvj5+SEgIAD+/v6wtrY26HlextKlS3Hnzh2DH+/h4YGAgAAEBATAyclJ7Xx6lcc2V69ejevXrxv8ePl+R0BAAHx8fCCVSlXuf1XZ9+7dq3juc+fOvdQxnZo1ayIwMBCBgYEa34Oqsnfv3grL+7Nnz/D3338b/JzlP8eWlpaK+3T5X3SZZs+ePRXG7pQfd+XKlZcaF3Nzc0NQUJBiO6C8rq4sa/nblK/v2rVLZf2oaX1aWFiIP/74w+D88j6n8n6Vtter7PKvv/6qdqxU07aDiHDs2DGDj0VYWFgo9q+Cg4MVy5C2bZWm3PIM+mz/ZDIZDh48aPD6wtbWFsHBwahVq1al81/dbTt27FAZc69sOSt//9WrV3Hz5k2DskskEnh7eyMwMBBBQUFwcHDQmEFbJkOn2bp1K06ePKlTVnViYmIUxYr16tV7petPdV5F4aLZyz4BY0w3zZo1Q7Nmzar8ed988029CxcdHR2RmZmJ7OxsZGZmKg6EqpOVlYWsrCyD8xERysrKKhQzjhs3DvPmzTP4eX18fJCeno6MjAykpaXBxcVF5f727dujffv2Wp+juLhYY1GjvPirfNu9e/dL7Uwos7CwQHx8PBo3bozGjRsjPj5e6w5eWVkZnjx5oigI1KfdunWryosgLCwsEBsbi+TkZCQnJyMhIQGOjo5qcysXMurT7t69i+fPn1dpbgAIDw9HUlKSIntAQIDajXpRUREeP36sKKxTvqzttvz8fJw5c6ZKM1tZWSE+Ph7JyclISUlBQkICbG1t1U4rk8lQUFCgUsyorcn/j8ePH+PixYsGH+xSx9zcHA0bNkSjRo3QqFEjJCYmwt7eXu20xcXFKnk0zWd1lx89evRSB3TVsbCwQFxcHFJSUhTzvHz20tJSPH78GA8fPlQst/pcfpXFmq6urorlPCkpCfXr14e5uTlkMhkeP36M+/fv48GDB4qmfF3d5eoueKxRowZiY2ORkJCAXr16wcHBAQ8ePMC9e/dU2v379zVeLygoqLa8cvL3OCYmBosWLUJcXFyFjOpyKzchzpRZWFiIGzduwMLCAh988AE++ugjyGSyCsuDtmVF3qq6EKoyMpkMdnZ2SEhIQI8ePZCRkYHCwkJF8bx8HaG8TtF0n/LlVzk4aW1tjYSEBMU6PS4uTmWdXlJSgqdPn6KgoEDxV960XVe+fPbs2Spbn5uamqJhw4ZITU1FamoqkpKSNG6DlJWUlFQoZlT+q+62Z8+eYeTIkS/9OXBzc0NaWhqaNWuGtLQ0+Pn5vdTzyfu02gob161bh48//tjg13ByclL0bzMyMqrlC2vyAs66desafLbb+vXrIzMzE5mZmYiPj68wWP4qff3113jnnXf0fpyJiQkSEhLQokULtGzZEtHR0YqDdNXh/v37CAwM1PtxEokE8fHxyMrKEiQ3AHTp0sWgwsWYmBhF7oYNG1Z77l9++cWgwsWoqCjFPnF8fDzMzKp3GO3Bgwfw9/fX+3ERERGKX1IQIjcAZGRk6P2YiIgI5OTkKHKbmpq+gmTaTZw4Ue/H1KlTRzFgLMTyDQBHjhzBhx9+qNdj6tWrh1atWiEnJwf169ev9oFuAHj69CmGDRum12PkuVu1aiXIAL3c0qVL9Zo+KioKubm5yM3NRUxMjGC558+fr1c/KygoCK1bt0Zubi4SExMF+VwCwL///os9e/boPL2rqytatWqF3NxcNGvWrFrOOqHJpEmTdJ7WwsICaWlpaN26NXJyclCzZs1XmEy7DRs26FW0GBYWplhWYmNjBVkXAi/6t0OGDNF5egsLCzRr1gy5ubmCz/MDBw7oVbTo4uKCnJwc5ObmIj09XZDCITl9C/+8vLwUn9HU1FSNX6yoDvruT7i6uiI7O1uxfrGxsXlFySo3bdo0vcYuzM3N0aRJE8X2X+mAc7W7c+cOxo4dq9djPD09FdmbNm2qUiRU3ZYtW6Z30WJISIiiz5iUlCRIH11u0aJFeo/z+vn5KfI3btxY0M/tmTNn9P6ykZ2dHZo3b46cnBy0bNmywjHF6nb27Fm9jzXWq1dP8R7Ur19fsG0tAJw6dQp16tTR6zG2trYq74Grq+srSqebDz74ANOmTdPrMWL6HD958gQBAQF6PcbS0hLNmjVTjBd4eXm9onS6+eSTT/QuXIyOjla8Bw0aNKjSz8Ho0aP1mn7Lli3IzMzU6zHBwcGK/MnJyVUyjjpy5EiDHrdw4UIcOHBAr8fI10Py/fGXmf+GfnEEeHH8Pjg4WK/HODg4oGXLlsjJyUFmZqaiWLG6PX36FAsXLtTrMfLPrnzMzNPT8xWlE1BV/N40t1fbAHjjv98Iv379OjEmd/HiRTIzM9PpN+3Dw8NpyJAhtGfPHiopKRE09+3bt8nW1lan3PJma2tL2dnZ9OWXX9KZM2dIJpNVe+47d+5QjRo19Mqt3KytralZs2Y0evRo2r17Nz1//rxacj99+pR8fHwMzi1vzs7OlJubS5MmTaIDBw5QYWHhK8+ek5Pz0rnNzc0pKSmJhg4dSmvXrqV79+698tzr169/6dyOjo6Uk5NDkyZNooMHD1JRUdErz11aWkpRUVEvldvGxobS09Np9OjRtGvXLnr27Nkrz01E9N133730PLe3t6cWLVrQ+PHjae/evdWyjN+7d49cXFxeOjsACgsLo969e9OCBQvo77//rvL1ZFlZGT148IAuXLhAR44coaysrCrJDYBMTEyobt261LdvX/r+++/pwoULVZK/sLCQbt68SSdPnqRff/2Vli9fTh999FGV5ZY3BwcHyszMpJEjR9KmTZvo/v37L5X76dOndO3aNfrtt99o27ZttHTpUvrqq68oODi4yrP7+/vTa6+9RtOnT6eDBw++9LZJJpPRo0eP6NKlS3Ts2DHasmULTZ8+vUozW1hYUFJSEg0ePJhWrVpF//7770tlVqesrIzy8/Np0KBBVZLZ1dWV2rRpQ9OmTaMjR45QcXFxlWdW9vz5c/L39zc4r6mpKcXHx9NHH31EmzdvpsePH7/SvMqWLVtmUGYbGxtq2bIlTZs2jf74449q7yuWlpZSZGSkXpnNzMwoJSWFxowZQ0eOHKHS0tJqzSz3/fff65XbycmJOnfuTIsWLXolnz9dPXv2jDw9PXXO7ebmRj169KBly5a99Hr6ZemzLXJ2dqa8vDxasmQJ3b17V9Dcp0+fJolEolNuOzs7atu2Lc2fP5/++ecfQXOXlZVRnTp1dMptaWlJWVlZNHv2bLp69aqguYmIPv74Y51ym5ubU/Pmzemrr76iS5cuCR2b9u3bp1NuqVRK6enp9OWXX4oi95MnT3Tqm0ulUsrIyKCvvvqKrly5InRsIiJq2bKlTrmbN29Os2bNEsXyTUQ0depUnZeTmTNniib3yZMndepPpaam0vTp0+nixYtCRyYiopKSEgoMDKw0e2xsLI0bN45Onz4tyPibOrr0y4ODg2nw4MG0b98+wfpV5R0/frzS3A4ODtS1a1dasWJFtfa7tZHJZBQXF6c1t0QiocTERJo4cSKdPXtW6MgKa9eurXSeOzo6Urdu3WjlypX05MkToSMrZGZmVpq9Vq1aNHjwYNq7d69olvNHjx7pNGYeHR1Nn3zyCR07dkw065br16+Tubl5pdlr165NQ4cOpf3794tmvj99+pTc3d0rze7s7Ezdu3enlStXimYdQ0Q0ZMgQnfqL9evXp5EjR9Lx48dFs9yUlpZSeHi4Tn2BRo0a0eTJk0W1niwpKaGgoKBK80skEoqPj6dx48YJMs6iTefOnXVafgICAqh///60bdu2ajm+oitd95fk+6dz5swRXX1A+/btdfof/P396b333qOtW7dWy/EWXf37779kZWWl0+c4NTWVpk6dSufOnRM6tooJEybo9B54eHjQm2++SWvXrqWnT58KHVvh/v37ZGdnV2l+c3NzyszMFNV+LNGL/nJ8fHyl+U1MTCglJYUmTZokWH2DOrpuCywsLKhFixb09ddfi2o9NHv2bJ2W/+DgYBo0aBDt3LnzlR+T0dWkSZOM+rNL9KIPrZTVm6qiJq4qnoQbFy4yYfTq1Uvrhrx58+b05ZdfimaAVK5///46bcjj4uLo448/pj179ohip+Kdd97RaUMib7a2tpSZmUkTJkygAwcOCPY/fPrpp3rlVt6Y9+zZk+bNmydIZ2rz5s0G5XZycqKcnByaOHEi7du3r9oKROWKioooJCRE79ze3t7UuXNnmj17Np06dYrKysqqNTcR0TfffKN3bkdHR2rVqhVNnjyZDh8+LEjH78mTJ+Th4aF39po1a1KHDh3oyy+/pN9++02Qgcfhw4cbtJzLC3KHDBlCa9asqfZChvPnz+s0sKvtc5qVlUXjxo2jHTt2VOuBgnbt2hmcG3gxWFGvXj3q27cvfffdd3T27Nlq+bweP36cTExMXiq7ra0tNWnShIYNG0Zr1qyhW7duvfLcRETdu3d/qdw+Pj7UsWNHmj59Oh0+fLjatqf//POP3l+0kLegoCDFNvTs2bPVvg3VdedXebmOi4ujoUOH0qZNmwQ7mFFUVKTTwXTgRdFfUlISjRw5kvbu3St4X1HX4r+goCB65513aPXq1ZSfny9oZiKi4uLiSue5/GDFZ599RocOHRLNgbrKiqIlEgklJCTQ6NGj6dixY4L0rdS5ffs2WVtba81ev359+vjjj+nAgQOimd9ElR+YCA0NpUGDBtGvv/4q+GdS2YoVKyrdzvTt25fWr18vqoHAygbxa9asSb1796ZffvlFVEUXRETNmjXTmNvV1ZV69uwpuoPnREQTJ07UmFusB/2JiI4cOWKUuZ89e6ax4MLBwYG6dOlCy5cvp0ePHgkdtYKOHTuqzW1jY0Pt2rWjxYsXC14kr87ixYvV5pYfDPz666/p5s2bQsesQNu2MzY2lsaPH09//vmnaA4CKmvTpo3Gbc97771H27dvF80BNGXbtm1Tm9vCwoKysrLo22+/rbb9SX3IZDJq2LCh2uz+/v40YMAA2rFjh+Bf6ldH27o8Pj6eJkyYQH/99Zcol/OxY8dq3GdLS0ujGTNm0OXLl4WOqda7776rNruJiQk1atSIpkyZQn///bfQMdXStj8UGhpKgwcPFsVJLNS5e/cu2djYaFzPiLFAQpm2L1zWqFGDOnXqRD/88IMo+wJE2k8AYGNjQ23atKEFCxaIcj1PRPTXX39p/EKdiYkJJSUl0YQJE0T1BYzy0tPTNb4H8kKVNWvWiGr/VNkff/yhMb/8iw0TJkygU6dOifY90PalGAcHB+rcuTP9+OOP9ODBA6GjqvXkyRNydnbW+D/Uq1ePPv30Uzp69KhoxsPK++STTzTmd3Nzo169etGqVatEN94ht2XLFo357ezsqEOHDrR48eJqOZmOIRYuXKh1/r/++uuiHG8ienHCEk0nbBJroahcQUGB1i/Myr+wIaaxbHW4cPH/aAMXLjI1zp8/T6ampiorMzEfuJC7dOkSSaVSjQNIb731Fq1cuVJ0ncE///yzwvxW15nNycmhKVOm0NGjR0UxKHDlyhWytLTUmls+kNSwYUMaOHAg/fzzz4LvlBYXF1NYWFiluYEXBQDdu3enuXPn0l9//SX4hnzatGk65Q4LC6M333yTFi9eTJcvXxa88/To0SNydXWtNLeHhwd16tSJZs2aRX/88Yfg85tI9+K/4OBg6tWrFy1YsIDOnz8v+Dy/cOGCzsV/zs7Oghbklpedna1TbvlgRVRUFPXp04e+++47OnfunGDzXtvOpLZlvm3btjRp0iTavXs3FRQUVHvusrIynb69V36+R0REUO/evWnu3Ln0xx9/CFL8ous3iOVNKpVSfHw8DRw4kH766SdB+749e/bUKbOJiQnVr1+f+vfvTz/99JPgZxa7e/dupWe7MDU1pdjYWBoyZAht3LhRNIUMX375pdbcUVFR9P7779P69etFk5noRcFlQECA2sx2dnbUunVrmj17Nl24cEHoqBVo+tKCu7s79ejRg5YuXSrKAbYnT56Qm5tbhdwuLi7UrVs3+vHHH0WZm0j94LidnR21a9dOFGcn1OT333+vkFv5y3JiXL6JXmxDIyIiKqy35QezxHbmEGXq+rgxMTE0cuRIUR982Lt3b4XcderUoeHDh9PBgwdFVYyrTN3ZFuVnVxLT2dvUKd83F3uxgtyMGTNUcisXFYmxkEuu/MFyDw8P6tOnD23cuFHw/TRtSktLVb5kWaNGDUVxqBi+TKHN0KFDVfYXxFxkqaz8Qf3o6Gj69NNP6cSJE6Ld9sg1atRIkdvR0ZG6du0qurMTqlP+S9D169enUaNG0e+//y76ea78qzPyAtG5c+cKeoZzXTx+/JicnJwU2e3t7alTp060ZMkS0Y3vl3fz5k2ysLBQZJcXny9atEi0+xJyz549o5o1a6r0b1NSUkR3Zj9Nyp+B3tXVVfQFKnJlZWUVzrYYGBhI77//Pv3666+i7sMQvTjDVvlfdPHx8aF33nmHNm3aJOq+jFz5sy3a2dlR+/btadGiRYL/SoEu1I2VygtVxLyfp6z8lxrl78F3331Hd+7cETpepdSdbTEkJIQ++OAD2rVrl6j3oeQ+//xzlfwWFhbUsmVLURd9K3vw4AHZ29tXGPeVjxuI/XMgk8koISFBJb9Yz/CqjrqzLRrT/P/6668rrIM6dOhA33//vej7cOVPOKF8Zt0bN24IHU9nXLj4f7SBCxeZGj169CAA1KBBA/rss89EX3kt17VrV5WBjDZt2tDs2bNFUUSkjbqf6nBxcaG2bdvSF198IdjZ2irToUMHjQfRmzdvTqNHj6YdO3YIUoijjabiP1NTU2rQoAG9//77tHLlStEN3mn6OXF57oEDB9KqVatEufP24Ycfqp3ngYGB1LNnT9EU+5V36dIllUFGeZNIJFS3bl167733RFFIpE5ubq7aeQ68+OkfIc94qs26des05gb+/88mjx49mrZt2yaag2CFhYWVng3V0tKSkpKS6IMPPqCffvqJrl27Jop5P3/+fK255YO8OTk5NHbsWNq+fbso5ntpaSnVrVtXa255YeiUKVNo//79ohkg1Xa2C0tLS0pNTaWPP/6YtmzZIop5rUzdGSNMTExUChXFlpmIKD8/v0LBiI+PD/Xq1YuWLFkium2+slmzZqlsf2JjY+mTTz6hvXv3ivqgxfPnz8nb21vRV0lJSaHx48fTiRMnRL9fIf85HIlEQnFxcfTZZ5/RkSNHRJ/75s2bii8VhYeH04cffkg7d+4U/YAmEVHr1q0JeHGW8LfeeovWrFkjun0IdeRnQ3F0dKTOnTvTkiVLRD+ISfSiCN3W1pasra0pNzeXvv32W9EX6Mg1a9ZMcfa2mTNniuanlCszadIkMjMzo6ZNm9L06dNFW4xb3vHjxxXrcGMpViB6sQ3y8vKi2NhYGjt2rKjPxlJeXl4eRURE0PDhw+nw4cOi3/bILV26lHx8fOjdd98V7Vn+1Ll3757iFyqMochSWV5enuLnwi9duiR0HJ3t3r2bfH19qX///kZRhCMnk8koNTWVmjVrRl999ZWofkqwMr/99pviDLk///yz6Au3lH3++efk4+ND/fr1o61btxpFv1ZuwIAB5OnpSW+//bbRFGzJffnll2Rra2tUxVpy8rMtRkRE0LBhw0R3lvnKLF++XPFFqM8//1y0Z/zVZNGiRQS8OGPxmDFjjKKwW5n8CyTyAiFjW+8QvTjboqWlJWVnZxtdoQrR//9ihvJPQBvbezBo0CBR/wR0ZeRnW6xZsya98cYbRjM+o+zTTz8lqVRKGRkZ9NVXX4n2zMyabNmyRfFLL+PHjzeq/VmiF2felUqllJ6ebnTzX362RWMqFJWTn21R+bMr1jPrVuZVFC5K6EVhHBMxiUTiDeA6AFy/fh3e3t4CJ2JCKyoqwrJly5CRkQEPDw+h4+jszJkz6NOnD9LS0pCRkYGGDRvCzMxM6FiV2rx5M1q0aAF3d3c0btxY0WrXrg0TExOh42m0a9cuNGnSBADg7e2N5ORkJCcnIykpCVFRUTA1NRU4oXp37txBSEgI8vPzYWdnh4SEBEXuuLg42NjYCB1Ro759+2LOnDmwtLREfHw8UlJSkJKSgvj4eNjZ2QkdT6MLFy4gPDwcJSUliIiIQKNGjdCoUSOkpKTAy8tL6HhadejQAStXroS5uTliY2MV8zwxMRE1atQQOp5G27ZtQ0ZGBgBAKpUiJiYGSUlJSEpKQmJiItzd3QVOqF5hYSEiIyNx8eJFxW3h4eFITExEQkICEhISEBoaKsp144QJEzB8+HCV24KDgxEfH4/4+HjExcWhTp06MDc3Fyiheg8fPkRISAju3bunuE0qlaJevXoq2QMCAiCRSARMWtHXX3+Nd955R3HdzMwMdevWRUJCgmKZ8fX1FV1uIkJiYiIOHToEAHByckJycjJSUlKQnJyM+vXri245kTt37hwiIyMhk8kQExOD1NRUpKamIjk5Gfb29kLH0+qTTz7BrFmz0LRpU6SlpaFZs2YIDg4W3fJR3tOnT9GkSRPUqVMHGRkZaNasGZycnISOpZMVK1Zg69ataNGiBdLS0kS93VRWUlKCDz74AHFxccjIyICrq6vQkXT2yy+/4NatW2jRogX8/f2FjqOz+/fv49tvv0XLli0RFRUl+s+lsu+++06xvTeGfU+5o0eP4v79+0hNTYWlpaXQcXT2+PFj7NixA82aNYOtra3QcfTy66+/IiYmBg4ODkJH0cuZM2fg6uoKFxcXoaPo5f79+ygqKoKnp6fQUfRCRLh69apRrcPlbt++DTc3N6NahwMv1iuWlpai7X9r8/DhQzg6OgodQ28PHz6Eg4OD0S0rpaWlKCgoMLr1OPBiLNTJycmo+ipyly9fhr+/v9EtLwDw119/oXbt2kaZ/ffff0ft2rVhYWEhdBS9Xb58GUSEwMBAoaMY5MCBAwgJCTG6vpfcjh07EB4ejpo1awodxSBHjx6FtbU1wsPDjfKz++TJE+zatQtpaWmwtrYWOo5BDh06BDs7O6N9D4gIa9euRaNGjYyynwYAFy9exIMHDxATEyPK4zC62L59O+Li4kR93FSbY8eOwdfXF25ubkJHMcjRo0cRGhoq+uMF6ty6dQv37t1DRESE0a2DLl26hPv37xv1Z1fuxo0b8PHxkV/1IaIbL/ucXLhoBLhwkf2vICKj24gAwO7du+Hh4YFatWoZVf45c+bA3t4eycnJ8PX1FTqOztauXYtr164hOTlZ1AWW5T19+hTffPMNEhISEBMTY1SD6ps3b0ZRURGSk5Ph7OwsdByd3b59G/PmzUNKSgpiY2ON5qAuEWHo0KFwdHREUlISGjZsCCsrK6Fj6WTmzJlYt26dokgxLi7OKA4KXLt2DfHx8YiMjFQU+sXFxRnFIGO/fv2wceNGRe74+HjUrVtX9Mv7vXv3kJKSgtDQUMXy0qBBA6MYlNu1axfmz5+vKFQMCwszmh3JzZs3o6ysDMnJyUZThCZ35swZhISEGM12X660tBSmpqZG1UdkjDHGGGOMMcYYY4wxxhjTFxcu/h/FhYuMMcYYEwNjLUB/+vQprKysjKb4TNndu3eN6mxicsXFxZBKpUa5vDDGGGOMMcYYY4wxxhhjjDHGVL2KwkXjO/c8Y4wxxhgThLEWoYn5J+YrY4xFiwCM6qyzjDHGGGOMMcYYY4wxxhhjjLHqZ3ynnWGMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxpjR4sJFxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOMVRsuXGSMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxli14cJFxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOMVRsuXGSMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxli14cJFxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOMVRsuXGSMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxli14cJFxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOMVRsuXGSMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxli14cJFxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOMVRsuXGSMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxli14cJFxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOMVRsuXGSMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxli14cJFxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOMVRsuXGSMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxli14cJFxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOMVRsuXGSMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxli14cJFxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOMVRsuXGSMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxli14cJFxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOMVRsuXGSMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxli14cJFxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOMVRsuXGSMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxli14cJFxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOMVRsuXGRMZO7evSt0BMYYY4wxxpgGRCR0BIPIZDKUlpYKHcMgz549EzqCQZ4/f47i4mKhYxjk3r17QkcwyK1btyCTyYSOobf79+/j4cOHQsfQW2lpKf7880+jXC8ePXoUT58+FTqG3k6dOoULFy4IHUNvt27dwtatW1FUVCR0FL0QEX788Udcu3ZN6Ch627p1K/bs2YOSkhKho+jlypUrWLx4Me7cuSN0FL0QEebNm4fjx48b3XboyJEj+Pnnn5Gfny90FL0QEebPn48zZ84Y3Xbo3LlzWLt2LQoKCoSOoredO3fixIkTRjfPAWDHjh24cuWK0DEMcvToUaPNfu/ePRw9etTo1o1yf/75p9Ftk5SdPn3a6Nbvyi5fvozbt28LHcNgJSUl+O2334xynSl3/vx5o9xXlSMiHD582GjHw4AX/WNj3QYAL96DXbt2Gd2+oLK9e/ca7TgZAGzevBn3798XOoZB/v77bxw6dAhlZWVCR9Hb5cuXcePGDaFjGA0uXGRMZEaOHIkGDRpg7NixOHXqlNF0aCdOnIjZs2cbXeHlli1bcPToUaOZz3JXr17F7t27jS438KKDdPbsWaFj6I2IMHfuXFy+fFnoKHp7/PgxvvnmGzx48EDoKHq7cOECdu3aZZSDW3///bfRrRPlbt26ZZQ7AgCM8gC03PPnz41yvQ4AhYWFRjsQSkTYu3evUS7zMpkMM2fOxPnz54WOorf8/Hy89dZbWLt2LQoLC4WOo5d169ahXbt2+OGHH4xq8FYikaBt27bo0aMHfvnlF6NaX27ZsgV16tTBJ598gmPHjhnNulIikaBOnTro1KkTlixZYlR9sU8//RQNGzbEmDFjcPLkSaOZ5ydPnoSHhwd69+6N1atXG81yLpVKERYWhiZNmmDatGlGs143MzPDRx99hMDAQLz33nvYsmWL0RyMOHbsGJydndGyZUvMnj0bV69eFTqSTqysrBAWFobQ0FAMGjQIO3bsMIoCaTc3NwwePBjOzs7Izc3F3LlzjWIAXyKR4K+//oKfnx+ioqIwdOhQoykGdHd3R+PGjeHq6oqOHTviu+++w61bt4SOVSlfX19MmzYN7u7uaNiwIUaOHInDhw+Lvq8ukUjw/PlzNGjQAJ6enujZsyd++ukno+grhoSE4M0334SLiwtSU1MxadIknD59WvTbfolEgps3byI8PByBgYHo168f1q9fbxTbfn9/f7z77rtwdnZGRkYGZsyYYTTbfltbW8TExMDLywtvvPEGVq1ahSdPnggdSyf5+fkICAhAREQEhgwZgt27dxvF+hx4se8vzy7fFhlLEY6joyN69OgBT09P9O7dG7/88ovRLDPAi/EuDw8PxMfHY+zYsfj9999Fv35UduvWLbi4uKBp06aYPn260axr5MzMzODv74+4uDijnP9SqRSffvopvL290adPH6xfv97ovpj57NkzuLm5oXHjxpgyZQrOnj1rVO+BRCLBwoUL4e7ujq5du2L58uV49OiR0LH0Ymtri6ioKERFRWHYsGE4cOCA6PvGyiQSCZYvXw5nZ2e0bdsWCxcuNLqC5MuXL8PNzQ1JSUmYMGGCUdVvAMBvv/0GNzc3pKSkYOLEiUb1BdSaNWsiKysLHh4e6NmzJ1auXInHjx8LHUsnVlZWCA0NRb169fDpp5/iyJEjRnmsu9oQETeRNwDeAAgAXb9+ndj/titXrpCZmRnJ3/PAwEAaOHAg7dq1i0pKSoSOp9GuXbsIAJmamlKLFi3o+++/p8ePHwsdq1IHDx4kABQZGUlTp06l27dvCx1JJ0VFReTm5kbBwcE0fvx4unnzptCRdLZ582YCQPHx8TRnzhx6+PCh0JF09sknnxAASklJoW+//ZYePXokdCSdpaenk7m5ObVp04Z+/vlnKiwsFDqSTp49e0ZOTk7k6+tLw4cPpzNnzggdSWdnzpwhqVRKubm5tGrVKioqKhI6ks527NhB3t7eNGLECDp//rzQcfSyb98+qlu3Ls2YMYPu3bsndBy93Lx5k2rXrk1jx46la9euCR1HL2VlZVSnTh3q2LEjrV+/noqLi4WOpJe8vDzy8PCggQMH0pEjR0gmkwkdSWcffvghAaC6devS+PHjjeoz27t3bwJAtra21LFjR1q+fDk9efJE6FiVKikpoeDgYAJAZmZm1KxZM5o1axbduHFD6GiV2rhxo2I/w9LSknJycmjevHmi7wOXlZVRVFSUIrunpye9/fbbtGnTJtH3aaZPn67IbWpqSqmpqTR9+nS6ePGi0NG0unr1KkmlUkV2X19f6tevH23ZskXUfRqZTEZxcXGK3BYWFtSyZUuaM2eO6D+jY8aMUeQGQKGhoTR48GDas2ePqMcCjh07ppLbxsaG2rRpQwsWLKBbt24JHU+jwsJC8vHxUckeFRVFw4YNo/3791NpaanQETXq1auXSm47Oztq166d6Of5qlWrVHIDoOjoaBo2bBjt27dPtPP8wYMHVKNGDZXcNWrUoA4dOtDChQtFPc87dOhQYZ7Xr1+fPv74Yzpw4IBo5/natWsr5HZ2dqa8vDxasmQJ3b17V+iIaqlbr5iamlJycjKNHz+efvvtN9HuZ4wbN67CPPfx8aG33nqLVq9eLdo+en5+Pjk5OanktrCwoObNm9OMGTNEvW/0zTffVJjnwcHB1L9/f9qyZQs9f/5c6IgatWrVSiW3VCqltLQ0mjp1Kp09e1a0y7lMJqN69epVWJ937NiRFi1aRHfu3BE6olZZWVkq2R0dHem1116jH374QfTjX8uWLVPJbm5uTunp6TRjxgzR7xcRVVzmvb29qU+fPrR+/Xp69uyZ0PG0kslklJSUpJI/JCSEBg0aRDt37jSK8bt33nmnwvx/++23jWL+ExEdPXpUJb+lpSVlZ2cbxT6qXNu2bStsr95//33avn27qMcH5MqPb5iZmVGTJk1o6tSpdO7cOaHj6eSjjz6q0Dfu1q0bLV++3CiOU167do3Mzc1V/ofY2FgaPXo0nThxQrR9B7mSkhKqVauWSn4/Pz/q168fbdq0SdT9NiKix48fk7Ozs0p+f39/evfdd2nz5s2iz19+X0Xe95w+fbqo+/tERIMGDVLJ7u7uTq+//jr98ssvot3H0sX169eV/y9vqoqauKp4Em5cuMiq1uuvv15h4ELeEenRowetWrWKCgoKhI6pQt2Ov5WVFXXq1InWrFkj2s5r+dxmZmaUm5tLa9asEf1O27BhwxS5TUxMKCsri1atWiX63GVlZYqD/fIBxddee402b94s2kFzuZs3b6oUFltYWFDHjh1p3bp1op/v69evrzC41adPH9q7d6/odwrK75Q1bNiQvvzyS9EPKBIRNWvWTGUd/u6779KxY8dEP89lMhmFhYUpsqekpNCCBQuMoiMtk8kUxS3m5ubUoUMH2rhxo+jXL3Lyg4sSiYTS09NpyZIlRjEIR0T05ZdfKpYZV1dXGjBggFEs70QViy6Cg4Pp008/NYpi6Rs3bqgMvskPSH/++eeiPwBw7tw5kkgkFQZwc3NzafHixaL+csO8efPU9tfj4uJowoQJdPbsWaEjqiWTySgmJqZCbolEQklJSTRp0iT6+++/hY6p1k8//aR2ntvZ2VGHDh3o+++/pwcPHggds4KnT/8fe3cdHsX19QH8zO7GXSFG3AULERKSEOKOleLW4u5QSilQHIoWL+7uBHd3p7hbCAkhECDZ8/7Bb/fdJOuRmW3P53nuk83uZvfLMHJn5sydfKxSpYrU7L6+vjhs2DA8ffo0FhUVsR21lJ9//lnhNH/37h3bMUuRLNAt2WrXro0jR47k5IHxnJwcNDMzk5rb3NwcW7VqxdmTEqmpqVJzMwyDwcHBOHr0aLx8+TLnpvncuXNlzisWFhbYqlUrXLNmDee2R/fv3y+2X1qy1alTB0eOHInnzp3j1LpF2nGjkvN58+bNOVmA8fvvv8vMDQAYGBiII0aMwNOnT3Nqv+PGjRul+lolp3mLFi1wxYoVnCoGFAqFGBQUJDM3wzAYEhKCv//+O+fm8/nz58udV2xtbbFDhw64YcMGTq3P8/Ly0NLSUmZuycK0W7ducWp9Pm7cOLnT3N3dHXv37s25YsCvX7+is7OzzNz6+vqYmpqKc+bMwcePH7Mdt5hLly7Jneaurq7Ys2dPTp4Il1YYXbLfMmrUKLxw4QKn5nPE0sVPko3H42FYWBiOHTsWr1y5wrnsRUVF6OvrKzO/t7c3DhgwAA8fPszJY+wXL16UmV1PT09chMbV87f79++Xmd/ExASbNWuGy5cv51z/S0RawZPk9E9NTcV58+ZxenAPWftLAIA1a9bEX3/9Fc+ePcupPo2kK1euyMxvbGyMTZs2xWXLlnGqP1lSly5dZP4bRMW8Bw8e5OQ6CBHx7du3aGhoKDW/QCDA6OhonDp1KqeLuEoWIUs2Ozs77Ny5M27fvh3z8/PZjirV8uXL5fbb0tPTccGCBZxdF40fP15mfgMDA8zIyMCFCxfiixcv2I5airTCS8nm6enJ2WX41atXqKenJzW3trY2xsfH46xZs/DRo0dsR1UJFS7+RxtQ4eJ/zt27d5HH48k9ACAaIWXRokWcGSFF3kbbzMwMO3XqhIcPH+Zc51vWQUVra2vs378/Xr9+ne2IUj18+FDqAWhra2scMGAAp4stpk6dKrNzOnToUM6e7EdE/PHHH6Vm53qRTsmCUcnm7OyMw4cP5+zVZY8fP0Y+ny91hyw1NRXXr1/PuQOhIlu2bJE6zX19fXHSpEmc3AkQkSxCk9yBad++PR49epST87nInDlzZK5fuFqQIyIawbjkAaBOnTrhyZMnOT3dc3Nz0cjIqFR+Hx8fHDduHOdHkYyIiJC6vNaqVQsnT57M6X54u3btZPbB6tSpg5MmTeLszq+0kYBETUtLCxMSEnDBggWcK1b/8uVLqRF1SjZvb28cNmwY50bx3Lx5s9zcouxDhw7lVEFdUVER+vj4yM3N5/Oxfv36OG3aNHzw4AHbkcUmT56scJpXrVoVf/75Z9y+fTtnCtYfPnwotzhKNM0jIyNxypQpnDlALhQKsU6dOgqnub29PXbt2hV37drFmb5kyVEXpTWBQIANGjTAadOmcaZA/cKFCwpzA3wfvatr1664c+dOTkzzL1++oKOjo8LcotFSJ0+ezJmRpGQVFktbt3To0AE3btzIibtibN++XancPB4PQ0NDccyYMZwYpU7aqG6ymqWlJbZu3RpXr17NieLuVq1aKZVbVLDDlWLAzMxMpXIDfD8O1qZNG1yzZg3rFzF8/foVXVxclMotEAgwMjISx48fj1evXmV9PlemvyJqTk5O2K1bN9yxYwfrJ5c/fvyI1tbWSuWWLAbkwv7R4sWLlZ7mfn5+OGjQIM4UdjVu3FilaT537lxOHBMQCoUYGBioVHYbGxvs2LEjbtq0iRPbUMTSI//J63OJRqRjexkVkXUhWslmamrKyZEkMzIylMpfo0YNHD58OKf2pYVCIdarV0+p/ld4eDiOHz8er1+/zvp2SZK8gifJVqtWLRwxYgQn+jKSSl4wLatVrVoVO3bsiJs3b+bc4DXKrPcZhsG6deviuHHj8Nq1a5yah548eVLqwm9pTVTMy7V1EGLxwWzkNU9PT+zfvz9n+gwiT58+lVmELNl0dXUxOTkZ58yZw4m+g0hhYSF6enoq9X9Qu3Zt/O233zi1LlJ0oZJkCwwM5NzFkIouVpJchn/44QdOFVP3799fqeyiu4Bw+e4IIlS4+B9tQIWL/0nKHlgUdQbDwsJw0qRJrBZkfPnyBW1sbBTmtbOzwwEDBnBmlIuPHz+isbGx3MxBQUE4Z84czo20kJSUJDd33bp1ceHChZwbJS07O1vmFQaiFhoaivPmzePUFeiIiCdPnlQ4j3O1SGf69OkKswcFBXFyNMMmTZoo7Iz+/PPPnBtBsrCwEKtVqyYzN4/Hw8TERFy7di0nTt5KysnJQQMDA5nZ3dzcOHtL4w8fPsi8AhGA2yNICoVCuVehe3p64rhx4zh7K5GePXvK7a80aNAAlyxZwpmD/pIUFXMxDIORkZE4b948TpyElnT9+nWl+ozBwcE4ZcoUTo3YIW/kgpLry/r16+OsWbM4c+XqzJkzle6v29vbY48ePfDAgQOsHzQsedtlRc3GxgY7d+7Midsyr1y5UuncAN8P+AwfPhzPnTvHav/g48ePSh8cBPh+gjcjIwP//vtv1i9Sk3U3AFnN29sbBw8ezPqtdnfu3KlSbtHtjRcvXsxqPzgnJwdNTU1Vyu7j44ODBw9m/Va7yp5Il5zP09LScP78+ayu1xWNjiatubq6Yu/evXHfvn2s3V3i0aNHSp14k2ySt1Ni69iRopH0ZDVbW1v86aefWL2dkrInSiSbaASsP/74g7VRR+/evSv1QkBFzdraGtu2bYtr165lpRhQKBRieHh4maY5W0Wvy5YtUzk3wPf+4s8//4ybN29mZX8pPz9fqeO6JZvkrZnZWrfIukBamW3ogAED8ODBg6ysz799+4YeHh4q5zY2NsYmTZrg4sWL8eXLl5WeGxHx2rVrckd0ldX8/f1xyJAheOzYMfz27Rsr2eWNzi1vGxoTE8PqNhRR+f1nySYqAPnrr79YPRag6n6o5DqdC0VQly9fVmtb2q5dO9ywYQPm5uaylh0R8cCBAyrnd3Z2xp49e2JmZibrxwKULXiSbKIiwC1btnCiCFDeqIuytq8JCQk4e/ZsThTbX716VeV5SPJWtGzPQ4iIXbt2VXkdFB4ejhMmTMAbN26wft4pKytL7jkPaU1UDL5y5UpOHM/u3r27yvMRlwrCVT0uKbku4sKtgSdOnKix+VUpvBQ1UTH12LFjWb1QTN6oi7KapaUltmnTBtevX896H0KaiihcZPB7YRzhMIZh7AHgKQDA06dPwd7enuVERB03b96Ec+fOAZ/PBx6PJ/4p6/Hdu3ehZ8+ean2Xj48PpKenQ3p6OtSpUwd4PJ7auZ88eQKnT58GQ0NDqc3AwAD4fL74/WPHjoVffvlF6c/38vKCFi1aQPPmzcHNzU3tnCW9efMGTpw4Aebm5uJmYWEBurq6Ut/fu3dvmDFjhsLP1dXVhYYNG0KHDh0gOjq6TNNWmqysLDh27BhYWlqCpaUlWFhYgLm5OQgEAqnv3759O6SlpSn8XAMDA2jWrBl07NgRQkNDgWGYcs399u1bOHbsGJiZmYGZmRmYm5uDmZkZGBoayvyun3/+GRYuXKjws3V1daFRo0bQrl07iI6OLja/ldWbN2/gyJEjYGJiUqrp6elJzY6IEBQUBOfPn1f4+QzDQHR0NLRu3RoaNWoERkZG5Zrb2NhY3ExMTMDY2BgMDQ1lzpcfPnwAe3t7yMvLU/gdfD4fEhISoHXr1pCWlgZ6enplzv327Vs4fPiwStNb5NixYxAREaHU9zg7O0Pr1q2hdevW5bJeyc7OhgMHDojnb1NTUzAzMwMTExOl5scJEybAkCFDFL7P1NQUmjVrBu3atYPg4OAyL6e5ubmwf//+YutAc3NzhdNaUpcuXWDevHly38MwDMTGxkL79u0hIyND5npWWXl5ebB3715xXgsLC7nrb1m6d+8Of/31l9z3iNaN7du3h7CwsDJN87y8PMjMzBRPb9G6UN56UJa//voLunfvLvc9PB4P4uLioH379pCWlqb2dM/NzYXMzEypy6W+vr7K2f/55x/w9PRU+D59fX1o2LAhtGnTBho0aKDyuj07Oxv27t1brD9Ssn+ira2t0mcWFRWBp6cn3L9/X+F7tbS0ICEhAZo3bw5paWlgYGCg1HdkZWVBZmYm6Onpga6uLujq6kp9LPqpra2t9P9BSkoK7Ny5U6n3AgCEhobCDz/8AE2aNFG4f/HmzRvIzMwEbW1t0NbWBi0tLak/FT0n6/85ISEBMjMzlc4OAFC3bl1o1KgRNG7cGJycnKS+5/Xr15CZmQkCgQD4fH6xn8o8VvT6t2/fwNvbG96+fatSdjMzM0hNTYWGDRtCXFwc6Ovrl8q9Z88eqfsIZf0perx161YYNGiQSrkBAIyMjCAxMRHS09MhKSkJTE1NS+Xm8XjAMIz4+0StPJ5DREhNTVV5mgMA2NraQlpaGqSnp0P9+vVBR0cHAL7P37t27RJ/j+i7JH/KeqzKcwsWLIAVK1aonJthGKhbty6kpaVBWloaeHl5Fcst+q6Kao8ePYKuXbuqnBsAwMrKClJSUiAtLQ1iY2PBwMAA3r59K15Xib5D9Fjac8o8lvVcly5d4M2bNyrnZhgGQkNDITU1FdLS0sDb2xuysrJkrmOlraeVfU7a80uXLoX9+/ernBsAwNLSEpKSkiA1NRXi4uLg69evsH37dgAAkDz+VxGPr1+/rrDvJU/t2rUhNTUVUlJSwNHREbZt2yb+DlmtrK8jInz79g1+//13KCoqUiu3kZERxMXFQUpKCgQHB8OpU6cAEUEoFBb7Ke05WT+Vfc+aNWvg0aNHak9zd3d3SE5Ohnr16kFWVhbweDwQCoXFmug71W3S/v7KlStw/PhxtXNra2tDREQEREVFAY/HA0tLS/FnFxUVFfsp67Gyz0k+zsvLg02bNqmdG+D7tqhBgwZgZGQEXl5eoKWlVez7RU3yd2Vfk/e+AwcOQE5Ojtq5+Xw+1KlTB2xtbcHHxwdsbGxKTTtlmyrvv3//Pty8ebNM07xKlSrg7u4OPj4+4OnpCdra2irlVeff8vXrV9i7d2+ZcgsEAnBzcwNfX1/w8fEBa2trmd+naJqq8vqVK1fg6dOnZcpubW0Nfn5+4OPjAy4uLiAQCMpt3pb1OD8/v8zTXFdXF7y9vcHPzw+8vb3ByMioXNYtil6/cuUK3Lp1q0zZHR0dwc/PD3x9fcHBwQEAoEzrbmXbli1b4P3792rn1tfXB19fX/H8oq+vX2y7UXL7p85zsl5fuHAhfPnyRe3s1tbW4O/vD35+fuDm5gZ8Pr/UdlrV35V975IlS9TaHxKxs7MDf39/8Pf3B2dnZ2AYRt0BV1T+m1OnTsG+ffvUzm5ubg4BAQEQEBAAHh4e4nMmsjLJek2Zx9JemzVrFrx48UKt7Hw+Hzw8PCAgIAD8/f3ByspK/PnK/lTlvdL+dvz48ZCdna1Wfm1tbfD19YXq1auDn58fGBsbS90vqMjnFi1aBNevX1crv0AgAC8vL/H8Y25urnSGsjyWfO769etKnQ+Txc7OTjz/ODs7i4+RVERWWY+nTZsGjx8/Viu/trY2+Pj4QEBAAPj6+oKxsbHC7y/P586fPw/v3r0r0zrI0tIS/Pz8wM/PD9zd3cXHOcuybCrKf+HCBfG+KiLCuXPn1O6rMQwDLi4u4u1ulSpVZH6vonWOotcuX74MhYWFpV7LycmBo0ePqpUfAMDQ0BC8vb3Bx8cHPDw8xMf2ymO9DwBw5cqVYrlLNqFQCPv37wehUKhWfj6fD25ubuDl5QVeXl5gZmZW6jtKfre0LCWfu379OhQWFip835cvX8q0L87n88HFxQW8vLzA09NTan5ZmaU9f+PGDXFuWf9uyedv3boFL1++VDu/mZmZeBl2c3MTnz8q67pUmfeuWLECrl69qlZuLS0tiIyMhJSUFEhJSQFXV1e1Pqc8PXv2TLzfAQAOiPisrJ9JhYsagAoX/x2mTZsGffv2rfTvtbGxEZ+gi46OFm/ElbV69Wpo0aKF3Pfo6emJCwUYhoEHDx6olTUoKAhatGgBzZo1g6pVq6r1GSK7d++GpKQkqVklC3hEj3Nzc2HdunUqfUe1atWgbdu20K5dO3BxcSlTXpEDBw5ATExMqefNzMyKFTOKHpuZmcHIkSPh27dvSn+Hl5cXdOzYEVq3bl2sY1oW+/btg7i4uFLPCwSCUsWMop9v376FtWvXqvQ99vb20KZNG2jXrh24u7uXOXdmZiYkJCRIfU1LS0tqIY+JiQncunULzp49q9J3lbVIR9LevXshPj5e5utGRkbFihkl26FDh+Dhw4cqfZ+RkRE0adIEWrVqJT45pI6DBw9CgwYNpL4mEAjEmWW1adOmQX5+vkrfGRoaCq1bt4ZmzZqBubm5WrlPnDgB4eHhUl8zNjYuVdBY8nFRURH07t1bpe/08PCAtm3bQuvWrSU7fyo5f/481KlTp9TzOjo6pYoZSzbR88+ePYO2bdsq/Z2mpqbQvHlzaN++PQQGBqpVCHjp0iWoVatWqef19PTERYySBY2yHr98+RKio6OV/l53d3do3749tGnTBuzs7FTOffnyZahZs2ap50XrwZIFjdKeEz3W0tKCgIAA+PTpk1LfbWZmBs2bN4d27dqpPN0vXLgAgYGBUl8TCARyl0lRMzU1LfZ7jx49lCruFrGxsYGWLVtCmzZtwN/fX6m/OXPmDISEhMh9j5aWltzCRmm/7927F3bs2KF0doDv6/eMjAxo0aIFxMXFgZaWlsz3ylufSMMwjNwCR8nHT58+hTNnzqiUXSQsLExcxGhra1vq9SNHjkBUVJRany2JYRipRY35+flqHzwHAKhVqxY0btwYGjduXKxw9vDhw1C/fv0y565Ienp6EB8fDw0bNoSUlBQwNzcvt+ld0QQCAURFRYkvmHr06JHSFxmwzcjICBISEiAtLQ0sLCyk7jdwlYeHB6SlpYGzs7PCIncu0dHRgZiYGPD394fx48ezHUclLi4uEBQUBGvWrGE7ikq0tLSgVq1aam8b2GRpaQlZWVlsxyCEEEIIIYQQQgghhDO8vb0hJSUFUlNTITQ0VObgVxWpIgoXpVa7UuNWA7pV9L/ClClTJIdMZaUZGhpi06ZNceXKlUrf8lid2yaVtfF4PIyNjcXFixerfZvgFStWVGrmyMhIXLp0aZmHnF+7dm2lZRYIBJiRkYHbt28v8605KjO3qIWFheGCBQvKNEQyG7kBvt9yccCAAXj16lW1cq9fv56V3ADfb100ePBgvHbtmsq5N23axFpuLS0tbNiwIW7atEnl2xJs376dtdwMw2BMTAwuX74c8/PzVcq9Z88e1nIDAPr5+eGUKVNUvsXlvn37WM0tun33+vXrVZpX1LnlSkU0X19fnDRpktK3i+JKblGrXr06TpkyRWH+/fv3s55VWrOwsMAuXbrgkSNHpN66gqu5RY1hGKxXrx7OnDkTX7x4wZnlUpXm6+uLI0aMwCtXrmhUbgBAPp+PDRo0wF69erGeRZ3m7u7OegZ1Go/HYz0DNWrUqFGjRo0aNWrUqFGjRo0aNWrUqFGjpmwzNzfHli1b4urVqzE7O1vp85llVRG3ima9KI8aFS7+V0yaNIn1lZdkEwgE2KBBA5w5c6bc+Wrq1Kms5tTR0cHGjRvjxo0b8fPnz0pP7xkzZrCS18jICDt27IjHjx9HoVCo8nwye/ZsVnLb2tri0KFD8e7duypnRkScM2cOa/OInp4etmrVCvfv3y+1SEQeNgpzSzZli3QkLVq0iPXcAIA1atTAyZMnFytukWfx4sWsZwb43pHr2rUrnjp1SqnldNmyZaxnBvi+funQoQMeOXJEqdyrVq1iPTPA9+1Neno6btmyBb9+/aowN1sFxdKahYUF9u7dGy9fvqww94YNG1jPK9n4fD6mpKTghg0b8MuXLzJzs1lQLK/xeDxMSEjAVatWSS3a3bp1K+sZFTV7e3scOHAgXrp0SbzMslkIrWpjGAYjIyNx9uzZlX5BSHk1Gxsb1jNQo0aNGjVq1KhRo0aNGjVq1KhRo0aNGjVq1KhVVDMwMMAJEybIPR9YXiqicFG9ez0SQlRWVFTEdoRirK2twdnZGezs7MDY2Fjm+z5+/FiJqUr78uULbNy4ERo3bgxVqlSBDh06wP79+xVOz3fv3lVSwuLy8vJg0aJFEB4eDl5eXjBu3Dh4/vy50n/P1u2wXrx4AePGjQN3d3eIioqCZcuWKX2LUgCA9+/fV2A6+T5//gwrVqyAmJgYcHZ2hl9//RXu37+v1N/m5ORUbDglXLlyBfr37w92dnaQmJgIq1atUjjtP3z4UEnp5Lt8+TIMGDAA7O3tIS4uDpYvXy53nZGbm1uJ6WTLzs6GOXPmQGhoKHh6esKoUaPk3uKeC/MJwPf1y99//w2RkZHg5uYGv//+u9zbfpfltqvlqbCwELZu3QoZGRlgb28P/fv3h+vXr8t8P1vrb2nevXsH06dPhxo1akDt2rVh1qxZMqcrV6a3SFFREezYsUN8699evXrBpUuXRBfFiHFl/i5JKBTCnj17oEWLFlC1alXo0KEDHDp0CIRCIQCw3z9RxrNnz2DSpElQs2ZN8PX1hdGjR8tdZrkGEeHIkSPQvXt3aN26Ndtx1PLy5Uu2IxBCCCGEEEIIIYQQQgghhJQrKysraNeuHWzcuBFevnwJgwYNAm1tbbZjqac8qh+p0YiLRLGxY8eyWmXN4/EwLCwM//jjD7x8+bLSowEOGjSI9Qrxkq1KlSrYp08fube77tmzJ+s5Jad9YmIirlu3TuFtR7mU29jYGDt37oxnz55VOL8MGDCA9bwlW7169XDRokX44cMHmbl/+eUX1nNKa0ZGRti+fXs8ePCg1FEkf//9d9Yzymr6+vrYsmVLPHDggEblBgAMDw/H+fPnl1q3cD13ZGQk/v3336Xm9VGjRrGeTV4LDAzE2bNnlxq+fPTo0axnk9e0tbXxhx9+wD179mBhYaE49/jx41nPpkwLCAjAP//8U3wL7z///JP1TKq0atWq4bBhwzi/XFLjRtPUWwCbmZmxnkGdVrVqVdYzqNMsLS1Zz6BOMzExYT2DOk1fX5/1DOo0HR0d1jP8l3Lr6uqynkGdpqenx3oGdZqBgQHrGdRphoaGrGf4L01vbW1t1jNQo0aNGjVq1KhRo0aNGjVq/+Xm5+eHQ4cOxZMnTxY7R1mZKmLERQZLjLpCuIdhGHsAeAoA8PTpU7C3t2c5EVFHZmYmbNu2DYqKikAoFIJQKBQ/lvZcTk4OHDx4sEzfaWlpCQkJCZCcnAxxcXFgbm6u8mesW7cOdu/eDR8/fpTbKlKVKlUgKipK3Dw9PYFhGLl/s3TpUtizZw9kZ2dDdnY2vHv3DrKzs1kb8U0gEEDNmjUhJSUFBgwYAPr6+lLfJ8qdlZVVrBUUFFRy4uIaNWoEf/75J1SrVk3q6ytXroRdu3ZBdnY2vH//Ht6/fy9+zNZoo4aGhhASEgKxsbHQo0cPqdN8w4YNsG3bNsjNzRW3nJwc8WPRyF6VycXFBcLDw6FevXoQHh4udX7fvHkzbNmyBT58+CBuubm54sefP3+u9Nx6enoQEhICERERUK9ePQgJCQEDA4NSuTdv3lxseks2Nkem9fT0FE/3+vXrF5vXN23aBJs3bxbP2zk5OeLHbC+bIk5OThAXFwe//fYb2NraAgDAxo0bYdOmTeL1oGhdmJOTU2rUPTbp6OhAx44dYcyYMWBmZgabN2+GDRs2iPOKGldG7JRkb28Pbdu2hd69e8OpU6dg3bp14nWfaJqzuR6URyAQQGpqKiQmJsLx48dLLY+idSEXs+vq6oKHhwdYWVmBhYVFsf5Ifn5+sd+5kl8gEEBQUBC4ubnB27dvwcTEBAoLC6GgoAA+f/5c7Ke0x2zg8XgQFBQEDRo0AAcHB7hw4QIUFRXB169f4du3b8V+Kvuc6GdF/r+4urpCfHw8xMfHg4WFBaxcuRKKioqgsLAQCgsLy/3xu3fvytxf4PP5EBYWBgkJCZCYmAgCgQDmzJkjdX9B3r6EKj9zc3PljjasDC0tLYiMjISkpCRISkoCoVAIs2fPFudDRPHj8nzu7NmzKo0MXhKPx4O6detCcnIyJCcng7a2NsycOVP8+aKDJZLfqcxzil5/8OAB3L59u0zTvEaNGpCcnAwpKSlgZmYmzq1Mk8ykSvv06RPs2bOnTLnd3d0hJSUFUlJSwNbWFmbPni15oaZKj1X5m127dpVpZHgHBwdITU2FlJQUcHZ2htmzZxd7vWR/Slr/Sp33nDlzBi5fvqxmagA7OztISUmB1NRUcHd3h1mzZhV7XXLfQtZjdV578uQJrFu3rlxye3p6wowZM8SfL63Jek3V54uKiuCPP/6AwsJCtXKL5pO0tDTw8vKCKVOmAI/HE3++6LG851R9v+jxnDlz4NatW2rldnR0hLS0NHHuSZMmAY/HEzfRd6jb5P393r17YdWqVWrlrlatGqSlpUF6ejr4+vrC+PHjxZ/L5/OL/Szvx2/evIHu3burldvW1hbS0tIgIyMDqlevDuPGjSuWV97j8nhft27d1Br528zMDFJSUiAjIwOCg4Nh4sSJMr+7ZCvr63w+H9auXQsLFixQObe2tjbExMRARkYGREVFwaxZs9T6fmWatM/Jzc2FJk2aqNVHrF69OmRkZEBcXBysWbMGBAJBmaalqn87duxY2L9/v8q5TUxMIDk5GRISEuDkyZOgq6ur0vyr6LGi11++fAnt27dXOTcAgI+PDyQlJcGTJ0/Axsam2Gerur5Q5+/+/vtv2LJli8q5eTwehIaGAo/HAzc3NzAzMyuX9bcqrX///vDs2TOVswsEArC1tQVXV1dwcXEBExMTqdtGWY/L8hyPxwNEhF69ekF+fr7K2QG+91lcXFzA1dUVzM3Ni/UrRN8l6/fyeM/YsWPhxYsXamU3NTUVT3dbW1uuQQv2AADmDElEQVTg8/ky+1ry+k/qvv/YsWOwbds2tbLz+Xywt7cX5zcyMpL6vSUzyHpNmcclf587dy48ffpUrfza2trg5OQErq6u4OTkBLq6uuLPrqyfs2bNUvtON9ra2uDo6CjOr6enJ35N9B3Svlfd16W9d/PmzXDz5k218jMMA/b29uDi4gIuLi5gamqq9PeX1+MHDx7AmjVr1MoPAGBsbCye/+3s7EAgEFT6v2H58uXw5MkTtfLzeDyoVq2aeP1pbGxcIfOOrNf37dsHHz9+lHsnKEVE/wdubm5QrVo18TpUVgZZP1V5b2ZmJhQVFYl/v3//Prx9+1at/DweDxwdHcHd3R3c3d2L/R/I+6nKekb0eM+ePVBYWFjqPfn5+WU63mFtbQ3u7u7g4eEBdnZ25ba+Fz3evXs3fP36VebnIiIcO3ZM7WPB5ubm4OnpCV5eXsXmIUXbH0Xv2blzpzi3vM/5+vUrHD16VK3sAN+Pf3h6eoK3tzdYW1uX6q8ok1ny+Z07d8KXL1/En69ovrtx44bad1gyMDAAV1dXcHd3B0dHR9DS0ir2+RX9eOPGjXDt2jW1souOwaempkJqaio4Ozur9Tnl6dmzZ+Dg4CD61QERVd8pKIEKFzUAQ4WL/0kjR46E33//XeW/CwwMFJ88DAwMBD6fXwHpihMKhfD582f4+PEjtGnTBvbu3Vumz6tatSpERUVBZGQkREUpV6iorMLCQsjJyREXMooKY8aMGQN3794tl+8A+F5sGRoaCnXr1oXQ0FCoXbt2sZ05VX369KlYIeO7d+8gKysLduzYUebpXZKxsTEEBwdDSEgIhISEQFBQEFhaWqr1WYgIeXl5xQoZRY8nTpwI9+7dK7fczs7OEBYWBnXr1oW6deuCn59fmeZ/RIT8/PxSxTzv37+HLl26lMvtmhmGgYCAAHGRYnh4ONjZ2ZX5c79+/Qp5eXmlihqfPHmi9omWkkxMTCA8PFxcqFi7du0yDT8tOjEuq6jx7NmzsHDhwnLJzufzoWbNmsWmu7W1tVqfVVBQIC5klCxolHx8/PhxOHv2bLlkl8wfFhYmbqJiRWWIClZKFnaXLHDMzs6Gq1evqnS7e2UwDAM+Pj7i9WNoaCh4eHgAj8eT+3eFhYXw/v17cSFjycLGkr8/ffq0Qm5jr6OjA4GBgeLsISEhcqe/aD0oWdBYsrCx5ONXr17B69evyz27kZERhISEiNeTwcHBYGJiIje7vOVSstBbsh05cqRcc5uZmYmXVVXWN4gIX79+lVvYKPl7fn4+LF++XO0TAJIEAgHUqVMHoqKioH79+lC3bt1SxdzKEv075BU2FhQUwOjRo+H06dNlyu3l5QUxMTEQExMDkZGRxQ7kliehUFiswDEuLg4uXryo1mcZGRlBdHQ0xMfHQ1xcHLi6upZzWtmePHkC7u7u8PXrV5X/1s7OTlyoGBMTI3dZrAi9e/cWFwWpwt7eXryvER0dDUZGRhWQTrZ//vkHvL29VT5AaGFhAYmJiZCUlATx8fFqXdBVFogIERERcPz4cZX+Tl9fH2JiYiAlJQWSkpLKpZ+oqmnTpkHfvn1V+huBQAARERGQkpICycnJ4OHhUUHpZLt9+zb4+vqqNK8wDAMhISHiYkU/P79y2w9VVmFhIXh5ecH9+/dV+rs6deqIi/5q1KhR6bkBADp27Ah///23Sn9Tu3Zt8YHXmjVrspJ7xYoV0Lp1a5X+JjAwUFysWL16dVZyP3r0CNzd3VUquAwMDBQXKwYEBLCSWygUgr+/v0onnWvWrAnp6emQnp7O2vQGABgwYABMmTJF6ff7+vqKcwcGBirc36kox44dg4iICKXfX61aNcjIyICMjAwIDw8Xn9CpbN++fQMPDw949OiRUu8XFc5lZGRAQkJCpfdRJP32228watQopd7L4/GgXr16kJGRAenp6ayehHrx4gW4uLgUO3koj62trXheiYyMZPWWZKr0bRmGgbp164qXTzb6KSIfP34EJycnpQuJ9PT0ID4+HtLT0yElJUXt47Xl4ejRoxAZGan0+01MTCApKQnS09MhISGh0vd/JK1btw6aNWum9PsNDAwgISEB0tPTISkpCSwsLCownXxnz56F4OBgpd/P432/aEu0/ff09KzAdPIJhUKoWbMmXL16Vem/sbS0hJSUFEhLS4PY2FgwNDSswITy3bx5E/z8/FS6GNzFxUU87dncpgIAnD59GkJDQ1X6G2dnZ3FfPSIigtX1fFZWFjg7O6s0iIqZmRkkJSVBamoqxMfHV9gxLmW1atUKVq5cqfT7GYaB0NBQSEtLg9TUVPD29matHwzwvWDO09NTpYuRraysIDk5mRPLMADAwIEDYfLkyUq/n2EYCAoKEu/7sXGMQFJOTg44OTmpNMCDpaVlsf8DNvvIAAA9e/YsdXGlPFpaWlC/fn1IS0uDlJQUcHR0rMB0ii1ZskSli2V4PB6EhYWJl2M2t8MAqu2nAHw/LhkXFwepqamQnJwMVapUqcB08mVlZYGTk5NKF54EBASIt8O1a9dmbZ88OzsbnJycIC8vT+m/MTc3h+TkZPE2zNjYuAITqq4iChdZvw0yNcUN6FbR/znv3r1DY2NjpYaDNTY2xqZNm+LixYvx5cuXrOY+c+aMWkPaVq1aFX/88UecO3cu3r59W+nbWJeXU6dOlWlIXj6fj7Vq1cLu3bvjypUr8cGDB5Xyb8jPz0dHR8cyZefxeBgQEICdOnXCv//+G2/evCn11sTl7ezZs8gwjNq5tbW1MTQ0FPv3748bN27EFy9eVHhmkUWLFqmdW0dHB+vVq4dDhw7FXbt2yb3deUXo16+f2tmrVq2KTZs2xZkzZ+Lly5crdfhpoVCI0dHRamfX09PD+vXr44gRI3Dv3r1ybx9e3r58+YIeHh5lWk5NTEwwISEBR48ejQcPHsSPHz9WSvbPnz+jq6trmbIDfN9OxcXF4W+//YZ79uyplPm+qKgIQ0NDy5wd4PutiZs1a4bTpk3DM2fO4JcvXyo8f69evcolu5ubG7Zp0wbnzp2LV69erZTldv369eUyzVu0aIFz5szB69evV8p2CRHx2rVrat9aWCAQYGhoKA4dOhQzMzMxLy+vUjKL3L59G/l8vsq5bWxssHXr1rh06VJ89uxZpWYW2bVrl0qZGYbBwMBA/OWXX/DIkSP49etXVnIjInbs2FGleSQqKgonTJiAV65cqfT+rqSnT58qfbtHPp+P9erVw3HjxrGeGxGxZcuWSk/zGjVq4C+//MLqbTNE9u7dq3RuZ2dn7NGjB+7Zswc/f/7Mau78/HysUqWKUrmtrKywbdu2uH79eszJyWE1NyJi8+bNlcot2p9eunQpvnnzhu3YuHjxYqVy6+vrY3p6Oi5cuLBS94VkuX//PgoEAoW5dXV1MTk5GefNm8fadkdSYWEhenp6Ksyto6ODSUlJOHfuXE7kRkTs1KmTwtza2tqYmJiIc+bM4czxRGX6igKBAGNiYnDmzJn4+PFjtiMjIuKbN28U3uqeYRgMDw/HyZMn4927d9mOLBYXF6dwmlevXh1/++03vHjxIuvbehFl1od2dnbYrVs33Lt3b6XspykjJycHTU1NFa4L09PTcfHixfj27Vu2I4v17dtX4TT38fHBYcOG4dmzZyttP02Rly9foq6ursL1eHJyMi5YsABfvXrFdmSxiRMnKpzmlpaW2KFDB9y6dSvm5+ezHVksJiZGYXYHBwfs0aMH7tu3jzPLaFFREfr5+SnMbmNjg507d8Zdu3ax3ieXlJKSojC7gYEBNmrUCJcsWcKJ/q3Ipk2blOrnent74+DBg/H48eOs78dJ+vHHHxVmZxgG69ati+PHj8cbN25wZpuKiJiQkKBU/tDQUBw7dixeu3aNU/mHDh2q1Pzj4eGB/fv3x8OHD+O3b9/Yji12+/ZtpY45GhoaYuPGjTm3/CIitm/fXqn/Ay7cwlSa169fK+zPA/z/vvaiRYs41WdARBw5cqRS/wc+Pj44ZMgQPHHiBKf+D549e4Y6OjoK81tYWGCbNm1w/fr1mJuby3ZssW/fvil1vszIyAibNm2Ky5Ytw6ysLLZji71//x5NTEyU7gPt2LEDP336xHZsMWW2A1paWhgbG4szZ87ER48esR1ZbPjw4Uotu15eXjhw4EA8evQop7Zh0lTEraJZL8qjRoWLpDRFK18/Pz8cNGgQHj58mNWTtZKEQiGGhYUpteJlu1BRUmFhIdauXVup3KJmaWmJqampOHbsWDx06FClFRGV9Ouvv6qUGwCwSpUqmJ6ejuPGjcNDhw5VemEF4vcDRMHBwSrltra2xoyMDJw4cSKeOHGCtQNGubm5Sp+8BfhecJaUlITjxo3DY8eOsXqg686dO0qdTBQ1Z2dnbNu2LS5cuBD/+ecfVpfTzZs3qzS/mJubY1paGk6aNAlPnTrF6sHRyZMnq7ycOjs7Y6tWrXDOnDl49epV1k4G/PHHHypnBwD09PTEdu3a4bx58/DatWus7BwvWbJErew6OjoYFhaGAwYMwI0bN+Lz588rPfu1a9fUKkDT0dHB8PBwHDRoEG7ZsgVfv35d6dk/ffqETk5OKmf39fXFLl264IoVK1g9Oa3MQVxR4/P5GBISgkOGDME9e/awsj2V1LhxY6VyGxkZYVpaGs6YMQNv3rzJ+kHooqIirFGjhsLcNjY22K5dO1y1ahVnTu7+888/CpdVe3t7/Pnnn3HTpk2cOtDWpUsXubmtra2xbdu2uHbtWszOzmY7rtjNmzflXvhiYGCAGRkZOH/+fM4UFiF+308KCQmRuz6JjIzESZMmcWK5lKSoH1OzZk0cPnw4nj59mjPFC4iIN27ckDuvuLm5Yd++ffHAgQOcOYmOqPgguIODA3bt2pVzJ9AR5RdyV61aFX/66SfOFVwgIq5cuVJmbisrK2zfvj1u3ryZtX1+WR4/foxaWlpSc5ubm2ObNm1ww4YNlXrBljKKioowICBAam5jY2Ns1qwZrlq1qtIv8FOGrON0urq6mJaWhn///TfnTi4jyr7AmMfjYVRUFP7555/44MEDtmOWUlhYiO7u7jL3HbhWOCdJ1n60ubk5tm3blpPrFMTvxbl6enqlcouKcCZOnIh37txhO6ZUAwYMkDrNTU1NsVWrVrhhwwbW99ekyc/PR2tra5l9lQEDBuCxY8c4VXAgcvLkSZnbzxo1anCuEFqSvOI5f39/HD58OGfXL+fPn5e7z9y5c2fcuXMn5/qJiN/3iWTt+4v2h6ZMmYL//PMP21GlkrcvamBggA0bNsTFixezcixOGfIGHNHX18eMjAz8+++/OZs/KysLDQ0NZfZpIiIicPLkyZzdTiEitmrVSub/QbVq1bB79+6YmZmJBQUFbEeV6v79+zKPgWlpaWFMTAxOnz6dk/1KkYEDB8r8P7Czs8MuXbrgzp07OVWoJUnexTECgQCjo6Nx2rRpeP/+fbajytSzZ0+Z/weigi2u9n0QEZcuXSozv6OjI/bo0YNTF1SVJK/wtUaNGjhixAg8d+4cJ/tA8rYDZmZm2KpVK1y3bh2njr+LvHv3Do2MjGT2gaKiojjdB5KFChf/ow2ocPE/5c2bN2hgYFBq5yE1NRXnzp3LmavNS5J31TyXChVLmj9/vszcoh2f6tWrY5cuXXDp0qWsF3CJ3L17V+FIOdra2hgSEoJ9+vTBNWvW4KNHjziRXdFV8wzDYEBAAHbp0gWXLVuG9+7d40RuRMRBgwbJzW5nZ4c//vgjzpo1C69cucKpDnZqaqrc7L6+vti1a1dctWoVp7Y1BQUFCq9iqlatGrZs2RLnzp1bqaOzKfLy5UuZHVLJnco6depgnz59cP369ZwYMQcR8cmTJ0pdgWhgYID169fHYcOG4Y4dOzhxBVlOTo7Mg//SdigrezRFeYRCIUZFRSmV3cbGBps0aYJTp07F06dPs54dEXHMmDEKc2tpaWFoaCgOHDgQt23bhu/evWM7NiIi7tmzR27ukoWKXCoEkDdytJaWFkZGRuLo0aPx1KlTnLtSb82aNVJz6+joYGxsLE6aNAmvXr3KmX6ApBYtWkid3tHR0Thp0iTOjU4g8vDhw1LFLgzDYFBQEI4cOZKzB6gQEZs1a1Zqmru5uWHv3r1x7969nD3AL21UUUtLS2zdujWuXbuWkwU6iIgfP35EKyurUvulaWlpnCsOLankvMLn87F+/fo4ZcoUTp/MKrmfxDAMBgcH4+jRo/Hy5cucXKcgIj548KDUBVLVq1fHX3/9lbMn/hG/F0Z5eXkVyy0amYJro4OU1K1bt2K5XV1dsV+/fnjkyBHObeslbdmypVhue3t78UlaLvRlZXn37l2xkyQWFhbYrl07zhagSZIcmUtPTw8zMjJwyZIlnLkQRJZVq1YVWxeGhYXhpEmTOH8y5+PHj2hhYVHsWEWvXr3w4MGDnF42ERGHDBkizq2trY1JSUk4f/581u/uo8jbt2+LHUd3cHDAnj174oEDBzhzsb8s06ZNK7ZODAoKwrFjx3JulDZpEhMTix3XatCgAc6YMYNTI9tIU7J4TtRH5Hqhh0h6enqxeSYgIAB//fVXTu/DiZTsAxgZGeEPP/yAK1as4MxxIXlKjuZuZ2fH2QuKpElKSiqVv0uXLhqTf9iwYcXyiy540ZT5586dO8VGWxTt540ZM4YTd7ZQRocOHYr9H5ibm2Pr1q05WyhUkrTRFmvXro0jR47ECxcuaMT/wahRo4rlNzMzwxYtWuCaNWs4e1xJ0vPnz4uNtqhpBVvfvn0rdWFVUFCQxizHJQtftbS0MD4+HmfPns3ZuhNJv/zyS7Fp7+7ujv379+f8MRDE0qMtmpqaYvPmzXHVqlWcGjBAVVS4+B9tQIWL/yn9+/cvdhIuMzOT8zsPBQUF6OLiIl5BVa1aFZs3b47z5s3DO3fucHaD/e7du2IHFEWdvaSkJBw9ejTu37+fU4UJIkKhsNgBIlFzcXHB5s2b4/Tp0/HMmTOcPHkrraDIyMgIY2Nj8bfffsPMzExO3FpOmnv37pUqFvXy8sKff/4Zly1bVmm3CFdHydsT8vl8rFOnDvbv3x+3bNnCiWIzWSZMmFBqXheNzrZy5UpOd6ql3T7B1NQUExMTccyYMXjo0CHOjToj8sMPP5TKLlrPtGzZEmfPno0XL17k5E5B7969pWbnwmiKiqxbt05qdj6fj7Vq1cIePXrgqlWrOFOILun58+elLrwA+H6Lk7i4OBw9ejRn5/nCwsJSt4ri8/kYHByMgwcPxt27d3OyP4D4vU9Qr169Ytlr1KiBAwYMwD179nD6ZPrXr1+LHfDx9vbGPn364O7duzk5n0i6du2aeLSFatWqYefOnXHLli2cnU8kiQ42m5mZ4Y8//ojLli3j7KgKkq5evYoMw4iv5P/zzz85XYAmIhQKsU6dOuJlc/jw4Xjq1ClOF0SJiPpgjo6O2L17d9y9ezfn90sREa9fv44Mw6C5uTm2atVKYw7ii0ZbFI3Y8vfff3PutlSy/PTTT6itrY0JCQkac9AbEXH16tXigoU///wT7927x3YkpTx79gx1dXUxNDQUx40bx7mRWmURCoVYu3ZtrF69Oo4YMUJjThAiIo4YMQJdXFw0ojhU0sWLF9HS0hLbt2/PyRFPZSkqKsLatWtz8ra+ikyePBkDAgJwxIgRnB1tTpp3796hg4MDtmzZEtevX68RfVqRX375RSOn+efPn9HZ2RkTEhJwzpw5nDw+IcvZs2c5P0quLNu2bRPfvnHFihUadbL40qVL4n2hGTNm4MOHD9mOpDShUIi1atVCR0dH7NmzJ6dHo5Lm1q1byOPxxEVOmrSuQfz/0RY1Nb9olC0XFxfs3bs37t+/X6PmH0TE1q1bi28/vHDhQs5fFFCSaLRFTbqFaUmDBg1CXV1dTE5Oxrlz53L6QkxpREVn7u7u2K9fP87dCl0ZvXv3FvcfVq5cqRFFx5KWLVuGenp6mJaWhgsWLODMACTKGjVqlPgW3Fy8O4M82dnZaGpqiuHh4Thx4kS8ffs225GU9u7dOzQ2Nhbf+eXQoUOcv7hKWRVRuMjg98I4wmEMw9gDwFMAgKdPn4K9vT3LiUhFKSoqgkWLFkH9+vXB3d2d7ThKW716NWzfvh2ioqIgKioK3N3dgWEYtmMp1LNnTzh06BDUrVsXQkNDITQ0FDw8PIDH47EdTa6tW7dC69atoU6dOhASEgIhISEQHBwM1tbWbEdTqH///rBlyxaoW7cu1K1bF8LCwsDX1xf4fD7b0RT64Ycf4PHjx1CvXj0IDw+HsLAwsLKyYjuWQoWFhRAaGgoGBgYQEREB9erVg9DQUDA0NGQ7mkKvXr0CPz8/cHd3h3r16kG9evUgLCwMzM3N2Y6m0NmzZyEkJAScnZ0hLCxM3Hx8fDi/jjl48CA0aNAAdHV1ITAwsNg6skqVKmzHk+vatWtQs2ZNKCoqAkdHR3HukJAQqFGjBmhra7MdUab8/Hzw9vaGp0+fgpmZGYSGhorXlXXq1OH8Mtu2bVtYtmwZVKlSRbyerFevHgQEBIBAIGA7nlwLFiyArl27Qu3ataF+/foQFRUFYWFhYGRkxHY0hXbs2AE9e/aE2NhYiImJgfr162vEtgkAYOPGjbB27VqIj4+HuLg4cHBwYDuS0mbOnAnfvn2DhIQE8Pb21oh+LwBAXl4eTJo0CeLj4yE4OJjzy6akTZs2AcMwEBMToxHLpsiTJ08gMzMTkpKSwM7Oju04SkNEWLx4MQQHB4OPj4/GzOMA3/sxOjo6EBISohH7GCKPHz+G27dvQ1RUFOjo6LAdR2lFRUWwe/duiIqK4nxfpaQzZ86Ah4cHmJmZsR1FJY8ePQI9PT3O98tL+vTpE7x58wacnJzYjqKyJ0+egIODg0atCwEAsrKywMzMTKPWhQAAX758ga9fv2rU9l4kOztbI45XlJSXlwc6Ojqc3l+W5c2bNxpxPLSkvLw8QEQwNjZmO4rKnj9/DlZWVho5v9y7dw8cHBw0qq8lcu/ePbCysgITExO2o6jsw4cP8OjRI/D399e4bSkAwM2bN8HExESj9uckXbp0CaytrTU2/927d+Hbt28adexFUlFRERw4cADq1asHenp6bMdRy7Vr10BXV1ejzllLQkQ4ePAghISEgIGBAdtx1PL48WMoKCgAT09PtqOoBRHh1KlTEBgYqJH9BwCAq1evgpubG+jr67MdRS3Xr18Hb29vjds3BPh+nlggEIClpSXbUVT24MED+Pr1K3h6emrkNkyeZ8+eSZ7PcUDEZ2X9TCpc1ABUuEhIxcjLy9PIA6GvXr0CKysrjexgvHv3DiwsLNiOoTJEhE+fPmnkjs3Xr18BETXyoFx2djbo6upq5M7AjRs3wMLCAqpWrcp2FJVlZmaCubk5VK9eXeN2JDdv3gyICKGhoWBjY8N2HJWcOXMGrl+/DnXr1gVPT0/OF7hKys/Ph/Xr10NYWBi4ublp3E7Y+fPnwcPDQyNPGmlqX4YQQgghhBBCCCGEEEIIIYRoFipc/I+iwkVCCCGEEEIIIYQQQgghhBBCCCGEEEIIIWyoiMJFzRnKhRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIRqPChcJIYQQQgghhBBCCCGEEEIIIYQQQgghhBBSaTS2cJFhmECGYUYwDLOXYZhnDMN8YRjmI8Mw/zAMs5hhmPBy+p6RDMOgki2qPL6TEEIIIYQQQgghhBBCCCGEEEIIIYQQQgj5txKwHUAdDMMcBYB6Ul7SBgD3/7V2DMMsA4CfEfFrZeYjhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKIdBpZuAgAtv/7+QIA1gPAMQB4AgB8AAgFgP4AYAcAbQBACwBalNP3+it4/WE5fQ8hhBBCCCGEEEIIIYQQQgghhBBCCCGEEPKvpKmFi7cBYBgAbETEohKvnWYYZjkAnAAADwBozjDMXEQ8WtYvRcTrZf0MQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkv4zHdgB1IGIKIq6TUrQoej0Lvo+6KNKkcpIRQgghhBBCCCGEEEIIIYQQQgghhBBCCCFEHo0sXFTSIYnHrqylIIQQQgghhBBCCCGEEEIIIYQQQgghhBBCiNi/uXBRR+Kx1JEZCSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQUrn+zYWLkRKPb5XHBzIMs5dhmDcMw3z938/DDMMMYRjGrDw+nxBCCCGEEEIIIYQQQgghhBBCCCGEEEII+bcTsB2gIjAMwwOAIRJPrSunj46VeGwF34sjIwFgMMMw7RBxqzofyjCMvYK3VFXncwkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEK75VxYuAkBfAAj63+NNiHihjJ93DQC2AMBZAHgBAFoA4AkALQEgDgBMAWAjwzCpiLhbjc9/WsZ8hBBCCCGEEEIIIYQQQgghhBBCCCGEEEKIRmAQke0M5YphmEgA2A/fizLfAIA/Ir4pw+eZImKOnNc7A8Dc//36AgBcEbFAxe9Q+j/h6dOnYG+vaIBGQgghhBBCCCGEEEIIIYQQQgghhBBCCCGk7J49ewYODg6iXx0Q8VlZP/NfNeIiwzC+ALAZvv+7CgCgaVmKFgEA5BUt/u/1eQzD1AGAjgBgCwCNAWClil/joOD1qgBwTsXPJIQQQgghhBBCCCGEEEIIIYQQQgghhBBCOOdfU7jIMIwzAOwFADMAKAKAHxHxaCV9/Tz4XrgIABAJKhYuKqpAZRhGzViEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgi38NgOUB4YhrGF77eHtgUABIAOiLi1EiPclHhsV4nfSwghhBBCCCGEEEIIIYQQQgghhBBCCCGEaBSNL1xkGMYSAPYBgMv/nuqJiMsqOQZW8vcRQgghhBBCCCGEEEIIIYQQQgghhBBCCCEaSaMLFxmGMQGATADw+d9TQxBxNgtRfCQev2Dh+wkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEI2gsYWLDMPoA8BOAKj1v6f+QMQJLMXpLPH4CEsZCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQztPIwkWGYbQBYDMAhP3vqemIOFyNz2nHMAz+r42U8ro/wzBuCj6jEwD89L9fX/0vFyGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQqQQsB1ATasBIO5/jw8CwCKGYfzkvP8rIv6jxvfUBoCFDMMcAoDdAHANAN7B9+nmBQAtJXIUAUAnRMxX43sIIYQQQgghhBBCCCGEEEIIIYQQQgghhJD/BE0tXGwk8TgaAK4qeP9jAHBS87v4ABDzvybLOwDoiIjb1fwOQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkP0FTCxcryy4A6AgAoQBQEwCqAIAFADAAkA0AVwBgDwAsQcQPbIUkhBBCCCGEEEIIIYQQQgghhBBCCCGEEEI0hUYWLiIiU06fswQAlsh5/Q0A/P2/RgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkDLisR2AEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh/x1UuEgIIaRcICLbEdTy7NkztiOoLSsri+0IasvLy2M7gtq+ffvGdgS1aepySoi6EFFj5/uioiIoLCxkO4ZaPnz4AEVFRWzHUMvLly/ZjqCWZ8+eaeT88vbtW/jw4QPbMVT28eNHjZxXhEIh3Lt3j+0Yarl16xYIhUK2Y6js1q1b8PXrV7ZjqOzOnTuQk5PDdgyVPXr0CB4+fMh2DJVlZ2fDmTNnNG7bKRQKYffu3fDx40e2o6js4MGD8OjRI7ZjqOzatWtw4sQJjdvm5+fnw7p16+D9+/dsR1HZrl274MaNGxq3T/HgwQPYuXMnfPr0ie0oKtuyZQvcv3+f7Rgqe/78OezatUsjp/mZM2fg8uXLGjefAwAcPnxYI7f9AACnTp3SyHkdAODJkydw6tQpjeu7iBw7dkwj9+dE9u/fr5HbVJEjR47A69ev2Y6hths3bsD169c1cp0JAFBYWKix2yuRCxcuwK1btzT2/6CgoAC2b98O+fn5bEdR2759++Dx48dsx1Db4cOHNXo53rJlCzx58oTtGGo5deoU7N69Gz5//sx2FJVdu3YNduzYodHrTy6jwkVCKkl+fj6cO3dOIzeCT58+1djcmrjzvH37drhy5QrbMVT266+/wogRIzTuZOiiRYvA398fxo8fr3EdvbFjx0J4eDj89ddf8PbtW7bjqOSPP/6AuLg4WLp0qcYVLCxfvhySk5Nh9erVGtdBffz4McTFxcGSJUs0sni0X79+MHHiRI0sOD569Ch07twZjh49qnGFFwUFBdC0aVOYO3euxq1rAABatWoFAwYMgNOnT2vUtOfxeJCQkADt27eHbdu2adTO/Pv378HR0RF++ukn2L59u0ZlHzFiBNSoUQNGjBgB58+f15h55vbt22BtbQ0tW7aENWvWaEzBEcMw4OzsDLGxsTBjxgyNOemop6cHsbGxUKdOHRg1ahRcunRJI/aXeDweDBw4ELy8vGDAgAFw5MgRjSl+Wbp0KdjZ2cFPP/0EW7du1ZgD/KdPnwZLS0to0qQJLFmyRGNO0OXm5oKVlRVERUXBpEmTNOakkKGhIQQEBICPjw8MHDgQDh8+rBEXHZmamkLnzp2hatWq0Lp1a1izZg1kZ2ezHUshHo8H27dvBwsLC4iNjYWpU6fC7du3NWJeyc3NBWdnZ/Dx8YH+/fvD/v374cuXL2zHUsjW1hYSExPB2toamjVrBkuWLIFXr16xHUshAwMDWL16NVhaWkJYWBiMGTNGY/pZ3759Az8/P3B0dIROnTrB5s2bNeIYhoODA/Tq1QvMzc0hPj4epk2bpjHL5+vXr8HNzQ08PDygd+/esGfPHo3Yn7CxsYHBgweDhYUFJCYmwowZM+Du3btsx1KKsbEx1K5dG+zt7eGnn36CjRs3Qm5uLtuxlPLx40dwcXEBb29v6N+/Pxw4cEBjLhoRCoXg5uYGnp6e0K9fP43ZFgEAWFtbww8//CDuu6xevVoj+i4ib968AVtbW6hduzaMGDECTp8+rVHnkS5cuABWVlYQEREBEyZM0LjimydPnoCNjQ0EBQXBqFGj4MKFCxrRJxAxMzODOnXqgJOTE3Tr1g127dqlEdspEYFAAKtXrwZzc3NITEyE2bNna9wFPQYGBuDn5weurq7Qq1cvyMzMhIKCArZjKU1XVxf+/vtvcZ9h1qxZGnM8TOTdu3fg5OQE/v7+MGTIEDh27JjGHF8CANDS0gJ/f39wdnaG7t27a9xy/PjxY3B0dISAgAAYOnQoHD9+XGOmv6urKzRp0gQsLCwgNTUV5syZozHn5l1cXKBDhw5gYWEBSUlJGrn+5DTRKCTUuNsAwB4AEADw6dOnSDSTUCjE4OBgdHJywgEDBuDZs2dRKBSyHUspkydPRn9/f5wxYwZmZ2ezHUdpmzdvRicnJxw/fjy+efOG7ThKy8zMRADAwMBAnDt3Lubm5rIdSSknT55E0boqLCwM58+fjzk5OWzHUujVq1eora0tzh4REYHz5s3Dd+/esR1NoQcPHiCPx0MAQD6fj4mJibh8+XLMy8tjO5pCjx8/Rj6fjwCAurq62LRpU9yyZQt++fKF7WgK5efno5mZGQIAGhoaYps2bXDfvn1YWFjIdjSlpKWlIQCgnp4eNm/eHHft2oXfvn1jO5ZStm3bhgCADMNgdHQ0Ll68WGPWkYWFheji4oIAgA4ODjho0CC8cuWKxvQFRowYIV7XxMXF4aJFizSmTyCabwAA7e3tsU+fPnj8+HEsKipiO5pC69atE2c3MDDAJk2a4MqVKzVi+9qhQwdxdn19fWzYsCEuWbIEs7Ky2I4m1/3798XbJwBAW1tb7Ny5M+7cuRM/f/7MdjyZhEIh1q1bV5xbIBBgdHQ0Tps2De/fv892PLmGDh0qzg0A6Ofnh0OHDsWTJ09yetu6Zs2aYrnt7e2xS5cunJ9XLl68WCy3qakpNm/eHFetWsXp9fqbN2/QwMBAnFtHRwcTExNx9uzZ+PjxY7bjyfTt2zd0dXUV52YYBoODg3HUqFF48eJFTvcDkpOTi80rzs7O2KNHD9yzZw+n5/FffvmlWG5jY2Ns0qQJLl68GF+9esV2PJm2bt1aLDePx8OwsDD8448/8PLly5ydV549e4Y6Ojql5pVu3brhjh07MD8/n+2IUgmFQqxVq1ax3AYGBpiWloZz5szBR48esR1RJlG/XLLVrFkThw0bhseOHePsvt21a9eQYZhiua2trbF169a4cuVKfPv2LdsRpRIKhRgUFFQst0AgwMjISBw/fjynl8+lS5eWmlecnJywa9euuG3bNs4eO/r69at431nUdHV1MTExEWfMmIH//PMP2xFl2rRpU6lp7ubmhj179sRdu3bhp0+f2I4oU5s2baTO5xMmTMBr165xdj4XnXORzG5oaIgZGRk4f/58zp9Pi4+P19jsc+bMkdp3GTt2LOePdxUVFWH16tWL5be0tMTWrVvjmjVrOL1fhIiYl5eHVlZWxfJXq1YNu3btyun+l8i3b9/Q09OzWP6qVatihw4dcOPGjfjhwwe2IyrUp0+fYvn19PQwOTkZ//rrL07vn4r8888/xY59AQD6+PjgwIED8ciRI5ztT0pq2bJlsfz6+vqYlpaG8+fPx2fPnrEdT6HLly+X6jNo0v9BYWEh+vr6FstvZmaGzZs3xxUrVnD++C8iYlxcXKnlOCUlBefMmYNPnjxhO55cnz59Qltb21LTv0WLFrhy5UrOn98ePHhwqfnfz88PBw8ejEePHuX0/D9lyhSZy+7hw4fx69evbEesFE+fPpWcBvZYHjVx5fEh1KhwkSin5MELURHjmTNnOL0j9/btW3Fhl46ODrZs2RIPHz7M6cyI3w90WVtbIwCgtrY2tmrVCk+cOMH53EVFRejs7Fysw92+fXvOZxcKhVi7du1SBxZ//PFH3L17N6dPPLdr165UR0NLSwvT09Nx/fr1nD4x17hx41LZ9fT08Mcff8Rt27ZxuhDwhx9+KJXdzMwMO3XqhEeOHOF0UdGgQYNKZbexscH+/fvjpUuXOL2s7t+/v1T2KlWqYJ8+ffDChQuczi5Z/Fdyft+xYwfndwqmT59eatr7+vri2LFj8eHDh2zHk+v169elTkpraWlhSkoKrlixgtMHFYuKitDHx0fqMtujRw88cuQIZ7dRhYWFpQ7miqZ9QkICzps3j7NFGHfv3hUX15c8mREZGYlTp07lbEFd+/btS+UG+F7Q0LBhQ1y8eDEnL4rZu3ev1NyiAyhDhgzBEydOcG5+f/v2bbGCNMlmZWWF7dq1w40bN3Lu5HphYaHUdYuo/56eno4LFizAly9fsh21lIyMDKm5+Xw+RkZG4uTJk/H27dtsxyxF2oFNUQsICMBhw4bhqVOnODePL1myRGZuOzs77NSpE27bto1zJxjPnz8vM7doHp8/fz4+f/6c7ajFvHv3Do2NjWVmr1OnDo4cORLPnTvHqf0NoVCIderUkZnb1tYWf/rpJ9y0aRPn+l19+/aVmVtHRwcTEhJw+vTpePfuXbajFrNr1y6ZuUXbzv79++P+/fs5tV+dk5MjvpBOWjMxMcEmTZrgokWLOLd8tmjRQmZuUWH3b7/9hqdPn+bUulxeH0u0fHbo0AHXrVuH79+/ZzuuWGFhIXp7e8vMra2tjQ0aNMDJkyfj9evXOXUsQFrRpWRzdXXFHj164M6dOzm1/ZRWFC3ZdHV1ObtOvHfvXqkiFslmb2+PnTp1wi1btnCuX65oGQ0ICMAhQ4Zw8kT4mTNn5GavXr06Dh06lJOF6V++fEFHR0eNnGcQEbds2SIzO5/Px3r16uH48eM5W7g7efJkueuapKQknD17Nmcvxli1apXM/FpaWtigQQOcOnUq3rlzh+2oUr18+RL19PRk/hv8/f1xyJAhnFx2RaSdExM1U1NTbNasGS5btoyzF5fcuXNH6nFHUatRowYOHz6ck8cIRKSd2yv5f7B8+XLO/h9IXnBfskkWs1+9epWT69FTp04p7D8MHToUjx8/zsl5aObMmXKnf3h4OI4bN46T0//t27doaGgoM7+ZmRn++OOPnJz/8/PzsWrVqjKzm5iY4A8//IBLly7l5PmD8kKFi//RBlS4+K9RWFiIHh4eUldkjo6O2L9/f84WMTZv3rxUZg8PD5w4cSK+fv2a7Xgy9evXT+oO/7x58zi5wywyduxYqfOJj48PTp06lXMbapHFixfL3Fjb2NjgwIED8fr162zHLOXSpUtyO6jGxsbYvn17PHDgAOc6qMePH5ebXVQIePjwYU6dmEMsPkqntFatWjUcPHgwXr16le2opTx69EjujrGvry+OHz+ek1dmCYVCmYUWovXMuHHjOJkdEfHPP/+Umd3Kygp79uzJ2VGNP3z4IPdEelhYGM6ePZuz6/hOnTrJzK6rq4uNGzfGdevWcerEkYiiE19VqlTBrl274oEDBzh3QFHethXg+0ne8PBwnDp1KucKYFu3bi03O8D3qymHDx+O586d48xyq+iknWi6h4WF4YQJE/DWrVtsR0bE7+v30NBQhdOci8WAQ4YMUZhbW1sb4+PjcdasWZwZwaDkqIuyWp06dXDUqFGcubhBUd9X1Nzd3bFfv3548OBBTlwcIK/IteQ83rZtW9ywYQMnRmb+9u0buru7K8wtOsHIpVE6RCN1K2o1a9bEX3/9FU+fPs2JfY7ffvtNqdxVqlTBdu3a4fr16zkxmvHu3buVyi06mTtlyhS8desW6+uV169fo76+vtLrlV69enFi5M6SoxXLa4aGhpieno5z587lxPI5btw4pXIDfD8GNmTIEDxy5Ajr63Jpo/vIahYWFti8eXNctmwZ68cdhUIhRkZGKpWbz+djWFgYjhkzBi9cuMD6OnH9+vVKzyvVqlXDTp064aZNm1jffhYWFqKXl5dSuXV1dTE+Ph6nTZuGd+7cYX2dqKgoWrJxbTTGn3/+WaXt0OTJk/HmzZusT3OhUIj16tVTKrvoZPLixYs5c4FRSkqKUtlFJ/GXLVvGmRPhCxcuVCq7trY2xsXF4bRp0zhTtCttEAZ568cuXbrg9u3bOXPMKz8/H6tUqaJUfl9fXxw0aBCnRoKSdyGgtHVl7969cd++fZy6mGTAgAFKL7tcHAVNmWNfAN+Pf4WGhuKYMWM4c0xDpG3btkr9H1haWmKbNm1w7dq1nLrIRNqI5PL+D7g2Gn9RURH6+/sr9X/g4OCAXbp04dyosElJSUrlNzc3x5YtW+KqVas4sxx//vwZ7e3tld6OiUbl5UKfE7H03TI0aR0kbYASWdlDQkJw9OjRnL/riqqocPE/2oAKF/9VFixYoHBFJipiPH36NGdWYocOHZKZV0tLC5s0aYKZmZmsH5Ar6dq1azJzGxsbY8+ePfHmzZtsxyzl5cuXKBAIZGbX1tbGZs2a4b59+zg1zT99+oQWFhYK5/HatWvjjBkzOFWcExUVpVRHw9bWFvv378+ZToaikTkkm729PQ4cOJAznTtELHU7F1nN398fx48fz4mTRCLyroiT7JhGRUXhwoULOXEyVGTu3LlKZa9fvz7+/fffrJ+0kJSTkyP3aixR8/DwwFGjRuGDBw/YjlxM//79FWYXCASYlJSEK1eu5ExRESLi7du3lVpeDQwMsHnz5rh161YsKChgOzYifh+F2cHBQan8VlZW2KlTJ9y7dy8nDuh+/fpV7igGJVuNGjVw1KhRnBgV4NatW0odgBM1Ozs77NatG2ZmZrJ+MFrZg5+S65wBAwawPorHnj17VMqtra2NCQkJOHv2bFYL1pUtSJNsAQEB+Msvv7BaKKXKyRZRc3BwwK5du+KuXbtYLdpp2LChSrlNTU3xxx9/ZP1kizJFrpJNS0sLY2JicPr06ayO8rps2TKVcovm8WHDhrF62/SStxZXdjvatm1bXLduHWv935ycHDQ1NVUpt0AgwPr167NahKFKIZ1kc3FxwR49erBa+KLqsgnw/7fUmz17Nmt99oMHD6qcG+B7AcCAAQPwwIEDrPRZPn78KL7DiCrN2NgYGzdujAsXLmTtFnodO3ZUa5rXrl0bhw8fjidOnGClr6XoolFZrUqVKtimTRtctWoVK7fMKyoqwpo1a6qcWyAQYFRUFE6YMIG1W77KG8VH0Tqxe/furJ0YFwqFGBYWpnJuydths1XY9fjxY/Fdl1Rpjo6O2LVrV9y+fTt+/PiRlexHjhxRe93y66+/sjoilzr9LdEotb///juro0h//foVXV1dVc7v7u6Offr0wb1797J63Gjnzp1qL6szZ85k/ZjjtGnTVM7PpZGg1FnPGxoaYsOGDXHhwoX44sULVvOrcvGOqHHtlurq9MtEo6lu3bqVtXW+iLLFl5JNdKeJSZMmcaL4vlmzZmr9H3Tu3JkTd27YuHGjWutRrly0ee7cOZXz83g8zozKO2fOHLWmPxduba/obhmymuhuFJs3b2bt3Nnnz59L3apbU7KXl4ooXGTwe2Ec4TCGYewB4CkAwNOnT8He3p7lREQdX758ga9fvwLDMODh4QEvX75U6u+qVasGTZs2haZNm0JQUBAwDFPBSYsTCoXi7/T09IS7d+/Kfb+TkxN07NgR2rdvD3Z2dpURUSpRboZhoE6dOnD+/Hm5769fvz507doVMjIyQEtLq5JSllZQUAA5OTlgaWkJzZs3hw0bNij8G2dnZ+jYsSO0a9eOtWmek5MDt2/fBjMzM5g6dSrMnz9fqb/T0tKC5ORkaNu2LSQlJYG2tnYFJy3u1atXcOLECTAyMoITJ07AqFGjVPp7Hx8faNmyJbRo0QKcnJwqJqQUr169guPHj4OhoSEYGhrCvn37VM7u7e0NLVu2hObNm4OLi0sFJS3uzZs3cPToUTAyMgIjIyMwNDSEvXv3wsCBA1X6nIiICGjZsiU0adIEzM3NKyjt/8vKyoIjR46AsbFxsXb16lVISkpS+nN0dHQgLS0NWrVqBQkJCRU+v2dnZ8OhQ4fAxMQEjI2NwcTERPwYEcHe3h5ycnKU+iw9PT1IT0+H1q1bQ1xcHAgEggrPXXJ6Gxsbg4GBAfB4POjVqxfMnDlT6c8MCwuD1q1bQ9OmTStsnsnOzoaDBw+CoaGheP6WfKynpwcMw8Djx4/BxcUFhEKhUp+rr68P6enp0LJlS4iLiyv3bVRWVhYcOHAA9PX1xU1PT6/U77q6usAwDKSnp8O2bduU/nwTExNo2LAhNGvWDBo0aFBu+d+8eQMHDhwAHR0d0NHRAW1tbfFjWb/Pnz8fBg0apNL3mJubQ0ZGBjRp0gQaNGhQ5uX21atXcPDgQRAIBMWalpaW3OeWLVsG48aNU/n73N3doWHDhtCwYUMICgoCHo+nVu6XL1/CgQMHgMfjAZ/PBx6PJ24lfy/53ODBg+HMmTMqf6exsTEkJSVBeno6JCYmgomJiVq59+/fL+4TSjYejyf1eVG7f/8+9O/fX+XvBACwsLCA5ORkSEtLg7i4ODAyMlIrNwCI++HK/gQA6N27N7x+/Vqt7DVq1IDU1FRIS0uDWrVqqTTPvHr1Cvbt2yf1NWn7MCWfmz9/Phw9elS1wP9TpUoVSElJgdTUVIiJiQEDAwOl//b169ewd+9etb4XAGDv3r2wYsUKtf5WX18fYmNjITU1FZKTk6Fq1apK/+2bN29gz549Ml9XdKzn+vXrMHnyZKW/TxKfz4ewsDBITU2FlJQU8PT0VHo/9e3bt7B79+5SGUWPpT0n+TgrKwuGDBmiVm6A7/33lJQUSElJgdDQUKX7NKLcJQ+qibIpeq6wsBAGDRoEX758USu3paUlJCUlQUpKCsTFxSm9TszKyoKdO3eKcwiFwmK55P0uevznn3/Cs2fP1MotEAigXr16kJycDCkpKeDh4aHUvCLKLcogFAqLNWWe27RpE1y4cEGt3ADf97OTk5MhOTkZoqKiQFdXV+HfvHv3Dnbs2AFFRUXiHKLH0p6T9vjixYuwa9cutXPr6elBdHQ0JCUlQVJSklL7qe/evYPt27dDUVFRsbzSmqzXsrKyYMmSJWrnBgDw8vIS5w4PDwcdHR2578/OzoZt27ZBUVERFBYWFssj+bui15YsWQKfPn1SO7ehoSHExMRAYmIiJCYmgoODg9z3v3//HrZu3SrOUVhYWOyxtOekvX706FG4c+eO2rkBAPz9/cW5w8LC5PbVJXNLy6fs88+ePSvTdhcAwMzMDGJjYyExMRHi4+PBxsZG5ntzcnJgy5YtSmeU99rGjRvLNK8wDANBQUHiaV67dm3g8/lS35ubmwubN2+Wm6nkc7Lec/XqVbh06ZLauQEA7OzsICEhARISEiAmJgZMTU2lvi8vLw82btwodZ5Vdn4X/fz27RusXLlS6X1naXR0dCAyMhISEhIgMTFRZp/l48ePsGHDBrXWIdJeu3HjBpw6dUrt3AAAbm5ukJSUBImJiRAZGQl6enql3pOfnw/r16+Xuc6W12Stz3fs2AHPnz9XO7domicmJkJSUhK4u7uXmuafP3+GdevWSc1SctupyutLly6Fjx8/qp3dwsICEhISICkpCeLj48HCwqLY6wUFBbB27VqVtuuKHot+X7FiBbx7907t7FWqVBFP89jY2GLL6JcvX2DNmjWl+k7yWsmM8trx48fV2ucXMTAwgNjYWHEfQHR+49u3b7Bq1Sqp/T55fUJlX0dEKCoqgtmzZ0NBQYHa+b29vSE5OVncf2EYBlauXFnsu2U9lveaMu/79OkTzJo1S+3sou1ScnIyJCQkwI0bNwAAin2HtO8t62uix4WFhTBz5kz49u2b2v+GmjVrgoODAwQEBIj7vbKySPupynul/c2WLVsUnjOVx9zcHAICAsDf3x+8vLxAIBAozKXqv0Pec0+fPoV169apnV8gEICnpyf4+/uDn58fWFhYKMygzr9J3uvr1q2DFy9eqP1vsLCwEOd3dXUFgUCgMIMqeRW99+HDh7B9+/Yy/R94eHiAr68v+Pj4gJmZWbnkUvbvhEIhLFiwAAoLC9X+N9jY2ICPjw94e3tDtWrVgGGYcp/X5T23du1a+PDhg9r5zczMwNvbG7y9vcHFxUXmPFQRz3358gWWL1+udnaA730IT09P8PDwENcgqbrNUve9Bw8ehPfv36udnc/ng7OzM3h4eICHhweYmZmpvU1S9f3nzp2D+/fvq51dW1sbIiMjxced3Nzc1P4sNjx79kzy2IcDIqp34FCSaCanxt0GNOLiv8L8+fNVrrwu2apVq4b9+vXDU6dOVVoF/759+1BbWxvt7OzQxMREpSsOUlJScOvWraxcCX3y5EnU1tZGR0dHtLKyUjq3jY0NjhgxgrVlTXJkS1WvcGVzmqs6uo+0ZmlpiT179sTz589X2vy9Y8eOMucWtbCwMJwzZ06lXEGvztWg8lpISAjOmDEDX716VaG5MzMzyzW3lpYWpqWl4dq1ayt0ZBF1R+GQ1ywsLLBbt2548uTJCpvfjx07JvP7BQKB3Ftdy2vW1tbYu3fvCltW5Y1kwTAMmpiYoJmZmVrZtbW1sWHDhrhx48Zyv6Jb0QgcPB4PjY2N0dbWVu6Iuormm65du+Lx48fL7Wp6ZUclYBgG9fX1UU9Pr0zzfadOnfDgwYNlHsngwIED5b5cKmqmpqbYtm1b3L59u9rzz759+yo9t6jZ2tpit27dcN++fSqPJLl3717WcgN8X9/Hxsbi7NmzVeqjsZ0b4P9HNPzrr7+Uzr5//37WcwN87xd36tQJt2/frtR2tiK2l+o0HR0dTEpKwjlz5ig1zdUdnaUiWlBQEI4ePVqpW/+oO/JTRTQ3Nzfs27cvHjhwQOH65eTJk6znFTXRrX5Wr16t8HZRp06dYj2vqAkEAoyOjsYpU6bgnTt35OY+c+YM63klm6urK/bu3Vvh6DrqjHpQkU1fXx9TU1Nx7ty5ckenPX/+POtZSzYfHx8cMGAAHjx4UObIgMrePr4ym4GBAaanp+O8efNkTvPLly+znlNa8/X1xYEDB8qc5levXmU9o7RmZGSEDRs2xPnz50vdft64cYP1jLJajRo1cOjQoVJvh63sqPFsNAsLC2zRogUuX7681O2w7969y3o+WY3P52O9evXwjz/+KHU3kgcPHrCeT15zcnLCrl274rZt24qNEvX48WPWs8lrskZjfP78OevZFDVXV9dSowK/evWK9VyKGo/Hw9DQUBw9erT4tu9ZWVms51KmiUYTmzBhAl67dg2zs7NZz6RKq169Og4bNozV4yfqNmNjY5VHtqdGjRo1atSoUfPw8MC+ffvi/v37Wb8TlTLoVtH/0QZUuPivMHPmzHJdgTk4OFRKEePKlSvLnNXW1hZ/+eWXSh06X53hqSUbn8/HRo0a4f79+yt1mGd1b4NSstnY2ODQoUPx3r17lZJ7zZo15Tp/+/r64sSJEyt8uP/Vq1eXe+dCS0sLU1NTK7SYbu3ateWeWzTfx8fH49KlSyvk1sAbNmyokNwA30+ytG3bFvfu3Vvut3bZunVrheUG+H4boxEjRuA///xTrrnLszBXVvP29saxY8eW65Dyu3btqvDcAN+L0Dp16oTHjh0rlyLA8ijgVqU5Ojri0KFD8dq1a2XKvXv37krNLWpVq1bFnj17ql2EyVZuUTM2NsZWrVrhli1bVFrXs51b1MzMzLBNmzZK56/s+VtRq127No4ePRqvXr0qt59W3gXz5dFq1aqFI0eOLHWSVxIXT9Do6elhWloaLliwAF++fCk1N1cKF0u2mjVr4ogRI2TeQo1LhYuSrVq1atitWzfcvXu31FtKc6lwUbKZmJhgs2bNcPny5VIv6OFS4aJk4/P5GBUVJbMY8PTp06xnlNXc3d3FhaMlD26ePXuW9Xyymug2b4sWLSq1Xrlw4QLr+eQ1f39/HDJkCB47dqzYRYNcLACUbEZGRti4cWNctGhRsX3tK1eusJ5NUfPz88NBgwbhoUOHxIVp165dYz2XomZoaIgZGRnFCjBv3rzJei5lp7nk7bDv3LnDeiZlmuh22AsWLMAXL17gvXv3WM+kTGMYBgMDA3H48OF48uRJzhcASraqVati27Ztcc2aNZwucC3ZtLW1MSYmBqdMmYKHDx9mPY8qzd3dHXv16oWrVq1iPYsqTVSAOW7cONazqNqqVq2KLVq0YD2HOs3e3p71DNSoUaNGjRo1atSUa0ZGRtioUSOpx8u4ggoX/6MNqHDxX2HSpEkVtgJzcHDAvn374smTJ8ttBCaRadOmlVtOhmEwNjYW161bV+HV4uVZKOrp6YnTpk1TOApHeZg9e3a5zx/R0dG4atUqqSc8y8ucOXMqZN7m8XiYkJCAq1evrpAiwPIYCVVeq6hiukWLFlVoboDvBxObNm2KmzdvLreR6ZYsWVLhuQG+H0zs06cPnjt3rlwKj5cvX14puQEAg4ODcebMmfjmzZsy5y6PwnNlG8MwGBUVhYsWLSpz0Wt5F0Ir05ycnHD48OF4+/ZttXOvX7++0nOLWkBAAI4fP16tAtKyFvqXR3NwcMD+/furtMxu2bKF9dyiZmhoiD/++CNu2LAB8/Pz5ebetm0b63lLNn19fWzUqBGuWLFCZl+nsgqK1WnOzs7Yt29fPHz4cKkRp7lWcFmy2dvbY7du3fD69evFcnOxcLFkCwoKwpUrVxZbZrlauCjZbGxscOTIkcX6lVwtXJRsBgYG+PPPPxfrH3C1cFGy8Xg8TEtLK3YxFVcLF0u24OBgPHfunDg3lwsXJZurqyvu2LFDnJtrIxfKanZ2drhgwQLx8QyuFwCKmpOTE/7+++/idYomFAACfD/GMXjwYPGI+9evX2c9kzLN19cXhw0bhjdu3EBExFu3brGeSdnpPWTIEDx9+jQKhUKNKQCsVq0a9u7dW9zHun//PuuZlGmiC3Q2b96M+fn5+OjRI9YzKdP4fD42aNAAZ82ahU+fPi15IojTzdHREfv06YNHjhzBJ0+esJ5HlWkeHR2NM2fO5HzBfMlmYmKCLVu2rJTjg+Xdqlatiu3atWM9hzrN2tqa9QzUqFGjRo0aNWrU/v1NdEeh+fPnV2h9h7qocPE/2oAKF/8VxowZU+ErMSsrKxw8eDDm5eWVW+5hw4ZVSFZLS0vs379/mYpE5Bk6dGi5Z9bT08OOHTvihQsXKiQzIuLIkSMrbP4wNzfH3r17l3l0Lmkq40pZExMT/Pnnn/H48ePlNgrm5MmTKzy3qNnY2GDfvn3L5fa606dPr7TcAN9Hpvvpp5/KfHvX8h55Vpnm4eGBI0eOLHYrHVVVREGxoiYQCDA5ORnXrFmjsBBKlooqKFbUdHV1sVmzZrhjxw6Vb0eLWPEFxYpaYGAgTp8+vdStuhRZvHgxq7lFrV69ejh37lylb1u/YsUK1jNLNldXVxw2bBheuXJF7rqyokaeLWvT19fHLl26yJz+mzZtYj2jrObp6YmDBg2Smn379u2s55PWGIbBkJCQYrfvksSVES5LNj6fjxEREThx4kS8efNmqXmdC7e4ltZ4PB6Gh4fj+PHj8caNG6Vyc7lwMTAwEEeOHCm1H8blwkVfX18cMmQInjhxolQfjMuFix4eHti/f3+pBcVcuuVyyebu7i4zN9duuSzZvL29cdCgQXj8+PFS8wmXCzECAgJw+PDhUkdD5XIBYGBgoMxRf7k6AiDDMBgaGorjx4/HW7duldrOc7UAkGEYDAsLw0mTJkkdnf6ff/5hPaOsFhQUhOPGjZM6vblcAOjn54e//vqr1JGhuVwAaGdnh927d8f9+/eX2gflcgGgnp4eZmRk4NKlS/Hdu3fFcr948YL1fOrMK69fv2Y9m7LTXHK/5+3bt6xnU9RsbW2xa9euuHfvXvGAAJpyC2APDw8cPHgwnjp1CouKijA3N5f1TMo2Ly8vHDJkCJ46dUqjcgN8PxbduXNn3Lx5M+tZVG1aWlrYoEED1nNQo0aNGjVq1KhVVrOwsMC2bdvixo0by7XWpyJUROGiAAghlaKgoKDcP1NPTw8iIiIgNjYWYmJiwN/fH3g8Xrl+x9u3b8v180SysrJgypQpMGXKFKhXrx4MGjQIUlJSyu3zX7x4UW6fJfL582dYtGgRLFq0CIKDg6Fbt27www8/gK6ubrl9R0VNbwCA7OxsmD59OkyfPh1CQkKgc+fO0Lp1a+Dz+WX+7Pfv35dDQvlyc3NhwYIFsG/fPmjXrh0MGjQI9PT0yvSZeXl55ZROMSMjI/j48SPcunUL3N3dwdjYWO3P+vjxYzkmk4/H44GrqyuYmJhAfn4+fP78GQwNDdX6rMqc3iLv37+Ha9euwZ49e6B169ZgYmKi8md8+PChApLJV1hYCDt37oSLFy/CgQMH4PfffwcbGxuVPiM3N7eC0slXUFAAa9euhbVr10JgYCDMmjULgoODlf57Nqa3pPPnz8P58+dh6NChMHz4cOjXrx/o6Ogo/LvKXC7lOXbsGFy4cAF27NgBo0ePhho1ash9/6dPnyonmBJ4PB5YWloCwPftYWFhIWhpaUl975cvXyozmlxaWloQFhYGsbGxEBcXBzVr1pS5bS0sLKzkdLIZGhpCgwYNICEhAeLj48HZ2Vnme4VCYSUmk8/MzAwSEhIgOTkZ4uPjxfOMNFzKbW5uDklJSeLcZmZmbEdSiomJCSQkJEBqaiokJCSAhYUF25GUoqenB7GxsZCSkgLJyclga2vLdiSlaGlpQf369SElJQVSUlLkLpdcwufzoV69epCamgopKSng4eHBdiSl8Hg8CA8Ph9TUVEhNTQVPT0+Z72UYphKTySc5vVNTU8Hd3V3me7mUWyAQQFRUFKSlpUFqaio4OTnJfC+Xcmtra0N0dDSkp6dDamoq2NnZyXxveexblxcdHR2IiYkR565atarM93Ixd0ZGBqSmpkKVKlVkvlcg4M5hbYFAAPXr14eMjAxIT0/XmPmEYRgIDQ2FjIwMaNiwIbi5ucl8L5emNwCAp6cnNGzYEBo2bAiBgYEyj4dyLbepqSmkpqZCw4YNIT4+HvT19aW+j2u5lZ1XuDR/i5iZmUFqaipkZGTInOZcm94iXl5e4mkubT7n4vQWCQ4OhoyMDMjIyAAvL69ir5X3+YvyxDAMhISEQHp6OqSnpxfLzqXjJ7L4+PiIs9epUwd4PB6njp/IY2xsDElJSZCeng6JiYmgr68P2trabMdSmru7O6Snp0NKSgpERUWxHUdlfn5+cP36dbZjEEIIIf8pbm5u4r5baGgoZ/dLKsN/919OSCVr0aIF1KhRA3JycqBLly5qnbhmGAYCAwMhJiYGYmNjITQ0tFyL5qTp1q0bREVFwdWrV2HChAnl8pna2tpQs2ZNCAoKEjd5B0fV0b17d4iIiICLFy/C7Nmzy/WzdXR0QCgUwsmTJ8HAwAAaNWpUbidWGjduDA4ODvDy5UuYMWOGaNTVcuHo6AhBQUEQHBwMQUFBUKtWrXI7wBUREQHfvn2DnJwc2LRpU7kVTPH5fKhRowaEhYWJm7wTAKoKCAiAVq1aQV5eHly6dAmePHlSbp/t6+sLkZGREBERARERESoXnSn67DZt2kBeXh58/PgRbt68Cc+fPy+Xz+bxeFCrVi2IioqCqKgoCA8PV6vYTxpfX19o3bo15OXlidvDhw/LtWC3SpUqEBUVBZGRkRAZGQne3t5lXj69vb2hVatW8OHDh2Lt7du35V4c6OLiIp5n6tWrB66urmrn9/b2hpYtW8KHDx8gNzcXcnNziz0uKioq1+wA3w+qi7LXq1cPHB0dVf4MT0/PUtNblP3Dhw8VdsDVwMAAQkNDxdM/KChIpeJoDw8PaNOmDXz8+FG8bJb8WVHZDQ0NITw8HCIjIyEqKgpq164ts+CvJDc3N2jXrh18/vwZPn36BJ8+fZL7uLwFBARAdHQ0NGjQAOrVq6f0+sbV1RU6duwIX758ga9fv8KXL1/ETdbvHz58gPz8/HLJ7ePjA3FxcRAbGwsRERFKF3Q7OztDp06doLCwEL59+waFhYXFmqzn3rx5A0+fPi1z7oCAAEhISICEhAQICwtT+iSAo6MjdO7cGYRCobgVFRUp9fjSpUvw6tWrMuWuUaMGJCcnQ1JSEgQFBSm9A1+tWjXo0qWL1Cv4hEKh3Cv8Pnz4ADt27ChTbn9/f3EBWnBwsNL9Lnt7e+jatau4H6jqzy1btkB2drbauT08PCAlJQVSU1MhLCxM6fWJra0tdO3aVfx7yX6sot9PnjxZphMl9vb24tz169dXeh1uY2NTLHdJivrjt2/fhsOHD6sStRhLS0tITk6G1NRUiIuLAyMjI6X+rmrVqtCtWze1v/fVq1ewadMmtf/e1NQUEhMTxUWtyhbjVqlSpVhuyX6O6LG050SPCwoKYN68eWrnNjY2FhfjJiYmKl2Ma21tLc7NMIy4Sf6u6LXZs2ervS01NjYWT+/ExEQwNzdX6u+srKygW7du4hw8Hq9YRmWeW758OTx+/Fit3CYmJpCUlARpaWmQkJAApqamSv2dhYUFdO/eXZxFsinzHMMwsGvXLjhx4oRauc3MzCA5ORnS09MhPj5e6eXS3NwcunfvLs7B5/MVPi75+6VLl2DFihVq505JSRHnVrZ/YmZmBt27dwc+ny/OInpcssl67f379/DLL7+oldvExARSUlLERUXKTm8TExNxboFAIM4i+ViZ3wcPHgxv3rxRObeBgQEkJiZCRkYGJCcnKz1/GxsbQ/fu3UEgEIizlHyszHPLly+HPXv2qJxbS0sLoqOjoWHDhpCeni63qFWSkZER9OjRo1iOkrlkPSf5+927d+HXX39VOTcAQGBgoLhY0dvbW6m/MTQ0hB49esjMKu/fIfkan8+H7t27w+vXr1XObWtrKy4+i4yMVKpvpa+vXy7TWyAQwM6dO2Hx4sUq55acV9LS0pQ6rqWnpyeev1Wdt0u+hojQsWNHtYrF7OzsxNM8IiJC4TTX1dUtth5Udp0i67VDhw7BggULVM4NIL/gryQdHR1xbnnrbnmt5N9NnjwZrl69qnJu0fySkZEBaWlpci8c0tbWFm8vS2aQ9ljZ1wcOHAhZWVkqZ9fW1i5WNC9rvailpaXUdl7ZPoDk41GjRqm1z88wDISFhYlPeEu7oEUgEBTLXd5t165dsH37dpWzAwA4ODhAWloapKenQ2RkZLFjFEKhELp166ZUX1DZPmLJ5xmGgaFDh6p1ETXDMBAcHFysyJVhGEBEcW7J76+Ix58/f4ZBgwapdQ5JdDFUeno6pKWlgYuLC/To0aPU/oC8n8q8R97fCIVCGDRokNqDvoim//Xr18HU1BT4fL5SOVTNLO9vFi5cCBcvXlQrv5GRETg7O4OLiwvY2dmBQCCQ+73K5lL0nOTj+/fvw5QpU9TKz+fzoVq1auDi4gKurq5gaGio1Heq+ljR65MmTYJ79+6p9W8wNzcHV1dXcHNzAxsbGxAIBBXyb5D3+MqVKzBr1iy18mtpaYGLiwu4u7uDi4sL6Ovrl3l6qvq4sLAQevbsqfZ5DwcHB3B3dwcPDw+wtLRUO3dZnuvTp49a/QeA78ciPT09wdPTEywtLcuUV53XP3z4IPeYpjwCgQBcXV3B29sbvLy8wMTEROq2U9r6W5X3yXutXbt2au1f8Xg8cHZ2Bm9vb/Dx8QFTU1OF2yVVt2OKXps6dSocOnRI5ewM8/0iGVH/R9R/IACs3waZmuIGdKvof5WJEyeqNCysq6srdu7cGTds2FDqtiGVqUWLFmoNa8swDPr4+GC7du3wr7/+wnPnzolvZ1EZmjZtWqZheY2NjTEiIgL79OmDS5cuxWvXrpW6bVhF+PPPP8uU28TEBGNjY3H48OG4bds2fPnyZYVnRkQ8ffp0mXIbGRlhXFwc/v7777h///5KGwr506dP6ODgoHZuhmGwRo0a2Lt3b9y4cSO+efOmUnIjIhYUFKCrq6va2Xk8HtapUwcHDhyIO3fuxJycnErL/u3bN/Tx8SnTPGNnZ4ctWrTAefPm4e3bt8vtNuLKaNiwYZmyAwD6+Phgly5dcNWqVZW6jV+1alWZs/P5fAwMDMS+ffvipk2bKm2+z8vLQ0dHxzLnNzMzw7S0NJw0aRKeOXNGrdtaq+rr1684d+7cMmc3MjLCpKQknDBhAp45c6ZStkuI39eV9vb2Zcru7u6OnTt3xrVr11bquhIRsXHjxmrntrKywhYtWuDixYvx2bNnlZobETEtLU2t3Kampti0aVNctGgRK7lzc3PR3Nxc5dyGhobYsGFDXLhwISu5ERFHjx6tcm5dXV1MTk7Gv/76Cx8/fsxK7ps3byLDMCrlFggEWL9+fZw6dSreuXOHldwFBQVqrV+CgoJw9OjReOnSpUrtA0iKiYlRObefnx8OHToUT548WerWvpWlR48eaq3D+/Xrh4cOHaqU7aY0M2bMUDm3s7Mz9urVC/fv31+p+6KSMjMzVc7t5OSEvXr1wn379rGW+/79+8jn81XO3bt3bzxw4ABr88mnT5+watWqKs8nffr0wYMHD7KWGxFVvi2io6Mj9u7dGw8ePFhpfUJphg8frlJu0a199+3bx+r0PnjwoEq5rayssGPHjrh9+3b89OkTa7nz8vJU6mMZGhpi06ZNcdWqVZW6zy9Nq1atlM7N5/Oxfv36OGPGDHzy5Amruffu3avSvCK6Ne7p06exqKiItdyFhYXo6empdG4DAwNs0qQJrly5Et+/f89abkTEpUuXqjTNvby8cOjQoXj27FnW+oWIiEKhEGvVqqV0boFAgHFxcfjXX3+xtu8joup238jICJs1a4arV69mfd2yb98+leYXExMTbNmyJa5btw4/fPjAavazZ8+qlF1XVxfT0tJw0aJF+Pr1a1azf/36FZ2dnVXKX716dRwxYgReuHCB1WUVEXH79u0qZdfR0cGUlBRcsGBBpZ1vkWfKlCkq5Rf1B5YvX87quUYRVY9Pi6b//Pnz8cWLF2zHxxcvXqCurq5K/4bAwEAcNWoUXrlyhfX5HxGxdevWKuW3srLCDh064JYtW/Djx49sx8fr16+rdAyMx+NhREQETp48Gf/55x+24yMiYlJSkkr/Bw4ODti9e3fMzMzEgoICtuPj33//rVJ+AwMDbNy4MS5btgyzsrLYjo979uxRKb++vj5mZGTg4sWLK/3chjS///67Svmtra2xY8eOuHXrVszPz2c1u6rHsE1NTbFFixa4du1a1vudL1++VGn9r6uri6mpqbhw4UJ89eoVq9nLS0XcKpr1ojxqVLj4X5KdnY1mZmZyV17m5ubYtGlTnDdvHj548IDtyIiIeODAAaVXvvb29tioUSMcP348Hjx4EHNzc1nLvW3bNpU73fHx8ThkyBBct24d3r17l5WDi8+fP0cjIyOlc2tpaWGdOnWwR48euGzZMrx9+zYruYuKijAoKEilaV6tWjVs3rw5zpo1Cy9dusTaidsxY8aolJvP52OdOnVwwIABuG3bNszOzmYlN6LqByj4fD4GBQXhoEGDcNeuXawuo3PmzFEpO8D3E3Nt2rTBRYsW4b1791jbwVf1BBfA9x3j2rVrY9++fXHz5s349u1bVrLn5+erVRyiq6uLkZGROHz4cNy7dy9rB3anTp2qcnYAQBsbG2zWrBnOnj0br127xsp68tOnT1itWjWVsxsbG2NKSgpOmjQJz507x9pJaVUvvgD4flK6TZs2uGTJEtYKuRBVPxGgo6ODMTExOGHCBLx06RKrJxtVvSggMDAQhw8fjsePH2e1gAFRtYMnXl5e2L9/fzxw4ABrBToi79+/R1NTU6VyOzg4YJcuXXDHjh2sH/BBRPzxxx+Vym1hYYGtW7fGtWvXsn5SGhFx9uzZSuU2MDDAhg0b4qJFizhxoujYsWNK5dbW1sa4uDicOXMmPnz4kO3Y+OzZM9TW1laYm8/nY0REBE6aNAlv377Ndmz8/Pkz2traKszNMAzWrVsXx40bh9evX2f9hJBQKMS6desqNa8EBwfjH3/8gVevXmU9NyJix44dlcodFBSEY8aM4UxuZQtc69Spg6NHj+ZM7hMnTiiVu2bNmvj777/j5cuXOZH7/fv3aGxsrDC3r68v/vLLL3ju3DlO5EZEjI6OVpjb2dkZ+/Xrh0ePHmXtmEVJkydPVphbVGS5Y8cO/Pz5M9uRERHx3r17yOPx5OYWFeQsXryYEyczRSIjIxVO89q1a+OYMWPwxo0bnJnH161bp1S/sH379rht2zZWC3IlKVtwGRQUhOPGjcNbt26xHVls165dSvVpmzZtyokCUUk///yzwuxVq1bFzp074+7duzlRMCESERGhMLu9vT326NGD9aL5kpS5UNHCwgLbtWuHmzdv5kSxkMjixYsVZufz+RgdHY3Tp0/nxL6QiFAoxDp16ig17du2bYubNm3i1LT/9OkTVqlSRWF+Ozs77Nq1K+eW2aKiIvT29laY39LSkpPzPiJiv379FObX1tbGxMREnDNnDuvF6SX9888/CvtlAN+P1w0ePBhPnDjBmb6wiDLHwESFckuXLuVU3xIR8dy5cwrzAwDWqlULR44ciRcvXuRMHxPx+8AkygyqIrke4sp+CeL37UBoaKhSfZ+ff/6Z9YvXSsrNzVXq+LWPjw8OGTKE1YunpWnZsqXC7I6OjtirVy9WL4yVZsCAAQqzSxZ6c+GcQXmjwsX/aAMqXPzXGDx4sNSOa3R0NI4bNw7Pnz/PqY0G4vfRT2QdKBKN6vfLL7/gli1b8Pnz52zHFfvw4YPcEfSqVauGGRkZ+Pvvv+P27dvx2bNnnOnwKepse3h4YKtWrXDGjBl45swZzuxwLlmyRG5uHo+HNWrUwB49euDq1atZv1pe5MWLF2hgYCA3u5aWFtatWxeHDBmCu3fvZv1KXJGsrCyFHVM+n4/BwcE4ePBg1gsVJeXk5KCVlZXCzp2Liwu2b98elyxZwpmDW4WFhVi9enWF2bW1tTE8PByHDRuGu3fv5sy0HzlypFI7xCYmJpicnIzjx4/HEydOcGJd8/btWzQxMVEqv6urK7Zv3x4XL17MapGrpHHjximV3dTUFNPS0nDKlCl44cIFTvQNsrKylJr2FhYW2LRpU5wzZw7euXOHE9NdKBQqdVI6ICAABwwYgJmZmZw6CKFo5CVLS0ts2bIlrlixgvXRFiRlZ2fLnWd0dXUxMTERZ82ahffv32c7bjHy1pOigqg//viDM1fIi9y4cUPulaq+vr44ZMgQPH78OCfWKyIFBQVoZ2cnt9/evXt33LNnD6cOcCLKH23RysoK27Vrhxs3buRM31FE3miLJiYm+OOPP+LKlSs5MQqHpJkzZ8rMbWBggI0aNcLFixdzal2IKH8EID09PUxLS8OFCxdyohhX0sOHD1EgEEjNraOjg8nJyZwZ7USSvAJXbW1tTEhI4OSJQ0TEhIQEqbkFAgE2aNAAZ86cyeqFILLIGqWYYRgMDw/HyZMn4927d9mOWYq8QtEaNWrgyJEjObetR/w+j8saUdTJyQn79u2LR44c4dS2XkRWUZRo5LMNGzZU2p03VHH8+HGpuXk8HkZFReH06dM5uWwKhUKZxy6qVauGvXr1wkOHDrF+sZM0sgouBQIBxsTE4OzZszm5Hpd3ApyLxcSSnjx5glpaWlKzi0YQPXXqFKsX9cly5MgRmetzf39//PXXX/H8+fOcW58jIl6+fFlmdldXV+zXrx8eOXKEk8vpt2/f0N3dXWp20ch+K1asYPWCf3l2794tc9q7ublh//79OXXRQknTp0+XmT8gIIDT8z2i/MJ6d3d3HDBgAB47doyz0//169eop6cnNb+5uTm2adMGN2zYwLljAZLatWsns39Tr149nDx5Mmt35VDGrVu3ZB4Ds7W1xS5dunCuUK4kWYXrWlpaGB8fj7Nnz+bMeVRpli1bJnM5Fo2uy+X1kLxjNX5+fjhs2DA8c+YMJ/s+iIh//PGHzGU4IiICp0yZwpmRRUu6c+eOzMLp2rVrc2pk2pLevHmD+vr6UrN7enrioEGDOFnoXd6ocPE/2oAKF/8Vnj17Jh42tkaNGjhw4EDMzMzkfJW1aMOnra2NwcHB2LNnT1y+fDneuXOHsxtrRMTevXsjwPcD5Z6envjjjz/ixIkTcd++fZy7qkbS/v37Sx3USklJwVGjRmFmZibnTh6K5ObmlrrCz8DAABs0aIC//fYb7t27lzNFWyV16NChVOdCR0cHIyMj8ddff8X9+/dzdjnt1atXqex8Ph9DQkI4V2RZ0qBBg2QeDP35559xxYoVnN3mLViwQGp2fX19jImJwVGjRuHhw4c5Vfgk8uTJE5kHVWxsbPCHH37AmTNn4uXLlznZse7WrZvcg9HdunXDNWvWcKqQXuTVq1cyR9M1MzPDjIwM/PPPP1kdfVYeWVcRGxoaYnJyMk6dOhUvX77Myb6BrNtzVq1aFdu0aYPLly/nXLGIiLTRXXk8HtatWxdHjx6N586d4+Q0R5R+y0hHR0fs1q0b7ty5k7Pb1uzs7FKjRpmYmGCzZs1w+fLlrI2Wq4xmzZoVy62trY3x8fE4c+ZMzozkLk3J0RYZhsHQ0FBOjTonjbTRFv39/XHYsGGcPamL+H2/VEdHp1huNzc37Nu3L+u3yJXn8+fPpQpcHRwcsFu3bpw+GSEUCjEsLKxUn4uLV+uX1Llz51L7pu3bt+fkaCeS/vrrr1L9rFatWuH69es5u2+EWHp0aNEJ/5UrV3L2hD9i6VsWi27hpwm3QJK8LRuPx8PIyEj8888/OXPBnCwlt5sBAQH422+/4aVLlzi7zUT8fmJDsiiqatWq2KVLF8zMzGR9tG1FEhMTi83jqamp+Pfff3O6X4iIuGPHjmLzio+PD/7yyy+cPoGMWLrgUl9fHxs1aoTLly/n9PoQsfT+m2jEVi4X34j07NmzWPbg4GDOjWYpS2xsbLH1uehk/b1799iOplCTJk2KTfc6dergmDFj8Nq1a5xeThERV6xYUSy7ZKEQFy5+lkdakXFwcDCOHTuWU6PmylLyQh2ujmopS1FREfr5+RU7BlC3bl2cMGGCRqxzEEuf2+B6oXFJ9+/fRz6fX+xcXqNGjXDp0qWc79+IlBytrXr16pwv2JV08eJFqfut69at4+y5VEmFhYXo4eEhzi+6uGTmzJn46NEjtuMpJBQKMTw8vNh6tH79+vjnn39y7gJ7aT58+FBsP5xrt+BWpG3btuLsokLdv/76i7PnhCUNGTKk2PYrPDwcJ06cyIk71VQmKlz8jzagwsV/hT179uDq1avxzZs3bEdRWmFhIS5evBjPnTvH+YOIkvLz83H27Nl4/PhxTl6pLUtRURH+9NNP2K9fP1y7di0+fPhQIzrYiIgDBw5EOzs7/OGHH3D69Ol44cIFjdhBu3jxIjIMU6zg7MiRI5w98Snpzp07KBAIUCAQiAsV9+zZw+mTcSIPHjwQ357Q29sbu3TpgmvWrOHcaC3S5ObmorW1NQJ8HxUvNTUVJ02ahGfOnOHsiX5JLVq0KFakwLURCeW5du2a+Cos0S3PBwwYgFu3buVsUbckyZP/FhYW2KhRI5w+fTpeuXKFs8UtIpLLrI6ODkZHR+OYMWPw1KlTnJ/vi4qKsFatWgjwfVSrhIQEnDJlikacBJA8kG5ra4sdOnTAdevWcf5kHeL30VENDQ1RIBBg/fr1cfLkyXjz5k3OT3NExF9//VW8fRowYAAePnyY8/M5IuL169eRYRisUqUKdujQATdt2qQRfQJRMZqRkRE2adIElyxZwrnR8mSJiYkRF4fOmjVLIw7MIn4/KS0aQWHixIl469YtjVg2Z82aJT6ZO3r0aM7cIlcR0YVp1atXx+HDh+PZs2c5v91HRHz8+DFqaWmhl5cXDho0iHMjtcry5csXdHBwQGdnZ+zTpw+ni3FLSktLQxsbG07eflOeiRMnoqmpKbZq1Yqzo+VJc+HCBfEtif/++2+NOVb39etXdHJywrCwMJw8ebJGFOWI9O7dG93c3HDgwIF48uRJjVgXIiKeP38ejY2NsUWLFrh+/XqNmceFQiHWrVsXQ0JCcMKECZweMamk7du3o7m5ObZr1w63bt3K6SL/kqKjo7FmzZr4+++/c3aUGGlevnyJxsbGGBcXh3/99RcnR7OU5fTp06inp4fp6em4ePFijVmfI34fMV9HR0d8sl6TpnthYSF6e3ujn58f/vLLLxrTxxXZv39/sRHEuXoxqyyzZ89GY2NjbNasGecvcpFm48aN4uV20aJFGnMMQOTt27doZGSEoaGhOG7cOI053iWpY8eO4n2PXbt2acT5MEl37txBXV1djSqUK6lhw4bo4uKCffv2xUOHDmnMfqvIypUr0cTEBFu0aIFr1qzBnJwctiOp5NChQ2hkZIQ//PADp0cHlmX8+PGcvQW3Ivfv30crKyts2bKlxhTqimRlZWGVKlUwIyND4/qd5a0iChcZ/F4YRziMYRh7AHgKAPD06VOwt7dnOREhhBT38uVLqFq1KjAMw3YUlRw6dAh0dXWhdu3aoK2tzXYclezfvx+EQiHUrVsXDA0N2Y6jkt27d0N+fj5ERESAtbU123FUcuDAAbh16xZERESAn58f8Hg8tiMp7dmzZzBp0iQIDw+H8PBwsLGxYTuSSsaOHQsFBQUQEREBISEhGjXfP3v2DAYMGADh4eEQFRUFPj4+GjXvTJs2DbKysiA6Ohrq1q0Lurq6bEdS2sWLF2HdunUQFxencdnv378PGzduhISEBPD399eobeyJEyfg9evXEBMTA8bGxmzHURoiwrJly6BevXrg4uLCdhyVHD16FHR1dSEwMFCj1i/37t2Dhw8fQmRkpEb1xT58+AAHDhyA2NhYjdoeCYVC2LRpE9SvXx8sLCzYjqOS3bt3Q40aNTSu/3LixAmwt7cHR0dHtqOo5ObNmyAQCMDDw4PtKCp59eoVvH37Fvz8/DRqu1lYWAiXLl2C2rVra9Q6HADgypUr4OPjA1paWmxHUcnDhw/B2toaDAwM2I6iktzcXCgoKIAqVaqwHUVl9+/fBxcXF41aNgEAXrx4AZaWlhrVTwEA+Pr1K7x9+xbs7OzYjqKyJ0+egK2tLQgEArajqOTbt2/w/PlzcHJyYjuKyl6+fAl6enpgamrKdhSVPXjwAKpUqaJx63OA79sic3NzMDExYTuKynJzc+Hdu3cat98scvv2bbC3t9eofTlJ165dA09PT43bNoncvHkTnJycQF9fn+0oann+/DkIBAKN7I8BfD/2deXKFQgICNC4fQ+Rx48fg6mpqUauPwEAioqK4M6dO+Dt7a1xfWORu3fvgpOTk8btB4o8fvwYbGxsNHY9+uDBA3B2dtbI+Sc7OxuMjIw0ct55//496Orqgp6eHttRWPfs2TNwcHAQ/eqAiM/K+plUuKgBqHCREEIIIYQQQgghhBBCCCGEEEIIIYQQQggbKqJwUTNL6QkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEKKRqHCREEIIIYQQQgghhBBCCCGEEEIIIYQQQgghlYYKFwkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEFJpqHCREEIIIYQQQgghhBBCCCGEEEIIIYQQQgghlYYKFwkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEFJpqHCREEIIIYQQQgghhBBCCCGEEEIIIYQQQgghlYYKFwkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEFJpqHCREEIIIYQQQgghhBBCCCGEEEIIIYQQQgghlYYKFwkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEFJpqHCREEIIIYQQQgghhBBCCCGEEEIIIYQQQgghlYYKFwkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEFJpqHCREEIIIYQQQgghhBBCCCGEEEIIIYQQQgghlYYKFwkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEFJpqHCREEIIIYQQQgghhBBCCCGEEEIIIYQQQgghlYYKFwkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEFJpqHCREEIIIYQQQgghhBBCCCGEEEIIIYQQQgghlYYKFwkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEFJpqHCREEIIIYQQQgghhBBCCCGEEEIIIYQQQgghlYYKFwkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEFJpqHCREEIIIYQQQgghhBBCCCGEEEIIIYQQQgghlYYKFwkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEFJpqHCREEIIIYQQQgghhBBCCCGEEEIIIYQQQgghlYYKFwkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEFJpqHCREEIIIYQQQgghhBBCCCGEEEIIIYQQQgghlYYKFwkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEFJpqHCREEIIIYQQQgghhBBCCCGEEEIIIYQQQgghlYYKFwkhhBBCCCGEEEIIIYQQQgghhBA1ff78GV6+fMl2DLVlZ2fD06dP2Y6htoKCArhy5QogIttR1Hb69GnIz89nO4babt26BQ8fPmQ7htpycnLg+PHjUFhYyHYUtQiFQsjMzNTYeaioqAj27NkDnz59YjuKWv755x+4cOECCIVCtqOo7MWLF3D27FmNzL5161ZYvHgxPH/+nO0opAyocJEQQgghhBBCCCGEEEIIIYQQQqTQ1EKo/Px8uHbtmsbl//TpE/Tt2xc2bdoEubm5bMdRmq6uLqSnp0P16tVh0KBBcODAAfjy5QvbsZRmaGgIkZGR4OvrC/369YPMzEz4/Pkz27GUpqurC/379wc7Ozto3749rFmzBt69e8d2LJWcOHECzM3NITY2FqZOnQo3b97UqOVXV1cXPD09wcvLC/r06aNx85CJiQn0798frKys4IcffoDFixdrVDEyj8eDLVu2gLm5OcTFxcGff/4Jd+7c0Zh5iM/nw9q1a8Hc3BwSExNhxowZcO/ePbZjKc3a2hpiYmLA1tYW2rdvD+vXr4ecnBy2YynFysoKfvzxR6hatSq0bdsW1q1bpzHZa9WqBV27dgV7e3vw9/eH/v37w969ezVq3UMAGE1ZUf2XMQxjDwBPAQCePn0K9vb2LCcihBBCCCGShEIhMAwDDMOwHUUlnz9/hqysLHBwcGA7iko+fPgAhw8fhtjYWNDT02M7jtLev38PK1euhNTUVHB0dGQ7jtLevXsHc+fOheTkZKhevbrGzOfv3r2DOXPmQHJyMtSoUUOjci9cuBBSUlLAx8dHY3K/f/8eVq9eDcnJyRo1f+fk5MCuXbsgISEBzM3N2Y6jtNzcXDhx4gTUr19fo9aDubm5cOPGDQgODgY+n892HKV9+PABnj59qlHLJABAXl4evH//HqpVq8Z2FJV8/PgRCgoKwNLSku0oKvn48SMIhUIwNjZmO4pK8vPzgWEY0NfXZzuKSj59+gQ8Hg90dXXZjqKS/Px84PP5GplbE+eTvLw8EAqFYGJiwnYUlXz48AHy8/PBxsaG7Sgqyc3NhRcvXoCXl5dGbS9zcnLgwoULEBYWplHL5ocPH2Dt2rUQGxsLTk5ObMdRWl5eHowYMQKioqKgfv36GrPdzM/Ph5SUFAgICID4+HiIjIwEAwMDtmMphIgQHh4ODx8+hLi4OIiPj4eYmBiwsrJiO5pCgwYNgkmTJgGfz4eQkBCIj4+HuLg4CAwM5PS+xL59+yAuLk78u76+PkRFRUF8fDzEx8eDh4cHp9eRy5cvhzZt2oh/19XVhcjISIiPj4eEhATOr+PPnDkDISEh4t8ZhoGgoCBISEiA+Ph4CAoK4vT88/nzZ3Bzc4MXL16In3NwcICEhARISEiABg0acL5f061bN5gzZ474dz09PYiKioLExERISEgAd3d3FtMpVnIZBgCoUaMGJCYmQmJiIoSGhoJAIGApnWLPnj0DNze3YkXTzs7OkJiYCElJSVC/fn1O9+kfPnwIHh4exUa9dHd3F+ePjIzkdH/tjz/+gOHDh4t/5/P5ULduXUhKSoKkpCTw9/fn7Dp0yZIl0L59e/HvouzJycmQlJQEfn5+nM3er18/+PPPP4s9p6urCxEREeLtr6Yd0+OyZ8+eSZ5TdEDEZ2X9TCpc1ABUuEgIIYSw59u3b8AwDKd3RqX59u0bnDt3DkJCQoDH05xBtr99+wZjxoyBpKQkCAoK0pgdia9fv4ozN2nSBGrWrKkR2RERAgMDgcfjQaNGjaBhw4bg5eXFdiylREdHw5kzZyAuLg4yMjIgOTlZIwocUlJSYOfOnRAQEABpaWmQlpYGtWvX5vxy2qhRI9i8eTM4ODhASkoKpKSkQHR0NKcPFAH8f247OztITk6GlJQUaNCgAacP0AEApKenw7Zt28DJyUk8vbl+YA4AIDk5GXbt2gX+/v7i3JpQoBYXFwcHDhyAunXrinNrwsGsqKgoOHv2LDRo0ABSUlIgOTmZ88cLEBFCQ0Ph3r17kJiYCMnJyRAfHw9mZmZsR5MLEaF27dqQnZ0tPmAbHR3N+aLRoqIiccG56CB53bp1QUtLi+1ochUWFoKfnx+YmppCUlISJCYmasS28uvXr+Dv7w+2traQkJAAiYmJnD4pIVJQUAABAQHg5OQkPqGrCevAz58/Q/Xq1cHV1VV8IoLrJ9IBvucOCAgAV1dXcQGJJkzvgoIC8Pf3B0dHR4iNjYW4uDioXr0655fLL1++gJ+fH1hbW4tzBwUFcX7//tu3b+Dn5wc6Ojri3PXq1eN8H1YoFEKtWrUgKysL4uLiIDY2ViMKpBARIiMj4fz58xAREQFxcXEQFxcHvr6+nF82GzduDJs2bQJ3d3dx7qioKM4XA/bu3RtmzJgBfD4fQkNDxdm5XpA2a9Ys6NmzJwAAaGlpQXh4uDh7jRo1OLtOPHbsGERERIh/ZxgGatWqJd4OhYaGgra2NosJpXv37h24uLjAhw8fij1vbm4OMTEx4vxc2wdCRGjQoAEcOnRI6uuOjo7ivgsXi9BE+xA3btyQ+rqDg4O4iLFBgwZgampauQGVIDqmIo2ZmRnExsaK/w/s7OwqOZ1ic+fOha5du0p9TSAQQN26dcWFjFzsj7148QJcXV2hoKBA6uuurq7i/aWoqCjOFYEjIkRFRcHRo0elvm5iYgKxsbHiQkxbW9tKTqhY3759Ydq0aVJf09HRgcjISPG+tru7O+f6O126dIF58+ZJfU1PTw8aNGggLmTk2sUbeXl54OzsLHO0Vzs7O3H2mJgYMDIyquSEshUWFoKPjw/cvXtX6usODg7iY0vR0dFgaGhYyQlle/v2Lbi6ukJeXp7M99jZ2RW7iMPCwqISE/67VEThIiAiNY43ALAHAAQAfPr0KRJCCNcUFBTgx48f2Y7xf+3ddXgc5frG8fuNJ5XUXam7l7pr0kiTFulBCuWHHKToaQ9eOMVb4BR3py3ucoCDHChaHOouQJFSb+z5/REhaWyTbnZ22+/nuubKzuzs7N3t7L4jz7xTYTt37rT333/fsrOzvY5SITt37rR58+bZunXrvI5SIbt377YTTzzRFi5caDt37vQ6js+ysrJswIABdtppp9nbb79tWVlZXkfy2YQJE6xZs2Z23nnn2ZIlSywnJ8frSD6ZOXOmSbKWLVvaBRdcYJ988klIZL/lllssf5utVatWduGFF9rHH38c9NmfeuqpgtySrFOnTnbJJZfY559/HtTZ33nnnSK5w8LCbNiwYTZ//nxbvXq11/FK9emnnxbJLckaN25s//d//2cvvfSS7dmzx+uIJfryyy+L5Y6Li7OUlBS77777bOvWrV5HLNFXX31VLHdMTIwlJibanXfeaRs2bPA6YomWLl1aLHe1atUsNTXV7rvvPtuyZYvXEUv02WefFctdt25dO/74423RokX2xx9/eB2xRB999FGx3K1atbKzzjrLXnvtNdu7d6/XEUv07rvvFsvdo0cPu+SSS2zJkiVBu83yxhtvFMkcHh5uw4YNs+uvv96+//77oG17XnzxxWK/JQkJCXb77bcH9Xb5ge18fHy8TZ061R588MGg/e02M3v88ceL5K5fv74df/zx9sQTT9ivv/7qdbxSPfjgg0VyN2nSxE4++WRbvHhx0P4Gmpndd999RXI3a9bMTjnlFHv66aeDOvfdd99dJHfz5s3tlFNOsaeeesp+//13r+OV6sDcTZo0senTp9uTTz5p27Zt8zpeqe6///5i38tp06bZQw89ZJs3b/Y6XqkeeeSRIrlr1qxpqampdscdd9jKlSuDtt1ZvHhxkdzR0dE2evRou+6662zp0qVBeyzr1VdfLbZ90qtXL5s1a5a99dZbQbtd9eGHH5a4n3bCCSfYo48+GrRt5o8//mhhYWFFckdERNiQIUPsqquuso8//jgotwl//vlnq1atWrHPvFatWjZlyhS75557bO3atV7HLGb//v3WqlWrYrlD4TcxISGhxNz5+5qTJk2yBQsW2PLly4Pqd/Hqq68uNXf+0LlzZzv33HPttddes927d3sd2czMlixZUm7u/H2hwYMH21VXXWWffPJJ0Hxfn3vuOZ/zDxo0KOjyf/311+ac8+nf0K1bN7vooovsrbfesn379nkd3cxyf2tat27tU/6GDRvaCSecYE888URQbUdecMEFPuWPjo62sWPH2rx58+yHH34Imt+f999/36f8+cdhZs+ebe+9955lZGR4Hd3MzH766SeLi4vzKX+bNm3srLPOsldeeSVofkM3btxo0dHRPuXv1KmTnX/++fbWW2/Z/v37vY5uZmY33nijT9kjIyNt1KhRdtNNNwXN8bDHHnvMp+xRUVE2duxYu+WWW2zFihVexzYzsyuvvNLn761zzvr162eXXHKJvf/++0Hz3Q0VGzduLPx5NjN/1MT5YyEMFC6ifDk5OUHR4BxOQrEgLSsry84880x79dVXg2YnzxfZ2dnWs2dPmzZtmr388ssh08Dn5OTYgAEDrEmTJjZz5kz76KOPQmadSUtLM0nWv39/u+mmm4L6ZGlh5513nkmy2NhYmzJlii1evDgkil7vuOOOgo2wBg0a2N///nd79913g/57+vbbbxfZGG/RooVdeOGF9tlnnwV1m7Ru3ToLDw8vkr1ly5Z24YUXBnUR465du6xu3brFdoKaN29uM2fOtA8++CAof2Oys7OtY8eOJe7AtWjRwmbOnGnvvfde0K3vOTk5Nnjw4DIPPF566aVBWYA5ceLEUnPHxsYWFAP+9NNPXkctYvLkyWXu8Pfr18+uuuoqW7p0aVB95vltZlkHGIOx0Ku8z7tv37525ZVX2meffRZUvy1JSUmlZo6IiLCRI0faTTfdZMuWLQuq9WT8+PGl5s4v0r333nuD7iTkyJEjS81dr149O+GEE2zx4sW2fft2r6MWKO/3u1WrVnbmmWcGXdFoTk6O9e3bt9TcXbp0sYsuusjefffdoNofys7Oth49epSau0+fPnb55ZcHXWFDVlaWdenSpcTMYWFhNnDgQLvqqquC7jcwMzPTOnToUGLu/BPT//rXv+yLL74Iutzt2rUrM/fVV18ddJ93RkaGtW3btsz15Morrwy6Nr6s3M4569u3r1188cX27rvvBs3JN7Pc9aS0/QZJ1rVrVzv//PODqnDELPf3pGvXrqXmbt26tZ122mn29NNPB1XBa3Z2tvXp06fU3PXr17djjz3WHnjggaA6Z5CTk2PDhg0rc39n/PjxNm/ePPvmm2+CanswOTm5zO3v7t2724UXXmhvvvlmUF1wNmPGjDJz165dOyiLAS+//PIyc0uy9u3b21lnnWUvvvii7dixw+vIZmb26KOPlps7/zfxggsusDfeeCMo1peSLkYsa3v81FNPtWeeecbzCxh27txpDRo08Dl7fhHUjTfe6PlvTHm/KSUNderUsaOPPtoeeOAB27Rpk2fZc3JyrF+/fpXKf8wxx9iDDz7o+QWX06ZNq3D+uLg4mzRpkt122222cuVKT/MfeOGFL4Nzzo488ki74oorPN/+3bZtm1WvXr3C/4aWLVvaaaedZs8//7znv/tlHScqbahZs6alp6fbfffd5+l32Mxs9uzZFc4fExNjEyZMsFtvvdXz78A555xT4fzVq1e31NRUu/vuuz29WH337t3WqFGjSq3/Z5xxhr300kuenTfNysqyzp07Vzh7u3btbObMmfbGG294VgS+Y8cOq1evXoWzS7IaNWpYSkqK3XHHHUHdKUawqIrCRW4VHQK4VfShITs7W6mpqZo4caKOO+64oL9dQ2G33XabevTooaFDh3odpUJOPPFEffjhhzrjjDN00kknqU6dOl5H8snFF1+sa6+9Vk2aNNEJJ5ygk046Se3bt/c6Vrluv/12nXXWWZKkunXraurUqZo2bZoGDx4cdF3VF/bss88qPT29YLx58+Y66qijdNRRR6lfv35B10V6vk8++UQDBgwoMu3II4/UUUcdpSlTpqhFixYeJSvbhg0b1KZNG2VlZRVMi4uLU2Jioo466iglJCQE5a2P9u7dqxYtWujXX38tMr1x48aaMmWKjjrqKA0aNCjo1nWz3NsAL126tNhzrVu31lFHHaWjjz5aPXv2DLp1/bjjjtPjjz9e4nOtWrUq+Nz79u0bVNmvuuoqXXHFFaU+37hxY6WlpSk9PV1Dhw4NmluUPfLIIzrxxBPLnKd+/fpKSUlRWlqaRo0apejo6AClK90bb7yhCRMmlDtfs2bNlJKSopSUFA0fPtzzWyCV9BteEuecjjzySCUnJyspKcnzW5V99dVX6tWrl0/zNmvWrMgtpb28neo333yjHj16+DRv/fr1lZCQoEmTJmncuHGebrNXJHejRo0KboU9ZswYT2/VsXTpUvXp08enedu2bVuwngwdOtTT76av30tJ6tOnT8Hn7fXtaw+87VtpIiIiNHTo0ILP2+v9i3feeUejR48ud764uLiCW2EnJCR4fjzktddeU0JCQrnzxcfHa/z48UpMTNTEiRM9v0Xmiy++qJSUlHLnq1evniZMmKCEhASNHz/e833oA/fVStOgQYOC3OPGjfP81uOLFy/W0UcfXe58DRs2LLjN3rhx4zy/TdGiRYt0zDHHlDtfvXr1NG7cuILcDRs2DEC60i1cuFDHHntsufPVrl1bY8aMKbgtoNe/J75+3tWrV9fIkSMLbmnVtm1bT7cHff1eRkVFaejQoQW3UO3evbun7eVLL72k5OTkcucLCwtTv379CnIfeeSRioyMDEDCkr311lsaO3asT/N26tSp4PbMw4cP93R7cMmSJRo0aJBP8zZq1Ehjx44tGBo1alTF6Ur33XffqXv37vLlnFlMTEzBOj527Fh1797ds+/mxo0b1a5dO+3fv9+n+YPlttI7duzQEUccUeqtFA+Uf3vU/M+8T58+ntxWOjs7Wz179tR3333n82uio6MLbkM+fvx4de3aNWDrS05Ojnbu3KmMjAxNnz5dr776aoVeHx4eriOPPLJgnenXr19AjmVlZmbq22+/VUZGhu677z7df//9lVpO48aNCz73sWPHql69en5OWtS+ffv01FNPKTMzU998841uvfXWg1pe165dC7Zdhg4dqpiYGD8lLSojI0MLFy5UZmZmwfDhhx9q0aJFB7Xc7t27F+QfMmSI348lZmZmFsudmZmprKwsrVy5Uvfee+9BLT//lsbjx4/XyJEj/da2ZmVl6cknn1RWVlZB3gMf79+/X9ddd50yMzMr/T61a9cu2G4fP368GjdufFC5c3Jy9Pjjjys7O7sgZ1nDc889px9++KHS7xcZGakhQ4YU3Fa6sr+dZqbHHnusIHdpfw+c9v333+ull16qdH4p9zswceJETZw4UYMGDarwduXjjz+uzMxMZWdnFxnyM5Y1bdu2bXrwwQcPKn/btm0Lbms8fPhwn4/vPvnkk8rIyCiWMScnp9i00qZv3bpVjz322EHl79atW0F+Xz7/hQsXav/+/aVmOnBaWePvvPOOvv7660pnj46O1ogRI4rc0ru83Dk5OQUZ8h+XNq2s8Y8++qjUW6X7Ii4uTmPGjCm4rXShWwoX8fjjj2vfvn3KyMhQZmamMjIyCobC4xV5bu3atdqxY0els+dr06ZNQfs1cuTIoLqldzDgVtGH6SB6XDxkXHbZZSbldr1/yimn2GeffeZ1JJ/k3+powoQJ9vnnn3sdx2eFbyEZGxtrM2bMsKVLl3odq1zr1q0r1o394MGD7b777vP8CqOy7Nq1y2rXrl3sKoUWLVrYrFmz7Ouvvw6qq6jNcm9x/ccff9gRRxxR4hUWrVq1sn/84x/2xRdfBFX2HTt22Nq1a8u88n7AgAE2b948W79+vddxC/z222/2xRdf2NixY0vNHRcXZ0cffbQ9/fTTQdNDw9atW+21116zqVOnlnlFTtOmTe3cc8+1jz76KCjWl/Xr19sDDzxg06dPL/dqorZt29oll1wSFN/TFStW2NVXX11ujwGFv6cXXXSRffrpp55m/+abb+z000+3448/3ueruOrXr2+nnnqqvfHGG571zPT5559bamqqpaSkVPgKtGOPPdYWL17sya3fP/roIxs6dKgNHz7c51u/5A/x8fF27LHH2qJFi+zPP/8MaO4PPvjAevXqZb179y7Wq6gvQ+vWrW3mzJn21ltvBXSdef/9961r167WtWtXi4iIqHDu2NhYS05OtnvuuSegV9x/8MEH1rlzZ+vcuXOlckdGRtqYMWPslltusVWrVgUs94cffnhQn3dUVJSNHz/eFixYYGvWrAlY7k8++cR69uxpPXv2rFTuGjVqWHp6uj344IP2888/Byz3F198Yf3797f+/ftXKnfDhg3t5JNPtmeffTag2+pfffWVDRkyxAYPHlyp35O2bdvaueeeG/Bb6Xz77bc2cuRIGzFiRKVy5/eQ+tFHHwW094jvv//exo0bZ2PGjKlwu+Ocs/79+9ucOXPs888/D2hvdcuWLbOEhAQbP358hXOHhYXZoEGDbO7cufbll18GdDtrxYoVlpycbAkJCZXO7UWvhitXrrTJkydbYmJihdft/N5RrrzyyoDfZm/VqlWWlpZmkyZNqnBuSda7d2/75z//GfBbo61Zs8bS0tIq9XlLubeVPO+88+z1118PaE9YB5vbq16w1q1bZ5MnT7aJEydW+Hsp5d654G9/+5s9/PDDAd0eXL9+vSUnJ9v48eOL3U7Xl6FGjRqWnJxst912W0Bvn7phwwZLSEiw0aNHV6q9jIyMtOHDh9vcuXPt008/DdhvysaNG23MmDE2bNgwi4yMrNQ63q1bN7vgggvs9ddfD9hxoU2bNtmQIUOsf//+Pt+W8MChYcOGdtxxxwV0Hd+8ebP16tXLOnfubDExMZXK7cVtpTdv3mxHHHGENWvWzKKioiqVW8rtSXLq1Kl27733BuT455YtW6x69eoHlTl/aNSokZ1wwgn22GOPVfm+z08//XTQeQsPtWrVsvT0dLvnnnuq9A5Av/zyi19zS7nbW3369LGLL764yrZbfv/9d7/nzh/ye0K7+eab/X5L3T///LPKcucPcXFxlpiYaP/+979txYoVfsm/e/fuKs+dP+Tf0vWGG2446GPo+/fvD1juwkPPnj1t9uzZlb5LQHZ2tie584emTZvajBkz7Omnn67wXSW8zJ0/1KxZ09LS0uzee+/1ud6jMsepqmqIjY21hIQEW7BgQbnHSSu7PVXVn/+UKVPs/vvvL3Vbzdfba3sxtG3b1s455xx7/fXXi92dpGbNmp7nK2vo1q2bzZo1y95//33LzMwMic+78BAREWHDhg2zuXPnBt1dKLzCraIP00EULh4SlixZYscdd1yxH7s+ffrYPffc48lJf1+sWLGioOAyf5gyZYr98MMPXkcr03vvvWdpaWklHkwdNGiQPf7440F1u518L7zwgnXp0qXUjbq4uDg74YQT7L///W9QNYyPPfaYxcbGlnswtUuXLjZ37tyAnkQvS0W622/btq1dfPHF9tVXX3le2PXYY49VaKNqwIABNn/+fE+7RjczW7hwYYVyV6tWzY455hh79tlnPb2lylNPPVXhDdkWLVrYBRdc4Gkx3TPPPFOpjfCOHTva5Zdfbt99950nuZ9//vlK70DkFxt7cSvsg8kt5R5wP+mkk+yVV14JaFf6L7zwwkHllnJvw5OUlGQPPvig/frrrwHJ/eKLLx50bin3oOP48ePtzjvvDMjtX1966SW/5JZyCzCPOeYYe+KJJ6r8lnavvPKK33JLudu/V155ZZVfGPDaa6/5NXfHjh3twgsvtHfffbfIQRZ/e+ONN/yau0uXLvaPf/yj2MEhf3vrrbf8ljm/gOfqq6+u8oKp//73v37LHRUVZWPHjrVbb721ym8r8v777/std+Gi0aq+Rf2HH37ot9z16tWz448/3hYuXFjlxTtLlizxW+5GjRrZySefbM8880yVF7t+8sknfsvdpEkTmzFjhj3zzDNVXvj/2Wef+fXznj59ui1atKjK28svvvjCb7nr1q1r06ZNs0ceeaTKCxoqcutIX35PJk+ebHfffXeVFjOYmX399dd+yx0TE2Pjxo2zefPm2XfffVel7c63337rt9yFb4f90UcfVWk7/8MPP/gtt/RXcVpV30J12bJlfs3dsmVLO+WUU2zx4sX222+/VVnulStX+jV3nTp1Cgq8qvK7uXr1ar/mjo6OttGjR9v1119vS5curbJjoevXr/drbumvW6dXZQHmpk2b/J47ELeV3rp1q99zS7IOHTrY2WefbS+99FKVnGupikK6/KFXr142a9Yse/vtt/1+TOi3336rstyFP/eXX37Zr5/79u3bqzS3lHtL0eTkZLv99tv9drHizp07qzx3/tC8eXObMWOGLV68+KC3c/fs2ROw3PlD69at7fTTTz+oWwJnZGQEPHf+0KRJEzvppJNs0aJFFd4m8LoAUMrdbk9NTbW77rqrQtsGlbmApSqG8PBwGzp0qM2dO9eWLl1a7vZ7MBUA5g9du3a1iy66yN55551Sz1cHYwFg/tC+fXubOXNmiYV0oVCQ1qtXL7v44ovtf//7X8F+VI0aNTzP5csQGxtriYmJdvvtt9vatWtL7FQoWIdatWrZUUcdZQ8//LDFx8d7nqcyQ7169Wz+/PmedUYSDChcPEwHUbh4SJg3b16ZP3I1atSwM844w77++muvoxaxYMGCEvOGhYXZ9OnTq+wAxsEqLXfhoWHDhnbppZcG1ffq9ttv97lhPOKII+yqq64Kih717rzzzgo37AMHDrQFCxYEtEedA919992V2ijp0KGDXXbZZZ4Vdt13332V3qAaOHCgZ0WM+b23VmaoXr26TZs2zZ577rliO0FVrSIFriUNXvXc+fjjjx/0BniXLl1szpw59uOPPwYsd0ULXEsbWrdubf/4xz/s888/D8jnvnjxYr/klnKv/jvuuOPs+eefr/Ki3coWuJY2hIeH26hRo+y2226zTZs2VVnugy0ULW3o37+/zZ07t8oKd/xVcFnS5z5y5Eh79dVXqyS3vwsXCw9Nmza1O++8s0p69nj99derLHedOnXs1ltvrZICgTfffLPKcjds2NAefPDBKjnp+/bbb1dZ7g4dOtjrr7/u98xmZu+++26V5R4+fLh98803VZL7gw8+qLLcJ5xwgm3durVKcn/00UdVkjkqKsouu+yyKms3/VkAWHioV6+e3XvvvVVWiPH5559XSe6OHTvayy+/XCWZzcyWLl3q98zOORs5cqR9/PHHVZbbn4V0+UO1atXs6KOPtu+//77KcvuzkC5/aNKkiZ155plVWsTt70I6SdapUye79NJLq/Q4y/Lly/2eu1+/fnbddddV6X7+qlWr/J574MCBNm/evCrNvXbtWr/n7t+/v91www1VelHuhg0b/J67S5cuduWVV9q3335bZbmropCuSZMmdvbZZ9t7771XZb0BVkUhXUxMjKWlpdkTTzxRZQX/VVVI17lzZ7vsssuq7K4cVVVIFxkZaRMnTrT777+/Si6qrMpCuri4OJs6daotWrTI70WXVV1Il38x60MPPeTXi0QCVUjXvXt3mzNnjt8uXAhkT3pRUVGWmJhoDzzwgG3btu2gcmdmZgYsd+H1Pj093R5//PEK956XLycnJ+C584eIiAgbP3683X333ZU6jhgMBYA9e/a0OXPmVOi4RTAVANarV89mzJhhL7/8crkd1QRjAWBERISNGTPGbr/99lLXoWAvAMxfhw48fxQqBYBdu3a1Sy+91JYtW2ZmZrVq1fI8k69DdHS0JSYm2r333mt169b1PE9l1p1q1ap5nsPXwTlngwcPtvnz51f5RZqhoCoKFyMEICAyMzMVFxenPXv2lPj8zp07deedd+rOO+/U4MGDdfPNN6tfv34BTlncTz/9pLCwMOXk5BSZnpOTo4ceekiPP/64TjvtNF1yySVq1KiRRymL27x5c7nz/Pzzz/rXv/6la6+9VqmpqTrzzDM1YsQIOecCkLBkv//+u8/zrlmzRpdffrmuuOIKpaWlaf78+WrRokUVpivdrl27KvyaJUuW6IcfftA777yjK664Qj169KiCZGXbu3dvpV63evVqvfPOO3LOacaMGQH/3Pfv31/p165cuVKffPKJatasqWnTpik2NtaPycq2b9++Sr92165deu+99xQVFaXw8HBNmjQpYN/Vyq4n+datW6eHH35YmzZt0mmnnaZhw4b5KVnZDja3JH3//fe65ZZb9PXXX+u8887TkCFD/JCsbAeznhS2du1a3X///Vq3bp1OPfVUjR492i/LLU1GRobflrVjxw599tlnql27tuLj4zVixAi/LftAWVlZfl1etWrVVKtWLUVFRSk7O9uvyy7M38uOiorS8OHDlZCQoMTERDVs2NCvy89nuRcl+U1kZKSGDx+uxMREJSYmql27dn5dflWJiorSqFGjlJSUpEmTJnm2/VJRcXFxGjdunJKSkqp0PfF3+1a7dm0lJCQoOTlZ48ePV3x8vF+Xn8/fuZs0aaLk5GQlJSVp1KhRiomJ8evy8/k7d+fOnZWcnKzk5GT1799f4eHhfl1+Pn/mDgsL0+DBgws+7w4dOvht2QfyZ+5q1appwoQJSk5OVkJCgurVq+e3ZR8oLCzMb8tq1qyZkpOTlZKSohEjRigqKspvyz6QP3P37dtXKSkpSk1NVZcuXap0W9xf35vo6GiNHTtWqampSkpKUoMGDfyy3NJERPjnMGu9evWUnJysyZMna8yYMVX2+5cvMjLSL8tp06aN0tPTlZaWpn79+vl1/SuJv747vXv3VlpamtLS0tSpUye/LLMs/sjtnNOgQYMKPu+WLVv6IVnZ/JV76NChBbmbNWvmh2Rli46O9styBg0apClTpgTs8/ZX7h49emjKlClKT08PyPrtr9zNmjXTlClTNGXKFA0cOLDKf0/8lTsuLk6JiYmaMmWKEhISVL16db8stzT+3Ibo3r17wbrSuXNnvy23JP7MHR0drfHjx2vKlClKSkpSrVq1/LbsA/l7m61GjRpKTk5Wenq6xo8fr7i4OL8uP19VbGvGxcVp4sSJmjJlihITE1WjRg2/v4e/tk9K0q9fP6Wnpys9PV1t27b167KrMrf012efnp6uxMRE1axZ0y/Lrar91gPFx8crKSlJaWlpflnvnXMKDw+v0mOQhcXGxmrChAlKS0vTpEmTDuo3JzIy0q/Hk32Rvw2ZlpamyZMnq3Xr1hVeRkREhN+PJ1dEy5YtNXnyZE2ePFmDBw/2ed2NiIg4qPNq/pL/HU5NTVViYqJq165d5vyB+m76KiwsTMOGDVNqaqpSUlLUqlWrEucLttz5nHMaPHhwQf4D24BgzZ2vVq1amjRpklJTUzV+/PiCbc2LL77Y42TlCw8P1/Dhw5WSkqLk5GS1atVKzZo10+7du72OVqr8zOnp6Zo8ebIaN27sdaRDGoWLQIDMmjVLn376qZ599tki051z6tSpk/r06aO+ffuqT58+6tmzp6pVq+ZR0qL++c9/6vnnn9f3339f4vOZmZm67bbbdP/992vWrFmaPXu23w72HIyrr75azjlde+21pc4TGxur7t27q2fPnurZs6diY2OVmZlZpSeOynP66aerYcOGOvXUU8ucr0OHDho4cKAGDRqkgQMHqlOnTp5uUE2dOlXNmjXTcccdV+ZOYnx8vIYNG6YRI0ZoxIgR6tGjh6e5J0yYoIcfflhnnXWWdu7cWea83bt31+jRozV69GgNGzasSg7I+Gro0KFasGCB5s6dq59++qnMeWNiYjRs2DCNGTNGY8eOVffu3av8gG9p+vbtqzlz5ujhhx/WmjVryp0/Pj5eI0eO1JgxYzRmzBi1b9/ek8Lizp0768wzz9R//vMfrVixwqfX1KhRQ8OHD9eYMWM0evToKj+5W5IWLVooLS1N33//vZYvX+7z62JiYjR06FCNHj1aY8aMUc+ePQP6Pa1Tp44GDBign376SevWravQa/Oz568zPXv2DNj6HhMTo1atWmn37t3atm1bhV9fu3ZtjRkzRuPGjdPYsWMDcjJMyt0OqVatmjIzMyt9sKxXr16aMGGCJkyYoIEDB1b5QVpJxS6oqIxmzZopMTFRCQkJGjVqVJWfVPKX+vXrKzExUZMmTdLYsWP9dpC6qjVo0ECJiYlKSkrS2LFjA/J5++N3t0mTJkpKSlJycrJGjhwZkIJ/f+Ru06ZNwYGgwYMH+62Ypiz+yN2rV6+Cz7t3794BaTsP9j3Cw8M1bNiwgqK/Nm3a+ClZ2fJzO+cqVRQdyKK/wsLDwxUVFSXnXKVOGuQXtOZ/J6u6oCtfRESEqlevLudcufsNJenZs2dBsWKvXr0Ctl0YGRmpWrVqKTw8XL///nuF1pWIiAiNGjWq4LckEAVG+aKjo1WvXj2Fh4dr27ZtFWr34+PjNWnSJE2ePLnIgfxAiI6OVqNGjRQREaEtW7ZUKHeLFi2KnIALxO92vpiYGDVp0kSRkZHatGlThU78du/evaDor2vXrgHd54mJiVGzZs0UFRWlDRs2VOgEav4J27S0tEqdsD0Ylc0dFhZW5KRJkyZNqjhpUbGxsWratKmio6O1ceNGZWZm+vS6sLAwjRgxQlOmTNHkyZMDftFzTEyMGjdurKioKG3dutXnfZ78Isv8YsWmTZtWcdKioqOjVb9+fUVFRWnbtm0V2lfr3bt3QdFfoC9siomJUXx8vKKjo7V9+/YK5W7ZsqWmTp2qKVOmBKT4ubDo6GhFR0crKipKe/furdDvSfXq1ZWUlKQpU6ZowoQJVVZ8VpL8Y/D5v70V3SbMX1fS09PVvn17v+crzcGeO4iNjVVCQoLfC7fK449zBrVr11ZKSoqmTJmiMWPGBOQ8ir+O0dSoUUNJSUlKT08PyLoeHh5e6X2dAznnNGTIkII2tCovnqyKQrqaNWsWfPZVVeTqnFNkZKTP7XtF1K9fX6mpqUpLS9OoUaP8fv4tMjKySgsX/V1smS8iIiIghYsREREaPXq0Jk+erJSUlIPeFgvkfkq+Ll26FBRb9uzZs1L7HF6eh6xbt66Sk5OVmpqqsWPHVujYohef94FiYmI0fvx4paamatKkST4dP/LqHGRJKnJBYzDlzte8efOCi0iHDRtWYrserAWX1atX14QJE5SSkqKEhATVqVOnyPOBOI9UUZGRkRozZozS09OVkpISsOOlkJy/e/2A/znnmknaKEkbN24M6MFi+M9LL72klJQUdejQoaBIsW/fvurZs2fQnig3M5144olauHChGjdurCZNmhQZDpxWu3ZtT3srLGzt2rXq2rVrQQ+X9evXV69evQqKFHv27Kn27dsHXWOek5OjIUOGaMmSJQXTqlevrv79+xcUKR555JGqW7euhylLNnv2bF1//fVFptWqVatIoWL37t2D7jN/5JFHdOKJJxab3rp164JCxVGjRlV57xwV9f7772v48OHFpjvn1Ldv34LCrUGDBgXshK4vVq5cqc6dO5d4EDgyMlKDBw8uyN6nT5+g2DGTpO3bt6tNmzal9ooaGRmpQYMGFRT79e3bNyg2urOzs9WrVy99++23pc4TFhamfv36FRRZDhw4MCjWmWOPPVYLFy4scx7nnPr06VOwzgwePNjz7Ndee61PV7hFRERo4MCBGjdunMaNG6c+ffp4+vv43HPPKS0tzad569atq3HjxmnChAkaN26cJz0um5mys7P1xRdfaMCAAT69Jjw8XIMHD1ZCQoISEhICfnJdyu3hcs+ePVq3bp169erlc0FDr169NGnSJCUmJgb8JJ6U26Po7t27tXXrVvXs2dPnA9ndu3cv6FWxf//+Ac+dmZmpXbt2adu2berevbvPRVK9evUqKEILVPFcYZmZmdqzZ4+2bdumrl27+pQ7/6r5/NwdO3YMeO7s7Gzt379fP//8szp27OjTAfjCvW8mJSWpefPmAUhaVE5OjrKzs7Vlyxa1b9/ep9w1a9bUxIkTlZycrIkTJ5Z7hXxVWr9+vdq2bevTCfamTZsWFP2NGDHC0zZz9erV6tChg08nmHr06FGQu0+fPp7uc65YsUKdOnUq9/c7IiKiyJXkgbogoTTLli1T586dyz3xW6NGDSUkJCg1NVUTJ06ssh5affXjjz+qS5cu5eZu2rSpUlNTlZqaquHDh3u+He5r7s6dOxcUK3rR3hzI1/Vk4MCBBbn93UtRZSxfvlydOnUqM3d+8Vz+Cc9AF/2VZPXq1Wrfvn2Zvyf5J5qnTJmilJQU1a9fP4AJS+ZLuxOMubds2aLWrVuX2c7nF4dOnTrVkyLLkvz6669q0aJFuXdU6Nevn6ZOnar09HQdccQRAUpXuh07dqhFixb6888/y5zviCOOKChW9LqNl3LvANG6detyLxKuWbNmQfHZuHHjPNumyt8vds6pc+fOPl1se+SRRxYUKwa6cDufmem3335TVFSUxo8fr48//rjc11SvXl2TJk1Senq6Jk6c6FmnDz/88IOioqJ0wQUX6MUXX/TpNfXr19fkyZOVnp6ukSNHerKd8p///EeRkZF6+OGH9dBDD/n8uvxCy/T09ID0An2gu+66SxEREfr666912223Vei14eHhBYXzqampAf1NP/fccyXl3jXprrvuqtQy6tatq9TUVKWnp2vUqFEBKXKdOXOmzEyRkZGKjIzU1q1b9cgjj1RqWc2aNSu4SGTIkCFVeszzvPPOU3Z2tiIiIgqyR0REaOfOnZo/f36lltmgQYOCYsuRI0dWSWcn5513nrKysgry5g/54+Hh4brmmmvKbUtLEhcXV9AzZGJiol97oz3//POVmZlZJHPhITw8vODxc889p/fff79S7zNgwICCfQ5/XIhxwQUXaP/+/UUylvU3PDxcy5cv1x133FGp98u/MC01NVVDhgyp9HmuCy+8UPv27SvIlD8UzlnatD///FOXXHJJpd63du3aSkpKUmpqqsaNG1fhdveiiy7Snj17CrKEhYUVy1vetG3btmnOnDmVyl9az4TlmTVrlnbt2lVivsLjvjz3zDPP6D//+U+l8nfr1q3gGIcvF7/Onj1bO3fuVFhYWMGQn+XAx+WNh4eH691339UzzzxTqeyNGjUqKNQt74LjK664Qtu3b1dUVJQiIyMVFRV10I/zO6GpiJiYGE2YMEHp6ekH3Zvu4WLTpk2Fj+M3N7NNB71Qf9xvmqFqB0nNlHeP8I0bNxpC07Jly2zHjh1ex6iQrKws27Ztm2VnZ3sdpcLuuecemzt3rr3yyiu2ZcsWy8nJ8TqSTx5++GFr27atHX/88XbnnXfaV199ZVlZWV7HKtfatWstKirKatWqZcnJyTZ//nxbunRp0Gffu3evtWjRwiRZ/fr17eijj7Z77rnHVq9e7XW0MuXk5NiAAQMsv21o27atnX766fb000/bb7/95nW8Mh111FEFuSVZz5497cILL7TXX3/ddu3a5XW8Us2aNatIbuec9erVK+izP/TQQ0Vy5w+dO3e2s88+21544QXbvn271zGL+fzzz0vMLcnatGljp512mj311FNBt77/9ttvFh8fX2r2du3a2ZlnnmkvvPCC/fnnn17HLZCVlWWdO3cuNXdYWJgNHDjQ5syZY5988klQ/bZPmjSp1NySrEGDBnbiiSfa4sWL7Y8//vA6boEZM2aUmTs2NtaSkpLs7rvvDqrt/3PPPbfM3FFRUTZ+/Hi77bbbbN26dV7HLfCPf/yjzNzR0dE2ceJEu/POO4Pq877ooovKzF2tWjVLS0uzhx56yH755Rev4xY477zzysxdt25dO+GEE+zpp58Oqv2js846q8zcrVq1snPOOcfeeust279/v9dxC5x22mll5u7du7ddeeWVtnTp0qDaJzr55JNLzRwREWFjxoyxf//730H1W2JmduKJJ5aau2bNmnb00UfbE088EVRtjpnZ8ccfX2ruJk2a2BlnnGGvv/667du3z+uoRZSVu3PnznbxxRfbp59+GnTHLMrKfeSRR9p1111ny5cv9zpmMaWt3+Hh4TZ69Gi7/fbbbdOmTV7HLKa035PIyEhLSEiw++67z7Zt2+Z1zGJK+/2Ojo62pKQke+ihh+z333/3OmYx55xzTqnbgYmJifbggw8G3X6aWenbVeHh4TZ27Fi7++677eeff/Y6ZjGXX355qb8nAwYMsHnz5gVdW2lmdsMNN5Sau127dnbxxRcH3baJmdndd99dau5atWrZ9OnT7ZVXXgm69vLpp58uc3tw8ODBdvPNN9v69eu9jlrE//73vzJz16xZ044//nh7/vnnbc+ePV7HLbBhwwaLiIgoM3vjxo3trLPOsv/+979Bcwxl37591qRJkzJzS7nHyE899VR74403LCMjw+vYZmaWkJBQbu7CbdH9999vv/76q9ex7aabbvIpd+H15swzz7R33nnHMjMzvY5f7r7mgUPbtm1t1qxZ9sknnwTF9vmcOXMqlL9FixZ27rnn2vvvvx8U39t33nmnQvlr1aplJ5xwgj333HO2e/dur+Pb7t27rX79+j7nj4iIsLFjx9odd9xhmzdv9jq+mZlNnTq1Qv8HXbt2tcsuu8y++OKLoNjGueKKKyqUv3nz5nb22Wfb22+/HRS//xdeeGHI5t+zZ481bNjQ5+xhYWE2bNgwmz9/vufnp7Ozs61r164V+uw7depks2fPto8//tjT3/+VK1daWFiYT5mrV69uRx99tC1evNh27tzpWeZQtXHjxsKfZzPzR02cPxbCQOEiAP8IpoMwFbF06dKQKFQ80P/+9z+bN2+eff3110GxM+2r9957z44++mi79957be3atV7H8dmnn35qrVu3tlNOOcUWLlwYVEUWZdmwYYPFxMQUFMwtXrw4KE98HWjv3r3WvHlzk2TNmjWz6dOn26OPPho0O/5lGTNmTMFGb926de2oo46ye++919asWeN1tDIdWBxVq1YtS09Pt7vvvjuosz/66KMlHiw96aSTbNGiRUF54tHMbMmSJcVyO+fsyCOPtDlz5thnn30WlL/tq1atsvDw8BIPkP7973+3V199NSi3B7Zu3WoxMTHFctevX9+mT59uzzzzTFAVoeX75ZdfLC4ursTcJ510kj377LNBeXCitNxNmza1M844w1577TXbu3ev1zGL+emnnyw2NrZY7g4dOthFF11kH3zwQVBuL27evNmio6OL5T7yyCNt7ty59u233wbFQecDrV+/3iIjI4tkjoqKsgkTJtgdd9xhGzZs8DpiidasWVPsZG98fLxNmzbNFi5cGJQXVZiZrV69utjvd7NmzezMM8+0N998M6gKWgsrqd3p0qVL0Bb95Ssp98CBA+36668PyqK/fAeuJ/mFuMFa9Jdv7dq1RXLnF889+OCDQXHivzQbNmwo8jsYGxtraWlp9thjjwXtb4mZ2ZYtWywqKqpI7vT0dHvyySeDcnsq37Zt24q08zExMZaamhr0n/fvv/9u1atXL8gdGRlpEydODJrCltLs3LnT6tSpU2RfZ8iQIXbLLbcEbRtvlnssolGjRsVOZl5++eX2zTffBOU2lVnuBX1t2rQpkrtu3bp2yimn2Ouvvx607XxOTo717du32MnvESNG2IIFC4K67UlKSiq2/V2nTh076aSTgrJANN/MmTNLPAHeokULO++88+zDDz8Myu2re++9t9ST902aNLGzzjrL3n333aDbX/vqq6/KLDzIb/sff/zxoGqL9u3bZ40bNy63cKJVq1Z2wQUX2EcffRRU683mzZuLbKuUNnTr1s2uvPLKoPt9P7ANLW3o1KmTXXLJJUFTaFbY6NGjy83fuHFjO+OMM+w///mP54VaB7rlllvKzR8XF2dpaWn26KOPBt0FOz/88IM558rM75yzQYMG2Y033mgrV670OnIRf/75p9WqVavc/4OuXbvapZdeap9//nlQfQe2bdtm1apV8+k3KJiKRfP9+9//Ljd7TEyMJScn2wMPPBBU50qfffbZcrM752zw4MF244032ooVK7yOXOD//u//ysydX+D9wgsvBOX5l1BC4eJhOojCRQDAIWD37t1BtfPgqxUrVoRUgWi+JUuW2B133GHLly8Pqc/9gw8+sLFjx9oNN9xgS5cuDaqDdmXZtGmT1ahRwwYPHmxz5syxJUuWBMXV0eXJyMiwI444wiIiImzEiBF23XXX2VdffRUS68zYsWNNktWuXduOOeYYe+SRR4JqJ78006dPLziZNHjwYLvmmmuC7gBvSQr3ote1a1f75z//aR999FHQndQ4UOEec7t06WKzZ8+2Dz/8MKRyB2uPeSW54IILCtbvYcOG2U033RTUBUb58nuPio2NteTkZLv33ntt69atXscq19///veCk+rB2ItlaU499dSCk3QzZ84MiqvhfXHKKaeYlNtj+OWXXx50B8ZLM2PGDAsLC7OhQ4faTTfdFHQnVEpzyimnWGRkpE2YMMHuvvtu27Jli9eRfHLaaadZbGysTZ482R555JGgOwFXmjPPPLOgx4FFixaFxG+JWW7xSI0aNWzatGn2zDPPBG1P+Af6xz/+YTVq1LBjjz3WnnnmmaDoFccXl112mcXFxdnUqVNt0aJFQXnxR0nmzp1rUVFRlpSUZA8//HDIfC9vvvlmc87Z8OHDbcGCBSFxEaJZ7l1w8k8kz5kzx77//nuvI/lk0aJFJuX22n/66afbW2+9FRL79G+99ZZJub2Hjhkzxu666y776aefvI5Vrm+//bZgfye/h78333wz6LcJt23bVuQCszZt2tisWbPs008/DertwqysLGvXrl2Rk/ctW7YMyoK5Ax1zzDHFCg/y29Cnn346aNv+snpw7dixY9AWy+XL37cvaejfv79df/31QVWscqCyervs06ePzZ0713744QevY5bq448/LjV/mzZt7KKLLgrq7+6+ffusadOmJeavU6eOnXjiifb8888H9TZwab3oF95HDebjRtdee225BWfBfGzgkksuKTF//rGNefPm2apVq7yOWaJ9+/ZZs2bNylz/n3vuuaBsv3JycqxXr16lFlomJSXZ/fffH5Q91ZdWcF+/fn37v//7v6C+ECkUVUXhYoQAAAACIC4uzusIldKuXTuvI1TKgAEDNGDAAK9jVNjgwYP15ptveh2jwsLCwrRx40bFx8d7HaVC1q9fr/nz52vUqFGqUaOG13F8tn79evXt21dXXHGFjjzySEVEhMZuzc8//6zMzEw9+uijmjBhgurVq+d1JJ/8/vvvWrNmjf79738rKSlJrVq18jqST/7880/9+OOPuuWWW5SUlKQjjjjC60g+2blzp9asWaM777xTkyZNUrNmzbyO5JNdu3bpt99+06OPPqqJEyeqbt26Xkfyye7du2VmevHFFzV69OiQ2V7Zs2ePateurffff18DBw4Mmd/Bffv2qW3btvrmm2/UtWtXOee8juSTjIwM9e3bV5deeqlatmzpdRyfZWVlacSIEbr22mtVv359r+P4LDs7WwkJCZo3b55q1qzpdRyf5eTkKDk5WfPnzw+Z3xIp96L2yZMn66abblJMTIzXcXxmZkpNTdX111+v6Ohor+NUSGJioubMmRNSn7ckjRw5UrNnzw6p9VuS+vXrp23btoXU74kktWnTRlu2bFGjRo28jlIhNWvW1LJly9ShQwevo1TIjh079N///ldDhw5VeHi413F8tnTpUt13331KSUkJmf1LSXr00Ud15plnasqUKSH1mS9YsEAtW7ZUenq6pkyZou7du4fE9uwzzzyjlStXqn379kpPT1d6erp69+4d9NlXrVqlxYsXS5Jq166tlJQUpaena8yYMUHdhmZlZemGG24oMq1nz54Fn32nTp08Suab33//XXfddVfBeFhYmIYOHar09HSlpqaqefPmHqYr3759+zRv3ryCceechgwZorS0NE2ePDkk9ueuueaaIuM9evTQ5MmTlZaWFhL70Y888og2b95cMN60aVNNnjxZkydP1rBhw4L++MWaNWv0xBNPFIxXr15dCQkJmjx5shISEoJ+m3LPnj2aP39+wXhUVJTGjBmj1NRUJScnq2HDhh6mK9/27du1YMGCgvGYmBiNGzdOKSkpmjRpkho0aOBhuvI9/PDD2rRpU8F4q1atlJqaqpSUFA0ZMiSo1/9XXnlFX375ZcF43bp1lZSUpJSUFI0dO1bVqlXzMF3Z5s+fr4yMDElS48aNlZaWpvT0dA0dOjSoP3P8xVluj34IYs65ZpI2StLGjRtD5sQVAAAAAAAAAAAAkM/Mgr7wpiSbN29W06ZNvY5RYc8884w6dOigLl26hNTnfsUVV+jnn39Wenq6RowYocjISK8j+eTJJ5/UtGnTNGDAAKWnpystLS1kLqSUpDlz5mju3LkaPXq00tPTlZycHPSFQoXdfffdOvvsszVq1CilpaUpJSUl6Au1Cvv222/Vs2dPDRgwoKDYMpTWn6ysLHXo0EFRUVEFxYp9+/YNqd+e0047Tc8//7xSUlKUmpqq0aNHh9SFUrfeeqsuv/xyJSYmavLkyZowYUJIdVhw9dVX6+abb1ZSUpJSU1M1bty4oC6YKywzM1MdOnRQrVq1CtafULnIwcw0YMAA/frrrwWFloMGDQqJor/ff/9dw4cP17hx45Senq4BAwYoLCzM61iHtE2bNhW+kKG5mW0qa35fULgYAihcBAAAAAAAAAAAAHA4CNUC17feeksdO3YM2XO5r732mgYOHKhatWp5HaVSPvjgA3Xr1i1k83///feqU6eOGjdu7HWUSvn111+1bdu2oO9ZtDRmps8//1y9e/cOmd6AD/T111+rU6dOioqK8jpKpXz11Vfq0qVLyBSrF/bHH39ox44dIdGz64F2796ttWvXhtxFDpK0f/9+RUVFhVzuUEbh4mGKwkUAAAAAAAAAAAAAAAAAgBeqonCRPjIBAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAAAChsJFAAAAAAAAAAAAAAAAAAAQMBQuAgAAAAAAAAAAAAAAAACAgKFwEQAAAAAAAAAAAAAAAAAABAyFiwAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAAAAAFD4SIAAAAAAAAAAAAAAAAAAAgYChcBAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAAAChsJFAAAAAAAAAAAAAAAAAAAQMBQuAgAAAAAAAAAAAAAAAACAgKFwEQAAAAAAAAAAAAAAAAAABAyFiwAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAAAAAFD4SIAAAAAAAAAAAAAAAAAAAgYChcBAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAAAChsJFAAAAAAAAAAAAAAAAAAAQMBQuAgAAAAAAAAAAAAAAAACAgKFwEQAAAAAAAAAAAAAAAAAABAyFiwAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAAAAAFD4SIAAAAAAAAAAAAAAAAAAAgYChcBAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAAAC5pAoXHTOtXTOzXPOLXPO7XbO/e6c+8w5d5FzLs6P7zPROfecc26Tc25/3t/nnHMT/fUeAAAAAAAAAAAAAAAAAAAcyiK8DnCwnHNJkh6TVLPQ5DhJffOGU5xziWa26iDeI0zSPZJmHPBU07wh1Tl3n6TTzCynsu8DAAAAAAAAAAAAAAAAAMChLqR7XHTO9ZK0SLlFi7skXSJpkKTRku7Nm629pFecczUO4q3m6q+ixS8lHSupf97fL/OmnyLpXwfxHgAAAAAAAAAAAAAAAAAAHPJCvcfFWyXFSsqSNM7MlhR67h3n3EpJNyi3ePECSVdW9A2cc+0lXZg3+rmkYWa2N2/8M+fci5LeU27vjhc55x44mN4dAQAAAAAAAAAAAAAAAAA4lIVsj4vOuf6ShuaN3n9A0WK+eZJ+zHs80zkXWYm3Old/FXieXahoUZJkZnsknZ03GiHpvEq8BwAAAAAAAAAAAAAAAAAAh4WQLVyUlFro8YMlzWBmOZIeyRutJWlkRd7AOeckpeSNLjOzj0t5n48lLc8bTcl7HQAAAAAAAAAAAAAAAAAAOEAoFy4Oyfu7W9IXZcz3XqHHgyv4Hq0lNSlhOWW9T1NJrSr4PjjE5eTk6Msvv/Q6RqWZmdcRKiQjI8PrCAAAAAAAAABw2Am1Y8n5QjF3Tk6OcnJyvI5RYdnZ2crOzvY6RoVlZmaGZO79+/crKyvL6xgVRu7AyszMDMnc2dnZIZnbzELy90RSSLY7wKEsFH9LzCwkt71RdUK5cLFT3t9VZlbWFsmyEl7jq86lLMff74ND2KpVqzR8+HD17t1bgwcP1uuvv+51JJ+89957atasmWrWrKnIyEh98MEHXkfyyZo1a1SvXj3FxcWpdevWevjhh72O5JMff/xRNWvWVM2aNVW3bl0tXrzY60g+Wb58eZHcTz75pNeRfLJixQrVqlVLNWvWVO3atfXEE094Hcknq1atKpL70Ucf9TqST1avXq3atWsX5A6V7+XatWtVp06dgtwPPPCA15F8sn79etWtW1c1atRQrVq1dN9993kdyScbNmxQvXr1VKNGDcXHx+uee+7xOpJPNm7cqPr166tmzZqKj4/XXXfd5XUkn2zevFkNGzYs+A2/4447vI7kky1btqhRo0YFuRcsWOB1JJ/89NNPaty4cUHuW2+91etIPvnll1/UpEmTgtzz58/3OpJPtm3bpqZNmxbkvummm7yO5JPffvtNzZs3L8h93XXXeR3JJ3/88UdB7vj4eM2dO9frSD7Zvn27WrZsWZD7qquu8jqST/7880+1atWqIPcVV1zhdSSf7NixQ61bty5Yvy+77DKvI/lk586datOmTUHuSy65xOtIPtm1a5fatWun+Ph41axZUxdffLHXkXyye/dutW/fXvHx8apRo4Zmz57tdSSf7N69Wx06dFB8fLyqVaumiy66yOtIPtmzZ486d+6sWrVqKS4uThdeeKHXkXyyd+/egtyxsbE6//zzvY7kk71796pbt26qXbu2YmJiQib3vn371L17d9WuXVvR0dE699xzvY7kk/3796tXr16qU6eOoqKidM4553gdySf79+9X7969VbduXUVFRemss87yOpJPMjIy1LdvX9WtW1eRkZEhlbt///6qV6+eIiIidOaZZ3odyScZGRkaMGCA6tWrp8jISJ199tleR/JJRkaGBg0apAYNGoTU9zIjI0NDhw5Vw4YNFR0dHVK5hw8froYNGyo2NlYzZ870OpJPMjMzNXLkSDVq1EixsbEhs35nZWUVyX3GGWd4Hckn2dnZGj16tBo1aqTo6GjNmDHD60g+ycnJ0dixY9WwYUNFRUXpxBNP9DqST8xM48ePV8OGDRUZGamjjz7a60g+mzhxoho0aKDIyEhNnjzZ6zgVYmbauHGj1zEqzMz09NNPa/369V5HqRAz0zXXXKMnn3xSP//8s9dxfGZmOuuss3TRRRfpzTff1J49e7yO5LO///3vmjp1qh544AFt2bLF6zg+O/HEE3X88cfrvvvu06pVqyhkPNzlV7OG0iApRpLlDS/7MP+uvHmXVPB9Ti/0PlPKmXdKoXlPq+D7NCtn6Ju/7I0bNxpCx6+//mpxcXFWaN0wSbZjxw6vo5Vr6NChRTK3a9fO9uzZ43WsMmVlZdmgQYOK5G7durVlZWV5Ha1cI0aMKJZ7//79Xscq1+jRo4vkbtmype3bt8/rWOUaN25ckdzNmzcP+vXbzGzixIlFcjdt2tR2797tdaxyJSYmFsnduHFj27Vrl9exypWcnFwkd6NGjWznzp1exypXWlpakdwNGjQIiXZn6tSpRXLXr1/ftm/f7nWsch199NFFctetW9f++OMPr2OVa9q0aUVy16lTx3777TevY5XrhBNOKJK7Vq1atm3bNq9jlWv69OlFcsfHx9svv/zidaxyzZgxo0jumjVr2k8//eR1rHKdeuqpRXLXqFHDtm7d6nWscp1xxhlFclerVs22bNnidaxynXnmmUVyx8XF2aZNm7yOVa5zzjmnSO7Y2FjbsGGD17HKdd555xXJHRMTY+vWrfM6VrkuvPDCIrmjo6NtzZo1Xscq16xZs4rkjoqKspUrV3odq1wXX3xxsdwrVqzwOla5LrvssiK5IyMj7ccff/Q6VrmuvPLKIrkjIiLsu+++8zpWua6++upiub/55huvY5XrmmuuKZI7PDzcvvzyS69jlev6668vlvuLL77wOla5brrppiK5w8LC7JNPPvE6VrluvvnmYrmXLFnidaxyLViwoEhu55x98MEHXscq1x133FEs97vvvut1rHLdddddxXK//fbbXscq17333lss95tvvul1rHI98MADxc6TvPrqq17HKtdDDz1ULPfzzz/vdaxyPfroo8VyP/30017HKtcTTzxRLPfChQu9jlWuhQsXFsv9xBNPeB2rXE899VSx3I899pjXscr13HPPFcv9+OOPex2rXC+88EKx3I888ojXscr1yiuvFMv98MMPex2rQo455hhr0aKF/e1vf7O77rrLvv/+e8vJyfE6Vrnyj121atXKTjzxRHvwwQdt7dq1Xscq1xVXXFGwrnTp0sXOOecce/7554P+vMmNN95Y5DjKqFGj7JprrrFPP/00qGsNbr/99iLfzx49etjs2bPtvffes4yMDK/jlerAfc2mTZvatGnT7J577rHly5eHxHf0cLVx48bC/3fNzB81gP5YSKAHSfULfRALfZj/57x5v63g+1xU6H0mlDPvxELzXlDB9ynW4Jc2ULgYWnbs2FHi/2Own1h6//33S8x9//33ex2tTO+8806JuZ988kmvo5Xp3XffLTH3vffe63W0Mn3wwQcl5r7rrru8jlamjz76qMTct912m9fRyvTJJ5+UmPvWW2/1OlqZPv/88xJzz58/3+toZfryyy9LzH3jjTd6Ha1M33zzTYm5r7/+eq+jlen7778vMfc111zjdbQy/fjjjyXmvvrqq72OVqYVK1aUmPuKK67wOlqZVq1aZc65YrkvvfRSr6OVae3atSXm/uc//+l1tDKtX7/ewsLCiuX+xz/+4XW0Mm3atKnE3BdeeKHX0cq0ZcsWCw8PL5b7/PPP9zpamX766acSc8+cOdPraGX65ZdfLCIioljus846y+toZfr1118tMjKyWO4zzjjD62hl+uOPPywqKqpY7lNPPdXraGX6888/LTo6uljuk08+2etoZdqxY4fFxMQUyz19+nSvo5Vp165dJV74efzxx3sdrUy7d++2atWqFct97LHHeh2tTHv37rWaNWsWy33UUUd5Ha1M+/bts1q1ahXLPWXKFK+jlWn//v1Wp06dYrlTU1O9jlamjIwMq1evXrHcSUlJXkcrU1ZWljVs2LBY7sTERK+jlSkrK8uaNGlSLPf48eO9jlamnJwca968ebHcY8aM8TpamXJycqxVq1bFco8aNcrraOVq27ZtsdwjRozwOla5OnXqVCz3sGHDvI5Vrh49ehTLPWTIEK9jlatfv37Fcg8aNMjrWOUaOHBgsdz9+/f3Ola5DuxQQ5L17dvX61jlKil3z549vY5VrsGDBxfL3a1bN69jlauk3J06dfI6VrmGDBlSLHe7du28jlUhBx6TqFevnl111VW2d+9er6OVKTY2tthn37x5c7vjjjuCupCuevXqxXJLss6dO9vLL7/sdbxSxcfHl5jbOWeTJ08O2gtw69atW2JuSdawYUN76KGHLDs72+uYxdSvX7/EzOHh4ZaQkGDvvPOO1xFRiqooXAzVW0XHFHqc4cP8+/P+xlbh++wv9Lii74NDVI0aNRQZGVls+h9//OFBGt9169ZNTZo0KTItPj5eaWlpHiXyzbBhw9SmTZsi0+Li4tS7d2+PEvlm0KBBxXJXr15dEyZM8CiRb4488ki1a9euyLS4uDhNnDjRo0S+6devn9q3b19kWmxsrCZNmuRRIt/07t1bHTt2LDItJiZGSUlJHiXyTc+ePdWlS5ci06Kjo5WcnOxRIt90795d3bp1KzItOjpaqamp3gTyUZcuXdSjR48i06KiooI+d8eOHdWrV68i0yIjI4O+3enQoUOxNiYiIiLoc7dt21b9+vUrMi0iIkJTp071KJFvjjjiCPXv37/ItPDwcB111FEeJfJNq1atNHDgwCLTwsLCgv52MC1atNCgQYOKTAuF3E2bNtXQoUOLTHPOBX3uxo0ba8SIEUWmOeeCfv1u2LChRo0aVWx6sOeuX7++xowZU2x6sK8ndevW1dixY4tND/bctWrV0vjx44tNP+aYYzxI47uaNWuWuG8zbdo0D9L4rkaNGkpISCg2PdhzV6tWLSRzx8XFKTExsdj04447zoM0vouJiSlx/T7++OM9SOO76OjokMwdFRVVYu5gv61hZGRkSOYODw8vsd0Jhdzjxo0rNv2kk07yII3vnHMlbp+EQu6StgdPPvlkD9JUzIH7DVJo5B48eHCxaaGQu2/fvsWmhULu7t27F5sW7N9LSeratWuxaaHweR94PFYKjdyhun4feJxNCo3cw4cPLzYtFHKPHj262LRQyF3YjBkzFB0draOOOkovvfSStmzZossuu0wxMTHlv9hD+bedr1Onjk4//XS9//77Wrdunc444wyFh4d7nK50f//73wset27dWrNnz9aXX36p7777rsT952Bx+umnFzx2zmnYsGFasGCBNm/erGeffVatW7f2MF3pDvw+1qxZU9OmTdPixYu1cuVKnXjiiQoLC76ysLPPPrvI+ODBg3X77bdr69ateuWVVzRy5EiPksET/qh+DPSgQ6/HRW4VfQj717/+VXA1eLVq1WzBggUh0bXtiy++WKS6Pdh7Ycp35513Fsl95513eh3JJ4sWLSqS+4YbbvA6kk+efvrpIrmDvXe0fM8//3yR3MHeO1q+l156qUjuK6+80utIPnn11VeL5A723tHyvfHGG0VyB3vvaPneeuutIrlnzZrldSSfHNj77AUXXOB1JJ8c2PtssPcylu/A3meDvZexfB9//HGR3guDvZexfJ9//nmR3MHey1i+L774okjvhTNmzPA6kk++/PLLIrmDvZexfN98802R3gtPOOEEryP55LvvviuS+29/+5vXkXzyww8/FOl18ZhjjvE6kk+WLVtWpNfFqVOneh3JJytWrCjSw0F6errXkXyyevXqIr0upqSkeB3JJ2vXri3S62Kw9zKWb/369UV6XQz2Xsbybdq0qUiPEsHey1i+LVu2FOl1MRR66zLL7e23cE8YodDrlVlub7+Fe10cMGCA15F8sm3btiK9LoZC71FmZr/99ps1aNCgIHfPnj1D4njs77//bo0aNSrI3a1bt5DIvX379iK9RXbq1Ckoe3U50J9//lmkt8j27dsHde9F+Xbs2FGkt8jWrVtbZmam17HKtWvXLmvXrl2RHqOC+faF+Xbv3m0dO3YsyN2oUSPbv3+/17HKtWfPHuvSpUtB7rp169qePXu8jlWuvXv3Wvfu3Qty165d23bv3u11rHLt27evSO+ctWrVsl27dnkdq1z79u2znj17hlzu/fv3W69evYqsJ6GQOyMjo0juOnXq2M6dO72OVa5QzV3YO++8Y9u3b/c6RoXddddd9tJLL4VEu1PYZZddZueff759+umnIbEtm+/iiy+2YcOG2YIFC2zLli1ex/HZ3LlzrVGjRnbaaafZ66+/HjLry/z5861Lly52zTXXBG1vlihZVfS46Cy3cC6kOOdiJO3NG33FzMrsJss5t0tSNUkfm1nxyzBKf93pku7MG51qZk+XMe8USU/ljZ5uZnf7+j4+5GgmaaMkbdy4Uc2aNfPXohEgO3bs0AMPPKCkpKRiPesFsw8++EBRUVGKj49X69atFR0d7XWkcmVnZ2vjxo365Zdf9Mcff5R4hXWw+uqrr5SZmanMzEz169evxN46g9HXX3+tjIwMZWZmqm/fvoqKivI6kk/yP++srCz17t07JNZv6a/POzs7W7169QqZ3Pmfd3Z2tnr27Bn0V7LlK/x59+jRQ7GxodGpcqjm/uabb7R//37l5OSoW7duiouL8zqST/Jzm5m6dOmiatWqeR3JJ/m5JalTp06qXr26x4l8880332jfvn2SpM6dO4dM7m+//bYgd8eOHVWjRg2PE/nm22+/1d69ubteHTt2VM2aNT1O5JvvvvtOe/bskRRaub///nvt2bNHZqYOHTooPj7e60g++eGHHwpyt2/fPmRy//jjj9q1a1dB7lq1ankdySeFc7dr1061a9f2OpJPQjX3smXLtGPHDkm5vRbXqVPH40S+yc8dFhamI444IuRyh4eHq1WrVqpbt67XkXyybNky/fnnn4qIiAjJ3FFRUWrRokVI5d6+fbuio6PVvHlz1atXz+tIPlm2bJn++OMPxcbGqnnz5iHzeS9fvly//fabqlWrpmbNmoVU7l9//VXVq1dX06ZNQ2Y9WbFihbZt26YaNWqoadOmIfN5r1ixQr/88ovi4+PVpEmTkMm9cuVK/fTTT6pVq1ZI5V61apU2b96sunXrqmnTpiGzXbV69Wpt2LBBDRs2VNOmTUNmv2HNmjVavXq1mjZtqubNm4fM/vy6deu0fPlyNW/eXC1atAiZ4yfr16/Xjz/+qJYtW6pFixYhc5xtw4YN+uGHH9SiRYuQ+rw3bNigZcuWFazfoXL8ZMOGDVqxYoUaNWoUUr+DGzdu1MqVK1W/fn01btw4ZLZPNm7cqNWrV6tOnTpq1KiRGjRo4HUkBDEzk3PO6xgVtmPHjpD5DSxs+fLlateuXVD2qliWrVu3qlGjRiG5rhzuNm3apObNm+ePNjezTQe7zJAsXJQk59yvkupK+trMepYxX21Jv+eNPmVmPt+zyjk3SdJLeaPnmdktZcx7nqT5eaOJZvaqr+/jQw4KFwEAAAAAAAAAAAAAAAAAAVcVhYuhVXZb1A95f9s65yLKmK9jocc/VvI9DlyOv98HAAAAAAAAAAAAAAAAAIDDQigXLv4v7281SX3KmG94occfVvA91kraUsJySjIs7+9mSesq+D4AAAAAAAAAAAAAAAAAABwWQrlw8flCj08qaQbnXJikE/JGt0v6b0XewHLvo/1C3mhH59yAUt5ngP7qcfEFC9X7bwMAAAAAAAAAAAAAAAAAUMVCtnDRzD6V9EHe6Azn3MASZrtAUqe8x7eaWWbhJ51zI5xzljc8VMpb3SIpO+/xAudc7AHLiJW0IG80K29+AAAAAAAAAAAAAAAAAABQgpAtXMwzU9JeSRGS3nTO/dM5N8A5N9I5d7ekG/LmWyFpXmXewMxWSLoxb7SvpA+dc0c75/o6545W7u2n++Y9f6OZrazsPwYAAAAAAAAAAAAAAAAAgENdhNcBDoaZfZlXPPiYpJqSrilhthWSEs1s50G81SWSGkg6WVIvSQtLmOd+SZcexHsAAAAAAAAAAAAAAAAAAHDIC/UeF2VmL0nqLulm5RYp7pG0XdLnkmZJ6mVmqw7yPXLMbIakREkvSNoiKSPv7wuSEszsFDPLOZj3AQAAAAAAAAAAAAAAAADgUOfMzOsMKIdzrpmkjZK0ceNGNWvWzONEAAAAAAAAAAAAAAAAAIDDwaZNm9S8efP80eZmtulglxnyPS4CAAAAAAAAAAAAAAAAAIDQQeEiAAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAABAwFC4CAAAAAAAAAAAAAAAAAAAAobCRQAAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAgIChcBEAAAAAAAAAAAAAAAAAAAQMhYsAAAAAAAAAAAAAAAAAACBgKFwEAAAAAAAAAAAAAAAAAAABQ+EiAAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAABAwFC4CAAAAAAAAAAAAAAAAAAAAobCRQAAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAgIChcBEAAAAAAAAAAAAAAAAAAAQMhYsAAAAAAAAAAAAAAAAAACBgKFwEAAAAAAAAAAAAAAAAAAABQ+EiAAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAABAwFC4CAAAAAAAAAAAAAAAAAAAAobCRQAAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAgIChcBEAAAAAAAAAAAAAAAAAAAQMhYsAAAAAAAAAAAAAAAAAACBgKFwEAAAAAAAAAAAAAAAAAAABQ+EiAAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAABAwFC4CAAAAAAAAAAAAAAAAAAAAobCRQAAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAgIChcBEAAAAAAAAAAAAAAAAAAAQMhYsAAAAAAAAAAAAAAAAAACBgKFwEAAAAAAAAAAAAAAAAAAABQ+EiAAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAABAwFC4CAAAAAAAAAAAAAAAAAAAAobCRQAAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAgIChcBEAAAAAAAAAAAAAAAAAAAQMhYsAAAAAAAAAAAAAAAAAACBgKFwEAAAAAAAAAAAAAAAAAAABQ+EiAAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAABAwFC4CAAAAAAAAAAAAAAAAAAAAobCRQAAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAgIChcBEAAAAAAAAAAAAAAAAAAAQMhYsAAAAAAAAAAAAAAAAAACBgKFwEAAAAAAAAAAAAAAAAAAABQ+EiAAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAABAwFC4CAAAAAAAAAAAAAAAAAAAAobCRQAAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAgIChcBEAAAAAAAAAAAAAAAAAAAQMhYsAAAAAAAAAAAAAAAAAACBgKFwEAAAAAAAAAAAAAAAAAAABQ+EiAAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAABAwFC4CAAAAAAAAAAAAAAAAAAAAobCRQAAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAgIChcBEAAAAAAAAAAAAAAAAAAAQMhYsAAAAAAAAAAAAAAAAAACBgKFwEAAAAAAAAAAAAAAAAAAABQ+EiAAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAABAwFC4CAAAAAAAAAAAAAAAAAAAAobCRQAAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAgIChcBEAAAAAAAAAAAAAAAAAAAQMhYsAAAAAAAAAAAAAAAAAACBgKFwEAAAAAAAAAAAAAAAAAAABQ+EiAAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAABAwFC4CAAAAAAAAAAAAAAAAAAAAobCRQAAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAgIChcBEAAAAAAAAAAAAAAAAAAAQMhYsAAAAAAAAAAAAAAAAAACBgKFwEAAAAAAAAAAAAAAAAAAABQ+EiAAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAABAwFC4CAAAAAAAAAAAAAAAAAAAAobCRQAAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAgIChcBEAAAAAAAAAAAAAAAAAAAQMhYsAAAAAAAAAAAAAAAAAACBgKFwEAAAAAAAAAAAAAAAAAAABQ+EiAAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAABAwFC4CAAAAAAAAAAAAAAAAAAAAobCRQAAAAAAAAAAAAAAAAAAEDAhW7jonGvlnDvbOfeMc26lc26Pc26fc26Tc+5559wxzrkIP7zPCOec+Thc6Yd/GgAAAAAAAAAAAAAAAAAAh6yDLuzzgnPuakmXSHIlPN00b0iRdL5zboqZbQhkPgAAAAAAAAAAAAAAAAAAULKQLFyU1Fi5RYu7JT0n6W1JKyXtk9RJ0jmS+uUNbznnepvZLj+878mSPivj+V/88B4AAAAAAAAAAAAAAAAAAByyQrVw8TdJsyTdaWY7D3juC+fck5KekHSUpHaSzpd0lR/ed62ZfeeH5QAAAAAAAAAAAAAAAAAAcFgK8zpAZZjZLDO7oYSixfznsyX9XVJG3qQpAQsHAAAAAAAAAAAAAAAAAABKFZKFi74ws98kfZM32sbLLAAAAAAAAAAAAAAAAAAAINchW7iYJzrvb7anKQAAAAAAAAAAAAAAAAAAgKRDuHDROddAUqe80R/9tNi5zrn1zrn9zrk/nHNfOududs6199PyAQAAAAAAAAAAAAAAAAA4pEV4HaAKXaS//n2L/bTMQYUeR0nqmTec45y7WtIcM7OKLtQ516ycWRpVdJkAAAAAAAAAAAAAAAAAAASjQ7Jw0Tl3pKRz80Y3SbrzIBe5VdKzkv4naY2kLEktJE2SdIKkSElXKLeY8eJKLH/jQeYDAAAAAAAAAAAAAAAAACAkHHKFi865hpKeVu6/zSSdaGZ7DmKRn0lqaWaZB0xfKul559w9kt6UFC9ptnNukZl9fRDvBwAAAAAAAAAAAAAAAADAISusKhfunDM/DNMr8H41JL0iKf/Wy7PN7J2D+TeY2e4SihYLP/+ppLPyIxR6XBHNyxn6VWKZAAAAAAAAAAAAAAAAAAAEnUOmx0XnXIykFyT1yZt0k5ndEKC3Xyjpdkk1JQ2v6IvNbFNZzzvnKhkLAAAAAAAAAAAAAAAAAIDgUtWFi538sIyt5c3gnIuQtFjSyLxJ95nZRX54b5+YWZZzboWkvpKaBup9AQAAAAAAAAAAAAAAAAAINVVauGhmy6py+ZLknAuT9KikpLxJiySdVtXvWwLz4D0BAAAAAAAAAAAAAAAAAAgpYV4H8IO7JR2T9/glSceZWU4gA+T1+Ng+b3RLIN8bAAAAAAAAAAAAAAAAAIBQEtKFi865+ZJOyRt9W9JUM8vyIMrRkuLzHr/nwfsDAAAAAAAAAAAAAAAAABASQrZw0Tl3paTz8kY/kpRiZvsruIxWzjnLG94t4fnazrkR5Syjv6Tb8kZN0p0VyQAAAAAAAAAAAAAAAAAAwOEkwusAleGcO1vSFXmjmyX9Q1Jr51xZL1tuZpkVfKt4Sf91zn0j6XlJX0jaKilbUgtJkyQdLykqb/6bzOyLCr4HAAAAAAAAAAAAAAAAAACHjZAsXJSUXuhxU0n/8+E1rSWtq+T7dc8bSpMt6WpJV1Vy+QAAAAAAAAAAAAAAAAAAHBZCtXAxULZImippoKT+yi2SrCcpRtKfkpZLelfSfWa2zpuIAAAAAAAAAAAAAAAAAACEjpAsXDSzEX5azjpJpd5f2swyJD2dNwAAAAAAAAAAAAAAAAAAgIMU5nUAAAAAAAAAAAAAAAAAAABw+KBwEQAAAAAAAAAAAAAAAAAABExI3ir6MBSe/2Dr1q1e5gAAAAAAAAAAAAAAAAAAHEYOqFkLL22+inBm5o/loAo55/pK+szrHAAAAAAAAAAAAAAAAACAw1o/M/v8YBfCraIBAAAAAAAAAAAAAAAAAEDA0ONiCHDORUvqlje6TVK2h3FQOY30V6+Z/ST95GEWAACCFe0lAADlo70EAKB8tJcAAJSP9hIAgPLRXv4lXFL9vMffmtn+g11gxMEuAFUv7z/6oLvXhHecc4VHfzKzTV5lAQAgWNFeAgBQPtpLAADKR3sJAED5aC8BACgf7WUx6/25MG4VDQAAAAAAAAAAAAAAAAAAAobCRQAAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAgIChcBEAAAAAAAAAAAAAAAAAAAQMhYsAAAAAAAAAAAAAAAAAACBgKFwEAAAAAAAAAAAAAAAAAAABQ+EiAAAAAAAAAAAAAAAAAAAIGGdmXmcAAAAAAAAAAAAAAAAAAACHCXpcBAAAAAAAAAAAAAAAAAAAAUPhIgAAAAAAAAAAAAAAAAAACBgKFwEAAAAAAAAAAAAAAAAAQMBQuAgAAAAAAAAAAAAAAAAAAAKGwkUAAAAAAAAAAAAAAAAAABAwFC4CAAAAAAAAAAAAAAAAAICAoXARAAAAAAAAAAAAAAAAAAAEDIWLAAAAAAAAAAAAAAAAAAAgYChcBAAAAAAAAAAAAAAAAAAAAUPhIlDFnHMtnXPznHPLnHO7nXO/O+c+c85d5JyL8zofAABVwTnXwDk3yTl3lXPuNefcr845yxseqsTyJjrnnnPObXLO7c/7+5xzbmIVxAcAICCcc32dc5c7594s1Mbtcs6tcM496JwbUsHl0V4CAA4pzrmazrlj8o6vvuecW+Wc+9M5l+Gc+8U5965z7h/Oubo+Lm+Qc+4x59x659w+59xPzrk3nHPHVvW/BQAArzjnri90bNaccyN8eA37lwCAQ9IBbWJZw7s+LIv28iA5M/M6A3DIcs4lSXpMUs1SZlkhKdHMVgUuFQAAVc85V9ZG5sNmNt3H5YRJukfSjDJmu0/SaWaW43tCAAC85Zx7X9JQH2Z9RNL/mVlGGcuivQQAHJKcc2Mk/ceHWX+VdJyZvVHGsq6UdJlK79DhFUlTzGxfRXMCABCsnHM9JX0mKaLQ5JFm9m4p87N/CQA4pJVzDrOw98xsRCnLoL30E3pcBKqIc66XpEXKLVrcJekSSYMkjZZ0b95s7SW94pyr4UlIAAACY4OkNyv52rn6a6P/S0nHSuqf9/fLvOmnSPrXwQQEAMADTfL+bpF0q6Qpym3jBko6X9LmvOdPkPRQOcuivQQAHMo2KreQf6akNOW2lYMlHS3pKUnZkupJetE516OkBTjnTpN0hXLPiaxWbrvZX1KqpP/mzZYo6YGq+kcAABBohYoqIiT94uPL2L8EABwu7pTUrYzhpDJeS3vpJ/S4CFSRQr1nZEkaZmZLDnj+Ikk35I3OMbMrA5sQAICq45ybo9wreT8zs5+dc60krc172qceF51z7SV9r9wDa58rtz3dW+j5OEnvSeqr3Pa2E70YAwBChXPuZeUWYTxjZtklPF9P0ofKveBNkoab2fslzEd7CQA4ZDnnwktqJw+YJ1XSc3mjz5lZ2gHP15G0RlK8ci+s62NmvxZ+j7zXJ+VNKrUXKgAAQolz7lxJN0tapty27p95T5XY1rF/CQA4HBTqcbFSdTq0l/5Fj4tAFXDO9ddft/y6/8CixTzzJP2Y93imcy4yIOEAAAgAM7vCzF42s58PYjHn6q9bmJxdeKM/7z32SDo7bzRC0nkH8V4AAASUmU0ys8WlFWPkFVRcUGjSlFIWda5oLwEAh6jyihbz5nle0vK80aElzHKKcosWJWlW4aLFQu/xd+X23ChJF1UqLAAAQcQ510LS1Xmjp0vK8OFl54r9SwAAynOuaC/9hsJFoGqkFnr8YEkz5N3H/pG80VqSRlZtJAAAQodzzklKyRtdZmYflzRf3vT8E1Qpea8DAOBQ8d9Cj9sc+CTtJQAABXbm/Y0p4bnUvL87JD1b0ovNbJOkt/JGRzvnavg1HQAAgXe7pOrKvfvNe+XNzP4lAADlo730PwoXgaoxJO/vbklflDFf4R2FwVUXBwCAkNNaUpO8x+UdWMt/vqmkVlUVCAAAD0QXelxSj1O0lwCAw55zroOknnmjyw54LkpS/7zRJWZWVm9T+W1ltHJv6QUAQEhyzh0laZKk3yVd6OPL2L8EAKB8tJd+RuEiUDU65f1dZWZZZcxX+EBap1LnAgDg8NO50ONlpc5V/HnaUwDAoWR4occ/lvA87SUA4LDknItzzrVzzp2v3JNB+bfpuuWAWdtLCs97TFsJADjkOedqSbo1b3SWmf3q40vZvwQAHG6mOud+cM7tcc7tdM6tdM497Jwr626ptJd+FlH+LAAqwjkXI6le3uimsuY1sz+cc7slVZPUvKqzAQAQQpoVelxmeyppY6HHtKcAgEOCcy5M0uxCkxaXMBvtJQDgsOGcmy7pwTJmuU7SEwdMo60EABxubpDUSNKHku6vwOtoMwEAh5vOB4y3zRtOcM49L2m6mf15wDy0l35G4SLgfzUKPd7lw/z5hYvVqyYOAAAhqSLt6e5Cj2lPAQCHivP0160tnzWzL0qYh/YSAADpK0mnmtlnJTxHWwkAOGw454ZKOkVSlqTTzcwq8HLaTADA4WKPpBclva3cXhF3Saqv3LvfnC6prqRUSS8458aaWWah19Je+hmFi4D/xRR6nOHD/Pvz/sZWQRYAAEJVRdrT/YUe054CAEKec264cnuNkqRfJJ1Ryqy0lwCAw8nzkj7PexwrqY2koyRNlvSkc+5cM3v5gNfQVgIADgvOuShJ90hykm42s+8quAjaTADA4aKpmW0vYfp/nHMLJL0mqZdyCxnPkPTvQvPQXvpZmNcBgEPQvkKPo3yYPzrv794qyAIAQKiqSHsaXegx7SkAIKQ557pIek65F5vukzTVzH4pZXbaSwDAYcPMtpvZd3nDZ2a20MzSJJ0g6Qjl9oYx/YCX0VYCAA4XF0vqKGmDpDmVeD1tJgDgsFBK0WL+cz9LmiIpv5fFsw+YhfbSzyhcBPxvZ6HHvnT3Wi3vry+3lQYA4HBRkfa0WqHHtKcAgJDlnGst6U1JtSVlSzrGzN4v4yW0lwCAw56ZPSrpKeWe77jNOVen0NO0lQCAQ55zrqOkf+aNnm1mu8uavxS0mQAASDKzNZL+kzfa1jnXpNDTtJd+xq2iAT8zs33Oud+Ue9/7ZmXN65yrrb9+rDZWdTYAAELIpkKPy2xPJTUv9Jj2FAAQkvIOgL0lqYkkk3Symb1QzstoLwEAyPWCcm8bXU3SBElP5E2nrQQAHA7OU26vT2skxTnnjilhnq6FHo9yzjXKe/xSXqEjbSYAAH/5QVJC3uOmkrbkPaa99DMKF4Gq8YOkocqtvo4ws6xS5utY6PGPVR8LAICQ8UOhxx1Lnav487SnAICQ45yrp9yreI/Im3S2mT3iw0tpLwEAyLWt0OOWhR6vUG4vxuGirQQAHLryb0V5hKQnfZj/skKPW0vaLfYvAQAozEqZTnvpZ9wqGqga/8v7W01SnzLmG17o8YdVFwcAgJCzVn9dvTS8rBklDcv7u1nSuqoKBABAVXDOxUt6Q1LnvEmzzex2H19OewkAQK6mhR4X3ILLzDIkfZo3OtA5F1XGMvLb0v2SPvdvPAAAgh77lwAA/KVzocdbCj2mvfQzCheBqvF8occnlTSDcy5M0gl5o9sl/bdqIwEAEDrMzJR7qy9J6uicG1DSfHnT869YeiHvdQAAhATnXJykVyT1zps018yu9/X1tJcAABSYWujxtwc893ze35qS0kp6sXOumaQxeaNvm9lOv6YDAKAKmdl0M3NlDZLmFHrJyELPrctbBvuXAABIcs61ljQ2b3S1mW3Of4720v8oXASqgJl9KumDvNEZzrmBJcx2gaROeY9vNbPMgIQDACB03KLcW3pJ0gLnXGzhJ/PGF+SNZuXNDwBASMjr8ek5SYPzJt1qZpdWYlG3iPYSAHCIcs5Nd87FlDPPeZIS8kbX6q/jsvnuk/Rn3uPrnHN1D3h9uKQ7lHs7aUm68aBCAwAQum4R+5cAgEOYcy7JORdRxvMNJT0jKb+3/jtKmO0W0V76jaOoE6gazrleyr39c6xyb09yjXJ7VYyVdIykU/NmXSGpL1fxAgAOJc65IZLaFppUT3+d/PlQuSeOCpjZQ6Us51pJs/NGv5R0vaTVktpImiWpV95z15rZxf7IDgBAIDjnntFfvT69I+lcSWUdpMkwsxWlLIv2EgBwSHLOrZNUQ7knjv6n3PZtV960bpL+pr8uAsiQlGhmb5WwnNMk3ZU3ulrSXOX2zNhEuW3wyLznnjSzaVXwTwEAwFPOuSslXZE3OtLM3i1lPvYvAQCHrLx9zEjl7mMuUe4tnPcq9zzmCEmn5T2WcvdBx5jZ/hKWQ3vpJxQuAlXIOZck6THl3oakJCuUezBtVeBSAQBQ9ZxzD0k60df5825XUtJywiTdK+nkMl5+v6RTzSynIhkBAPCSc66iB2TWm1mrUpZFewkAOCTlnVRq6cOsmySdbGb/KWNZcyRdJqnE/U9Jr0pKN7N9Fc0JAECwq0DhIvuXAIBDVgX2MZ+RdIqZbS9lObSXfkLhIlDFnHMtJc2UlCipmXKv/F0l6SlJt5nZHg/jAQBQJfxVuFhoeQnK7a24n3KvdPpV0meS7jaz1yqfFAAAb/izcLHQMmkvAQCHFOdcB+UeVx2s3F79G0qqq9weMX6R9JWklyUt9uU4q3NukKQzJQ3NW9Z2SV9LetDMnvT/vwAAgODga+FiofnZvwQAHHKcc8MlDZc0UNIRym3jaiq3Z/+Nkj6S9LCZLfFxebSXB4nCRQAAAAAAAAAAAAAAAAAAEDBhXgcAAAAAAAAAAAAAAAAAAACHDwoXAQAAAAAAAAAAAAAAAABAwFC4CAAAAAAAAAAAAAAAAAAAAobCRQAAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAgIChcBEAAAAAAAAAAAAAAAAAAAQMhYsAAAAAAAAAAAAAAAAAACBgKFwEAAAAAAAAAAAAAAAAAAABQ+EiAAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAABAwFC4CAAAAAAAAAAAAAAAAAAAAobCRQAAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAgIChcBEAAAAAAAAAAAAAAAAAAAQMhYsAAAAAAAAAAAAAAAAAACBgKFwEAAAAAAAAAAAAAAAAAAABQ+EiAAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAABAwFC4CAAAAAAAAAAAAAAAAAAAAobCRQAAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAgIChcBEAAAAAAAAAAAAAAAAAAAQMhYsAAAAAAAAAAAAAAAAAACBgKFwEAAAAAAAAAAAAAAAAAAABQ+EiAAAAAAAAAAAAAAAAAAAImP8H1u43xgz+OPIAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAACi4AAAPhCAYAAABkQMVPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3gUVdvH8XsSkgChk1ATOtI70juE9ARQBBW72OVVHx8LoiAoIAiooIJUERBBQLqKggqIAgpIV6ogvXdCsvf7B+w+m767CTuz+P1c17mSsMnsz3F2ypl7zjFUVQAAAAAAAAAAAAAAAAAAALzBz+wAAAAAAAAAAAAAAAAAAADg34PCRQAAAAAAAAAAAAAAAAAA4DUULgIAAAAAAAAAAAAAAAAAAK+hcBEAAAAAAAAAAAAAAAAAAHgNhYsAAAAAAAAAAAAAAAAAAMBrKFwEAAAAAAAAAAAAAAAAAABeQ+EiAAAAAAAAAAAAAAAAAADwGgoXAQAAAAAAAAAAAAAAAACA11C4CAAAAAAAAAAAAAAAAAAAvIbCRQAAAAAAAAAAAAAAAAAA4DUULgIAAAAAAAAAAAAAAAAAAK+hcBEAAAAAAAAAAAAAAAAAAHgNhYsAAAAAAAAAAAAAAAAAAMBrKFwEAAAAAAAAAAAAAAAAAABeQ+EiAAAAAAAAAAAAAAAAAADwGgoXAQAAAAAAAAAAAAAAAACA11C4CAAAAAAAAAAAAAAAAAAAvCaP2QGQPcMwgkSkzo0fj4tIiolxAAAAAAAAAAAAAAAAAAD/Hv4iEnrj+82qejWnC6Rw0TfUEZF1ZocAAAAAAAAAAAAAAAAAAPyr3S4i63O6EKaKBgAAAAAAAAAAAAAAAAAAXsOIi77huP2btWvXSunSpc3MAgAAAAAAAAAAAAAAAAD4lzh8+LA0adLE/uPxrH7XVRQu+oYU+zelS5eWsLAwM7MAAAAAAAAAAAAAAAAAAP6dUrL/lewxVTQAAAAAAAAAAAAAAAAAAPAaChcBAAAAAAAAAAAAAAAAAIDXULgIAAAAAAAAAAAAAAAAAAC8hsJFAAAAAAAAAAAAAAAAAADgNRQuAgAAAAAAAAAAAAAAAAAAr6FwEQAAAAAAAAAAAAAAAAAAeA2FiwAAAAAAAAAAAAAAAAAAwGsoXAQAAAAAAAAAAAAAAAAAAF5D4SIAAAAAAAAAAAAAAAAAAPAaChcBAAAAAAAAAAAAAAAAAIDXULgIAAAAAAAAAAAAAAAAAAC8hsJFAAAAAAAAAAAAAAAAAADgNRQuAgAAAAAAAAAAAAAAAAAAr6FwEQAAAAAAAAAAAAAAAAAAeA2FiwAAAAAAAAAAAAAAAAAAwGsoXAQAAAAAAAAAAAAAAAAAAF5D4SIAAAAAAAAAAAAAAAAAAPAaChcBAAAAAAAAAAAAAAAAAIDXULgIAAAAAAAAAAAAAAAAAAC8hsJFAAAAAAAAAAAAAAAAAADgNRQuAgAAAAAAAAAAAAAAAAAAr6FwEQAAAAAAAAAAAAAAAAAAeA2FiwAAAAAAAAAAAAAAAAAAwGsoXAQAAAAAAAAAAAAAAAAAAF5D4SIAAAAAAAAAAAAAAAAAAPAaChcBAAAAAAAAAAAAAAAAAIDXULgIAAAAAAAAAAAAAAAAAAC8hsJFAAAAAAAAAAAAAAAAAADgNRQuAgAAAAAAAAAAAAAAAAAAr6FwEQAAAAAAAAAAAAAAAAAAeA2FiwAAAAAAAAAAAAAAAAAAwGsoXAQAAAAAAAAAAAAAAAAAAF5D4SIAAAAAAAAAAAAAAAAAAPAaChcBAAAAAAAAAAAAAAAAAIDXULgIAAAAAAAAAAAAAAAAAAC8hsJFAAAAAAAAAAAAAAAAAADgNRQuAgAAAAAAAAAAAAAAAAAAr6FwEQAAAAAAAAAAAAAAAAAAeA2FiwAAAAAAAAAAAAAAAAAAwGsoXAQAAAAAAAAAAAAAAAAAAF5D4SIAAAAAAAAAAAAAAAAAAPAaChcBAAAAAAAAAAAAAAAAAIDXULgIAAAAAAAAAAAAAAAAAAC8hsJFAAAAAAAAAAAAAAAAAADgNRQuAgAAAAAAAAAAAAAAAAAAr6FwEQAAAAAAAAAAAAAAAAAAeA2FiwAAAAAAAAAAAAAAAAAAwGsoXAQAAAAAAAAAAAAAAAAAAF5D4SIAAAAAAAAAAAAAAAAAAPAaChcBAAAAAAAAAAAAAAAAAIDXULgIAAAAAAAAAAAAAAAAAAC8hsJFAAAAAAAAAAAAAAAAAADgNRQuAgAAAAAAAAAAAAAAAAAAr6FwEQAAAAAAAAAAAAAAAAAAeA2FiwAAAAAAAAAAAAAAAAAAwGsoXAQAAAAAAAAAAAAAAAAAAF5D4SIAAAAAAAAAAAAAAAAAAPAaChcBAAAAAAAAAAAAAAAAAIDXULgIAAAAAAAAAAAAAAAAAAC8hsJFAAAAAAAAAAAAAAAAAADgNRQuAgAAAAAAAAAAAAAAAAAAr6FwEQAAAAAAAAAAAAAAAAAAeA2FiwAAAAAAAAAAAAAAAAAAwGsoXAQAAAAAAAAAAAAAAAAAAF5D4SIAAAAAAAAAAAAAAAAAAPAaChcBAAAAAAAAAAAAAAAAAIDXULgIAAAAAAAAAAAAAAAAAAC8hsJFAAAAAAAAAAAAAAAAAADgNRQuAgAAAAAAAAAAAAAAAAAAr6FwEQAAAAAAAAAAAAAAAAAAeA2FiwAAAAAAAAAAAAAAAAAAwGsoXAQAAAAAAAAAAAAAAAAAAF5jSuGiYRglDMOIMwxjoGEYSw3DOGEYht5oU1xcxoNOf5NdezCXcofcyPyHYRjnbrQ/bvxb8dx4DwAAAAAAAAAAAAAAAAAAbmV5THrfoya9r8cMw2gqIl+JSKk0L9W50R41DKOLqq71djYAAAAAAAAAAAAAAAAAAHyFWYWLzv4WkR0i0jkHy4gUkUNZvH4wB8sWwzDCRWShiISKSLKIjBSRRTdejhORF0SktIgsNAyjkarm6P0AAAAAAAAAAAAAAAAAALhVmVW4OFBE1onIOlU9ahhGBRHZm4Pl/amq+3IjWCbelutFiyIi96jqbKfXVhqG8ZuIfCEiJUTkLRF58CZmAQAAAAAAAAAAAAAAAADAZ/mZ8aaq2l9VF6mq5aeMNgyjlIjce+PHb9IULYqIiKrOEpFvbvx4342/AQAAAAAAAAAAAAAAAAAAaZhSuOhjEuR/62lyFr835cZXvxt/AwAAAAAAAAAAAAAAAAAA0qBwMXutnL7/MYvfc36t5U3KAgAAAAAAAAAAAAAAAACAT8tjdoBcMtkwjGoiEiIi50Rkl4h8JyIfq+o/OVx2zRtfz6rqkcx+SVUPG4ZxTkQKiUgNd97AMIywbH6FqacBAAAAAAAAAAAAAAAAALeEW6VwsZ3T98VvtKYi8h/DMJ5T1XE5WLa9qPCgC797QERqiUi4m+9xwM3fBwAAAAAAAAAAAAAAAADAJ/l64eIeEZkrImvkf8V/lUTkDhG5U0TyishYwzBUVT/x8D0K3vh6wYXfvXjjawEP3wsAAAAAAAAAAAAAAAAAgFuaLxcuzhORT1VV0/z7OhH5wjCMOLle1BggIqMMw1iQ1VTPWch742uSC7979cbXfG6+R3YjNJaS6/9dAAAAAAAAAAAAAAAAAAD4ND+zA3hKVc9mULTo/PoiERl448f8IvKIh2915cbXQBd+N+jG18vuvIGqHsyqiYgnBZcAAAAAAAAAAAAAAAAAAFiOzxYuuugTEbEXN7b1cBnnb3x1Zfrn4BtfXZlWGgAAAAAAAAAAAAAAAACAf51bunBRVY+JyMkbP5b1cDEHb3wNc+F37VM+H/DwvQAAAAAAAAAAAAAAAAAAuKXd0oWLN2Q6nbSLtt34WtgwjFKZ/ZJhGKVFpNCNH7fn8D0BAAAAAAAAAAAAAAAAALgl3dKFi4ZhhIpIyI0fD3m4mFVO32c13bTza6s9fC8AAAAAAAAAAAAAAAAAAG5pt3Thoog8JiLGje9/9HAZC0TEduP7h7L4vQdvfLXd+BsAAAAAAAAAAAAAAAAAAJCGTxYuGoZRwTCMBtn8TpyIvHHjx8siMjmT3/vBMAy90SqkfV1Vj4jI9Bs/RhqGcWcGy+guIpE3fvzsxt8AAAAAAAAAAAAAAAAAAIA08pjxpoZhtBKRKk7/FOL0fRXDMB50/n1VnZJmERVEZIVhGGtEZKGIbBKRYzdeqyQid95o9tEWX1TVf3IQ+TURiRKRUBH53DCMxiKy6MZrcSLynxvfHxeRfjl4HwAAAAAAAAAAAAAAAAAAbmmmFC6KyKMi8kAmr7W80ZxNyeR3m99ombkkIs+r6idupUtDVQ8YhhEvIl+JSCkReflGc3ZERLqo6sGcvBcAAAAAAAAAAAAAAAAAALcyswoXc+o3Eekl14sWG4tIabk+amMeETktIltF5HsRmaCqxzJbiDtU9VfDMOqIyP+JSBe5PuqjiMheEZkvIu+p6snceC8AAAAAAAAAAAAAAAAAAG5VhqqanQHZMAwjTEQOiIgcOHBAwsLCTE4EAAAAAAAAAAAAAAAAAPg3OHjwoISHh9t/DM+NWYn9croAAAAAAAAAAAAAAAAAAAAAV1G4CAAAAAAAAAAAAAAAAAAAvIbCRQAAAAAAAAAAAAAAAAAA4DUULgIAAAAAAAAAAAAAAAAAAK+hcBEAAAAAAAAAAAAAAAAAAHgNhYsAAAAAAAAAAAAAAAAAAMBrKFwEAAAAAAAAAAAAAAAAAABeQ+EiAAAAAAAAAAAAAAAAAADwGgoXAQAAAAAAAAAAAAAAAACA11C4CAAAAAAAAAAAAAAAAAAAvIbCRQAAAAAAAAAAAAAAAAAA4DUULgIAAAAAAAAAAAAAAAAAAK+hcBEAAAAAAAAAAAAAAAAAAHgNhYsAAAAAAAAAAAAAAAAAAMBrKFwEAAAAAAAAAAAAAAAAAABeQ+EiAAAAAAAAAAAAAAAAAADwGgoXAQAAAAAAAAAAAAAAAACA11C4CAAAAAAAAAAAAAAAAAAAvIbCRQAAAAAAAAAAAAAAAAAA4DUULgIAAAAAAAAAAAAAAAAAAK+hcBEAAAAAAAAAAAAAAAAAAHgNhYsAAAAAAAAAAAAAAAAAAMBrKFwEAAAAAAAAAAAAAAAAAABeQ+EiAAAAAAAAAAAAAAAAAADwGgoXAQAAAAAAAAAAAAAAAACA11C4CAAAAAAAAAAAAAAAAMBj165dMzuCR77//nv5+++/zY7htg8++EA+/vhj+eeff8yO4pYlS5bIu+++K/v37zc7CiyAwkUAAAAAAAAAAAAAAADcUlTV7AgemT9/vmzatMnn8r/11luSkJAgkydPlhMnTpgdx2Vnz56V8uXLS6NGjeStt96SrVu3+sS6b9asmTz11FMSFhYmt99+u7z11luyefNmy2dv0aKFvPnmm1KhQgVp3ry5vPfeez5XfIncY1h9g4WIYRhhInJAROTAgQMSFhZmciJ4atq0adK+fXspW7as2VFcduHCBTEMQ4KDg82OAgAAAAAAAAAAAADwstWrV0utWrWkSJEiZkdxy4ABA2T//v1yxx13SKdOnSRv3rxmR3LJwoULJSEhQSpVqiTdunWTbt26SdOmTcXPz9pjkx09elQqVKggV65cET8/P2nTpo107dpVunTpIuXKlTM7XqZsNpvUqVNHtm3b5vi3qlWrSteuXaVr167SpEkTy677qKgo+eabb1L9W8WKFSUhIUESExOldevWkidPHpPSZe4///mPjBw50vGzYRjSqlUr6dGjh9x5551SsmRJE9MhMwcPHpTw8HD7j+GqejCny6Rw0QdQuHjrGDx4sLz++usSExMjvXv3lpiYGEseJJxdvXpVatWqJfXr15fu3btLbGysFChQwOxY2Tpy5Ii8++670q1bN2nWrJllTyTS+vvvv2XPnj3SqlUry28bzk6ePCkBAQFSqFAhs6O4JSUlRfz9/c2OAQAAAAAAAAAAADds3bpVqlev7nP3eYYPHy6qKnfccYdUrlzZ7Dgumzhxojz55JPSqVMnueOOOyQxMVFCQkLMjpWt/fv3S5UqVSQ5OVkKFiwosbGx0q1bN4mOjrb0PW+bzSb169eXzZs3O/6tdOnS0qVLF+nWrZu0bdtWAgICTEyYuT59+sjo0aPT/XujRo0chYA1atQQwzBMSJe56dOnS69evTJ8rUyZMpKYmChdu3aVdu3aWWrdr169Wlq1apXp60WLFpXY2FhJTEyUyMhIKViwoBfTZe7AgQNSqVIlSU5OTvean5+ftGvXTnr06CHdunXziX3Nv8XNKFz0jUoe4Bbx8MMPi5+fnyxatEgSExOlfPny0q9fP9m7d6/Z0TIVFBQkjz32mMyZM0d69uwpJUqUkDvuuENmzpwpFy5cMDtepkqVKiU7duyQli1bSlhYmDz99NOyfPnyDA98VlKqVCl58MEHpUSJEtKrVy+ZNWuWnDt3zuxY2fLz85MqVapI586dZcyYMbJ//36zI7nkwIED0qhRI3nttdfkl19+EZvNZnYkl+zdu1fuv/9+mTVrlpw9e9bsOC7bt2+fDBw4UDZs2GD5Icqd/f333zJ+/Hg5dOiQ2VHccuDAAZk6dapPDcUvIvLPP//IhAkT5PDhw2ZHccvhw4dl+PDhsmPHDp/avo8dOyZ9+/aVn3/+WVJSUsyO47KTJ0/KM888I0uXLpUrV66YHcdlp06dkt69e8vcuXMtfR6V1pkzZ+Txxx+XefPm+VzuPn36+Nx2cvbsWenXr5/PfS7Pnj0ro0aNkj///NPsKG45d+6czJgxQ06dOmV2FLecP39eVqxYIdeuXTM7ilsuXrzoc8dKEZHLly/73DmViEhSUpJP7f/skpOTfebazJnNZvO5bVvEd6dNAwAAt7ZLly6ZHcEjK1as8Kk+e7vBgwfLe++9JwcP5rj2wKsWL14sZcqUkSeeeEK+//57y98DtOvYsaO8/PLLUqVKFWnYsKEMHjxYdu7caXasbN13331SokQJWbp0qTz66KNSqlQp6dSpk3z88cdy5MgRs+Nlqnz58nLvvfeKyPX+lJkzZ8pdd90loaGh0qVLF/nss8/k9OnTJqdMz8/PT1599dVU/3b48GH5+OOPJSIiQkqWLCkPPvigzJ8/Xy5fvmxSyoz997//zbCw77fffpN+/fpJrVq1pHr16vLKK6/Ir7/+apk+gB49ekilSpUyfO3QoUPy8ccfS+fOnaVEiRJy3333ydy5c+XixYteTpley5YtpUOHDpm+fvr0aZk2bZp0795dQkJCJCYmRsaNG2f6fc/w8HDp0aNHhq/ZbDZZvny5PP7441KqVCmJjIyUSZMmWfKzilygqjSLNxEJExEVET1w4IDCt3Xr1k3t/z/tzTAM7dy5s86ePVuvXr1qdsR0zpw5o4UKFUqXO2/evNq1a1edMWOGnjt3zuyY6axevTpd5uLFi+vDDz+sixcv1itXrpgdMUNjx45NlTkgIEAjIiJ09OjRun//frPjZer1119Plbtu3brar18//fXXXzUlJcXseJl69NFHHZlLlCihDz30kM6bN08vXLhgdrQsJSYmqohonjx5tGPHjvree+/p7t27zY6VJZvNpm3atFER0bCwMH3iiSd00aJFeunSJbOjZclms2njxo1VRLRRo0bav39/Xb9+vaW3a9XruRs2bKiGYWiLFi108ODB+scff6jNZjM7WpZsNps2bdpURUQbN26sAwYM0N9++83yuVVVO3XqpCKilStX1ueee06///57TUpKMjtWtrp06aIioqGhofrggw/qnDlz9Pz582bHylavXr1URDQ4OFi7deumkydP1mPHjpkdK1uPPPKIiogGBQVpTEyMjh07Vg8ePGh2rGz17t3bJ3M//PDDju2ka9euPrOd2LfvkJAQfeCBB/TLL7+05Pl2WnfccYeKiFatWlWff/55Xb58uU/sB6OiotTPz09bt26t77zzjm7dutXyxx2bzaatW7fWQoUK6V133aVTp07V48ePmx0rWzabTW+//XatXLmy/t///Z9+9913lrwGTislJUUbNGigLVu21KFDh/rENqKqmpycrLfffrtP7f9Ur+du3bq1PvLII7pgwQLLXy/YXbt2TSMjI/X555/XH3/8UZOTk82O5JLk5GTt2rWr9uvXz2fOu1Wv5+7Zs6e+9dZbum3bNrPjuCwlJUUfeOABfffdd3XPnj1mx3GZzWbTxx57TEePHu0T54B2NptN+/TpoxMmTPCJ46SdzWbTl19+WWfOnOkT54B2NptNBwwYoIsWLbJsv2tGbDabvvPOO7pixQq9du2a2XFcZrPZ9L333tPVq1dbvo8qrVGjRulPP/3kM8dKuyFDhui8efN85tzE7qWXXtJ33nnH8n3HaT355JMaFxenn376qZ4+fdrsOC4bOXKkBgYGanx8vH722Wd65swZsyO5ZOXKlY77JM2bN9eRI0fq33//bXasbKW9fxkSEqK9e/fWb7/91vL9EREREenuYdauXVsHDBigW7ZsMTtepkaOHJkut/1ed6tWrXTUqFGWvJe5bds2NQwjw+z2e22RkZE6btw4PXr0qNlxHZKTk7VKlSqZ5ra34OBgvfPOO3XGjBl69uxZUzOfP39eL126pA8++GC2ue2tTJky+tRTT5n62d2yZYtu3rxZ+/bt63Jue71EQkKCTp48WU+cOOH13N99950uXbpU33jjDbdy21uTJk30rbfe0s2bN3u1P2DVqlW6YsUK/eSTT9zKGxAQoLGxsTp16lTTt/V/qwMHDjj/PwnT3KiJy42F0ChcRPY2b96sb7zxhuMmZGYtNDRU//vf/+rOnTvNjqyq13N/9NFH2qJFi2wPylYqYvz777/122+/1cqVK2eauVChQnrPPffonDlz9OLFi2ZHVlXV48eP66+//qqFCxfONHf9+vX1jTfe0PXr11vmhsL58+d148aNGhQUlGHmUqVK6aOPPqoLFiywzLpWVU1KStLNmzerv79/usxBQUEaHR2tH330kSUv0H///fcM13XNmjX15Zdf1lWrVlmy82/58uXpMufPn18TEhJ0/PjxeujQIbMjZmjRokXpcpcuXVp79+6t8+fPt2yh64IFC9LlLl++vD799NO6dOlSvXz5stkRM/T1119neOFqX99W2o84c+7gcz7W3HXXXfrZZ5+ZctHqioz2J4GBgRoZGakffvihJTuaVFV37Nihfn5+qXIbhqEtW7bUd955R7dt22aZ46Sz3bt3Z3jcady4sQ4cOFA3btxoydx79+7VPHny+FzujNa3vaB7yJAhli0+ymj7DgwM1M6dO+vo0aN13759ZkfM0KZNm9JtI4ULF9YePXpYej/466+/pstdsWJFffbZZ/Wbb76x7I33tOdVvvKwwuLFi1PlLliwoN555506ZcoUSxfWzZkzJ1XuSpUqaZ8+fXTZsmWWLr6cPn16um1k6NChlj1O2k2ZMsWRO1++fJqYmKiTJk2y9Daiqjpx4kRH7pCQEH3ooYd0/vz5li9wcM5drlw57dOnj08U8EyYMMGRu3r16tq3b19dt26dpbdt1dS569evr4MGDbLsOYmz8ePHO3I3a9ZMhw0b5hNFMOPGjVMRUT8/P23fvr2OGTPGJ4ovP/roI0f/VFxcnGk3Qt01evRox/G9Z8+eOnv2bJ94MO69995z7LsfffRRXbJkiaWP73b23KVLl9annnpKv//+e8vvu1VVx4wZoyKiJUuW1CeffFK/++47n8g9depUFREtUKCA9uzZU7/88kvL9lE5c+5na9iwoQ4ZMkR37dpldqxsbd++3ZE7ICDAZ4oYz507p0WKFEl1Le8LRYw2m02bN2+e7tq4WbNmOmLECMv2D+7du1cfe+yxDO+VFCtWTB955BFdunSp5YoYFy9erK+99lqW912rV6+u/fr1s1Sf29ChQ10u6mrSpIm+8847ltjf9OrVS++44w4tWLCgS9n9/Py0TZs2+v7775t6f7B+/fpauXLlLO8ZZ9QCAwM1Ojpax48fb0oRZmhoqFt507YiRYpor169dM6cOV6991aqVKkc5RYR9ff31/bt2+sHH3zgtW2nZMmSOc7t3Nf1/PPP6w8//HDTz82qV6+e47xBQUHapUsX/fzzz33imuNWQeHiv7QJhYu3hMmTJ7u9s23btq1OmzbN1MISeyeCJweJ6dOnm1bE+OGHH7qVOV++fNqtWzedPn26qReP9s49V1vZsmX1iSee0CVLlph6Q9Xemerquo6Pj9fx48fr4cOHTcus+r/Oa1da/fr19fXXX9e1a9ea/hTzxIkTMyweSdtCQkL0/vvv19mzZ1viqZPp06en6rTJrDVu3FjffPNN/f333y1xQT5r1qxsT/zz5s2rMTExlip0nTt3rpYpUybL3Pnz59fExESdMGGCZYpGv/rqq2wvEJ3Xt1U6zebPn68hISFZ5vbz89NWrVpZajSvBQsWuNTxUa9ePUuNortw4ULNnz9/trmrVKmiL7zwglcutF2xZMmSTIv8nVu5cuX0mWee0W+//dYSN8u+/vprzZs3r8/l/u677zQ4ODjb3JUqVbLUKKkrVqzQIkWKZPkUuIhonTp1tG/fvrpmzRpLfC5XrVqlJUuWzDK3fT9opRHr1qxZo+XKlcsyt33EzokTJ5p+/mq3fv16rVatWrafyaeeekoXL15smaKpTZs2ab169TLNbBiGNm/eXN9++23dtGmTJbYR1esjM9hHhM6oFSpUSLt37265kS///PNPbd26daa5K1eurM8//7yuWLHCEvs/u927d2vHjh2z3I8MGzbMMg982u3fv18jIyMzPe/u0qWLTpkyxXKFRwcOHNDY2NgMcxcvXlwfeughS458efjwYU1ISMh0//d///d/+sMPP1jugb6jR49q165dM8xdrVo1ffXVVy1ZfHn8+HHHyMoZXSsMHDhQt2zZYrncJ0+e1O7du2eYu3nz5jp8+HBLFl+ePn1ae/bsmS6zv7+/durUST/66CPLXMM7O3fuXIYP7efNm1e7dOmiU6dO1VOnTpkdM50LFy7o/fffn+Hx/d5779W5c+dasjjt0qVL+tBDD6XLHRISoo888ohliy8vX77sGBk/7THHyrmvXr2a4chR+fPn1zvvvFO/+OILS94wt49QnNEDlA0aNNDBgwfrX3/9ZXbMdGw2m0ZERGTY92PlIkabzaa1atXKtDjKykWMBQoU0ICAgCyvMa1YxBgYGJhlZnsrWrSoPvTQQ7p48WJL7GNc6WdzblWqVNFXXnnF9AFNXOlny+x8cdCgQaaNlO5qwWJmrUmTJjp06FCv7y/dLVjMqPn5+Wnbtm31vffe89pnt2jRojnObW/2BxmnTJmiJ0+evKm5s7u/40lr3Lixvv322zd1289poWhmrVixYnr//ffrl19+eVPOccqXL5+refPly6fdu3fX2bNnW/Lc/VZC4eK/tAmFi7eEYcOGebyjLVq0qPbp00c3b97s9dwjRozI0UEiKChIExMTddq0aV4tnLI/bepJCwwM1JiYGJ06darXO7jdLVx0boUKFdIRI0aYcsPJ3UJRezMMQ3v37m3azT13ChedW9OmTXX9+vWmZFZNPTqDq61IkSI6evRoUwt3PCng7ty5s+7YscO0zKqqn376qVuZAwIC9MUXXzR99Nlp06a5lTs4OFgHDRpk+iiMn3/+udv77Jdeesn0zuFZs2a5vX336NHD9HO7tKNHudIaNWqkv/zyi6m5582b53busLAwnT17tqmdexmNgppdK168uH7yySemFqZlNOpsdi0kJETHjx9vau6MRm/NroWHh5u+nSxbtswnP5cZjaqcVTMMQ++++279559/TM39ww8/uJW7YMGC+s4775h+oyOjUX6zajVr1tRly5aZmllV9eeff3Yrd/fu3S3xUMjatWtdzpw/f359++23LTFS5/r1613OXb58eZ03b54lio42bNjgcu6WLVvq77//bnZkVc141NmMmr+/v3bv3t0yN3y3bNniUu7g4GB94oknLFN46TwKU1YtNDRUX331VdOvF+x27tzpUu5y5crp4MGDLbEvUVXdtWuXS7mrVaumY8aMscRDQ6rXR2FyJXf9+vV1+vTpltgHql6fScaVc6mWLVta4vhu988//2SbO0+ePBoTE6MbN240O67DkSNHXDq+33PPPbp3716z4zocP34829yFCxfW3r17W+bhG1XVU6dOuZT74YcfNr3PxNmZM2eyzW2flWrNmjVmx3W4cOGCy/vBYcOGWeZG/+XLl13KbZ8ucubMmZZ4oO/q1asu5Rb5XxHj9OnTTT9uJicnu5zb3po2barvvvuuqfuXlJQUt3Pb9zH333+/Lly40LSHXNLOsuFOq1Chgr744ou6du1ar+fOrrjVlVajRg3t16+fV+95u1somlWrU6eODhgwwCv3rVx5cN/d1rhxYx08ePBNnc0lp4WimTV/f3/t0KGDjhkz5qaMxOjKwCs5adWqVdNXXnkl14sYixcvflNzi1yv90hISMjVz+3NKrgUud5/cffdd+tXX31lmWvqW8nNKFzMIwC84tixYx7/7enTp+WDDz6QDz74QJo1aya9e/eWHj16SHBwcC4mzNiVK1dy9PfFixeXIkWKOJZVqFChXEiVvaSkJI/+rmLFihIZGSmRkZHSoUMH8ff3z+VkWdPrxcouK1y4sERFRUlsbKxERUVJaGjoTUqWe4KCgqRjx44SFxcnsbGxUq5cObMjZcswDGnatKnExcVJfHy81KlTRwzDMC1PYGCgFC5cWM6ePZvl75UtW1bi4+MlLi5OOnToIPny5fNSwozlz59fypYtK//880+mv5MnTx5p06aNxMfHS3x8vFSuXNmLCTNWqFAhqVKliuzatSvT3ylWrJjExMRIfHy8REZGSuHChb2YMGOFChWS2267Tf78889Mf6d06dKOdd2xY0fTtxERkYIFC0rVqlXlr7/+yvR3ihcv7vg8du7cWQoWLOjFhBkLDg6W8uXLy/79+zP9nbx580qnTp0kPj5eYmNjpWzZsl5MmHmmMmXKyKFDh7L8vcaNGzvWeYMGDUzdB4pc3w+GhobKiRMnsjx2li9f3rG+27VrJ3nz5vViyvQCAgKkWLFicvr06SxzlyhRQmJiYiQuLk4iIiK8dv6UmYCAAClevLicOnUqy9wlS5ZMldvsz2ZgYKCUKFFCjh8/nmXuihUrOo6Xbdq0kaCgIC+mTC8oKEjCwsLk0KFDYrPZMv29Jk2aOD6X9erVM/1zmS9fPqlcubLs3bs309z58+eXzp07Oz6XJUuW9HLK9AoUKCC1a9eWbdu2ZZo7PDxc4uPjJSEhQdq1a2f6NiJy/XjZuHFj+e233zLdvps2bSoJCQkSHx8vtWvXNn0bEbl+ftKqVStZtWpVhq/ny5cv1TZSqlQpLyfMWKFChaRDhw6yfPnyDF8vUaKExMXFOfZ/BQoU8HLCjBUqVEgiIyPlm2++yfD1ypUrO/Z/rVu3lsDAQC8nzFihQoUkNjZWFi9enOHrderUkdjYWImNjZVmzZpJnjzW6N4sVKiQxMfHy8KFCzN8/fbbb5fo6GiJiYmRxo0be72/ITMFCxaUhIQEWbBgQbrX7NfC0dHREhUVJY0aNbJM7gIFCkiXLl3kq6++Svean5+fNG/eXKKioiQqKkoaNmwofn5+3g+ZgQIFCki3bt1k7ty56V7LkyePtGjRQqKioiQyMlLq169vmdzBwcFy5513ypdffpnutcDAQGnTpo2jP80qxxyR67nvuusumTVrVoavtW/fXiIjIyUqKkqqVKliQsKM5c+fX+6++275/PPP071WrFgxiYiIkMjISOncubMlrivt8uXLJ7169ZJp06aley0sLMyxrjt27ChFixY1IWHG8ubNKw888IB8+umn6V6rVq2aY9tu27atV/rjXRUUFCQPPvigTJkyJd1rtWrVcuRu3bq1Jfp77AICAuShhx6SyZMnp3utatWq0rlzZ+ncubO0a9fO9GthZ/7+/pluJ0WKFJGOHTtKRESERERESKVKlUxImLnM9iciItWrV3fkbteuneTPn9/L6TKWkpIi0dHRsmzZMklOTs7wd+rVqyedOnWSiIgIadWqlSWOmcnJyVK3bl35888/s7y3VqFCBcd6b9++venns0lJSVKgQAG5dOlSlv0QItf3Pa1bt5ZOnTpJ+/btpUSJEl5KmZ4n9wFLlCjhyF6/fn1Tzm2Tk5OzXc+ZKV++vHTu3FmaNm3q9XsnqirXrl3L0TKqVq0qHTt2lCZNmkj58uVzKVn2PL1nnFatWrUkIiJCmjdv7pV7mzld384Mw5AmTZpIVFSUtGvX7qaeQ2a2386JwoULS0REhOPa9Gack6WkpOT6Mu0aN24sUVFREh0dLVWrVs3VZXu6P3FFSEiIREdHS2xsrHTu3DlXz+EvX76ca8tK6+LFi/L555/LzJkzpV27djJq1CipV6/eTXs/5ILcqH6kMeIisjdr1ix96KGHsp22M6tWuHBh7dixo7766qv6/fffeyX3+vXrdcyYMVq1alWXMhYoUEDj4+P1/fff123btpn2pPL+/fv122+/zXZY5+DgYI2Li9PRo0frn3/+afqT1adPn9aNGzdm+TRKjRo19MUXX9QffvjBMtN5Xb58Wbdv357p9JdlypTRxx57TBcsWHBTnoLJiZ07d2b4dFuBAgW0W7duOnnyZD1y5IjZMdP55ZdfMlzXt99+uw4cONAy0yyn9c0336TLXKxYMe3Vq5d+8cUXlpsiw+6rr77K8OmoF198UX/66SfTn4rNzNy5c9Plrl+/vr7xxhu6bt06SzyJnJGMRnerUaOGvvzyy7pq1SrLTfdml9FoY6VLl9bevXvrggULLPPUelpr1qxJl9s+jfj48eNNHw0tMxs3bkyX23kaWitOVaequnXr1gynpG3YsKG+8cYblpmOO60dO3ZkeLxs1KiR9u/fX9euXWvJ3Nu3b0+3vv39/bVNmzY6bNgwU89Xs7J58+Z0ue3TjE6YMMFSI6Y4+/3339NtI2XLltUnnnhCFy9ebPqovplZvXp1utyNGzfWgQMH6oYNGyy5jaimH50zX758mpCQYOltRFV1/vz5GV4rLFq0yHJT0TpLOyp03bp19bXXXtNffvnFkvs/O+fR2v39/bVdu3b67rvv6o4dOyy7baumHtU/f/78Gh8fr2PHjrXMKIWZGTVqlCN3kSJFtEePHvrpp59a8prS2fDhwx25S5Qooffff7/OmDHDMqMrZmbo0KGpjjePPPKIzp4925JT0TobMmSII3f58uX18ccf13nz5nl1phJPvPXWW6muh/v06aOLFy+2XD9PWgMHDnTkrlevnr700kv6/fffW37kjf79+zuucVq0aKFvvvmm/vrrr5a9Hrbr16+filwflaVz5846cuRI3bp1q6WPOaqqr7zyiopcn9Gma9euOnbsWEuNrpiZl19+2dG31qNHD504caJP3EPq27ev435Ht27ddOzYsbpnzx6zY2Xr7bffVpHrI4e2bt1aBw0apL/88ovlP5fOsw6VKFFC77nnHp08ebLlt5Vvv/021fl3eHi4PvzwwzpjxgxLn1vt3bs33fTFRYsW1TvuuEPHjh2ru3btMjtihq5evaqVK1fO8J5DgwYN9KWXXtJly5ZZ6potJSVFDxw4oHFxcZneT8ubN69GRETosGHDdOPGjZa4dktOTtalS5fqY489luX9S5Hrsz4kJCTomDFjTL+HmZKSooMHD9ann34629z2ZoX9vM1m0+7du2uXLl3cHjGyaNGi2r17d50wYYIp+8zq1atrpUqVNF++fG7ltrdSpUrpAw88oJ9//rlXr+1yY2ROe3953759deXKlV65B+fpes6oFS9eXO+++26dOnWqHj169Kbmzo0pxdOu99dff/2mn+P4+/vnam57u+222/TJJ5/UL7/80vJ9Gr6KqaL/pU0oXLxl7Nu3z+VhnQMDA7Vp06b6zDPP6NSpU3XHjh2mnVBv2bIl02HL/f39tUWLFtq/f39duXKlZQrpVFWnT5+eYeb69evryy+/rMuXL7dkJ2Xa6bkDAwO1c+fO+sEHH+ju3bvNjpepF198MVXuJk2aWLqAzu6+++5zZK5QoYI+++yz+s0331hy23AWHR2tIv8rLpowYYIeOnTI7FhZstls2rx5cxURrV69uv73v/+1dNGfnc1m0/r16ztu9I4YMUL//PNPs2Nly547MDBQo6Ki9KOPPrLEVIvZsdls2rhxY82TJ4926NBBR40aZdkOPWc2m03btGmjItc786xeHOosKipKRa53AD/11FO6ZMkSS3VCZqZr164qcr0o4O6779Zp06b5xIVojx49VOT6wxNdunSxdHGos3vuuSdVbl847qiq3n333So3OhrvuecenTFjhp48edLsWNm666670n0urVr05ywxMVFFrhe0DhgwwPLngXadO3fWvHnzamxsrI4bN84nPpM2m01btWrlKJBfuHChT+y7bTabNmzY0HGsXL9+vU8cK5OTk7V+/foaGRmpY8aMualTKuWmq1evauPGjfW+++7TL774Qk+fPm12JJdcvnxZW7durc8884wuXbrUJ/Z/qqoXL17UyMhI7du3r65atcry1zl2Fy9e1MTERB00aJDPfCZVr+fu3r27Dh8+XDdv3uwTxxvV67nvueceff/99y1fQOzs0qVL+tBDD/lMMZfd5cuX9YknntApU6b4xLmr3ZUrV/SFF17QL7/80mf23arXjzuvv/66fv311z5xXmKXlJSkgwcPtlzfdnaSkpL03Xff9YmCVmdJSUk6bNgw/fnnn33mWKl6PXe/fv10wYIFeu7cObPjuCwpKUkfeughHT58uGWKtlyRkpKiHTp00C5duuiYMWN0586dPnPMvO+++zQwMFA7dOiggwcP1nXr1vnEZ9T5waFy5crpI488ojNnztRjx46ZHS1LGd2/dC60tOq1RFJSklapUiXd/Us/Pz9t2rSpvv7665Y9Lj377LOZ3tv28/PTZs2a6RtvvKGrV6+21H7++++/z/bevD3/gAEDdM2aNZb47J4/f97lKXXz5Mmj7dq106FDh+rGjRtN229eu3ZNr1y54riP6WorVqyY9uzZU6dMmWLKA7k7d+7UrVu3au/evd0uljMMQ5s2bar9+/f3+kMNK1eu1OXLlzsexHG32QfymThxoteumWw2my5btkwXLFigjzzySI4KFcuUKaP33XefTpkyxSfugd4KbkbhoqHXC+NgYYZhhInIARGRAwcOSFhYmMmJ4KmuXbtmOIWNYRhSo0YNadKkiTRp0kRuv/12qVu3rmWmaUpMTEw1ZVC1atUcw9i3bdvWElOipnXt2jWpUaOG7N69W0JCQqRz586OKVSsMt1YRi5evCgVK1aUPHnyOKa+6tSpk2WmGsvM0aNHpW7dutKqVSuJi4uT6OhoS69nu927d8vDDz8s0dHREh8fLzVr1rTMdEZZ2bt3rwwfPlzi4+Olffv2pk996qr9+/fL3LlzJT4+3lJTMGXn4MGDsnLlSomKirLUVEbZOXz4sPzyyy+Wmq7QFYcPH5Yff/xRoqKipEiRImbHcdmRI0fkq6++kri4OJ86Vzty5IhMmjRJ4uLipE6dOj6xDxS5ftwZOXKkxMbGSosWLUyfUsdVx44dk8GDB0t0dLS0bdvWZ/bfx48fT5XbCtPkuuLUqVMybNgwiYmJ8ant5MyZM/Lxxx9LTEyM1K1b12c+l+fOnZMvvvhCYmNjpUyZMmbHcdmFCxfk+++/l06dOllq6r/sXLx4UbZt2yaNGjWyxJRorrp06ZKcPHlSwsPDzY7ilitXrsi1a9ekYMGCZkdxy7Vr18TPz88yU/u6ymaziWEYPrP/s1NVn8sMAABgRSkpKaKqPnMdb3ft2jX58ccfpUWLFpaZdtsVycnJ0qdPH6lTp4506tRJqlSp4jPntYmJifL777877ll27NjR1OmrXTVu3Dh54oknROT69M/2+5cdOnSw9D2Iffv2yW233ZZqCuPw8HCJjIyUyMhI6dChgxQrVszEhBlTVWnevLn8+uuv6V4LCwtz5O/YsaPl8r/99tvSr1+/TF+vUKGCREVFSVRUlHTo0MEy/RZr166Vpk2bZvk7hmFI48aNHdM/N2nSxPT+i7Nnz0rFihXl9OnT2f5uaGioREZGSnR0tHTu3FlCQkK8kDBjqiqNGzeW33//3aXfr1atmsTGxkpMTIy0bt3atJqUa9euSc2aNWXXrl0u/02RIkWkffv20rFjR+nYsaNUq1bNZ45Zt4qDBw869+2Gq+rBnC6TwkUfQOHirWHRokUSHx8vItdP4pyLFBs1aiSFChUyOWHGVq1aJXfccYd07NhRIiIipFOnTj5xk2nNmjWyYsUKiYyMlAYNGvjMzbx9+/bJqVOnpH79+j6TWUTk9OnTkj9/fp8pZLDjxhIAAAAAAAAAAIBvSU5Oll27dvlc0Yq9ULR27doSERHhU4WiDz74oMyePVvatWvnKLb0hfU/f/586dKli4iI5M2bV9q0aSORkZESFRUlNWrUsGz+U6dOSaVKleTs2bOOf8uXL5+0a9fOUaxYtWpVS+bv3LmzLFu2LN2/h4SEONZ9ZGSkhIaGmpAuc/3795eBAwdm+Jqfn580a9ZMoqKiJDo6Who2bGiZe/lfffWVdO3aNdPXAwMDpX379hITEyOxsbFSuXJlL6bL3IcffijPPPNMlr+TL18+ad26taNQsX79+qYXuP7bUbj4L0Xh4q1h0qRJEhoaKrfffrtPjERnd+rUKSlSpIhlDrwAAAAAAAAAAAAAAO9ISUmRVatWSbNmzXxqEBObzSZ33323lC1bViIjI6VNmzaSL18+s2O55NVXX5WhQ4dKzZo1HYWKrVu3tvwsPj/++KO0a9dORK6Pqti0aVOJjo52FPtZtejsxIkTUrFiRblw4YLj30qWLOkoVIyIiLDciJwi17fxBg0ayB9//JHq38PCwhyFih07drTcTDPnz5+XypUry/Hjx1P9u7+/vzRt2tRRqOhr+5x/g5tRuOhbY2wDPuzhhx82O4JHrHgABgAAAAAAAAAAAADcfP7+/tK2bVuzY7jNz89PvvjiC7NjuM1ms0nt2rVl//79Uq5cObPjuExVZcyYMXL//fc7iv2KFy9udiyXDBs2TC5fviytW7d2FCvWq1fP8oM7zZkzR/744w/x8/OTFi1aOIoV69SpY8nROO2GDx/uKFqsW7euo1CxTZs2lpnyHN5D4SIAAAAAAAAAAAAAAABgMj8/P7n33nvNjuGRL774wvLFfmmpqrRr10769u0rRYoUMTuOW3bt2iUzZsyQyMhInxmQ6vLly3L+/HmZOXOmtG/fXkqUKGF2JJiMqaJ9AFNFAwAAAAAAAAAAAAAAAADMcDOmivatUmcAAAAAAAAAAAAAAAAAAODTKFwEAAAAAAAAAAAAAAAAAABeQ+EiAAAAAAAAAAAAAAAAAADwGgoXAQAAAAAAAAAAAAAAAACA11C4CAAAAAAAAAAAAAAAAAAAvIbCRQAAAAAAAAAAAAAAAAAA4DUULgIAAAAAAAAAAAAAAAAAAK+hcBEAAAAAAAAAAAAAAAAAAHgNhYsAAAAAAAAAAAAAAAAAAMBrKFwEAAAAAAAAAAAAAAAAAABeQ+EiAAAAAAAAAAAAAAAAAADwGgoXAQAAAAAAAAAAAAAAAACA11C4CAAAAAAAAAAAAAAAAAAAvIbCRQAAAAAAAAAAAAAAAAAA4DUULgIAAAAAAAAAAAAAAAAAAK+hcBEAAAAAAAAAAAAAAAAAAHgNhYsAAAAAAAAAAAAAAAAAAMBrKFwEAAAAAAAAAAAAAAAAAABeQ+EiAAAAAAAAAAAAAAAAAADwGgoXAQAAAAAAAAAAAAAAAACA11C4CAAAAAAAAAAAAAAAAAAAvIbCRQAAAAAAAAAAAAAAAAAA4DUULgIAAAAAAAAAAAAAAAAAAK+hcBEAAAAAAAAAAAAAAAAAAHgNhYsAAAAAAAAAAAAAAAAAAMBrKFwEAAAAAAAAAAAAAAAAAABeQ+EiAAAAAAAAAAAAAAAAAADwGgoXAZP88ccfcuXKFbNjeOTUqVNy6dIls2O47dChQ3L27FmzY7ht06ZNkpSUZHYMt5w+fVp27txpdgy3bdq0SS5evGh2DLecPHlStm/fLqpqdhS3bNiwQc6cOWN2DLeoqvz0009y9epVs6O4RVVl+fLlPnnM+fnnn+XYsWNmx3Db4cOHZe3atWKz2cyO4raff/5ZTpw4YXYMtx0/flx+++03n1znq1ev9snzqk2bNvnktrJ9+3Y5fPiw2THctm3bNvnnn3/MjuG2P/74wyfX9/r1633y+PPrr7/KqVOnzI7htp9//tnnzgtFRNasWeOT15dr1671yfX9xx9/yMmTJ82O4bZdu3bJoUOHzI7hthMnTvjkNb3NZpN169b55Dnh5s2bffKc8O+///bJY31SUpL8/vvvPteXIiKyceNGn91W9u/fb3YMt6mqrF69Wq5du2Z2FLft3r1b9u7da3YMj6xdu1ZOnz5tdgyPrF69Ws6fP292DI/8/vvvcvToUbNjeOTMmTOyZs0aSUlJMTuKR/7880/ZvXu32TE8tmPHDtm3b5/ZMTx26NAh2bp1q0+eF4hcPwdeuXKlTx6r7P744w+fvE61O3LkiE9/Bq5everTn4GrV6/69D70yJEjcuHCBbNjeOTixYty+fJls2N4RFV9dpu/FVG4CJjkt99+k5CQEOnevbvMmDHDp07IbDabVKhQQXr27Clz5szxmc4yVZWwsDCJiYmRiRMnyvHjx82O5JLly5dLaGio3HPPPTJr1iyf6PgoVKiQJCQkSPXq1eWVV16RNWvW+MSNg23btklISIgkJibK5MmTfWIbKVy4sCQkJEi1atXkpZdektWrV/tEB83BgwclNDRUIiIiZPTo0T7ReW0YhsydO1dCQkLkjjvukE8//dQnthHDMGTevHlSvHhxSUxMlPHjx/tM8cuhQ4ekVKlS0qxZMxk4cKDPFKaFhIRIz549pXTp0vLggw/KrFmzfOY4v2/fPilRooS0aNFC3n77bdm0aZNPXLwVK1ZM7rnnHgkLC5PevXvL/PnzfaYQ/aeffpLixYtLXFycjBs3zmc+n2fOnJGSJUtK69atZfjw4bJjxw6f2FZERMLDw6VJkyYyaNAgn9nG/fz8pHz58tK4cWN58803ZcOGDT6R+9q1a1K2bFm5/fbbZeDAgT6T+/Tp01KqVClp3ry5vP322/LHH3/4RO59+/ZJaGiotGnTRoYNG+YzD7ds375dQkNDpUOHDjJy5Ej566+/zI7kkq1bt0pISIh07NhR3nvvPZ/pJN+1a5eEhob6XO6TJ09KiRIlpG3btjJixAif2U4CAgKkYsWK0qRJE3nrrbdk8+bNPvG5LFy4sERFRUn16tXl5Zdflp9//tknrjP9/Pzkgw8+kLJly8pjjz0mixcv9pkHuLZs2SIhISHSpUsXn+mPEBHJmzevVK1aVZo2bSpDhgyRbdu2+cQ2HhgYKK+99pqUL19ennnmGVm2bJnPPDS8YcMGx7YyadIkn3nYokCBAlKnTh2pX7++vPHGG7J+/XqfuL43DEOmT5/u6Jv9/PPPfeb6vkCBAlKrVi2pXbu29O3b16eKunbv3i2hoaHSvn17nzo/FLl+36d48eLSuXNnGT16tE8Vspw7d05KlSolTZs2lbfeestnrpdFrp+7PPvss46+uDlz5vjEfRQ7++e1Zs2a8tJLL8nKlSslOTnZ7Fguy5cvn9x2221Sp04defXVV33m3NGuWLFiEhERIZUrV5Y+ffr41HmByPVz4AkTJkiJEiUcxypfK/4+fPiwo19g1KhRsmvXLrMjuaVgwYLStGlTqVOnjrz22mvyyy+/+MR5jl1QUJA8++yzUrlyZXnuuefk+++/96lC2MDAQHnwwQelVq1aPrkPsvefxsbGyrhx43zq4Ud/f3+pV6+e4zrWV65NRK7XjSQkJMh//vMfWblypU9tM7ckeyUpzbpNRMJEREVEDxw4oLg1JCUlably5dT+/zYgIEA7d+6sH3/8sf7zzz9mx8vWM88848geHBysPXr00Dlz5uilS5fMjpal3r17O3L7+flpu3btdPTo0Zb+bF24cEFDQkIcuQMDAzUmJkY/+eQTPXz4sNnxMjVlyhRHZhHRUqVK6WOPPaaLFy/Wy5cvmx0vQ8nJyVq1atVU20jr1q11xIgRumvXLrPjZWrSpEmp1nWJEiX0kUce0YULF1r2M2mz2bR+/fqpctevX1/feOMN/e2339Rms5kdMUOHDh3SvHnzOjIbhqEtWrTQoUOH6tatWy2b+59//tGgoKBU67tBgwb6+uuv66+//qopKSlmR8xQSkqK1q1bN92+5OGHH9Y5c+bouXPnzI6YqcmTJ6fK7e/vr23bttVhw4ZZeltJTk7WGjVqpMoeFhamjz32mC5YsEAvXLhgdsRMTZs2LVXuoKAgjY6O1g8//FD37dtndrxMnTt3TosVK5Yqe8OGDXXAgAGW3h+qqrZt2zZV7qpVq+oLL7ygP/zwg167ds3seJnq2bNnqtzlypXTp59+Wr/55hu9cuWK2fEydffdd6f7bD7xxBOWPrdSVY2Pj880t5XPU1q0aJFuO3nqqad0yZIlll3fycnJWrNmzVS5K1WqpH369NFly5bp1atXzY6YoaSkJK1YsWKq3Lfddpu+8MILumLFCk1KSjI7YoauXr2qFSpUSJW7Ro0a+tJLL+lPP/1k2f1gcnKyVqtWLVXumjVr6ssvv6yrVq3S5ORksyNmyGazaevWrVPlrl69ur700kuWzq2q+uijj6bKXbFiRf2///s//f777y27fauqjhs3LsPrzAULFlh2/62qun37djUMI1WfVbdu3fTTTz/VEydOmB0vU8nJyXrbbbel649499139a+//jI7XpZeeOGFVNtKlSpV9D//+Y+uXLnS0p/N1atXp8pdqFAh7dmzp37++ed65swZs+NlKikpKdXxx94v8c477+iOHTvMjpelvn37plrnZcqU0ccff9zS51eqqvv379eAgABH7jx58mj79u111KhRlu4vVE3/+QwNDdUHH3xQ58yZo+fPnzc7XqaSk5O1evXqqbJXq1ZNX3zxRf3xxx8te56lqnrp0iUtXbp0quy1atXSV155RVevXm3p/aJq+uv88PBwffLJJy3/OVVVXbhwYarsAQEBGhERoR988IHu2bPH7HjZ6tOnT6r8xYoV03vvvVdnzpypp0+fNjteth5//PFU+UNCQvSBBx7Q2bNn69mzZ82Ol60PPvggVf6CBQvqnXfeqZ9++qkeP37c7HjZ+vPPP9XPzy9VX3S7du10xIgR+ueff5odL1s2m02bNWuW4fW11c8p7YYPH54qf8mSJfXhhx/WefPmWbpP3e6HH35Ilb9w4cLao0cPnT59up46dcrseNlatmxZunOehx56yGfWf9p9aOPGjXXgwIG6ceNGS98fUFV9//33U12btGzZUocNG2b5axPV1PeUQkJC9OGHH7Z8n4cVHDhwwHl7DdPcqInLjYXQKFyEZz766KNUByHn1qxZMx06dKju3LnT7JgZ2rNnT6qTYOcO4Z49e1q2iPGvv/7KMLeIaNOmTXXYsGGW7HAaPHhwhpntnZPDhg2z3MVHRjcg7a1AgQJ655136rRp0yx3wpu22Mi51alTR/v166fr16+31IliUlKSli9fPsPM+fPnt+xNmjlz5mS6rsPCwvSpp57Sb775xnI32dN2Ijm3SpUqWfYmZFa5S5QooQ899JAliwHnzZuXae6AgADt2LGjjhw50nLHy2vXrqUqhE7bKlSooE899ZQlC3dmzpyZae6goCCNiorS0aNHW67TN6MbG2n34X379tWff/7Zcp1db7/9dqa5y5Ytq48//rguWrTIctvK8uXLM81dtGhRvffee/WLL76w3I3frVu3pipoyOgcZerUqZY7bm7bti3T3Pnz59cuXbroxIkT9ciRI2ZHTWX9+vWZbif58+fXhIQEHT9+vB46dMjsqKmk7fBMmzsxMVEnTJhgudxffPFFprkLFiyod9xxh06ZMkWPHj1qdtRUJk6cmGnuIkWKaM+ePXXatGl68uRJs6OmMn78+ExzFytWTHv16mXJ/WDaYn/nZr/B+OWXX1ruvPC7777LNrcVCzF2796t/v7+mW7f99xzj86cOdNy28mVK1c0PDw8y+PO5MmT9dixY2ZHTadHjx4Z5rbfwB01apTlzmVV0z8A6txq1aqlffv2teSDZ4cOHUr3oJy92W8YfvXVV3rx4kWzo6bToUOHTK81IyIidMyYMfr333+bHTOdTz75JNNt5bbbbtP//ve/lrzJf/z4cQ0ODs4wt73IeMqUKZYsEEl7M9m51axZU1955RVLXmsePnxY8+XLl2HuwMBAjYqK0g8//NCS2/mMGTOyvd60akGX8w38jM5Z7r//fssWc61YsSLb6yArXr+pXi98aty4cZbH0ldeecWyD71k9OC5vdkLpkeOHGm5+0B2+/btS1XkndFx1cpFpJcvX05XdGxv9vtwQ4YM0S1btljq3pCz++67L9Pt3xeKv7/++utM8xcvXlzvu+8+y+47Va8PQhMaGpph/qCgII2JidGPP/7Y0rUeaYvX015HjRw50rIPVdlsNm3evHmW63/s2LF68OBBs6NmKKt9aLly5fSZZ57Rb7/91nL3S1WvP7RRsmTJTPc9Vn7g9Nq1a1q5cuUMz3m6deumU6dOtVwdgxVQuPgvbULh4i0rqxPhtJ0fffv21XXr1lnqhDjtaDUZdThZsYgxu9wionXr1tU333xTN2/ebIl1fvbsWS1SpIjL28ratWst0ZGddoSGzC66O3bsqKNHj7ZEJ1naJ9cza+Hh4frMM8/od999Z4kCtY8//jjbzPaLi/fee0/37t1rdmRNSUnR2rVrZ5u7YMGCetddd1nmya6sOpGcm9WeSEs7WmRmLSAgQDt16qTvvfeeJQq5bTabNmjQINvcItdH9ujTp49lRk3LqijAueXNm1djYmIsMzJgSkqK1qpVy6XsNWvW1P/+97/6ww8/WGJfmNWNDecWGhpqqae+z549m27UxYyac5GXFUZdzmj0q8yO9Z06ddL333/fMh3Ud911V7a57SMdWekJUVfOYw3D0GbNmunbb7+tf/zxhyXOZdOOuphZu/3223XgwIH6+++/m57bZrNpy5YtXc795ptvWiK3q/tw5+1k06ZNpufO6qGnzD6X27ZtMz13RqMuZrYf7NChg2VGZko7sltmLTAwUCMjI3XMmDG6f/9+s2NnOBpqZrmjo6MtdVPowQcfzDa3c6GUFda3quqYMWNc+ly2atVKhw8fbpkb6X/88YdL+2+rPZzo6r6wTJky+sQTT+jSpUstcd2jqvrss89mmztfvnyamJiokyZNskzBa9qRZTJr9hHRN2zYYIlt5erVq5kWFju3kJAQffDBBy010szLL7/s8n7FSufhWd1Mdm72Yt25c+dappA+7aiLmbX69evr66+/bpl+5eweTnQ+z7IXdFmlmCKjURczO/bbr5V3795tdmyHzApX0jYrXQfZLVq0yKXs9iKoWbNmWerhkawePHdu9iI0q814kVWRt3Oz6iikWRUdO7eKFStacmaDnTt3Zjpwi3NzHs3TStu/zWbTpk2burTvtBfCWuE+l7Nhw4a5fG7Zv39/y822k9VD6s7NPhqm1YrRsip+dW6NGzfWN9980zLn9nbOs0Zm1goVKqR33XWX5R7uHTFiRLbZQ0ND9eGHH7bcQ20TJkzIMre/v7+l6hisgMLFf2kTChdvaa7syJ1bWFiYPvPMM5YYzeu3335zOXeBAgW0Z8+eOnfuXNOLGDdt2uTWOq9ataq+/PLLunbtWlNPYPr37+9W7rJly+pTTz1l6hMYV65c0bCwMLdyN2zYUAcOHGjqjfaxY8e6lblIkSJ677336uzZs00bleTKlStatmxZt3LXq1dP33jjDVM7l7IaFSijZr/p+/7775t6UerKTZm0J7Zt27Y1fWqG5557zq3cIten4LN3hJl13Ek71YsrLTg4WBMTE/WTTz4x7Sk6VzvZ07ZatWqZXgz45Zdfup27SJEi2qNHD506dappI2RkNNV1ds0+cqfZxSRvvfWW2+v89ttv10GDBpk6ZURWo19l1mrXrq19+/bVNWvWmHZDbPPmzW7nrlq1qv7nP/8x9cZAVqNFZtYqVKhg+lO5WY26mFmzwlTYWY26mFmzj5K6cOFC0657Zs2a5XZuK0yFndWoi5k1+2jXZt4wymrUxcxajRo19L///a+pU0p/9tlnbueuV6+e9uvXz9QR37755hu3c9sLjsy87kk7dZsrrUGDBqbfzHL1gdu02/crr7xi6nFeVbVbt25uH3esMOp/ViPpZdScH/Qzc9SxAwcOaGBgoMu5rTQVtisP4ji38uXLa58+fUzvm81qJp+MWt68eTUuLs70h6COHTum+fPndyu7VUaRdOVmsnNzHl3JzNF9Dh8+7NKDrM6tVKlS+uijj+qCBQtMvbHs6sOJzq169eqmn2epul4A5dxq1qypL7/8sunbelajLmbWrDJbRHajLmbU7AMrWOEhblcfPHduRYoU0bvvvltnzJhh+sPzrhZ5OzcrjULqatGxcytUqJB2797dMlNKZzXqYmbbv5Ueslu6dKnb+x/7LDtmX3+oXh91MSQkxCf3n6quP6Se9jNslVkbXC1+dW7h4eH61FNP6ddff236Q2F79+7VPHnyuJzdeSRMsz+/WY04mlHLly+fJiQk6IQJE0yfPejq1atarlw5l7M3atRIBw0aZJnBr8xwMwoXDb1eGAcLMwwjTEQOiIgcOHBAwsLCTE4ET6xbt06WLVsm/v7+kidPHsfXK1euyEsvvSSefBaLFi0q8fHx0rVrV+ncubPkz58/13Nv3rxZli5dKnnz5k3XgoKC5P/+7/9k586dbi2zQIECEh8fL927d5eoqCjJly9frufetGmTLFmyRAICAtK1wMBA6d+/v+zatcvt5YaHh0vXrl3ljjvukJYtW4q/v3+u5t6wYYMsWbJE/P39UzU/Pz85d+6c9OvXz6PlFi5cWGJjY6VLly4SFRUlBQsWzNXcGzdulEWLFqXKa/+6ePFiWbZsmUfLrVixonTp0kUSExOlZcuWkidPnlzNvWnTJlm0aJEjr70lJyfLK6+8IikpKW4vMygoSDp27ChdunSRhIQEKVmyZK5mFhH5448/ZMGCBRmu6+XLl3u0zHLlykliYqIkJiZKmzZtJCAgIJdTX9+fzJ8/X/z8/MTPz08MwxBVlQEDBsjVq1c9WmbdunUlMTFREhISpFGjRmIYRi6nvr6+58+fLyLiWP6RI0fkww8/9HiZ1apVk/j4eElISJDmzZvn+rYtcj33vHnzREQcJ35Hjx6VcePGebzMIkWKSFRUlMTGxkp0dLQUL148t+I62HPbbDZRVbHZbGKz2eS9996Ty5cve7zc+vXrS2xsrMTGxkqTJk1yff+9efNmmTt3riOvPf/q1avlp59+8ni5hQsXls6dOzvWeYkSJXIxtcjWrVvlyy+/dKxr+7aSkpIiI0eOlKSkJI+WaxiGNGvWzLHO69Wrl6ufzx07dsisWbNERBznUPavq1atku+//97jZVevXl3i4uIkLi4u1489f/31l8ycOTPVv9nXy7lz52T48OEeLzs8PFzi4+MlPj5e2rdvL0FBQTnK6mz37t0yY8YMR1bDMBxNROSdd96Rs2fPerTskiVLSlxcnMTHx0unTp0kODg413Lv2bNHpk+fni6zPffHH38sBw4c8GjZRYsWldjYWImPj5eoqCgpVKhQruXeu3evTJs2zZE77dexY8d6nLtgwYISGRkp8fHxEhMTIyEhIbkTWkT27dsnn332Waavf/jhh3L06FGPlp0/f36JiIhwfDZLlSrlacx09u/fL59++qnjZ+frMlWVUaNGyblz5zxadr58+aRjx44SHx8vsbGxUrZs2Rzntfv7779lypQpjpzOX202m7zzzjse78Od13dsbKyULl06VzKLiBw8eFAmTZrk+Nl5fV+7dk2GDh3q0Tm4SOrtOzo6WkJDQ3Oc1+7QoUMyceLEDF+7du2avP3222Kz2TxadrFixSQmJkbi4+MlMjJSChcunJOoqRw+fFgmTJjg+Nl5X5KcnCxvvfWWJCcne7TsUqVKpdp/52Z/xNGjR+WTTz5Jtc923ocPGTLE489lWFiYJCQkSEJCgrRr1y5Xj5cnTpyQjz/+2HGtY/9q/37s2LGye/duy+U+deqUfPTRR47rNOf8fn5+snDhQlmxYoVHyy5ZsqTEx8dLYmKidOzYMVf7f06fPi0ffvihI6f9utjeduzYIWPHjvVo2YUKFZLo6Gjp0qWLREdH5+rn8uzZszJ69OgMc9v7I15++WWPPpt58uSRdu3aOa7tw8PDcy33uXPn5IMPPki1jtOu808++US2bNni0fJr1qzp6P9p3Lix+Pn55Uru8+fPy/vvv58qZ9q2bt06x7mXu4oUKSKxsbGSmJgokZGRuXZOeOHCBRk1alS6z6TzZzMpKUn69u3r0fHHMAxp2rSpJCQkSGJiotSoUSNXrtcuXrwoI0eOTLXvc95/23+eNm2abNy40aP3CAkJkdjYWElISJDOnTtLgQIFci23SMbXDfbvDxw4kKO+oIYNGzr25fXr18/xOr906ZKMGDHC8bPz8tJeR8yYMUO2bt3q0fvkzZtXOnXqJPHx8RIXFydlypTJQWqRy5cvy7vvvuvS76akpMjgwYPl2rVrHr1Xbp5nXb16Vd555x2Xf//y5csydOhQj9+vePHiEhMTI3FxcTnKnpSUlGmOrO5JjRo1yuPr/Hz58kmnTp0c12+ebDPJyckyePDgTF/PKvvatWtlyZIlbr+nXY0aNRzbu7v9tikpKfL2229n+TvZ3Qv8/PPP3b7nZufv7y+tWrVy9A/ddtttLv2dqsqgQYM8es+0PvvsM4/uvYmIBAQESNu2bR35K1asmO3fuJPblf3u0qVL5eeff3Z5mc78/PykefPmjvxZHV/feuutdNtCRr+b9t+y+509e/akugZ0l337j4+Pl+bNm6frQx88eLDjmj2j444r32f1uqrKW2+9JefPn/cof4kSJRz9dREREY7zhKFDhzqOJWmP8bn9de7cubJy5UqP8tv7YxISEiQ2NlamTJkiSUlJ6c5JnL/P6jVPvl+3bl2qfjJ3BAYGSocOHSRv3rxSuXJlKVKkSLpzq6zOtVxp2f3+6tWrU/U7uZu/atWqUqNGDalWrZoEBwdn+B5pz3Fz83feffdd2bBhg0f5Q0NDpWbNmlKrVi0pX758qus15+uItD9n9r27r02aNCndvQ9XlS9fXmrXri316tWTMmXKpKuTsDd7jU1ut4kTJ0rfvn3dzl25cmXp0qWLdO3aVZo1a5br9x2t6uDBg879DeGqejDHC82N6kcaIy4ie548YedOy5cvn3bp0kWnTJmSq0MDezLqhTutQIECevfdd+u8efNydWQPd59Q96SFhoZq79699euvv861p/HdHenPkxYYGKgxMTH6ySef5NoT1p6MMuJuK168uGN6m9x60nfSpEk3NbNhGNqiRQsdNmxYro6yN2XKlJua+2aNIDl16tSbmrts2bL65JNP5vp0WTc7d7FixbRXr146a9asXH2q9Gbn9vPz05YtW+qQIUNy9ckiT0b/cbeFhIRor1699PPPP8+1Y6YnowC42wzD0CZNmuiAAQN03bp1ufIEqSejcnnSwsLC9LHHHtP58+fnyhRlc+fO9Upu+1Pr06dPz5VtxZPRQz1pwcHB2rVrV508ebIePXo0x7k9edrZk5Y3b16NjY3VcePG6T///JPj3J6MyuVJy+0pajwZxdKTZp+C75133tHt27fneD/u6nQyudFyc0ppV6eIzI3WsGFDfeONN3JlH75y5Uqv5W7cuLEOGDAgV0Z9+/nnn72S2X4ePnjw4Fw5T1m7dq1Xcuf2aBfuzJKQk2YfxSu39t8bN270Su4CBQroHXfckWujo2zdutUruQsWLKjdu3fXadOm5cqoOjt37vRK7vz582vXrl11ypQpubK+//rrL6/kdp7COzemhdq7d69XcotcP+68+eabuTI69/79+72Wu3Tp0rk2FfbBgwe9ljswMFAjIyP1o48+yvHoeocOHfJabhHRKlWq6AsvvKA//vhjjkaoO3LkiFdz20c0HDt2bI7W+bFjx7yaW+T6NfKTTz6Zo9GuT5w44fXcIv+bXtHTc/FTp06Zkts+qp6n51lnz541JXdOs1+4cMG03PbWqFEj7d+/v65fv97l66DLly+bnlsk9ZS6roxsnJSUZHpm51a1alV94YUXdPny5VmOEpySkmJ61oyafRTSrKajNTtjVq1SpUqZTint7mjsZjTnKdXt9y3cHVHTzBYUFKTR0dH60UcfuT2SqRWaYRg+sZ3QaLTrrUSJEvroo4/qokWLTJvNxluYKvpf2oTCxVvCyJEjvbZj9Pf31w4dOugHH3yQ407VDz/80Gu5CxQooPfcc0+uFDF6M7eIaOHChbVXr145Lqrzdu7cKqzzRsGlc7MPIT1p0iQ9duyYx7m9UXDp3GrUqKGvvvpqjqdWu9kFl87NXug6bty4HBe63uyCS+dmv5n32Wef5bjY6NNPP/Va7oCAAO3UqZO+//77umfPnhzl9kYBoHMrX768Pv300zmeYnL69OlezW0v3BkyZEiOpqifOXOmV3OLiJYsWVIfeughnT17tp45c8aj3LNnz/Z67qCgII2KitLRo0d7vJ3PmzfP67n9/f21TZs2OmzYMN22bZtH24q3Chedm2EY2rx58xwV7yxZssTruUX+d0Nsw4YNHuX++uuvTcldp04dfe211/SXX37x6HjvyfTEudGqVKmizz//fLY3NDLjzcJF55bTKaW9Wbjo3OzT73311VceFXR7s3DRuZUpU0Z79+7t8bSB3ipcTNvsU6Z7OvWPtwoX07acTnXoyTTtudFyWtCwYcMGr2e2T1s7fPhw3bFjh9uZVVU3b97s9dz+/v7avn17HTVqlO7evduj3Nu2bTNlfbdp0yZH0wR7q+AybbMXA27atMmj7Xv37t2m5K5QoYL26dNHly9f7tH+xJsFl87Nfm3v6VTYf//9tym5Ra7vCwcNGuTRdaY3Cy7TtuLFi+v999+vc+bM0fPnz7uV+/Dhw6bltq/zgQMHul2se/ToUVNzBwcHa7du3XTy5Mlu9XOaVbjo3DwpwDSrcDFtq1Gjhr700ksuT8tsZuFiRtldPUe0QuGicytdurRL1xNWKVx0bnny5NH27dvryJEjM72XYrXCRedWpEgR7dmzp06bNi1df7lVCxedW0ZFdKrWLlx0bvYppadOnaonTpzwuYI0+30Lf39/07PQaDSa1VtwcLDeeeedOm3aNI+uY62OwsV/aRMKF28Jw4YNM23n2KhRI33rrbd0+/btbuceMWKEKZkLFiyo99xzj3711Vce3YB87733TFvf+fPn1zvuuENnzJjh9uhpo0ePNvVAWrNmTe3bt69u3brVrdwfffSRaZntN5hGjhzp9k1fbxdcOrcyZcroE088oWvWrHErs6r3Cy7tzTAMbdasmQ4fPtyjG9XeLLh0bvabed9++63bmVW9W7iYtkVERHi071ZVnTZtmimZ/fz8NCoqSrds2eJR7s8//9yU3Hny5NFOnTrp/PnzPboB6a2RCzNqt912m7722mseXQB9+eWXpuW277+XLFnidm4zChedW1BQkD777LNur/MFCxaYmltEtGnTprp+/Xq3ci9evNj03JUqVdI5c+a49fk0q3DRuZUpU0YnT57sVgGjWYWLzi00NFQnTpzoVm6zChedW6lSpXTatGlubSdmFS46twoVKri9fZtVuOjcqlevrkuXLnU5s6p5hYvOrU6dOrpixQq3cptVuOjcateurT/++KNbuc0qXHRuNWrU0GXLlrmV24zCxYy273nz5rn1ufzjjz9Mz127dm0dN26cSwUYdlu2bDE9d82aNXXQoEFuXdNv377d9NwVKlTQ5557zq2Hhv/880/TcxctWlR79eqlP/30k8u5zSq4dG72EcfGjx/vcvHlvn37TM8tcv1c9j//+Y/Lo6GbWXDp3OwjGrq6rXh7pMisWrly5XTYsGEuzZLj7ZEis2qGYWhsbKxLD5gfP37c9LzOrVChQjpixIhsH4KySuGic6tWrVq2/YZWKlx0bg0aNNDVq1dnmttqhYvOrVy5cjp79uwMz7esWLjo3Pz8/LR3797pRpG2cuGicytcuLCOGjXKcTz1hcJF51akSBEdM2aMXrt2zfQsnrTAwEA1DMP0HDQajUa7+S1PnjwaERGhH3744S1T63UzChfzCACvSElJMeV9y5YtKw0aNJAaNWpI6dKl3f77K1eu3IRU2Tt//rzMmDFDZsyYIWXKlJGRI0fKXXfdJYZhuPT3165du8kJM3fp0iX55ZdfpHDhwpI/f35JSEhwObdZ24mISO3atSUmJkYiIiKkSpUqbv2tWbmLFCkikZGREhMTI5GRkRIcHOzW35uVu27duhITEyMxMTHSqFEjt//eZrPdhFRZCwkJkejoaImJiZHOnTtL/vz53V6GXi/G95qgoCDp0KGDxMbGSkxMjFSsWNGj5Xg7d8OGDSUuLk7i4uKkUaNG4ufn59X390SBAgUkKipKEhISJDo6WkJCQjxeljf/ewsVKiQxMTGO3EWKFPF4Wd7MbRiGNG/eXBISEiQxMVGqV6/u8bK8vX0FBwdLZGSkJCYmSkxMjMfbiqvH1dxUokQJiYuLk/j4eImIiHD7mGOmunXrSnx8vMTFxUmTJk3c/v/u7f2gXUhIiMTExEhcXJx07txZChcu7Nbfm5W7UKFCEhUVJXFxcRIVFSWhoaFu/b1ZuYsXLy6xsbEer2+zVKhQQeLj4yU+Pl7atm0rgYGBbv29GfsTEZF69eo5cjdu3Njtz6UZuQ3DkKZNmzpy165d2+0cZuVu1qyZI3etWrVM+//urgYNGjhyN2zY0Gf2386fyzZt2khQUJBbf29W7sKFC6faf7t7nmLGdZrI9fO5Fi1aSGxsrMTGxrr92TQrt4hI+fLlHbnbt28v+fLlc/lvzcwdHBwsnTp1clzXh4WFufy3ZuY2DENuv/12iYmJkdjYWGnYsKHLf2tmbpH/bSsxMTHSvn17yZPHtdsaZucuWrSoREVFSUxMjFv7FbP2g3Z58+aV9u3bOz6fFSpUcOnvzF7ffn5+0rx5c8c5rav7Q7PXt4hI9erVHX1BLVq0kICAALMjuSSnx04z1ahRw3G+0rx5c/H39zc7kksMw5AmTZo4rvHr1q3rM+e2IiK1atVyrPemTZv6zHoX+d+1fnx8vERHR0vx4sXNjuSW8PBwR79W+/btJW/evGZHckvZsmUd2467541WkHb7KVGihCWOP66yX1evXbvW1PuYAOBrkpOTZdmyZXLs2DE5ePCg/N///Z+ULFnS7FiWQ+Ei4CXJycleeZ88efJIq1atJDo6WqKjoz26meTMjMJFf39/adq0qUREREinTp2kadOmbnfWeLtwMSgoSNq0aSORkZESGRnp8c0wb57wO3e0R0VFSbly5Txeljc7JuvVq+e4OdCsWTOXO6sz4q3cBQoUkIiICMfn0p2bGhnxVm77DY2YmBiPbqin5Y3c4eHhjo71Dh06eFRg6W358uWTTp06SVxcnMTGxkrZsmVzZbk3u9MyPDxcEhISJD4+Xtq1a+f2DenM3OxCuvDwcElMTJSEhASPClwyc7Nz582bVyIiIiQxMVHi4uJy7cLGG53bpUuXdhRZ5lbHqLc65WvXru3Yzj0p+DOLvXA7Pj5eYmNjc3SM97a6des6btg1adIkRzcxvNkBfNtttzlyt2rVymduNNauXdtxw8tXbhrZi7ftNyxq1qzpEzfqAgMDHZ/LuLg4n/lc5s+fXzp37uzYn/hKx1pwcHCq3CVKlDA7kkvy5s0rHTt2dOTO6XWDt9gL5+w3QmvUqJGjz6U399/2QpHY2Fhp2bJljvbf3sxdrFgxR6FIZGSkFCtWzONlefN63t/fX1q1auW4ZsvJtuLtAqmqVas6Cv48Kci183Zu5wc+o6KiPN4fejt3njx5pHXr1o4+CU+3FTMK6erWrevYxps2bepRv5UZuXOjP8WMAowiRYqkKpzzlUKigIAAadu2reMY5O5D5GaqWrWq45zWl6598uTJI23btnVkr1y5stmRXOar5+Qi/9vW7ddvnj5YbpZKlSo5srdu3TrX+hG95fbbb3fkr1evnk9cOzu7/fbbHdcY9evX97n8lStXTrX9+Mr+0q5gwYISGRkpcXFxEhMTI6GhoRIYGOhThYv2QSKGDh0qSUlJZscB8C9SsGBBiYiIcFyL59a931uV4UvV/P9WhmGEicgBEZEDBw74TMc1Ulu9erX8+OOPkpycLCkpKZKSkiLJycly5swZGTduXI6WHRYW5iiI6tixoxQqVCiXUousWLFCfvrpJ7ly5YpcvXpVrly5kqotXbo0V4oba9SoIZ06dZKIiAhp27Ztjv8bVq9eLStWrJBr165l2GbNmiVnz57N0XtUq1ZNoqKiJDIyUtq2bZsrBVJr166V7777zrGNOLfjx4/L5MmTc7T8GjVqOEbNa9WqVa4VGq1bt86R22azpfq6bNkyWb9+vcfLthf92Q/subkPXL9+vSxbtizdur506ZK89957OVp2jRo1HB3srVq1ytVOjd9//12++eabdOt76dKl8ttvv3m83LQjWOZ2J9imTZtk6dKlYrPZRFXFZrPJtWvXZMiQIR4Xd+d0dBFXbN68WZYsWSIi/+uEP3jwoHz44YceLzMsLMxR4NKhQ4eb8oTo9u3bZeHChY71YRiGHDlyREaMGOHxMhs3bizx8fGSkJBw0zq7du7cKQsWLBA/Pz8xDMPx9Y033pBz5855tMwGDRo4CuduVifXX3/9JV999ZX4+fmlyr5ixQr56quvPFpmSEiIxMXFSWJi4k0b4e+vv/6SefPmOTLbc6uqvPbaa3L58mWPllu3bl3HOvdkhKjs7Nq1S+bOnSsikmobNwxDli9f7vjMusveoZ6QkCBxcXG53qG+a9cumTNnjuNn52uxs2fPytChQz1edqlSpRz7lU6dOuXq9rJ792758ssvHcP2i0iqYfyHDRsm58+f92jZ9iJL+w278uXL51ruPXv2yOzZszPMLSLy0UcfyaFDhzxadp48eaRNmzaO3Lfddluu5d67d6/MmjXLkdf5q8j13AcPHvRo2YGBgdK+fXvHDS9XR89xxf79+2XmzJmZvj5q1Cg5evSoR8u2d5bbRyZwdxTLrBw4cEA+//zzVP9m36+oqrz99tseH39CQ0MlNjbWMVJrwYIFc5zX7uDBgzJjxgzHz877wpSUFOnfv79cvXrVo2U7j2TRoUOHXB2J49ChQzJt2rRU/2bPnpSUJP379/f4Jkh4eLgjd7t27XI19+HDh2Xq1KkZvpaUlCQDBgzwuMjEvv+Oj4+Xjh075ur+2zl32v1JcnKyDBw40OPzcOcRlnJ7xJkjR47IlClTMj3uvPPOO3Lx4kWPlh0QECDt2rVzXD/kZqHI0aNHZfLkyY5rnbRfJ0+eLAcOHPB4+c7FUM2aNcu1YnN7bpvNlq6pqnz99dc5uqYvUaKEREdHS2xsrERERORolHNnx44dk0mTJqXKa782ttlssn37dpk3b57Hyw8MDJR27do5ruurVq2aK7lPnDghEyZMSJfX/v2VK1dk1KhROXoP51kemjdvnqMHPu1Onjwp48ePT5fbOf8XX3wh+/bt8/g9SpUq5cjdqVOnXBn9+fTp0zJu3LgMt29727Bhg3z99dcev0f+/PmlU6dOjhEhc6Pf6syZMzJ27FjH/iOjfcrly5dzdH1/M/pTzp07Jx999FGGU3/Zs6uqzJ49W7Zv3+7x+9SsWdNxHt6iRYscb+MXLlyQDz/8MF1mkdTHn7///lsmTpzo8fvYzw3j4uIkIiIix/3fly5dktGjRzty2mV0DTFt2jSP17m/v7+0bt3acb6S02ufK1euyPvvv+/S7yYnJ8ubb77p8SAFxYsXl5iYGImPj8/xqPJXr151ObeIyOXLl2XAgAEev19YWFiq0eU8Pbe9du1alseVjD73qipDhgyRM2fOePSezus9MjLSo209OTlZRo4cme7fM8qb9t9WrVol8+fPd/s9Rf43cqt93btbOJ+SkuLSvjmrZU6ePNnjz2v+/PklIiLCcc1fqlQpl/5OVWX48OEevWdaEyZMkL/++sujv82XL1+q/K7MIvfOO+949F6ZWbRokaxatcqjv/Xz85OWLVs6tp9q1apl+v962LBh6Qr+M6vZcOffd+/eLZMmTXIz+f9UrFjRUeCd0UP/w4cPd1z7ZnTs8eR7559VVUaMGOFxP2Nmg0S8++67jmvftMfJ3P767bffyrp16zzKL3L9IWN7H+/PP//s6CPJ7Bwlt7/fvn27LFq0yOP8oaGhUr58ebntttukSpUqEhQUlO05lruvZ/U7O3fulG+//dbj/IGBgVK1alWpVq2aVK1aVYKDg7PN4nye62rL7G++++472bt3r8f5g4ODpWrVqlK1alWpWLGiBAYGprueyOhnV1/L6vf+/PPPHJ3ji1y/JqxYsaJUqFBBQkJCHNeaN7tduHBBTpw4kaPsIv+b3TI6OjrHD8da2cGDByU8PNz+Y7iqenazwpm7HyKa95uIhMmNOcJvlXnP8T+DBg3Kct77jFqePHm0ffv2OmzYMN28ebPabDZTsq9evdrt7PZWqlQp7dWrl3766ad68OBBr+Zeu3atR5kLFSqkXbt21XHjxum+ffu8mllV9ZVXXnE7c758+TQuLk4//PBD3bNnj9czX7x4UUuVKuV27ho1auh//vMf/f777/Xq1atez/3ee+95vK4/+ugj3bt3r9czX7hwQUuUKOF27rp16+orr7yiP/30k167ds3ruT/99FO3MxcvXlzvvfdenTFjhp48edLrmVVVn3jiCbdzN2nSRAcNGqQbNmwwbb/93HPPuZU5KChIY2NjdezYsV7fVztbvHix28fJiIgIHT16tO7fv9+03CkpKVqzZk23sletWlVffPFF/emnnzQ5Odm07F9++aXb67xjx476/vvvm7IPtEtOTtZq1aq5lb1YsWLaq1cvnTVrlp49e9a07G+++abb+5WGDRvqG2+8oevWrdOUlBRTcn/zzTdu5y5durT27t1b58+frxcuXDAl98aNG93OHRISovfff7/OmjVLz5w5Y0ruzZs3u527ZMmS+vDDD+u8efP0/PnzpuT+9ddf3c5dsWJF7dOnj3777bemnA+qqn799ddu565du7a++uqr+vPPP5u2H585c6bbuRs1aqQDBgzQ33//3bTzlPHjx7ud+/bbb9eBAweaen41duxYt3M3aNBAX3/9dV27dq1p++8pU6a4nfu2227TF154QZcvX65JSUmm5Hb3vNC+H3zooYd0zpw5eu7cOVNyb9++Xf38/NzKbb/G/Pjjj007p7148aKWLFnS7XXeuHFj7d+/v6nbeEJCgtu5w8LC9LHHHtP58+ebdsz86KOP3M4dHBysiYmJOm7cOP37779Nyb1v3z4NCAhwK7dhGNqsWTMdOHCg/vbbb6ZsKzabTVu2bOn2Oq9SpYr+3//9n37zzTd65coVr+dWVR0zZozbuYsVK2Z6f8qRI0c0f/78buUOCgrSqKgoHT16tCn9m3aPPvqo2+u8fv362q9fP/3ll19M2x/+888/GhQU5FbuokWL6r333quff/65nj592pTcqqqfffaZ2+u8Vq1a+sorr+iqVatM7VcZNWqU29mtcG6rqvrdd9+5nb1GjRr60ksv6cqVK01d7zabTevXr+9W9oIFC+qdd96pn376qR4/fty07KqqBw4c0MDAQLfyly1bVp944gldvHixXrp0ydT8e/bs0Tx58rid//HHH9dFixaZnv/SpUtu388qXLiw9ujRQ6dNm6YnTpwwNb+q6n333edWfj8/P23ZsqUOHTpUt27dauq+R9WzfkbnbejixYum5vdkGwoMDNTIyEgdPXq0qf3qdtHR0W7/P6hXr56+9tprumbNGlOPAZ7mr1Klij7//PP63XffmdYHqap68uRJLViwoNv5GzZsqK+//rr++uuvpp1v2mw2bdy4sdvZCxQooN26ddOJEyfqoUOHTMmu6tk9X3v+Ll26mHotboYDBw44r4cwzY2auNxYCI3CRXjm1KlTWrhwYZd2fGFhYdq7d2+dN2+eaR3tzmw2m7Zq1crlHXdwcLDGxsbqqFGjdMuWLaae/EZERLiU2TAMbdy4sb722mu6cuVK027MqKoePXrU5U69qlWrOjpPL1++bFpmVdV3333Xpcz58uXT2NhY0wosnV24cMHlGzNVqlTRPn366Ndff236uh46dKjLn8UuXbroJ598YvoxJSkpSStXruxS7vr16+trr72mq1evNv3CZ//+/S7dkLGfcE+aNEmPHDliamZV1cOHD2vevHmzzR0aGqoPPfSQzps3z7SCImc2m02bNm2abe7ChQvr3XffrZ9//rlpBUVpzZ4926VjTbNmzXTIkCG6bds20zuHVK8XXNatWzfb7IUKFdKePXvqjBkzTL2R4Wz69Oku7VOqVavmKBA1o2g7rdOnT2uRIkWyzZ03b16Ni4vTcePGmVpMbGez2bRZs2YurfPbb79d33zzTf3tt98ssZ137drVpdx169bVvn37mlqE5uzOO+90KbcViqKcxcTEuLQ/bNGihQ4ZMsT06wXV69t38+bNs80dEBCgERER+sEHH5h+HqvqetF83rx5NTY21jL7k6SkJK1QoUK2ufPly6cJCQk6fvx4Uzs07a5evarh4eHZ5g4KCtKYmBj9+OOPTT8HV1W9du2aS+fh/v7+2r59ex0xYoTu3LnT7NhudYTbi/utsh+8++67Xcpdvnx5ffrpp3XJkiWm37hVdf2avlChQnrnnXfq5MmTLXHt4+oDq/7+/tq6dWsdMmSIbtq0yfRjz+XLl7Vs2bIuZa9atao+99xz+u2335pWOOfM1YKuokWL6t13362fffaZ6cUhqq7fHA8ICNBOnTrpqFGjLLE/vHTpkpYpU8al7PXq1dO+fftaoj9FVfWFF15wKXeZMmVMf9jJmavFOPZrtrFjx1rimK+q2qdPH5fWeY0aNfS///2vZa6Tr127prfddptLn0/7+fju3bvNjq2qrheuWO3cVtX1+z558uTRDh066KhRo3TXrl1mx3b46quvXD7nevbZZy1zHLV7+umnXcrfuHFjffPNN0198Cwjrp4PWDW/qwNa2Iucvv/+e1PvG6a1c+dOlx6WKlSokN511106depUS5yP2bnaDyNyfZCIgQMHWm4bcrVo3QoPGWdkzZo1LuW39yl9/PHHlirW+vnnn13Kbx8gyip9HXZ9+/Z1KX/+/Pk1MTFRx48fr//884/ZsVVVdf78+S5lF7n+UKwVCkXt3C26r1mzpqmDL1kBhYv/0iYULt6ysjoABQQEWGJUxcwsWLAgy522v7+/tmjRQt944w1duXKlZXbcy5cvz/Zk8f7779fp06frsWPHzI7r8Pzzz2d5ghgdHa0ffPCB/vXXX2ZHdTh//ryGhIRkmrtSpUr67LPP6tKlSy1xQ8bunXfeyTRzUFCQRkZG6vvvv69//vmn2VEdzp49q8WKFcs0d7Vq1fT555/XZcuWWaojZuLEiZlmto8Y8cknn1jiZrqzxx9/PNPcFSpU0GeffdbUURcyk9XNgZo1a+orr7ximcIcZ99++22mucuVK6fPPvusLlu2zDLHGbusiv/sI1l+8sknevjwYbOjpjNv3rxM17m9Y9eK6zw5OVmrV6+e6XlJ27Zt9d1337VUZ4RdVqMt2p8aXrhwoelPDaeV1Wh0wcHB2rVrV504caLltvMNGzZkeayPjo7WDz/80JQRtrOyadOmLM8HrXaD1O6XX37JNLeVRrZIK6tChuLFi+t9991n+kitGfniiy+yvNZ59NFHdf78+Zbbn0yYMCHT3GXKlNHHHntMFy5caKnrBtWsR1ssVaqUPvroo/rVV19ZouDC2aRJkzLNbR+JeObMmZZ5MMFu4cKFmea2Yse93ZYtW9QwjEzPUdq0aaPvvPOOJYq2nWV3TV+jRg198cUXdcWKFZa6YauqGhUVlWnukJAQve+++3TmzJl66tQps6Om8v7772eaOzAwUDt37my5/ghV1V27dqm/v3+m2evXr699+/bVVatWWaIYys5ms2mTJk2yPP48+uijlnmI3FlWhRX58+fXhIQEHTdunOXOCw8fPqz58uXLMLdhGNq0aVMdNGiQ5YoQVFUffvjhTNd5WFiYPvHEE5YY6SmtrEZbtBfkvvfee5YqPLPLarTFkJAQfeCBB/TLL7+03Pm4ataFK1YaHS8jWY22aB+Jc+bMmZZ5aNiZzWbTBg0aZLqPadasmb799tv6xx9/WG4fo5r1aIv58uXT+Ph4/eSTTyx3rmuXVeGHL+TPquDYz89P27Rpo8OHD9ft27dbcvtRVe3Vq1emn9/KlSvrc889Z5lCoYxk1Q9jH5DDiv2MdtkVrVvtIeOMREZGZnn8smoftV3nzp2zPHcweyadrBw/flwLFCiQaf4KFSroM888Y4mBdNJKSUnRevXqZXktGxERoe+9956l6hjsHnzwwUyz26+v4uPj9eOPP7bc/QKzULj4L21C4eIt6ejRoxocHJxqxxceHq6PPfaYJTvEnCUnJ2c4ikeNGjX02Wef1fnz51uywyCjUYHsBaJDhw7VjRs3WvKC4+DBg+k6mCpVqqTPPPOMLl682LIniIMHD87wxMT+dLoV1/W5c+e0ePHiqXKXL19en3zySV24cKHlbjjaDRw4MFVmezHr6NGjLdnxqHp9dJq0o+pUrlxZ+/TpY8miP7u001/5+flpq1atdOjQoZa70ejsyJEjqW4O2EfPsdpT0WllNG1Xw4YN9c033zR92pzspH3Cu3jx4vrAAw/o3LlzLbsvUc24k7dx48Y6cOBAyx4n7WbMmJEqd6FChRxTtZg1DZorTp8+nW4EbvvohFa8YWeX0WioVi7edtalS5dUua0wdbUr7rjjDp/rMFRNP0WLfQpoKxZA22X0lL9Vpj7LSkajLdarV0/79etn6nQx2clotMWGDRtq//79df369ZbdD2Y02mL9+vUtfyMiKSlJK1WqlCp3zZo19eWXX9aVK1daqqjImc1m00aNGmXYcb906VLLddw76969e7rzQntxqNUK55wNGTIkVW57cb/ZU7VmZ/Xq1en6qxo1aqRvvPGG/vLLL5bdh2c0LXd4eLg+/vjjumDBAkufo9x///2pcttvLI8fP95yDyI6S1sM7efnpy1atNC33nrL0tebGW0r9oeDrXgj09lzzz2X7pqte/fuOmXKFD169KjZ8TKVtjjXXgD11ltvWf46+dlnn021zu0Ff7Nnz7Zk/73dtWvXtGrVqqmy165dW1999VVLPnTrLKPCFauOLpeWzWbT1q1bp8pun7Hixx9/tOx5ol3a0Z7sD1ROmjTJ0vsYu2eeeSZVfucHuKx8zW+XdrRFK00B7Yq0DwUULlxYe/bsafl+RbsdO3akGm3Rz89PW7durcOGDbN0saVdRvdvy5Urp08//bTlr/fsRo4cme4+nX3mHF+o78hotMImTZrooEGDLH1ubJfRdaB95HGrnzuoqr7yyiupsjs/5GiFadyzMmfOnHTr3vkhMCuNKppW2n2n8/nP888/b7mRma2CwsV/aRMKF29JL7zwggYEBGiHDh10+PDhli54Scs+OkOpUqW0V69eOmXKFEt3RNrZR4msXLmyPv3007pgwQJLHyztnnrqqVRFfzt27LD8tnLmzBktWrSohoWF6eOPP67z58/3iXU9aNAgx+fy3Xfftcy0rVmxTzlfoUIFffrppy1dzOps3LhxjilFRowY4RPbtarqY489poULF9YePXpYZmorV7z44ouOzpYZM2ZY+gaps+XLl2tAQIB27txZP/zwQ0tNO5AVm82mDRs21MqVK+sLL7zgE527dgsXLtTAwECNjo62zHSWrkhOTtYaNWo4CqKs/PRwWgMGDHCMEjVhwgTLTA+VnSVLljg6QX2hA8Xu999/V8MwLDd1dXY2btyofn5+lp0KJzO//PKL+vn5acuWLS1f5O/s22+/tezUZ1n54osvNDAwUCMjI3XMmDE+8xTwxIkTHVMpjx071ieuLVWvj7Zoz/3RRx/5zHnKxIkTLTmlYnbmz5/vOO740v5k06ZNahiG1q9fX1977TWfuGGi+r9R/cuVK+d4kM8XrjNVVTt27Jhq6mqrjsiS1vDhwx03p4YOHWrJ2Vcysn37dvXz83Pc2Pnuu+984saO/YGtYsWK6T333KPTpk3TEydOmB3LJe+++65jert3333XJ4oRVP838l+1atX0hRde0OXLl1tutNbMPPjgg46Rwq1eZOnM/jB8nTp1fKLgz9nUqVMdI82OHj1a9+7da3Ykl40aNconRpfLyPfff6/+/v7arl07HTFihOVG+M2Kfb8eHh6uTz31lM8UOtnZP6++8ABXRvbs2aMBAQHaqFEjHTBggM/0tdjZC47tU0D70jHKrlevXj5XbOns66+/VsMwtHnz5jp48GDLjoyaGfuDJVYehTk7ERERWqBAAe3WrZtOmjRJjxw5YnYkt3Tq1MmyU1hn59ixYxocHKzFihXTe++9V2fMmOEzn+GUlBStXbu248Eeq46enpm7775bRa6PDBwbG6tjxozxmX4yM92MwkVDrxfGwcIMwwgTkQMiIgcOHJCwsDCTEyGnVFWWLVsmzZs3l4IFC5odx21ffvmlVK9eXWrVqiWGYZgdx2XLly+X8uXLS+XKlc2O4jKbzSbLli2Tli1bSoECBcyO47I9e/bIpUuXfG4bWbFihTRq1EgKFSpkdhSX7dmzR65evSrVq1f3qXX9yy+/SM2aNX1qXauqrF69Wpo2bSoBAQFmx3HLr7/+Kg0bNvS53Nu2bZOyZctK4cKFzY7ilvPnz8vff/8tNWvW9KnPpYjIli1bpHz58j53fnL69Gk5dOiQT67zNWvWSIMGDSRv3rxmR3HLhg0bpFy5clK8eHGzo7hly5YtEhISIqVKlTI7ilu2bt0qxYsX97ncW7ZskVKlSklISIjZUdyyefNmCQ8PlyJFipgdxS0bN26UypUr+9w+/Pfff5dq1apJcHCw2VHcsm7dOqlZs6bP5V67dq3UqFHD57aT9evXS6VKlaRYsWJmR3HL5s2bpWjRoj7Xl7d37165ePGiz13TX7x4UdatWyctW7b0uWufFStWSIMGDXzu2LNp0yYpUKCAT/W1iYicOnVKtm/fLs2aNRN/f3+z47jlxx9/lPr16/vcdfLOnTvF399fqlSpYnYUt9hsNlm5cqU0b95cAgMDzY7jlr/++ksCAgKkQoUKZkdx22+//Sa33Xabz52viFw/R6xdu7bky5fP7Chu27x5s4SFhUnRokXNjuK2c+fOyd69e6Vu3bo+de5it2fPHgkKCpKyZcuaHcUjf/31lwQHB0uZMmXMjuKRQ4cOyfnz56VatWpmR/FISkqKrF69Wpo3b+5z58B269evl/Lly0toaKjZUTzy999/y6lTp6RevXo+uQ+6ePGi/Pzzz9KmTRsJCgoyO47bzp8/Lz/99JO0b99e8ufPb3Yct23cuFEuXrwoTZs2lTx58pgdxy179+6VVatWSVRUlM99fo8dOyZDhgyRqKgoadu2rc/dnzHTwYMHJTw83P5juKoezOkyKVz0ARQuAgAAAAAAAAAAAAAAAADMcDMKF/1yugAAAAAAAAAAAAAAAAAAAABXUbgIAAAAAAAAAAAAAAAAAAC8hsJFAAAAAAAAAAAAAAAAAADgNaYULhqGUcIwjDjDMAYahrHUMIwThmHojTbFxWXkNwyjm2EYHxuGsc4wjNOGYVwzDOOkYRhrDMMYYBhGqVzKu88pX1ZtX268HwAAAAAAAAAAAAAAAAAAt6o8Jr3v0Zz8sWEYdUVktYgUyODlYiLS7EZ73jCMx1T1i5y8HwAAAAAAAAAAAAAAAAAAyB1mFS46+1tEdohIZzf+ppD8r2hxtYgsEpH1InJSREJFpJuI9L7xe9MNwzinqktzIet8EemXxetJufAeAAAAAAAAAAAAAAAAAADcsswqXBwoIutEZJ2qHjUMo4KI7HXj720iMktE3lTVbRm8/q1hGEtFZJ6I+IvIaMMwqqqq5jD3GVXdksNlAAAAAAAAAAAAAAAAAADwr2VK4aKq9s/h3/8sIj9n8zvzDcOYKyJ3iEhlEWkgIr/n5H0BAAAAAAAAAAAAAAAAAEDO+Jkd4CZb4fR9ZdNSAAAAAAAAAAAAAAAAAAAAEbn1CxeDnL5PMS0FAAAAAAAAAAAAAAAAAAAQEZOmivaitk7fb8+F5bUxDGOjXB+90V9EjorIWhH5XETmq6p6slDDMMKy+ZVSniwXAAAAAAAAAAAAAAAAAACruWULFw3DqCcisTd+3KyquVG4WDHNzxVutLtEZLVhGD1U9R8Plnsgh7kAAAAAAAAAAAAAAAAAAPAJt2ThomEYQSIyQa6Piigi8loOF5kkIgtE5FsR2SIiZ0WkiIg0F5EnRSRcRFqKyDLDMJqr6tkcvh8AAAAAAAAAAAAAAAAAALekW7JwUUTGiEjjG99/qqoLc7i8Jqp6JoN//8EwjDEi8qWIdBaRGiLSX0RecHP54dm8XkpE1rm5TAAAAAAAAAAAAAAAAAAALOeWK1w0DONVEXn0xo/rROTpnC4zk6JF+2vnDcO4S0T2iEgxEXnMMIxXVDXJjeUfzOp1wzBcXRQAAAAAAAAAAAAAAAAAAJbmZ3aA3GQYxuMiMvjGjztEJEZVL97s970xNfTMGz8Gy/9GewQAAAAAAAAAAAAAAAAAAE5umcJFwzDuFpGPbvy4X0QiVPWEFyNsc/q+rBffFwAAAAAAAAAAAAAAAAAAn3FLFC4ahpEgIlPl+n/PYRHpmN30yzeBevn9AAAAAAAAAAAAAAAAAADwOT5fuGgYRkcRmSUieUTkpFwfaXG3CVFqOn1/yIT3BwAAAAAAAAAAAAAAAADA8ny6cNEwjBYiMl9EgkTkrIhEqupWE3IUFpGeN368JCLrvZ0BAAAAAAAAAAAAAAAAAABf4LOFi4Zh1BeRxSISLCIXRSRWVX/zYDk/GIahN1qFDF6PMgwjXxZ/X0Cuj/hY/MY/TVTVq+7mAAAAAAAAAAAAAAAAAADg3yCPGW9qGEYrEani9E8hTt9XMQzjQeffV9Upaf6+soh8IyJFbvxTPxE5axhG7Sze9piqHvMg7isiMt0wjLkiskpEdovIBREpLCItROQJESl343d3isgAD94DAAAAAAAAAAAAAAAAAIB/BVMKF0XkURF5IJPXWt5ozqak+bm1iJRw+nmUC+/5pnheVFhMrmd+NIvf+VFE7lXVUx6+BwAAAAAAAAAAAAAAAAAAtzyzChd9yYsi0lFEmotINbk+OmQREbkkIodE5FcR+VxEvlVVNSkjAAAAAAAAAAAAAAAAAAA+waDWzvoMwwgTkQMiIgcOHJCwsDCTEwEAAAAAAAAAAAAAAAAA/g0OHjwo4eHh9h/DVfVgTpfpl9MFAAAAAAAAAAAAAAAAAAAAuIrCRcAH/PTTT3Lo0CGzY7jtwoULsnLlSklOTjY7itsOHDggly9fNjuG286cOSN79uwxO4bbkpOTZdeuXWbHcJvNZpPDhw+bHcNtV65ckdOnT5sdw20nT570ydx79+6Vf/75x+wYbtu+fbv8+uuvYrPZzI7iliNHjsinn34qR48eNTuK2yZNmiQ//PCDXLt2zewobtm3b5988skncuDAAbOjuG3JkiWyZs0aSUlJMTuKWy5evCjz5s2T8+fPmx3FbWvWrPHJY+e+fftk69at4mszFly4cEF+/PFHnzsfV1VZsmSJT27jS5cu9clrtxUrVsiff/5pdgy3rV+/XjZs2OBzn83du3fL6tWrfe74c+HCBVm2bJlcvXrV7Chu++GHH+TChQtmx3Dbli1b5Pjx42bHcNuJEyd88hpfRGTDhg0+99kUEdmzZ4+cPXvW7Bhuu3Tpkk+eY4mIbNy4US5evGh2DLcdPHhQtm3b5pPrfNmyZT65ne/cudMnj/siIvPnz5ft27f73PaSkpIin3zyiU8ei5KTk2X06NGyefNmn1vvIiLTpk2Tr7/+2ifvrRw/flyGDRsmW7Zs8cl1v2nTJhk9erRP3h8Sud6HPmLECJ/c54hcv1c0bNgwn70nKnL9ODtz5kyfvAcjIpKUlCSjR4/22W1IROTHH3+UFStW+Nz9Abvjx4/LggULfPIcWUTk2rVr8u2338qVK1fMjuKRkydPys6dO82O4bF9+/b57Gf3r7/+8rl7qVZD4SLgA44fPy5ly5aVRo0aSf/+/WXt2rU+sfMLDg6Wfv36ScmSJaVXr14yc+ZMOXPm/9m76/Amsu4P4Cepuyt1b2mLlVKkSCkt9RZdXHcXX5yFxV0Xd9cFiru7u7s7xUuhUMn5/cE7eZM0MpOyncnvPZ/nuU/TJG2/DJOZO3fO3PnIdyxW3r17Bw4ODpCRkQFLliyBt2/f8h2JFQsLC0hISIDQ0FDo37+/zhRj6OvrQ7du3SAkJESaWxfWcbFYDL/++itERUXBmDFjdOaAyNDQEGJiYiA2NhZmzJihM8VGhoaGEBwcDLVr14Zp06bBo0eP+I7EiomJCfj7+0OFChVg6NChcOHCBZ1YT5ydnSEuLg6cnZ2hVatWkJmZqRMnCJycnGD+/Png7OwMERERMHjwYDh16pRObAtNTEygVq1aYGdnB/Xq1YP58+fDs2fFnmH9X+fp6Qlz584FDw8PCAsLg759+8LBgwchLy+P72gaWVtbQ5UqVcDR0RGaNWsGK1eu1Il9vpmZGSxcuBDs7e0hLi4Opk2bBvfv3+c7FisfPnwAV1dXqFixIgwbNgzOnz+vE/t8W1tbqF69Ovj6+kK3bt1gz549OlG4Y25uDkOHDgUHBwdo2rQprFq1Ct6/f893LI1EIhHs2rUL7OzspOu4rpx8efjwIZQqVQoiIiJgyJAhcPbsWZ1YxwsKCiAwMBACAgKgR48esG/fPp3Yjtva2kLFihXBzc0Nfv31V9i8ebNOFKe5uLhAgwYN5I6VdeHkkLm5OYwbNw7s7e2hfv36sHjxYp25WOTw4cNgZ2cHdevWhZkzZ8Ljx4/5jsTK58+fwdnZGapWrQpjx47VmQIvS0tLqF27NgQHB0O/fv3g2LFjOtEfB/hRcOHs7AytW7eG9evX60wR/ZcvX8DR0RFiY2Nh2rRp8PDhQ74jsWJiYgK//vor+Pn5Qffu3eHAgQM6c6L2ypUrYG9vD8nJyTB37lyduWDR1tYWatWqJV3murLPB/hxEZS9vT3Url0bJk+eDHfv3uU7EisuLi6QmpoKTk5O0KJFC53Z7wP8KC4OCQkBX19f6Nq1K+zatUsnTubr6enBrVu3wN/fHwIDA6Fnz546s67r6+vD06dPITw8HDw9PaFDhw6wdetWnSkCcXZ2hoSEBLCzs4Pk5GSYPXu2zvS7HBwc4MiRIxAWFgZeXl7QsWNHnVr2pUuXhunTp4Ovry8EBQVBz549Yf/+/Tqx3gMAeHl5wbp166TbnC5dusCOHTt0pghWLBZDXl4eVK9eHRwdHaFJkyawfPlynboIKTQ0FNq0aQMODg5QvXp1GDdunE4V8hoaGsKdO3fk9lu7d+/Wif0Ww83NDerUqQP29vbQqFEjWLZsmU6tQ/b29jB69Giws7ODxMREmDVrls7sAwAADAwMYMGCBWBvbw8ZGRmwaNEiePXqFd+xWLOysoKkpCQICAiAXr16waFDh3SqkDozMxM8PDygU6dOsHPnTp367G7ZsgVcXFygXbt2sGnTJp3pOwgKIlITeAMANwBAAMCnT58i+d9TWFiIZcqUQWY9AAB0cnLCNm3a4Pr16zE7O5vviCodOHBALreenh7WrFkTJ06ciLdv3+Y7nlppaWnS3GKxGKtVq4YTJkzAO3fu8B1NrWXLlsktc0dHR2zbti1u3LgRc3Jy+I6n0okTJ4qs4+3atcMtW7bg169f+Y6nkmJuf39/7N27Nx47dgwLCgr4jqfSqlWr5HKXL18ehw8fjleuXEGJRMJ3PJVGjBghlzs8PBwHDRqE586dE3Tu7t27y+UuVaoU/v7777ht2zZBr99DhgyRy62vry/dht+8eVOwy/zgwYNyuQEA7ezssGnTprhixQp88+YN3xGVKiwsxNDQ0CLZQ0NDsU+fPnjgwAH8/v073zGV2rFjR5HcFhYWmJ6ejvPmzRN0H7Zu3bpyuUUiEVauXBlHjBiB58+fx8LCQr4jKnXu3LkiyzwwMBB79eqFBw4cwLy8PL4jKiWRSLBSpUpyuV1cXLB9+/a4efNmQfdVRo8eLZfb3Nwc69Wrh4sXL8bXr1/zHU+lQ4cOFemPV69eHcePH483btwQ7Lb8+fPnaGxsLJc9ODgY+/Tpg4cPH8b8/Hy+Iyr17ds3dHd317ljN4lEgtWqVSuyHa9Xrx4uWrQIX758yXdEldq3by+X29DQEOPj43HatGl4//59vuOpNGXKFJ38bB47dqzI/icyMhKHDx+OFy5cEGzuDx8+oJWVlVzusLAw7N+/P544cULQx27x8fFyub29vbFbt264d+9ewfYNERHnzJlTpD/esmVLzMzMxE+fPvEdT6WXL1+iiYlJkW3KzJkz8cmTJ3zHU6t+/fpFjiP69++PJ0+eFGyfFhFx165dcrmtrKzwl19+wZUrV+L79+/5jqdSfn4++vn5FRlbGTJkiODHKCZNmiSX29LSEhs2bIjLli0T7PEyIuLHjx/R2tpa6THQwYMHBXsMhFj0WEJPTw9r1Kgh+P1+QUEBhoSEyGU3NTXFlJQUnDt3rqCP9V+9eoWmpqZFjuEyMjJwwYIF+Pz5c74jqpSVlYVmZmZy2Y2MjDA+Ph6nTp2K9+7d4zuiShKJBKtXr16kvxgSEoK9e/cW/Gf1/PnzRbIbGhpiXFwcTp06Fe/evct3RLVWrFhRJL+5uTmmp6fj/Pnz8dmzZ3xHVGvv3r1F8hsbG2NiYiLOnDkTHz58yHdEtT59+oS2trZFxhmjoqJw+PDheP78ecFu7xk9e/Ys8n/g4eGBHTt2xK1bt+KXL1/4jqjW8+fP0cjIqMh+KzU1FefNmyf4zwAiYtu2bZWuQyNHjsRLly4Jfh3auXNnkXUoLCwMBwwYIPhjb0TEq1evokgkUjrmcfHiRcEv/8WLF8tlt7a2xiZNmuCqVasEfWyFiJiTk4P29vbS7GZmZpiRkYGLFy/GrKwsvuOplZOTgw4ODnL9tsTERJw9e7ag+8vaevr0qex65oY/oybuZ/wSalS4SP59GzduLLKjZ5qBgQHGxsbilClTBHnQWqNGDZXZ/f39sUePHoI8wa6sIED2pGm/fv3wxIkTghv8VTZwKrujTEpKwrlz5wpycKZOnTpKc5uYmGBaWhouXLhQkIUBMTExSnM7ODgItviyoKAAAwIClOb29vbGHj164KFDhwRXFPDx48ciJxyZ5ubmhp06dcJdu3YJ7gTeixcvihRfyB44p6Wl4YIFCwRXFPDhw4ciJwVkm4+PD3br1g13796N37594zuuHFWfS+Zgv1KlSjhs2DA8e/asoLbj6vb3zGBjWloazpkzBx8/fsx3XCmJRIJVq1ZVm12oBZhnzpxRm9vZ2RnbtGmDmZmZ+PHjR77jyklNTVWZmzn5uGTJEsHtO5UNYMn2VRISEnDmzJn46NEjvqPKyc7OLjIArWwQ8fLly4IbxKpVq5bKZe7r64t//PGHIAtg/vjjD5W5bWxssEmTJrhy5Up89+4d31HlzJ49m9Wxm9BOeu3fv1/t9jAiIgKHDh0quH3nw4cPUV9fX+2xW+/evfHQoUOCOub8+vUruri4qMzt7e2NXbt2xV27dmFubi7fceWoOm4D+HGBzm+//YZbtmwR3EmtYcOGqczt4OCArVq1EmRRneLFcsr298uWLcO3b9/yHVXO9+/fixRyy24L69Spg9OnTxfc/h4RsUePHiqXedmyZXHQoEGC2xYiIl6+fFllbuai1k2bNgnuQhGJRIJRUVFKczMXQE+aNElw+01ExCVLlqhc5q6uroK9YPHLly/o5OSkNLdYLMaqVavi2LFj8dq1a4Lr1w4fPlzlMreyssLGjRvjihUrBLdNzM7OljsRq9h8fHywa9eughxfWbt2rdo+YpkyZQRbjNC3b1+12cuVK4cDBw7EkydPCi77gAED1GYPCAjAHj164N69ewW3zhw+fFhtdktLS6xfvz4uWrQIX7x4wXfcItLT09Xm9/f3xz/++EOQn1dlxcbKPrP9+/fHY8eOCW7sX1Xhq7LjO6GNLzLGjBmjNr+Liwu2bdsW169fL7jjDkTlRd+yzdjYGBMSEnDGjBmCLSRVN5bE9Of/+usvQW77EREfPHigdozDzc0Nf//9d8EWkqrr2wMA2tvbY8uWLXHt2rWCG2tnNGrUSO3y79ChgyD7+Ig/agR8fHw0HlsJdZKmsWPHKs0uEomwSpUqOGbMGLx+/brgjlEQEcePH69yvWEucNOFAnY2qHDxf7QBFS4S/LGjL1eunNrOFtOCgoIEdaWpspmvVB2wNmrUCJcvXy6YwaXExESNuR0dHQVXnKZu4FS2RURE4PDhwwVzlc7Ro0c1ZmY6J+PGjcObN2/yHRkR2a3jpqamWK9ePVy6dKlg1m8264mdnR22bt0aN27cKJiDoMGDB2vMbWFhgY0aNcKVK1fihw8f+I6MiIjdunVj9bmsVKmSoApfFGe5VNXMzMykV+8KoTD6+PHjrHIz2/GWLVvi6tWreb/qTCKRYEREBOvsISEh2KtXL9y3bx/vg6Vs9/fMZzQjI0MwszGqKwCUbcyso+PHjxfESbwLFy6wys0U6wplNixlsy6qakKbDUtxphRVzcPDAzt16oQ7duwQRMGR4qyL6j6bDRo0wCVLlgjiSlZ1hf+yTSwWY3R0NI4bN04Qg1ffv39HDw8PVstcSDOlSiQStRedyTZnZ2fpyRYhzCL5+++/s8rNFDQIZUap6dOn/7/uZxkbG2NSUhLOnj1bEDPVabooh2lMgfHUqVMFM2un4qyLqraF1apVE8y2EFF9Ibfi/n7AgAF46tQpQRQDvnz5ktX+x8XFBX/77TfcunWrYMaDMjIyNOZmLmqdM2eOYGadUXdhi2wLCgrCvn374tGjRwXRN8zPz0dfX1+NuU1MTDA1NRXnz58vmAsW//77b1bLXGizvH78+BFtbGx0cps4btw41vt9ZlZAIRR1FRYWYlhYGKvs9vb22Lx5c/znn394H19BRHzz5g2am5vrZPZ3796hpaUlq+zMjHpCmk0sNjaWVXaAHyfzBw0aJJgiInUXAig2ZiY3IV1grKnYWLbZ2NjgL7/8gsuWLRPEGAAi+/ELgB9jGPXr18eFCxcKYnuJiPj582e5WbfUNQMDA4yJicFJkybhrVu3BLGvQtRc9C3bQkJCsE+fPoK6UFBxBnVN2/4WLVrgmjVrBHMeCbHonSVUNdkZSYV0Qdju3btZ5dfX18eYmBj8+++/BVVIp2zWRWXNxMQEU1JScN68eYIYq2EsWrSI1fIPDAzE3r17C+rONp8/f0Y7OzuN2X18fLB79+64f/9+wWx7FGeMVNWYO/Jt375dEOcNtEGFi/+jDahwkfzH5s2bWXcWmSaUEzM1a9bklFsoV/eePHmSU25TU1NMT0/HRYsW8Xqgx3bgVLZ5eHhg586deb9SUN0sacpaQEAA9u7dm9dBa2W31lPXmKtaJk+ejA8ePOAlMyJiXl4eent7s87NzHzJ9/r97t07tLCwYJ1bX18fa9eujdOmTeP14E3ZbQo0NU9PT+zSpQuvn0tlt7hg05hBRz5PPiYkJHDOzex/Ro0axdvU/4q3SmPbzMzMMDU1FWfPns3bul67dm2tsvM9G+OlS5e0yu3p6Sm9VQpfM9fUq1ePc25XV1ds3749btq0CT9//sxLbm3WcyFckZudnc1q8ES2MTPrzp8/n9eBdHWzLiprzG3TR40ahVeuXOGtP65u1itVjZmpjs/957x58zjntrKywkaNGuHSpUt562txOUnENKbIa/LkybzNhvX48WM0NDTUah3n83ZLubm5WKpUKc7LvEKFCjh48GA8c+YMb/2suLg4zrnLlCnD+8wW6mZdVNVCQkKkhVJ8Dearm3VRVfPx8cE//vgD9+3bx9tA/rdv39DNzY1TbicnJ2zbti1u3LiR15kBNc3UotiYwjS+Z9K/ePGiVtuUYcOG8XqBi0QiwcjISE65mb7hunXreC2iV7wdG5tWsWJFHDFiBK8XEqubdVFVYy5yWbp0Ka/jzGwvsJRtTP9wz549vPUPFW8hx7ZFRETgkCFDeJ3pdcOGDZxz6+npYfXq1XHcuHG8ju9rmrlQVfbo6GgcM2YMr8dCQ4YM4Zwd4L+zYB47doy3PhfX8yqy2/bmzZvjqlWreJ1ZX91sW+paaGgo9uvXDw8fPsxb/6uwsBDDw8M5Z5e9Q825c+d4vZhE2/FFoRTBTpw4Uav8zOy7fM+6z6XoW7YJYUyD0atXL622/TVq1MDx48fjjRs3eC0kffjwIRoYGHD+N4SFheGff/7J6/Yf8UffvkqVKpzzMxf3CmFiJm32AxUqVMAhQ4bwvg3Ny8tTOeuiqmZra4vNmjXD1atX8z4TJtuJA2S3Pb/88osgbofN9kIlpjHnDRYuXIivXr3iNTsX/0bhogh/FMYRAROJRG4A8BQA4OnTp+Dm5sZzIqKNkydPwv79+7kWrcp9L5FIYMaMGfD9+3etMohEIqhcuTIkJydDUlIShIWFgUgkUvszp0+fhn379oHstkI2m7Kvyp67fPkybNmyRavcAADe3t6QnJwMycnJUKNGDTAyMlL7/vPnz8OePXtALBaDSCQCsVgs1xSfU/f9X3/9BY8fP+acWSwWQ5UqVSA1NRXS0tIgICBA48+cP38edu/eDSKRSNoAQO57ZU3Ze3bv3g1bt27lnBsAwMLCAurWrQspKSmQmJgIdnZ2at9/6dIl2Llzp3S5KX5V9pyq186ePQszZ87UKre9vT0kJydDamoqxMXFgZmZmdr3X7lyBbZv3w56enogFotVflX3GvP12LFjMHHiRK1yh4eHQ3p6OqSlpUG5cuU0fi6vXbsGW7duBT09PbkcyrJpen3Dhg2wePFizpnFYjFUrVpVmtvX11fjzzC51X322LwmEolgwYIFcPDgQc65AQDKlCkDaWlprJf31atXpZ8l2ffKfvZUPaf42pIlS+DatWta5TY3N4f4+HhITU2FxMREsLe315h78+bN0v2H7FdVj1W9vm/fPrh165ZWuQEAHBwcIDExEZKSkiAuLg6srKxUvvfKlSuwefNmKCwsLNIkEgnr5yUSCTx69AguXLigdW4AABcXF0hISIDExESIjY1Vmf3KlSuwadMmKCwshIKCAulX2cdsvxYUFMDhw4dBIpEUK3twcDAkJCRAQkICREdHK913Xrt2DTZs2CBdbkwOZd+reiz7/ZMnT4q1rgD82AfFxsZKsyvr+968eRPWrVsHEolE+v8v+1XVY3XP7dy5E3JycrTObWRkBDVr1pSu68q2i7dv34bMzExWn0fFx6peu3//PuzevVvr3IaGhlCzZk1p/9DHx6fIe+7duwdr1qxR2vfT1C9U9R5EhOnTp8OXL1+0yq2vrw/Vq1eH5ORkSElJAT8/vyLvefDgAfzzzz/S75X1Vdl8r/jatm3b4Pz581rlBgCIiIiAlJQUSE5OVrofks3Npp+t7jXZx1euXClWf9zT01PaH69ZsyYYGxvLvf7w4UNYtWqVxmMart9nZWXBsmXLtM5tZmYGcXFxkJycDImJieDs7Cz3+qNHj2DFihWsjs8UP5PqWl5eHsyZM0fr3CKRCKKioiApKQmSk5MhPDxcbl15/PgxLF++nNX2QlV2Ve9ZtmyZ1p9NAICAgADpNqVatWpgaGgofe3p06ewdOlSrXJp+n7Lli3w/PlzrXO7ublBYmIiJCcnQ+3atcHU1FT62vPnz2Hx4sWs//+5rDtHjhyBy5cva53byclJmrtOnTpgYWEhfe3FixdyuQFUf97YPJb9/saNG7B9+3atczP9w+TkZIiLiwNLS0vpa69evYKFCxdKv1e1TWa77ZZ9/OnTJ5g6darWuW1tbaW569atK9c3zMrKggULFqj9eU3HHupe//vvv+HNmzfcAv+HpaWl9Bg/ISFB7hj/7du3MG/evCIZuH5V9dr27dth3759WuU2MjKC2rVrS/ebsv3C9+/fS7ezysZGivv41atXMGrUKK1yAwBUqlQJUlJSIDU1FUJDQ6W/98OHDzB79mxWObTJLhKJYPz48VqNYwEAuLu7Q0pKCqSkpECtWrWkxxAfP36EWbNmSf+Wsr9f3OdOnjwp13fjwtDQEGrVqiXN7uHhAQA/PvOyY0zK1ldVj9m+t6CgAAYOHAj5+flaZVe2zLOzs2H69Ola/T4utm/fDidPntTqZ5lxZiZ7SEgI5OTkwLRp01T2V3/W1+zsbOn6qA1zc3O5/qGZmRlMmTJF6/08l3bo0CG4ceOG1tmdnZ2l+6GoqChYuHChXF9D3VgP26/KnissLIRVq1YVa5zC09MTkpKSIDY2Fi5dugR6enrSv6Gs/azXPnz4AAcOHNA6NwCAh4cH1KlTB75//w5eXl6gp6endOxBWVP3uqbXsrOz4fjx48XKbmNjA25ubhAQEADe3t5gbGys9G9rGk9h+1j2++PHj2u9bQT4sZ1xc3MDPz8/8PX1BQcHh2JnZPverKwsuHPnTrGWvZGREfj4+ICvry94eXmBiYnJv7rsZR8/fvwYXrx4Uaz8ZmZm4OPjA97e3uDp6QkGBgYq11tV6zLb9yo+9+LFC637MgwTExPw9vaW5jc0NFT7Wf2Z7evXr8Uek9bX1wdPT0/w9vYGLy8vMDMzU7qNk/3+Z7zGPL58+TK8f/++WP8GFxcX6f8Bcy5D9m+o2ucU5znm64cPH7Tu4zCsrKzAx8cHfHx8wM3NTbrfKu4YANt24MABePv2rdb5TUxMwMfHB/z8/KTbf23HApQ9Vvf6pUuX4OXLl/DkyROt8xsZGYGfnx8EBASAn5+f3BiN4liAsue0+f7MmTNQUFAAAADv3r3T+lwewI9zHEFBQRAcHAx+fn4q6xpUjQFwef7o0aOQl5cn99rdu3fh7t27WiT/cf7X19cXwsLCICwsDBwcHH7qMTfzdc+ePfD9+/ci78vLy4ONGzcq/X/WRCQSga+vL4SGhkqzK/5dbcY82L73y5cv0KVLF62zM+MIKSkpcuMIQvPs2TNwd3dnvnVHxGfF/qUlcTBGrXgNaMbF/xfGjh3LqcK6JJq7uzt27NgRt2/frvKWNpMmTeI9p2IzNzfHevXq4aJFi1RWn8+YMYP3nIotKCgI+/Xrh8ePH1d5pYsQc4vFYqxevTpOnDhR5VTdc+fO5T2nYmNufTRv3jyVsxuxnS67JJuHhwd27dpV7awYS5cu5T2nYgsNDcWBAwfiuXPnVF6JtmzZMt5zKjZ3d3fs3Lkz7tmzR+Usb0LMLTsrraqr/4S4ngD8mAGzVq1aOHHiRLx582aR7ELNzWSvUaMGjhs3Dq9evSqXffny5bznU9dMTU0xOTkZZ86cKTfT68qVK3nPpqmFhoZi37595a60zMzM5D2XphYQEIDdu3eXm9Fj48aNvOfS1IKCgrB3795yy3vbtm2859LUlF2Rq+3spSXZXF1d8bfffsMtW7bgly9fEBFxz549vOfS1JirQWVvX7dv3z7ec7FpFStWxGHDhuH58+dRIpHggQMHeM/Eprm5ueHvv/+OW7duxS9fvmg1MyIfjZmZafHixfjq1Ss8evQo75nYNCMjI0xISMAZM2bgw4cPtZ4xpqQbM/vllClT8O7du3jmzBneM7FpzAzpzKydFy5c4D0T29y1atWS3tbqypUrvGdi08RiMUZHR+P48ePx5s2beO3aNd4zsW3ly5eXzmBx69Yt3vOwbZ6entKZ3m7cuMF7HraNGX9bsmQJnj17lvc8XFqZMmVw0KBBWt29hs/G3CJYiOOxmpq3tze2adOG9xxcm0gkwnLlyvGeQ5umzUxM1KhRo0aNGjVq1KhRE37z8vKSjiPwcZcydehW0f+jDahw8f8FrlPDlnQzMTHB5ORknDNnjtx6JvSBMtF/pq8fMWKE3C09p02bxns2dc3R0RHbtWuHW7ZskSsanT59Ou/ZNLXAwEDs06eP3K2ZZ8+ezXsuTa1SpUo4atQouVuTzJ8/n/dc6pq1tTU2a9YMMzMz5W57JMSCS9nm5uaGnTt3xr1798oVXy5ZsoT3bOqapaUlNm7cGFetWoUfPnyQ5hZi4aJi8/X1xe7du+OBAweky1zohXSy2bt16ya9neeKFSt4z8S2ubu742+//YabNm0S/OdSsQUGBmL37t21ul0in83CwgIzMjKwQ4cOvGfh0pjbeHfq1In3LFwac4sXbW7Vy3fuxo0bY9++fXnPwqUZGxtjUlISduvWjfcsXFvFihWxVatWvOfg2lxdXTEpKYn3HFybsbExRkVF8Z6DaxOJRBgcHMx7Dm2at7c37xm0aZ6enrxn+F/K7eXlxXsGbZqHhwfvGbRpjo6OvGfQpmlz2z1q1KhRo0aNGjVq1KhRo0aN2v9ms7S0xIYNG+Ly5cvx7du3P7+QiSO6VfT/KBHdKvr/hQkTJkDfvn35jqERMw3t4MGDISEhAf7++2/o1asX37FY0dfXh+bNm8PYsWNh9erV0L17d74jsWJiYgJxcXHQpEkTyMrKgm7duvEdiTU7Ozto2bIllCpVCnr37s13HNZ8fX0hNTUVnJyc4M8//+Q7DiuGhoYQGxsLaWlpkJOTozOfSysrK0hKSoL09HR4+/YtdOrUie9IrOjr60PNmjUhIyMDjIyMoH379nxHYs3GxgYGDhwIdnZ20Lp1a77jsFauXDlo1qwZODo6QsuWLfmOw4qdnR2kpqZCeno6ZGdnQ4sWLfiOxIqtrS2kpKRARkYGfPnyBZo1a8Z3JNZKly4NGRkZYG1trVP7HYAft04tXbo0bNy4ke8onNnb2xfr1iSEEEIIIYQQQgghhBBCCCFEe2KxGKKjo2HEiBEQHR3NS4Z/41bR+sX9BYQQdoR6D3qAH4VzderUgdTUVEhKSgJnZ2fpa0LODQBgbW0NiYmJkJKSAnXr1gVra2sAAJBIJPwGY8nLywuSkpIgKSkJatasCQsWLOA7EiuhoaGQnJwMSUlJEBUVBXPnzuU7EitmZmYQGxsLSUlJkJiYCFu2bOE7Emt+fn4QEhIC/v7+cOPGDb7jsObu7g5ubm7g6OgIHz584DsOK9bW1hAfHw9JSUlQt25d2LlzJ9+RNDI1NYU6depIP5cuLi7wzz//8B1LLQMDA6hVqxakpaVBSkqKtJO7du1anpOp5+3tDenp6ZCeng5VqlQBff0f3ekNGzbwnEw9d3d3SE9Ph4yMDIiOjpbm3rx5M8/J1BOJRFC5cmXpMvf39wcAgK1bt/KcjJ2oqChIS0uD9PR0CAoKgu3bt+tM4WL58uUhNTUVUlNT4cWLF5CcnMx3JFbEYjFUq1YNUlNTwdraWqcKz0uVKgUpKSng5uYGAwcO5DsOazY2NpCUlATe3t4wYsQIvuOwZmtrC0lJSeDr6wtDhw7lOw5r9vb2kJycDAEBATBgwAC+47DGLO/g4GCdym1qagpxcXEQFhamU+u3SCSCqKgoqFChAsyYMYPvOJy4urpClSpVYN26dXxH4URfXx8qVKgAp0+f5jsKZ46OjpCVlcV3DM7EYrHOjP0QQgghhBBCCCGEaMvCwgLi4+MhOTkZEhISwNHRke9IPxUVLhJSQoRWAOjs7AwpKSmQkpICtWvXBlNTU74jsebv7y/NXrVqVTAwMCjyHqEOXuvr60O1atWkxYpBQUFy64ZQZ8E1MjKCWrVqSYuivLy85F4Xam6AH7MrMsu7Ro0aYGRkJH1NqOsJwI+C4tq1a0NiYiIkJCTILfNbt27xF0wDpjiUyS1zxQXcuXOHx2TqhYaGSteTypUrS4u6hMzd3R1SUlIgOTkZatWqBcbGxnKvC22/A/CjKDQpKQnS0tIgPj4eLC0ti7xHT0+Ph2TqlStXTlo4FxYWpnTZCnGdKV26tLRYsXz58kpzC3F5GxgYQGxsLKSnp0NqaqrcBRUMsVjMQzLNDA0NoXbt2pCeng4pKSng4uIi97oQP5cMAwMDiImJgdTUVLliYgCAV69e8ZhMM0tLS6hbty6kpKRAQkIC2NnZAQDA7t27eU6mWYUKFaT92nLlyoFIJIL9+/fzHUujwMBAaW6miPvQoUOCL+wKCAiQruNM7qNHjwq+cDEoKEhaSBwVFQV6enpw8uRJvmNp5OfnB2lpaZCamipd3mfOnOE7lkbMsXJaWhrExMSAiYkJnDt3TvDrN1NkmZKSAklJSeDk5AQXLlzQicLF8uXLQ0pKCqSmpkK5cuXg8uXLOlG4aGNjI3ch5ZMnTyA8PJzvWKxERERIjyUMDQ0hLCyM70isMMs8OTkZvLy8oHLlynxHYi0yMhKSk5MhLCwMMjIy+I7DmrOzMyQlJUGFChV05g4KAD/GsWJiYqBy5cowePBgvuNwEhkZCdHR0TBp0iS+o3ASGBgIMTExMHv2bL6jcOLi4gK1a9eGFStW8B2FEwsLC4iJiRH8xYiKRCIRREZG6mShv42Njc5clE0IIYQQQnSfj4+PdOymevXqYGhoyHekfw3dKloH0K2i/384c+YM7N+/H0QiEesGAHLfIyL07dsXcnNztcoQFhYmPeEVERHB6qQ/k5vJwpDNp+yr4nNnzpyBNWvWaJVbLBZD1apVpScyAgMDNf7MqVOnYP/+/SCRSKQNEbX6fsOGDcW6PaKjoyMkJCRAUlISxMXFgZWVlcr3nj17Fvbs2QOIKC0GZB6raqrec+rUKTh69KjWuV1cXCA5ORmSk5Ohdu3aYGZmpvK9586dg927d8stN9nlqficuvfcv38f9uzZo3VufX19qF69urQILSAgQGWhyLlz52DXrl0gkUigsLBQ7VdN73ny5AkcP35c69wAPzogzGyQNWrUABMTE6XvO3/+POzcuVPu76t6rOn127dvw+XLl4uVOzAwEBITEyExMRGio6PlikNlXbx4EXbs2CH3OVP22WPz2rFjx4pVwMkUhjLL28PDQ+V7r169Clu3bpUr0JX97Kl6Ttlra9eu1To3M3MO87lUVUDHuHHjBmzevBnEYrF0P8I8Zvsc83jBggVw4sQJrXL7+PhIixZUFZvLunPnDmzYsAH09PRUNrFYzOr1nTt3wtSpUzln1tPTgxo1akgL5zw9PTX+zL1792D9+vWgr68Penp6cl+5PpeXlweJiYla7e+Z2QkzMjKksxOqc//+fVi3bp102Snm4vp49erVWhVIWFhYQGJiImRkZEBCQoLSolbF3JmZmdL/b+b/XNlXNq+JRCJo164dvH79mnN2piA3PT0d4uPjwcLCQm3utWvXcv4Mqnv9zJkzMGvWLM65Af47U15qaqrKYmLZ3ADy/TtVj9k8BwDw119/QU5OjlbZvby8pAVoqg7aHzx4INf/VNZP1fSasseZmZlan2gzNjaG2NhYaWFRqVKlirzn0aNH0llzufS/Nb33zJkzWs/Gq6enB9WqVZMWKwYEBBR5z5MnT2DlypXSv6fuuIbL90+ePIFx48ZplZs5jmDWFWXHEU+fPoUVK1awOj6T/expal+/foXu3btrdYGP7Myhqpb38+fPYdmyZWq3D9q8BgDwxx9/wKdPnzjnFol+zJLLHHMqXqQFAPDy5UtYsmTJT8mq+P3o0aPh9u3bnHMDaD5WfvXqFSxevJj1/z+X9WbVqlVw4MABrXK7uLhIj5OZIktluQGUb7fZbNNV/cyZM2dg2bJlWuVmCv2ZwVfZYnkAgNevX8OiRYvknmOznWbzvvfv38Po0aO1yg2gvHCbkZWVxekuCly3D1OnToU3b95w+hkGc6eNlJQUSExMBFdXV+lrb968gfnz58tlYnO8w/b9hw4dgmPHjmmVGwAgODgYkpOTISUlRe4is7dv38K8efOUjo38jMfv3r2DhQsXap3b3Nwc4uLiIDk5GRITE8HJyQkAAN69ewdz587VmEOb7Mz3K1euhBcvXmidvUKFCtLjzvLly4NYLIYPHz7A7NmzVf79n/HclStXinXHA2XjWB8/fpTrKytbR4v7uLCwEMaNGwcFBQVa5TYzM5NbV5ydnSE7OxtmzpzJ+XcpbhM12bp1q9bH+np6ehAdHS3dJvr7+0NOTg5Mnz5dLgubr1zeC/BjW16cC0/Kli0r7WeVL18evn37BlOnTtVqP8+1LVy4UOttooeHhzR3jRo1ABFh8uTJao8fuX5V9dr379+hTZs2kJ+fzzm3iYkJxMXFQWpqKiQnJ4O1tTVMmjRJekyu2Ji/+bNeu379OvTu3VurZe7r6wtpaWmQlpYGkZGRMGXKFJV/X3acgctr6l6/du0adOnSRavsZcuWhbS0NEhOToa9e/cqHSMp7mN1r+Xn50NCQgJ8+fKFc3bmgrPPnz+Dl5eXdMyJbbaf8d41a9bA+PHjOWc3MTEBLy8vCA0NhZCQELC0tPxXlr2m/4fhw4fD+vXrtcofEhICYWFhEBwcDMbGxkrXT1XrLNv3avr5GTNmSPunXBgZGUFQUBCEh4dDaGgomJmZqf3s/Vvt8uXL0KZNG875AX6Md4WFhUGZMmXA1dVVbtumuJ1T9Rrb96l7rVWrVlqdxzA1NYXSpUtDeHg4hISEgKmpqcr9y7/53MmTJ7W+24OTkxOEhYVBWFgYeHt7S8eOf+Y4AJvWuXNnePLkCef8IpEIfHx8IDQ0FEJDQ6Wzsmlz/K/psarXd+zYAdevX4crV65o9X9gYmICwcHBEBISAgEBAWBsbFykn6v4vbLnuH5/6NAhaV/n9evXcO7cOa3yA/yYeCQwMBACAwPBwcFBaV5VYwJcnmfqAWT7aIgIjx8/hkePHmkXHn7c8cXX1xf8/PzA2dlZmr+4x9myz125cgUKCgqUvv/ixYtaZwf4cWzo5+cHvr6+0mNxdXl+1teCggKYP3++VuPBAD+OsapWrSodAwkMDFS67vDt37hVtNpiGGrCaADgBgAIAPj06VMk/7tWr16NzLrApunr62NsbCxOmzYNHz58yFtuiUSCVatW5ZTdwsICGzZsiMuXL8e3b9/ylv3GjRsoFos5ZQcArFChAg4ePBhPnz6NhYWFJZ67oKAAQ0JCOOeOjIzEYcOG4fnz51EikZR4bkTEevXqcc7t6OiIrVu3xszMTPz48SMvuRs1asQ5t6GhIdapUwcnT56Mt2/fLvFlLpFIMCoqinNuY2NjTEhIwOnTp+O9e/dKNDMi4pcvX9DZ2Zlzbm9vb+zSpQvu2LEDv379WuK5X758iSYmJpwym5ubY/369XHJkiX4+vXrEs+MiJiVlYWmpqacckdFReHo0aPx2rVrvG1LCgsLMTQ0lHVmU1NTrFevHi5btgzfvXvHS2bG1KlTOe3r4+LicPbs2fjixQtec+fl5aGXlxfr7E5OTvjbb7/hjh078Nu3b7xm37ZtG6d13N3dHbt27Yr79u3DvLw8XrPXqlWLU3YfHx/s0aMHHjp0CPPz83nLvWnTJk65RSIRRkVF4ahRo/Dq1au8bVs+fvyI1tbWnLI7Oztj+/btcfPmzfjlyxdeckskEqxWrRqn3JaWlti4cWNcsWIFr9vF3377jVNu5jhi2bJlvB5HTJgwgfM+v0GDBrzn3rhxI6fcJiYmmJaWhgsXLsRXr17xlvvatWsoEolY59bT08OYmBicOnUqPnjwgLfc2dnZaGtry2mZh4eH48CBA/HMmTO8HGsiardNcXBwwNatW+OGDRvw8+fPvORGRBw0aBCn3Hp6elijRg2cOHEi3r59m7fcJ0+e5JQbANDNzQ07dOiA27dv5+X4B/FH/9Db25tTbgMDA4yNjcUpU6bwcrzJGDBgAOdl7u3tjd26dcM9e/bw1r+9desW53EsU1NTTE1Nxfnz5+Pz5895yY2IWLNmTc7LPCIiAocOHYrnzp3jbZu4cuVKzrk9PDywc+fOuGvXLszNzeUl95cvX9DR0ZFTbhsbG2zatCn+888/+P79e15yIyL+9ddfnHIbGhpi3bp1cebMmfj48WPecr958wbNzMw4r+PDhw/HS5cu8XYMhIg4bdo0TrmdnJywffv2uGXLFt72QQyuY7aRkZE4atQoXse0GA0aNGCdm+nfTps2DR89esRrbkTEmTNnclruUVFROGbMGLx58ybf0TE/Px99fHxYZ7e3t8c2bdrweswv69WrV2hsbMw6v7e3tyDGiRifP39GOzs71vldXV2xY8eOuGvXLt7HFxlcznEZGxtjcnIyzp8/n9djalmHDx/m9PkVylijrJiYGNb5xWIxVq9eHSdOnIh37tzhOzoiIh48eJDT/4FQxvAY+fn56Ovry+nfEBgYiL1798YjR44IYj1KSUnhlN/MzAzr1auHixcv5u1cHqOgoACDgoI45Tc0NMS4uDicPn06r+NkiIgrVqzglJ1Z/unp6bhgwQJez5MtXbqUc3Zra2ts0qQJrly5UhCfXzaePn0q+29ww59RE/czfgk1Klwk/77CwkIsXbo0q41b06ZNcfXq1bwVcCnau3cvqw2zl5cXduvWDffu3Yvfv3/nOzYiIv7yyy+ssltYWGD9+vVx0aJF+PLlS75j46pVq1jlNjc3x3r16gkm94ULF1jvyCMiInDIkCG8nrBjXL58mXVuNzc3/O2333DTpk28nrBDRNy+fTvr3F5eXti5c2fcvn077wMwEydOZJVZX18fa9WqhRMmTMAbN27wPtjYs2dPVrl9fHzwjz/+EMy28M8//9SY2djYGFNSUnD+/PmC2JYgsiu8sLe3x7Zt2wpiIJ3x7ds3dHNz03gQ1qBBA1y5ciV++PCB78hSS5Ys0bjM/fz8sE+fPnj8+HHet90MiUSClSpV0pi9TJkyOHjwYLxw4QLv2xPGkSNHNOZmCv7GjBmD169fF0R2iUSC5cqV05jd1NRUEAVRskaMGMFqW162bFkcNGiQIPopiIj79u3jtA/at2+fIPZBjx8/RgMDA425PTw8sEuXLrh7925BnKhgWwjg5uaGnTp1EswJFrafTSGdiGawOW6ztLTEX375BVetWsVrsYWsMWPGsOrTCuGCRFn79+9ntU0JCQnBP//8E48fP44FBQV8x8b379+jpaWlxtxWVlb4yy+/CGrQuG7duqyWecWKFXH48OF48eJFQezzFyxYwCq3vb09tmrVCjMzM/HTp098x8Y3b96gubm5xtzMSc7x48cL4pgTEbFZs2aslrmHhwd26tSJtwv7FLE9Ocv0D/k+IcUoKCjAwMBAjblFIhFWrlwZR48ejVeuXBHEujJp0iRWyzwgIAB79eolmGKEd+/eoYWFhcbcTMH8+vXrMTs7m+/YiIjYv39/jbmNjIwwMTER58yZg8+ePeM7MiIi5ubmoqurK6v9fv/+/fHkyZOCOAZC/DEpgaaLW5hlPnfuXEFsVxjXrl3TuMzNzc2xYcOGuGLFCsH0bxERv3//ju7u7mqzGxoaCnK5IyIuW7ZM47L39fXFXr164ZEjRwTRz5XVp08fjfkjIiJwxIgRgtknyRo/frzG/KGhofjXX38JZsxF1pUrVzTmt7Ozw9atW+PGjRsxJyeH78hFxMbGavw3CKnIW9HRo0c15jczM8P69evj0qVL8c2bN3xHLoLNheqenp7YtWtXwZxHksWmeEu2YJTPiwSVOXfuHKt+suzFSEIY12OwvbBKiP3l/Px8DAgIYJXf09MTu3TpwuvFYIrZ/fz8WGUPCgrCPn364OHDhwVxjMUVFS7+jzagwkWCiGvXrlW5cWOuZjlw4ADvs/4oUjcTg+ygHZ8z56hy9epVtQMbgYGB2LNnT9y/f7+gOoWarqRgTkjzOQOAKqmpqSpzC604VFZ6errK3Hp6eli9enUcO3asoAYCJBIJVqhQQWVuAwMDrF27Nk6aNAlv3rwpmNyfP39GBwcHlbmdnJx4n31TGXWzLYrFYoyOjsZx48YJ5mQX4+3btypP2Dk4OGDbtm1x06ZNghtgkUgkWL58eZXbwJ49ewpyYBERcd68eUpzM0WWW7duFcRBmCJ1J+wqVKiAI0aMEORAFiLinj17VG6/a9WqhVOmTBFMoYgiVQOJTDHxggULBLfPRETcsmWLyu24q6sr/v7777zODqXKx48f0cbGRmluocziooxEIsHo6GiV/fEqVaoIqrBVVocOHVSuKxUrVsQRI0bwPvuMMuoKAcqXL49Dhw4VVBE0Q91ns3Tp0jhgwAA8deqU4E4M3bx5U+Vxm5AH8tXNJCLECxIZ6rYpzEw/kydP5nWmPFUGDx6sch339fXF7t274/79+wU3rqJutkXZIi6h7fM1zcYdHh6OAwYMwBMnTgiuX67u4i0hz4Zw8+ZNlbMtMvt8IRXOyapRo4bKZc6cENy5c6fgjoXUzQZiYWGBDRo0wKVLl2JWVhbfUeWou8hCT08Pa9asiZMmTRLcSWRExIEDB6pc5kIrmJf17t07teMrQpiVWJVZs2YpzS0Wi7FGjRo4adIkvHv3Lt8xlVJVzG1ra4stWrTAdevWCXKZIyI2adJEaXYXFxfs0KED7ty5U3Bj+wxVY1vW1tbYvHlzzMzMFEyBhCJ141tCLtRiqJrZlbljy8yZMwV9nlnV/okpcJo0aZIgjzNkNW7cWOn64+fnJ9hiV1nHjx9Xml+oRd7KxMXFKf03uLq6YocOHXDHjh2C61PKUnehOjMWdvnyZcFuh/Lz89Hf319l/7hRo0a8321RE3WzLUZGRuLIkSMF+3+g6cIq5jhcSBeayFJ38YBYLMZq1arh2LFjBbkvXrx4scrssneWEGq/mQsqXPwfbUCFi//zFG93yRT8CfUEoyzFmRjMzMwwIyMDFy1axPtUyZrUr19fLruhoSHGx8fjtGnTBH1wpDhoytzaasKECYIqQFN09uzZIjvygIAA7NGjh2Bm/VFG2ZU3zK2r165dK6jZ0GQpm43Ozc0Nf/31V9y4caNgB4/Gjh2r9GBt6NChePbsWUF2tBERu3fvLpeZmcVFKFP3q6J4+6Xg4GDs16+fIE8CyNqxY4dcbqZwTohF8rIUb0Xj6emJ3bt314mrrtasWSO336lVqxZOmzZNcAVcysgWXzC3dBDCLcM1URxIdHR0xHbt2gnm1kSqKCucL1euHA4ZMgTPnTsn6M+o4myLDg4O2KZNG8GeYGQcOHBALjcz4/aSJUsEdxJd1pMnT+RmW2RunzRv3jxBD5J//foVnZyc5I4hEhIScNasWYI+npdIJBgREVFkWy7UAjRZzZs317mBfETEcePGyeX28fHB7t27C/KCRFmK2xQrKyts0qQJ/vPPP4I99kEsOtsiM+AtxIuHFCnOtuju7o4dO3YU/Ak3xdkWjYyMMCEhAWfOnCmIW1iqkpWVVeSEf3BwsE7MhqBY5GJpaYmNGjXCZcuWCXqfr7hdkS2yFPIxXEFBQZHZQIR2BwVVFC+yYApyhTQrsTKK23J9fX2MiYnBKVOm4P379/mOp5ZiwaWujK98+/ZNbuY8c3NzbNCgAS5btkzQBQeIiLdv35Yr5hbirUxVuXXrllx25iKi06dPC3bsk5GXl4fe3t5yY1vdunUT5MUhyqxevVquyCA+Ph5nz54tmBlQNRkwYIBcP+CXX37Bf/75R3AXQ6kyZcoUaX5TU1PMyMjAJUuWCHJGPGUUZ3mtVKkSjh49WvDncWXJHnvY2dlhq1atcP369YIe95KleNFXeHg4Dho0SNDnjhTJXqhuZGSESUlJOHfuXHz+/Dnf0VhZvny53P+Bl5eXYC8oVUbxnK+QLxZURnG2RdmL7YV8HI6ofMZCKysr6W3Qhdz3VHZ7dKHdWeJnosLF/9EGVLj4P2/9+vVoamqK6enpOlHwx2BmYnBzc9OJQXVZFy9eRADAUqVK4W+//YabN28W3IxiyjBTKNva2mLz5s1x9erVgh5wlJWYmIiGhoZYp04dnbriIDExEUUiEVaqVAmHDRumEwdATDG0UGeDVOXTp09oa2uLlpaW2LBhQ1yyZIlgbh2qzosXL9DY2BgDAwOxV69eePDgQZ0YqHv//j3a2NhIp+u/c+cO35FYkUgkWL16daxduzZOnz5dJwrnGMuXL8ewsDAcPHiwYG7vx0ZhYSFGRUVheno6LlmyRNAHkIoOHTqEjo6O2L59e9y2bZvO9FMQEePj46UzighxpiJVtm3bJi1cmD17ts4c33z69AltbGwwNDQU+/fvr1PLvHr16uju7i7IW5eo06lTJ3RyctKJglxZU6ZMkRvcF+rFIIq2b98uvfJdaLeaU+f27dtoamoquFsqapKTk4NOTk4YFRWlcyeyatSooTNFlrKGDBkiN/uZrpz8PHnypPR4c+TIkYKcZVaZ79+/o5eXFzo7O2P79u1x06ZNOnOys2/fvmhgYIB16tTBqVOnCr54m3H9+nUUiUQYEBCAPXv21JnPJzN2KFtkqSufz+XLlwv6DgqqMLNZMbeA1pUxCsQfM+fKzkos5IJ5Wcz4CjM7oa6MryAizp07F0uVKoUdO3YU9Ax/yrRu3Vo6K5KQi6CVadu2rc7MLqdoyZIlWK5cORw6dKhOjW0h/hjfqlatGjZp0gTXrFmjc0UG79+/x5CQEOzUqRPu3r1bJwqEZOXm5mLZsmWxXbt2uGXLFsHdhYON9u3b68yshMqcPn1aOjOk0C/YUSU1NRVjY2Nx2rRpgr2DjjrHjx+XXigt1FuJq8PcETAqKgpHjRqlE+cdFaWkpGCpUqWwQ4cOuH37dp06X8DMtujk5IRt27bFjRs36sxxOOKPPgQA6Ny5VETERYsWSYulmRktdeXcgTb+jcJFEf4ojCMCJhKJ3ADgKQDA06dPwc3NjedEpKTdvHkTvLy8wMTEhO8onHz9+hXu3LkDZcqUAZFIxHccTo4dOwYWFhYQHh6uU9lfvXoF9+/fh6ioKNDT0+M7Dms5OTmwb98+iI2NBXNzc77jsPbp0yfYunUrxMfHg4ODA99xWHvy5AmcPn0a6tSpA9bW1nzHYe3GjRuQlZUFVatWBQMDA77jsHbnzh0QiUTg7+/PdxROXr9+Dfr6+mBnZ8d3FE4KCgrg8+fPYGNjw3cUzrKzs8HS0pLvGJzl5+dDfn4+mJqa8h2Fs6ysLLCzs9OpfSbAj/X80aNH4Ofnx3cUzq5fvw6enp46tb8HAHj27Bnk5+eDt7c331E4yc3NhTt37uhcnxYR4fLlyxAeHg5isZjvOJzcvn0b/Pz8dG678uDBA3BzcwNDQ0O+o3Dy7NkzsLa21rltytu3b6GgoACcnZ35jsLJt2/f4MGDBxAcHKxT2xQAgDNnzkDZsmV1bh2/fPkyODs7g5OTE99ROHnx4gW8ePECypcvr1PbcUSEPXv2QJUqVcDCwoLvOJxcuHABzM3NISAggO8onGRnZ8O5c+cgOjpap47zAQBOnDgBQUFBYGtry3cUTl68eAE5OTk6t64AAFy8eBFCQ0N1bl3JysoCPT09nRtfAfjv+Shd2+8D/Fjujo6OfMfQysePH3VqzFZWTk6OzvXNGQUFBSCRSHSuv8j4/v07GBoa6uTnFQAgLy8P9PT0dO5YWlZubq7OnceV9eXLFzA1NdXZdQgRITs7G6ysrPiOojVdHatm5OTkQE5Ojs6NdTAKCgrg2rVrOlnXAPBj/Xn06BFERETo1HE4Y8uWLRAcHKxz51IBAHbu3AmlS5cGDw8PvqOUiGfPnoG7uzvzrTsiPivu76TCRR1AhYuEEEIIIYQQQgghhBBCCCGEEEIIIYQQQvjwbxQu6l6pLSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQnQWFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiH/D+Tl5cHChQvhyZMnfEfhbN68ebB582bIycnhOwonN27cgMuXLwMi8h2Fk9evX8P+/fshLy+P7yicSCQSOH36NBQWFvIdhbNXr17xHUErnz9/5juCVt6/f893BK3cvn1b57Yn+fn5sH37dvj69SvfUTh5//49TJkyBe7cucN3FE7evHkD/fr1gwMHDujUNjw3Nxd69OgBGzZsgOzsbL7jcDJlyhRYt24dfPz4ke8onBw4cAA2bdqkc9vx58+f62SfUCKRwMaNG+HDhw98R+Fsz549Onn8cPz4cTh37hxIJBK+o3By8+ZNnd1vLlmyBF6/fs13FE4kEgksXLhQ5/b3AACbN2/WyXX87NmzcPjwYcjPz+c7CievX7+GHTt2QG5uLt9ROEFE2LFjh871UwAAzp8/D8+ePeM7BmevX7+GCxcu6NxxGwDA4cOHdW4dBwC4evUqPHr0iO8YnH3+/Bn27t0L379/5zsKZ7t374Z79+7xHYOzBw8ewLp16+DTp098R+Fs6dKlcPDgQZ3bf3748AGGDx8OZ86c0bk+y6VLl2Dw4MFw6tQpnRtrvnHjBnTp0kUnjysKCgqgffv2MH36dJ3czhw9ehRatWoFq1ev1snx5/Xr10Pbtm0hMzNTJ/uPZ86cgYYNG8KiRYvgxYsXfMfhrKCgAJo3bw5jxozRyfOKAABbtmyBTp06wdatW+HLly98x+EMEaFHjx4wa9YsnexfAvw4jtLV/RfAj/+D8ePH6+Q5asaGDRvg+PHjOrn8AQC2b98Oz58/5zuGVh4/fgy3bt3Sye3n/fv34f79+3zHEDwqXCTk/wFDQ0M4c+YMeHp6QlhYGPTr1w+OHDmiEwMe7u7ukJ6eDnZ2dhAbGwuTJk2CmzdvCn7HY29vD1WqVAEPDw/o0KEDbNu2TScGCxwcHKB79+5gb28PDRo0gCVLlkBWVhbfsTQSi8Uwa9YscHZ2hlatWsG6det0pgBmxowZEBISAv3794dTp07pzGDejBkzIDIyEkaPHg3Xr18X/GeSMW3aNChXrhwMHToULl68qDO5Z82aBZ6entC5c2fYvXu3TpzgMDAwgJUrV4KdnR0kJibCrFmz4PHjx3zH0sjW1hYOHToEgYGB4O/vD3/88Qfs3r0bvn37xnc0tRwcHODJkydQu3ZtsLW1hbS0NJgzZ47gl7mJiQmYmJhA/fr1wc7ODmrUqAFjx46FS5cuCf7z6enpCQ0bNgR7e3uoXr06jBkzRidyBwYGwi+//AJ2dnZQp04dmDx5sk4UR7u4uMDgwYPBzs4O4uPjYdq0aTpxQC8Wi2Hfvn3g4OAANWvWhAkTJuhEXxYAICsrCzw9PSE8PBwGDBigMwNvdnZ2UKlSJXB1dYW2bdvChg0bdKJQ18vLC9q3bw92dnaQlJSkU/vNf/75B5ydnaFixYowdOhQOHv2rOD7tGKxGB4+fCjd33fv3h327NmjM32sihUrStfx9evX68Sxj5ubG9StWxccHBygcePGsHz5cnjz5g3fsTRydHSEgQMHgp2dHaSkpMDcuXN1oqhOJBLBkSNHwMHBAWJiYuDvv//WmULdvLw8cHd3h3LlysHgwYN1pujF1tYWGjZsCO7u7tJxIF0pBty9e7d0HZ83b57OnKwyNDQEX19fCA0Nhf79++tMX8XCwgJGjx4N9vb2UL9+fVi8eLHOXADw5csX8Pf3h6CgIOjVq5fOFNR5eHjAwIEDwd7eHmJiYmDSpEk6c2LT0tISYmJipGO1ixcv1omLoG1sbODmzZtQqVIlcHZ2hpYtW+pMQVd4eDhs2bIFKleuDE5OTtCsWTNYsWKFTvRbgoOD4dq1a5CcnAy2trZQt25dmDp1Kty5c0fw67u+vj6ULVsWunXrBv7+/uDv7w/dunWDnTt36sT+tFq1anD16lVo0qQJODg4QOXKlWH48OE6cWwEAJCcnAz79++HRo0agb29PURHR8OoUaPgwoULOpG/YsWKkJWVBe3atYNSpUpB2bJloX///nD06FEoKCjgO55G+vr6UL16dRgwYACULVsW3NzcoH379rB+/XqdKbqPj4+Hbdu2QWpqKtja2kJ8fLx0cgChb38Afhw/VahQATp37gze3t4QEhICvXv3hoMHD+pMEV3ZsmVh/fr1ULlyZbl9r65cTC0SicDAwABiY2N1rt/DsLCwgGrVqoGTkxO0aNEC1qxZo1PF4I8fPwY3NzeoUKECDBkyRGf2YQA/+p5VqlSBgIAA6NmzJxw4cEAnjlMAfqw34eHhEBISAv369dOZfVeJQ0RqAm8A4AYACAD49OlTJESZx48fo6GhITLrCgCglZUVNmrUCJcuXYqvX7/mO6JSEokEq1SpIpcbANDT0xM7duyIW7ZswZycHL5jKtWnTx+5zMbGxpiUlISzZ8/GJ0+e8B1PpXXr1snlFolEWKlSJRw+fDheuHABJRIJ3xGVunPnDorFYmluAwMDjI2NxalTp+KDBw/4jqfS27dv0czMTJrbyckJ27dvj1u2bMGvX7/yHU+lT58+obW1tTS3n58f9urVC48cOYIFBQV8x1Pp/fv3aGFhIc3t4eGBXbp0wb1792JeXh7f8VR69uyZ3Dbc3Nwc69evj0uXLsU3b97wHU+lmzdvyn0uAQDDwsKwf//+ePz4ccGuK5cvXy6y3zExMcHk5GScNWsWPnz4kO+ISt26davI8gYADAoKwh49euCePXswNzeX75hFvH//Hq2srIrkdnZ2xtatW+Pq1avx3bt3fMcsQiKRYPny5YvkdnFxwbZt22JmZiZ++PCB75hK/fHHH0Vy+/r6YteuXXHnzp2C3f9s3LixSO7AwEDs1asXHjhwQLDb8adPnxbph/v4+GDXrl1x9+7d+O3bN74jKlVQUICBgYFyue3s7LB58+a4evVqwa7fiIjNmzeXy830CydPnox3797lO55K06ZNK7KOly5dGvv27YuHDx/G/Px8viMqdfLkySK5nZycsHXr1piZmYkfP37kO6JS79+/R0tLS7ncZmZmmJaWhvPmzcNnz57xHVEpiUSClSpVksutr6+PtWrVwokTJ+LNmzcFe8zWo0ePIseaUVFROGLECLx48aJgc2/ZsqXIOl6mTBn866+/8MSJE4Lt07558wbNzc3lcvv7+2OPHj1w//79+P37d74jqhQfH19km9K2bVvcsGEDfv78me94Ki1atEjpMcTcuXMFu01B/DEuobiulC9fHgcPHoxnz57FwsJCviOqpLjPt7OzwxYtWuDatWsFu/9BRDx8+HCR7UpkZCQOHz5c0NvDwsJCLFOmjFxuS0tLbNiwIS5duhSzsrL4jqjSqlWriixzXeiTSyQSLFeuXJHsFSpUwMGDB+OpU6cE+xlVNkYhFouxatWqOGrUKEGv68r2/SKRCCMjI3Ho0KF4+vRpwS73I0eOFMnOrO9dunTB7du345cvX/iOqdS3b9/Qw8OjSHZjY2OsW7cuTp06Fe/cucN3TJW2b9+udNk7ODhg8+bNceXKlYIex12wYIHS/E5OTtiqVStcvXo1vn//nu+YKqla962srLBBgwa4cOFCfP78Od8xVcrLy0MfH58i+fX19bFGjRo4duxYvHz5smC3m4iI8+bNU/p/wIw57tixQ7Bjjog/xsGCg4OL5LewsMB69erhggULBL0OISJmZmYWya+np4fR0dE4ZswYvHLliqDXoa9fv6Kzs3ORf0NERAQOGTJE8McmEokEq1atWmT516hRAydMmCDo8RrEH/thNzc3ufzOzs7Yrl073Lhxo6CPxRERR44cWWT737hxY1yxYgW+ffuW73hqKdaU2NraYvPmzXHNmjWCPq5V5enTp7L/Hjf8GTVxP+OXUKPCRSIMnTt3VtpplD3wHjZsmOB2/AcOHFCZGwDQ0NAQ69Spg3///begdvpZWVlyBWmqTnScPHlSUCc6CgsLMTw8XGXuUqVK4W+//YabN28WXNFoixYtVOYuXbo0/vnnn4IslurXr5/SzKamppieno6LFi0S5ODvkCFDVA7GtGnTBjdt2iTIgbABAwaoHMRo0qQJrl69Gj99+sR3zCJUbcPFYjFGR0fjhAkT8NatW3zHLKJZs2YqP5fMSaU1a9YIrgCmYcOGavc9ISEh2Lt3bzxw4ICgTvq2adNGbW5TU1NMSkrCGTNm4P379/mOKzVixAi1ucViMVauXBmHDx+OZ86cEUw/ZceOHWpzMwNDo0ePFtRJmZcvX6KJiYnK3LKFuo8ePeI7rpSqk3ZMs7S0xAYNGuDixYvx1atXfMeV06VLF5W5zczMMCMjAxcsWIAvXrzgO6qclStXql2/mYG3GzduCGb9RkS8ffu20kJupgUEBGDPnj0FV7iTm5uLpUqVUpnb2toaGzdujMuWLRPcCa/ExESVufX19bFmzZqCXFeGDh2qdjtepkwZHDBggOCOIXbv3q02N1OIsWvXLkFdtPDq1Su1+59SpUrhr7/+ips2bRLUsaZEIsGIiAiVue3t7bFly5aCHFDu37+/2v2mUIuNlBVEM83Q0BDj4+Nx+vTpgrugSNUJZ6aVL19esCfcVB0nA/y4MKd9+/aC+2wiqr54i9n/xMTECPbChZiYGLXbw99//x23bt0quHEVZRcTMY0pSB85ciReunRJUPt8VcUIsn1yoV68sHXrVrX7fQcHB2zRooUgi4patmypNrurqyu2a9cO169fL6ixOIlEgpGRkayW+6pVqwR3MlzxAgDFZmxsjPHx8YIsBFRVPCfbfH19BVmEqWoSDsXtZGRkJA4ZMgRPnTolqGOMvLw89PPzU5tfLBZjlSpVcMSIEYLsz2ha95ljvD///BMPHz4suAtgly5dqjF/qVKlsH379oLbbiJq7gsz25/ExETBjU0z1qxZo/H/oFy5cvjXX38JbpwAUfP5XQBAd3d3/P333wU7MZCyi3plm5OTE7Zp0wbXrVsnuM8AIuL+/fvV5vfx8cFu3brhnj17BHnhzKxZs1RmZ47FZ8yYIahzBoxPnz6hjY2Nyv1XdHQ0jh8/XlC1JIzXr1+jqamp0uyyx7X37t3jOyorVLj4P9qAChcJS8+ePUMjIyONnS5mxy+kGTLUDeYpNm9vb+zUqRNu3bqV906XqoI0xebg4ICtWrXCzMxMQXS0NmzYwCq3kZERJiQk4MyZMwXRSdF0klpxea9btw6zs7P5jq22QyLbqapWrRqOHz8eb9++zXdkRCw6e6GyZmJigmlpaYIqvnzz5o3aomKAHzMzxcfH46xZswQzYK1sxi5lLSAgAHv37o1HjhwRxMxMbD+Xenp6WLNmTZw4cSLeunWL9wOHGzdusMoNIKyrLh8+fIgGBgas95n+/v7YrVs33mfZy87ORnt7e9a57e3tsVmzZrh8+XJety1sBqVlm5BmY1S8ik9dYwp1Dx48yPugrrKZL5Q12Ytyzp07x/tg+vPnz1n3w4V0FbGmE7yyjRl4E8qMNa1atWKVW7bgVQiz0KsbIFRcx5mZ6oQwK/rZs2dZb1O8vb2xc+fOgpht4ePHjyoHNRWbra0tNm3aFFeuXMn7TMDKruJX1UxNTTE1NRXnzp0riDEjtvsfZkB82rRpgjihtW3bNla5ZWe/FEKf9u3btxqP2ZhtSuXKlXHUqFGCmcmlbt26rJZ5aGgo/vnnn3js2DFBnDhUnHVRXb+wffv2uHnzZkEUXbBdV4yMjDAxMRFnzZolmLuJKM66qKoFBQVh7969BTOL8dGjR1nlFtodXDRdTCTb3NzcBFWAyaYYgWlly5YVzAXnbIromMZcPDd27FhBzKp079491NPT47QPnTBhAl6/fp337Hv27GG9vjAXW44YMUIQx59nzpxhnR1AWIWAbIrnFPdLcXFxOHnyZEH0vQ4ePMhp2dvZ2WHTpk1x+fLlgjgeVXfxorLm6OgoqAJeruu+paUl1q9fHxcsWCCIcwAFBQUYFBTEOj9zkeC4cePw6tWrvK//iOyKL2VbYGAg9ujRA/fu3SuIsSQ2hX+yzdbWFps0aYIrVqwQzAWm6i4yUbYNFdJxN6Lmi3plm4GBAdauXRv//vtvwZw3lUgkWL16dVb5zc3NsV69erhw4UJ8+fIl39ERUfmsi6paaGio4O6upjjrorq+T/fu3XH//v28n+9gsB0vCwoKwj59+gjmHLAyVLj4P9qAChcJB927d+fUaZTt/PI5Q8bx48c552Y6XcyB6+3bt0s8u7JbM7FZ3jExMfj333/zdsWjRCLBsmXLcl7eQjhhoG7WRWXN0NAQ4+LicPr06bwWX/bq1YtT7sDAQOzbty/vHUJ1M3goNuaKlokTJ/I+2wGXgh2AH0UkI0aM4H3Qt2PHjpxy29raYosWLTAzM5PXIl1NV9gra35+fti9e3fct28fb7NhsT0BptjKli2LAwYMwGPHjvFy4KBuhmV1TfbWO3zsMydNmqRVbpFIhBERETho0CA8fvx4iS9zroPSTON7NkZt+igA/x3UXbhwIS+zA2qa9UpVc3Z2lt5ikq/tobJbdOtC7tWrV3POzcwiyefAG5eTpLLbE+Y2jefPn+dln6/q9miamqurK7Zv357XW7ekpaVxzs3M8Dp79mx8/PgxL7lHjRrFObfsbQ75mlFK01X8qhrfs0hqujOBqsYUHPFVRM+laES2+fr64h9//IF79+7lrU87cOBAzrnd3d2xY8eOuH37dt4KjE+dOsU5txBuE5yfn4++vr6ccjMzz/BdmPbXX39ptU0ZOHAgr7erZXuxnGyzsbHBpk2b4qpVq3idoS42NpbzMi9btizvy5ztxUTK1vNZs2bxts8vLCzE0NBQztnt7e2lMxrydQHarl27OOcGAPTw8MAOHTrwOqtS+/bttcru6emJHTt25G1yAolEgtHR0VplZ26tu2bNGt62Mdr0zZnPKt+3ZeZaPCfb+J7UQiKRcJqEQ7bJjm+dOHGixPvqhYWFmJuby6lwTraJxWKMiorCYcOGlfjdUiQSCRYUFOD3798xKSlJ6/UnPDwc+/Xrh4cOHeLlmKOwsLBY67+bmxv++uuvuHHjRt7GkLgWX8o2MzMzTE1NxTlz5vDWV0DkVvin+BmOiorC4cOH81rELpFIsHz58lr9GwIDAwVxhxK2F/UqNj8/P96PvxG1P19QsWJFQVyEr83yF8KxOKL6WRdVNUtLS2zUqBEuX76c1yJ8NpMcKTZbW1ts1qwZrl69WhATkTH+jcJFEf4ojCMCJhKJ3ADgKQDA06dPwc3NjedERBsnT56EQ4cOgUQi+Vfbmzdv4ODBg8XK6uXlBUlJSZCUlATGxsZw4sQJKCwslLaCggK57zU9z/ZnLly4AIWFhcXK7uPjAwkJCeDn5wefPn0CQ0NDVQXBrJ5j895t27bBnTt3tM4cEBAAycnJkJycDCYmJnDw4EG2Rc3F2gFcuHABjh07pnVuW1tbSEhIgOTkZHBxcYFTp06pfK9IJPpprz148ABmz57NLayMsLAwSElJgZSUFDA2NoY9e/aASCQCsVgMYrFY42Nt35uVlQXt27fXKrODgwOkpKRAamoq1KlTBx48eAA7duwAPT096e9nHit7TtVjNq+/f/8e0tLSQCKRcM5dunRpSEtLg/T0dKhQoQLcvHkTtm/fLv07ik02Q3HbmzdvoEmTJlotb29vb0hLS4O0tDSoVq0a3L59G7Zt2wYikUi6TjKPlbXivP7s2TMYPHiwVrkNDQ2hVq1a0vU7Ozsbtm7dCgDstnfKnmP73sePH8P69eu1yg0AYGFhAfHx8ZCcnAyenp7S/Y5EIpH7quw5bV8rLCyE169fw9WrV7XODQBgY2MD8fHxEBYWBjk5OWBkZCTdvzFN8Xtlz3H5Pjs7G169elWs3AA/9pmRkZFgYGAA7u7uIBaLi+T8mS03Nxdev35d7Nw2NjYQGRkJZmZm4OPjA6ampnLLSLGPwfY5da9fv35duu5ry8XFBapUqQKGhobg4+MDhoaGRdZNVY/ZPqf4+vnz5+Ht27fFyl2+fHmIiooCiUQCpUqVAoAfn3+JRMLqK5f3Ml+vXbsG586d0zqzgYEB1KhRAypVqgS5ublgZ2f3r15oxuTOysqCzMxMrXMbGhpCjRo1ICoqCr5+/Qq2trb/am6mFRYWwrx584rVD4+IiICqVatCfn4+uLq6AgAoXQeUfa/N+5jvt27dCllZWVrndnFxgerVq4OBgQH4+PiAgYGB3Pqobl0tznPnzp2D27dva53b0NAQIiMjwcrKCgICAsDGxkbu78m2n/E889zjx4/hzJkzWucG+HHs4+zsDAEBAeDm5gYikUjlsa2qjFxfy87Ohj179hQrt7OzM7i7u0NAQAD4+PiAvr6+yv9nZd9r8z6JRAKbNm2CvLw8rXPb2NiAh4cHBAYGgq+vL5iYmHDeZmuzjT9w4AA8e/ZM69wWFhbg5eUFgYGB4O/vD6ampqy3xdpuwxERrly5AidOnNA6t6mpKXh7e0NQUBAEBASAmZkZAPy33yz7WNP3XN774cMHWLx4sda5jY2NwcvLC4KDgyEwMBAsLS3l/gZD8bmf8dqcOXPg3bt3WuXW09MDT09PCA4OhuDgYLC1tZV7XfbvcP1e03sPHjwIhw8f1io3wI/9T1BQEAQHBysd51X8e2wysXnP+/fvYerUqdpEBgAAc3NzCAwMhKCgIPDz8wMjIyOVy03TY64/t2TJEnj69KlWuUUiEXh5eUFQUBAEBgaCvb299PcrWz9VPdb0urL3Xr9+HXbu3KlVbgAAMzMzCAgIkG7HVY1z/uwmkUhg8eLFkJ+fr3V2JycnCAgIgICAAGn/UNV+g+vxgrrfce3aNbh+/brWuUUiEXh4eICfnx/4+flJ++Sq+h1Mkz0m06YVFhbCgQMHQCLhPv7GYLaLvr6+4O3tDZaWlmrHShS/cnmv7M98+PAB7t+/r3VuJru7uzt4e3uDp6cnWFhYqDzP8DPb+/fv4ePHj8XKLhKJwMXFBTw9PcHDwwOsrKyky0fT2ENxHn/9+hW+fv1arOwAAFZWVuDh4QGlSpUCR0dHAACl4yOK41Nsv6p6rjjbF4ZYLAYXFxcoVaoUODs7g7m5udq/qSkTm9eLe/5KlqGhIbi6uoKLiws4OjqCvr4+64xsl7Psc8r6DsVhZGQEzs7O4OTkBA4ODqCvr68yo7r1hO1rP5u+vj44OzuDo6MjODg4gIGBgdz2Qdk5TS7nRpU99zOJRCJwcHCQLn8zM7Mi23LZpuw5rs8z/6bi7KtkWVpagouLCzg5ORUZ15DNoLifZfOc4mufP3+W6zd8//692PmNjY2ln2EnJyfQ09Nj1Wfg0l6/fl3kWFcikUBubm6x/w0GBgbg6uoK7u7u4OrqCiYmJqz7Xpre8/jxY+l2R1krKCgo9vkNAwMD8PDwAE9PT/D09GQ1bqCp3bx5s0huhmJ//86dO8X6XJuZmUn7m15eXmBgYCD93cq+qnvt/PnzUFBQUOR9qr4vKCiAs2fPap1dLBZLj6+CgoLAzs5O7d9T5eTJk1qNed24cQOeP3/O+ecA/tvXZ7I7ODiorVNQpjj709WrV8O1a9e0+ll9fX2oXr06JCcnQ0pKCvj5+Wmdo7iePXsG7u7uzLfuiKj9IOB/UOGiDqDCxf8fxowZAwMGDOA7BmfMwQYpGUZGRj+lw1zSRCLRTz/wLQkWFhbw+fNnvmNwYmJiAoGBgXDp0iW+o3Di6uoKwcHBsH//fr6jcGJrawvBwcFw/PhxvqNw5uHhAU+ePOE7BiGEEEIIIYQQQgghhBBCCCGEkJ8gKCgIUlJSIDk5GapUqQL6+vol9repcPF/FBUu/v8wbtw4+PPPP/mOQQghhBBCCCGEEEIIIYQQQgghhBBCCNFhsnfJrFu3LlhbW/+rf+/fKFwUF/cXEELYEYvp40YIIYQQQgghhBBCCCGEEEIIIYQQQggpnvfv38PKlSuhSZMm4O7uDhMnTtTqNtx8Krn5Ign5H0eFi4QQQgghhBBCCCGEEEIIIYQQQgghhJDicnR0hOTkZEhOToY6deqAubk535E4o8JFQkqInp4e3xE4sbe3h5SUFNDX14f58+fzHYe18PBwSE9Ph9zcXJgwYQLfcTgxMTEBPz8/uHr1Kt9RODEwMABfX1+4desW31E4MzAwgPz8fL5jEEJkeHl5waNHj/iOwUnFihUhMDAQVqxYwXcU1lxcXCA9PR1KlSoFAwcO5DsOa66urtLcf/31F99xWBOLxVCtWjUICgqCefPm8R2HEyMjIyhTpgycOXOG7yicWVhYwOfPn/mOQQghhBBCCCGEkP/Q19eHgoICvmNwoq+vD/r6+qCnpwcFBQXw/ft3viOxIhaL5bLr6+tDbm4ufPv2je9orDC5mex6enqQl5cHX7584Tsaa0x+ponFYsjOzuY7FmcikQjEYjEUFhbyHYUQQgj8qIlJSUmBlJQUqFixos5PokaFi4SUkCpVqsDIkSNBLBazbkwnlku7dOmS1ify/f39IS0tDdLS0qBy5cqgp6cH58+fBy8vL7mOtezBgmJT9Zqmn/n+/TvUqlWL8wGHSCSCatWqQXp6OqSlpYGvry8AAJw9exYsLS1BJBJJ36fYlD2vzXvnzZsHFy9e1GqZOzs7S3cqtWvXhhs3bsCuXbuUZmCblW3btWsXrF+/XqvcNjY2kJSUBCkpKRAfHw93796FnTt3Kn0vIqr8Pdq89vjxY1iyZAmnvLLc3NwgJSUFkpOTwcLCAg4ePAgSiQQQESQSCefHbN/77ds32LRpk9a5AQDc3d0hKSkJAgIC4N27d6CnpwcSiQQKCwulf+tnPy4oKIADBw4UK7ehoSHUrFkTwsLCID8/H2xsbJT+zZ/Z8vLyYNeuXcXKbWVlBXFxcRAWFgafP38GMzMzAPixbqpqml7X9J4PHz7AqlWrtM6sr68PNWrUgOTkZPD394eLFy9y2t4pe47Ne69fvw4zZszQKrOBgQHExMRIt4Vfv36F9evXS/eBsoM6mp7j+tqOHTtg1KhRWmWuVasWpKenQ2pqKpQqVQru3r0LwcHB0sFA2QFBbb9X9Z7MzEzo2bMn59z+/v6QkZEBGRkZEBkZCWKxGO7fvy83iPlvNAMDA9DX14fjx49Denq61rnr1asnPQC7f/8+AIBcH0PZYCab1zS9//Pnz1ClShXOg9JGRkYQFxcH6enpkJKSAg4ODnD//n3w8PCQ6+Mpe8z2OU2vd+nSBa5cucJ5mdva2kJycjKkpaVBXFwcZGVlwapVq0AsFksHKtV9ZfMedT+7ceNGWL16NefcAAC+vr7S/qyLiwusWbOmWP0lNo3Jfu/ePRg9erRWuY2NjSE2NhZSU1OhTJkysGfPnn89N9Py8vKga9euWp04EolEUKVKFUhJSYGIiAg4ceKEdD1UXD7KvtfmfbLfDxgwQOti98jISEhNTYXIyEg4deqU9HPD/H5VjzW9zua9M2fOhL1792qVOyIiAtLS0qBSpUpw+vRp0NPTk/vdsk3Z81zeq/j8zp07td7fh4eHQ2pqKlSpUgXOnz+vdHlzycXlPffv34cuXbpoldvDwwPS0tIgOjoabt68Cfr6+ir/bnG+V/ZaQUEBNG/eHL5+/co5t4WFBSQkJEDNmjXh2bNnYGZmpvV2Wpv3jBgxAi5fvqzVMo+KioKYmBj4/PkzODo6Fvn8q9sOa7v9ZtqOHTtgzZo1WuV2cHCA2NhYEIlE4OvrC0ZGRtLfCwBKH2v6nu17X758CcOHD9cqt1gshooVK4K1tTUEBgaCvb09iMVi6e+W/arsueK+Nnr0aHjz5o1W2R0cHMDd3R2Cg4PBx8cHDA0N5f6mYgau36t7bffu3bB//36tcovFYvD09ISgoCAIDAwEOzs7Vtl+xnvevn1brIt8bW1tISgoCIKCgsDT01N6kbaq5abpMZf3Tp8+Xet9vrGxMQQEBEBQUBD4+/uDqampys+bsue4vK743pMnT2p9gZuenh74+vpCUFAQBAcHg7W1dbG2cVxaQUEBdOzYUavCHJFIBB4eHhASEgIhISFy23J1X7U9flD8HYsXL4YNGzZotcxdXV0hJCQEQkNDoVSpUlqNzYvF2o3pf/nyBVJTU7W6pZuNjQ2ULl0aQkNDwdfXFwwMDH7auAmb19atWweDBw/mnNvQ0BCCg4MhLCwMSpcuDebm5irPH/xbrX///lqNMzs7O0NYWBiUKVMGvLy81I4z/FuP+/fvD9OmTeOc3cfHB8LDw6FcuXLg7OxcZPxJ8evPfk0sFsPBgwchJiaGc3Z3d3coW7YsVKhQAdzd3VWOn2l6zOW9TP9fVsOGDWHdunWcspuYmEB4eDhUqFABypYtC6amppwzcn2OOVaUhYgQGRkJ586d45TfysoKKlSoABUrVoTSpUuDsbEx5/E3ru9RXO6Mpk2bwj///MMpv6mpKZQvXx4iIyOhbNmyYGZmJrctUHb+UtU5TS7vZfZRsnbs2AFJSUmc8gP8GB+NjIyESpUqgZubW5G/o2o7p+o1rj/D/DvGjRsHM2bMgGfPnnHKb2xsDOXKlYOKFStCREQEWFhYKN3XqNr/aPOa7OPp06dDYWEh6OnpwcuXL2HWrFmc/w+Yz0FkZCSEhYWBsbGxXB/k32gLFiyAgoKCIv+eDRs2wPXr1zn/GxwcHKBChQpQoUIFCAwMlH7W2PS1uPTL/vnnH8jLyyvSx2Mev3r1SuuxX09PTyhTpgyULVsW3N3di9XnVWybN2+WTnbDrPOyx8eyfeV//vlHq7FUAwMDCAoKgtDQUAgJCQFLS0u5v6fN17179xaZpEfdseK3b99UntNngzkODwoKAkdHR1bHpcocO3ZM2vdl837mfdevX4fnz59zC/0fYrEYvL29pce1tra2RX4/V1x+ZtWqVVpPYGVoaAi1atWS1jh4enpq9XsES9PJdWr8NwBwAwAEAHz69CkSok5qaioy6wubFhUVhWPGjMEbN26gRCLhLfeUKVNYZzYyMsLk5GRcsGABvn79mrfMiIjPnz9HIyMjTss8PDwcBw4ciKdPn8bCwkJecufn56Ofnx+n3L6+vtizZ088dOgQ5ufn85IbEbFdu3accgMARkZG4ogRI/DixYu8reczZ87knFssFmO1atVwzJgxeOXKFV6yr169mnNuAEB3d3f8/fffccuWLZiTk1PiuRctWqRV7tKlS2Pfvn3x0KFDmJeXV+K5Bw0axDmzg4MDtm7dGtetW4efPn0q8cyIiBkZGZwy29nZYcuWLTEzM5O3zBKJBMuUKcM6s4WFBTZu3Bj/+ecf/PjxIy+ZERELCwsxJCSEde7y5cvjiBEj8Nq1a7zu5xER69Spo5O5hw0bxjq3lZUVNmvWDNetW4efP3/mNfe5c+c4fS69vLywe/fuePDgQV7383l5eejp6ck6t0gkwsqVKwuiP9uyZUvO2++2bdvipk2beNlXMmbPns0pt6mpKWZkZODixYt57YufPn2aU25jY2NMTk7GefPm4YsXL3jL/fbtWzQ3N2ed29DQEBMSEnD27Nn47Nkz3nIXFhZiWFgY69x6enpYq1YtnDJlCj548IC33IiIbdq04bSulC9fHocNG4aXLl3idZuyYMECTrnd3NywU6dOuHv3bvz+/TtvuW/duoVisZjTZzMlJQXnz5+PL1++5C13fn4++vv7c1rmISEh+Oeff+KJEyewoKCAt+x//PEHp9zm5uZYv359XLp0Kb5584a33EeOHOGUG0AY4yl5eXno5eXFKbe1tTU2bdoU//nnH/zw4QMvuRER+/fvzym3WCzG6OhoHD9+PN68eZO3beL169dRJBJxyh4QEIC9evXidQxLIpFgpUqVOOV2cHDANm3a4MaNG3k9nuC6DxLKduXz589ob2/POreBgQHGxcXhzJkz8cmTJ7zlRkQcN24cp2UeERGBI0aM4G28kFFQUIBBQUGsc7u6umKHDh1w165d+O3bN95yIyK+evUKjY2NWeUWiUQYHR2NkyZNwnv37vGaGxHxzZs3aGpqyiq7kZERJiUlCeJcCiMmJoZVduaYYurUqfj48WO+YyMi4o0bN1jvk1xdXbFTp064d+9eXsaZldm9ezfrz2tgYCD++eefvPa7FN25c4f1sYabmxt26dIF9+3bJ5jlL5FIMCoqilV+Zixg3rx5vB4nKdqzZw/rdcjZ2Rl///133LlzJ+/bfFkpKSms/w1BQUH4559/4smTJwXzObh79y6nY+7IyEgcNWqUIMbZGQ0aNGCd39DQEOvWrYuzZ88WTJ3M9OnTOfXbmP7Pjh07MDc3l+/4nM53APx3LHjRokW89yU+fvyINjY2nPLb2dlhixYtcO3atbydj0REfP36NZqYmHDK7ujoiG3atMENGzbwfr5J1tOnT2VzuuHPqIn7Gb+EGhUuEmG4ePGixg0cc6AqpM7ut2/f0NXVVW1uIRUCyOrWrZvGZW5gYIB16tTB6dOn46NHj/iOjIiIy5Yt05hbJBJh1apVcdy4cbwXAjDu37+Penp6rDpR6enpuHDhQkGs57m5uRrXcabZ2tpis2bNcNWqVfju3Ttec3MZfNTT08Pq1avjuHHj8OrVq7yuL9+/f2d9IsnExASTk5Nx1qxZvH8+3717hxYWFqxylytXDgcOHIinTp3i/YD58uXLrDIHBgZinz598MiRI7wWRTG2bNmiMbOrqyt27NhREAPqjPXr16vNLBaLsWbNmjhlyhTe12lZZ86c0Zi7evXqOHnyZHz48CHfcaWys7M1HggzA9F79uzhtVBEUXp6usZ1nCnOuXz5siD284jsTpIyRS4LFiwQxH4e8cegIZs+ilCKXBjfv39HDw8PjbldXFzw999/x+3btwtigA0RMSkpSWNu2ZP/fBaHyho4cCCr/mCLFi0wMzMTs7Oz+Y6MiIgbNmzQmNvc3BwbNmyIK1as4L0fy3jw4AHq6+urzc0cr82YMYP3ogVGXl4eent7a1zmZcuWxcGDB+P58+cFsx1v0aIFq8+mEAq3ZS1fvlxjbj09PaxZsyb+/fffePfuXb4jIyLiixcvWBVduLu7Y+fOnQXVr61du7bG3IaGhhgfH48zZswQTN+WbUGXEArnZL1584ZV4bylpSU2atQIly9fjm/fvuU7NiIi/vLLL6w+n9WrV8cJEybgrVu3+I6MiIi7du1ita6ULl0a+/fvL5j+Idt9EFMwL6TtyoQJEzTmtra2xmbNmuGaNWt4PXEpKycnBx0cHDT2V+Lj43HWrFm8XsyiaM2aNRqXeUhICA4YMEBQxU+IiH379lWbm5k8YeHChbyfpFek6ZjC0tISmzZtimvXrhXM8QTjxIkTarMbGxtjWloaLl68WDD7IVma+rpMsZ8QxmyViY6OVpu/YsWKOHr0aLx58ybfUZVq27Ytq+3N2bNnBXN8JGv//v0aP7tNmjQR1D5KkaZ1KCAgAPv16yeoQj9Zms6ji0QirFKlCo4fPx5v377Nd1ylNF2cyRS9zpkzB58/f8533CKuXr2qse/AjIutW7dOcPuxb9++YalSpTT+G5jxmnPnzglqe/Tx40e0trZm1dfv2LGjYIotGSNGjNCYHQAwODgY+/bti0ePHhXEMRYiYu/evVllDw8PxwEDBgh2O4pIhYv/sw2ocJGwVL9+fZU7+JYtW+L69esFVfTHmDNnjtLcpUqVws6dOwvqijRZ6k4Q2NjYYPPmzXHNmjW8zsylTEFBAQYEBCjNLZQZdFRRd2Dq7u6OnTp1wp07dwqqE4WoeUbRMmXK4IABA/D48eOC6UAhai5wdXR0xNatW+PatWt5nTVCkaptCtO8vb2xS5cuuGPHDvz69SvfcaUGDBigMrOJiQmmpKTg3LlzBdcXULXvYQrRhHTiiCGRSLBixYpKczMDXGfOnBHcQYFEIsFy5coVyWxkZIQpKSm4aNEiXme3UCctLU3pIEpiYiLOnz9fkPscRNWzXgjxqnNZqgqK9fX1MTY2FqdPny6Y2QpkqTtJKlvk8uXLF76jFtG6dWuluZkZIiZPniyImTkUzZ07V23/ZNCgQXj27FnBrednz55VmTsoKAj79esnuH4VIuL79+/R0tJSaW4fHx/s0aOHYApcZKna/wD896pxoc2gwPjtt9+U5rayssImTZrg6tWrBXe8hoi4ZMkStdvxadOmCaaIS5a6mR+CgoKwb9++gvxsFhQUYGBgoNLcFhYW2KhRI0EV5Mrq3r27yu1hREQEDh8+nNc7D6hy9OhRlbnt7e2xVatWgjxJpW62RSEWzslSN9uij48P/vHHH7hv3z5BXYiDqH62RUtLS2zcuLEgP58SiQQrV66sclteu3ZtnDJlCt6/f5/vqEUsXrxY5bpSvnx5HDp0KF64cEFw25UvX76go6Oj0txeXl74xx9/4IEDBwQ5xvz333+r7K80bdpUsAUsqmbkZi6GnzBhAt65c4fvmEq9ffsWzczMimS3trbG5s2bC27yBFkfPnxQekzh4uKCHTt25H32bU2UXYDGLPf169cL5qIWZVRNqhAREYGjRo3CGzdu8B1RrcOHDyvtv9SuXRtnzJghuDFnRY8ePVJ6UVpUVBSOHTtWsEVmsmrWrKn0s8vMRCvkzy6i8nUIALBSpUo4ZswYwRa8ylI20x9TqD5//nx89eoV3xHVUnVxpo2NjWAL/RSpuiiJuevf4cOHBTcuJmvWrFlK8zMXmcycOVOQ4+6M4cOHq+zrV6hQAYcNGybIvj6i+tkWZY+xhDgGr262RSFesKkJFS7+jzagwkXCguIVCkI+8SVLcdA3ODhYsAUjihRPEPj7+2OvXr0E36lasWKFXG6hTVGtiuLAgEgkwqioKBw5cqSgZopS9OXLF3RycpJb5qamppiamirIIjRGXl4e+vr6Fhl4jIyMxGHDhgmyiAHxx9VObm5uRTqsMTExOHHiRF5vb6WOstkv3N3dsWPHjrh9+3ZBFVjKunLlilxmCwsLbNiwIS5btkyQV0UzZGe+EIlEWK1aNUEPqDN27Nghzc1cPZ+ZmSnYwXSG7Hpibm6OjRs3xtWrVwvyxIusr1+/yp34ioyMFPRV57IaNWokt8wbNWqEK1euFFSRuTKKhTpCLkCTde/ePbk+CnMSfeXKlfj+/Xu+46n0/ft3udtyC3GWcFVSU1OluZlC+YkTJwr+RMXQoUOLDO4L7XY9ymzdulUud1hYGA4cOFCws1gwnjx5ggYGBnJ9qy5duuDevXsFfUJI8ZbFlpaW+Msvv+CqVasEvx2XnfmBucXshAkTBP/ZXLVqldw67uHhgV26dBHcbMqKXr58KXcxpbGxMSYlJeHcuXMFObOGrNjYWLllHhISgv369cNjx44Jep+vONuilZWVYAvnZCkeb4rFYqxatSqOHTsWr1+/LuhteZMmTYqMdwq1yFKW4m0UbWxssFmzZoItmGfk5+fLjQUxt+abNWuWYGYlVmXy5MlyyzwyMhJHjhzJ+62UNfn69Ss6OzvL7YO6du0qqFubqrJp0ya5og9mVnyhF30gIg4aNEiaXYi3k1Vn5MiR0uzMzGZCnd1P0YULF6TZhT5phTLMRVF6enoYExOD06dPF/y2UVZcXBwC/LhAPiMjA5ctWybo/ouiTp06Scf64+LicPbs2YLv88qSvXBH6LMSqsL04Q0MDKS37tWl/wPZC2JsbGwEPeGPKrIXZ3p7e2P37t3x4MGDgj4nLevGjRvS/wORSISVK1fGMWPGCP6YhPHt2zd0d3eX/h/I3jFF6Oc6EIsW/hkbG2NycrJOjCEgFp1t0dbWVrCTSClSnG3RwcEBW7dujevXrxd8sbEy/0bhogh/FMYRAROJRG4A8BQA4OnTp+Dm5sZzIiJETZs2hXv37kFaWhqkpaVB6dKlQSQS8R1Lo2XLlsHs2bMhIyMD0tLSIDAwkO9IrLx69Qr8/f2hbNmykJqaCqmpqTqRvbCwEEJDQ8HY2Fiau3z58jqxrrRr1w7Wrl0LcXFxkJycDImJieDk5MR3LI0mTZoEvXv3Bh8fH0hKSoKkpCSoUaMGGBsb8x1NrYULF0L79u3B2toa6tatC4mJiRAfHw+Ojo58R1NrxowZ0LVrV3B2dobExERISkqC2NhYsLS05DuaWv3794dx48ZB5cqVITk5GZKTkyE0NFTwn81GjRrB6dOnITU1FVJSUqBGjRpgZGTEdyy1EBHi4uLAxMQE0tLSICUlRfDrNcCP3A0bNgR7e3vIyMiAWrVqgaGhId+xWOnevTvk5ORARkYG1K5dW/DbP8acOXNg/fr1kJGRAampqTrTB7958ybUqVMHkpOTIT09HWrVqiX4zyUAQEFBAYSFhYGDg4O0jxIQEMB3LFbat28P+/btk+auXr26Tnw+Fy5cCH369IGkpCRITU2F+Ph4we8vAQAuXrwI1atXh/j4eEhNTYWkpCSws7PjO5ZGnz59gqCg8hpbaQABAABJREFUIKhQoQKkpaVBcnIyuLi48B1LI0SEqlWrgrGxMaSlpUFqaip4e3vzHYuVrl27wvHjx6W5y5YtK/i+FQDAypUroX///tLcNWrU0IltysOHD6F8+fIQExMj/Wza29vzHUujwsJCCA8PB1NTU+l2PDw8XCfWlV69esGKFSsgJSUFUlJSIDY2FszMzPiOpdHx48ehZs2aUL16dWl2X19fvmNplJ+fD4GBgSAWi6W5o6OjwcDAgO9oGg0YMABmzJgB8fHxkJKSAomJiTrx+bx58yaEh4dDpUqVpMs8ODhY8J9PRIRq1apBVlaWdLtStWpV0NfX5zuaRsuWLYOePXtK+4dxcXFgYWHBdyyNcnNzoXTp0hAcHCztZ7m6uvIdi5UZM2bAokWLpGP6ZcqUEfw6DvBjPa9bty44OztDeno6xMXF6cQ+COBHvzw5ORlq1qwJ6enpOjM2DgDw5csXaNSoEVSrVg3S09MhODiY70icDBo0CAoKCiAjIwMiIiJALBbzHYm1d+/eQefOnSEhIQGSk5N14hhU1r1792DkyJGQkZEBderUAVNTU74jcfLp0yfo2rWr9DyFtbU135E4Gzx4MJiYmOjkZxcA4MaNGzBixAhIT0+HunXrgpWVFd+ROBs4cCDk5ORAeno6VKtWTSf6ZrKePXsGjRs3hoSEBEhLS9OJ80eKfv31V3j9+jWkpaVBUlISODs78x2Jk7lz58KkSZOk55WqVKmiU+vRyJEjYcaMGXJjCLqyP/j06RN4e3uDs7MzJCcnQ0pKClSuXFknln9WVhZ4e3uDr6+vdNlXrFgR9PT0+I6mtWfPnoG7uzvzrTsiPivu76TCRR1AhYtEE0SE169f69wOHgDg27dvOlPAIOvZs2dgbGysEwO9srKzs+Hjx4/g4eHBdxROJBIJHDp0CKpWraoTxRcMRIQVK1ZAxYoVITAwUKcOIubNmwchISEQFRWlEx0/xsKFC6FcuXJQtmxZnRn8QkTYtGkTREdH69Q2RSKRwPXr13XuALmwsBC+ffumMwPqDOaqI11Zr2VJJBKdzJ2fn68TJ6IVZWdng7m5uc4t85ycHMjNzQUHBwe+o3CCiHDr1i0ICgrSqW0hAMCdO3fAx8dHp/bzAADPnz8HOzs7nTuG+PDhAxgYGIC5uTnfUTjJy8uDnJwcsLW15TsKZ1lZWTpxcYKiV69egZOTk85tU7KyssDS0lLnPps5OTnw6dMnKFWqFN9ROLty5QqEhobq3D7/5s2b4OLionMnnN+8eQNv3rzRicI5RadOnYLy5cvrRBG0rLt374K1tbXO9Q9zc3Ph8ePHOjcOBADw4MED8PT01LmTaJ8/fwaRSKRz/SyAH8dvunDxkCKJRAISiUTnjiUAdHeMAuDH8aeubVcIIYT8HLq8/2Loak0A4+3btzp1Dk/RnTt3wM/PTyfXo6dPn8L379/Bz8+P7yicPXjwAMRiMXh5efEd5aehwsX/UVS4SAghhBBCCCGEEEIIIYQQQgghhBBCCCGED/9G4aLuldMSQgghhBBCCCGEEEIIIYQQQgghhBBCCCFEZ1HhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkoMFS4SQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxFDhIiGEEEIIIYQQQgghhBBCCCGEEKICIvIdoVgkEgnfEYpF1/Mjos6vQ7qenxBCiDCVeOGiSCRyFIlEySKRaLhIJNopEoneikQi/E9bosXvSxCJRBtFItEzkUj0/T9fN4pEooSfnNtUJBL1FYlEZ0Ui0XuRSPRFJBLdEolEk0QikefP/FuE/EybN2+GrVu3wpcvX/iOwsmmTZtg4MCBcPz4cSgoKOA7Dmt37tyBo0eP6lRmAIDbt2/DsWPHdC7306dP4cmTJ3zH4Ozz5886t6wBQCczAwAUFhbyHUErubm5fEfQysOHD3VuAOPDhw9w6NAhyM/P5zsKJzt27IADBw5AXl4e31FY+/79O4wbNw7OnTunU4ONly9fhoULF8KLFy/4jsLJoUOHYP/+/Tq1jgAAHD16FK5fv65z25IzZ87AvXv3+I7B2eXLl+HKlSs6t7wfPHigc9tAAIDs7GxYsWIFvH37lu8onCAiLF68GG7evKlz68rmzZvhyJEjOteXPXv2LGzevBlycnL4jsJJVlYWLF++XCfX8RUrVujk8eX+/ft18rN5+/ZtOHnypM4dr3379g22bdsGX79+5TsKZ/v27YPnz5/zHYOzq1ev6uS68vXrV1i1apXObQ8BADZs2AAnTpzQuWV+584dmD17tk5uy6dNmwaZmZnw8eNHvqNw8ubNG+jatatOnn84e/Ys/Pbbb7Bx40bIzs7mOw4n165dg/r168OCBQvg2bNnfMfhpKCgAOrXrw/9+vWDgwcP6tzx3JkzZ6BWrVowbtw4uHz5ss71v3bt2gUxMTEwfvx4nRwHuH//PlSqVAkGDhyok+ezAACaNWsG7dq1g3Xr1uncNh8A4Pz58xAbGwuTJk3SyWMQAIDBgwfDH3/8Abt374Zv377xHYezt2/fQvPmzWHp0qWQlZXFdxytzJo1C2bOnAmPHj3iO4pWDh8+DAsXLoSXL1/yHUUrBw8e1MnzYQAAOTk5Ons8/u7dOzh9+rROnRcrUUx1f0k1AEA1bQmH3yMGgAUaft98ABD/hMx+AHBHzd/5BADJ/+Iyc2P+1tOnT5EQLq5evYoikQgNDQ0xLi4Op06dinfv3uU7lkbZ2dlob2+PAIDW1tbYqFEjXLx4Mb548YLvaGp9/vwZ7e3t0cbGBps2bYorV67Ed+/e8R1Lo+zsbLSzs0NbW1ts2rQprlq1Ct+/f893LI3evXuHlpaWWKZMGRw4cCCeOnUKCwsL+Y6l0evXr9Hd3R1btmyJ69atw8+fP/MdiZUXL15ghQoVcMCAAXjmzBmdWNaIiA8ePMCKFSvisGHD8PLlyyiRSPiOxMqRI0cwJCQE+/fvrzPrNiLimDFjsFSpUtihQwfcsWMH5ubm8h1JI4lEghUrVkQrKyts3LgxLl++HN++fct3LI0uXryIAIAWFhZYr149XLhwoeD3k4iIXbt2RQBAR0dHbNWqFa5Zs0bw+5zv37+jp6cnAgCWK1cO//rrLzx+/DgWFBTwHU2t+/fvo56ennQdWbBggU6sI6dOnUIAQC8vL+zcuTPu3LlTJ7Yl586dQwDAwMBA7NWrFx48eBDz8vL4jqXRkydP0NDQEN3d3bFjx464fft2/Pr1K9+xNMrNzUU3Nze0sLDABg0a4OLFi/H169d8x2IlKSkJxWIxVqlSBUeNGoWXLl3Sif7JqFGjEADQ29sbu3TpojP7+SNHjiAAoJWVFTZq1AiXLl2KWVlZfMfS6P3792hlZSU9lp8yZYpOHMtLJBKsVq0aikQijIqKwhEjRuCFCxd0Yh0fMGAAAgCGhYXhn3/+iUePHsX8/Hy+Y2m0b98+6Weza9euuGvXLp34bH769AltbGzQ3t4eW7RogWvWrMEPHz7wHYuVtLQ0NDY2xoSEBJw5cyY+evSI70isLF26VNqf1aUxlDdv3qC5uTna29tjy5Ytcc2aNfjx40e+Y7HSoEEDuX2+roxJ7Nq1CwEA7ezssFmzZrhq1SqdGN8sLCzE0NBQBAAsXbo09u3bFw8dOqQTffKtW7ciAKCenh5GR0fjmDFjdGZ9adGiBQIAGhoaYp06dfDvv//GmzdvCj67RCLByMhIBADU19fHmjVr4rhx4/DKlSuCz46ImJiYKD1HGRoair1798b9+/fjt2/f+I6m0YoVK6TZzc3NMS0tDWfPno0PHz7kOxor8fHx0vwuLi7YunVrXLNmjU5sJ5kxUCa/q6srtm3bFteuXSv4sTlGmzZtpPmtrKywQYMGuGDBAnz27Bnf0Vhhjk+ZbX61atVw1KhReOHCBZ3olyEi1q1bV/pv8PT0xA4dOuDmzZt15jzXrVu3UCwWIwCgiYkJJiUl4YwZM/DBgwd8R2Ptt99+k/4fVKxYEYcMGYKnT5/WmXXo0qVL0vwhISHYp08fnemzISJ+/PgRbWxsEACwQoUKOHjwYJ1a/rdv30axWCwdJ1u2bBm+efOG71is1alTB01MTDA5ORnnzJmjM/VTzLGKo6MjtmnTBjds2KAz201FT58+la2Vc8OfURP3M34Jpz8oX/D3GAB2a1m4OEbm5y4AwC8AUPE/Xy/IvDa6mHktAOC2zO+bBwAxAFAZAAYAwOf/PP8FAMr+S8uMChdJsfzyyy9FCm4DAgKwe/fuuGfPHsEezE6aNElpsXDZsmWxf//+eOTIEUF2YsaPHy+XVywWY3R0NI4bNw6vXbsm2IGPsWPHyuXW09PD6tWr47hx4/D69euCzT1w4EC53E5OTti2bVvcuHEj5uTk8B1PpZ49e0ozGxkZYWJiIs6ZM0fwBSWdO3eWG9jo2LEj7t69G79//853NLVatmwpze3l5YXdu3fHQ4cOCf5EZI0aNeQGwn7//XfcsWOHYLfbiD8KoW1tbaW5zczMsF69erh48WJBFwls3769yLa7WrVqOHbsWEFvu+vXr19kP1m+fHkcNGgQnjp1SpCFdS9evEBjY+Mi+xyhn5xZsGBBkWVta2uLTZo0wRUrVgj24L59+/Zq1xGhDqjInoQBADQ1NcXU1FScN2+eoAejU1NT5XLLFkQLdR1BROzUqZNcbl0Z/Jk1a5ZcbpFIhJGRkTh8+HA8f/68ILcliP8tcpVtbm5u+Ntvv+HmzZsF24eVvbhMcV2ZPXs2Pn78mO+IKtWpU0fpujJs2DA8d+6cYLeFw4YNU3os36NHD9y7d69g++AHDhwoktvV1RXbt2+PGzduFOzA7Lt379DCwqLIvl7oFyVKJBKMjo6Wy21mZoZpaWk4f/58fP78Od8RVRo5cqRcbqZwZOLEiXjr1i3BbseZC4hkW1hYGPbv31/QF7fk5+ejv7+/XG5HR0ds3bo1rlu3Dj99+sR3RJX69+9fZF2pVasWTpo0SdDrCnNBuWx2d3d37NChA27duhW/fPnCd0SlJBIJVq1aVekx8pgxYwRd2LV+/foin08rKyts2LAhLlmyBF+9esV3RKUkEglWqlSpSPZSpUrhr7/+ihs2bMDs7Gy+Yyp179491NPTK5Ld29sbO3XqhFu3bhVs/3bPnj1Kzz+UKlUK27Vrh+vWrRNsofT58+eVZjczM8PU1FScNWuWYAsBCwoKsHTp0krzBwUFYffu3QV9IYay4zlmO1m5cmUcNmyYoAtYdu/erTJ/lSpVcMSIEXj27FnB5n/48CEaGBgo/TeEhYVh37598cCBA4I9VkKUL36VbU5OTtiqVStcvXq1YI89EBHPnj2rNL+hoSHWrl0bJ02ahDdu3BBsXwERsVWrViq3QczxtpDPwTAXISvmd3BwwJYtW+Lq1asFX4zcoEEDtX02oV+czFzcq+zYKjMzU9DHVoj/vfBEdpysSpUqOHr0aEH39RERT5w4UWTZlytXDgcNGiTo/S8iYmZmZpHtZnx8PM6YMUNnLohE/P9TuDgMAJIBwOk/33vJ/KNYFS4CQAAA5P/nZ84CgInC66b/eR7/8z6/YuQdLpOvj5LXq8hkOfQvLTMqXCTFInv1iKqD2bS0NJw7d66g1rGvX7+iq6urytxMJ6Z+/fqCuqIqJycHHR0dVWb28vLCLl26CG72IGa2SFW5mZlVhDZooOzkEtOMjIykMyA8efKE76hylBXuMC0yMhJHjhyJV69eFVzn8PHjx0oHBiwtLfGXX37B1atXC7JDfuvWrSInCwB+zB7QunVr3LRpkyBPGOzfv1/pOmJubo4NGjTA5cuXC/IAVNlBG3PwU7VqVRw3bpzgrr6XvdJe3bZ7165dghq0UHYiTLYxM9gIbbCiV69eavfvzMmZjRs3CubkTF5eHvr6+qrMzMwsNXz4cEEVwagb0AWFAS0hzXJ05swZteuIUGcKunDhgsrMzEkAIQ4APX36VOmAJ9PKli0ryOX97ds39PDwUJmbKZTatGmT4Aql0tLSVOY2MjLC+Ph4nD59uuCu+Fe8SEuxhYWFYb9+/fDIkSOCukDk5MmTanM7OztjmzZtBFe4w8xIpyq3ubk5ZmRk4IIFCwRXnFazZk2VuZkZmYQ4i+TgwYPVbseFWrRz8OBBtes4c9GC0AbxP336JHfRk2Lz8/PDP/74Q5CFuhkZGSpz29nZCXYWyeXLl6vMbWBggLVr18bJkycL7rP59u1blWM/zLrSvXt3Qa4ryi4oZ5qQZ+5UNR7BNKEWYBYWFmLZsmXVZo+IiBDkzESqiuhkP6MxMTE4ceJEwRWE/Prrr2qzGxkZSWeQvn37tmCySyQSrF69utrs+vr6WL16dRwzZozgZkpXdjGrYgsMDBRkIeCGDRs0ZjcxMcGEhAScOnWqoNYbRMR69eppzG9vb49NmzbFZcuWCapoWiKRyF0sr6o5ODhgs2bNcMWKFYK7GF12cgV1x0ppaWk4Z84cwe1jVRX+KR57VK5cGYcPHy7IQtL09HSN/wYhz8Z4//591NfXV5ufKQSfM2eOIC/U7NKli8Z1qFq1ajh69GhBThSg6byGSCTCihUr4tChQwX5GWDuZKiu/xATE4OTJk3C27dv8x23iDt37ii98IRpHh4egr4zj6oCcID/TnAkxBkNZWeIV9aYCyJPnDgh2AsiEf+fFC4WCaBd4eIsmZ+JUvGeKJn3zNQymwEAfPzP77gBKm47DQBzZP5WxX9hGVHhIik22dnGNLXw8HDs37+/IG6LpDiLCpvsffv25f3WfBMnTmSV19TUVFCzIGg6ESnbYU9PTxdMbsVZF1U15pbSQhmY7Natm8bMPj4+2L17dzx48CDvn0eGstm7ZJuBgQHWrVsXZ8+eLYj1g9G4cWO1uU1MTDAtLQ0XL14smFmxJBIJVqlSRW1uPT09rFWrFk6ZMkUwV1JrOsnOND8/P+zZs6dgZr/csWMH621gRkYGLly4EF++fMl3bLUnwhTXlejoaBw7dizvJ9uzsrLQzMyMVW7mBOqkSZN4L3hdtmwZ6z4JUwSTmZnJ+wwNHTp0YL2OMLMtC2Gm0ZSUFFa5HRwcsFWrVrh27VrelzUiu8FbgB8DQJ06dRLM7XY1DXgqLm+hXD08d+5cVrmZK1inTZuG9+/f5zu20tm6VLXg4GDs3bs378c4iIhfvnxBJycnVrltbGzwl19+EcyMo4ozuapqzCxeEydO5H2/g4g4evRo1usKU9R98uRJ3gc4ZW+Bpqkxs0ju27eP94KjDx8+oJWVFevteIcOHXDbtm2CKNpRVywq24Q2CwTbddzCwgLr16+PixYtEsTJ/8uXL7PuXwlpFsmCggIMDAxklT0wMBB79eoliP0PIvuxH6GtKzdv3lR7QblsCw0NFcwFAGwLWwD+W4AplNssbtmyhfU+SEgzEymbQVdd8/Lywk6dOgliP/T48WO1F0IpNh8fH+zSpQtu376d9+xc+iwAP+6I0qZNG1y7di3vxenXr19XW/Sh2JhCwGnTpuGdO3d4zS6RSDAiIoLTsvfx8cFOnTrhli1beC9EuHbtGqdlD/DjQpIBAwYI4rzbsWPHOGUXiUQYERGBAwcOxOPHj/Oe/8WLF2hiYsLp38DMpLd7925BjMGouwhG1f6qefPmuHLlSkEcX1+5coXTZ8DQ0BBjY2MFNRuj7O2W2bTSpUtjnz59BDOjp7rJUZQ1IU4UwPa8BsCPYjShjLUzFO9kqK4J8aK81q1bs+4/pKSk4Ny5cwUziZSmC5Rltz3MxeFCOX+qOOuiuu1+q1atBHeRNSIVLjLvFwHA8/+8/6aG9976z/ueAYBIi2xxMtn6qXmfbJFksW5NreL3U+EiKba7d++qrZxX1ZiTTcuWLePlqqrv37+jl5cX59wAPwYqMzIycO7cuSU+2x6XE3qyrXz58jh48GDeCus0zRapqlWoUAEHDx6MZ86c4SW3ulkXVTVnZ2ds164dr7eUfvbsGadBPRsbG2zevDlmZmbyemCh6hYwqlqlSpVw9OjRvB+QXrlyhXVmsViMNWrUwMmTJ/M+6L5r1y5O63aZMmVw8ODBvN8ic8SIEZz3N82aNcM1a9bwduCp6tZMmlrFihVx2LBhvC1zLifCZBtzsp2vGTIGDBig1f7d29sbO3fuzMsJjoKCAgwKCuKcWV9fH2vUqIHjxo3jZTZdVbcP0dQ8PT2xY8eOuG3bNl6urFR16ytNy5q5bSBfV7NeunSJc27mVth8DgA9f/4cjYyMOOUWwsxM2h4vBAcHY58+ffDQoUO8FWOwmSFFsVlZWWGjRo1w6dKlvM16MXnyZM65mVlpR4wYgRcuXOBlf8lmVgtljTmxzteM+ZpmxlfV7O3tsXnz5vjPP//wVoiheItuNs3CwgLr1avH6wUiw4cP55zb2NgYExMTeZ017fDhw1rtN2NiYvDvv//mbb+p7Db0bFpkZCQOHz6ct20KonbbcSHMDLhq1Sqt9j+NGzfmtRj9/fv3aGlpqdW6wufxGiJis2bNOOe2sbHBJk2a4IoVK/Dt27e85D506JBW+06+L7rQdEcFVY252I/PmXW1XebMjN1Tp07lrV/etWtXrbIbGxtj3bp1cerUqbwV06mbtUfTOlOtWjUcNWpUie+PCgsLMS8vj1PRh2Lz9fXFzp0747Zt2/718XGJRIJ5eXn49etXzM7Oxnfv3uGKFSu0zs7cknbChAn/2jiLRCLB/Px8zM3Nxc+fP+OHDx8wKysLX7x4gU+ePGF9YZSyxtxJbP78+f/KeV/Z5f3p0yd89+4dvn79Gp8/f46PHz/Ge/fuabWdZJq1tTU2bNgQFy5c+NMnLlC23N+8eYMvX77Ep0+f4sOHD/Hu3bta7VuZZmJigomJiTh9+vR/ZZvJLH/Ff8OrV6/w2bNn+OjRI9y8ebPW+UUiEVaqVAmHDBmCp06d+tcuWpNIJFhQUIDfvn3DL1++YHZ2Nr5//176bynOZ4Cv2RiZbWdubi7evHlT46yLqhpz3Dp//nxeC7l69uypVX4DAwOMjY3Fv//+m9eLq7Q9ryF7wSmf5x0/f/6MDg4OnPMzd8/ge2IMrud6mSaU2zLXrVuXc/bQ0FD8888/8dixY7xd8FtYWIhhYWGcP7N16tTBqVOn8n7OGvHfKVwU4Y/CON6IRCIvAHj4n2+XImJrDe/3AYD7//l2LiJ2UPPeuQDw23++9UHEh6req+LnhwPAoP98WxkRT6l4nz4AfIIft6g+gog1uPwdFjncAOApAMDTp0/Bzc3tZ/56UkJOnToFhw8fBolEIm2FhYWcvi/uz5w+fRpycnKK9e9wdXUFHx8f8PLyAjs7O5BIJFBQUAAFBQVQWFgofaz4varHbF7Lzs6GvLy8Yv8fODo6QkBAAPj5+YGHhwfo6en9q4XZhw8fhuvXr2ud19zcHAIDAyEwMBB8fX3B0NCwRArKDx06BDdu3ChW7uDgYAgODoaAgAAwMjJi/bMikUjrv7t69Wo4d+6cVj+rp6cH/v7+EBYWBmFhYWBrawtisRjEYjGIRCLpY8XvVT3m8r6RI0fC3r17tc4cHh4OZcqUAVtbW9DT0wOxWAx6enrSJvv9z3zctWtX2LZtG+fc9vb2EB4eDuHh4eDn5wf6+vpqMyv7ns17VP1M69at4cCBA5xzu7i4QFhYGJQpUwbc3d2lv0+xqXq+OK+JxWJo0KABPHjwgHNuKysrKF26NISGhoKvry8YGBiASCRS2wDgp7wnOzsbOnbsyFyEwYlYLAZfX18ICgqCkJAQsLa2lv4eZlvF5TGX9168eFGrzyTDwsJCuu329vYGPT29IvtlRCzyHJum7ucOHjwI2dnZWufW09MDHx8f8PPzAz8/P7C0tJTrQxQWFso95vKaqvd8+vQJLl++rHVmAAB9fX3w9vYGf39/lbkV+0PFfe3u3bvw9OnTYuW2srKCwMBACAgIAC8vL9DX11f7//wznjt48CC8ffu2WMua+VwGBASAtbW19Pcraz/rtdWrV8PHjx+1zm1nZwfBwcHSz6RYLC7y+Zdtyp7X5r3Lly+HN2/eaJ3b1dUVgoKCIDg4GEqVKsUpQ3Fe37RpEzx69Ejr3Pb29hAUFARBQUHg6ekJYrFY5f/3z3z+1KlTxdqeGBsbQ0BAAAQGBoKfnx+YmprKfX5UfWXzHnXvffz4MRw9elTr3AAA7u7u0uxOTk5FtgOq9h1styHKnv/69Svs2LGjWLmZ/aW/vz94e3uDgYFBsfeTbP4te/bsgdzcXK1zM9vCgIAA8Pf3l+53tN1/s33PuXPn4NmzZ1rnFolE4OnpKc3t4OCgdh1V9j2bx4rfP3jwQOtjNIarq6t0n+nq6goAoPKzpu5zyOW17Oxs2LRpU7FyOzk5SfuEbm5uIBKJirW9Y/velStXwtevX7XObWdnB0FBQRAYGAheXl7S/aa2DUD9fohpBw4cKNY4hIWFhXT/4+PjAwYGBmr/tqrXuP7M/fv3tTouZhgaGkq34QEBAWBmZsZquRX39cLCQpgzZw4UFhZqlVskEoG7u7u0X+jo6Kjxb/6stnfvXrh3757Wy5zZ/wQEBEj3P6q2B2wfs3nf06dPtRqLUFzm/v7+4O/vD/b29gAAavclst8X57Xt27cXa1zWyMgIfH19wdfXF3x8fMDExITVmLeq59i+99GjR/DwIafTQUVYWlqCj48P+Pj4gJubm7RvyxzfqjreVXzM9X3Xrl2Tfpa1ZWNjA15eXuDp6QlOTk4gEomkf4MZc5dt2j4n+/3Xr1/hw4cPxcoN8ON42cPDA9zd3aXbF03nGYr7el5entbbRFkmJibg7u4Orq6u4OTk9H/s3Xd4FGXXBvB7S3rvvfcKIQkQEKSXVBBQAQERAUGKiGBDRFSa9F6kSZMivYhUUYrSRUBE6b1DKCFlz/cH7+67SbbNBjKz33t+1zVXtkyy905mZ5555syzkMvlpc51mDOVPV+inlQqVYXzapPL5fDx8YGvry98fHxgb2+PoqIina8t5HH1Y887b1l2dnbw9fWFl5cX3NzcIJPJ9ObSvm/oueLi4heaWZuzszO8vLzg4eEBJycnqFQqk5arWMu7LCcnJ3h6esLd3R2Ojo5611tT3sPz+CwKZW9vDw8PD7i5uWmO8Uw5n6nvfmUvfysrK3h4eMDd3R2urq56t/lCblfmeiSTyeDu7q55D7a2tuX2P7qmsvtQQ1NxcXGF962GODs7w9vbG56ennBxcdG0ubXbKIb6m/U9dv/+faPHr8/j/+Tg4KDZd3l6ekImk5nVd6Ge5+rVq6Xu62tDExEePHhQ4f+No6MjgoKCEBgYqNn/ll1OprTbz5w5g5KSEqPHWuplrlKpcPv27Qr1MwHP6hfCwsIQGhoKLy8vAOXPaxk67jt+/HipdVzX72rfV1Mf01Ykv729PSIjIxEVFYXQ0FDY2NiUy1E2k/rnoUOHUFRUVG4efb9T9vGbN2/i9OnTZme3s7PTHBtGRUXB1tZWbxZTHzP19/bs2YOtW7eaExsAkJCQgOzsbOTk5KBmzZpQKBRm/y1zXLp0CUFBQeq7QURkfqflf1hi4WI2gHX/uduPiMYbmLcfgLH/uZtFRIJ61mUy2QoArf5z142I7hmY9yiAZAA3ichbyOuYkIMLF/8fGD58OD755BOxYzDGGGOMMcYYY4wxxhhjjDHGGGOMMcYslIeHBzIzM5GTk4MmTZrAxcXlhb/miyhcVFb0D4hAu2rP2ALQHgolSO9cxl/rkaGiRa3XSgbgJZPJbIjoqakv8p/CREN8Tf1bTLrkcrnYERhjjDHGGGOMMcYYY4wxxhhjjDHGGGMW7Pbt21iwYAEWLFgApVKJl19+GTk5OcjOzkZERITY8UxmiZVUTlq3jX3n7SOt244VeC1Tvlu3Iq910ci0X+DfYxLEhYuMMcYYY4wxxhhjjDHGGGOMMcYYY4yx56W4uBjbtm3De++9h9jYWPTq1Qt3794VO5ZJLHHERVut24VG5tUe9dCuAq9l7HWex2ux/+cq+7vlGWOMMcYYY4wxxhhjjDHGGGOMMcYYY/9/ubm5oXnz5sjJyUGzZs3g6uoqdiSTWWLhYoHWbWsj89po3X5Sgdcy9joVfS1jX2PtCx510eLxiIuMMcYYY4wxxhhjjDHGGGPSIZPJQERixzCJlZUVlEqlZiouLkZ+fr7YsfRSKBSarGWzKxQKnD9/XuyI5chksnJZy95XKpXIz8/HlStXxI5birHM2o/dvHkTV69eFTuyhva6YsqUn5+PM2fOiB27lLLrt67b6vt//fWXJLc7MplMk1ehUJS7ff36dUnm1kf9foqLi8WOwhhjL0R0dDRycnKQk5OD2rVrQ6m0xBJAyyxc1G6BG/tKZget26Z83bO+1zLlq5/Nfi0iumToeZlMJuTPMYnKyMjAF198AYVCAblcDrlcXur2i74vk8nQunVrsw6knJycEB8fj6SkJMTExMDW1lZvo1tXA7yizzVt2hS7du0SlNnGxgbh4eGIi4tDTEwM7O3tIZPJKnWaM2cOfvnlF8HLGwCcnZ0RGxuLuLg4hIWFwcrKqtJyz549G7/++qvZuWNiYhATE4OQkJBK3TmuWbMGR44cMfv3AwICEBkZiYiICLi7uwMAVCqVZiIio7fNme/48eO4cOFChd67r68vwsLCEBoaCk9PT6hUKpSUlGh+vojbV69exZ07dyqU28rKCsHBwQgNDUVQUBDs7e3LvZ4p94X8ztWrV3H//v0K5VYqlQgJCUFYWBhCQkLg6Oio+b+qX8vQZMo8Zef7448/8ODBgwrl9vLyQlRUFCIiIuDv71+qU5aIdE6GnjP2fHFxMebNm1ehzH5+fpptSkBAgOYiAPX2SshtU+f9+eefsWLFCrPyKhQKREREIC4uDnFxcXBzcyu1XzY0yWQyk+fV9bsdOnTAtWvXBGd2cHBAWFgYEhISEBsbCwcHB00bQt2O0PXT3Oe059m3bx/effddwZmVSiWqV68Od3d3xMfHa5azvtd73s8NHz4cq1evFpzb2dkZderUgZ2dHWJiYmBnZydoXRDyuK7H+vbti9OnTwvObWNjg1q1asHR0RGxsbFwcnLS/H19bYnn+dyAAQNw48YNwbkBICkpCZ6enoiNjYWPj0+5vw9AZw5djwudd+jQoWafAAgODoa/vz9iY2MRHBwMpVJpsO2mL5s5z0+YMAEnTpwwK7e/vz8CAgIQGxuLsLAwWFtbm/Q/fh6PLVy4EJs3bzYrd0BAAAICAkq1u7U/R/p+mjKPsXl37tyJSZMmmZ07MDAQ8fHxCA0N1eR+ntsSfY9fvnwZXbt2NSu3r68vgoKCEB8fj/DwcFhbWz+XfaEpv09EeP3113Hv3j3BuV1dXRESEoK4uDhER0fD1ta2wnmEzDdkyBDs2bNHcG4rKytN7ri4OLi6uupcLw3dNnU+Xb+zdu1azJo1S3BuAPDx8dEcEwcGBpb6u6Z+9spuO0yd9/z58+jfv79Zue3s7BAdHY3Y2FhERUXBzs5O0P5QyONlHyMi9OrVy6zjBplMhqCgIM0y9/LyErQvqej07bffmrWOA//th4iNjUV4eHip/hNDufU9J+R3Dh48iBkzZpiVW6lUIiIiArGxsYiJiYGzs7OgZV6R5wsLC9G3b1+zT+Cq9/dxcXHw9fXVu96aMgn93YkTJ+LgwYNm5XZ3d9dsD8PCwqBQKPRuJwzdNud39u7di3HjxpmV29HRUZM7OjoaNjY2mr9fkW24KfMWFxfjtddew+PHjwXntrW1RWxsLBITExEbGwt7e3vN3y7bh63rsYrOM2HCBCxatEhwbisrK0RHRyMxMRGJiYlwcXHRe7xr6La58927dw+1a9dGYaEpXwL2XzKZDBEREUhOTkZycjK8vLxKvYZ20Ymhx4Q+rv3Y7NmzMWDAAMHL3NvbG8nJyUhJSdG0x8ueI9B1HuF5PSaXy/H2229j9uzZgnIrlUrExcUhJSUFVatWhaurq6CiK13nRIxNcnn5wTF69eqFKVOmCMpub2+P5ORkpKamIjk5GQ4ODjpfT1fhm7Hnyv7/1PskXbZs2YImTZoIym5tbY2kpCSkp6ejWrVqcHFxMZrNlCJE7cd0LWddXn31VSxfvlxQ/oCAAFSvXh01atRAREQErKysjOYxNbt6220KIsJLL70kuN8iKioKNWrUQEZGBoKCggSv84Y+C6Yud7WuXbsKLlwMDAxEzZo1UatWLcTExGiW3fM4jyk0/7vvvoupU6cK+h0bGxukpaWhVq1aqFGjhmYfZajQ0Njtstt2Y+9j5MiRKC4uhkKhwMKFC3H8+HFB78HT01PzP6hSpQqsra117nN07S/NmU/9mRg1ahSKiopKtRXy8/Px9ddfo6SkRNB70F6PoqOjS63DhvqVzXls4sSJmuWt63+1fft2bNiwQVB+AAgLC9Nsi0JDQ3W2qcpOZduNhuaZM2cOCgsLdb4/mUymuV1YWIgxY8aY1e6JiYlBtWrVkJaWBl9fX71tcSHt9qVLl6KwsFDv75d9XC6XY9myZWbVXtja2iIpKQlVqlRBYmKi3joG9fs1dNy3fv16zTJUf4bVz2nf1/4d9XOrVq0y6wIImUyG8PBwJCQkICEhAd7e3qVet+xPXY9t27YNT58+LTdP2X2Zvr9x7tw5s+sClEolIiMjNXUkLi4uOt+jOY+ZMs+OHTvM+uwCz85DvvTSS5pixejoaLP+juQYOhldGROAUAD0n2meCfNna83/npF5+2nNm2lGthVav+9qZN6j/5nvxgtYRoHqHBcvXiTGzLF69WrSWp+NTomJifTpp5/S77//TiUlJaLl3r17t8mZ3d3dqVOnTrR69Wp69OiRaJmJiG7fvk1OTk6Clnlqaip98cUXdPjwYVKpVKLkvnXrFjk6OgrKnZaWRkOHDqUjR46IlvvevXvk5uYmKLejoyO1atWK5s2bRzdu3BAld2FhIYWGhgrKDYCcnZ2pdevWNHfuXLp27Vql5y4uLqa4uDjBuQFQbGwsvf/++7R161YqKCio1NyFhYUUFhZmVu6YmBh677336Keffqr03FeuXCFbW1vBme3t7Sk3N5emT59OFy5cqNTMRERz5swRnNnBwYFatGhB3377LV25cqXSM5eUlFBycrKgzN7e3vTWW2/R6tWr6eHDh5WemYho3bp1gjIHBQVRr169aMuWLfT06VNRMhMRNWnSxOTMTk5O9Nprr9HixYvp7t27omW+ceMG2dvbm5w7ICCAevbsSZs3bxZ1We/du1fQOuLh4UGdOnWilStXirZeExFt2bJFUG4bGxvKzMyk6dOn06VLl0TLvWfPHkG5ZTIZ1apVi0aMGEEnTpwQrT31zz//kEKhEJQ9PT1d9HbggwcPyN3dXXDuL7/8ko4ePSpabpVKRdWrVxeUOy0tTfTcRES9evUSlDs5OZk+++wzOnDggKi5Fy1aJCh3WFgYvffee7Rjxw4qKioSLfe///4r6LPp5uZGb7zxBi1fvpwePHggWu7i4mKKiooyObdCoaAGDRrQ+PHj6cyZM6LlJiLq2rWroHUlIiKC3n//fdq5c6eo68qKFSsE5XZwcKBXXnlF1GNiIuHtKwBUrVo1GjJkCB06dEjU7UqjRo0E5fb19aW3336b1q5dK2q/1dSpUwXltrW1pZycHJo1a5Yox2lqFy5cICsrK5NzS6WNRUT08ssvC1rmiYmJ9Mknn9C+fftE7ZedNWuWoNyhoaHUt29f2r59OxUWFoqW+969e+Ti4mJybm9vb3r77bdp3bp19PjxY9FyExENHjxY0Ha8devWtGDBArpz546ouQsLCykkJMTk7DVr1qQRI0bQX3/9JWpuIqLz58+bvG1xdXWlDh060A8//CDqsbLa1atXycbGxqTsAQEB9O6779LWrVtF/XxqM3Xb6O7uTm+++SatWbNG9M+o2smTJ0kmk5m8vo8aNYpOnz4tdmyNnTt3mpRdqVRS48aNaerUqXT58mWxY2sIaRPUqFGDRowYQadOnRI7dinZ2dkm5ff09KS33nqL1q1bR0+ePBE7tsaxY8dM3uYnJCTQoEGDRO8TKOu9994zKb+6TTlq1ChJrUcPHz4kT09Pkz/LDRs2pEmTJtH58+fFjq4xbNgwQe2eV155hebPn0+3bt0SOzoREf32228m5wf+21betm2bJPbFmzdvFpTf2dmZXnvtNVq4cCHdvn1b1OwqlYrS0tIE5ff19aWuXbuKfjxeXFxMsbGxgrK7uLjQ66+/TosWLRJ92RMRXbx4UTtfID2Pmrjn8UcqFEB44WK41vzTjcw7Q2veMDOyDdX6/ZoG5lPi2SiLBODnF7CMuHCRVYhKpaJq1aoZ3ODJ5XKqW7cujRkzhv755x+xI2tkZmYazB0YGEi9e/embdu2iXqCoKxBgwYZ3clI5eS6tk8++cQic3/55ZcmNwp79+4tSvGZLjNmzDC5URIbG0v9+/en7du3i1r8QkS0cOFCk3Pb2tpSZmYmTZ48mf79919RcwtZ3ra2ttS8eXOaNGmS6NvEPn36mJw7IiKC+vTpQ5s3bxa1I0NIkWhoaCj16tWLfvzxR9E7X1auXGlSZvVJpL1794p6EonI9MKXqlWr0ueffy76yV01Uw7q/fz86J133qFNmzZJYptNRPTRRx+ZtH58+umntH//fkksayLj7SkAFBkZSf3796ddu3ZRcXGx2JFJpVLRSy+9ZDS3p6cnvfnmm7Ry5UrKz88XOzYRETVt2tRobgcHB2rZsiXNnTuXrl+/LnZkIiLq3LmzSfvHrKwsmjFjhmROWowYMcJobim2Xzdt2mQ0t7W1NTVv3pymTZsmmdyXL182enJUXYA2YcIEOnv2rNiRiejZxQmmXHiTnp5OX331FR07dkwy2/C3337bpPaUFApFtJlSKOrk5ESvvvoqLVy4UPSCC7Vz584ZPQkqk8moZs2aNHz4cDp+/Lgk1hVTL8Dx9/end955hzZu3Ch621vNlPaV9vZQKn2jpl5om5ycTJ9++in99ttvoh87EBEVFBRQUFCQ0dw+Pj709ttv05o1a0S/OFitZ8+eRnPb29tTixYtaM6cOZJpY5lSHKJQKKh+/fo0btw40ftO1Ew9rpfKhRXavvrqK6O5Y2JiaODAgbR7925JHP8QmVZw6e3tTV27dqX169dLZjtORDR37lyDua2srKhp06Y0ffp0UQugdTF2UY6/vz/17NmTtmzZIpl2ltqAAQOMrucfffSRZPZB2n799VeD2QMCAqhXr16SO++j1qlTJ4Pb9EaNGtGUKVMkcxxXVuPGjfXmt7OzoxYtWtB3330nmTZ6WYb6yxUKBTVs2JAmT54s2eV/+PBhg+t/SEgIvffee6JfGGVI27Zt9ebXLvT7+++/xY6q0/Xr18nOzs7g8UdWVhbNmjVLlMFDTDF69GiD65GjoyO1adOGFi1aJMnPcn5+Pnl4eBh8D76+vtStWzfasGGDpNo9aqYUIFevXp2++uor+uOPPyTTViZ61vdeq1Yto/lDQkKod+/eog+CUdaGDRuMZgdAVapUoc8++0z0gbq0LV682KTskZGR1K9fP0n19alx4eKz+WUALv9n/pNG5j35n/kuAZCZka2JVrYPDcxXU2u+YS9gGXHhIqsQfRtv9QHI3Llz6ebNm2LHLOfQoUM6c8fFxdEnn3wiqYIAbXfu3CFnZ2ed2aV4cl3N0CiRXl5e1LlzZ1q1apXkchsabVF9gDR8+HBJnXwkMn6ywMbGhpo2bUoTJ06UTKc1EVFRURFFRkYabEyFh4dTr169aOPGjZK5CvbJkycUGBhoMHdYWJjkcl+8eJGsra31ZraysqJGjRrRuHHjJHW137fffqs3s1wupzp16tDIkSMlc6KX6NmBWtWqVXVmViqV1KhRI5owYYLoIwCV9eOPP+rN3LBhQ5o4cSKdO3dO7Jjl6Duoj4uLo48//liSneq3b9/WOSqxVC/+UDtw4IDefaS66ELsEWh02b59u97tSGxsLA0cOJB+/fVXyZxkVNu3b5/e3FIsFlEzNKKbFEaW1Sc/P1/v1eVSbnerVCqqWbOmztzu7u7UoUMHWrFihaij5emjb0QCKRagaVu2bJnO3NbW1tSsWTNJFYdqM1REpy4UkVrnN5HhEdoDAgKoR48e9OOPP0rmwgRtPXr00Jlbe8S5q1evih2znFWrVund/6g76qU2wgmR4W998PT0pE6dOtEPP/wgue04kf4LFdTHDhMnTpRM8ba26dOn611XkpKSJDHKny6XLl3Se2zs5+dH3bt3pw0bNkjmWF5bgwYNDO47pXoyWV8hmtT3nfpG45bJZJSRkUEjRoygkydPih1TJ30Fl1FRUTRgwABJFVlq0zfKsvqbE5YsWUL37t0TO6ZOV69e1fktJ1Iu+FPT10eRmppKX331FZ04cULsiAY1b968XPbo6GjJL3ciorNnz5Y7fra1taW8vDyaP3++JEZCMuT3338vt+xdXV3pjTfeEP2bN0yhq+DM1taWWrRoYRHLn4ioTZs25f4HiYmJ9Nlnn0nmonNDTp06RXK5vFR+Kysrat68Oc2YMUOSx0tl6bp4ysXFhdq1a0fLli2TZH+MtsePH5OPj0+59+Dr60vdu3enjRs3SvJ4W9uoUaN0tnsSEhLo448/luQxiTZ9fe42NjaSu+hbF0PfdCTVYks1Q4N5qI9VpkyZIqnRRdUMjbaoPnc6atQoOnnypCSXvRoXLv73d6Zq/Y7OkRBRuphwipnZrAHc+8/fOAE9xY8Apmu9VvoLWEZcuMjMVvakmJeXF7311lu0du1aSXbmaWvVqlWpneTw4cMl8fURxpT9So+4uDj68MMPJXlyXVvZUSLVuaXaKaZWdrRFJycnat26tehfd2XMlClTyjVKAgICqFu3brRmzRrJdhDMnj1bZ0OwcePGNG7cOPrrr78k2ZiaOHGi3txjx46VbG5dJ04DAgKoa9eutHr1akmewHv69Gm5r0B3c3Ojtm3bSmYYc11Wr15dLnP79u1p6dKlku1gL3tVnFS+TtkY7QsTpPpVG7po79/t7OwoLy+P5s6dK+l9DRFRXl5eqY6T7OxsmjlzpuQ7EevVq1fqoL1u3bo0evRoya8nZU++pKSk0Oeff04HDx6U5H5GrUuXLjo7CaUwsqwh33zzTanc6pFzpN7uLts5KJWvmTXm2rVrpU7sSr0ATa2kpISSkpJKnZRr3769RZyM0G4Lqkcqmjp1qiQLRbQtXbq01Dou5cI5bWUvGlL3n6xevVoyI87polKpKCUlpdS60rhxY5o0aZIkL2DRVvZbH6R8cYK2shcqWMKxA9GzY7Xg4GBNbvXFTlK8QKus3r1769yu7N+/X9JtlV9++aVU7uDgYOrVqxf99NNPkhqxpKyyF626ubnRG2+8QcuXL5f8vnPkyJHljn+kPFqSWtlRh6pXr07Dhg2T5EVmZS1ZskST28fHh7p162YRBRNEpUcsTE9P1yxzS/D5559rjpfr1atHEyZMkOQJel20+4WqVatGX375paQubjZGPQKws7MztW/fnlasWCHZvnxdWrRoQcCzAqd33nmHfvrpJ8mN5GSIuuBMXWwpla9uN5X214xnZGRI7mvETaH+xg7tAvX79++LHctk2oXfAQEB9O6770q+bVaW9vku9UAAUi/00/bo0SPy9vYu1e87ZswYi/osaPe5a188bQnbo7LfdKR9oabURsbWZePGjaWOsdTL/4cffpD8sYp2u1ndlnj11VdpwYIFkvkKdFO8iMJFGT0rjBONTCYLBXD2P3fnE9GbJvxONJ4VEioAHABQl4ieaD1vB2AXgDQAxQDiiei0jr8zD0Cn/9ytT0Q7dcwzFMBn/7k7kIi+KfN8xn9eS4lnXxNdz1h+oWQyWSCAiwBw8eJFBAYGPu+XYP+Pbd26FT179kSLFi2Ql5eHmjVrQqFQiB3LqNOnT6NXr17Iy8tDXl4eAgICxI5kknv37iEyMhKJiYnIzc1FTk4OoqKixI5l1N27dxEZGYnk5GRN7sjISLFjGXX//n2EhYXBxcUFOTk5yMnJwcsvvwxra2uxoxlUUFCAiIgIXLt2DTVr1kRWVhaysrKQnJwMmUwmdjy9CgsLER0djfPnzyMoKAiZmZnIzMxEgwYN4OjoKHY8vR4/fqxZ3paU+/z584iKikJJSQkyMjKQlZWFzMxMya8ns2bNQrdu3RAfH4/s7GxkZ2cjIyMDSqVS7Gh6ERFSU1Px8OFDzTawdu3aks4MANu3b0enTp2Qm5uLvLw81KtXT/LbPwBo3749Hjx4gLy8POTk5MDHx0fsSEbdv38f6enpeOmll5CXl4fGjRvD3t5e7FhGHTlyBI0bN0ZWVhby8vLQpEkTODg4iB3LqF27diEzMxPNmjVDbm4usrKy4OHhIXYso37//XfUrVsX9evXR25uLrKzsxEUFCR2LKPOnTuH+Ph4ZGRkaLaB4eHhYscy6vHjx4iMjERkZKQmd0xMjNixjCIi1KtXD4WFhcjLy0Nubi7i4uIkvW9XGzhwIDZv3qw5RqtWrZpF5F69ejX69eunWd516tSBlZWV2LGMunTpEtLS0tCoUSPk5eWhadOmcHZ2FjuWUSqVCmlpaXB3d9fs60NDQ8WOZZLevXtj27ZtyM3NRW5uLmrUqGER/Sfr1q1Dx44dkZWVhdzcXDRt2hQuLi5ixzLqzp07iIyMRFJSkmY7Hh0dLXYsk2RmZuLvv//WbFcs4dgBeHasNnDgQGRmZiI3NxfNmjWziHXlypUriIuLQ40aNTTrSkhIiNixTNKsWTPcunVLs12pUqWKRew7Fy1ahM8++0yzz69du7ZF7DsfP36MtLQ0pKena45/pNzvo23ixInYuHEjWrRogdzcXPj7+4sdySQqlQqtW7dGZGQkWrRoYTH7TgB48OABOnbsqGlrWcKxm1pBQQG6d++Ol19+GTk5OfDy8hI7kiATJkwAEaFFixYW005Ue/ToET799FM0b94c9evXt4h+OG03btzA6NGj0aJFC9SsWRNyuVzsSIIUFRXhs88+Q8OGDVGvXj2L2DeVNW/ePBQUFCAvLw9+fn5ixxHs3r17GDRoELKystCgQQPY2NiIHUmwJUuW4Pjx42jRogVSU1Mtom2mraioCB06dEBqairy8vIs5hhK26xZs7Bp0ybk5eUhKysLnp6eYkcS5MiRI2jbti1ycnKQm5uLjIwMi2n/AM/OK7Vr106Tv2HDhhZxrgN41q+akZGBhw8fauoCLKX9WVJSgqSkJDx9+lSTvU6dOhbXlgCe9VlqtZ2DiOhSRf9mpRcuymSylwBoV8N4AlAXA+4G8K32/EQ0T8/fGQ7go//cPQxgJIB/AUQA+BBAyn+eG05En+j5G/NgvHDRCc+KI9Vb/ZkAvgfwBEB9AJ8AcPzP/VpEdETXa1UEFy6yisjPz4ejo6PFNbyIyOIyA88O/BQKhUWcXNd248YNKJVKuLu7ix1FkLNnz+Lx48eIj4+3qPXl6NGj+PPPP9GsWTOLWlf27t2LX375BZmZmUhISLCYZb5jxw4cOHAAmZmZFrWurFu3Dg8fPkTTpk0t6rO5du1aJCUlISwsTOwoJnv48CEuX75sEQUv2m7fvg13d3eLWafVHj9+bDEHwmpPnjyBtbW1RRwAa7t16xbc3NwsLve5c+fg6+sLW1tbsaMI8u+//8Lb2xtOTk5iRxHk4sWLcHJygqurq9hRBLlz5w5UKpXFdW4WFRXh9u3b8PX1FTuKYDdu3IC3t7fYMQSz1P3lvXv34ODgYHEn4woKClBQUGBx2xTg2fbQkooW1M6fPw9/f3+LW1euX78OpVJpUcfEAFBcXIzTp08jNjbW4rYrp06dQnh4uMWtK1evXoW9vb1FFFlqKykpwdWrVy2yL//mzZvw9PS0uHW8oKAASqXSIgqJyyoqKrK4zyYA9TeGWdy6whhjjDHxWGoNgNqTJ09gZ2cndgyz3bhxA56enhZXvA48W/ZXr161iIvuy7p79y6uXr1qMRewG/L/pXBxHv5bLGgUEen8r8lkMjmAWQDeMvDrswF0IyKVCVl0Fi7+Z75IABsB6Bs27QGA9kS03kAWs3HhImOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxMbyIwkXLK6P9DyJSEVEXAFkA1gC4AqDwPz/XAMgkorf1FS0KfK1/8GwExw/xbPTFewAeAzgFYByA5BdVtMgYY4wxxhhjjDHGGGOMMcYYY4wxxhhjjP1/UukjLjLheMRFxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGNi4BEXGWOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxZtG4cJExxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOVhgsXGWOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxVmm4cJExxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOVhgsXGWOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxVmm4cJExxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOVhgsXGWOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxVmm4cJExxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOVhgsXGWOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxVmm4cJExxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOVhgsXGWOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxVmm4cJExxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOVhgsXGWOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxVmm4cJExxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOVhgsXGWOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxVmm4cJExxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOVhgsXGWOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxVmm4cJExxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOVhgsXGWOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxVmm4cJExxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOVhgsXGWOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxVmm4cJExxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOVhgsXGWOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxVmm4cJExxhhjjDHGGGOMMcYYY4wxxhjTg4jEjlAhlp4fsPz3YOn5GWOMsReBCxcZ+x+zdetW/PDDD3jw4IHYUQTZuHEjvvjiC/z+++9QqVRixzHZmTNncOXKFbFjCHbmzBk8fvxY7BiC3bt3T+wIZuGDVcako7i42CI/k3fv3hU7gmDnzp2zqH06AFy4cAGPHj0SO4Ygjx8/xoULF8SOIdj58+dRUFAgdgzBTp06heLiYrFjCPbHH3/g6dOnYscQ7ODBg7h9+7bYMQT7448/cPz4cYvb31y+fBk//vijxX02i4uLsXDhQly7dk3sKIKtWbMGx44ds7h1Zd++ffj5559RVFQkdhRBLl68iLVr11rcvr64uBjff/89bt68KXYUwTZt2oR///1X7BiCHTx4EL/99pvFtWWvX7+ONWvWWNw6TkRYtGgRzp49K3YUwTZv3owdO3ZY3Pbw7NmzmDlzJi5duiR2FEGICOPGjcPmzZstrr3y+++/46uvvsKhQ4csbtsyevRojB8/HqdOnbKoNotKpUKPHj0wduxYnDx50qKyExF69uyJQYMGYffu3RZ3DLpo0SK0a9cO3333Ha5fvy52HMHeeOMN9OrVC+vXr7e4fapKpUJeXh569eqFDRs2WFx+AHj//ffRsWNHLF68GLdu3RI7jmD79u1Do0aNMGbMGJw4ccKitj1qffr0Qa9evbBx40aLPI949epVtGzZElOnTsW5c+fEjmOWefPmYdCgQdizZw9KSkrEjiPYvXv30K9fP2zatAlPnjwRO45gRISxY8di27ZtKCwsFDuOYMXFxZg1a5ZFHosDwN69e/HHH39Y5PZz//79Ftl3Uxm4cJGx/zGxsbFo3749PDw80KBBA4wZMwZ//fWX5DfuL7/8MqZOnYoaNWrA19cXHTp0wOLFiyV/otLGxgYRERFIS0vDkCFDcPDgQckva+BZw93T0xM5OTmYOXOmxRRfzpkzB1WrVsXgwYNx4MABi1jWAPDhhx+id+/e2LZtm0V1Zn/00UeYMGGCRRXEqFQq9OvXDwsWLLCoQq+7d++ic+fOWLFiBR4+fCh2HJMtXboUXbp0wbp16yzmALSwsBC1atXCe++9h507d1pM52+/fv3w0ksvYdSoUTh16pTYcUyyYcMGBAYGolu3bli/fr1FrCN3796Fl5cXsrOzLWb/aGdnh5YtW2r2j/v377eIE2HqtkjLli0xd+5c3LhxQ+xIJtm2bRt8fHzQoUMHLFu2DPfv3xc7kkl27doFT09PtG7dGvPnz7eYDpQrV67A29sbdevWxahRoyym09/V1RUpKSkIDw9H7969Lebkuq+vL95//314eHggLy8PM2fOxOXLl8WOZZRSqcSePXvg5+eH9PR0DBkyxGK2hYWFhUhOTkZoaCh69uyJDRs2WMSJocDAQDRp0gTe3t54/fXXsWDBAos4qejv74+PP/4YHh4eaN68OSZPnmwRhVJKpRI7duyAj48PMjIy8PXXX+PIkSMWsT28f/8+IiMjERsbiw8++MBiCrx8fHxQt25d+Pr64s0338Ty5cstYp/v7e2NL7/8Eh4eHmjWrJnFrOMymQz//vsvwsPDkZCQgIEDB1pMcbS/vz8aNGgAT09PtGnTBvPmzbOIIp3Q0FBMnz4dQUFBqFKlCj7++GP8+uuvkj8+lslkcHZ2RrNmzeDu7o6cnBxMmzYN58+fFzuaUdWqVcP8+fORmpqKgIAAdO7cGcuXL7eIi7Tr1q2Lfv36ITY2FpGRkZqCKKm3WeRyOWrXro3+/fsjPj4eYWFheOedd7BmzRrJ973JZDK0aNECX3/9NV566SV4eXnh1VdfxZw5cyyin6JVq1b45Zdf0KlTJ/j6+iI1NRWffvopfvnlF4vYznTu3BlTpkxBTk4O3N3d0bhxY4wZM8YiLk5TKBTo2LEjpkyZguzsbHh4eKBJkyYYO3asxRxP9+zZE4sXL0b79u3h7e2NGjVqYMiQIdi3b59FFHBlZGRAJpPhgw8+QEJCAkJDQzXbnvz8fLHjmaRTp06YMmUKsrKy4O7ujmbNmmHChAk4ffq02NFM4ufnBy8vL7z77rsICwtDfHw8+vfvb1FFaJmZmRg3bhxq164Nb29vtGvXDosWLbKI427gWb9Yfn4+MjMz4eHhgZycHEyfPt1izjXKZDLY2dmhUaNG8PT0RKtWrTBnzhyLuWBWqVTi+PHjiIyMRFxcHAYMGGAxx1cA4OjoiCpVqiA0NBTvvvsuNm3aZBH9qsCziwl9fHxQu3ZtjBgxAn/++adF7HsrBRHxJPEJQCAAAkAXL14kxiqqT58+pF6n1FNYWBj16tWLNm7cSI8fPxY7ok7jxo0rl1sul1PNmjXpiy++oP3791NJSYnYMcvp1atXqcz+/v7UrVs3Wrt2LT169EjseHo1bty4VO7U1FT64osv6NChQ6RSqcSOp9PDhw/Jy8tLkzkgIIDeeecd2rRpExUUFIgdT68//vhDk9nV1ZXat29Py5cvp/z8fLGjGbRmzZpS68dXX31Fx48fl+z6oTZp0iQCQEqlkho3bkxTp06lK1euiB3LqC5duhAAsrW1pZycHJozZw7dvHlT7FgGPX78mHx8fAgAOTg4UKtWrWjhwoV09+5dsaMZNGrUKM267e7uTh06dKAffviBHj58KHY0vf766y+SyWSa3NHR0TRgwAD65ZdfqLi4WOx4Oj158oT8/f01me3s7Cg3N5e+/fZbunr1qtjx9GrRooXF7R9Xr15dKrOvry917dpV8m2RJk2aaDLLZDLKyMigYcOG0Z9//inZZV1QUEABAQGa3Eqlkho1akQTJkygM2fOiB1Pr7KfR5lMRrVq1aLhw4dLenmrVCpKTU0ttX6Hh4dTnz59aMuWLfT06VOxI+r1zjvvlMrt4OBALVq0oFmzZkm6XfL999+XOyarWrUqDRo0iPbu3SvZfc7FixfJ2tq6VG4fHx968803acWKFXT//n2xI+pUUlJCSUlJpXLb2tpSZmYmTZkyhc6dOyd2RL3KHgfLZDKqWbMmffnll3T48GHJbleWLVtWbh2Pi4ujAQMG0M6dO6mwsFDsiDqdP3+erKysSuUOCAigbt260Zo1ayTbji0uLqb4+PhSuZ2dnalNmzY0f/58unHjhtgR9Sq7jiuVSqpfvz6NGTOG/vrrL8mu4xs2bCi3jsfHx0t+Hb937x65urqWyu3q6kqvvfYafffdd5I+Nn711VfLLfP09HQaMmSIZPsyiYjWrVtXLrebmxu9/vrr9N1330n281lYWEgRERE61/MPPviAtm/fLtk24qJFi8rlVigUVKdOHRo2bBgdOXJEstuW3NzcctltbGyoSZMmNG7cOMluF3XthwCQlZUVNWjQgEaNGkXHjh2TZHaVSkV169Ytlx0AJScn04cffkg7duyQ7HZ95syZOrO7uLhQq1ataNasWZI+H9qgQQOd+YOCgqhr1670ww8/SPYYQ6VSUbVq1XTmDw4Opm7dutGqVaskm5/ov/3kZScPDw9q27YtzZ8/n65duyZ2TL327dunM78lbHvUXnnlFZ3vISIiQvLnmomeHT+V7SMAQI6OjtSiRQuaMWMGXbhwQeyYBn344Yfl8quPu4cOHUoHDx6UbDuTiOjs2bPljmEBUGJiIn344Yf0888/U1FRkdgx9SooKKDg4OBy+dPS0ujzzz+XdDufiOjKlStka2tbbh/82muv0YIFCyR9fEVE1KZNm1LZ7e3tKTc3l2bNmkWXL18WO55euvqyQ0NDqVevXrR582ZJ1zJou3jxovZ7CKTnURP3PP4IT1y4yCzL1atXyc7OTmejEnhWOJCVlUVTp06V1ImQJ0+elDoRrGvy9vamDh060JIlS+j27dtiRyYiokuXLulsAAPPTjplZ2fTjBkz6NKlS2JHLeXXX3/Vu5wDAwPpnXfeoQ0bNtCTJ0/EjlrKyJEjdWZ2dHSkVq1a0XfffUe3bt0SO2Y5LVu21NnBl5WVRbNmzZLkgbauE6nAs4KpDz/8kPbt2yfJhrl2MZ32lJGRQaNGjaLTp0+LHVGn06dPk1wuL9eBXb9+fZo4caJkD6S/+eabcstaXTQ6ZcoUyW37iIjy8/PJw8ND52cyOztbsp/Jtm3b6tz+eXp60ptvvkkrV66UXEH0xIkT9e5ratSoQV9//TX98ccfkuqoO3TokMH9Y48ePWjjxo2S2j+qVCqqWrWq3nZfTk4OzZo1S3IFo7t379a7rMPCwqhv3760detWyZ2ImTx5st7ciYmJ9PHHH9OePXskV+Bl6PMYFhZGffr0oZ9++klyJ3p1nVRXT05OTtSqVSuaN2+e5E6uX7hwQe8xAvCsKFqKHZ0lJSWUkJCgN7eXlxd17NiRli1bRvfu3RM7billi4y0J/UJojFjxtCpU6fEjlrKypUrDR4DJyQk0MCBAyXXqX/58mWysbHRmzsgIIC6du1Kq1evllT7RN8xjnpycXGhV199VZJFOz169NCb28bGhpo1a0aTJk2SXCG9rmJR9STlgldj63hkZCT17dtXcoX0KpWKatSooTe3lIsBv/rqK6PryldffSW5deX48eOlLjIrO6kL6ZcvXy6pIhGVSkXVq1c3uMxr1KhBQ4cOpQMHDkiqvfLdd98Z3Hc6OTnRK6+8Qt9++62kTmwWFxcbbGcBzy6I79Kli+SKoo4cOWIwN/DsAqN3332X1q9fL6kL6FasWGE0u7oYbeXKlZJa7r/88ovR7E5OTpoinPPnz4sdWaOwsJAiIyON5k9MTKQPPviAtm7dKqmT+Xv37jWaXalUUt26dWnYsGGSu9h148aNJuV/+eWXacSIEZIrnNZXdFZ2Sk1NpU8//ZR+/fVXSR0rERHl5ORY7LaHiOjYsWMG2zfAs/OfzZo1owkTJkjynIuhPgL1lJSURAMHDpTkBT63bt0iJycng/l9fX2pc+fOtHz5csn10RCVv6jX0LGJ1I6/ifQX4Wu38zt37izZC2bff/99vdnlcjnVqlWLhg0bJrnzM0TGt0FS7VclMtyX7ejoSK+88grNnTuXrl+/LnZUvbhw8X90Ahcushfggw8+MNogU0/qEyFSaJhNmzbN5NxyuZwyMjLoyy+/FL0DzZQGMACqVq2apHakjRo1MprZ3t6eWrRoQbNnz5ZEIY++gqOy60bdunVpzJgxkjlgOnDggMHMMpmMateuTd98841kMhMRLVmyxGBuf39/6tmzJ23ZskX07Yc2fQWu2gekgwcPltwJD32FaeopLS2Nvv76azpx4oTYUTXy8/PJ3d3dYO7q1avTsGHD6OTJk2LH1TB0Ukz9maxVqxaNHDlSMgUOxk6IAf8tiJ4xY4YkRvR68uQJ+fn5Gd3XhIaGSmoEtby8PKOZHRwcqGXLljRnzhxJHGSuWrXKpLZIeno6ffnll5LplDalLaK+GnTRokV0584dsSOXG71Q3+Tt7U2dO3eWTFGxqZ9HJycnat26Nc2fP18SBQ0qlYrS0tKM5laP2imlguiePXua9Ln09fWlLl26SGZdWb58uUm5lUol1atXj0aPHk0nT54UfZkbKzLSntQFRz/99JPoJ0hVKhWlpKSYlFvdqS+Vq+Pfe+89k3JbW1tTkyZNaMKECfTPP/+IHdtosaj2dkVKRXW6RhbVN8XHx0um4NVYsaj2JLVRJPv27WtSbvXJh9mzZ0viQpEff/zR5HVcve+UQtvwwYMHRo8ttdeVrl27SmZdadeuncn7zvr160tm32nquqJur0jlxGxxcTHFxsaanD0lJYU+/fRT2r17t+gXF/3www8m51a3tUaOHCmJkblee+01k7NLaTRGIW0t9XJXF3MdPXpU9OXerFkzk7Or2wDvv/8+bdmyRfR2rq5RRg1NDg4OlJOTQ1OnTpXEhRjZ2dmC8vv6+lKnTp1oyZIlog+soFKpqHbt2oLy+/n5UefOnWnp0qWS6Hvp3bu3oPyurq7Upk0bmjNnjiSK1g8fPiwov3qbL5VtD5Hp7Rv1FBkZSb1796ZNmzZJYjRGXSPOGZqcnZ2pdevWNHv2bEn0qxMRffbZZ4LXoVGjRknm21WMXdSrPWlfNCOV0SQLCwspNDTUpPxWVlbUsGFDGjt2LP39999iRyciomvXrhkc6Ep7Cg4Opp49e9KGDRsk8fkl0j2yvb7919tvv02rV6+WxLGhkL5s9cV5Utnuq3Hh4v/oBC5cZC/AjRs3yMHBQVCjEvjv6ALz5s0T5ST806dPTW4ElJ18fHyoU6dO9P3331f6gZWhURcN7UjF/hpHU67a1NVwFHsnOmzYMEG54+Li6KOPPqI9e/aI2tjNzMw0OXNCQgJ9+umntH//flEbK8XFxRQVFWVSZjc3N+rQoQOtXLlS9CurHzx4UO5rpvRNYWFh9P7770viK3ePHTtm8joSGxtLH3/8Mf3++++iN2iHDh1qcu6YmBj66KOPRB+xU9dXkRlb3h999BHt3btX1NymHqypp+rVq9NXX30l6kmO8ePHC8rs7OxMr732Gi1cuFC00ZUPHjwoeP+YkZEh6tfuqlQqqlKliqDcwcHB9O6774r6NQVC2yIKhYLq1asn+sUJhkYv1DXZ2NhQ8+bNadq0aaIe8wnNLZfLqXbt2jRixAg6fvy4aNuR9evXC8qtXr979uxJmzZtEm2EVCFFRupJXeA1ceJE0U7WlZSUUHJysuBlHhERoRm5U6xtiqmFdNqTo6MjtWzZkr799lvRTk4Yuhrb2L5HzNHHjH3bg74pJiaG+vfvT9u3bxfl4iehBQzqSXsUSbE6w4WewAWencR9/fXXRS14FVKoo73vbNasGU2ePJnOnj0rSm5z1/G0tDRRvyZYpVJRRkaG4NyBgYHUvXt3Ufuphg8fbta60rRpU5o4cSL9+++/ouQ+depUuW9QMGUKDw+nXr16idZeMaewBfhvAeY333xDJ06cEGUftHTpUsG5AZC7uzu1bduWFixYIMrIPubug4BnI3N169ZNtNGMT548adZ6rl7XxRyNccOGDWblBp5dtP3WW2/R8uXL6e7du5WWWaVSUXFxscFvKjA22dvbU3Z2Nk2ePLlSto8qlYoKCwvp8ePH9ODBA7p165ZJoy7qm6Kjo6lPnz4vvAiqpKSEnj59So8ePaL79+/T7du36fr16yaNWqhvksvlVLNmTRoyZAjt27fvhfQ5q9eRgoICevjwId27d49u3bpFV69epYsXLxodndZY/lq1atHQoUNfWHtGpVJRUVERPXnyhPLz8zX5r127RpcuXaJ9+/aRUqk0+z1UqVKFPvzwwxc6YIv2e9D+H1y/fp0uX75MTZo0MTt/QEAAdenShVasWPHCR9JTr0tPnz6lx48fU35+Pt29e5f27t1r9CJ6fZOtrS01b96cJk6cKMrFa+r/jTl9BOopJSWFPvnkE1FH9Lx7966gcxjaU0hICPXo0YPWrVsnajGXOcewwLNi8Lfeekv0Uahnz55tVv6oqCh67733RB+oQchAV+pJ/Q1O06dPF7Uf25SBPMpO6j74KVOmiPqtoxXpy5bCt329iMJFGT0rjGMSJpPJAgFcBICLFy8iMDBQ5ETMHL/99ht++eUXqFSqSptKSkoMPn/o0CHcuXOnQu/L19cXoaGhCA4OhoeHh+Z1i4uLUVJSUmp6Xo/dvXsXT548qVBumUyGkJAQxMXFITY2Fv7+/pDJZIL+htDt57x583D8+HFBv6OmVCoRHR2NhIQEJCYmwtXVFQA0mbWzG3rMnOcHDx6Mq1evmpXb3d0dycnJSE5ORkxMDKytrSGXyyGTyTQ/tW+b8pwp8z98+BAtW7ZEcXGx4MxOTk6oWrUqqlWrhuTkZNjb20OhUJSa5HJ5ucf0TULm/f3339GwYUPBmd3c3FCtWjWkp6cjMTERNjY2UCqV5SaFQiHo8bLPqZdzWXPnzsVbb70lKLOVlRUSExORlpaGtLQ0uLm56c2gVCphZWUl+Hl9edU+//xzDB06VFBuJycnpKSkID09HUlJSbC1tTWYS+ikXt4KhUJv9pYtW2L16tWCcru6uiIlJQWpqamIi4uDjY2NZr1Tv545t02d78GDBwgJCcGDBw8E5XZxcUFycjKqVauG2NhYWFtbl/pcyeVyvbcr+rxcLsc333yD6dOnC8oMPFtPkpKSUKVKFU1uods6c587ceIE+vTpIzgz8GybnZiYiOTkZERERGjWQ+0JgMH75sxTUFCAbt26mbXNlslkCA8PR2JiIhITE+Hl5VVuP2bop5B5y/788ssvcfbsWcGZgf8u64SEBERGRpZa1hXJauy57du3Y8GCBWZltra2RmxsLBITExEfHw9HR0e9r20sk9DnP/nkE1y+fNms3N7e3pr2U2hoKBQKRbnXexE/nz59ij59+qCkpMSs3AEBAUhISEBCQgICAwPL7ROMtVvNfb6goAAff/wxVCqVsMD/4e7ujoSEBMTHxyM8PBxyuVzznHbbWX1b12PGntf32KhRo/Do0SOzcltbWyMqKgrx8fGIjY2Fo6Nj2YsJDV1oKOjxss/98MMPOHfunFm5gWfruPqYJjg4GDKZDEQElUpV6jWf9/1Dhw5h//79ZudWL/PY2FhER0fD0dFR8xov8ufNmzexceNGs3MDgL+/P2JjYxETEwN/f38AKPUahl7f1Md0Pff999+bvU0BAGdnZ8TExCAmJgYRERFQKpVmLUOhv7Nt2zZcuXLF7Nw2NjaIiopCTEwMoqOj4eDgoPe1DOUQ+twff/yBQ4cOmZ1boVAgPDxcs664urrq/Uzpu23OfNevX8e6devMzi2TyRAcHIyYmBjExsbC29sbAMq9njnbDUPzqFQqzJ07t0LruI+PjyZ3UFCQydvDis7z448/4uLFi2bndnR01OQODw+HtbX1C19PiAjHjx/Hvn37zM6tVCoRHh6OmJgYREVFadZxodsIob/z8OFDrFq1yuzcAODp6anZpqjbWWW3c2W3d/rumzKP+v62bdtw//59s3NbWVkhPDwckZGRiIyM1Ow7tSdjfcGGntf33NmzZ3H69OkKLXMXFxdERUUhPDwcQUFBkMvlmtcz5aeQedU/i4uLceDAgQrlBp7t98PCwhAaGgpPT0+dmZ73dPPmTdy9e7dCueVyOQIDAxESEoLg4GA4OTlBpVKV6mNX39b1mLHn9T12+/ZtEFXsnKNCoUBAQACCgoIQEBAABweHUq+l/Xq67ht6ztC8RUVFFcoNPNuP+vj4ICAgAP7+/nB2di712qZOZTPrm543Z2dn+Pv7w8fHBx4eHiAina9bVFRkMJe+5yuynzdGLpfD29sbvr6+8PLygq2trd4chvLrek6lMu/4WAhra2t4e3vDy8sL7u7uUCgURpezKe+pslhbW8PLywuenp5wdXWFXC4XtC7rmu9Fri9lKZVKeHh4aPIrlcpy27ey2z9D2xT1z8pYd4Bn2x43Nzd4eHjA3d0d9vb25c6zVvT+i+bg4KBZh1xcXEBEBve3+vbB+h5/+vRpqXbZ82ZlZQUfHx94e3vDw8MDVlZWpdpWum4be16lUuHu3bul2pS62tHPY/8ll8vh4+MDPz8/+Pr6wt7eXme7UFdbWNc8V65cMdj+154KCwvN7s9Tk8lk8PX1RVBQEAIDA+Hk5GRWf8CZM2dQUlKiM6e+qaSkpEJ9HsCz9Sc4OBihoaEIDQ2FnZ2dwdcESvc5njhxQrPN1zefvuceP35s9jkONR8fH80xiq+vr6bfWft1dGU5evSoZv0tO6+x31c7evQoHj9+XKHssbGxiIuLQ0BAQKm+7LJ5dN039TFd97/55huzszs4OKBx48bIzs5GVlYWfH19zfo75rp06RKCgoLUd4OI6FJF/yYXLloAGRcu/r8wfPhwfPLJJ2LHYIyxCtFV0CiTyXDr1i2xo+lkqLCxuLjY7KLcyqCvoLSgoKBCJzvEoD5pyBhjjDHGGGOMMcYYY4wxxhhjrOLS09ORk5OD7OxsVK1a1eigBhX1IgoXlRX9A4wx05St0GaMMUtU2VdrVpQ6b0FBgdhRBNO+GtDScdEiY4wxxhhjjDHGGGOMMcYYY4w9P/v378f+/fsxePBgBAQEIDs7Gzk5OWjQoAHs7OzEjmcSrqRirJJw4SJjjDHGGGOMMcYYY4wxxhhjjDHGGGPsebp8+TJmzJiB7OxsJCYmYt26dWJHMgmPuMhYJeHCRcYYY4wxxhhjjDHGGGOMMcYYY4wxxtjzVKVKFeTk5CAnJwdpaWkWU6PEhYuMVRJL2SgwxhhjjDHGGGOMMcYYY4z9fyeXy6FQKFBUVCR2FJPI5XIolcpS0927d0FEYkfTq2xe7en+/fvIz88XO6JOVlZWOjNrP/7PP/9ApVKJHbUUXeuIrkmhUODkyZNixy1HoVCUymjoPfz77794+vSp2JHLKZtdfVv7sXPnzkn6cws8+19oZ1coFLh3757YsRhjjGmxtrZGgwYNkJOTg+zsbAQHB4sdySxcuMhYJalZsyY+//xzyOVysyeFQlGh3y87denSxawDEzs7OyQkJKBKlSpITEyEg4ODptGqqyH7vB/Lzc3Frl27BGWWyWQIDQ1FbGwsoqOj4eLiIvj3K2rZsmVmHwjKZDIEBwcjKioKUVFRcHNz0xzUaB/cGHrM3OcXLVqEmzdvmpUbAHx8fBAREYGwsDB4eHgAAFQqFYhI81P7dkWfU9/+8ccfK9RpYG1tjaCgIAQGBsLPzw9WVlYoKSkxaVKpVCbPqz0VFRXh7t27ZmdWs7W1hb+/P3x8fODp6Qm5XI7i4mKUlJSguLhY5yT0uRfVIePu7g4fHx94eXnByclJb66ioiK9eXU9/6I7kFxdXeHj4wNvb2+4uLhApVIZXa6mTiUlJS8ks1wuh6+vL/z8/ODr6wt7e3vNuqh+XaG3DT1fUFDwXHL7+vpqPpvqbaH6c6f+7Gn/rMhjt27dwrVr1yqUV6lUIjg4GGFhYQgJCYGTk5Og7ZzQefPz87Fz584KZXZyckJkZCQiIiIQHBwMpVKpeW0AmtuGHhMyr0qlwnfffVehdd3HxweRkZGIjIyEn58fZDJZuX2arp8VmWflypW4cuWK2Zk9PT0RFRWFyMhIBAQEaNoa+l6zIo+pf548eRLbt283O7ONjY1mOYeHh8PW1lbn6z7v2ytWrKhQW0R7WQcGBpZa1i/qZ0lJCaZNm2b2/ke77RcdHQ13d/dS63VZz+vxoqIijB071uzcVlZWiIiIQHR0NKKiouDo6AigdFva2G0h86pvExG+/vprPHz40Kzc9vb2iIqKQkxMDCIiImBrawuZTFZqUr+WqY+b+tzEiRPNPkZwcnJCTEyMJreVlZXm78vl8nKvWfaxisyzatUqrFy5skK5Y2NjNbnVr6P9emUfM/bTlHlOnDiBIUOGmJXbzs5OkzsqKkqznpiST8h70fVYYWEhOnXqhMLCQsG5lUolIiMjERcXh5iYGDg6OgpethX5OXjwYBw/ftysZR4cHIyYmBjExcXB29vb6P/7eT62fPlyLF++3Kzcbm5uiIuLQ2xsLEJCQqBUKvV+rvTdNne+kydP4ssvvzQrt42NDaKjozX9JnZ2doK3GeY+VlRUhO7du5tVNCKT/be/Jy4uTrPPFJrH3OzDhw83ex338fFBbGwsYmNjERgYCIVCYfI22dj22ti869evx6JFi8zK7ezsrFne4eHhsLa2NmsbYc7vXLp0CX379jUrt3o7rt4e2tnZldv+Cr1v6rwymQxdunQx6/jBysoKUVFRSEhIQFxcHJycnDR/39S+4orMN2vWLMyfP19wboVCgYiICCQkJCAxMRFubm6lXkPdz1v2MaE/9T137do1NG3aVHBRiEwmQ0hICBITE5GUlAQfH59y/dRCJu2cpk79+vXDihUrBC9zX19fJCYmokqVKggJCYGVlZXOvnVdt409b8q8jx49QmxsLB48eCAot/pcQ9WqVZGYmAg7O7tyxVX6ipgq+pz6f3T48GFUq1ZN8DL39/dH1apVUa1aNQQHB+stdDN1Mlakpc6r7a+//kJ8fLzg7OHh4ahWrRpSU1M1fd/6XtfY+zL0vHrfpgsRISUlBUePHhW83FNTU1G9enWEhYWVen1z3oeux9XbbkMOHjyItLQ0Qdmtra2RnJyM9PR0pKWlwcXFxaxlbmgqu47os3nzZjRr1kxQfjs7O1SrVg01a9ZEamoqHB0dTVpvTX3e0PpS1oULFxARESEov0KhQHJyMjIyMlCjRg14enoaLTAU+pipy//rr7/GggULcOrUKUHvwcfHBzVr1kRGRgYSEhJgbW1t8Pyqsfv65tH3PoYNG4bi4mIoFArcuXMHY8eOFZQfAGJjY1GzZk3UqlVL0wY2Zf9ZkcdGjhyJoqKicm2ezZs3Y9u2bYLyKxQKJCUloWbNmqhRowa8vLxKtaHKtkkqcnvSpEma5V32PSqVz/rsR4wYIbig1MrKClWrVkX16tWRlpYGV1dXve3ZspMpz8+ZMweFhYWl3pO+9/n7779j06ZNgvIDgKOjI6pWrYrU1FRUqVIFtra2Jh1vGHpsyZIlKCoqMulYRX379u3bWLhwoeD8ABAQEIAqVaqgatWqCAkJ0WwDTZmA//Y5rl27FoWFhZrH1Z/fsvNr79vU81y+fBlbt241K7+TkxMSExORmJiI6OhoTb+k+rW1M5R9DAC2bNmCp0+fltrul53H0GMymQxbtmwxuz/Y09NTczweEhJSbruna3/0vB4jIgwdOhSPHj0yJzq8vb2RlZWFnJwcNG7cWNMHb9F0nWTkSVoTgEAABIAuXrxIjD0Pu3fvJvV6ZcoUFhZG7733Hu3YsYOKiopEy713716TM9vb21OrVq1owYIFdOfOHdEyExFdv36d7OzsBC1zNzc3ateuHS1ZsoTu3r0rSu5jx46RTCYTlNvBwYFatGhBs2fPpqtXr4qSe+PGjYIyq6eEhAQaOHAg/fzzz6Ks5wsXLjQrt0wmo5o1a9LQoUNp//79VFJS8sKzlpSUUGFhIT158oRGjx5tVm4A5OnpSe3bt6cFCxbQ9evXX3jex48f04MHD+j27dvUp08fs3O7urpSmzZtaM6cOXT58uUXlpuISKVSUVFRET158oQePnxI9evXNzt3ZGQk9e7dmzZs2ECPHj16obm1nTlzhqysrMzK7O3tTR07dqTvv/+ebt++XWmZiYiaN29uVuaIiAjq06cP/fjjj/TkyZNKzfzVV18JziuXy+mll16i4cOH0x9//EEqlapSM//www+CM9vZ2VF2djZNnz5dlPbxmTNnSKlUCspsbW1NTZs2pUmTJtGZM2cqPTMRUaNGjQQv69jYWPrggw9E2zf+9ddfJJfLBS/rJk2a0MSJE+nff/+t9MxEREuWLBG8rN3c3Kh9+/a0ZMkS0dquc+bMEZw7JCSEevXqRZs3b6aCggJRcq9fv15w7sTERPr4449pz549VFxcLEruf/75hxQKhaDc1apVoyFDhtDBgwcrfXut9vTpUwoKChKUOyUlhT7//HNRcxMRvfrqq4Jyx8TE0IABA+jXX38VbT0hIpo6daqg3L6+vtStWzdav359pbdFtB07dkxQbnt7e2rZsiXNnTuXbty4IVrugoICCgwMNDm3TCajjIwMGjFiBJ04ccKi1nF1X8/27dupsLBQtNzTpk0TlNvZ2Zlef/11Wrx4saj9PULbKUqlkho2bEgTJ06ks2fPipa7qKiIoqKiLHI7/u677wrKHRERQe+//z7t3LlT1P7MH3/80SK3448ePSJvb2+Tc7u6ulL79u1p2bJl9ODBA9FyE5GgPh87OzvKy8sTff9DRHT+/HmT+09kMhm99NJLNHr0aDp9+rSouYmIhg0bZvIyDwoKot69e9P27dtF/WyqtWrVyuRlXqdOHRo7dqxox/VlderUyaTsVlZW1KxZM5oxYwZdu3ZN7NhERLRu3TqT15mMjAwaNWqUJNZ1tVdeecWk7G5ubtSpUydavXo1PX78WOzYGnXq1DF5n/TOO+/Q5s2b6enTp2LH1ujVq5dJ+Z2cnOi1116j77//nu7fvy92bI0jR44Iaod98cUXovTbGmLq9sfa2poyMzNp5syZktn+EBHdvXuXnJ2dTV6PXn/9dfr+++/p3r17YkfXmDlzpsnrkZeXF7311lu0du1ayWyLnj59SsHBwSa/B3XbXqx+al06duxocn718eCECRNEPR7UJvQcWJUqVWjQoEH0+++/V8q5aEN27twpKLtCoaB69erRmDFj6O+//xY1+5o1awRlB0BJSUn0ySef0N69e0Vf9hcvXtTOFkjPoybuefwRnrhwkVmeZs2aGd0ApqWl0ZdffimpxnB2drbBzJ6enpJreBERffDBBybtdGJiYkQtDiirTZs2JuUODg6md999lzZt2iRqhyrRsyKvtLQ0k3Lb2NhQ8+bNafLkyaI3EgsLCykyMtLkBoq64G/RokV08+ZN0XI/fvyY/P39Tc6tLrL84osv6LfffhPtBPCNGzfI0dFRUKMwLS2NBg0aRLt37xbt8/nrr78KymxnZ0dZWVk0adIkUTv23nzzTZMzy+VyqlWrFn355Zd04MAB0Rrge/bsMTmztbU1NW7cmMaNG0enTp0SbZ957949cnV1NSmzu7s7tWvXjhYtWkS3bt0SJS/Rs6LixMREkzIHBQVRjx49aMOGDaLv47t06WJSZh8fH3rrrbdo5cqVop+4++WXX0zKbGVlRY0aNaLx48dL4oRAu3btLG5ZFxcXU2xsrEm54+PjaeDAgbRr1y7R236FhYUUFhZm0r48IyODhg0bRseOHRP9OEGlUlF6errJ6/aECRMkc5Kxc+fOJu1jmjdvTtOmTZNMf8CMGTNMWt5NmjShyZMn0/nz58WOTEREx48fN3pRlroAYNSoUfTXX3+JHZmInhXRmVIompiYSJ988gn99ttvondgqr322mtGc/v6+lLXrl1p/fr1ou/f1UwporOzs6Pc3Fz69ttvJXPyzZR1HABVr16dvv76a0lsw4lMP1kVEhJCffr0oa1bt0rmpHmHDh2M5nZxcaG2bduKelFqWQsWLLDI7filS5fI2tra6Ha8Zs2aNGzYMDp+/Lgk1nGVSkUZGRlGl3lCQgJ98skntG/fPslsx8eNG2fyZ3Pbtm2iFkBru3r1Ktna2hrM7eHhQZ07d6bVq1dX6oWdxhgrxLGxsaHs7Gz69ttvX+gFwEI9fPiQPD09ja7jgwYNogMHDkjis6l24sQJg/tPa2trysrKolmzZklqmRMRnT171uCFUA4ODtSmTRtavHixpAptiJ5tG2vWrKk3u1KppMaNG9PUqVNf+EXj5jh+/LjB9d3f35/effdd2rp1q2S2jdp27dplMH9ERAR98MEHtHv3bsnsk7RdvXqVbGxs9Ob38vKit99+mzZs2CDaBZbGGLrgSC6X08svv0zjxo0T/byVPmfOnDG4/XF2dqa2bdvS0qVLRe+n02fo0KEGPwd+fn70zjvv0I8//ijJ9ciUfryoqCj64IMPRL8YU59Zs2YZbWvWqFFDUm17badPnzZ6QbL2RXdSOR5U++2334wufysrK2rcuDFNmjSJzp07J3bkUkwZ5MXZ2Zlee+01WrRoUaUPjKKPSqWilJQUk5Z9kyZNaNKkSZLbF3Dh4v/oBC5cZM/Z77//rncD2LRpU5o6dSpdunRJ7JjlHD58WGfu0NBQ6tevH+3atUuSDS9Doy0qFAqqX7++JKr7yzI0Oob2CWspFbYSGb9SMzAwkLp3705r166lhw8fih1X49tvvzXaSElPT6fBgwfTvn37JLOumzLaonrEvCVLlohaIKWtf//+RnNX1miQplKpVPTyyy8bzR0XF0f9+vWjn376SfRCYiLTRiHRXkekcvDQsGFDo9uSbt260erVqyk/P1/suERENGTIEIOZk5KS6KOPPqJffvlF9AIptWXLlhnd13z99dd09OhRyexr/v33X4MdEikpKfTZZ59J4qpDbYbWaS8vL+rUqROtWLFCUlefGzuBlJKSQoMHD5bcsl60aJHBDofGjRuLOhqkPrNnz9ab28nJiVq3bk3z5s0TfRSasjZs2KA3t7u7O3Xo0IGWLVsmqXWbyPC2xNPTk95880364YcfJLOPUSssLKSQkBCdud3c3OiNN96Q5PIm0l8IbW9vTy1atJDEKEu66CsUVV8pPm7cOPrnn3/EjlmOoW24FItz1AwV0Xl7e1OXLl1ozZo1kipyUWvbtq3O3La2tpSdnU0zZ86kK1euiB2zHEOjhKSnp9NXX30luX4HIqK///5b73FOaGgo9e3bV1KFXGrFxcUUExNjkdtxfSPo2draUk5ODs2aNUu0b/4wZOvWrTpzq4sSxowZI8nt+JMnT8jPz09vO3zIkCF0+PBhyX02ifRfQB4eHi65UXq0XblyRWchjqurK73xxhu0YsUKybUN1caOHavzmL5WrVo0atQoyfV7a9NVhK4eWUvKBTdERD169CiXXV2UK7WBHcratm1buex2dnbUsmVL+u6770T/Bi1j3njjjXL5o6KiaODAgZJs45bVtGnTcvmrVKlCQ4YMkVQfnD4DBgzQ2f6S8nlCbX/99Ve5YyV1Yfrs2bMleVxaVvfu3cv9D7QL/aRyoZE+Dx48IHd393LvIS4ujj766COL+BzPmzdPZ3tHXegn9rcBGKOv8NLGxoYyMzNpxowZkjx+1abvguSQkBDq3bs3bdmyRdKfBX2DRamPC5cuXSq5Cx/Ufv75Z739CGFhYdS3b19JXfSozdBoi56enprzNFJug3Lh4v/oBC5cZM9Zbm6uZmPi4uJC7dq1o6VLl0qyU1Kb9uh/VatWtZiDqLKdZVL4CmhTlB1tUconrNV0XaWgHr1NaoUv2goKCnSeHHNzc6PXX3+dvvvuO0kUzpX14MEDnVdTKxQKeumll+irr76igwcPSu4A7/LlyzqvvFevK0OHDpVcEQwR0U8//aSzIevo6Eh5eXk0bdo0yV11Q0T0+uuv61zWGRkZoo+qqI+uIeYVCgXVqVOHRowYIckTp3fu3Cn31Rbqr1OeNm2aZEZJ0VZSUkIJCQmlMjs7O1ObNm1o/vz5kt3XvPXWW6Uyq4sBZsyYIdm2uq4r6atUqUKffvop7d27V7IdumW3H3Z2dpSTk0MzZsyQ5EU2RLqLAby9valz5870ww8/SLbDQVdnYVhYGPXp04d++uknSXbyEOkebTE2NpYGDBggiVEsDSk7cmtcXBwNHDhQslfBq5W92CY8PJz69esn+ldwGlP2QgopjvKnS9lCUUdHR2rTpg0tWLBAMhd76NO+fftS7ah69erR2LFjJVmco63siA/x8fH00Ucf0Z49eyTXZtV28uTJUic/vby8qHPnzrRq1SpJXbBXVmFhIYWGhpY6SZWVlUUzZsyQ5OhK2sqOKl+9enX66quvJDOSpT5LlizRuR3fsWOH5IostV25cqXUcbx6HV+9erWk13Eiorp162pyOzg40CuvvELz58+XzIWd+kyePFmTW6lUUqNGjWjSpEmSPLbUdvPmTXJwcNBkV3+jkNQ/m0SlL7INDAykXr16SXa0Nm3aRa7aX0csxULisrQvJvL29qauXbvSxo0bJTmyVlnaha7qr97esWOHpNvk2ho0aEDAs8LcDh060MqVKyV5YYgu2utNSkoKDR06lP7880/Jb2PU9u/fT8Cz4uLatWvT6NGjJXdhpSG3b9/WfJNSUlISDR48WLKF9Pqov2JZfX52+fLlki1M1+XixYuaUbCjo6Ppww8/lMRXlwoxcuRIzT43IyODRo4cKZlvXTBFcXExRUdHE/Dfb+qYPn265I+htGkXXrq7u1PHjh0leQGvPmVHHU1LS6OhQ4dK9jx0WQcOHCh1XKj+Gm6p9++pqdsR6v1ZrVq1aPjw4ZLfH6tUKqpWrVqpZZ+QkEAfffQR7d69W9J9wtq4cPF/dAIXLrLn6PDhw5pKf0vo+FD7+++/qX79+jR+/HhJFuboox5tMTo6mvr3728xO/w//vhD04Hdt29fyV8VorZq1SpNh8frr79OCxculHxHMBHRlClTNDv4atWq0aeffirq1xGbSnsofT8/P3rrrbdo2bJlkr8iVvtqZD8/P+rcuTMtXbpU0id/yxZmJCUl0YABA2j79u2S/mwePXq0VOGO1EZV1EWlUlGdOnU0mTt16kRLly6V/Ho9aNAgAp5dzdezZ09JfJ2yMd9//z0Bz65I79evH23btk3S6zMR0T///EMKhYICAwPpnXfeofXr11tEx3r9+vU1V6tOnTpV8icbiYj+/PNPkslkkvqKcFMsXLiQgGcX2QwaNMgirtAmejbaolwup9q1a9OIESMk38mjtnHjRk1BlBRHMNfn7NmzZGtrqxllyVJyFxYWUmRkJGVkZNDw4cMl+TU9+nTo0EHzVcqW8rkkevbZDAgIoB49ekj266l0OXXqFLm4uFDr1q0toshSTb2O161b16I+m0TPRv2JjY2lDz/80KI6u2fPnm0xRZba/vnnH3J0dJT0SJa6lJSUUGJiouS+StkU77//PsXGxtLAgQMtah3fuXMn+fn5Ubdu3WjDhg2S+FYEUxQUFFBCQgK9+uqrtGjRIklfeF3WkCFDqHHjxjRlyhSLOpdy8+ZNqlGjhiS/StmYhQsX0muvvUZLliyR/MAIZY0cOZL69+8v+YuHdJk1axZ98skntH//fotaX4iefbVmjx496KeffrKY81Pa5s6dS2PHjrWo81TapkyZYjHFxbqsXr2aRo0aRadPnxY7ilnu3r1LvXv3ps2bN0u+H1SfefPmWcSIfvoUFhbSm2++aREj+umzadMmat++PS1btkyyF0kbUlxcTM2aNbOIC2H16dWrFzVv3pymTZsm2QvsDWnZsiXVrl2bRo4caXGf5V27dpGDgwO1bNmS5s6dK8mBf/RZu3YtWVlZUaNGjWjChAkWdeGAthdRuCijZ4VxTMJkMlkggIsAcPHiRQQGBoqciFmy/Px8ODo6QiaTiR1FECKyuMwAcPr0aRARoqOjxY4iyO+//w4nJyfExsZa1HJftGgRgoODkZGRAaVSKXYck5SUlKB///6oUqUKmjVrBj8/P7EjmSQ/Px8dOnRARkYGmjVrhuTkZItYVy5duoS33noLDRs2tKjcP//8MyZNmoTmzZujadOmFtMWGDFiBIqKipCZmYmUlBTI5XKxIxl15swZLFiwAJmZmUhNTbWIzCqVCjNmzEDdunURHx9vEes0AGzYsAFRUVEWtY88cOAAlEolqlSpYjHL+f79+9i1axcaNGgABwcHseOYbN++fbC3t0dSUpLFLGsA2LJlC2JjYxEUFCR2FEF+/vlnJCQkwNPTU+woghw5cgQhISFwc3MTO4og58+fh5OTE9zd3cWOIsiDBw/w5MkT+Pj4iB1FECLChQsXEBISInYUwS5fvgx/f3+L2g4CwPXr1+Hq6gobGxuxowiSn5+PwsJCeHh4iB1FECLC2bNnER4eLnYUwc6ePYvg4GAoFAqxowhy5coVuLi4WFTbCgAePXqE/Px8+Pr6ih1FsIsXL1pc+woAbt26BXd3d4s4rtRWUFAAmUxmcdtxAHj69KlF5i4pKbG4baGapfbbM8YYY0wcKpUKMpnMotsPBQUFsLW1FTuGWYgIt27dgpeXl9hRzHL+/Hn4+PhY5PI/evQowsLC4OzsLHaUCrl06ZL28XkQEV2q6N/kwkULwIWLjDHGGGOMMcYYY4wxxhhjjDHGGGOMMcbE8CIKFy3rUj/GGGOMMcYYY4wxxhhjjDHGGGOMMcYYY4xZNC5cZIwxxhhjjDHGGGOMMcYYY4wxxhhjjDHGWKXhwkXGGGOMMcYYY4wxxhhjjDHGGGOMMcYYY4xVGi5cZIwxxhhjjDHGGGOMMcYYY4wxxhhjjDHGWKXhwkXGGGOMMcYYY4wxxhhjjDHGGGOMMcYYY4xVGi5cZIwxxhhjjDHGGGOMMcYYY4wxxhhjjDHGWKXhwkXGGGOMMcYYY4wxxhhjjDHGGGOMMcYYY4xVGi5cZIwxxhhjjDHGGGOMMcYYY4wxxhhjjDHGWKXhwkXGGGOMMcYYY4wxxhhjjDHGGGOMMcYYY4xVGi5cZIwxxhhjjDHGGGOMMcYYY4wxxhhjjDHGWKXhwkXGGGOMMcYYY4wxxhhjjDHGGGOMMcYYY4xVGi5cZIwxxhhjjDHGGGOMMcYYY4wxxhhjjDHGWKXhwkXGGGOMMcYYY4wxxhhjjDHGGGOMMcYYY4xVGi5cZIwxxhhjjDHGGGOMMcYYY4wxxhhjjDHGWKXhwkXGGGOMMcYYY4wxxhhjjDHGGGOMMcYYY4xVGi5cZIwxxhhjjDHGGGOMMcYYY4wxxhhjjDHGWKXhwkXGGGOMMcYYY4wxxhhjjDHGGGOMMcYYY4xVGi5cZIwxxhhjjDHGGGOMMcYYY4wxxhhjjDHGWKXhwkXGGGOMMcYYY4wxxhhjjDHGGGOMMcYYY4xVGi5cZIwxxhhjjDHGGGOMMcYYY4wxxhhjjDHGWKXhwkXGGGOMMcYYY4wxxhhjjDHGGGOMMcYYY4xVGi5cZIwxxhhjjDHGGGOMMcYYY4wxxhhjjDHGWKXhwkXGGGOMMcYYY4wxxhhjjDHGGGOMMcYYY4xVGi5cZIwxxhhjjDHGGGOMMcYYY4wxxhhjjDHGWKXhwkXGGGOMMcYYY4wxxhhjjDHGGGOMMcYYY4xVGi5cZIwxxhhjjDHGGGOMMcYYY4wxxhhjjDHGWKXhwkXG/kctW7YM+/fvh0qlEjuKIAsXLsSWLVvw9OlTsaMI8ujRI7EjmIWIxI7AGGOMMWYxSkpKxI5glvz8fLEjmOXKlSsWucwvXbqE27dvix1DsPz8fBw6dMgijxF27Nhhkev5b7/9hjNnzogdQ7AzZ85gz549Fvf5fPz4MdasWYOHDx+KHUWwdevW4erVq2LHEGzXrl04duyYxW1XTp48ie3bt6OwsFDsKILk5+dj0aJFFrkPWrRoEY4fP25x68rWrVuxadMmPHnyROwogly8eBFTpkzB2bNnxY4i2MSJEy1ymR8+fBjDhw/H0aNHLW49nzp1KqZPn47z58+LHUUQIsLHH3+MmTNn4uLFi2LHEWzIkCEYPXq0RW4bN2/ejF69emHDhg14/Pix2HEE++yzz/DFF1/g999/t7jzawDQv39/fPnllzhw4IBF5p86dSoGDBiAHTt2WFxbDHjWH/DGG29gwYIFuHnzpthxzDJt2jR88cUXFnmOGQAKCwvRu3dvLFmyBHfu3BE7jll+/fVXDB8+HH/88YfF7QMAQKVSYcSIEdi2bZtFfo4BYPny5RZ5TKi2YsUKnDp1SuwYZjl16pTF7sNOnjyJS5cuiR1DkrhwkbH/UXK5HNWrV4e/vz86d+6MFStW4MGDB2LHMsrLywtNmjSBh4cHWrRogZkzZ1rEBn7y5MnIyMjA8OHDceLECYtpSPbq1Qu9e/fG1q1bUVRUJHYckxQUFOCdd97B8uXLLeqE05kzZzB9+nRcu3ZN7CiCHDp0CD/99JPFrB9qv/76Kw4fPmwxn0W1DRs24PLly2LHEOT27dtYu3YtCgoKxI4iyPLly/HPP/+IHUOQVatWYdeuXRZVJLBo0SKsWbPGok4qzZw5E3PmzMGtW7fEjmKyJUuW4JNPPsGBAwcsZrt369YtZGVlYdKkSbhw4YLYcUy2cuVKNGzYEBMnTrSoE3dLlixB1apV8fnnn1tUYdrRo0fh6+uLzp07Y9WqVRbT9lMoFAgJCUGdOnUwatQonDx50iKWuaOjI3r06IHAwEB0794d69evt5gTjT///DM8PT3RtGlTTJo0yWIKMWQyGSIiIhAfH4+BAwdi165dKC4uFjuWUb6+vnjllVfg4+ODjh07YunSpbh3757YsYyyt7fH7Nmz4eHhgWbNmmHy5MkWs66cOnUK/v7+SEtLw+eff24xJxFtbW2RnJyM0NBQ9OzZExs3brSIdmFQUBBee+01eHp6onXr1pg3bx6uX78udiyjnJycsHTpUnh7e6N27doYNmyYxRRJ3bt3D4mJiQgLC0PPnj2xYcMGi1hXwsPDkZOTAw8PD2RnZ2PatGkW0UYMDAzE4sWLER4ejri4OPTv399iTsy6u7sjMzMT7u7uyMrKspgCzOTkZCxYsABVq1ZFYGAg3n77baxcudIi+utr1KiBHj16IDQ0FPHx8fjggw8sohBBJpOhatWq6N69O4KDg5GYmIgBAwZYzLpev359DBgwAImJiQgNDUX37t2xevVqi7hYp0GDBti0aROys7Ph7u6Opk2bYvz48Th16pRF7JOysrIwZMgQ1KhRAz4+PnjjjTewaNEii+knat68OQYPHoz09HT4+fmhU6dO+P777y2mgKtly5aYPHkyGjRoAA8PD7Rs2RKzZs2yiPOEwLN9LBGhY8eO8PHxQY0aNTBkyBCLKoTNzMzE119/jerVq8PX1xedOnXC0qVLcffuXbGjmcTa2ho+Pj5o164dvLy8NO3iI0eOWMQ2CADS09Mxffp0VKlSBcHBwejevTvWrl1rMf1icrkcSqUSjRo1gqenJ1q1aoW5c+da1PlRLy8vNGzYEJ6enmjTpg3mzZuHGzduiB3LZHfv3kVsbCyioqLQr18/i2i7qXl7e6NRo0YIDAxE165dsWbNGosZQEqhUCA0NBTVqlWzqL6bSkFEPEl8AhAIgADQxYsXibHnoaSkhJKTk0m9bgEgpVJJ9evXp9GjR9PJkydJpVKJHbMclUpFtWrVKpUbAFWpUoU+/vhj+vXXX6m4uFjsmOXcv3+f3NzcNHkjIiKoX79+tHPnTioqKhI7nl6//fabJrOrqyu1b9+eli1bRg8ePBA7mkEDBw4kAGRjY0PZ2dk0e/ZsunHjhtixDCopKaGkpCSSyWRUu3ZtGjt2LJ09e1bsWEbduXOHHB0dyc3NjTp16kRr166lJ0+eiB3LqGPHjhEACgsLowEDBtC+ffskuc0ra+bMmQSAMjIyaMyYMXTu3DmxIxmlUqmoevXq5OjoSK+//jqtWLGCHj58KHYso6ZNm6bZvwwdOpROnDghdiSjdu7cSQDIx8eHunfvTlu2bKHCwkKxYxm0Z88eAkAODg7Upk0b+v777yW/jzlw4AABILlcTvXr16dJkyZJvo1++/ZtcnR0JAAUFBREffr0oR07dki6DUJE1KtXL007JDU1lb766iv6888/Jb29Li4upqioKE3ulJQUGjJkCB05ckTSuQsKCigoKEiTOzAwkHr27EmbN2+mp0+fih1PL5VKRenp6ZrcNjY2lJmZSdOmTaNLly6JHc+gvn37ljqeiYiIoPfee4+2b98u6W33xo0bS+W2tbWl7Oxsmj59uqSX+d27d8nFxaVU9vj4eBo4cCDt2rVL0tvDzMzMUrldXV3p9ddfp4ULF9KtW7fEjqfX2LFjS+VWKBRUr149+uabbyTb30BEdPDgwXL9DfHx8TRgwAD6+eefJbuuPHz4kLy9vUvl9vHxoc6dO9OKFSvo/v37YkfUKysrq1RuOzs7ysrKomnTptGFCxfEjqfXN998U25dSU9PpyFDhtCBAweopKRE7Ig66VrHAwMDqXv37rR27VrJHqsVFBRQYGBguX1QZmYmTZkyRdLHxm+//Xa5ZZ6QkEADBgygnTt3Sna/v23btnK5HR0dqWXLlvTtt9/S5cuXxY6oU3FxMcXFxZXLHhsbS++//z5t3bqVCgoKxI6p07Jly8rlViqVVK9ePRo1ahQdO3ZMsvvPV155Ref6kpeXR9OnT6fz58+LHVEndX+sruwtWrSgGTNmSHpf1KhRo3LZraysqH79+pJfZ7777rty2dV9tT179qR169ZJdp9ERJSdnV0uu0wmo+rVq9Pnn39O+/btk+R5KqJnx9Evv/xyufxyuZwyMjJo6NChkm7LEBF98MEHOtefxMREGjhwIO3YsUOy+1ciolOnTpFCoSiX38vLi9544w1avHixpI/1iIh69uypcx166aWXaNiwYZLvB3vw4AF5eHiUew/+/v709ttv08qVKyXfR60+V6Q9WVtbU5MmTWjChAl0+vRpsSMa9OjRI/Lx8Sn3HtLS0ujzzz+n33//XdLbISKi+vXr69wPDB06lA4ePCjpz0BhYSGFhoaWyu/k5EStW7emefPm0fXr18WOaNDnn39eKruNjQ01a9aMJk+eLOljQyKiDh06lMru6+tLXbp0odWrV0u67aPt4sWL2u8hkJ5HTdzz+CM8ceEis0yrVq3S2bhXT+Hh4dS7d2/68ccfJVWIpKvjTHtyd3entm3b0sKFC+nmzZtix9UYOnSo3rwdOnSg5cuXS7Ih3KRJE52N38zMTJoxYwZdvXpV7IjlXLt2jWxtbcsdNL388ss0btw4yTZaFi1aVG5Zp6am0tdff00nT54UO55eZTsKnJycqG3btpIvUMvJySmVOygoiPr27Uu7du2SbMdSQUEB+fn5lTuQGz58uKQPRFeuXFkqs52dHbVq1YqWLFkiye0eEdGTJ0/KHTjHxcXRZ599JtmOF5VKRRkZGeX2MZ07d6b169dL9uRMvXr1yh1k5uTk0Lx58+jOnTtix9OpadOm5bbXNWrUoJEjR0r2s6gu6teePD096a233qL169dLqq2ndv78eVIqleVyR0VF0cCBA2nPnj2S7MCaO3euzjZfaGgo9e3bV7JFo5MnT9aZ28nJiV599VVatGgR3b17V+yY5axfv17vcUFqaip98cUXdPjwYcltt69cuVKuvaqeXFxc6PXXX6dFixZJbjuoviBB3zJPSUmhwYMHS7KD+YsvvjB4DNm+fXtasmSJ5Jb577//rje3+sTQiBEjJHdi+vHjx+Tr66s3e0REBPXp04d++uknybVRWrRooTe3unB0wYIFkupvICpfLKo9WVlZUcOGDWncuHH0999/ix21FPVFIfqm5ORkSV6oqu9Em3ry9fWlt956S5InPQ2t4+oTPpMmTaIzZ86IHbWU6dOnG1xXEhISaODAgZIrMj537hxZWVnpze3i4kJt2rShefPm0bVr18SOW0rZY7WyU9WqVenTTz+l3bt3S+rzuXTpUoO51UVpM2fOlNT5lpKSEqpSpYrB7EFBQdS9e3davXo15efnix1Z49ixYySTyYx+Rj/44APavn27pC6OWr16tcHc6uwDBgyQXPZ9+/YZzR4UFERdu3aV3P5IX5Gx9mRtbU2NGjWiMWPG0IkTJyTV1j18+LDRZe/h4UHt2rWjBQsWSG5QhV9++cVofm9vb+rYsSMtWbKEbt++LXbkUm7cuKG5QFff5OTkRC1btqRZs2ZJ8iK7zp07G8yvLiT98ssv6eDBg5I7vr58+bLePg31pF0EKMULqUaOHGkwv/oYasyYMZK8+K6wsJDCwsIMvofo6Gjq168fbd26VVL7LzVDx7DAs4vx3nzzTclejLdr1y6TPgNSa7epffvtt3qzy2QyqlmzJn355ZeS7FfVdYGy9pSUlEQff/yx5I5TiJ4Vr8vlcp25bWxsqHnz5jR16lRJXzzDhYv/oxO4cJG9ICqVilJSUoweoAAge3t7ys3NpRkzZojeyNd3RZi+Hau6cX/o0CFRd6zGdqLqg/FmzZrR1KlTRV/OasYOYtWNlxEjRtBff/0ldlyN3r17G8ydkpJCQ4cOldQJvqKiIgoPD9ebOT4+ngYNGiT6ulzW5cuXydraWmdmOzs7euWVV2jRokWSO7DYvXu33mXt6+tLPXr0oK1bt0rqhAeR7pE91JNURwcsKSmhmJgYvQ3x3Nxc+u677yRXEDNixAi9yzoyMpI+/PBD+v333yX1eVy7dq3ezM7OztSuXTv64Ycf6NGjR2JH1di8ebPezEqlkho3bkzTp0+X1Em8n3/+2eA+Jjk5mYYMGUJ//PGHZNYPXUX92pOjoyO99tprkhv1skuXLgaXta+vL3Xv3p1+/PFHyXTA6bpitezk7u5OHTt2pJUrV0qmyP/JkyfliuN1fSYbNGhAEyZMkMzI0CqVitLS0oweFwQFBVHPnj3pxx9/lEyRVJ8+fYzmVigU9PLLL9Po0aPp1KlTYkcmovKjLhr6fHbp0oVWrVolifX83r175OrqavIyl9LIgLpGdNE1hYSE0LvvvkubNm2SREH6hAkTTMqtHsFr9uzZkrgw7siRIybllsvlVKtWLRo2bBgdPXpU9HXFWLGo9qQ+gbVt2zZJ7D/z8vJMyu3h4SGpIuNx48aZlNvKyooaNWpE48aNk8RFLqau48Czi7c++OADSYwM+PTpU6NtLPXk4uJCr776Ks2fP18SxSI9evQweZmrR+6UwkUAxk7Gak9SupBc1zcNGZqSk5Ppo48+ksQozGvWrDE5t3ZRlxTaLO3atTM5u5SKR8uO4m5qdqmMxlj2wmxDk3oEz5EjR0qiv2L58uUmZweeXQz4zjvv0Jo1ayRRANKmTRuTs8tkMkpPT6fBgwfT3r17JVFE0axZM5PzS3E0xkGDBglaf5KSkujDDz+URJuGiOjs2bMGL2woO6kLuJYuXSqZPvR+/fqZnF89Guw333xDx48fF337Q6R71HpDU3h4OPXq1Ys2btxIjx8/Fjs+Eem/eFrf/ktqI2cLOYa1srKiBg0a0JgxY+ivv/6SxDpEpHv0Y12TtbU1NW3alCZOnEj//vuv2LGJ6FkftqFz0tqTepT+devWSebc0pAhQ0zK7unpSR07dqRly5bRvXv3xI5NROVHXdQ3ValShQYNGkT79u2TxL5XjQsX/0cncOEie4HWrVsnqHGvvaH85JNPRKtUN1YwoG/y8/OjLl26iHaF4eDBgwXlTU1NpaFDh4o+upephaIAKCYmhj788EPRR0G6cOGCyQd+kZGRNGDAANEzExHNmDHDpMxhYWHUv39/2r17t+iZiYi6detmUsM8KyuL5syZI5mvOqhbt67R3B4eHtSlSxfatGmTJE7q3b9/36ST7urRAaVwEpWIaM6cOUYzW1lZUfPmzWn27NmSWEfu379vtOAceFYk0K9fP0l8HktKSigxMdFoZnt7e2rVqhUtXrxY9KJilUpF1apVM5pZJpNRnTp1aPz48aJ/zZRKpaLatWubvI8ZOHCgJA4utb962ZTt9ezZs0U/6Xj69Gm9VyCWnZydnalt27a0bNky0YsvTd2fA8++5jAnJ4dmz54t+tdwjB8/3uTcwLOTvJ999hkdOHBA1H2NoaJtXZOjoyO1bt2a5s+fL+o6fvnyZbKxsRGUPTo6mvr37087d+4U7cS6SqWiGjVqCMqtHsFrypQpom7Dv/zyS0G5gWcjA/bt25e2bNkiWlvQ2Ih0+vb1eXl5NHPmTNFOSjx58oT8/f0FZ09LS6MhQ4bQ/v37Rdt3tmrVSnDuoKAgeuedd2j9+vWincgytVhUe1J/HdTcuXNFu1DElFGLyk4KhYLq1q1LI0eOpD///FOU/dDjx4+NFv3r25aLXTjaunVrwbmlUAw4e/ZswbllMhnVqFFD1K9su3TpkuB9PvBstKtOnTqJepKtcePGZi1z9QgtYo0SZcooevrW8zZt2tDcuXNFKaYXWkSnPam/Ynf9+vWinFDW99WnpkxJSUmifr2roQsqjU2JiYmijsZozj5UPQUGBoo6GlpJSYnJA2uUnaytralhw4Y0evRo0YqgTpw4YXJ/RdnJw8OD2rZtS999951o/QD79+83e92RwmiMd+7cManfVtfk7OxMrVq1Er2A65133jErv0KhoDp16oj+lczXr18ne3t7s95DSEgI9ejRQ/SvhTf1QqSyk52dHWVlZdGUKVNEvbC3qKiIoqKizHoPKSkpNGjQINqzZ4+oxdQTJ040K7/6Wxw2b94s6gXKhgZIMTTFxcXRgAEDRC+mNuW8XdnJ1taWsrKyaNq0aaJexHH37l2TzpVqT0qlUvNtFGJeVPj3338LbkP4+PhovtVB7As4XkThooyeFcYxCZPJZIEALgLAxYsXERgYKHIiZo79+/dj9+7dUKlUUKlUICKTbwuZ15zba9asgUqlMvu92dnZISIiAhEREQgNDYWNjY3mbxuaSkpKTJpP3/Tzzz+juLjY7NwKhQLR0dGoWrUqqlatCj8/PygUCshkMsjlcrN+Gpvn3r17yM7ORklJieC8Hh4eSE1NRVpaGhITE2FtbQ2FQgG5XA6FQlHqtqHHzJn/559/RosWLQRndnFxQXp6OmrUqIGUlBTY29tDoVBAqVSWmkx5TNd9uVxu8PXffvttzJ49W1BmV1dX1KhRA7Vq1UK1atVgb28PKysrwZNMJhO8vADg6dOnCAsLw9WrVwVnfumll5CSkgI7OztYW1vDysoK1tbWmkn7vvZthUJhVlZt//77L6Kjo03elshkMiQkJKBWrVp46aWX4OPjUyqrsUn9Wa2oH3/8Ec2bNzd5fjs7O6SlpaF27dqoXr06nJycymWzsbHR+VhF1ouyBg0ahK+//trk+b29vZGRkYHatWsjLi4Otra2RnOr7z+v3IWFhYiIiMClS5dMml8mkyEuLg41a9ZE7dq14e3tbdK6of0+nse6/cknn2D48OEmz+/i4oK0tDRkZGQgOTm53HLV9zl8np/LRYsW4Y033jB5foVCgfj4eFSvXh3p6elwd3fXbMvUuYTcViqVgteZH374Aa1btxb0O8HBwUhNTUV6ejoCAwPLbYeVSqXO7bMpj5uSf+PGjcjKyhKU2dfXF9HR0UhNTUVsbCxsbGw0r6u9jyt735x5dO0jL1y4gIiICEHtJ7lcjurVqyMgIAApKSnw9vbW7JO1f+p6TN9PofO++eabWLx4saBlbWNjg9q1a8PHxwdVqlSBi4uLoPZPRR8rLi5GRkYGbt++LSi3TCZDWloaAgICkJycDB8fH8jl8lLtyRd5v6CgADk5OXjy5Img3MCz9TsiIgLJycmIjo7WbAuETOplIHR+AOjRowdu3bolOLdMJkNYWBiSkpKQmJgIb2/vctuAF3l/5syZOHTokODcwLN2SXx8PBISEhAbGws7OzsAQNl+Hu37hp4TMu9vv/2GVatWmZUbAPz8/JCQkID4+HgEBQVplom6s0r7dtn7Fbn94MEDTJo0yezcNjY2iImJQXx8PGJjY+Hg4GDqBanmXMRa6v68efMEb1O0BQQEID4+HnFxcQgICNCbSd1fIHTS93s///wzjh49anZuJycnxMXFIS4uDpGRkbCyshKcW99zhn7n33//xaZNm8zOrVQqERUVhdjYWMTGxsLFxcXg6z6vx548eYK5c+eanRsAgoKCEBsbi7i4OPj5+Rl8fe37FX1u2bJluHfvntm53dzcNMs7LCwMCoXC4Os9r8d2796Nv/76y+zcNjY2iIqKQkxMDGJiYmBvb6/ztfT1FZrynK55zp8/j127dpmdG3i2rqhz+/j46Hy9532/sLCwQvsf4Nl2JTo6GtHR0QgLC4OVlZXZfZNC+jb37NmDO3fumJ1bLpcjODgYUVFRiIyMhLu7u2bZaOd43rcvXbqEv//+u0LL3NHREZGRkZq+Y6VSqfn72j/13Tb1sbK39+/fX6HcwLM2S3h4OMLDw+Hl5QUi0vx9Xa9pymRs/uvXr5vVrtWmUCgQHByMsLAwhISEwMnJSedrFRcXP9fHL126ZFa/tzZra2uEhIQgJCQEgYGBsLOzK/faum4be97YvDdv3qxQbgCwsrJCUFAQgoODERgYCFtbW6Ov+zx+5ufnVzi7TCaDn58fgoKCEBAQAGdn53KvY042Y/M8ffpU0/atCEdHRwQGBiIgIEBzTPc8l7G+n6b2hRvj6ekJf39/+Pn5wdXVFSqVyuR115z1Xf3zefHy8oK/vz98fHzg7OxcajsnZHsidNvzvN6Dm5sb/Pz84OvrC1dXV53benO25/qm4uJiFBUVoaSk5Lms/3Z2dvD394evry+8vLwgl8srtI819Hx+fn6p9llhYWGF34NcLoevr6/mf+Dg4KCznaV9X+hzt2/f1tkmLikpwePHjyv8P3B1dUVAQAD8/f3h6ekJmUxmdvtSO+eVK1fKtevL3s7Pz8fTp08rlN/W1haBgYEICgqCv78/rK2tTT6u0PXz3LlzmvVbvZ3Uzqw9FRcXCzofqotSqURwcDBCQkIQHBysOaYSemx96tSpUp9Lff0F2hPw7PxoRbZHNjY2CAsLQ3h4OMLCwmBra2s0g/Zzf/75J4qLi0s9XvZ3dT0OACUlJRXqswEAHx8fREVFITo6Gv7+/pDL5Tpfs+zPI0eOoLCwsNTf0je/vuf/+usv3Lhxw+zsXl5eiI2NRXx8PEJCQjTn5XRt1573Y99++y3OnTtnRupn7eX69esjJycH2dnZCAkJMevvmOvSpUsICgpS3w0iItNO/BrAhYsWgAsX/38YMWIEPv74Y7FjMPb/ikwmM1jwWFBQUOGOPnMpFIpyBT2mTn/++ScuXLhQaVnlcrnJxVSGnluzZk2lLW+ZTCao0FHfZGVlhZkzZ5ZrHL8o2stLX4GjKY/l5+dX+ISkOblNyWdonl27duHw4cOVllsul1d4HXnw4AFWrFhRaZnVyq7jQj6jcrkcP/zwQ6Vn1qZUKgUVPSoUCmzfvl3UzNrU23BDhY4KhQLHjh0TO6peMplMZ3Hj7du3n2vnNGOMMcYYY4wxxhhjjDHGGKt8SUlJmiLG6tWrP5dBXQx5EYWLyor+AcaYaYyNDMcYE46IUFRUhKKiIrGjlKO+Cq2goEDsKEapVCo8ffq0wldlVSYisrjMADTr66NHj8SOIoil5lapVCgoKLCIz2FZlrqOq6mvqrdUlrQN14eIUFhYWGmF2YwxxhhjjDHGGGOMMcYYY6zyHDt2DMeOHcOwYcPg5eWFzMxM5OTkoEmTJnBychI7nkm4koqxSvK8vh6UMcYYY4wxxhhjjDHGGGOMMcYYY4wxxgDg5s2bmD9/Plq3bo3Q0FDMnDnTIr6Bi0dcZKyS8IiLjDHGGGOMMcYYY4wxxhhjjDHGGGOMsecpODgYOTk5yMnJQb169WBjYyN2JJNw4SJjlYQLFxljjDHGGGOMMcYYY4wxxtj/OrlcDiICEYkdRTCFQgGlUomnT5+KHUUwuVwOpVIJhUKBJ0+eiB1HMJlMBoVCAYVCgaKiIqhUKrEjMcYYY6KRyWSoXr26plgxKSnJIr8JlgsXGaskNWrUwKBBgyCTySCXyyGXy43erujzpsz75MkTvPbaaygqKhL8nuzs7BAXF4ekpCTExsbC3t5e83fNmRQKhcnzFhQUICsry6wDK2dnZ4SHhyMsLAy+vr6QyWRQqVQgokr5uXPnzgodjCuVSvj5+SEwMBC+vr6wsbGBSqVCSUmJ5qf27Yo8pr5dWFiIW7dumZ1ZzcHBAT4+PvDy8oKLiwsAoLi4uNRUUlJi8L6+eV70AaqLiwvc3Nzg5OQEa2trFBUVGZwKCwvN+lw9bwqFAk5OTnB0dIS9vT2ICIWFhZp82relNlS0g4MDHBwcYGtrC4VCocmqPUktM/Bs2+jg4AAbGxvI5XIUFRXh6dOnpZa1FNnb25fKrZ1ZqrkVCgWcnZ1hb28PW1tbzfZKyuuJXC6Hi4uLJrdcLtf7mZRKdisrK7i7u8PV1RVOTk6QyWTltnX6bovFyckJXl5e8PDwgJOTE1QqFYqKilBcXKx3u63rucrqPFcoFPDx8YGvry+8vb1ha2tbaj+nzmfu/RfBzs4OQUFB8Pf3h6+vLxQKhabtoL2vfh4/Hz9+/FzWJ2dnZ4SGhiIoKKhcZqFtI1Oe//fff1FYWFihzI6OjggLC9PktrKygkql0kzq9uXzvL9z584KLW+FQoGQkBCEh4cjPDwcLi4umpNRz2MCoPPxtWvX4v79+2bndnJyQlRUFCIjIxEcHAwrKyvNa2l73vc3btyIkydPmp3b29sbkZGRiI6Ohr+/v+aCubIdVNr3DT1n6rwHDx7E6tWrzc7t6+uLqKgoxMTEwNfXV3Ocqv0aMpnsud++f/8+vvjiC7Nze3t7a3IHBARocpedtF/X0GTKfOp5vvjiC1y/ft2s3G5uboiOjkZsbCyCg4OhUChMyqdv0ve+dU2LFy/Gjh07zMrt4OCA6OhoxMTEIDw8HNbW1kZf25RspvyN/fv3Y9q0aWbltra2RmRkJGJjYxEVFQV7e3uDr/08H7t//z769u1rVm65XI7Q0FDExMQgNjYWrq6uOl9D+76h54Te79+/P27cuGFW9oCAAMTExCAuLg7e3t6l+r/0ZTb2vKnzzpgxAzt37jQrt6enJ2JjYzWfTVP69Uz9aWyeXbt2YeLEiWbldnZ2RmxsLOLi4hAeHg4rK6tyr63rvTyP+3fu3EHHjh3Nym1vb6/JHRUVBVtb2wr1YwqdunXrhn/++UdwbhsbG0RFRSE+Ph6xsbFwcHAo1Yeq77ah54TMN2/ePEyfPl1wboVCgYiICCQkJCAhIQEuLi6aQhPt1yn7mLHnTX3s9u3baNiwoVn9hSEhIUhISEBiYiJ8fHw0f1tXVn2TsXkMPT9o0CAsXrxYcG53d3ckJCQgKSkJERERsLKy0vn31QVLz/u5wsJCVK1aFXfv3hWUW6lUIjo6GsnJyUhMTISLi0up16qM2+fOnUPVqlUF9wE4OTkhKSkJVapUQUxMjKYPU/33n9dPQ8/dunULERERKCgoEJTdxcUFycnJSElJQUxMDGxsbF5IdqVSqfc5mUyGrKwsbNy4UVB2a2trJCQkoFq1aqhSpQqcnJwEL7eK/A/U+6erV68iLCxMcPGit7c3UlJSkJqaiqioKFhZWQlab81d35VKZanjrn/++QcxMTGCt5N+fn5ITU1Feno6IiIi9L6usW2HkMe1H1PnLygoQHh4OK5evSoov7OzM1JTU5GWloakpCTN57bsZMq23tz55XI5hg4dim3btuGXX34RlF8mkyE6OhppaWmoXr26ph+gbA5z9rGmPD9y5EgQERQKBYgI48ePx8OHDwW9BxsbG1StWhXp6emoVq2a5jMstJ0ipK0zceJElJSUlPtf/P3331i6dKmg/MCz7b/6c6Bej/S1h02Z9P3erFmzUFxcDJlMVu7/o56WLVuGM2fOCH4PXl5eSElJQVpaGqKjo2FlZSXoOMTQcwsWLEBRUVG559SfYe3Hr127hmXLlgnODwChoaGoWrUqUlJSyvXRaN829bh6+fLlKCoqKvc4gHLvRf1YSUkJFi5caFYfvJ2dHRISEpCcnIz4+HjY2dlp/rau7LoeB4D169ejsLBQ73zq+7p+v6CgAGvWrDFr+SuVSkRGRiI+Ph4JCQlwdnbW+XraP7Vvb926tVTfua55jT1+6NAhwfsBNXt7e02fU0REhGZkwrKvo++xis47a9YsnD17VmhsAM+yN2nSBDk5OcjKyoKPj49Zf0dKuHCRsUpSq1Yt1KpVS+wY5YwdO1bQicnw8HDk5eUhLy8PtWvXhlIpzmZk/PjxgooW09LSNLkTExP17jRetM2bN5t10iY8PBzZ2dnIysrCyy+/XOnD+s6cORPdu3cX/HtWVlZ4+eWXkZmZiczMTERHR7+wZa8uEtAuZuzRowe+//57s/5eQEAAmjVrhubNm6NRo0aaQkshiAglJSVGixzLFvp06tQJFy9eNCs3AFSrVg3NmjVD06ZNkZGRoTnxbow6q74CKkPFVfn5+ejWrVuFCjQCAwPRtGlTNG3aFA0bNoS7u7ugzOZMly9fxkcffWR2ZuBZZ02TJk3QpEkTNGrUCN7e3gbnJ6JyxYzqqexj+ubZvXs35s2bV6HcISEhaNq0KZo0aYIGDRrAzc3N4Pzqwi9T8um7P3LkSLNO1KgplUpkZGSgSZMmaNq0KapVqwaFQmH090pKSsxeR3766SfMmTPH7MwAkJKSoslcq1YtQdtw7W2IKZ/JwsJCHDhwAIMGDTI7r0KhKLWcU1NTTVrOZam3gcaKG4uKivDLL7/g/fffNzuzq6srGjVqpNmGBAUFmf23tGkv/7KFjVu3bkXXrl3N/tvx8fGabXWdOnVgZ2f3XDKXpf4/FBcX4/jx40hPTzerIFOpVKJ27dpo3rw5mjVrhuTk5EppTxER6tSpg927dwv+XRsbG9SrVw/NmzdH8+bNERUVVWltwH///RcxMTGCf08ul6NWrVqatlNlLWe1X3/9FVu2bBH8e8HBwcjKykJWVhbq168Pe3v7F5BOvz/++AMLFiwQ9DsymQwZGRnIyspCdna2KFej3rt3D99++62g37G2tkaDBg00HVMhISEvKJ1+RIS6desK+h1bW1s0bNgQOTk5yM7ORkBAwAtKZ9iQIUMEzW9lZYV69eohNzcXOTk5oixvAPjll18EFS3K5XJkZGQgNzcXubm5iImJEeUY+MGDBxg4cKCg30lKStLkTktLg1wuzrdXLFq0SND8wcHBmtwvv/wyrK2tX1Ayw4Su425ubsjKykJubi6aNm0KZ2fnFxPMiG3btgkqWrS1tUXjxo2Rm5uL7Oxs+Pr6vsB0+t26dQtvv/22yfPL5XLUqVNHs02Jiop6gen0IyJ88803gn6nWrVqyMvLQ25uLqpUqSJav5rQ45zo6GhNf2DNmjXNOq55Hn799VdBx8KBgYHIzc1FXl4e6tWrJ9o25enTp1i3bp3J87u5uSE7OxstWrRAkyZN4Ojo+ALTGfbhhx+aXIyj3qa0aNEC2dnZRvt1XqRr165h5cqVJs+flpaGFi1aoEWLFoiPjxftswkAkyZNMrlo0c3NDTk5OWjZsiUaN24MBweHF5zOsEmTJpl8nBwdHY2WLVuiZcuWSE9PF62tojZ+/HiTixbj4+PRsmVLtGjRAqmpqaKuLwBw6NAhk4sWvb29kZeXhxYtWqBhw4aS+NrDMWPGmFy0mJaWpln2cXFxoi97ABgxYoTJ28maNWtq8kdHR7/gZKaZO3euycUqUVFRms9t9erVRf/cAsB7772HcePGmTSvra0tmjRpotlPeXl5veB0+n311Vea25MmTTK5aNHX11fTJmvQoEGlf4Z1tX2JCNWrVzf5b8TExGi2QzVq1KiU9cjYhUZHjx7FiBEjTP571atX17QxExISXti2SEif0SuvvGLyvDY2NmjUqJHmeMrPz8+ceHrl5eUJ/p3JkycLOlenrrPIzc1F7dq1TT5/a8ibb75p9u8OHjxYUOGit7c3srOzkZubi0aNGlWoDWfuRZdq165dQ1hYmKDfiY+P16w/NWrUEO348PTp04KPbQMDAzWjKtavXx+2trYvKJ1InufIBzy9mAlAIAACQBcvXiTGnpfHjx+Tj48PqdcvfVONGjXo66+/pj///JNUKpXYsenJkyfk5+dnMLOVlRU1bdqUpk6dKpnPjUqlourVqxtd3gBIqVRS/fr1afTo0XTy5ElRl/uTJ08oMDDQpNwAKDAwkLp160arV6+mBw8eiJb777//JoVCYXJuKysrql+/Po0cOZL++OMP0Zb5unXrTM6snry9vemNN96ghQsX0vXr10XJPX78eMG57ezsqHnz5jRu3Dg6ceKEKMv8vffeE5zbxsaGGjduTKNHjxZlXVGpVJSRkSE4t6OjI+Xm5tLkyZPp77//rvTchw8fFpwZAEVFRdG7775La9asofv371dq5pKSEkpKShKc2dfXlzp27CjaZ7J58+aCM4eFhdE777xDK1eupHv37lVqXpVKRfXq1ROUVy6XU82aNenzzz+nPXv2UFFRUaVnFvo5dHFxoVatWtGsWbPowoULlZpX7bXXXhOUOTg4mLp3706rVq2q9M+f2qZNmwRljoiIoF69etGGDRvo0aNHomQmIurYsaOg/XinTp1o6dKldOfOHdEyExHVr1/fpMwKhYLq1KlDI0aMoGPHjol+jPDKK6+YlNvZ2ZleffVV+u677+jGjRuiZiYi+vzzz03K7ePjQ126dKFVq1ZRfn6+2LFp69atgnKvXr2aHj58KHZsunv3Lrm4uBjN7e7uTh06dKBly5aJtu0rq1GjRkZzOzg40CuvvELz5s2TxPpNRPT1118bza1UKqlRo0Y0ceJEOnv2rNiRiYjo119/NWkdT0tLo6FDh9KRI0dE3w4SEd27d8+kdTwiIoLef/992rlzZ6W3oXRRqVRUp04dk/aXXbp0oTVr1oi6j9f26aefGs3t6OhIrVu3pu+++45u3boldmQiIvrpp5+M5lb3q02ZMkUy/Wp37twhJycng7llMhnVqlWLRo4cSX/99ZfYkTWaNGlidJknJyfTZ599RgcOHJDENoWIaNq0aUZzh4aGUt++fWnHjh2S2KYQEd26dYscHByM7u87duxIK1eulEQ7RW3AgAEm7TcnT54s2nGlLgUFBRQQEGAwe1BQEPXu3Zu2b98umXWFiOjChQtkZWVlMHt6ejoNGzaMTpw4IXbcUkxZ12vWrEkjR46kU6dOiR23HGPHceHh4dS/f3/65ZdfqLi4WOy4pdy8eZPs7e31ZlcoFNSgQQOaNGmSpD6raufPnyelUmm0HTB9+nS6cuWK2HHLKSwspODgYJM/t1LZr2ozdqzk5uYmyf2Uminb/djYWProo49o7969VFJSInbkcoz1OcpkMsrIyKARI0bQyZMnxY6rU+vWrQ2+B2tra2revDlNnz6dLl++LHbcco4ePWq0renp6UlvvvkmrVy5UhJ9YtpM+Ryo16Phw4fT8ePHJbU9unPnDjk7Oxv9HyQkJNDHH38suc9yv379jGZXKpXUoEEDGj9+PP37779iR9Yw9dxBeno6DR06lA4fPiypdefixYvaOQPpedTEPY8/whMXLjLLNGHCBJ0bQRsbG8rKyqKZM2dK8qBkypQpOnO7uLhQu3btaOnSpZI5waRt/fr1Bnc+6pPWy5cvr/SiEUMmTpxoMLdCoaC6devSiBEjRC34K6tdu3ZGd/jaBRliFlmqlZSUUHJyskkNrZdffpmGDx9Ohw4dEr2h+ODBA/Ly8jKpkZWcnEwDBgygrVu30pMnT0TNfe7cObK2tjYpd2JiIvXv3582b95Mjx8/FjX3mjVrTMosk8koPT2dPv30U/r555+psLBQ1NyZmZkm5VYXd82YMYPOnDkjauaFCxealFldzPrNN9+Ivh3ctWuXSZkdHR0pJydHtEJWbaacOAWeFcZ36dKFli1bRrdv3xYtLxHR2rVrTf4MfvbZZ/Trr7+KfmLmyJEjJq3LTZo0obFjx4p+4QTRs0KG1NRUg5ltbW2pWbNmNGHCBPr7779Fzat28uRJksvlBteNGjVq0BdffEH79+8XfT+utn37doPL2sPDg9544w1asmSJ6AWW2owVxsfExFD//v1px44dou8LtRkroqtatSp99tln9Ntvv0lmHSEyXmBUpUoVGjRokORyExF98cUXBteTDz74gHbt2iX69rqs3bt3680dEBBAPXr0oI0bN4reti7rwYMH5O7urjO3q6srtWvXjr7//ntJHfuq6SswsrGxoczMTJo+fTpdunRJ7JjlDB06VO9+R6onSoiIduzYoXcdj4+Pp48++oj27NkjuYIFQ0V06s/mpk2bqKCgQOyopahUKqpdu7bO3G5ubvTGG29IqnBbm76Cfzs7O8rNzaXZs2eLdjGnIfv27dOZW6FQUP369Wn8+PGiH/vqUlhYSCEhITqzV6tWjYYOHUpHjx6V3DaFiGjQoEE6c0uxyFLbzZs3dRahOTg4UJs2bWjRokV09+5dsWPqNGPGDJ3LPCkpiT777DM6ePCgJNcVIqLevXuXy61dICrlc3KDBw/Wmb1JkyY0bdo0SZ7bUfvzzz/1HgcNGTJEstsXNV0XL9jZ2VGLFi1o/vz5ovdbGfPuu++Wy+/o6EivvvoqLV68WJJtdG1z5szR+7mV0kUX+uTn55OHh0e59xAcHEx9+vSh7du3S6r/Qpfp06frPe6Q2gUkuqhUKqpVq5bOYz71+fGrV6+KHdOgP//8k2Qymd42/fLlyyVx3tMQfYWXUVFRmj4aqR0Haps6darR45Nr166JHVMvfcdXUi3203bt2jWys7Mz2uckxbbz33//rffcgXrdmTVrlqTbcVy4+D86gQsX2Qvw5MkT8vf312xUPDw8qFOnTpK8YkHb06dPKSgoqFRDvnfv3rRlyxZJN+RVKhVVq1at3A4oNTWVBg8eLMkTe0REjx490jkqp4+PD7355pu0bNkySe70jx07prPBbm1tTY0aNaIxY8ZI8oTN4sWLdTZUgGdXmPbo0YPWrFkjuYMNfSfIAJCXlxe1a9eO5s+fL7lGVufOnfXm9vT0pLZt29K8efMkdSVacXExJSYm6s2tLuxaunSpZEbzIDJcTKdQKKhWrVo0ZMgQ2rt3r2ROHjx9+pTCwsL05k5MTKT333+ffvzxR9GLWdUMnYRU73M+/vhj2rlzJz19+lTsuET0LHNaWprOvLa2ttS0aVMaO3aspLbZhkbi9PX1pU6dOtHixYvp5s2bYkctJTs7W29HUO/evWnjxo2SGb1IbeXKlTozR0ZGSjYzke6RLd3c3Kht27a0YMECyYyEpk1fMVpKSgp9+umnkiwYUcvLyyuV2crKiho1akTjx4+n06dPix1Pr7InGW1tbSkrK4umTZsm6eP+bdu2lWtfq0fkOn/+vNjx9Lp37x65urpqcsvlcqpbty6NHj1akqPPaCtbRFetWjX6/PPPJV0AQEQ0YsSIUrnDwsLovffek/xJuL1795Y7LpDq6A7a7t+/T25ubqU6u/Py8iR/ooSISo28rVAoqF69ejR27FhJb8OJyp/kqVq1Kg0ePFhSo+XpUvZCBfVnU2oF/mWVHVHUy8uL3nrrLUmNwKlPVlaWJrd6BM4FCxZIvqhl9uzZmtxSHeVPl7t375YaOSYlJYWGDBkimdFxDdEuuPT29qauXbvShg0bJHdxQlmFhYUUGhpKwLOilZdeeolGjx4t+e04EdHVq1fJ1taWAJC9vT21atWKFixYIKkLtfTRbt9aQnFrWe3bty/VLh87dqwki7h10d7OuLu7U6dOnWjVqlWS3x+pXblyhWxsbDT707ffftsitjVqxcXFFBkZqVn3W7duTQsXLrSIz63a6NGjNdv75ORkGjx4MB06dEjy+yk17e2+tbU1ZWZmWkShnzbtvg03Nzfq0KEDrVixQtLHfGW1bdtW8x7UF2dI/Xhb27FjxzT51aOmq0e3tITPQkFBQal6BR8fH3r77bfp/9i77/Aoyq4N4Gd303vvvSck9E5CekJLghQpioAKKFhBAUURBUQQ6SBNehEEpVcRlC5VepMWQHoP6Xu+P3h3v02yPSEzq/fvuubaNrtzZzI7M88zZ2bXrFljEtuD8idUOzo6cpcuXXjp0qUmsS8xYMCACscL+vfvL/p2LTNz9+7dy2T38fHhPn368Lp160RzrFEXFC7+RwdC4SK8AFOnTuWwsDAeMGCA6M9YUDVz5kyuXbs2f/HFF6K7LK42q1atUnZQvvTSSzx79mzRFXGp8+233yp3Ghs3bsxfffUVHzx4UJRFlqpeeumlMp3wffv25bVr14q60VFUVMShoaHK3La2ttymTRuePHmyqDv67t69W6ZD2NzcnJOSknjUqFF86NAh0S4rJ0+eLHNGi6nkXrBgQZkdWhsbG27VqhVPnDhRtA06dcV0qj9LLNZGUPmr+yqKWefOnSvKK+wwV/ypeW9vb2URnRgLpZiZV65cWSZzjRo1uH///qK4uqkmqkXm5ubmnJyczN98842oD4SpFmHY2NhwVlYWT506lS9cuCB0NI1KSkq4Ro0ayoKuli1b8qRJk0S9TWQu+xMniqK/3bt3i6YoW5OtW7cq9z/atm3Ls2bNEu26TtWhQ4eUB3Z79OjBK1asEOUVospT/BSLt7c39+rVy2Q6NRUFru7u7tyjRw9euXKl6E6o0eSrr75ie3t7fvnll3nhwoWiOsFDm71797KFhQW3aNGCp02bJvpiEYUnT56wh4cHN27cmL/++ms+ceKEaLeR5bVs2ZIjIyN54MCBvGvXLpPpKxk5ciR7eXlxr169eO3ataLdjyrv999/Zzs7O+7YsaNJfTcfPHjA7u7unJ6ezpMnT+bLly8LHUlvycnJ3LBhQx45ciQfP37cZL6bI0aM4KioKB44cCDv3r3bZL6bBw8eVB6IEuPVcTUpLi7munXrKq+8JdZ2uzqjRo3ilJQUnjRpkkl9Nx88eMD169fnjz/+2KSWcWbmH3/8kVu3bs2zZs0SfbF8eaNHj+aePXvymjVrTGbbqTB79mx+4403eO3atSazblHIzc3lnJwcnj17tmj7q7SZP38+v/vuu7xt2zbRt/XVmTZtmmh/glsfW7duVS77pva9ZX5+snynTp143Lhxor2SmS6rVq3iV155xSSu6KdJz549RX0VZl3Onj3LjRo14uHDh4v+CrWavP766yZxVUJNZsyYwbGxsfzpp5/yvn37RHtMUZMvv/ySQ0JCTOIE0/Ju3rzJdnZ2nJCQwGPGjBHtsVF1zp8/z2ZmZlyvXj0eNmyY6E9K1uRFFC5K+HlhHIiYRCLxI6JcIqLc3Fzy8/MTOBH8G9y+fZvc3d1JIpEIHcUgT548IXt7e6FjGGzu3Lnk7+9PCQkJZGlpKXQcvZSUlNCAAQOoYcOGlJmZSW5ubkJH0svJkyfpo48+ohYtWlDLli0pPDzcJJbzWbNm0dSpUykzM5MyMzOpWbNmJrGsfPzxx7RmzRrKyMigzMxMSkpKIjs7O6Fj6dSuXTs6deqUMndiYqLocxcWFlJ0dDQ5OztTRkYGZWRkUNOmTUW/nKxbt466du1KqampytyhoaFCx9IqLy+PYmJiKCQkRJm5Tp06JJVKhY6mkVwupyZNmpCDg4NyPRIbGyvq9V9paSklJSWRj48PZWZmUkZGhuj3c4uLiykrK4tCQ0OpRYsWlJSUZBL7Je+//z5ZWFhQixYtKD4+XvTrDSKi3bt30/Lly6lly5aUmJhI1tbWQkfSy9y5c4mZqUWLFuTj4yN0HL0tWbKE3N3dqXnz5iaxfChs27aN7O3tqX79+qJeR5d39uxZevr0qei3LeXl5eXRsWPHqGHDhiSTyYSOY5BDhw5RXFwcWVhYCB3FIBcuXCBPT0+T2NaounPnDpWWlpKXl5fQUQxSUlJCFy9epIiICKGjGOzcuXMUFhZmUusUIqKrV6+Sp6enSW17iIju3btHZmZm5OjoKHQUg5SUlNCdO3fI29tb6CgGu3nzpsmtU4iIHjx4QI6Ojib33SwqKiJmNrnvJhFRQUEBWVlZCR3DYCUlJSSTyUTdhtdELpeb3DKuwMwmOc8BAKByTH39X1paanL9MuWZ6j6bwsOHD8nJyUnoGEa7du0a+fr6muT34MaNG2RhYWEydQuqzp49S3Z2duTr6yt0lEq5du0a+fv7Kx76M/O1yn4mChdNAAoXAQD+/fLy8sjW1lboGAYzxYMHcrmcrl27RgEBAUJHMcijR4+osLCQPDw8hI5ikKtXr5K3tzeZm5sLHUVvjx8/JqlUKvpiVlVFRUVUUlJCNjY2QkfRW0lJCUkkEpPqZDH1Ti0AAAAAAAAAAAAAAAAAY7yIwkWzyn4AAAAAVJ4pFi0SkckVLRIRSaVSkytaJCKTu5qHginOawcHB6EjGMzCwsLkriJlZmZ6TREULQIAAAAAAAAAAAAAAABUDdO8fjsAAAAAAAAAAAAAAAAAAAAAAAAAmCQULgIAAAAAAAAAAAAAAAAAAAAAAABAtTHZwkWJRLJDIpGwgUOSEdMZ9iI/HwAAAAAAAAAAAAAAAAAAAAAAAOC/xGQLF40gJ6LzQocAAAAAAAAAAAAAAAAAAAAAAAAA+C8zEzpAJfQkIlsd48QQ0bL/3d/GzNcrOc04Ha9fquTnAwAAAAAAAAAAAAAAAAAAAAAAAPyrmWzhIjPrLBKUSCTdVB4uqIJpnqjsZwAAAAAAAAAAAAAAAAAAAAAAAAD8l/1rfypaIpFIieiV/z18SkQ/CxgHAAAAAAAAAAAAAAAAAAAAAAAAAOhfXLhIRKlE5Pu/+yuY+ZmQYQAAAAAAAAAAAAAAAAAAAAAAAADg3124+JrK/Ur/TDQAAAAAAAAAAAAAAAAAAAAAAAAAVN6/snBRIpHYEdFL/3t4hYh2VNHnbpFIJLclEknR/253SCSSwRKJxLkqPh8AAAAAAAAAAAAAAAAAAAAAAADg385M6AAvSHsisv3f/UXMzFX0uekq992JKPF/wyCJRNKDmVcb86ESicRPxyhexnwuAAAAAAAAAAAAAAAAAAAAAAAAgNj8WwsXq/pnoo8T0Soi+pOIbhCRORFFEtErRJRBRE5EtFIikWQx80YjPj+3CjICAAAAAAAAAAAAAAAAAAAAAAAAiJ6k6i5GKA7/u3rhFXr+M9j7mLlJJT/PiZkfanm9DxFN/9/DG0QUyswFBk5D739Cbm4u+fnpukAjAAAAAAAAAAAAAAAAAAAAAAAAQOVdu3aN/P39FQ/9mflaZT/z33jFxVfpedEiEdH8yn6YtqLF/70+QyKRNCCiN4jIh57/TPViAyfjr+N1LyI6YOBnAgAAAAAAAAAAAAAAAAAAAAAAAIjOv7Fwsdv/bguJaFk1TXMGPS9cJCJKJAMLF3VVoEokEiNjAQAAAAAAAAAAAAAAAAAAAAAAAIiLVPcopkMikdQnopj/PVzHzA+qadKnVO77VtM0AQAAAAAAAAAAAAAAAAAAAAAAAEzOv6pwkYheU7lf6Z+JNgBX47QAAAAAAAAAAAAAAAAAAAAAAAAATNa/pnBRIpGYE1Hn/z28Q0Qbq3HyMSr3b1TjdAEAAAAAAAAAAAAAAAAAAAAAAABMyr+mcJGIWhKR+//uL2Hmkmqcdh+V+79X43QBAAAAAAAAAAAAAAAAAAAAAAAATMq/qXBR9WeiF+jzBolE0kMikfD/hmFqXo+TSCRhOj6jNxG9+b+HN4noFz3zAgAAAAAAAAAAAAAAAAAAAAAAAPznmAkdoCpIJBJnImrzv4cnmPlwFX10PSKaLZFIttPzn54+TkT36Pl8iyKiV4go43/jlhJRb2bOq6JpAwAAAAAAAAAAAAAAAAAAAAAAAPzr/CsKF4moExFZ/u++XldbNICMiNL+N2hyj4jeYOa1VTxtAAAAAAAAAAAAAAAAAAAAAAAAgH+Vf0vhYrf/3ZYS0eIq/NwNRPQGETUhojpE5ElErkQkIaL7RPQXEW0ionnM/LgKpwsAAAAAAAAAAAAAAAAAAAAAAADwryRhZqEzgA4SicSPiHKJiHJzc8nPz0/gRAAAAAAAAAAAAAAAAAAAAAAAAPBfcO3aNfL391c89Gfma5X9TGllPwAAAAAAAAAAAAAAAAAAAAAAAAAAQF8oXAT4D7pw4QLt2LGDiouLhY5ikGvXrtHJkycJV4oFAAAAAABTa88oPHz40CTbNI8fP6YHDx4IHcNgzEynTp0yyXl+6tQpevLkidAxDHblyhU6f/680DEM9uzZM9q+fbtJrls2b95M9+/fFzqGwXbu3Elnzpwxue/nyZMnTXJZefjwIS1evJju3bsndBSDMDPNmzfPJPsEN27cSJs2baKCggKhoxjk77//punTp9PVq1eFjmIQZqZJkybR9u3bqaioSOg4Bjl8+DBNnTqVLl26JHQUg82ZM4d++uknevjwodBRDMLMNGbMGFq7di3l5eUJHcdgU6ZMoeXLl5vk/vnevXtp/PjxdPbsWZNbrxMRzZw5k5YuXWqS+15ERNOmTaMVK1bQo0ePhI5ilLVr19KcOXPon3/+ETqKUR49ekQjR46kQ4cOkVwuFzqOUTZu3GjS3wFmpsmTJ9Off/5psv+Dc+fO0aJFi+ju3btCRzHa0qVL6cSJEya5HSAi+v333+ngwYMmuwz99ttvdOXKFaFjGOXatWt0+PBhk1x2Ll++TLm5uULHECUULgL8B/n6+lLXrl3J3d2dOnXqRAsXLjSJnRsXFxdKSUmh0NBQeu+992jLli1UWFgodCydrl69Sj169KBVq1bRs2fPhI6jt7/++otWrlxpch03Bw8eNLlOeCKi8+fPm9xOllwuN8kdrMLCQpNsVD99+pRKSkqEjmEwU1hPl1daWip0BIPJ5XKTW4eUlpaa3LwuLS01yYMC+/btM7kDd0eOHKE1a9aY3EHeadOm0fTp0+nmzZtCRzHIp59+SgMGDKCdO3ea1Pdy/Pjx1KJFC5o+fTrduHFD6Dh6O336NAUGBtI777xDW7ZsMZnvp6WlJdWrV49SUlJowoQJ9PfffwsdSS8SiYSmTJlCAQEB9Pbbb9OGDRtMZt2Sm5tLrq6ulJGRQZMnT6bLly8LHUkvTk5O1LBhQ4qKiqKPPvrIZE6ctLGxoW+++Ybc3NxMqq+E6HnBi7u7OyUkJNDo0aNNpsBLKpVSdHQ0hYeH0/vvv09bt241ifaDv78/tW/fntzc3Ojll1+m+fPn0+3bt4WOpZOTkxMtWLCAPDw8qFmzZvT111/TX3/9JfplRSKR0N27dyk2NpaCg4OpX79+tH79epPoYwsMDKRWrVqRi4sLZWVl0ffff28SxYDBwcE0Y8YMCgwMpLi4OBo0aBD98ccfol+XSyQSsrS0pJSUFHJzc6P27dvTnDlzTGI/MTY2lsaOHUshISEUHR1NAwYMoG3btpnEfmJERAS9/PLL5ObmRomJiTR69Gg6duyYSaxbPDw8KDs7m1xcXCgzM5MmTJhA586dE312IqKwsDDq1KkTubu7U/Pmzembb74xiflORFS3bl0aP348RUVFUVhYGL377ru0ceNGys/PFzqaXqKjo5XH1xTb06NHj5rEvCciCgkJoY4dO5KbmxslJyfTt99+azL7jkTPl5++ffuSj48P1atXj4YOHUr79u0zmb4MR0dHOnXqFNWvX598fX3p9ddfp5UrV9Ljx4+Fjqa32NhY6tGjh7L98c0339Dx48dNZhmSSCRUUFBAjRo1Im9vb+rRowf99NNPJlXMGxISQl999RV5enoq10Omsg1QePz4McXFxVFwcDC98847tHHjRpPpqyF63rZq0KAB+fr60ptvvkmrVq2ip0+fCh1Lb48ePaKgoCCKi4ujTz75hPbs2WMy61F3d3fKzs4mPz8/6tOnD61du9Yk2oZEz/udoqOjqXbt2vT555/T/v37Tbb4tcoxMwaRD0TkR0RMRJybm8sAVWHSpEmsWK6IiCUSCTdp0oRHjBjBR48eZblcLnREtb777rsyue3s7Lhdu3Y8Z84cvnnzptDxNMrJyWEiYmtra27bti3Pnz+f7927J3QsrfLy8tjNzY2tra35pZde4kWLFvHDhw+FjqXTunXrWCaTcXp6Os+YMYNv3boldCS9vP/++xwWFsaffPIJHz58WLTfwfLatGnDjRs35nHjxvHVq1eFjqMXuVzO9erV45YtW/KcOXP4/v37QkfSy507dzgoKIjfeust3r59O5eUlAgdSS9Tpkzh9PR0nj17tujXewo3b97kxo0b8zfffMOXLl0SOo5eiouLOT09nYcOHcqnTp0SOo5eSktLOSUlhd9//33eu3evyaz3kpOTuXXr1rxw4UJ+9OiR0HH0MnToUHZycuKePXvyxo0buaioSOhIOj169IidnJzYzs6Ou3TpwitXruS8vDyhY+l08OBB5b51fHw8jxs3ziTWI0ePHlXuX3t4ePCbb77J69at4/z8fKGjafXgwQN2cHBQZm/QoAGPHDmST5w4Ifp1SlpamjK3vb09v/zyy7xo0SLR75dMnTq1THssJiaGBw8ezLt37xb1vsmVK1fY3NxcmdvGxoZzcnJ49uzZom5HyuVybty4cZl5XqNGDZOY51999VWZ3E5OTty5c2detGgR3717V+h4Gu3du7dCX0nTpk3566+/5mPHjol23fL48WN2dXUtkz0oKIj79evHGzduFPX6PCMjo0xuW1tbbtu2Lc+ePZtv3LghdDyNRo4cWWFZadiwIX/11Vd86NAh0S4r5ZdxImI/Pz/u3bs3r169mp8+fSp0RLXy8vLY09OzTG4rKytu1aoVT5kyRdT7W6+88kqFeV6jRg0eOHAg79ixQ7T75mvWrKmQ29HRkTt27Mhz584V7fazsLCQg4KCKmSvU6cODxkyRNTbzzlz5lTIbWdnx23btuWZM2eK+thQ+XU5EbGvry/36tWLf/nlF378+LHQEdUqLi7miIiICtlDQ0P53Xff5Y0bN/KzZ8+EjqmWXC7npk2bqp3vb775Jv/888+ine/MzDNnzqyQXXW9/vfffwsdUav09PQK+b29vfmNN97glStXirq/SC6Xc5MmTSrkDwwM5LfffpvXrl0r+v6XDz74oEJ+Nzc3fvXVV3nJkiWi74M+e/YsS6XSMvnNzMw4OTmZx44dy6dPnxbtvqTCu+++W+F/4O/vz3369OE1a9aIfhl6+vQpe3h4VPgfJCUlmcz/YOHChWr36/v06WMS3+PCwkIODAwsk9/Gxoazs7N5xowZfO3aNaEj6tSuXbsy+S0sLDgzM5MnT57MFy9eFDqeVnK5nGvXrl0mv6urK3fr1o2XLVsm+nqA8v2TVlZW3Lp1a/7+++9Fvc/MzPzxxx+Xye7p6cmvv/46//zzz/zkyROh4+klNzdX9W/w46qoiauKD8GAwkUwPfn5+ezr61thp6b8zo3YdjDVdVSqDg0bNuThw4fzkSNHRLVT+eeff1bIKpPJOCUlhSdPnizagq/hw4eXyWxubs4tW7bk2bNn8+3bt4WOp5ZcLufY2FhlZqlUyikpKTxt2jT+559/hI6n0ZUrV1gmkylzm0oR4++//15mGWnSpAmPHz9e9NurBQsWlFmuW7VqxfPmzeMHDx4IHU2rfv36KXN7eXnxO++8w3/88QeXlpYKHU2jJ0+esJOTU5l5PX/+fNE3fN58803lvG7cuDFPmDCBr1+/LnQsrVSL+2vVqsWjRo0SfQNZtaM6KCiIBw0aJOoTKJiZV61apcxsaWnJL730Ei9btky0B3mZmW/fvs1WVlbK3M7Ozvz666/zpk2bRHuglJn5008/rdB51bFjR162bJmoG/GZmZkV9vvq1q3LI0eO5NOnTwsdT6OsrCy1B0o7duzIS5YsEe16+7PPPlPbLggNDeUBAwbwH3/8IcqD0zt37lSbWyaTcXJyMo8fP16U6/CCggKN7Uh3d3fu2bOnaDva3nrrLbW5JRIJN2rUiEeMGMF//fWX6LZBmzdv1tj+dXNz49dee42XL18uuoOjDx8+ZGdnZ7W5pVIpJyQk8OjRo/nkyZOim+ctWrTQOM8DAgK4b9++vGHDBtEVA37zzTcacysOAM2cOVN0+7TqCulUh3r16vHQoUP5zz//FFW7R12xqOqgKF4QY+FIq1atNOa2sLDgjIwMnjhxIl+4cEHoqGVMmDBB67ISExPDH3/8MW/fvl1U+7jqihNUB0Ux4Lx580RVDCiXy7lhw4Za53n9+vV56NChvG/fPlF9P9UVAKoOLi4u3KVLF164cKGo+jeLi4s5PDxca/aaNWvy4MGD+Y8//uDi4mKhIyvt379fa25zc3NOTU3l7777TnTFIIsXL9aa3draWllMJ7b9899++03nfE9JSeGxY8fyqVOnRDXfi4qKOCQkRGv+qKgo/vDDD3nr1q1cUFAgdOQy9u3bpzW7ogjt22+/Fd28Z2b+9ddftea3tLTkFi1a8KRJk0S3P8D8/KRzGxsbjfmlUik3a9aMv/76a9H2M3bv3l3r/yA4OJjfeecd0Z6EdP369TJ9jZqWITEXcI0bN07r/yAkJITfffdd3rRpkyj/ByUlJRwZGakxv6IYfOrUqXz58mWh46o1a9Ysrf+DOnXq8GeffSa6fU2Fv/76S2v+GjVq8KBBg3jnzp2i2m9TUD3OoWk79t133/G5c+eEjlpBQUEB+/n5acxfu3Zt/vzzz3n//v2iW3Zu3bqlcRtmYWHBLVq04ClTpoj2e8uMwsX/7EAoXIQXpHw1uradm5YtW4pm52b8+PF65VYUX65bt04UZ0aqO/NUdahfvz6PHDlSVAdu7t+/z3Z2dhobf8nJyTxlyhTRnfmyaNEitZklEgk3b96cJ02aJLqDNczMr776qtrcoaGhoi1ilMvl3KhRI7W5mzZtKtoixqKiIvb396+Q2dzcnNu0acMLFiwQZYHG33//rfaAh4+PD7///vu8Z88e0e2EMzN/8sknajsvcnJyeOnSpaIsbjh16pTadUhSUhJ///33ojq4ofDo0aMyVx5TDI0aNRJt4WV+fn6Fs1uJnndODxs2jM+cOSN0xApKS0vVHkyysbHhTp068S+//CLKzqy3335b7braxcWF33zzTd6yZYvoOlBu3rypsRPUysqKX3rpJV68eLHoinXKF/WXH6Kjo3nIkCGiuxqTrgMv5ubmnJmZydOnTxfVFbDu3r2rcX9VMbi5uXHPnj151apVojopKzk5WWebJjY2locMGSKqjrbJkyfrzG1pacmtWrXi77//XjRthfJXXdQ0BAQEcL9+/XjTpk2iOECq6Yoo6r6jaWlpPGHCBNFcoab8iXCahpCQEH7vvfd4y5YtopjnutaHqtt+MRUDPnnyhN3c3PTKXrduXVF14rds2VKv3J6entyzZ09esWKFKLb/o0eP1iu3hYUFp6en84QJE/j8+fNCx+YDBw7olZuIODIykvv378/btm3jwsJCQXPn5+ezj4+PXrnFdmXAHj166D3PGzRowF988YUoinU3bdqkd253d3fu1q0bL126VPArSOtTAKgYFCcwfPXVV3zw4EHB57muIjpNy7kYTtZWdyKUpiEoKIj79u3L69atE3z/vKSkhGvUqKF39qioKO7fvz//+uuvothv0adNIcb5zsw8f/58vbPb2tpyTk4Oz5gxQzQXgWjdurXJznu5XM6JiYl654+IiBBdEenAgQP1zq+4AuyqVatE0w994cKFMhey0DZYW1tzmzZt+Pvvv+crV64IHV3pww8/1Pt/EB0dzR999JGoTjB59uwZe3l56ZVf8asNM2fOFE0fBzPz0qVL9f4fxMbG8qBBg0R18kNRUREHBwfrld/Dw4O7d+/OP/30kyjaggodOnTQK7+zszN37dqVlyxZIvi+soJcLuc6derovR3o378///bbb6L5Dk+bNk2v7GK8omH5qy5qGuLi4vjTTz/lvXv3iurEfBQu/kcHQuEivCAFBQVqC3f02bkZPHiwYGcIGLIzWX7Hfvr06YLtVP7xxx96542IiOCBAwfy3r17Be8w07cB2KRJEx47dqwozp4qLi6ucIlxdUOzZs14/PjxounsOHbsmM7MoaGhPHjwYFEVMf788896zesJEyaIqlGn64w6CwsLzs7O5kWLFomqIdSxY0etuf39/bl///68f/9+0SwjN27cYAsLC63r6I4dO/KKFStEUWiu0KZNG42ZZTIZZ2Zm8ty5c0V1pc6PPvpIY2ZF4eWMGTNE9RONX375pdZlunbt2jx69GhRnDyhMH36dK2ZHRwcuFu3brx+/XrBD/AqnD9/XuuVXoieF3f17t2bt27dKpoOrL59++rcxlhYWHBWVhbPnz9fFN9HuVzOzZo102v/KSgoiPv378+7du0SfJ+PuezPF2sbJBIJN2nShEePHi2Ks24NOWBhbW3NOTk5PGfOHMGL0Ldv3653bqLnV+/q3bu34D/jbUjhiGKoW7cuDxs2TPB92D59+hiU287Ojtu1a8dz584VdHnRdtVFTUNMTAwPHDiQd+7cKVjn5qNHj9jFxcXged6+fXueO3cu37p1S5DczPoX0pVfzoW+MuCYMWMMzu3h4SF4MaCuK3WpGxRX7xo3bpxg26KnT5+yu7u7wdkVB32ELAbMzs42OLe9vT23b9+e58yZI1gxoL4nYZcfhC4GvHjxIpuZmRn1/ezevTsvW7ZMkP1cQ/ZrVQepVMrx8fGCXunKkAJA1cHT05N79OjBy5cvF2Sel5SUcExMjFHZ69Wrx59//rlgBzaPHDliVG7VK7sJVdy9YsUKo7KLoZhu165dRs/3zMxMnjhxomDzXdfVwrQNcXFxPGjQIP79998FK6A4dOhQpZd5Ia9maMjxKtVBLD9hf+fOHZ0nMaobFCeUjB8/XvD+DNVf/DFkEEsB2s2bN9na2trg/A4ODtyhQwdRnGAyceJEo/4HtWvX5iFDhvCePXsELSYydr/B2dmZu3TpwosXLxb8p9V1XSlb3WBmZsYpKSk8btw4Pnv2rKD5jx8/zhKJxKD8MpmMmzdvzmPGjBH8qryrV682eP47Ojryyy+/zAsXLuQ7d+4Ilt2YOhfVn/MW8niTtqsuahrc3d25R48evHLlSsF/1eFFFC5K+HlhHIiYRCLxI6JcIqLc3Fzy8/MTOBEY49ChQ7R79+4yX0C5XK71C6rt9cq8V/X1PXv20LFjx4z+u2xsbCgqKopiYmIoMjKSbGxsFAW3Bt8aMu7GjRtp3759RucODg6mBg0aUJMmTSgyMpIsLCxIJpORmZlZhVt1z2m7lclkJJFI1E63efPmtHPnToOyOjk5UePGjSkhIYHq1atHNjY2ZGFhQebm5mRubq7zvlQqNXo+ERHdvHmTgoKCqLCwUO/3BAcHU3x8PCUmJlJ4eDhZWlqSpaUlWVhYKO+rPrawsKh0zvKmTJlC7777rt7jh4eHU3x8PCUlJVFgYCBZWVmRlZUVWVpaKu8rHltaWlZ5XoXWrVvThg0b9BrXw8ODmjZtSomJiRQTE0PW1tZlspYfzMzMNC6blVFaWkoxMTF07tw5vcYPDw+nZs2aUVJSEvn6+irzacovk8mqPDMR0ZMnTyggIIAePnyoc1wzMzOqWbMmxcfHU3x8PLm6uirzWltbKwfFY3Nz8xeSmYjowIED1LBhQ73GdXFxoSZNmlBiYiLVqFGDbG1tydrammxsbJSZFfctLCxeyPKh8MYbb9CcOXN0jmdjY0OxsbEUHx9PjRs3JkdHR7KxsVE7WFlZvbDvIhHRjh07KDk5Wed4FhYWynVH48aNydXVVZnR1ta2zK1iHf6i5nVubi6FhIRQSUmJ1vHMzMwoPT2dWrZsSUSkzKyaU/W+jY0NWVpavpDcd+7coYCAACooKNA5bpMmTahz586UnJxM+/btUy6/qrfqnqvq72R+fj4FBgbSnTt3dI7r7OxM7du3p06dOlF0dDStX79e7TpP2+OqWg++/PLL9NNPP+k1rpubG7Vv355efvllioiIoPXr15fZjqtuw8tv49W9Zuw26NKlSxQeHk6lpaV6jW9ubk5paWnUoUMHaty4Mf3xxx9kZmam3D/SNugznmIcXeueDRs2UOvWrQ36W728vKht27aUmJhId+7cUc43Q/ZDK3u7a9cuSklJMSg3EVFMTAylpaWRpaUlBQUFkZmZGUmlUpJKpSSTyV74/bt371JiYqLey4mCVCqlBg0akLe3N9WuXZs8PDxIKpWSRCJR3qre13VrzLhvvvkm/f333wbPc2trawoPD6e4uDiKi4sje3t75ecSkfK+pucqO87y5ctpxYoVBucmet6+iY2Npbi4OIqIiCizji6/ntD22JjXrl69SsOHDzcqNxFRUFCQMruXl5fyc/XpW9M1jrbXmZm++uorvfZb1bGxsaGYmBiKjY2lyMhIsra2rtL2ubb3rFq1ig4ePGhUbiKiwMBAqlGjBsXExJC3t3eZ6SgGbY+NHffUqVP0yy+/GJ3bzs6OYmJiKCYmhsLDw8nCwuJFnexc5nFeXh5Nnz7d6NxSqZRCQ0MpOjqaoqOjydXVVWMfU/nnjBlH9fHixYvp0aNHRmd3c3Oj6OhoioqKoqCgIJJKpWWmoelWn3G0jbtz506928LqWFpaUkREBEVFRVFERISyX00ul5eZVmXvl3986dIl2rNnj9G5iYj8/PwoMjKSIiMjydvbu8L0NOXQNOgzXkFBAa1bt65Sue3s7CgiIoIiIiIoJCSELCwslJ9fWlqqcdqaXtP3Pbt3767UMi6RSCgwMJDCw8MpPDy8zPdTdTpVff/y5ct04cKFSs1zBwcHCg8Pp7CwMAoMDCQzM7My03gRt8XFxbR3795K5ZZIJBQQEEBhYWEUEhJCrq6uZeaP6vQ03Tdm3CtXrtDNmzcrld3a2lqZOygoiCwtLZXT05ZF38yaXjt+/DgVFxdXKruLiwuFhoZSSEgI+fj4kFQqrXR2XY9LSkro+PHjlcpNROTu7k6hoaEUHBxMXl5eREQGzVdD7ysenzhxguRyeaWyOzs7U0hICAUHB5OPjw9JJBKty2lVvXbt2jW6d+9epbIr2qFBQUHKfn1D1hmVWd+cOnVKZx+cvvM+KChI2cbQd11d2XX9sWPHKr3suLu7U3BwMAUGBpKHhwcRkcHbUn1fLz/OmTNn6OnTp5XK7+TkpMyvuuxrGvTdr9H2ntLSUrpx4wbl5eXp1beojaWlJQUGBiqXf0tLS7XT1XcfUddrV65cUd5nZrpx44ZefbraeHp6UnBwMAUFBZG7u7vB++j63F68eLFMbsXzJSUldOnSpUrlt7a2puDgYAoODqaAgABl20/d9DQ91vTauXPn1L5G9P/twNu3b1d6Perr66vcfrm6upb5fG1D+WyK4fTp01RaWqq17ap4rrS0lE6cOFGp/M7OzhQeHk6hoaHk7++vbAvqM33Vx8ePH1eu08u/Xn5cBWamEydOUH5+fqXzR0REUEBAAJmZmVWYrrZMR48epZKSkgq59HkvEdHevXuptNSwPlUFxf5yVFQURUVFkbu7u9q+MnX3Dx06REVFRRU+U9P71D137tw5unz5slHZiZ73xyv6nAICAjT2+avLUdnXFi9eTH/99Zf+YVUojklmZWVRmzZtKCgoyKjPMda1a9fI399f8dCfma9V9jNRuGgCULj47zB69GgaPHiw0DGgmkilUrUHhPPz8ykvL6/asxhS6Kju/vbt2+nWrVsvNKdiWrqKHPV9XFJSQl988cULy6uYXvmiRk2P9X3tyJEjNHr06BeSWSqVai1s1DToKoi0srKi1atX0+zZs19IbnNzc70Ke4x5/P3331fqgKQmMplMa2FjZR/36NGj0o258qRSaYViRnUFjsY+d/nyZcrIyKjSzERUplitqgdra2tKTk42uvGgiUwm01gkWBXP9enTh5YuXVqlmYmeLyPqihqr4v7gwYNp4cKFemeRSCRaG33lKea5voWO6p4r/9rMmTMNykz0vDPUmKITMzMztetiQ9d5586do2nTphk8fWNzq5JIJEYVPFpaWtKGDRuM6oCTSqWV7oDX9tnaChxlMhmdOXPmhUwbAAAAAAAAAAAAAAAgNjZWWcTYqFGjF3ZBIAUULv5HoXDx32HMmDE0aNAgoWMAAAAAAAAAAAAAAAAAAAAAAMC/hJubG7Vq1YqysrIoIyODHBwcqnwaL6Jw8cX9th4AlPEif34TAAAAAAAAAAAAAAAAAAAAAAD+e+7evUsLFiygjh07ko+PD40ZM0btT3KLjZnQAQD+K1C4CAAAAAAAAAAAAAAAAAAAAAAAVcnFxUV5xcXMzExydHQUOpJeULgIUE1QuAgAAAAAAAAAAAAAAAAAAAAAAJUVFRVFWVlZlJWVRU2aNCEzM9MrAzS9xAAmqmHDhjR48GCSSCQkkUhIKpUq76sbKvO6Ie9duHAh/frrr0b9TQ4ODhQREUEREREUGBhIMplMWaBp7K2+465bt4527txpVG6pVEqenp7k4+NDXl5eZGFhQaWlpVRSUvJCbpnZqJzamJmZkbOzM9nb25OtrS0RERUVFVFxcTEVFxervS+Xy6s8hzEkEglZW1uTlZUVyWQyKi0tpcLCQmVOMZNIJGRubk4SiUT5PzYViu99aWmp0FEMolhXiWX5BQDTJJFIXsj2+EWxsrIiCwsLkkqlVFpaSgUFBaLeRjo4OJCjoyPZ2tqSpaUlFRUVUVFRkXL7XlhYqBzE8H9wcnIiDw8Pcnd3JwcHB5LL5cr9JtWhpKRE7fOqQ3Vsn8zMzMjX15d8fX3J29ubrK2tte57GrKfWv654uJiysvLq5LMAQEBFBAQQP7+/mRra0ulpaUkl8tJLpdX+f3S0lL666+/Kp3b3d2dgoODKSgoiDw9PYmIiJlJLpcTM5e5r+tW33H37dtH9+/fNzqzTCYjf39/CgkJoeDgYHJyclJOXzEo/g5Nj/V9TvXxiRMn6NChQ0bnNjc3p6CgIAoNDaWQkBCys7OrsH7Q9tjY1x48eEALFiyoVO7g4GAKCwuj0NBQZVuMSL+TFXWNo+31qVOn0sOHD/XOqsrMzEyZOywsjOzt7ctMr7Ltc23vWbVqFf35559G5ZZKpRQUFETh4eEUHh5Ojo6OyvaB4vP1eWzMuEePHjV6WZFIJBQQEKDsL3FxcdHaR2PMUP5vUAyPHj2iTz75xKjcRER+fn4UERFBkZGR5ObmpmxHlu9n0vXYmHE+/vhjunv3rlG5vb29lbm9vLyU/VPl86v7e3SNo2vcadOmGd0/5e7uTpGRkRQVFUV+fn4klUrLDIppvIj727Zto6lTpxqV29nZmSIjIyk6OpoCAwPJzMysQnZNg2oWQweJREK3bt2inj17GpXb3t5emTskJIQsLS01Tksmkxn0vK7XpFIpde/ena5evWpwbisrK2XuiIgIsra2rjA9XfcNGbf8+2bOnElz5841OLdMJqOwsDCKjo6m6OhocnR0VJvpRd3eunWL2rRpY3BuIiJfX1+KiYmhGjVqkKenJ5mZmZX5fE33db2u77hffPEF/fLLLwbntrW1pejoaKpRowaFh4eTlZWVXpn0za5rvOLiYkpMTKTHjx8bnN3Pz49q1KhBsbGx5O3trfd0q+q1GzduUGpqqsHtValUSqGhocrsLi4uBs3Tqvg/PHnyhJo2bUqFhYUGZZdIJBQcHEyxsbEUGxtLHh4eOpfRF/Hc+++/Txs2bDAoO9HzbVFcXBzFxcVRaGiosg9F17qhKtcz+fn51KxZM6Pa0EFBQRQXF0c1a9Ykb29vjevjyqzDtd2XSqX0+PFjSkhIMOrnI4OCgqhmzZpUq1atCvkN3T5W5r3Z2dl04cIFg/O7uroq84eFhZG5ubnW6Uilxu3DaHvPtGnT6PTp07Rr1y6D88tkMoqMjKRatWpRzZo1ycXFRe30tD02dtzZs2dTaWkpyWTP97dXrlxpVDvVzs6O4uLiqFatWhQdHU1WVlYG7ZsbertgwQIqLS2t8Dfdv3+fVq9ebXB+ouf78orlKCQkhMzMzPRuC6k+1vbajz/+SCUlJVrbI/v27aOzZ88a9TcEBwcr10Wenp4VsugaNI2/cuVKKi4urjAeEVV4X35+Pq1atcqo/JaWlhQdHU2xsbEUExNDNjY2ered1T2/du1aKioq0jge0fNtf/nnNm3aZHR/qr+/P8XExFBMTAx5e3tXmG75aal7bvPmzcp1ubrxVG/L/w1yuZw2b95s9LFjLy+vMm1a1Vzlp1v+/rZt28oc81B9Xd1jdX/PuXPnjGpjET1flwYHB1NERASFh4eTg4OD1vHV5anMaytXrqTjx4/rF7YcMzMzSkhIUBYrhoWFGfU5YoLCRYBqkpCQQAkJCULHKOPx48f0wQcfGPSeBg0aUHZ2NmVnZ1NcXJzWFfGLkp+fT+PHjzfoPe7u7tS6dWvKzs6m9PR0srOze0HpKlIcTC0pKaH4+Hg6fPiwUZ9Tr149atmyJbVs2ZIaNmxocLV8aWlpmQPtugodFffz8/Pptddeo6dPnxqVm4goJiaGMjMzKTMzk5o3b07W1tZqx5PL5WoLHcoXPejz+NKlSzR79myjMxM932lp0qQJpaenU0ZGBtWvX7/MfC8pKaHCwkIqKChQ3pa/r+tx+deOHz9OBw8erFRuoucHbtLS0ig9PZ1SU1PJx8eHiP5/HqtOsyqGgwcP0t9//13p3G5ubpSWlkZpaWmUmppKQUFBRPT/8zo/P7/CtMs/Z8jj/fv3082bNyud29nZmVJSUpTZQ0NDSS6Xl5lefn6+cqjs4wMHDhjcIamOjY0NJSQkUGpqKqWlpVFsbKzye//s2bMyt5V97v79+5Sbm1vpzEREFhYW1KxZM0pJSaGUlBSKjY2l4uJievbsWZUMeXl5yvu3bt2qssIkR0dHSkpKopSUFGrevDkFBwdTfn6+cnqq0y3/nCGv3b9/v8oKq2UyGdWvX59SUlIoOTmZGjduTESkdl5py6jr/vXr16mgoKBKMltZWVF8fDwlJydTSkoK1atXj8zNzamkpETtMlp+eVV3q+65o0eP0u3bt6skc61atZTLc/PmzdU2khUFjJVZB+7atcvoA+uqoqKilOu7xMREcnJy0vu9JSUlWrf15W8fPnxIPXv2rNQy7enpqdyWp6Wlkbe3t9GfVZ5cLldb4Lhhwwbq1auX0Z9bu3ZtyszMpBYtWlDTpk3JwsKiyjJrs3DhQnrttdeMem9MTIxyXzU+Pp4sLS2rOJ1mW7dupYyMDIPfZ2dnR+np6dS6dWtq0aIF+fr6voB0mt24cYNCQ0MNfp+vry+1bt2aWrduTampqWWK56oDM1PDhg0Nfl9QUBBlZWVRmzZtKDExsVqXEYXPP//c4PcEBgYqcyclJQmSe9euXTRy5EiD3uPj46PswExJSdHYBnuRnj59St99951B73Fzc6M2bdpQVlYWpaenK4ssq5uh6xRHR0dq2bIlZWdnU4sWLcjZ2fkFJdPuyy+/NGh8GxsbyszMpOzsbGrVqhV5eHi8oGTabd261aCiRUtLS0pNTaXs7Gxq06ZNta+/FW7fvk2vv/663uPLZDJq3rw55eTkUFZWFoWEhLzAdJoxMw0fPlzv8SUSCTVu3Jiys7MpJyeHoqKiBOkPJCLq37+/QePXrFmTcnJyKCcnh+rWrStY7q1btxp0QC04OJjatm1LOTk51KxZM8GumPHs2TNav3693uO7urpSVlYW5eTkUHp6erXvo6j68MMP9R7XwsKCUlNTld9NRR+aEP755x+DirgiIyOpbdu21LZtW2rYsKHyQLQQpk6dqnfRorm5OaWmplLbtm0Fn+dERFOmTNG7aNHe3p5atWpFbdu2pZYtWwr+83sjRozQu4/Q2tqaWrRoQTk5OdS6dWtyc3N7wem0u3jxIm3evFnv8evWratc3mNjYwVbpyuMHTtW70IVS0tLSktLUy7zihPlhPTll1/qXbSoyK9YT3p5eb3gdLpt2rTJoKLFBg0aKPcJatSoIfjy8/3331NsbKze4zs7O1Pr1q0pJyeHMjMzBWsnNWnSRHl/y5Yt9MMPP+j93qioKOX+ZKNGjUgmk72IiGqlpaWpfd6QPjCJREJNmzalnJwcys7OpsjIyKqKp1F2drbW1+/fv0+BgYF6f56NjQ1lZGRQdnY2tW7d+oW1/zp37qz3uIMHDzboswMCApT/g+bNm1dpn6khbTuFzZs308qVK/Ue38rKitLT05X/g6rop3733XeNfu+8efMM2vc0NzenlJQUZT+ZIctfeYMGDTL6vUTP60UMbVN7enoq+5zS0tIEa6/cu3fP4P4yZ2dnatmyJWVlZVGLFi0MOiZjEsqfUY9BfAMR+RERExHn5uYyQFUZMWIEK5YtTYOlpSW3atWKp0+fzteuXRM6MjMzT5gwQWduIuIaNWrw4MGDeffu3VxSUiJ0bF67dq1euRWDi4sLd+7cmefPn883b94ULPfMmTMNyk1E7OzszB07duTZs2fz1atXBcn95ptvGpybiDgiIoL79evHq1ev5kePHlVrZrlczg0bNjQqt62tLbdu3ZonTJjAJ06cYLlcXm258/PzOSAgwKjc1tbWnJmZyd9++y0fOXKES0tLqy333bt32dHR0ajclpaWnJaWxt988w0fOHCgWtcxhw8fNiozEbFMJuOmTZvy559/zjt27OCCgoJqyz1w4ECjc0ulUm7YsCF/8sknvHXrVn727Fm1ZD5z5gzLZDKjc9vY2HBmZiaPHj262paTR48esbu7u9GZJRIJ16lTh/v378/r1q2rlvVgZTObm5tzQkICf/HFF9W2XD948IBdXV2NzhweHs59+vTh5cuX8+3bt194Xmbm4uJijoqKMiqvl5cXv/rqqzxv3rxqb4+MGjXKqHV0eno6f/vtt/zXX39V6zaR+fn2vF69egZldnV15S5duvD8+fP5n3/+qda8CkVFRRwSEqJ3ZltbW87JyeHp06fz5cuXBcnM/Hx+N2rUSO/cUVFRPGDAAN62bRsXFhYKlpuZ+d1339V73dykSRMeMWIEHzlypNqX6fLWrFmjV26pVMoJCQk8evRoPnnypOC57927x/b29nrN76ZNm/LXX3/Nx48fFzw3M3NaWppe87xevXo8bNgwPnTokChyf/PNN3rlFlvbfc+ePXrlDg4O5g8++IC3bdvGRUVFQsfmhw8fspOTk87cPj4+3KdPH16/fj3n5+cLHZvlcjk3a9ZMr21l9+7d+eeff+YnT54IHZuZ9Wvj2Nvb88svv8yLFi3i+/fvCx2ZmfXrn7KysuKsrCyePXu2oH1Sqm7dusXW1tZac8tkMk5OTuYJEybwxYsXhY7MzM+X8fj4eJ3zvH79+jx8+HA+duyYKNbhzMzjx4/XmTskJIT79+/Pv//+OxcXFwsdmZn1W1YcHR25a9euvHz58mrv/9Omf//+Oud548aN+ZtvvuHTp08LHVepsLCQ/f39teZ2cHDgLl268I8//iiqef7PP/+wpaWl1uze3t781ltv8aZNm6q1L02Xx48fs4uLi9bsbm5u3LNnT169ejXn5eUJHbmMXr16ac1uZmbGqampPHnyZL5y5YrQcct49uwZe3p6as3v7OzM3bp14xUrVohm30Xh0aNHOvcbxZxfLpdz06ZNtea3sLDgFi1a8Pfff8/Xr18XOnIFy5Yt07u98dtvv4mivaFKn/+BRCLh+Ph4HjNmDJ89e1boyBWcP3+epVKp1r/BxsaG27Zty3PmzOFbt24JHbmCzz77TOdy5OXlxb169eK1a9dW23EVfd25c4dtbW11/g0NGjTg4cOHC9LPq41cLucmTZrozO/p6clvvvmm6LbFxcXFHBoaqjO/q6srv/baa7xixQp+/Pix0LGVJk6cqDM7EXHNmjX5s88+4/3791frMWhthgwZolf2iIgIHjBgAO/YsUM0bS1m5tzcXNWcflwVNXFV8SEYULgIpkdbo9bNzY179Oghqs5ghfz8fPb29tbakJ0wYQL//fffQkcto7S0lGvXrq1zA1S/fn3+/PPPec+ePaI4YPPs2TP29fXVmVsqlXKTJk142LBhvHfvXsGznz59WmeDQzG4uLhwx44dedasWYIedGdmXrFihV6Zif6/AG3o0KG8c+dOQQ+8f/fdd3rnlkql3KhRIx4yZAhv375d0M4+fTqDFYNEIuH69evz4MGD+ddffxW0gafvgWvFEBsbyx988AGvXbtWsI7hK1eu6OwELj/UqFGD33vvPV69ejU/ePBAkNwvvfSSQZktLCw4MTGRv/zyS8G+l59++qlBmRXz+p133uGff/6Z7927V+2Z9W2kqa5HGjZsyIMHD+YtW7bw06dPqz3z4MGDDcrs4+PD3bp143nz5gnW2T5r1iy989rb23NWVhZPnDix2ovhVd2/f1+vAgyi5x0QH330EW/ZskXwTjh9tucymYybNWvGw4cP5z///FPwfSdm5hkzZujMHRMTI5qiP4V169ZpzWxlZcWtWrXiKVOmiKqNkJubyxYWFhpzOzk5cadOnXjBggXVVuCsD7lcznXr1tWau0uXLrx48WJBtinaaOvQt7e35w4dOvD8+fNFNb+ZmXfu3Kl1+W7Tpg3PmDFDNCcaKjx58kRjkb+Y2+7MzJmZmWpzK4qIR40aJej2UZPhw4drXFZq167NQ4cO5YMHD4ou97Zt2zTmjoyM5I8//ph37twpim2lKm0H2fz9/blfv368efNm0WwvFeRyOTdo0EBtbkVxy6pVqwTZx9ZFU6GonZ0dd+jQgRcuXCi6bQ8z8/bt29XmNjc354yMDJ42bZoo+/y19cHWr1+fR4wYIZoC//I0LSt+fn7cr18/3rp1q+i+m8zMt2/fZhsbmwq5LSwsuGXLljxjxgy+ceOG0DHV0nTiu4+PD7/99tuiXB8qDBgwQG326OhoHjx4MO/bt080B7nLGzNmjNrsioLiP/74Q3TbT4UrV66wubm52nV6x44dRVXwr46mYonAwEB+7733RFlopurrr79Wmz8oKIjff/99/u2330RVIFGepv1HJycnfuWVV0RXlF5eaWkpx8bGatzGiu1EBnU0/Q+sra2VhX5ia1uX17NnT7V/g6LITIyFfqru37/PDg4Oav+G2NhYHjJkiKgKtdTRdCzD0tKSW7duzTNmzBBl4bHCli1bNLZl4+LieMiQIaLej5g/f77G/NHR0Txw4EBRtsWZn9cvaGqrWFhYcGZmJk+ZMkXw4/7qaDuxWiaTcVJSEn/33XeiLPhWQOHif3QgFC7CC1D+6jVRUVE8cOBA3rVrlyg3QAqTJk0qk9vZ2ZlfeeUV/vHHH/nhw4dCx9No+fLlajdALi4u3KVLF16wYIEoz9YZO3asxp0WPz8/fuONN3j58uWi60Ro3769xtzm5uacmJjII0eOFE2hAPPzqxxFRERozK34nr7zzju8evVq0SzvDx480Hlmb0REBPft25d//vln0Swrly9f1losQPT8imhvv/02r1ixQjQHPzZv3qw1MxFxQEAAv/7667x48WLBrtpV3muvvaYzd3BwML/xxhu8ZMkSUVzRQ1uRgGJQFOIqrgQp9Nlyubm5bGVlpTN3WFgY9+7dm5cuXSr4MnLt2jWdV8IgIq5VqxZ/+OGHvHbtWsHXf1evXtU5n11cXLh9+/Y8bdo0PnPmjOAdjXl5eezj46Mxr5mZGSckJPCXX37Ju3fvFk3nurarGHl6enK3bt144cKFgi/HqkpKSjRe2dLf35979erFK1asEKwgW5P8/Hz28/OrkNnOzk55VUWxXeGCWXMRXVBQEPfr14/Xr18v+LpZk7fffrtC7piYGB44cKCorlhU3qpVqyrkjo6O5o8//ljUudV1CgYHB/N7770n2uIFhfInrXh7e3OvXr14zZo1ol2+mStebdFU2u779u0rk1vsV9hQePToETs7O5dp92ZkZPCUKVNEuf5WlZiYWGb/Oj4+nr/99ls+c+aM0NG0Kn+QrU6dOjxs2DA+fPiw4Pt+2mzcuLFCe/3jjz8WfX9g+UJRHx8ffuutt3jjxo2iuvqZOikpKcrcjo6OyivOiXldyMw8derUCuuUadOmia5Qvry7d++WWVbi4uL4s88+E2XhdnmffPJJmWVFcUVIMV3ZRp3i4mIODg4us0/76aef8p9//inaA/UKqsWiihMURo8eLfptEPPzdr6Hh4dyvterV4+HDx8u2oLi8vr161emfd+7d2/RXA1al4KCgjIXe6hduzYPGzZMFFfH18fTp0/Zzc1Nmb9u3br85Zdf8tGjR00iP3PZ/ceAgAB+9913+ddffxVNf5YuK1euLLONzczMFO2JDJokJSWV+Q6/+eabvGbNGlEX+qm6ePFimV9aqlGjBn/yySeiLjIr74svvlDml8lknJKSItqTA9Up30/j7u7OPXv25F9++UWUJ1GVV/6XA8zMzDgtLY0nTZrEly5dEjqeTsXFxRwWFlZmGUpKSuJx48bx+fPnhY6nU/kTCNzc3Lh79+6iuyqkOuVPrFacBL5kyRLRHEPXBYWL/9GBULgIVezJkyfs6enJzZs357Fjx4q6YltVfn4++/j4cHh4uCgvi6uJ6gFsiUTCDRo04KFDh4riyoTaPHr0qMwVMqysrDgzM5PHjRsnip9602T//v1qD6a+//77vG7dOtFdRVRh+vTpFXJ7eHhw165dee7cuYL95LYu6q465u7uzl26dOE5c+aI9iBZt27dNOb+4YcfRHkWjqYrt7q6unLHjh15+vTpfP78edF9N48cOcISiURt0VGXLl141qxZovkJLwW5XM6NGzdWW3gkpgK68nr06KGxWKp79+48f/580a1LNJ3ZGh0dzX379uUVK1bwnTt3hI5Zhrr5bGtry61ateKxY8fy4cOHRdfBNXLkyAqZa9asyR9++CGvX79elNvGa9eulSkQtbKy4oyMDB47dqyozzqfN2+e2n2nU6dOiTYzM/OECRPKdNZ+9NFHorqqoiY///yzsnMwJSWFx44dK/p5zfz8BApzc3O2tLTkli1b8pQpU0yiU1Mul3Pt2rXZ3Nyc09PTeeLEiXzhwgWhY+llyJAhovvpan0oTqSoU6cODx06lA8cOCC6bYw6T548YTc3N9H+pI02LVu2FN1PKetj5MiR7OLiwt26deOffvpJ1FeYUbVjxw62tbXldu3a8bx580R/VRaFe/fusaurK2dkZPDUqVNFt4+tieLgWtOmTU2mMEdhyJAhyivHmEIxlMKuXbvY39+f33nnHdEXyqsqLCzkuLg47ty5s0kUWaoaNmwYN2/enMeNG2cyB+6Zn69XYmJiRH1FSE0WLlzIzZo142+//ZbPnTsndByDfPnll9yqVSueOXOmqE6I08e0adM4LS2Np0yZYjLbIYUbN25wrVq1eODAgbxnzx6TWacr/PDDD5ySksITJ04UZR+yLhMnThTtT3DrY+fOncoTRkylWFSVXC7n5ORk7tq1Ky9btsxk9ttV/fHHH8qr0prid5j5+cmkiiItU+nXUPXw4UMOCAjgTp068eLFi02m2EnVZ599xtHR0Txo0CDevXu3qI+Xq/Prr78qr/K6bNkyk9pfZmZesGABOzo6cufOnU1uGVLUi9SoUYMHDx5sUsuPomA3PDyc+/fvz9u3bzeZontVL6JwUcLPC+NAxCQSiR8R5RIR5ebmkp+fn8CJwNTdu3ePiIhcXV0FTmKYmzdv0qNHjygyMlLoKAbZsGEDLV68mFq2bEkZGRnk4eEhdCS9DBs2jFasWEGZmZmUmZlJCQkJZG1tLXQsrZiZUlNT6fjx45Senq4cxL7ezMvLo/DwcHr06BElJiZSWloapaWlUVxcHEkkEqHjaXT9+nUKCwsjqVRaJndsbCxJpVKh42n0119/UZ06dcja2tqkci9atIi6detGNjY2lJCQQGlpaZSamkq1atUSde7MzEzasmULOTg4UFJSEqWmplJKSgrVqFFDtMv3ihUrqGPHjkREFBkZSSkpKZSSkkKJiYnk7u4ucDr1FMs1M5OXlxclJydTSkoKJScnU0hIiCjntWrmkJAQZd7k5GTy9vYWOp5aiszm5ubUtGlTSklJodTUVGrQoAGZm5sLHU+tu3fvUmhoKDk6OlJ6ejqlpaVRSkoKeXp6Ch1Nq7feeov27dtHGRkZlJGRQfHx8WRlZSV0LK2KioropZdeosjISMrMzKTmzZuLft+JiKi4uJjeffddqlu3LrVo0YICAgKEjqS3iRMnkr+/P6WlpZGDg4PQcfS2bds2evbsGaWkpJCtra3QcfR248YN2rdvH6Wnp5O9vb3QcfTGzLR27Vpq1rPi4AIAAQAASURBVKyZybWBDx48SF5eXqJvz5R37do1ysvLM7m2e1FRER0/fpzq1q0ryn0nbY4fP07R0dFkZmYmdBSDXLp0iby9vUW/jS/v7t27ZGFhYVLbHqLny/iDBw9Evx+ozu3bt02mP03VgwcPyMnJyeTWKQUFBSSVSsnCwkLoKAZ79uwZ2djYCB3DYIWFhWRhYWFyywrR8+yWlpZCxzBKUVGRSS7nRM/bcWLth9DFlLMTmX5+U17uiUw/f2lpKcnlcpNehkx1W6vqyZMnJtWvUd7Tp0/JwsLCpL8LN2/eJC8vL6FjGO3atWvk6elpst/lc+fOUXBwsEnmv3XrFuXl5VFISIjQUQx28eJFKi4uNrn+svKuXbtG/v7+iof+zHytsp+JwkUTgMJFABDCgwcPyNnZWegYBnn27BmdPXtW9IVc5Z07d45u3LhBTZo0MamOvv3791NBQQE1adLEpBpIW7duJUtLS2rcuLFJ5Z4zZw6FhYVRo0aNTGY5yc3NpUWLFlFKSgrVq1fPJA6kMjONGjWKAgICKDk5mXx9fYWOpJfvv/+e5HI5paSkUFRUlEkc7Jg3bx4RESUnJ1NgYKCwYfS0ceNGZdGiqXTQXbx4kUpLSyksLMwklguFe/fumVyBETOb1DwGAAAAAAAAAAAAAADQFwoX/6NQuAgAAAAAAAAAAAAAAAAAAAAAAABCeBGFi6ZzOSoAAAAAAAAAAAAAAAAAAAAAAAAAMHkoXAQAAAAAAAAAAAAAAAAAAAAAAACAaoPCRQAAAAAAAAAAAAAAAAAAAAAAAACoNihcBAAAAAAAAAAAAAAAAAAAAAAAAIBqg8JFAAAAAAAAAAAAAAAAAAAAAAAAAKg2KFwEAAAAAAAAAAAAAAAAAAAAAAAAgGqDwkUAAAAAAAAAAAAAAAAAAAAAAAAAqDYoXAQAAAAAAAAAAAAAAAAAAAAAAACAaoPCRQAAAAAAAAAAAAAAAAAAAAAAAACoNihcBAAAAAAAAAAAAAAAAAAAAAAAAIBqg8JFAAAAAAAAAAAAAAAAAAAAAAAAAKg2KFwEAAAAAAAAAAAAAAAAAAAAAAAAgGqDwkUAAAAAAAAAAAAAAAAAAAAAAAAAqDYoXAQAAAAAAAAAAAAAAAAAAAAAAACAaoPCRQAAAAAAAAAAAAAAAAAAAAAAAACoNihcBAAAAAAAAAAAAAAAAAAAAAAAAIBqg8JFAAAAAAAAAAAAAAAAAAAAAAAAAKg2KFwEAAAAAAAAAAAAAAAAAAAAAAAAgGqDwkUAAAAAAAAAAAAAAAAAAAAAAAAAqDYoXAQAAAAAAAAAAAAAAAAAAAAAAACAaoPCRQAAAAAAAAAAAAAAAAAAAAAAAACoNihcBAAAAAAAAAAAAAAAAAAAAAAAAIBqg8JFAAAAAAAAAAAAAAAAAAAAAAAAAKg2KFwEAAAAAAAAAAAAAAAAAAAAAAAAgGqDwkUAAAAAAAAAAAAAAAAAAAAAAAAAqDYoXAT4j7h9+zYdPXqUmFnoKAYpKCig4uJioWMAAAAAAABUiZKSEqEjGCUvL8/k2pNERMXFxfTgwQOhYxjl8uXLJjnPL1++TI8ePRI6hsHu3btHp06dMrl5LpfL6ddff6WCggKhoxjst99+o+vXrwsdw2AHDhygffv2UWlpqdBRDJKbm0s//fSTyX0/S0tLaebMmXTu3Dmhoxjs559/pt9++42KioqEjmKQkydP0rx58+jmzZtCRzEIM9OUKVPowIEDJJfLhY5jkEOHDtGiRYvo7t27Qkcx2I8//kg7duwwyT78H374gQ4ePGhyywsR0fLly2n//v0mmf3EiRO0Zs0aysvLEzqKUTZs2EBHjhwxuX1GhQ0bNtDp06dNNv+BAwfozz//NMlln+j5Mc9ffvmFnjx5InQUox0+fJj++usvk12GiIg2btxokttchRs3btCuXbtMtn+J6Hlb8M6dO0LHMNrRo0fp0qVLQscw2oEDB+j27dtCxzDK3bt36fjx4ya5Drpx4wbl5uYKHUOUULgI8B/h4uJCHTt2pICAAHrrrbdo/fr1lJ+fL3QsvdSuXZteeeUVWrZsmcl0rj59+pTmzJljcju+Dx8+pMePHwsdw2Cm2DFGRCbbuDbV3Ka4EwsAUFmmdkCd6Pl+1Pnz54WOYbDr16/TvHnz6P79+0JHMcjDhw+pb9++tHHjRiosLBQ6jt6Ymbp160ZDhw41uYNG48ePpzZt2tCsWbNMqiDgxo0bFBoaSu+88w5t3brVZIowzMzMKDs7m1JSUmjChAn0999/Cx1JbytXriQ/Pz+Ta8MXFBSQp6cnpaammtQ8d3R0pLZt21JoaCi9//77tHXrVpNYL0qlUlq2bBm5urpSTk4OzZo1y2SKAW/dukV+fn5Up04d+uyzz0ymGNDT05OaN29OXl5e9Nprr9Hy5cvp4cOHQsfSydfXl0aMGEFubm6UnJxMY8eONYnCBZlMRhcuXKDIyEgKDw+n999/n7Zs2WISxbqKdaGrqyu1a9eOfvjhB7px44bQsXSKiIig4cOHk7e3NzVo0IC++OIL2r9/v+i/nxKJhJ49e0YNGzYkLy8v6t69Oy1btswkTmCIjo6mjz76iDw8PKhJkyY0fPhwOnTokEn0wTk7O1NycjK5ublRhw4daO7cuSazj1tYWEgNGjQgX19fev3112nFihUmc/zB3NycGjdurFzWTWVbREQUEhJCffr0IVdXV2rRogVNnjyZLl68KHQsvZmbm1PdunXJz8+PevXqRatXr6anT58KHUtvRUVFFBMTQ6GhofTee+/R5s2bTWKbquDu7k7x8fHk7e1NPXv2pJUrV5rUMS0rKytatGgRubq6Unp6Ok2cONFk2ksKLi4uVL9+fQoICKC3337bpNqqCkeOHCFPT0+Kj4+nb775hk6cOCH6fWJVHh4e1LNnT/L09KRXX32VfvzxR5PY31F1/vx58vT0pGbNmtGoUaNMrhDNzMyMQkNDqUaNGjR48GCTKyS9d+8eeXl5UZMmTWjkyJF07Ngxk5n/Tk5O1K5dOwoODqZ33nmHNm3aZDLbMVtbW6pVqxbVrl2bPv/8c5M9CeWFYGYMIh+IyI+ImIg4NzeXAYw1f/58VixLRMTW1tbcpk0bnj59uqiXrfHjxyszm5ubc3p6Ok+ePJmvXLkidDStsrKyWCaTcWpqKk+bNo3/+ecfoSPp9PTpU/b19eW2bdvykiVL+PHjx0JH0svevXu5UaNGPH78eL527ZrQcfS2YsUKzsnJ4aVLl/LTp0+FjqO35cuXc1ZWFi9evJifPHkidBy9/fjjj9yxY0deuXIl5+fnCx1Hb7NmzeJPPvmEjx07JnQUg4waNYrXr1/PRUVFQkfR29mzZ3nJkiWcl5cndBS9yeVyXrx4Md+5c0foKAbZsGED79+/n+VyudBR9Hbu3DkeMmQInz59WugoBunXrx+/8cYbvG3bNi4pKRE6jl7kcjnHxsZy7dq1edSoUfz3338LHUkvcrmc69aty2ZmZpyZmcmzZs0yme9mjx49mIjYwcGBu3btyitWrDCJfZNly5Yp2wmBgYH8/vvv8/bt27m4uFjoaFo9ePCAHRwcmIhYIpFwkyZN+JtvvuEzZ84IHU2nV199VTnPHRwcuFOnTrxkyRJ+8OCB0NG02rBhQ5m2cI0aNfiTTz7hPXv2cGlpqdDxNHr69Cm7u7src9vY2HBOTg7Pnj2bb968KXQ8rbp27VpmnkdHR/PAgQN5586dov6OLliwoExuOzs7bt++Pc+dO5dv3boldDyNLl26xGZmZmWy16lThz///HPev3+/aJfzkpISjo6OLpPbzc2NX3vtNV62bBk/fPhQ6Iga9e3bt0xumUzGiYmJPGbMGD558qRo93N/+eWXMrmJiIOCgrhfv368YcMGfvbsmdAR1bp9+zbb2tqWyW1jY8PZ2dk8ffp0vnr1qtARNcrMzKwwz+vUqcNDhgzh3bt3i3YfvXw/suL72a1bN166dCnfu3dP6IhqPX36lD08PCp8PxMSEnjUqFH8119/ifb7OWHChArz3MvLi3v27Mk//fSTaNeJcrmcmzVrViF7vXr1+PPPP+e9e/eKdjkvKChgf3//MrnNzMw4KSmJv/32W1Gvz+VyOdepU6fCst68eXMePXo0nzhxQrTZmZknTpxYYZmJioriAQMG8G+//Sbq/kS5XM7x8fFlsltYWHBGRgZPnDiRL1y4IHRErdQtO7a2tpyTk8MzZ87k69evCx1Rpz59+pTJb25uzmlpaTx+/Hg+f/680PF0OnbsmMblf/v27aJe/hV69eplksebFR4/fsyurq5l/obAwEDu168fb9y40SSOH5XfV1O0R7799ls+ffq0qLcBzMyFhYUcGBhY5m8ICAjgvn37msz/oGPHjmXyu7i48Kuvvso//vij6PvJ5HI5N27cuEx+f39/fvvtt3nDhg2in//ll39bW1tu27Yt//DDD6LvLxs+fHiZ7J6envz666/zL7/8YjLH3HNzc1X/Bj+uipq4qvgQDChcBNNQXFzM4eHhFXaIFUPt2rVF2amdl5dXocNJNfPQoUP50KFDotsJ27NnT5msEomEExISeMKECaLuUB06dKgys5WVFbdr145//PFH0R+8btq0qXI+JyYm8vfff8+3b98WOpZWRUVF7Ofnp+xw79y5M69evZoLCgqEjqZVUVER+/r6KhukL7/8Mv/888+i35EtKChgLy8vJiK2t7fn1157jTdu3Cj6joAbN26wubk5ExHHxsbyyJEj+eLFi0LH0mnWrFnKAxv9+vXjPXv2iG49XZ7iO2lnZ8fdu3fnrVu3irZzXdWAAQPYzMyMc3JyeMWKFaJfhzAz7969m4mIIyIieMSIEXz58mWhI+kkl8u5du3aygMw48ePN4mTEg4cOKDcrnt7e/MHH3xgEkWj8+bNK7MfVb9+ff72229Fv6wsX768Qqdhamoqf//996LuNDlz5gxLJJIy2a2srLht27a8YMECvn//vtAR1SopKeHIyMgKbQRXV1fu0aMHr169WrQFGJ999pna9k1kZCQPHDhQtAV1p0+frrCsKA7wpqam8qRJk0T5PZXL5Vy/fn2189zDw4Nff/11XrVqlShPXvj222/V5pZIJNyoUSMeMWIEHzt2THTrdU3LimpnvhgL04qLizkiIkLjPG/cuDGPGDFClIUvvXv31tjf4+npyT179uSVK1eK7gRF1SJ0deuWpKQkHjt2rOgOvuXm5rKlpaXG7KrFgGJqK6srVlB30HnatGmiO2H4008/1ZibiDguLo4HDx4sugLp/fv3a83t4uLCXbt25cWLF/Pdu3eFjqukaT9LMUilUo6Pj+evv/6ajx49Kqrvp+pJ8OoGPz8/7t27N69atUpUBwfz8/OV/W3a1oljxowRXVHatm3btM5zNzc3fvXVV0VZ9Dpz5kyt2RXr8/Xr14uubbF27Vqt2QMDA7lv3768bt060WXPz89nHx8fjdkdHBy4Q4cOPHfuXFG2pXUt82IvQluzZo3W/IoTYPbt2yfKdumVK1fYwsJCY/6IiAju37+/qItgyxc8qQ6Ojo7cqVMnXrhwoWhPiL18+bLymIW6oVatWjxkyBBRF6+PGjVKY37FSYOzZs0SbTGvrmP+YWFh/MEHH/Cvv/7KhYWFQsdVS9s2WPV/cOPGDaGjqnXixAmN/R5mZmacnJzM3333HZ89e1boqGpt2rTJZOe/ruW/YcOGPHz4cD5y5Iio9pmZmR8+fMjOzs5qc1taWnKLFi146tSpomuPq0Lh4n90IBQuQhUqf/UATYOHh4eoOrU1HaxRHfz8/Pjtt9/mTZs2iaZoIzExUWPeRo0a8ZgxY0R3FaHbt2+zlZVVhbzW1tbcsWNH/umnn0R5QG/lypUVMstkMs7MzOS5c+eK9uyWsWPHqm2Y9uzZk7ds2SKqznZVY8aMUduh1L17d1EXA44YMaJCbjc3N37rrbf4999/F2VHDDNz9+7dK+Ru3LgxT5o0SZSdd8zMz549Yzc3tzKZQ0JC+LPPPhP1FevKd1j4+PjwRx99xH/99ZfQ0TT6+++/yzSQnZycuE+fPrxr1y7RNcoU5HI516tXr8y8bt68Oc+ePVt0BQyqyhfTSaVSzszM5IULF4rqgFd5zZs3r7AOCQ0N5c8++4xPnToldDy1CgsLNR60a9y4MY8fP16UbaOSkhIOCwtTm1txcsXkyZNF2emprdPczMyMMzIyePr06aIr2FV3NaDyHW3t2rUTXQHm3bt32c7OTmt2T09P7tWrF69bt05URS+dO3fW2TarVasWf/7553zw4EHRbIt0Hdglel6w26ZNG545c6ZoOmbLX3VR0xAYGMjvvvsub9myRTQHJcpfdVHT+iU1NZUnTJggmqvTLFy4UK9+E7FdjeDKlStaDx4qBsUvWUycOFEU/RGlpaUcGxur1zwPDQ3l9957j7ds2SKKfp/33ntPr9w2NjaclZUlmivQ6LM+VAyxsbE8aNAg/uOPPwTvn7h3757yisW6BmdnZ+7cuTMvWLBAFCe1tmnTRq/cUqmUmzRpwiNGjODDhw8Lvg1dunSp3suKr68v9+rVi3/55RfB+5J1FUSpDhYWFsqrdJ09e1bweT5t2jS953lgYCC//fbbvHbtWlH01SYlJem9nDdr1kw0Ra9FRUUcHBysV3Zra2tu3bo1T506VRQn68jlcm7YsKFe2a2srLhVq1aiyc7MPHXqVL2X9wYNGvCwYcP4wIEDoui/lcvlWo/9qA6Ojo7csWNHnjdvnmiu4K3txK7yg7u7O3fv3p2XL18uqj678le/1jQ4ODhwx44def78+aLYJ1DQVvBUfp3ZtGlT/vrrr0V3wlr5K1/qWoZ++uknfvTokdCxlZ48eVLh+IWmoV69evzFF1+IZh2koO8xf3t7e+7QoYOo1kPMz7fBQUFBev0N9evX52HDhvHBgwdF9T/o1KmTXvnDw8NFV1Ct7qqLuua/mC4kpe/y7+fnx2+99RavX79eFH03zBWvuqhpqFmzJg8ZMkR0JxKgcPE/OhAKF6EKabt6gKZBcZn7SZMmCXaVL0N2IIme/5xThw4deOHChYKexblx40a98tapU4dHjBghmmKet99+W2teW1tb7ty5M//888+iOVuzpKSEQ0NDtS7H2dnZvGTJElEVlzx8+JDt7e21Nur69u3LO3fuFNVOyYMHD7QebHd1deU+ffrwjh07RHVG3d27d9na2lpjbl9fX+7fvz//+eefotn5ZmY+evSoxsxSqZTT09N5zpw5ouo8YtZ8NSki4rp16/LYsWNFV7yjbRmJi4vj0aNHi3J/LDs7W23m0NBQ/uKLL0RTCKBKU7GRlZUVv/zyy7x27VrRNOIVCgoKNF4F2sbGhrt27cobNmwQ/KBueatWrdK6Xa9VqxaPHj1adGfxqSuSLz/Ex8fz5MmTRVVMN2PGDL32/5o1a8bjx48XzZW4Dx8+rFduiUTC8fHxPG7cOL506ZLQsQ3q5FRcAXPy5MmiWJcPHDhQ7/aNra0tt2/fnhcsWCD4VWpOnDihd27F/pUYTjBT/Jy7IdkbNmwoiisajh492qDc9vb23LFjR16wYIGgV+/SdtVFTYPqT0oL1Y4oKSkxuN9ELFcj0NWW1zTPP/74Y/79998F24dZsWKFwbnt7Oz4pZde4tmzZws2z2/cuKH2xE9dQ82aNfmTTz4R7GeCDSl0UR2cnJy4U6dOghYDfvHFFwbnVlyh9quvvhLsQKe++1nlB29vb37jjTcEO7HckMJi1cHc3JxTU1N53LhxfObMGUG2oYYURKkOoaGh/O677/KmTZsEObCp7mcT9RkUV2eZNGmSYO3/nTt3GjXPFUWvQl4Bc86cOUZlj4mJ4Y8//ljQq+ppu1qStqFGjRr88ccf844dOwTLru6nuvUZFD+hvmLFCkGLoHbs2FGpbZLQxR/r1683OL/qFcSEWr8r5Obmar3qoqb5r7iCuhiuwqVvwZPqoDh5SgxXgdX3xCnVQbGPIJaf9Ta0ra1YB73xxhui+FlXY475K74HI0eOFMUvCcyePdvg/4G3tze/+eabvGrVKsF/LfDkyZMG93uoXlVV6Cuub9682eD57+Pjw7179+Y1a9YIevKMrqsuqhtsbGw4Oztb8L4bbVdd1DQoLjr2888/C77ueRGFixJ+XhgHIiaRSPyIKJeIKDc3l/z8/AROBMY4cuQI7d27V1GMqlqYqvb2Rb72+++/07Zt24z+W7y9val27dpUu3ZtCg8PJzMzM5JIJCSVSsvcqnuuMq/NmDGD5s+fb3BeiURCMTEx1LhxY2rWrBkFBQWRhYWFXoPibzMWM1O9evXoyJEjer/Hx8eHGjduTAkJCRQZGUnW1tZkbW1NVlZWam/NzMyMzqfJhQsXKCIigvTZRtjZ2VFKSgoFBgZSgwYNyMnJiWxsbMjW1pZsbGwqDObm5pWap9pMnTqV3nnnHZ3jWVtbU1ZWFqWmphIRVchc/tbGxoZkMtkLyUxENGDAABo3bpzO8fz9/alTp06UlJREt27dIjs7O2U+dZltbW1faO4PP/yQJkyYoHM8Hx8fevnllyklJYXu3LmjzG1ra1smt2p2qVT6wnL369ePpk2bpnO80NBQ6ty5M6WlpdHly5fJ1taW7Ozs1N7a2tqSubn5C8tMRJSWlqZz3W1paUmtWrWirl27Uv369WnHjh1kb2+vHOzs7Mo8trCweKGZ//nnHwoMDKTi4mKN40gkEkpOTqZXXnmF2rdvT8XFxbR+/XpycHAoMzg6OpKDgwNZW1u/sHWIQu/evWnWrFk6M3fr1o3atWtHDg4OdP/+fVq3bh05OjqqHV7EulrVtm3bKC0tTes4TZs2pW7dutHLL79MLi4uRET04MEDWrt2rXL+ls/9IpfrwsJCCggIoNu3b2scx93dnbp06ULdunWjevXqKf/3Dx48oNWrVyuXD3t7+zK3dnZ2L2w98sUXX9BXX32ldRwPDw/q3Lkzvfrqq1S/fn1l7vv379Pq1au1rk/s7OyqfL6XlpZSVFQUXbhwQee48fHx1KVLF+rYsSO5u7sTEdHdu3dp9erVyn0STYPqPkpVzP9Hjx6Rv78/PXnyROe4EomEEhMTqVOnTtSuXTvy8PCg27dv0+rVq8nCwoIsLS3J0tJSeb/8rabnjPk7CgoKKDg4mG7evKn3exo1akQdOnSg9u3bk42NDa1atYrMzc2Vg5mZmdr72l5TN55MJtO6Dm3VqhVt3LjRoL+3Tp061K5dO2revDmdOnVKOR3FraH3jXnfDz/8QH379jUoNxFR/fr1KT09nczNzcnHx4fMzMxIKpWSTCYjqVRa5r6653S9ruu5e/fuUbNmzaikpMSg3DKZjBo3bkze3t5Up04dcnd3V7aZVNtPmu4bMq6m973//vu0f/9+g+e5ra0tRUZGUs2aNSkuLo7s7OyUbUBNg2o70ZhB9f2//vqrXvvd6ri4uFDNmjWpVq1aynYwESm/U/rcGjKu6m1eXh699dZbJJfLDc4tkUgoJCSEatasSTVr1iRPT0+jPsNY48aNo/Pnzxv1XltbW6pRowbFxsZSdHQ0WVlZEVHF/g5dzxnznu3bt9OmTZuMyk1EFBAQQDVq1KAaNWoo+/HK99moDvo8p884169fp7lz5xqd29ramqKjo6lGjRrK/ojy05TL5Wo7mSvzvFwup2nTphm8PlTl5+dHMTExFB0dTb6+vkREymmo3qp7rjK3mzZtomvXrhmd28bGhqKioigqKorCw8PJ2tpambN8XmOe0/T86dOnDeqrUicgIICioqIoMjKSvLy8KkyntLRUbR5DB9XPefToUaX6NImI7O3tKTIykiIiIigkJIQsLCw0Zq7Kx9u3b6f8/Hyjc0ulUgoODqaIiAiKiIggZ2dn5TxXnY66+7pe13b//PnzdPHixUrNcxcXF2XugIAAkslkRmUzZNyCggL6448/KpXbzMyMwsLCKDw8nMLDw8ne3t6geWfseKdOnarUeoWIyM3NjSIjIyk8PJz8/PxIKpVq/W7pel7fcbdt26a1D0gXmUxGQUFBFBkZSWFhYeTi4lIl6xFdQ1FRUaW2+0REVlZWFBYWRhERERQWFkY2NjYklxu2bjbmeblcTmvXrqXS0lKjs1taWiq/o+qyq9uG6npd3/ccOnRIr74KTaRSqXKZiYiIIBcXF7X7G+Vvq+q1lStXUkFBgdH5FdukyMhICgkJIXNzc437UOUfV8U4ixYtqtR31tXVVZk/MDCQZDKZ2gyGDvp+xrp16+jGjRtG53dwcKCoqCiKiIig0NBQMjMzUzsdoor74doGfcY/fvw43b17l06dOmV0fsV2SvE/cHBw0DuLuuf1ee6vv/4iuVyufP7YsWP08OFDo/8GNzc35f5kYGAgSaXSCtMtn0HTa9rGO3r0qHK5Un2+qKiI9uzZY3R+mUxGISEhyr9BsX+mT059Xj9y5Ihy/a7p/ZcuXaLLly8b/Tc4Ojoq2yMhISHK70H56WjLXf72yJEjyradrnFLS0vp999/Nzq/TCaj0NBQio6OLvM/0JVfQfW5w4cPU0lJicbX1T3HzPTnn3/S48ePjcovkUgoICBA2Zb18PAgiUSidbrl7x88eFBjbn3+hu3bt1NRUZFR+c3MzCg8PJxiYmIoJiaGHB0dy7yuOs3yjw8cOFBhG6RtfHWPz58/T2fOnDEqO9Hz4+6xsbEUGxtLfn5+Gvu/yk9XE33HIyJavny50esfCwsLSk5OpqysLGrTpg0FBgYa9TnGunbtGvn7+yse+jNz5RovRChcNAUoXPx3GDNmDA0aNEjoGGAE1UJGc3NzvYseFcOJEyfo0KFDLyyfTCbTWtiouNVnHNXbzz77jA4fPvxC8qoraKyKgZmpdu3aRu8gamNpaamxsLGyt/fu3aOoqKhKdTBpYmFhobWwUdNz+rzn9u3bFBcXp2yoViUrKyuNhY2antP39Rs3blB0dLRBO5D6sLCw0FqIpO9t+ecsLCxIIpHQhg0bqHXr1nrnsba21nlQxNzcvEwho7riRkOeU1cI+dprr9HChQv1ymxpaUmNGzfW2lCVyWQViho1FTlqG2xtbTUWJJ04cYLi4uL0ymxlZUU5OTnUsGFDGjBggMbxbGxslMWA6goE9Rm0FZoyM8XGxurV2WVhYUFt2rShbt26kaenJzVt2lTjuNbW1mUy6Mqu7nVFkYE6Q4cOpeHDh+vMTEQUHR1N3bp1o1deeYXu3LlD9evX1zq+nZ1dhcJGY+6XL5a9efMmBQQE6N2xGxERQa+++iq98sordO/ePWrYsKHO95ibm5cpjDZ2naJ6f8GCBfTRRx/plZno+XctPT2dunTpQr6+vjoLY8uztLTUu9BR2zB37lyDDzhKpVJKSUmhevXq0ejRow16b3kymcygQkfF/QMHDhh98CUyMpLOnj1bqdzaaCt+fPLkCd29e/eFTRsAAAAAAAAAAAAAAKpGXFwcZWVlUVZWFjVo0OCFXtSICIWL/1koXPx3QOEiAAAYw8zMTFl0+c8//wgdRyt1hZCPHz+mkydPCh2tAolEorWw8aeffnohRdCVYWVlpbVo8MCBA7Rr1y6DPtPBweGF/50WFhYaCxsLCgpo2bJlBn2eRCKhWrVq0dGjR19M4HKkUmmFgsYTJ07odRXA8mrUqCHK74Mu5ubmlToDHwAAAAAAAAAAAAAAAF4cd3d3at26NWVlZVF6ejrZ29tX+TRQuPgfhcLFf4dvv/2WBg4cKHQMAAAAAAAAAAAAAAAAAAAAAAD4F7KysqJBgwbRoEGDyNrauso+90UULppV9gMAQD+qPzEIAAAAAAAAAAAAAAAAAAAAAABQWTY2NpSRkUFZWVnUunVr8vT0FDqSXlC4CAAAAAAAAAAAAAAAAAAAAAAAAGAi/P39KSsri9q0aUPJyclkZWUldCSDoXARoJo0bNiQPv74YyJ6fvVFxRUYVW+r67nt27fTpk2bjPo7JBIJ+fr6UnBwMAUGBpK9vT3J5XJiZmJm5f3yt/o+p+21q1ev0rlz54zKrWBvb0/u7u7k4uJCNjY2VFxcTEVFRVRUVFTmfvmhpKSkUtOtSmZmZmRlZUUymYzkcjkVFBRQcXGx0LH0JpFIiJmFjgEAAABVyMzMjCwsLEgqlRIzU35+PsnlcqFjaeTg4EBOTk5kZ2dHVlZWyv3AwsJCKiwsVN5X7AsKzd7enjw9Pcnd3Z2cnZ1JIpFQcXExFRcXU0lJifJ++ceaXquOfVsXFxfy8/MjHx8fcnFxISKi0tJSKikpodLSUoPva3u9sLCQ8vPzK53Z2tqa/P39KSAggHx9fcnc3JzkcjmVlpaSXC4vc7+qnjt16lSl941dXFwoKCiIAgMDycvLi4hI2Y5SbVNpum/IuIr7J0+epFu3blUqt4eHBwUHB1NQUBB5eHgoc6sbVNuJxgyK99+4cYP27t1bqdxeXl4UEhJCwcHB5O7uXqZ9o+5W22v63paWltK8efMqtax4e3tTSEgIhYaGKnPro7LL58qVK+ny5ctGv9/b25vCwsIoNDSUPDw81PZzKGh7ztD37N69m7Zs2VLp3BEREeTu7k5SqVT52aqDuuc0Pa/Pc7m5uTR+/Hijc/v4+FB4eHiZ3IrPVr1f1c+VlpbSBx98QIWFhUbP74iICIqIiCBPT0+SSqXKz9d2q884um5HjhxJJ0+erFTuqKgo8vT0JJlMViab6lDVz//000+0ePFio3J7eHhQZGQkRUVFkY+PD8lkMrXTUh30GUef4fz58/Tee+8ZldvFxUWZOyAggMzMzNRmM/SxPuMQEXXo0IEePHhgcG5bW1tl7tDQULK0tFQ7nRd1f8KECbRy5UqDc5uZmVFoaChFRUVRVFQU2dvbG5yhMq9fvXqVunbtanBuoufb+sjISIqOjiYfHx/lsqJtmsbMX02vDR8+nDZv3mxwbnNzcwoPD6fo6GiKiooiGxubSi23hj5XXFxMOTk5lJeXZ3B2e3t7ioqKoujoaAoNDSVzc/MqWWfoO9y9e5c6d+5scG4iIicnJ2X24ODgMstLdazTCwsLqVOnTkZtQ62trZXrl4iICLKystK6jTT0vj7jTpgwgX799Vej5r2fnx9FR0dTdHQ0eXh4lPl8bdvvqnpNLpdTz5496enTpwZnl8lkZdaRjo6OaveZXuTjkpISevPNN6mgoMDg/FKplIKDg5XrG0U/ha6hfJ7Kjj98+HA6e/aswfmJnu/PKL67fn5+WqdFpH6fXdug6z0rVqygf/75h44cOWJUfgsLCwoLC6OoqCiKjIwkOzs7jdPVlEXfcVWfW7VqFcnlcuXz+/fvN2r/huj5+lPxHQ4MDCQzMzO1GVQfG/vamjVrqLS0lKTSsu2y/Px8+v33343KT/S8WEixHKlr9+m6r+v19evXU2lpqdr3KG7Pnz9PFy9eNCq/YjmKjo6miIgIsrW11ZpTW27V202bNin7HnV9TmlpKf32229G5Scq2zbx9/fXO7u62y1btlBxcXGF57W9h+j59+DJkydG5bexsVG2CUNCQsjS0lLjNDXd37Ztm7JOQNe46h7v3r3b6P5vW1tbioiIoPDwcAoODiYLCwut01J9vGPHDioqKqrwennaPi83N7dSfU6KPpCwsDByc3NTfod10ZVZn3E2b95MBw8e1Gt66jRs2JCysrIoKyuLatasqVcmMUPhIkA1ad68OTVv3lzoGFRaWkpz5swx6D3Ozs7UqlUrysrKohYtWpCjo+MLSqddSkqKwYWLlpaWlJycTG3atKFWrVpRcHCwUdOWy+UVChu1FTqqDqNGjaLDhw8bNV2i5xv95ORkysjIoMzMTAoPD6+w8SktLaWCggIqKCig/Pz8KrndvHmzUY3u8nx8fCgtLY3S0tIoJSWFfH19qbS0lPLz8+nZs2dVOuTl5VVqB6W84OBgSklJoZSUFEpKSiIXFxfldKry9smTJ/T48eMqy+3i4kJJSUmUnJxMycnJFBYWVmYeabuv73PPnj2jx48fG90oVcfT05NSUlKUuX18fDTON0339Xn9yZMn9OzZsyrL7eDgQImJiZSUlETNmjWj4OBgys/Pp6dPn1JeXp7WW33HeVEFJuHh4ZSQkEANGzakWrVqkZWVFT158oSePn1KT548UQ7lH2sbp7S09IVkVSWVSql27dpUr149iouLo5CQECopKaHHjx8bNBjTMVdZLi4uVKdOHYqJiaGQkBBydXWlJ0+e0KNHj3QOT548EazwWzV3aGioxtyPHz9W+5wQBWxOTk7UqFEjqlu3LsXExJCfnx8VFBQo//+Kda+u+48ePaqWIi8bGxtq1qwZNW/enBISEqh27dpUUlJSZp2ga32h7lZx/+7du1W67vPx8aHk5GTl9iYkJKTM/gkzU3FxMeXn55cZFPsa+g4//fQT3blzp9J5w8PDKTU1lVJTUyk5OZlcXV31fq/ibylf0KiuyFHx3Ntvv03//POP0XkdHR0pNTWVMjIyKD09nUJCQoz+LHUUhVDlCxrbt29Pu3fvNuozXVxcKD09nVq0aEEZGRnk4+NTpZm1+fTTT2nUqFEGv08ikVCjRo2oZcuW1LJlS6pXr57eHVRVYfv27ZSSkmLw+6ytrSk1NZVatWpFrVq1osDAwBeQTrO8vDyjlkl7e3tKT0+n1q1bU8uWLcnb2/sFpNOuW7duBhcu2tvbU0ZGBrVp04ZatmwpyE+s/PjjjzR37lyD3mNnZ6f8aRihcl+/fp0mT55s0HtsbW2VuVu1aiVIbrlcTrVq1TLoPTY2NpSenk7Z2dmC/hRPnz59DBrf2tqaMjIyBM89f/58gwourKyslPO7TZs2yqLt6nbmzBk6deqU3uNbWFhQamoq5eTkUJs2bcjX1/cFptOsqKjIoOI/MzMzSkxMpJycHMrOzq727Y4qQ4otFdv5tm3bUk5ODkVFRb3AZNotXbrUoP6T6OhoysnJoZycHGrYsGG17p+oevDggUFF3G5ubpSdnU05OTmUlpZGNjY2LzCddgsXLtR7XJlMRklJSaJYxq9fv07bt2/Xe3xvb2/lspKcnFzmYHd1mz59ukFFizVr1lR+P+vUqSPowdZBgwYZNH79+vWV8z02NlbQ7FOmTDFoGxoWFqbM3rRpU5LJZC8wnXa3b9+mPXv26D2+Yvuv2I4K/dOHixcvNuj4iaurK7Vp04ZycnIoPT2d7OzsXmA63WbPnm1Q36iTkxO1bt2acnJyKDMzkxwcHF5gOt1OnDhhUNGiYn8mOzubsrKyjD5WWFV69uxJ6enpBr3Hz8+PsrOzKTs7m5KSkgRZ5/fu3Vt5/9SpUxQbG6v3eyUSCTVu3JiysrIoOzubYmJiqm392bdvX7XPf/bZZwYVLiraq9nZ2dSqVSvlSZgviq599sLCQgoLCzPoMwMCApTfg8TExBeyHPXv31/vcSdNmmRQ4eKL/C4rLkBliKNHj1KdOnUMek9sbKzye1AV+/qffvqp0e/duHGjQfueRES1atVSFszVr1/f6PxffPGFUe9TKC0tpRo1ahj0HltbW8rMzFT2Ob3o77Am+fn59MMPPxj0HkW/k+InoIXqB3lhKnPGOobqGYjIj4iYiDg3N5cBKmPJkiWsWJ60DWFhYdy/f3/esWMHFxcXCx2bf/vtN71yExH7+vpy7969ec2aNfz06VNBc589e5ZlMpne2RVD3bp1+ZNPPuHt27dzYWFhtec+fPiwwZkVg6OjI7dt25YnT57Mp0+fZrlcXm25ly9fbnRuImJvb29+5ZVX+IcffuCLFy9WW+5JkyZVKre9vT23adOGv/vuOz5y5AiXlpZWS+5x48ZVKreLiwu3a9eOp0yZwqdOnaq2ZWX8+PGVym1jY8OZmZn8zTff8J9//lkt68jCwkL+4IMPKpWbiDg8PJx79erFixcv5uvXr1d5Trlczs+ePeNbt27x33//zUePHuXIyMhK5zY3N+dmzZrxp59+yps3b+YnT55USd7CwkK+e/cu//3333zkyBH+/fffee3atfzJJ59UOrNiCAgI4FdffZVnzpxZ6XViaWkpP3z4kK9cucLHjh3jnTt38rp163jx4sU8depUdnBwqLLcISEh3L17d549ezafOXOmUrnlcjk/fvyYc3Nz+eTJk7xnzx7euHEj//jjj5yQkFBlmf39/blr1678/fff84kTJ6psXSiXyzk/P59v377NFy5c4OnTp1dJXkdHR27Tpg2PGTOG9+3bx0VFRVWSV53S0lJu0KBBpfJ6eXlxly5deMaMGXzu3LlqWWcfP36cpVKp0XlfeeUVnjNnDl+5cuWFZ1W1bt06g/PKZDKOj4/nL7/8kvfu3SvI/vcff/xhUGapVMqNGzfmYcOG8b59+7ikpKTaMzMz37p1i21sbPTO7e7uzq+++iovWbKE7969K0hm5ufrlmbNmumdOzQ0lN977z3etGkT5+fnC5abmXnMmDF6546IiOAPP/yQf/31V0HaNapOnz6t9zolLCyMP/jgA1HkLikp4aioKL1yBwcH83vvvcdbtmzhgoICQXMzM7/zzjt65Q4ICOB+/frxxo0bBV++mZl/+uknvXL7+vryW2+9xevXr+dnz54JHZuvXLnC5ubmOnN7e3tz7969ed26daLIXVxczGFhYTpze3h48BtvvMGrV6/mvLw8oWMzM3O3bt105nZxceHXXnuNV6xYwY8fPxY6MjMzz5o1S2due3t7fvnll3nx4sV8//59oSMzM/O5c+d0rsctLS25devWPHPmTP7nn3+EjszMz/fFY2JitOaWSCTcrFkzHjNmDJ89e1boyErDhg3Ta5v50Ucf8c6dOwXbHywvNzeXLSwstOa2s7PjDh068KJFi0SzjDMzv//++zrneUxMDH/66ae8f//+ausD1KWoqIgDAwO15pbJZJycnMwTJkyo1n5XXe7cucO2trZas5ubm3NmZiZPmzaNr127JnRkpYKCAvb19dW5zDRu3Ji//vprPnnyZLX21esyaNAgndnd3d359ddf51WrVolm+8/8fB9dnz7P8PBw0a0jmZ9/Z4OCgnTmDwkJ4Q8//JC3b9/+QvutjPHyyy/rzO/k5MRdu3blpUuX8oMHD4SOXMbu3bt15icirlevHn/55Zd8+PBhUX1/mZk7d+6sM7+NjQ23bduWf/jhB75586bQkcu4d+8e29vb6/wbfH19+e233+YNGzaIor2q6vvvv9drOWrYsCEPHz6c//rrL1EtR/n5+ezj46Mzv7OzM7/yyiu8bNkyfvjwodCxy3jppZd05jc3N+e0tDSeOHGiqPaB5HI5N2zYUGd+CwsLzszM5ClTpvDly5eFjq2kb82Lv78/9+3bVzR9Tsz6H6f28/MT5fonNzdXNacfV0VNXFV8CAYULoJp0HbAQyqVckJCAo8ZM6bai810kcvlWgsbJBIJN2nShEeOHMlHjx4VVXZ9Gk9Ezw8cdO/enZcsWcK3b98WOjanp6frlVuxw5KcnMwjR47kffv2CVboWlhYyKGhoXrnJnp+AKF9+/Y8depUwZb7hw8fsqurq0G5ra2tOSMjg0eNGsX79+8XZJ7fv3+fnZ2dDcqtKLAcN25ctRZYVja3paUlp6Sk8PDhw3nXrl2CHLzOzc1la2trg3ITPS9yeOONN3jRokWC7EOsWbPG4MyKeZ6YmMhDhw7lbdu2VWvHpFwu59TUVKNyExFHRkZyr169eOHChdXaiNO3kaZpO1qrVi1+5513+Mcff3whRa3qXL161ajlWjHExMRwnz59qnVey+Vybty4sVF5PTw8uEOHDjxp0iQ+evRotXZYL1682OC8np6e3KlTJ54+fXqli1eN1bp1a73zOjg4cHZ2Nk+aNEnQgzGlpaUcFxenV+bw8HDu27cvr1q1SvBON7lczvHx8Toz+/j4cM+ePXnZsmV87949QTMrfPjhhzrXcY0bN+Yvv/yS//zzT9Ec3N20aZPW3BYWFpyens7jx4/ns2fPiqaN8/jxY637rorcEyZM4PPnzwsdt4wuXbpozG1mZsYpKSn83XffiapghFn7OlzRjh89erToDkRfu3ZNY9GI4ns5cuRI0R040bUer1evHg8bNowPHTokqtzMzG+99ZbG3LVr1+bPP/+cDxw4IJr1oMLChQu17u8NHjyY9+zZI6qD/czM58+f11hEFxoayv379+fff/9dFCcDqyoqKuLg4GC1uf38/Lhv3768efNmwYu21enZs6fa3Iri0JUrV1bZSW5VSVMxtJWVFWdlZfEPP/zAt27dEjpmBY8ePWInJye12Rs2bCjKIiiFd999V21uLy8v7t27t+gO/CncvHmTrays1G7v4+PjeezYsaLbv1L44Ycf1M5zW1tbbt++PS9cuFA07YfyhgwZoja7o6Mjd+3alZctW8aPHj0SOqZamgpWxFjEXZ62gtHIyEgeOHAg7969W3Tbf4WlS5dq3M9t1qwZjx49ms+cOSN0TI3mzJmjdT/966+/5hMnTohyHc/MfPLkSZZIJGr/huDgYP7ggw/4t99+E12xpaqMjAyNbeqWLVvy999/L+qagFOnTmn8H/j4+HCfPn1Ec6KUJp999pnGdkjdunVF2+5TKCws5ICAALX5ra2tOSsri2fNmsU3btwQOqpGkydP1vg/iIiI4AEDBoiyTaVw9OhRjfldXFz41VdfFWWxpcKGDRs05ndzc+MePXrwypUrRXMCnipdJ/kqinXFVjfCzPzs2TP28vLSmL1Bgwb81Vdf8ZEjR0SXXQGFi//RgVC4CFWkfGPK3t6eO3TowAsWLOA7d+4IHU+jrVu3VlhpOzk5cefOnXnhwoWizX7o0CGNGx0rKyvOyMjgsWPH8vHjx0W14dmyZYvG3IrGa7169XjgwIG8ZcsW0ZzpOHHiRK25iZ6fTd26detqvzKhNoMHD9aZ28LCgpOSkvjLL7/knTt3iuIAwkcffaQzt7W1NaenpwtaYGlMbnNzc46Pj+ehQ4fy9u3bRdGZ3b17d525FR0zr7/+Oi9YsICvXr0qaOaioiKOiIjQK7e1tTWnpKTwl19+yTt27BB0nq9evVqvzIr1YZ06dfi9997jFStWCHbWaF5eHvv5+emd28LCguPj43nw4MG8fv16wc441lZAUn4wMzPjhg0b8oABA3jVqlWCbfsNKRD18/PjV155hWfMmCHoSSH5+fkaO7FUB3d3d+7YsSNPmzatWq+Cq8mOHTu05lUUlQt94kR5ixYt0pjZycmJO3TowDNmzBDV2bXMzBs3btS4vkhNTeUxY8bwsWPHBF8uyrt27RpbWlqqXZ5fffVVXrx4sSjbCnK5XO1VUP38/Lh37968atUqURZeMDN//fXXFXL7+Pjwm2++yb/88otoc6s7sOXu7s7du3fn5cuXi7YTWd2VXBwdHblz5868aNEiQa8aqkv5qy3a2tpyu3bteM6cOaK70oaqlStXlsltZWXFrVu35hkzZojqCkvlXb16tczVFs3NzTkjI4OnTJlS7VceNkT5ZVwmk3FSUhKPGzdOtMU5CqpFdIqD/KNGjRJtIZfC3LlzyyzjtWrV4qFDh4r6oCwz88WLF8v8ooniClBi+aUYTeRyOdeqVUuZ29XVlXv06MG//PKL4L8So4vqNt/CwoJbtGjB06dPr7YT3Yx148aNMsV/0dHRPHjwYN67d68o+gG1+fjjj8v0k+Tk5PCcOXNEcZK7NsXFxRwSEqLMrigQXb9+vSj61LS5f/9+mV+vCAgI4HfffZd//fVXURc8MVcsWHF1deXu3bvzzz//LPr1C3PZglGJRMLx8fE8ZswYURf7KZS/kq7iinJz5swRZSF6ecXFxWUuAGFtbc3Z2dk8e/Zs0Ra6lqfap2gqxZaq9u7dW2Z/TFEg9PPPP4u2TV1e165dy/wNtWvX5qFDh4ryRCl1yq//LS0tuVWrVqIvGFU1Y8aMMv8DLy8v7tWrF69Zs0Y0x221KX+1RalUys2bN+dvv/3WJLYFzMzt2rUr8z+IjIzkjz76iP/44w9Rt1GYn7dTGjVqVCZ/jRo1ePDgwaI+cUCh/HEaGxsbzsnJMYltWfmrLSqyi73QWBUKF/+jA6FwEapASUkJx8TEcEBAAL/zzju8efNmUfx0lC5yuZybNGmi3GAOHDhQ1GdXqMrMzCyz4YmLi+MBAwbw5s2bRXuWUWlpKdepU6fCwciwsDB+6623eMWKFaI8OPbgwQO1V36xsrLi1NRUHjlyJO/du1d0HU5XrlxReya1mZkZN23alIcMGcK//vqr6JaXixcvqr16ioWFBScmJvKwYcP4jz/+EN06RlNumUzGjRo14sGDB/PmzZtF17l3+PBhjWcvBgYGco8ePXjevHmiukQ7s/ZiYltbW87IyOCRI0cKdhVLdQoLC7X+TJ25uTk3bdqUBw0aJGjBX3lffPGFxsxEz69E16JFCx45ciT/8ccfojhwoOvnUGxsbDg1NZWHDRvG27ZtE8X3Mi8vj/39/TVmDg8P5zfeeIPnz5/Ply5dEk1H6TfffKM2r5ubG3fo0IGnTJkiuo5ddUVdUqmUGzRowIMHD+atW7eKbtvI/HwdonoFIzMzM05ISOCvvvpK0J9S1qX8/l9YWBj369eP165dK/oO87ffflt5oKJRo0aiu6qiJoorEstkMk5ISOBRo0aJ7qpz6jx69IidnZ2VB4aGDx8uyp+rUkdxJfzatWvzZ599xnv37hXtd1KVohg6MjKSBwwYwDt27BBdm0YdxdUWFT8BvWnTJtG1DdQpLS3lmjVrsqenJ7/55pui+kliXfr27csuLi7crVs3/umnn0R7ZajylixZwvb29tyxY0detGiRaK/GVd7FixfZ3t5eeRUTsR8YUSguLuaYmBhOSUnhiRMn8qVLl4SOpLfevXtzgwYNeMSIEaI7AVib1atXi/oKnJo8ffqUw8PDuWvXrrx8+XKTWacwPz9htWnTpqL72W1d7ty5w0FBQdyjRw/R/SSuLgsWLDCpAlFVw4YN4zp16vCwYcNEfVUbdWbPnm2S6xfm5wVDXl5e3LZtW547d67oi3PL++mnn9jT05N79erFa9euFWX/hDbz589nDw8PfuONN0xqf1fh9OnTbGdnZ3LFlqpatmzJ0dHRPGjQIN61a5dJtE1VnTlzhq2trTkzM5OnTp0q6hOlNBk6dCi7u7tzz549TapgVKGwsJADAwO5Vq1a/Nlnn5lEX1h5U6ZMUbYFFy5cKMpjz9r89ddfbGZmxomJiTx27FiT2u9kfn4Su5mZmfInrP/++2+hI+mtpKSEo6Oj2dfXl9966y1ev369yWyLFVdbNMXsql5E4aKEnxfGgYhJJBI/IsolIsrNzSU/Pz+BE4Epun//Pl27do3i4uJIIpEIHUdvubm5tGbNGmrdujUFBQUJHUdvO3bsoI4dO1J6ejplZmZSeno6+fj4CB1LpyVLltArr7xCHh4elJaWRqmpqZSamkqBgYFCR9Nq8ODBNHr0aDIzM6NGjRpRSkoKpaSkUOPGjcnKykroeBq99tprtHDhQpJIJFS3bl1l7vj4eLKzsxM6nkZdu3alpUuXkkwmowYNGihzN2nShGxsbISOp5Eit0Qiodq1a1NKSgolJydTQkICOTg4CB1PLWam1NRU2r59OxER+fv7U3JyMiUnJ1NSUpJo14v379+nsLAwevDgAREROTg4UHx8PCUmJlJiYiLVrVuXzM3NBU5Z0bhx42jAgAHKx9bW1tS0aVNq3rw5JSQkUKNGjUS3jOfm5lJkZCTl5+crn/Py8qKEhATlEBcXRzKZTMCUZcnlcmrUqBEdPHhQ+ZybmxvFx8dTQkICxcfHU506dUS3jIwYMYI+//xz5ePY2Fhq3ry5cvkQ43b+zp07FBYWRo8fPyYXFxdKSkqipKQkSk5OppiYGJJKpUJHVGv58uXUqVMnioqKotTUVEpLS6PExERydnYWOppWU6ZMocmTJ1N6ejplZGRQUlKSaLcvqjZt2kTTpk2jzMxMyszMpLCwMKEj6eX+/fv08ccfU2pqKmVkZJCbm5vQkfQ2fvx48vHxoYyMDNEv16r27NlDf//9N7Vo0YLc3d2FjqO3vLw8Wrp0KbVo0cLk+lPWrVtHkZGRFB4eLnQUgxw/fpyInm8rTan/4f79+3ThwgWqX7++aLeR6jAzHThwgOrWrUtmZmZCxzHI2bNnKSgoiCwtLYWOYpB//vmHHBwcyNbWVugoBnn27BkVFhaa1LZH4c6dOya17VF48OABOTk5mdS6kOj5smJubi66Npk+Hj9+bBL74OXl5eWRlZWVqNru+nr48CE5OTkJHcMo9+/fJxcXF6FjGOXOnTvk5uZmcusXoufLjKWlJVlbWwsdxSjXr18nb29vk9pfVHXlyhXy9/c32fw3btwgJycn0fXR6qukpIQuX75sMn0v6ly9epWcnZ3J3t5e6ChGO3nyJEVFRZnkdpfo+fbryZMnoj92q83x48cpMjKSLCwshI5ilHPnzpGbm5vJ7kccP36cAgICyNHRUegoBrt37x5dvXqVateubXL7QVevXqV79+6ZZHZV165dI39/f8VDf2a+VtnPROGiCUDhIoDpuXPnDrm6uppc42/VqlUUGhpqUgeYCgoK6Ouvv6amTZuKvuBP1a1bt2j06NGUmJhIzZs3N5kDBzdv3qRx48ZRUlISJSQkmEzj9MaNGzR69GhKTk6m5s2bm0xj4uDBgzRx4kRloWJwcLBJfDe/+uorOnjwICUmJlJSUhLVqlVL9AdR79y5Qw0bNlQWoyUkJFDdunVF33Du2rUrHTx4sEyhYkhIiKiXk/nz59MXX3xRJnNUVJSoM9+6dYs6depE9erVo+bNm1N8fDy5uroKHUunVatW0ZUrVyg5OZliY2NNZr9k586dFBISQr6+vkJHMciDBw9MZnuuiplF/f0DAAAAAAAAAAAAAADhoXDxPwqFiwAAAGBKTLEI5tmzZ2RpaWlSZ1kyM92+fZs8PT2FjmIQU70CBgAAAAAAAAAAAAAAAMB/1YsoXBT3pW8AAAAAwOSYWtEiEZnkz4tIJBKTK1okIhQtAgAAAAAAAAAAAAAAAACZxm+FAQAAAAAAAAAAAAAAAAAAAAAAAMC/AgoXAQAAAAAAAAAAAAAAAAAAAAAAAKDaoHARAAAAAAAAAAAAAAAAAAAAAAAAAKoNChcBAAAAAAAAAAAAAAAAAAAAAAAAoNqgcBEAAAAAAAAAAAAAAAAAAAAAAAAAqg0KFwEAAAAAAAAAAAAAAAAAAAAAAACg2qBwEQAAAAAAAAAAAAAAAAAAAAAAAACqDQoXAQAAAAAAAAAAAAAAAAAAAAAAAKDaoHARAAAAAAAAAAAAAAAAAAAAAAAAAKoNChcBAAAAAAAAAAAAAAAAAAAAAAAAoNqgcBEAAAAAAAAAAAAAAAAAAAAAAAAAqg0KFwEAAAAAAAAAAAAAAAAAAAAAAACg2qBwEQAAAAAAAAAAAAAAAAAAAAAAAACqDQoXAQAAAAAAAAAAAAAAAAAAAAAAAKDaoHARAAAAAAAAAAAAAAAAAAAAAAAAAKoNChcBAAAAAAAAAAAAAAAAAAAAAAAAoNqgcBEAAAAAAAAAAAAAAAAAAAAAAAAAqg0KFwEAAAAAAAAAAAAAAAAAAAAAAACg2qBwEQAAAAAAAAAAAAAAAAAAAAAAAACqDQoXAQAAAAAAAAAAAAAAAAAAAAAAAKDaoHARAAAAAAAAAAAAAAAAAAAAAAAAAKoNChcBAAAAAAAAAAAAAAAAAAAAAAAAoNqgcBEAAAAAAAAAAAAAAAAAAAAAAAAAqg0KFwEAAAAAAAAAAAAAAAAAAAAAAACg2phs4aJEImE9hx1VNL0uEolki0QiuSmRSAokEskViUSySCKRNKmKzweoSlevXqXHjx8LHQMAAAAAAABUMLPQEYxWVFQkdASjPHnyxCTn+7Nnz+jJkydCxzDKhQsXTHKenz592iTn+eXLl+nMmTMmN8+fPXtGGzZsoPz8fKGjGOyXX36hK1euCB3DYNu3b6c//viDSkpKhI5ikIsXL9LixYvp7t27QkcxiFwup2nTptGxY8dM7vu5efNmWr9+PT179kzoKAZ59OgRTZs2jS5fvix0FINt3bqVtm3bZnL7W8xMixcvpgsXLggdxWAlJSW0dOlSun37ttBRjLJ27Vq6c+eO0DGMcuzYMTp79qzJrRsVdu3aZdLH3/bu3UsFBQVCxzDaiRMn6NGjR0LHMNrDhw/p3LlzQseolNOnT9PTp0+FjmE0uVxOhw4dIrlcLnQUo129epX++ecfoWMYjZlp//79JtcuUXX06FGTXhcdOHCA8vLyhI5hlOvXr5tke5yI6MqVK3Tv3j2hY4iSyRYuVheJRGItkUjWE9ESIkonIk8isiSiACJ6hYh2SSSSLwSMCFBBQUEBeXp6Unp6Ok2aNIkuXbokdCS9HDt2jDp16kQ//vijSTX8bty4Qbm5uULHMFhpaanQEcAEmGoHEgDAf52prr9v3bplkp0+T58+pblz59L9+/eFjmKwb775hhYuXEgPHz4UOopB1q5dS2+88QatW7fOpA66PH36lJKSkmjo0KF0+PBhk/quDh48mLKysuiHH36gW7duCR1HbydOnKCwsDD68MMPafv27VRcXCx0JL1YWFhQo0aNKDMzk6ZOnUpXr14VOpLepkyZQiEhIfTuu+/Sli1bqLCwUOhIerl+/Tq5ublRZmYmTZkyxWQKX5ydnalJkyYUHh5OH3zwAf36668mUfhiY2NDU6ZMIVdXV8rKyqLp06ebTN/K1atXKSgoiGJjY2nQoEEmUwzo7e1NycnJ5O7uTp07d6YFCxaYRNFLYGAgff311+Th4UFNmzalESNGmMQ2VCqV0q1bt6hWrVoUEBBAffr0odWrV5vEgf6QkBDKyckhV1dXatWqFU2ZMoUuXrwodCydHB0dacuWLRQcHEw1atSgjz/+2GS2/f7+/pSRkUGurq7Url07mj17Nt24cUPoWDpJJBLKzc2l8PBwioyMpA8//NBktkNmZmb0+++/k5eXFzVq1IiGDx9uEusWhSNHjpCnpyc1adKERo4cSUePHjWZ7HZ2dhQbG0sREREmtcwoHDhwgNzc3Cg9PZ0mTpxIf//9t9CRDPLrr7+Sq6sr5eTkmMy6RtU///xDbm5ulJqaShMmTDC5wml7e3vKycmhiIgIGjBgAO3YscMktlOqrly5Qq6urtSiRQuaOnWqyRUQSaVSGjt2LPn6+lKvXr1o9erVJlfAZWlpSeHh4dSgQQP68ssvTWr7RfR8/2HJkiXk7u5OXbt2pSVLltCDBw+EjmWQS5cukZubG6WlpZnktkCxLWvdujV9//33JtMWJ3q+H1GnTh2Ki4ujTz/9lPbs2WMyNQ8SiYT8/f0pISGBRo8eTadOnTKp7+4LxcwmORAR/2+YRkSxWobgSk5nqcq0fiOiHCJqQESvE9EFldd6v8C/1U8xndzcXAbQR7du3Vhl+eQaNWrwoEGDeNeuXVxSUiJ0PI0SExOZiNjCwoJbtmzJM2fO5Js3bwodS6vHjx+zs7MzN2vWjCdOnMg3btwQOpJejh49yomJiTxjxgy+d++e0HH0tm/fPu7e/f/Yu+/wpsr3f+DvtE13S3fpnrSlgwKF7kKhtBTaUjZCmaIioiCIIKAiW7YoICJDUAQEkb1l76UICsheyoZCgc7cvz8w+SVtkiah9Jx8vvfrup6rGSfJuycn5zznOXdOetC2bdtEvSyXd+HCBWrbti2tXLmSnj9/LnQcnT179oxatGhBX3zxBf37779Cx9GZTCaj3r1707Rp04zmMyk3btw4o1tOiIgWLVpEly9fFjqGXsrKymjHjh1GtS4hInr06BFdvHhR6Bh6u3z5Mp0/f17oGHo7ePAgrVy5kgoLC4WOopetW7fSa6+9RuvWraPi4mKh4+js9u3b5ODgQK1bt6alS5dSQUGB0JF0lp2dTWZmZpSRkUHffvst3b17V+hIOlm9ejUBIDMzM2revDl98803dPv2baFjVaqoqIh8fX0JANna2lKHDh1oyZIl9OjRI6GjVeqzzz5T7Kf5+PjQu+++S9u3bxf9Z/XKlStkZmZGAEgikVBiYiJNnDiRzpw5I3S0SjVr1kwxzx0dHSkvL4+WL19O+fn5QkfTav78+Sr79XXr1qVPPvmEjh49SmVlZULH0+iff/4hS0tLRW47Oztq3749LVq0SNTrRplMRklJSSrzPDIykj766CPav3+/qPuMY8aMUcltZ2dH7dq1o4ULF4p6nX7kyBGV3ACoTp06NHz4cFHP82fPnpGnp6dKbgcHB+rUqRMtXrxY1Mt5+fFCiURCcXFxNGrUKDp27Jho1y0rVqyosKx4eHjQ66+/TitXrhTt+vzhw4fk4OCgktvc3JyaNWtG06dPp3PnzpFMJhM6plq9evWqMM9DQ0Np4MCBtH37dioqKhI6olonT56skNve3p7atWtH8+fPF/UYUdeuXStkr1u3Lo0YMULU68QnT56Qq6urSm5bW1tq06YNzZs3j27evCl0RI2uXr1K5ubmFdYtvXv3plWrVtHjx4+FjqjRo0ePyNHRUSW7l5cXvfXWW7R27VrR70v37t3bKPsuRC/6ATVr1lTJX7t2bfrwww9p9+7dVFJSInRErdQtOzExMfTZZ5+Jui8gJ5PJKDExscL2afDgwbRr1y7Rz38ioh9//LFCP/K1116jH374wSiO1clkMoqLi1P5H6Kiomj48OF04MAB0W6vlP35558kkUgU+S0sLKhly5Y0e/ZsunbtmtDxdPLBBx+ovAeenp701ltv0bp16+jp06dCx6vUzZs3VcYNTE1NqXHjxjR58mQ6e/asaPvIcmVlZRQdHa12W7Bnzx7Rr4sKCwvJy8tLJX90dDR9/PHHdOjQIdFvC8qPgbi4uFCPHj1oxYoVot03lHv77bdVsgcGBlL//v1p27Ztot3HKu/69evK/4M3VUVNXFU8iRBNaUZ89gpfo6nS66wFYFrufhcAV/+7/yEAx1eUgwsXmd7OnTtHJiYmFQY75Cvv7t27i3LlvXXr1gp5JRIJJSUl0ZQpU0RbqDF06FCVvI0bN6bZs2eLfidbXigqlUqpVatWtGzZMtF3aGUyGUVERCgGkgYNGkTHjx8XfSeWiCgjI4MAUI0aNej111+nHTt2iL7zR0Q0fPhwAkAmJiaUnp5O3333nejWHep89913itzNmjWjhQsXGkXuH374QTFg8eabb9Lu3buNYjn5/PPPCQA1btyYFixYIOrBXWUdOnQgb29vGjFiBP39999Cx9FJaWkpBQYGUmpqKi1atEj0g9FyDx8+JGtra0pJSTGqZeTBgwdkbW1Njo6O1LdvXzp48KBRbHPkywkAcnZ2pnfeeYf2799vFNnfeustRb/K2tqaOnbsSKtWrRJ9QffevXtV+rCmpqbUrFkzmjNnjqj7hGVlZYq+lbyZmJhQo0aN6IsvvqCrV68KHVGjmTNnVth3kEql1Lx5c5ozZ45ov3Tx4MEDsrOzq5DdwcGB8vLyaMWKFfTkyROhY6pV/gCjvIWEhNCQIUNEe1B9z549anNLpVLKyMigmTNnivLgRHFxMQUEBKjN7unpSX369KH169fTs2fPhI5aQf/+/dXmNjExoaSkJPr888/pzz//FN12afv27WpzK4+l/PTTT6Lbr8jPzycnJye1ueWFaWPGjKHffvtNdPM8Oztb4zx3dnamrl270rJly+jhw4dCR1WhbhukPM/j4+NpzJgxdOLECVHN8/Pnz5OpqanG7DVr1qRevXqJrhhQ3YFB5WZmZkZNmjShKVOm0F9//SWqeT527FiNuQFQUFAQvffee7R582ZR9XcvXbqk+MKCumZra0utW7emuXPn0o0bN4SOq6JDhw5a53n9+vXp448/poMHD4qq3/L3339r/Xw6OztTXl4eLVmyhO7duyd0XBVTpkzROs/r1asnynlORNSvXz+Nuc3NzSk9PZ2++OILUX4RU9v6xcLCglq0aEEzZ84U5ReNL1++rHEdo9x3Edt2VO6LL77QOO8dHByoc+fOtGTJEtEWoZUv+FBuHh4e9Oabb9KaNWtEO+ao7jhi+fn/448/0oMHD4SOqlZpaSmFhYWpzW9qakqNGjWiSZMm0ZkzZ0S5/BMRbdq0SeN74OrqSj179qSVK1eKevy3c+fOGv+HunXr0scff0yHDx8W7bGZ27dvk5WVldr8lpaWlJ2dTXPmzBFdP03ZgAEDNL4HwcHBNHDgQPr1119F+0XfX375RWN+JycnysvLo6VLl4puX1Zu1qxZGvO7u7vT66+/TqtWrRLlGKW6Inx5k0ql1KxZM5oxY4Yo60quXr1KUqlUbXZj+eIvFy5Wf+Hixv9eo0TTDAfwmlKWD19RDi5cZAYp/y1qTSvv9PR0mjFjBl26dEnoyCSTySg2NlZr5jp16tDIkSPp999/F02n/ebNm2o3MiYmJpSWlkZz584V5QZGfoYd5WZjY0Ndu3aljRs3irYz+O2331bIHRYWRmPHjhXFcqzJxo0bK+T28vKiwYMHi/IAktyNGzcqDCRZWlpShw4daPXq1aI9C1lhYSG5ublpzC3Wb64UFRWRh4eHSm4/Pz8aMWKEqM9odO/ePZVvyFlZWVFeXh5t3bpVdIPSynbt2qUyr5OTk2nevHmiOkinjrxQVL4z88Ybb9CBAwdEux6Re+ONN1S2Nz169KBdu3aJPrdyIR3wokBn7Nixoi7oIlI/kB4QEEAjRoygv/76S+h4Gp09e1blW8/Ky3q3bt1o/fr1ol2Hl//Wv3KfsEmTJjRr1ixRFtPJi+Y1tYYNG9KECRPo3LlzQkdVoe5MF8pNIpFQQkICTZo0SXQHGuVfDNHULCwsKCsrS3RnoL9w4YLWA+oAyM3NjXr37k1r164VVUFdkyZNKt0/rlevHo0cOVJUB0jV7fuUb9bW1tS6dWuaP3++aJaXmzdvkoWFRaXZg4KC6P333xfNwQiZTEbJyck6jaU0a9aMvvjiC9EMhI8bN67S3PJ90D59+ojmTBzHjx/XKbf8DByTJk0SRWFaYWEheXt765Td09OT3njjDfrll19EcdDn9ddf1ym32IoB16xZo1NuAOTv70/9+vWjDRs2CL4tevz4MTk7O+uU28rKirKzs2n27Nl05coVQXMTEfXp00fneR4dHU3Dhg2jvXv3Cn6GmfJnUdLWXFxcqGvXrvTjjz+KosBI3Zku1TUTExNKTEykcePGiWJM8enTp1r75eXnebdu3WjZsmWiKCq6ceOGTn0W4MVYgLyIQgz7pI8fP9b4xYXyTf6LXGI6C9Sbb76pc99FfiZJMfRdiF7si5Yfv9X0WU1JSRFN/0VO25delJu8AHb27NmiGgNTd9ZFbf3HKVOm0NmzZ4WOraL8WRc1NbHtL8mpO+uiumZubk4ZGRn05Zdfiq6I+q+//tKpvyAv4BJLX17Z4MGDdVqO6tevT59++qnofr2h/K81aGr29vbUsWNH+v7770X15Q2ZTEZ169bVaV2UmppKU6dOFdXYqq77tObm5tS8eXOaOXOmKPZR5LQV4Su38PBwGjJkCO3du1c0xyrLn3VRUx8iKSmJJkyYQKdPnxZNH4KICxertXARgB2Aov9eY5OW6cwB5P833YFXlIULF5lBtJ11UVOLiIgQ/GeQ9BmIDAgIoEGDBoliY1PZwJKpqSk1b96cFixYIIpBGaIX3+wKDg7WmNnV1ZX69esnujM0PXv2TOugb1JSEn399dei6sASvThDQGhoqNbO0/jx40XV8ZPLy8vTmNvR0ZHefPNN2rVrl6h2eohUf4pRXe633nqL9uzZI7rco0eP1pi7QYMG9MUXX4jy7F2aDoB5eXnR0KFD6c8//xQ6YgXKZ3FVbtbW1tStWzf69ddfRbd8EBHduXOnws8ZAS+KuCdOnCjan7/67bff1C4jgYGBNHr0aFGu/4iI/vjjD42fySZNmtDChQtF+Q3i/Px8tWd1k7d69erRlClTRPnN29zcXK39KkdHR+rduzdt27ZNNAddiIjWrl1baf9VIpFQo0aN6KuvvhLNz6aVlJRoPKtb+RYZGUmffvqpaL5ENHnyZJ33HSIjI+mTTz4Rxdm679y5Q9bW1jrllv8s86RJk0QxwNm9e3ed57m8oG7hwoWCf5Fr586dOucGQN7e3vTOO+/Qli1bBD0wXVRURH5+fjrnlhfsimFgU9NZFzW1GjVqUKdOnQT/iTRtZ13U1GrXrk1DhgwRtBhAn+IoebO0tKSsrCz6+uuvBT3raGXbfXUtICBA8LPUzZkzR+/cYjh7V2Vn0tM2z999913auHGjIMWAMpmMGjRooHduS0tLatmypaBnHZs0aZLeuYEX47Qffvgh7dy5U5BihWvXrqnd76ysOTo60muvvUaLFy+mO3fuVHtuIqIuXbronVsMxYCGfj7FUCA9Y8YMvXObmppSSkoKff7553Tq1CnB+i369lmA///TxgsWLBD0iyMTJkww6DMqhjMCXrlyReMZh7St01u0aEGzZs0SfAzJkGVe/nOQW7duFfxkALp+6UW51alTh0aMGCGKs6du27ZN7/y1atUSzRncSktLqXbt2nrllxdvLV68WBTHvrSddVFTi4yMFPwYtDJtZ11U1ywsLCgzM5NmzZolimJebWdd1NQ8PDzojTfeEM1ZVbWddVFdMzExoeTkZJo4caIofsVB21kXNbWQkBD64IMPBOvjK5s9e7be+aOiomjYsGGC/zR8fn6+xrMuampOTk7UtWtXWr58OT169Eiw7NrOuqipycdAtm7dKvgXaF5F4aKEXhTGGZ3/KuABYBQRffYKnr8pgF//uzqMiD7XMu0WABkASgFYE1FJFWfxBnAdAK5fvw5vb++qfHpWTU6ePInDhw8b/HiJRGLQ46ZNm4azZ88a9FgXFxckJibC09MT0dHRsLW1hZmZmaKZmppW+XUTExPIZDLUq1cPf/zxh1553dzc0KpVK7Rp0wYBAQE4cuQIrKysdGpSqdSgeaTsr7/+QkREhE7TSqVSZGRkoFOnTmjVqhVq1KgB4MVnfPfu3bC1tVVpdnZ2isvm5uYGLw/qzJw5E++9916l0/n7+6Nz587Iy8ur8H/evHkTO3fuhJ2dHezt7WFnZ6do9vb2sLGxqdLMADBixAiMHz9e6zRSqRQtWrRAXl4ecnJyYGVlpXL/P//8gx07dqjkVW62trYwMTGp0txz5sxB3759K50uOTkZeXl56NChA5ydndXmVl42yv+timVa2fHjx9GgQYNKp/P29kbnzp3RpUsXREdHq7zvt27dwrZt27TOb1NT0yrNffv2bfj6+qK4uFjrdL6+vujSpQvy8vIQGRmpct+dO3ewdetW1KhRA/b29oomv25ubl6lmXXNbWpqioyMDHTr1g25ubmwtrZWuf/BgwfYvHkzHBwcKjQrK6sq/0wCwG+//Yb69etrnaZBgwbo3r07OnfuDBcXlwr35+fnY+PGjXB0dISTk5Oi1ahRo8qXD7nZs2ejX79+Gu/38/NDjx490LNnTwQEBKid5vHjx9iwYQOcnJzg7Oys+Gtvb/9K5jUAdO3aFUuWLFF7n6mpKVq0aIFevXohOztb43L65MkTrFu3TmVev+r5nZiYiIMHD6q9TyKRoGnTpujVqxfatGlTYbmWe/z4MdatW6d2+ba2tn4l8zw1NRW7d+/WeL+1tTXatm2LHj16oEmTJmrn38OHD7Fu3Tqt60EzM7MqzT1w4EB88cUXWqeRSCRo0qQJ8vLy0K5dO0W/RO7+/ftYv349rK2tYWVlBWtra42XLSwsqmT+79u3DykpKTpN6+rqivbt2+O1115DcnKyYtt99+5drFu3DhYWFno3Q/tbMpkMUVFR+Ouvv3SaXiKRICkpCe3bt0e7du3g7e2NO3fuYN26dZBKpVXWTE1NK/1/dO2jKAsKCkLbtm3Rtm1b+Pv7Y/369Sr9fOX+fmWX9ZlWed+hoKAAfn5+ePDggV7Z/fz80Lp1a6SmpuLWrVswNzdXPKepqWmFy1V1n/L1Tz75BHPnztUrNwDUrl0b6enpsLGxQUBAAMzMzGBiYlJpk7/2y7bz58+jdevWeuc2MTFBw4YN4ePjg3r16sHd3R0mJiaQSCSKv8qXK/ur77QSiQQ9e/bEhQsX9M5uY2ODsLAw1K1bF5GRkbC1tVV5XuUGQON9ht6/YsUKLF68WO/cwIv9+ujoaERHRyM4OFhlO6O8XtDlsr6P+eeff/DRRx8ZlFsikSA4OBh16tRBVFQU3N3dFfeVH8tUN7ZZ2TTarhMRRo8erfd6Rc7a2hqRkZGIjIxEeHg4LC0ty39B+aWua5tm3bp1OH78uEG5AcDLywuRkZGIiIiAj48PJBIJiAgymUzl9ar6+t9//40NGzYYnNvc3ByhoaEIDw9H7dq1YWdnp3gd+Wu97GV1txUVFeH77783ODfwoh8jz+3n56cYF1OXpSrb9u3bce/ePYNzS6VSBAcHo3bt2ggNDYW9vX2F1ygrK9N63ZBp/v77b537WZq4ubkhLCwMYWFhiuW8/Ovoc1mXaQsKCrBr166Xym1hYYGQkBCEhYUhODgYNjY2ryRr+cuHDh3Cw4cPXyq7j48PwsLCEBISAg8PDxCR1ve+suVCl8f++++/L7U+BAB7e3uEhYUhNDQUQUFBkEqlWpdVfZum59i1a9dLzXNTU1MEBgaidu3aCAkJgbOzs8b1SVXe9uzZM6xevfql5rmDgwPCw8MrzPPy6+Kq/ivfB3sZPj4+ivW5l5eXxoOy8tet7DZdpy0oKMDChQsNzi2RSODv74+IiAiEh4cr+lzq8mi6XZ9pyt+/fPlyXL161eD8Hh4eir6Lr68vTExM1L6W/LK62/S5X/lyYWEhJk6caHB2c3Nz1K5dW9FntLOzU8lRPlNl9+k7/ZMnTyo9vqKNra0tIiIiEBkZidq1ayv6vOVfT931qriPiDBu3Dg8evTIoPyWlpYIDw9HVFQUIiIiYGNjozGDPrfpOu2BAwdw9uxZvY+DykkkEgQGBiIyMhJRUVGoWbNmhX03ffLpevuBAwdUlqV169ahsLDQkH8BNjY2iIiIQJ06dRAWFqZy/E5TFl1zlnfgwAHIZLIK09+5c0freG9lPD09Fe+Bv7+/Yv9J13yVTXvo0CGUlZVpnf7QoUO4ceOGIfFhZmaGkJAQxWfZ0dFR42vpkl9+/ciRIygtLdXpefLz8/Hrr7/CUM7Ozor8gYGBijGPyl5X3fWjR4+itLRUr8cSETZu3IiSEsPKg6ysrBAWFobIyEiEhYWpHA/RdX149OjRCq+v6/tXWlqKjRs3av38aGNra4vw8HBERkYiNDQUlpaWOr2ucm5dX7v8Zxh4cUzy8uXLBiR/MU4ZHByMqKgoREVFwc3NTWPmyhjymDlz5uD06dN6Pw4A7Ozs0Lx5c2RnZ6Nly5ZwdXU16HkMdePGDfj4+Miv+hCRYSshJf8LhYt/AZAA8AdQBuAWgAMAviOinS/x/O8C+Oq/q22IaLWWaWcA6P/f1QgiernRk4rPz4WL/wOmTJmCDz/8UOgYoieRSGBmZqYYuDGUpaWlXp1lU1NTnYscraysYGlpqfb2CRMm4NKlS3pltbCwQGZmJjp16gSZTIauXbtqnd7MzExrYaO6pu1++QGh/Px8nTPXqVMHXbp0QefOneHr64u1a9ciNzdX4/QSiUSRQ11hY/nCjcqmMTMzw82bN+Hv76/o/FbGzs4O7dq1Q15enqKgZP369cjJydH6OBsbG40FJvo2KysrPHv2DD4+PjoPQEqlUmRmZqJr166K4suNGzciKytL6+MsLCy0Fjbq+9fa2hqNGjXCvn37dMoNAOHh4cjLy0Pnzp0REBCArVu3onnz5lofY21tXaGIR595rDy9jY0NTExM8Prrr+s1gFenTh1Fbh8fH+zatQtNmjTROq+VCxnLFzZqu035evnCsp49e2LRokU6Zba1tUW7du3QrVs3pKamwtTUFAcOHEBSUpLa6aVSaYViL0dHR7VFYOqapaWlxgKY5ORk7N+/v9LMUqkUWVlZ6N69O7KyshT/v7YiWQcHBzg5OVUoatR23dHRsULRcnlPnjyBp6cnCgoKKs3duHFj9OrVC+3bt1cZ0Dp58iTq1q1bYXpTU9MKxYzyv+puk//Vpfhu//79SE5OrjSzi4sLunbtitdffx1RUVEq9506dQp16tSp8BiJRKKY3/o0R0fHSgunlyxZUum2DnhxkOi1115Dr169EBcXpzI/NM1v4MV2Ur6s1qhRo9Llufw08m1jeT///DPat29faW7gRRF3165d0b17d9SuXVtx+4kTJxATE6P1sZaWljqv5yq739bWFlevXkVwcLDOO88WFhbIzs5GXl4eWrZsCQsLCxw5cgRxcXE6PV4ikagtaKys4FHd5ffeew83b97U6XXlPD090bFjR0W/StN6UBfm5uZaCxs13ffHH3/gxIkTBr1mQkICYmJiMHPmTINza1JZcSMR4dy5cwY/v4uLy0sVQBhCIpHA1NQUZWVlBg+wMcYYY4wxxhhjjDHGGGPGRiKRICEhAdnZ2cjJyUFERMQrO5mKHBcuKlEqXNRmNYCeRKR7Nc7/f/7PAQz972pDIjqmZdrBACb/dzWTiLbo+VqVVSLWBHAU4MJFY8aFi0wXUqnU4G9lCCUlJQXBwcEv9c1OfVlZWcHOzg4PHjzQuXBRmYeHh+Jsb8OHD38FCdUzMTGBnZ0dnj17ZtD7bGdnh7Zt28Lb2xvjxo17BQk1kxcGGDK/gRdnWAsPD8e8efOqOJlmEolEUbz4+PFjgx7fqFEjREREYPbs2a8goSoLCwuVQsZnz54ZdMZcLy8vdOnSBf7+/lrPIvgyzM3NNRaBnT17Fnv27NHr+ZydndG5c2d0794dDx8+rLTAVV+WlpYaixrllxctWqTXmZFtbW3RoUMH9OrVC8nJydi5cyfS0tKqLLOFhUWlBY9OTk545513cPv2bZ2fNyYmBr169UKXLl3g6OiI3bt3IzU1tcpyAy/WVeoKSuXNxsYG/fv3V/m2aGXCwsLQs2dPdOvWDZ6enq8kt5yJiYna4kZbW1uDzqjTsGFDdO/eHa+99hr+/PPPV5ZbE2trazx//tygoi4HBwe0b98eERERGDhw4CtI92q5u7vr9flgjDHGGGOMMcYYY4wxxhgzRv7+/ooixsaNG8PCwqLKX4MLF5VIJJKnANbixc85nwVQAMAVQGMAbwOQ/67mbgDppOfPN0skklkA3vnvam0i0lg5IJFI+gKQVzS0J6Kf9Xwtnd8ELlw0Xly4yBhjjFXOy8tL7zOsCS0oKAgNGjTA8uXLhY6iMwsLC7Ru3RqhoaEYPXq00HF0ZmJigszMTERGRmLSpElCx9GLVCpFTEwMDh06JHQUxhhjjDHGGGOMMcYYY4wx9j+qRo0a+PTTT/Hee+9V+ktp+ngVhYtmL/sEAvIiokdqbt8mkUi+ArAJQD28KGTsC+BLPZ9f+QfYiyuZtkjpsvbfImSMMcYYYxoZW9EiAFy8eBEXL14UOoZeioqKjKrQUk4mk2Hjxo3YuHGj0FH0VlJSwkWLjDHGGGOMMcYYY4wxxhhjrMrZ2tqiefPmyMnJQYsWLeDm5iZ0JJ0YbeGihqJF+X23JRJJe7w4E6MUwHvQv3CxUOmyeSXTKp9f87merwMAPpXcr/ipaMYYY4wxxhhjjDHGGGOMMcYYY4wxxhhj/3f5+fkhJyfnlf489KtmtIWLlSGiSxKJZBuAlgCCJRKJJxH9o8dTPFG6bFvJtDZKlwv0eA0AQGWnzpRIJPo+JROhmJgYDBw4sNpfd82aNbh06ZLBj69VqxYcHR3h5+cHBwcHyGQylJaWKlpZWZnG6y9zX3FxZSc61Y2trS1q1qwJJycn2Nraori4GM+fP1fbquo1q5pEIoGVlRWkUilkMhmeP3+O0tJSoWPpRSKRgIiEjsEYY+z/AGPe5piamqKsrEzoGHozMTGBhYUFzM3NFX0tMbO2toaDgwPs7OxgaWkJmUyGoqIitU0M74dUKoW7uztcXV3h7OwMc3NzlJSUGNSqqw8plUrh6ekJT09PuLu7w8rKqtJ9Avnlyu5XN21JSUmV5HZycoKPjw+8vb3h4uICACgrK0NZWRlkMpnicvnr2u7TNu2jR4/w6NGjl87t4eEBX19f+Pr6wsHBAUQEmUz2Spp8X+3kyZMvlVkikcDT0xP+/v7w8fGBg4MDgBdn1pXnV/6r622V3Xf8+HE8ePDgpXJ7eXnB398f/v7+qFGjBgAoXlP5srpW2f2aprl48SKOHz/+Urm9vb0REBCAwMBAxXIip8tlXadTvlxQUIAffvjB4NwmJibw8fFBYGAggoKCFPNb/j8pUzd2Vtk02q7PnTsX9+/fNyi3qakpfH19ERwcjKCgINjZ2UEikag0+etV1XX5batXr8bBgwcNym1mZgZ/f38EBwcjODgYtra2kEgkMDExUXmdqr4ukUhw4sQJzJ0716DcUqkUAQEBqFWrVoXc8tfS9bK+j3v8+DH69u1rUN9TnjskJAS1atWCra2t4nmrow0YMMCg8UJTU1P4+/sjJCQEYWFhsLOzU3leU1NTrddfdppFixZhyZIleueWSCTw8fFBaGgoQkND4eTkpPIa8svqbquKy5cuXcIbb7yhd24AcHV1VcxvLy8vrVkN+Z8qu7937964cOGC3rmtrKxQq1YthIaGIjg4GBYWFpW+9/pcr2za7du3Y8KECQbNcy8vL4SGhiIsLAyurq6VLq+amj7TyqeXSCTo06cPrly5onduqVSKoKAghIaGolatWrCxsVE8t/K661XddufOHbz11lsGzXPl5SUoKAjm5uYqr1NVfzXdd/bsWYwaNcqg7JaWlggODkZISAgCAwNhaWmpeN7yTd3tLzvt/fv3MXToUIOym5iYwM/PD7Vq1UKtWrVQo0YNtVm09T9edpqZM2fi3LlzBuW3tbVFcHAwatWqBT8/P0il0grPr+7yy94vv1xYWIiRI0caPAbl6OioyC9fvytnKJ9H3d+XmaagoACff/65QdkBwM7OTtFv9PX11Zpf3fWquO+rr77Cw4cPDcovlUoVfd/AwEBYW1trfE19b9Nl2l9//RX//vsvrl27pm90BRcXFwQFBSE4OBg1a9aEiYnJS+XT5fYdO3aoLPMnT55EUVGR2sdUxtTUFH5+for3wM7OTqcsuuQsb+fOnWo/qwUFBfjrr7/0SK1Kvh4KCgqCn58fzMzM9M6nbdqdO3eqjE2qm/bixYu4d++eIfEBAN7e3orPsrOzs86fRW3T7Ny5U2UMUtvzPH/+HL///rvB+eXrIuVtga75y1/XJ7f8OhHh6NGjBo9NWlhYICgoCLVq1UJQUBCsrFR/3FWX9eHOnTsrvL6u/7tMJjN4DAF4Mc4un//+/v4wNzfX6fUBYM+ePSq1Gdo+85qe6/Lly7h165Yh0QEAnp6eis+wk5OT2m2orvR9zJo1awzuA0kkEsTFxSmKFSMjIw3KLCb/s4WL//kLLwoXAcALgD6Fi8rFhN4AjmmZVvmMidf1eA32f0iTJk3QpEmTan3NW7duYc6cOXo9xtLSEs2aNUNOTg6ysrLg5eX1itJpVlhYiFq1auHGDa01vWpZWFigcePGyMzMRIsWLRAaGqrzirqsrAyFhYUaCxsra8+ePcOcOXNe+oCwRCJBTEwM0tLSkJaWhqSkpAo7TUVFRSgoKNDYnjx5ovP9T548MXjnTpOIiAikpqYiNTUVjRo1gpubG0pKSvDkyRM8efIEjx8/Vlw25HpBgd414joxNTVFgwYN0LhxYzRu3BhJSUmwsbFRzKeqaFV1YF2Zubk5YmNjFbkTEhJgY2OD58+fK+bXy/yVXzZ0B1QTa2trJCcnK3I3bNgQpqamePr0qd7zVdN7VFhYWHkQA4SEhChyp6SkwNHREY8fP8bjx4+Rn5+vuKzvbdVRbOXn54fk5GTExcUhKioKzs7OisIJfZpMJnvlWcuztLRE/fr1ERkZqdiRe/ToER48eIAHDx7g4cOHisvK16uiKKQqhIaGonPnzqhVqxYePnyI+/fv48GDB2r/Pnz4UDTFd9HR0Xj33Xfh5OSkdj6Xb69qHa0rIoK5uTnS09MxYMAA2NjYaF2W8/PzVa4/fPjwlayrtZFKpYiJiUFycjISExNRr149WFhY6L3OU3f706dPqzyvk5MTGjVqpFgP1qlTRzFADbwY8JD3qZ49e6Zoytcru1xQUIDly5dXyefAw8MDaWlpaNq0KZo2bQo/Pz+dH1tWVqaxqLF8Ky4uRlFREUaNGvVSg56mpqaIj49Heno60tPTERsbqxj4fFlEpCj0Uy5mLCkpwcKFCzFy5EiDnzsmJgaZmZlo3rw54uPjVQYKX6V//vkHQUFBBm3z7e3t0axZM7Ro0QKZmZnw9vZ+BQk1y8zMxJYtW/R+nJubG1q0aIGWLVsiPT0djo6OryCdZosWLULPnj31fpy7uztatGiBrKwspKenqxShVYc7d+4gICBA78e5urqiZcuWyMrKQkZGRrXnBoC0tDS9H+Pq6oqsrCxkZ2cjPT0d9vb2ryCZdpMmTdL7MW5ubiq5yx+8qg5Hjx7Vu9ilZs2ayM7ORk5ODtLS0mBjY1P5g6pYQUGB3vPc09NTMdDdtGnTCgdJqktGRoZe03t6eqJVq1bIzc1FamoqLC0tX1Ey7caOHatXX8XDwwM5OTnIzc1F06ZNBct94MABvYoWnZ2dFbnT09MFWb6BFwc1u3XrpvP0NjY2yMzMRG5uLrKysuDk5PQK02mnTxG3iYkJGjVqhNzcXOTm5hq07aoqe/bs0atoMSgoCK1bt0Zubi4SExNV9hGqExFhyJAhOk9vYWGB9PR05ObmIicnB+7u7q8wnXa7du3Sq2hReX3YpEkTQc+u8uGHH+o1fUhIiGI5j4+PF2x5AYDOnTvrNX1wcDByc3PRqlUrJCYmVtn+miGGDx+u1/SOjo7IyspCq1at0Lx5c0H6iHIXL17E+++/r9dj6tati1atWiEnJwf169dXW6hVXWbMmKFXP8DExARJSUmK/KGhoa8wXeUM6avHxsYiJycHrVq1QlRUlKBFEvv378fo0aP1eoyvr68iv9BnpBo7diwaNmyoV+GiVCpFamqqov/u7+//6gLqYP/+/UhOTtbrMR4eHir7TeWPfVa3t99+W+8xvAYNGijeg7p16wr6OXj06JHey4GdnR0yMzORk5ODli1bwtnZ+dWE09GwYcP0LlwU03uwadMmtGzZsvIJldSqVUuRPykp6aXHUA398gUAzJs3T+/CxTp16ijyN2zYULBt8bNnz/TeV7Kzs1P8jHLLli0VX1yvbvfu3cOsWbP0eoytrS0yMjIU2Y3lJ6B19b9euPgyR7mUt1JhlUwrv78UwPmXeE3GqtTkyZN1OuONp6enoqPYtGlTwTuKc+fO1atoMTAwEC1atECLFi2Qmppq8ACqqakpbGxsDH788uXLMXPmTIMeGxoaqihUTE1NrXQw1cLCAhYWFlXSoVy6dCm6dOnyUs8RGRmpUqjo6upaYRqpVAonJ6cqGSiWyWSYO3cu+vbt+1LPY25ujri4ODRu3BiNGjVCQkICbG0rnmTXwcFBcRaYl2VIJ7Y8S0tLJCQkKApG4uLi1B5gsra2hrW1dZUMuF67dg2hoaEvVQhoa2uL5ORkpKamonHjxoiJiVHbIbe3t6+yQbOCggKEhYXh5s2bL/U8ERERiuWkUaNG8PDwqDCNnZ3dSxV7y2QyPH36FI8fP8ajR4+QnZ1t0DfsywsLC1PkTklJga+v70s/JxGhoKCgQgHYw4cPMWDAgCorFHRzc0NycjKSk5ORlJSEevXqGbQTV1ZWhvz8fLVFjQ8ePMDt27f13kmojL29PRISEpCYmIjExETExsbqtVzLZDJFUeb9+/fVFjeeO3cO27dvr9LcEokEkZGRSEhIULSQkBC9dv6Li4u1Fjfu27cPu3btqtLcXl5einmdmJiIunXrKr7dpy8iQmFhYYXixu+++w7Lly+vkrw1atRAYmKiYvlu2LCh2vW4unWNvr744ouXPuu3m5ubSqFiRESE1gEJExMTxTbI0L7K999/j2XLlhn0WEdHRzRp0gRNmzZFWlqaXl9kKc/U1FTxv+ji999/N6hoMSQkRFGomJqa+soKoyQSCaRSaYV1aVFREebPn6/Xc7m7uyMjIwOZmZlIT09X2/+rDuPHj9erfxIdHa3Yd0hISKi2Asvy9u3bp3PRokQiQWxsLFq2bImWLVsKeoCupKRE54NDEokEDRs2RFZWluC5gRcH5p49e6bTtPXr10d2djaysrLQoEEDQXPv2bMHO3bs0GnaunXrIjs7G9nZ2YIOHgMv+uGTJ0/Wadro6GjFmITQuQHdB/2jo6MVg/VCLycAMHv2bJ3OEimmA/4AcPDgQWzbtq3S6eS5W7Vqhfr16wt+NoEnT55g2rRplU4XGRmpKG4Rw3ICAGPGjKl0GrEUoCmbN28ebt++rXUad3d3tGrVCq1btxa0OFTZlStXsHjxYq3TWFtbo3nz5mjdujWysrIEP4Asp8uy0rBhQ+Tm5qJ169YIDw8X/LMJAJs3b670TMVOTk7Izs5G69atkZGRIVhBbnm6zHP5eiU3NxcxMTGiWK/cvXsXs2fP1jqNRCJBQkKCIrvQRVtyZ86cqXRfXyKRID4+XlEkGhYWJopl/f79+/jqq68qnS4wMFCxLaqKAomqMm7cuEp/5UAqlaJp06aKPldVjGtWhefPn2PixImVTie2AiG5p0+f6tRXt7KyQnp6Olq1aoWsrCzUrFmzGtLpRpc+u3xfWr78CF1sqWzDhg06nVXf2dkZWVlZyMnJQUZGhqDFxuXput9Ur149xXsghv0PuatXr2LBggWVTmdlZaVywh9PT89qSKebGTNmID8/v9LpAgICFO9Bo0aNDB43r2r37t3TaTsm1veAiPDZZ59VOp2JiQmSk5MV74FY+kDFxcUYN25cpdOZm5sjNTUVrVq1QnZ2tl4nBXiV5syZgzt37lQ6nb+/v8rPKIth+Z86dapOJ5yQF9zn5OQgNTXVKH8CWmeV/USNMTcA6/GieJEAeOn5WDsARf89dpOW6cwB5P833YFX9H94y/+P69evE2O6+Pfff8nKyoqUPgMqLSYmhj777DM6fvw4yWQyoeMqFBQUkJubm8bcAMjS0pIyMzNpxowZ9PfffwsdmYiIioqKKDAwUGtu5ebl5UXdu3enRYsWCfq5fvbsGfn6+uqcW96ioqLovffeo59//pnu3r1b7bmfPn1K3t7eeue2srKitLQ0Gj16NO3atYueP39erblLS0upTp06eue2sbGhjIwMGjt2LO3du5cKCwurNTcRUZcuXfTObW9vT1lZWTRp0iQ6fPgwlZSUVHvuzz//XO/cEomEoqOjqX///vTzzz/TnTt3qj33Dz/8oHduAGRiYkL169en999/n37++We6ffu2UeSWt7CwMOrduzctXLiQzp8/X23bp0mTJr1UbgAUEhJCPXv2pG+++YZOnTpFZWVlrzx3165dXzq3o6MjtWjRgkaPHk3btm2j/Pz8V5q5pKTEoPWgcjMzM6PY2FgaMGAALV++nK5du/ZKMxMRPXr0qNL+ibbm6+tLXbp0odmzZ9PJkyeptLT0lWcmIrp//z45OjrqndfT05M6d+5MX3/9Nf3111/V3ld8/vw5+fj46JzXxsaGMjMzafLkyXT8+PFqm7/qtGjRQqfMTk5O1LFjR/r222/pypUrguWVmzFjhk6fvdTUVJowYQKdOHGiWtZzlbl8+TJJpVKtuWvUqEHt27en+fPn082bN4WOrJCamlrpMtKlSxf64YcfBOmLaPLtt99WOr87duxIixYtqvZ+iDb//PMPWVpaasxta2tLbdq0oXnz5olqOSHSvqxYWVlRTk4OffPNN6IbL5o4caLG3BYWFtSyZUuaPXs2Xb16VeioKo4cOaIxt7m5OWVmZtKsWbNEl7ugoIBcXV2NLjcRUWZmptrcUqmUMjIyaObMmaLMPWHCBLW5TU1NKTU1laZPn04XL14UOmYF2pbxuLg4GjduHJ0+fVpUY4VERIWFheTl5aU2d1hYGH300Ud08OBBUfRPyuvTp4/a3G5ubtS7d29at24dPXv2TOiYFRw8eFDjZ7N58+Y0e/ZsunHjhtAxK5DJZBQfH682e0BAAA0cOJB27dolyBhVZfbt26c2t4mJCTVu3JimTZsmyvUKEdFHH32ksa/SqlUrmj9/Pt26dUvomGrl5eVpzT5v3jzRZv/444/VZpdIJJSQkEATJkygP//8U3TrdCKiixcvkqmpqcZ9oe7du9OKFSte+TiVobTtQ/v5+dG7775LW7dupaKiIqGjqqVtLNTT05P69OlD69evF+X2iUjz+hIAWVtbU25urqjXOzKZjGJiYjT+D+Hh4TR06FDat2+foGNc2mh7D+T7e19//bXo9lOVaeqjyT8Hb731lmj7aUREDx8+pBo1amjcDiQmJtKECRNE2beX09R/KP8ePH36VOioam3cuFFjfnt7e+rYsSN9//33dO/ePaGjqqVtjM/FxYV69OhBK1eupMePHwsdtYKnT59qPF4j7weNHz+eTp06Jbrl/+7du2RjY6Mxe3x8PI0bN45Onjwpuuxy169fV87tTVVRE1cVTyLGBiAA/7/w8IKBz7Hxv8eXaJrhAF5TelM+fEX/CxcuMr0NGjSowo52Tk4OzZ07V3QHYpRpGvitVasW9e/fnzZt2iTKTmJlB3sdHByoTZs2NGvWLDp79qxoNjSa5nf5VqdOHerfvz+tWrVKkELF8kaNGqVTbjs7O2rRogVNmDCBDhw4IPhAQWUHepU7tC1btqSJEyfSoUOHqLi4WNDchw4d0im3g4MD5eTk0NSpU+nYsWOC71TfunWL7OzsKs1tYmJCMTExNGjQIFqzZg3dv39f0NwFBQUaD8iUb+bm5pScnEzDhw+nTZs2CTqY9+TJE/L09NQpN/DiYEdCQgJ9+OGHtGbNGsHWLTdv3iRbW1udcwMvCugbNWpEH330Ea1du1aQgpI9e/bolVm+0xMZGUlvvvkmLViwgM6cOVPtB/Zmzpypd243NzfKzc2liRMn0p49ewTpBwwePFiv+RwdHU39+vWjH3/8UdAD7QMGDNAps6+vL3Xr1o3mzZtXrUXDmlRWTGxubk6NGzemUaNG0b59+wTfvsvt2rVLa+YmTZrQ+PHj6ejRo4JvI5U9efJE40BPYGAg9e3bl9asWSPKQapevXqpzV2vXj0aPnw47d27V5QHpX/99Ve1uWNiYuiTTz6hAwcOiGoZkSssLFT7pafIyEgaMmQI7d69W5Tzm0j9+jA4OJgGDBhAW7duFeSLQbrYuXNnhdw+Pj7Ut29f2rBhgyj3jYlerFdcXFxUctesWZPeeOMNWrNmDRUUFAgdUaOsrKwK/ZBevXrRqlWr6MmTJ0LH02jy5MkquZ2dnUV9kEHu8OHDKrkdHBwoLy+Pli9fTo8ePRI6nkbll3FbW1vq0KEDff/994LvT1YmJydHkVt+UPmbb76hf/75R+hoWs2ZM0elv52UlESTJk2ic+fOCR1Nq+vXr5O5ubkie0hICH344Ye0f/9+UW7rlbVs2VKR297enjp37kzLli0T9WeTiGjbtm0V+ldjxoyhP/74Q/D9nMo0b95ckdvGxobatm1LixYtEu3Bbrl79+6pjKu4urrS66+/TqtXrxZtoYHcuXPnyMTEpEL2NWvWiD77gwcPyN7eXpHdGIpElfXu3VvlsxoSEkKDBw+mPXv2iHafQu758+cVxkDj4uJo7NixRrGuUfeFl/r169PIkSPp2LFjos9PRJSenq6S38vLi95++23asGFDtZ+swhDr169XyW9mZkZpaWn0xRdfiLZAvbzy74G7uzv17t2bVq9eLer9PbkrV65U+CKssX0OPvvsM5X8tra21K5dO/ruu+9E9QVYTe7evVvhuIwxvQcymYxiY2MrjKMOGDCAtm/fLprxak2Ki4vJ399fJX9ERAR99NFHRrGvMnXq1ArLf9u2bWnhwoWi+iK1OuULdm1sbKhNmza0YMECo+jDEXHhonIhXw4AMy33uwM4oTSzBqmZpqfS/Z9peJ6mStOsAWBa7n4XAFf/u/8hAMdX9P9y4SLTi/xsi15eXqL/ZpSyR48eKc4KZGVlRVlZWTRz5ky6cOGC0NG0ys/Pr3BQxsrKitLT0+nzzz8X3cFpOU1FXfKCiwEDBtAvv/wiusGxmzdvkrW1tdqDvY6OjpSbm6sonBPTIMfjx4/J3d1da+5p06YJfqao8mQyGSUmJqrN7eTkRK1bt6bp06fTb7/9JqrcRERvvfWW2tympqYUFxdHQ4YMoQ0bNohu0H3kyJFqc8s7sBkZGTRmzBjavXu3qAZiRowYoTE3/jsImZWVRePHjxes+EwdTd+sV24+Pj7UqVMnmjFjBh09elTwYmJdz1ro4OBAmZmZNGrUKNq6davgy/rdu3crPfufiYkJRUdHU9++fWnx4sV04cIFwQcpzp07p/WMblZWVpSamkojRoygTZs2CT6f5c6ePUtmZmZqMwcGBlKvXr3ou+++o8uXLwsdVcW9e/cqfFvYxMSEYmNj6aOPPqKtW7eK8gCSTCajuLg4ldyRkZE0cOBA2rhxo6gHbceNG6fIbG1tTdnZ2fTVV1/R+fPnhY6mlfJBRgcHB+rYsSMtXLhQ9IUXMpmMEhISCHhxdsIOHTrQwoUL6d9//xU6WqVmz56tWO9lZ2fT119/LYozhlbmxo0bZGFhQWZmZtS0aVOaOnWq6AtdiF4sK40aNVKcKWH8+PGi/ra1MvlZz+UHHY4ePSrKs6CVd/ToUQJe/MLA8OHDRXv2tvLkZxoICwujIUOG0N69e0W3b6ZJVlYWBQYG0sCBA2nnzp2C97N1NXnyZPLy8qK+ffvSpk2bRFv8XN6JEyfIycmJunXrRitXrhR1Ma6y4uJiCgsLo5ycHFGf+UydAQMGUHx8PE2YMIHOnDkjdBydHT16lLy9valfv36iPmOYOmlpaZSRkUGzZs0yqmMphw8fppo1a9Kbb75J69evF9V4T2U++eQTRVGumM8Opk6PHj2odu3aNHToUKM4SK9s5MiR5O7uTm+88QatXbtWlPvJmly+fJksLCwoJSWFJk+eTGfPnhU6kl6++uorlTNyGsO+nLIpU6YYzRnx1Nm/fz8BoAYNGtCoUaPoxIkTRrGPJCeTyahBgwbk5OREXbt2Ff0XdtSRn20xOjqaPv74Yzp8+LBR7Dcp69OnD1laWlJ2djZ98803ojyLtDbysy3Kz/C6ZcsWo9knkRs2bBhZWlpSVlYWzZkzx+jeg40bN5KJiQklJSXR559/LtozHGsyb948kkql1KxZM5oxY4bRFE0TvRgDcXd3J19fX+rXrx9t3rzZaJZ/+dkWfXx86J133qFNmzYZVb9f7lUULkroRWGcUZFIJFcASAH8DOAggCsAnuNFIWEqgD7/XQaAfQCaEVFRuefoCWDhf1dHEdFnGl5rKV6cVREAdgL4AsA/AKIAjAAQ9N99fYho7kv8WxpJJBJvANcB4Pr16/D29n4VL8P+h5w6dQolJSWoV68eJBKJ0HF0tmTJEhw/fhwtWrRASkoKLC0thY6kk48//hiff/45YmNjkZaWhrS0NCQkJMDCwkLoaFq9/fbb+OabbyCRSBAdHY3U1FSkpqYiJSUFTk5OQsfTqFevXvjuu+8AAG5ubmjUqBEaN26MRo0aITIyEiYmJsIG1GDEiBEYP348AMDV1VWRuXHjxqLOvWLFCnTs2BEA4OLigkaNGiE1NVX0uU+dOoW6detCJpNBKpUiLi5OMb8TExNha2srdES1rl+/jtDQUDx//hwA4OzsjJSUFKSkpKBRo0aoW7cuzMzMBE5Z0aVLlxAeHo6iov/f3fL390dycjKSk5ORlJSE8PBw0S0v+/btQ0pKisptZmZmqFevHhITE5GYmIiEhAT4+PgIlFC9WbNm4d1331W5TSKRIDw8HAkJCYoWGhoqqnnep08fzJ2r2l12cHBQ5E1MTERsbCzs7OwESqhednY2NmzYoLju6uqKpKQkxfJdr149mJubC5hQvdzcXKxduxYAEBISgsaNGyu2PWJbppUNGjQI06dPR2RkJJo2bYq0tDQ0atQIDg4OQkfTavXq1Xj77beRnp6O9PR0NGvWDJ6enkLHqtTDhw/Rpk0bxMbGIjMzE0lJSaLvw8pNnjwZjx8/RosWLRAbGyvK7aM6Z86cweLFi9GyZUvEx8dDKpUKHUknRIRJkyYhOjoajRs3hpWVldCRdLZ9+3bk5+cjPT0d9vb2QsfR2d27d7F582ZkZmbC1dVV6Dh6+eWXXxAbGwsvLy+ho+jl2LFjcHFxgb+/v9BR9PLPP//g6dOnqFWrltBR9FJaWoq///4btWvXNqqxKwC4fPky/P39jS73nTt34OTkZDTbTLlnz56BiGBjYyN0FL09fPgQjo6OQsfQ26NHj1CjRg2jW8bLyspQUFCAGjVqCB1Fb/fv34ejo6Oo9uF1dfPmTaPb5gMv+rdXrlxBQECA0FEMcubMGdGN++jqypUrsLW1hYuLS+UTi9CxY8cQERFhVPtEyg4cOIDo6Gij3K4CwIkTJ1CzZk2jGHNR5+HDhzh9+jQSEhKMrk8md/ToUbi7u8PX11foKAaRyWTYtm0bUlJSYG1tLXQcg1y8eBHPnj1DZGSk0fXX5Hbu3InY2FijXRcdO3YM/v7+RrstO3jwIMLDw42y33z9+nU8fPgQUVFRRrf8nz17FkVFRahTp47RZVd248YN5WNMPkR042Wf05gLF/10mPRnAG8Q0SM1z9ETuhUuWgFYCaClhteQARij6fFVgQsXGRMvIsLOnTvRoEEDozoI9vDhQ4wfP15REGUsg6jXrl3DiBEjFEVcoaGhRrFhz8/Px8CBAxEbG4vGjRsjLCzMKHITEYYNGwYfHx+kpqaidu3aRjMYNn78eBQXF6Nx48aIj483moGkYcOG4dq1a4plPCwszCjmeceOHXHx4kVFMVdSUpLoB63LysrQoEED3LhxQ1GkmJiYiJiYGFEPWNy9exchISEgIsTHxyuK/mJjY0Vd2HXs2DHExcUhNDRUUaSYkJAg+mV88+bN6N+/v6JIMTk5GbVq1RL9Ovz8+fOYPn26olDRw8ND6Eg6KSsrw9q1a5GYmAh3d3eh4+jlzp07cHV1Ff2yUR4RGV1mxhhjjDHGGGOMMcYYY4xVPy5c/I9EImkMoDGABACBeHF2RXsABXhR4HcAwCIiOqjlOXpCh8JFpem74MXPS0cDcABwG8BeADO1vU5V4MJFxhhjjIkVEaGgoEB0Z8mrTH5+Pu7cuYPg4GCjKtq5cOECioqKjKqQGHiR28nJSdRn9FWnqKjIaM4+xxhjjDHGGGOMMcYYY4wxxtirwoWL/0dx4SJjjDHGGGOMMcYYY4wxxhhjjDHGGGOMMSG8isJF4zlNC2OMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxoweFy4yxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOs2nDhImOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxqoNFy4yxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOs2nDhImOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxqoNFy4yxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOs2nDhImOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxqoNFy4yxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOs2nDhImOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxqoNFy4yxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOs2nDhImOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxqoNFy4yxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOs2nDhImOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxqoNFy4yxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOs2nDhImOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxqoNFy4yxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOs2nDhImOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxqoNFy4yxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOs2nDhImOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxqoNFy4yxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOs2nDhImOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxqoNFy4yxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOs2nDhImOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxqoNFy4yxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOs2nDhImNGqKysDLdu3RI6BmOMMcYYY4xVOyISOoJBSktLhY5gkNLSUqPNnp+fL3QEg9y7d88o5/nTp0/xzz//CB3DICdOnDDKeX7ixAn8+++/QsfQ26VLl7B//36UlZUJHUUvxcXFWLp0Ke7evSt0FL2tWrUKx44dg0wmEzqKXo4fP46ff/7Z6NbnRUVFmDlzJs6dO2d0/ZZ169Zh69atKCwsFDqKXh48eIC5c+fixo0bQkfR286dO7Fnzx6UlJQIHUVvP//8M65evSp0DL0REdasWYOHDx8KHcUgO3fuxKNHj4SOYZALFy7gypUrQscw2O+//47nz58LHcNgf/75p1Gua+QuXbpk1PP/6dOnuHbtmtAxXsqlS5eMro+gjIjw119/GV3/TNnNmzeNcn9Ejohw/Phxo9sXVHby5Ek8fvxY6BgGO3z4MJ48eSJ0DIP8888/OHPmjFF+hm/evIk7d+4IHUO0uHCRMSNkamqKnj17Ii4uDuPGjcOpU6eMZgU9ZswYLFu2DAUFBUJH0cvZs2eNZh4rKy4uFjqCQYzxgBHwYmDaWHf8je0ggFxRUZFRfjYZY+xVMdYDLzdu3MC+ffuM7mA6AHz77bf4+eef8ezZM6Gj6OXKlSvIy8vDypUrja5vPmDAALz33nv49ddfjarvtX//fiQmJmLixIk4d+6c0HF0JpFI0LhxY3Tr1g0rVqwwqsHNr776Cg0bNsSYMWNw8uRJo+k33r17FzVr1kTXrl2xfPlyo+mrW1lZITMzEw0aNMCoUaNw4sQJo5nnP/30E9zc3JCXl4elS5cazfb02bNn8PT0RMOGDTFq1CijKUzz8PBA+/btVeb5gwcPhI5VKXNzc2zevBnu7u6Ij4/HmDFjjGY5NzU1RcOGDeHp6YlevXphxYoVRrFuCQkJQZ8+feDi4oImTZpg8uTJ+PPPP0U/zy0sLPDHH38gLCwMwcHBeO+997Bp0yajKLbw9vZG8+bN4ezsjFatWuGbb74xiiILJycnrF69Gj4+PoiOjsbw4cOxb98+oxhjrFmzJpo0aQJXV1d06tQJixcvNpqDmlevXoW/vz8iIyMxdOhQ7NmzxyjmuUQiwa5du+Dq6orGjRtj0qRJRrFukfvtt9/g4uKC1NRUTJkyxaiOXVhbW6N27dqIiorCsGHDjO6LDEePHlWsH7/99luj+9LOli1b4Obmhs6dO+PHH380mj6v3I0bN4x6/ltZWSEnJwfR0dH4+OOPcfjwYaPouyu7fPkyXFxc0KZNGyxYsAC3b98WOpJeJBIJxo8fj4CAALz33nvYsmULioqKhI6lF6lUiqCgICQmJmLChAk4ffq00WwDgBfvwffffw83Nzd069YNP/30k1HslyiTfw7S09MxY8YMXLp0SehIejl58iRcXFzQvHlzfPXVV7h8+bLQkXTm6OiItLQ0BAcH4/3338f27duNphbCwsICwcHBiI+Px7hx4/DHH38Y1Wf3lSMibiJvALwBEAC6fv06MUZEtG/fPpIvFwDI39+f+vfvT9u2baOioiKh42m0ZMkSAkCWlpbUunVr+uGHHyg/P1/oWJUaPHgwBQcH08iRI+nvv/8WOo7ORowYQZ07d6bNmzdTaWmp0HF0tmLFCmrRogUtW7aMnj9/LnQcnRUVFVF0dDT179+fjh49SjKZTOhIOpsyZQolJSXR119/Tffv3xc6js7u3r1L0dHRNHr0aLp06ZLQcfQyZMgQmjBhAt24cUPoKHo5cOAAzZw506iWEyKi0tJS+vbbb40uN9GLbf4ff/whdAy9lZWV0RdffEHXrl0TOoredu3aRf3796djx44Z1bqciKhPnz6UlpZG8+fPp4cPHwodR2fFxcXk6+tLnp6eNGDAANq/fz+VlZUJHUsnv/76KwEga2trateuHf34449G0b8lImrVqhUBIAsLC8rJyaGFCxfSvXv3hI5VqaNHjyr2gxwcHKhr1660cuVKKigoEDqaVjKZjJKSkhTZQ0NDaciQIXTgwAHRL++LFy9W5DY3N6fMzEz6+uuv6ebNm0JH0+rhw4dUo0YNRXY/Pz967733RL/fTETUqVMnRW4zMzNKS0ujGTNmiL7P+9NPP6mMVXh5eVGfPn1o/fr19OzZM6HjaXT37l2ysbFR5DY1NaXGjRvT5MmT6ezZs6LuD6Snp6vM85o1a1Lv3r3pl19+oSdPnggdT6Mvv/xSJbeJiQklJyfThAkT6I8//hDtPD9//jyZmpqqZPfw8KDXX3+dfv75Z9H2AWQyGcXExKjkNjMzo8aNG9PEiRPp9OnTop3nkyZNUskNgHx9fentt9+mdevWiXb7f/XqVTI3N1fJbWlpSS1btqSZM2eKen3etm3bCvM8MjKShgwZQrt27aLi4mKhI6ql3EdU7it26tSJFi9eTHfu3BE6okZdu3ZVyS2RSCg2NpY+++wzOnr0qGj7ik+fPqWaNWuqZK9RowZ17NiRFi1aJOp5/u+//5KVlVWFYyz9+vWjTZs2iXpM+unTp+Tu7q6SPSgoiAYMGEBbt26lwsJCoSNqNWDAAJXszs7O1LVrV1q+fLnoxzGKiorIz89PJX9MTAyNHDlS1J9VuadPn5Kbm5tKn7dRo0ZG0eeVa9q0aYX5/9lnn9Hx48eNIv/PP/+skt/d3Z1ef/11+uWXX0Tbp1Emk8koOTlZZXsVFxdHY8eOpZMnTxrFe3DmzBkyMTFR/A+2trbUtm1bWrhwId2+fVvoeDr58MMPK2y/3n33XdqyZYvotwFERP/88w9ZWlqq7Jc0bdqUpk2bRufPnxc6XqVkMhnVrVtX5T2oXbs2ffjhh7Rnzx4qKSkROqJW6rZlERERNHToUNq3b5/o6wlmzJihkt3Ozo7at29P3333naj7nkREH330UYX92nfeeUf0fc/yrl+/rvx/eFNV1MRVxZNw48JFJoy0tLQKgzEAyN7enjp16kQ//PCD6Ao0SkpKyN/fXyWvubk55eTk0KJFi0S7Y3rlyhWVjmzDhg1pxowZdOvWLaGjaXX+/HmSSCSKgfQPP/yQTp06JXSsShUXF5OHh4disOvNN9+kffv2GcVOz+jRoxXLSVhYGI0bN46uXr0qdKxKPXjwgKytrQkASaVSat26Nf38889GsZPz+uuvK+Z5SkoKzZ07V7TrEmWbN29W7Nynp6fTDz/8QE+fPhU6VqWePn1KDg4OZG5uTh07dqRNmzaJfkdGrkePHmRhYUGvvfYabdu2TfSDiXJ//PGHYtszZ84cevTokdCRdPb222+TRCKhjIwMWrp0qdHsfJWUlJC3tzcBoPDwcPr888+Nph9++vRplT5WmzZtaMWKFaIuFpGbPn26Sh/R29ubBg4cSAcPHhR1H0Amk1FsbKxKdnkh4HfffUcPHjwQOqJGhw4dqrAvYWpqSk2aNKGvvvpK1Mt9ZmZmheyWlpaUk5ND8+fPF+1AlXz7X765u7vTG2+8QevXrxflurKkpISCgoLUZm/YsCGNGTNGtIVGn376qdb95h9//FGUfcfTp08r9uXUFY8MHz6cDh48KLr+TFlZGUVERKjNbW1tTa1ataJvv/2W/v33X6GjVlB+AFm5BQcH08CBA+nXX38VXcHOgQMHNOY2NzenjIwM+vLLL+nixYtCR1Xx/Plz8vLy0pjd19eX+vbtK8qi1969e2vMLZVKqWnTpjR16lTRFQBs2LBBY27gRXF33759RVcMqK5Ap3y/q3nz5jRjxgzRHeh89913tc7zsLAwGjRoEG3fvl1UBfWnTp3SuA2Sb0Pbt29PCxYsoH/++UfouCrkX8xR18RcDPj3339XKIou31fs2bMnrVixQnRjAuUL0cvP87i4OBo9erQoi4o++OADjdmtra0pJyeHvvnmG1HuF5Xff1Zu8iKcBQsWiPL4RfmCFeVmZmZGTZo0oalTp9K5c+eEjqrWt99+q3Hee3h40BtvvEFr1qwR1bZU2dSpUyvt8+7YsUN0fV653bt3a8zv6elJb731Fq1bt050/Ue5srIyioqK0tinadGiBc2aNUvUXwTftm2b1j68vAhHzMeW8vLyNG634uPjady4caId4yAiun37tuJ4nqZtgNgLMcsXsZfvIw8ePJh2794t2iLA1atXa8zv5OREeXl5tHTpUlGONxFp35Ypf6FAbP1OIqJnz54pagjUfYYTEhJE+xku/6VZ5WZjY0OtW7em+fPni7L/powLF/+PNnDhItNgz549Wge/gBcHHlNTU0X1LYWZM2dqzCuVSqlFixa0YMEC0RVdtm/fXu38bd68OS1evFi0ZzJo2bJlhdz169enGTNmiPaALhHRqFGjKuQOCgqiUaNG0eXLl4WOp9GtW7cqfKMeAKWmptL8+fNFe/YFIqK+fftWyO3g4EBvvvkm7dmzR1QDusp+//13tTv57du3pzVr1ohq8F9ZWVkZ1apVSyW3nZ0dvf7667R7927RdaiVDRw4UCW3t7c3DR8+XPRnpD148KBKbn9/fxo1apRRFBcrn6HLysqKunfvLvrlhIjo5MmTFdYpffv2pSNHjog++/jx4yvs9KalpdGiRYtEu82XU1fQZWdnR927d6fNmzeLdsDnyZMn5OjoqHHgc/DgwaJddn755ReN/VszMzPKyMiguXPnirLvpenLUPLWsGFDmjBhAp09e1boqCrKn4G+fDMxMaGUlBSaOnWqqIp11BW6qhuoateuHS1evFhU+0QLFiyodP8zICCA3n//fdqxY4do1jUPHjwgOzs7rbnl3+7/4osvRHUGrA4dOlQ6z93d3al37960evVq0RwcLX/WRW3rl9GjR9Nvv/0minX73bt3ydbWttLc9vb21LFjR1q8eDHdvXtX6NhERNS8eXOd5nl4eDgNGTJENAeAZs+erVNuS0tLysrKotmzZ4ui73758mUyMzPTKXtgYCC99957tHnzZsEL02UyGcXHx+uU28LCgjIzM+nLL7+kCxcuCJqbiOiLL77QKTcAqlWrlmjOOqatOKd8s7W1pdatW9PcuXNFcQygc+fOOs/z+vXr08cff0wHDx4U/IuN6saINDU3Nzfq0aMH/fTTT6I4qNyrVy+dcpuZmVFqaipNmjSJ/vzzT8G3oZUVois3Dw8P6t27N61atYoeP34saG4i7YUf5Vt0dDSNGDGCDhw4IPhyTqT9oL26PteoUaNEVTxafmxR2zpdbF8eKSoqqnByDk39l5YtW9Ls2bNFVYRW2RcC5K1GjRrUqVMn+v7770X3ywzlz7qorllZWSmKj8X2SwErV67Ueb3z8ccf0+HDh0V1bKb8r0loajY2NtSmTRtasGCB6Aroyp91UVPz8/Ojd999lzZv3ix4v7K88mddVNfEXIipaz/Z0dGRunTpQkuXLhXVl8NlMhnVq1ev0vzyOo0pU6aIqiC/uLhYp22Z/AsF06ZNE9XxP21fnCn/GRbb2bS1fWlWucXGxtKYMWNEM2amjAsX/482cOEi06JJkyY6rdzkrXbt2jR06FDav3+/YDvYT58+JVdXV502hvKDvGI4GFDZwVErKyvq3LkzrV+/XjQ70UREmzZt0jqPW7VqRStXrhRdp/vff/8lqVSqMXujRo1EWwjYvXt3jbktLS2pU6dOoltOiF7srFXWwRs+fDidOXNG6KgVNG7cWGNuZ2dn6tevHx06dEh0nTttB18CAgJo5MiRoiq2kDt37pzG3MnJybRgwQJRFnapO4W/fAe+efPm9NNPP4luXSj3/fffq53ftWrVogkTJojuLBfKlH8+RLlFRETQ1KlTRTdwJXf37l2ysLBQm93a2pq6detGW7duFcUBi/K2bNmidX3u6upK/fr1o/3794tuvTh8+PBK+4j+/v40ZMgQUf2Ud1lZGdWuXbvS7CYmJpSamkpfffWVaAbOd+zYode+xIgRI0Qz71NTU3XOXqdOHfr000/pxIkTgmdft26dzrnlZ8D84osvBP/yjq6DmvLm6OhIXbt2pRUrVgh+YHrEiBE65wZAUVFRNGLECMEPEJ06dUqv3JaWlpSdnS34wTltZ13U1Hx8fKhv3760ceNGQQeThw0bplduExMTSkpKogkTJgj6U7vqzqCry2e0c+fOtGTJEsGKpAsLC8nX11fv7JGRkTR06FBBf4arT58+eueWn71rzpw5ghUwaDtDjrYWGhpKAwcOpG3btgny5UB9CqPKz/NWrVrRnDlzBCt6HTRokEHzvE6dOvTRRx8JtpyfPXtWpwP65ZuzszPl5eXRkiVLBCt0Uffl88qa/OdSJ06cSKdOnRJkfX7p0iWdi6KVm7+/P73zzju0YcMGwc4wpmshunKTSqXUrFkzmj59uqAHwocMGaJ3dhcXF+rWrRstW7ZM0KLX8j+VqEuTnxFQ6C+93Lp1q8JPdVfWxPTlEW1nqtLU5MWvhw4dErwIbdq0aXplNzExoeTkZJo4cSL99ddfgu9TazvroqYm/0lpMYxnaDvroqYmtp+U1rdPKcaflNZ01kVNTWxnMtSn+F7e5EVcYinEfP/99/XKL7YiwDVr1ui9LqpVqxYNGjRIFGe2nTdvnt75Q0JC6IMPPqCdO3cKmv/58+fk6empV3b5GQ3nzZsn6K+AaDvroqYmHzPbsGGDKAowX0XhooReFMYxEZNIJN4ArgPA9evX4e3tLXAiZojTp0/j8OHDkEgkigZA5bqmpm26Q4cOYdKkSQZlcnV1RVZWFlq1aoX09HTY2tpWmOb8+fM4ePAgLCwsYGFhAXNzc8Xlym6TSqWK/OWNHTsWn3zyic5ZTU1NkZqaivbt26NNmzZwd3fXOv3169exb98+2NnZqW3W1tYas2lCRIiNjcWxY8cqndbFxQWdOnVCXl4e4uPjdX6tW7duYffu3XBwcKjQLCws9MorJ5PJEBYWhvPnz2udztHREa+99hp69OiB2NhYvebP7du3sWvXrirNDQB5eXn48ccftU5jZWWFNm3aoEePHkhLS4OpqanOz3/r1i3s2rULNWrUgL29PWrUqKFotra2MDExMSj38ePH0aBBg0qnc3V1RefOndGtWzfExMToPM9v376NnTt3wt7evkKzs7ODVCo1KDcAZGZmYsuWLZVOFxMTg27duuG1116r9PMod/fuXWzfvl1lPsvnu52dncHzGwBWrVqFdu3aVTpdSEgIunbtiq5duyIgIECn575//z62bdsGR0dHODg4KP46ODjA3Nzc4MwAkJ+fDy8vLzx9+lTrdCkpKejRowc6dOgAe3t7nZ97y5YtcHJygrOzM5ycnODk5ARbW1u913/qpKenY/v27Rrvt7GxQYcOHdCrVy+kpKTo/JpPnjzB5s2b4ezsDBcXF7i4uMDZ2fml1iXKvvnmG7z99tsa73d2dkbXrl3Ru3dvREVF6fy8BQUF2LhxoyJzVecuLCyEl5cXHjx4oPZ+U1NTtGzZEr1790bLli11Xg8UFBRgw4YNKsuIs7NzlS0nAPDjjz8iLy9P4/1mZmbIyspCr169dM6en5+PjRs3okaNGnBwcKiw/q6q7K+//joWLlyodRpPT0907doV3bt3R0REhNZpHz58iI0bN8LW1ha2trawsbFRXJZft7S0fOn8RISoqCj8+eeflU7r7++Pzp07o0uXLoiMjFQ7zb1797Bx40ZYWVnB0tISlpaWisvq/lpYWBi8Tr916xb8/f1RVFSk0/SBgYHo2LEjOnbsiLp166rMu7t372Ljxo2QSqUwNzfX2jRNI5VKdf5fFi1ahJ49e+r1/yYmJqJdu3Zo164d/Pz8AAB37tzBhg0bIJVKYWZmpra9zH2mpqYq/xMRISkpCQcPHtQru6+vL9q0aYM2bdogOTkZ9+7dw4YNG2BqagpTU1OYmZkpLuvSDJl+9+7daNWqlV655dlbt26NNm3aICQkBJs3b4aJiYli3ihfVnfby04rkUjQvHnzSvvn6kRHRyM3NxeNGjXClStXFM8nf37l9ipuX7JkCSZPnqx3bnNzc6SlpaFJkyYwMTGBo6Oj4rnlz2/oZV2me/DgAdq1aweZTKZ3dg8PD6Snp8PBwQFhYWGwsLDQur9e/rqut2ma5uOPP8Yff/yhd24AqFu3Lvz8/FC3bl14e3urvI466m439LZt27bhhx9+MCQ2rK2tERISgujoaERFRSn6v/IxTOWxTG23GfKY+/fvY8yYMQblBl70JaOiolCnTh3UqlULZmZmr+ILzmpvnz17Nu7du2dQbolEgqCgIERGRiIyMlKxjyeTyUBEGv9qu0/Xv3v37sVvv/1m8Dy3trZGeHg4IiIiULt2bVhZWUEmk2lt8tfXpWma9t9//8XmzZsNzg286EdGREQgPDwcPj4+inkub2VlZRqva7tP2/WysjKsXbsWJSUlBue2sLBASEgIwsPDERoaCjs7O5Xn1+evPtOePHkS165de6l57uHhgdq1ayMsLAw+Pj6QSCRqX0+f/6Oyae7fv49Dhw69VG4rKyuEhoYiLCwMISEhsLa2Niirvn/37duHJ0+eGJxbIpHAz88PtWvXRmhoKDw8PHRapl/28o0bN3D8+PGXmucODg4IDw9H7dq1ERQUBDMzM53XG+Vb+c+jtrZ9+3bcv3/f4NxmZmaKz2dYWBgcHR01rs+Ur+t6n6bpCgsLKx3DrYyrq6tinRgYGAgTE5MK25pXcfnevXtYunSpwbmVt6ERERFwc3MDoH5bXdm2XN/+wPPnzzF9+nSDs5uZmaFWrVqIiopCZGQknJ2d1WaUX9b1Nl3vX7p0qU7jFpoEBgYq+l0eHh6K/qgh/UJ9L5eUlGDEiBEoLS01KLudnZ0ie3h4OCwtLVVep7yqvu/Zs2f48MMPtT5WGxcXF0RHRyM6OlrR561un3zyCW7dumXQY2vUqKHIX7t2ba1j/FU1xljet99+a3D/wMzMDGFhYYr/wcnJSe10ryL73r17FZ/jVatWoaCgwKDncXJyQnR0NOrUqYPQ0NCXOqali/3790MmUx0PuH37tk7HwjQJCAhAnTp1EB0dDU9PT63zW5/PmvK0Bw8eRFlZmcZp9+/fjytXruj83MrMzc1Ru3Zt1KlTB5GRkbCzs1ObU5fbyl8/fPiwIre29enjx49f6j1wdXVV7MMGBgbC1NT0pdbxx44dQ2lpaYX7Nf2/RISNGzeiuLjYoPyWlpaoXbs2IiIiEBYWBhsbG63bKk23nThxQiW3pvzlby8rK8OmTZsM3hZYWVkhLCxMsS9ubW2t13b3+PHjFfZLK1u2lK+fPn0aFy5cMCg7APj5+aFOnTqIiopS7I9XRpd5pcs0ixYtwpEjR3R6zfKsra2Rnp6OnJwcZGVloWbNmgY9z8u4ceOG8jzzIaIbL/ucXLhoBLhw8X/D1KlTMXjwYKFjaGRhYYG0tDTk5OQgJycHXl5eAIB58+bhzTffNOg5JRKJSlGj8uXS0lKDDtQBgImJCRo1aoT27dujbdu28PDwqDDNypUr0aFDB63PYWtrqyhklBd8VdZ27tyJ2bNn65U3MDAQXbp0QV5eHsLCwrROu2HDBmRnZ6u9z9LSUm1hoC5t8eLFGDJkiM6ZQ0ND0b17d3Tr1k2njfXmzZvRokULtfdZWVkZnPvs2bNo3LixzrnlxSM9evRAeHj4S+WWSCSws7NTKYZRV+Co6bZ27drpdfCldu3a6NatG/Ly8uDr66t12q1bt6J58+Ya77eyslJb1CjPqek+e3t7HDp0CO+8847OuU1NTZGeno5u3bohNzcXNjY2GqfdsWMH0tLSNN5ffn4rz9fy87j8fba2tmjQoAFu3rypc/bk5GR069YNHTp0gKOjo8bp9u3bh5SUFLX3WVtbK5ZXdYWN2m6zt7eHiYkJ3nnnHXz99dc6ZdanUPfo0aOIjY2tcLtUKlUpUNP1so2NjcrO9y+//IK2bdvqlDs4OBg9e/ZE9+7dK12nnDx5EnXr1q1wu62tbYWiQOXr5W9zdnZWO+j05MkTeHp66jSo0rBhQ/Tu3RuvvfYaatSooXXa06dPqy10tLOzU5tV0//h7OyscaBm8ODBmDp1aqW53d3d0b17d/Tu3RuhoaFapz116hTq1KlT4XYzMzO1y4O2ZcXJyQl2dnYVBmmKiorg4+ODu3fvVprdzc0NXbt2Ra9evTQW0QHA77//jnr16qm9z9TUVLGOUC5q1OeypaUlAOC3335D/fr1K80tV79+fXTr1g2dO3dWW9R97NgxNGzYUOtzyPso6ooaNV1Xd9+aNWswfvx4nbMDQGRkJLp06YLOnTvD399fcfuhQ4eQkJCg13OZm5trLG6srPBx2bJlBvUTg4ODFUWMderUwYEDB5CcnKz385RnZmamtbhR3iQSCQ4cOGDw6zRo0ADt2rVTFJO+SiYmJioFjcXFxSgsLDT4+VxdXREbG4sNGzZUYcrqYWdn91IH5BljjDHGGGOMMcYYY4yx6tawYUPk5OQgOzu7wokdXpVXUbj40t/q4fbqG/inov8nTJ48We/T7QrZYmJiaNSoUTR06FDBs2hrEomEUlJSaMaMGSqfjwULFgieTdN8nTZtmsaf9Pzhhx8Ez1h+/jZt2pQWLVqk9Wdfly5dKnhWdfP6yy+/1PqzEcuWLRM8p7qWmpqq9WewV6xYIXhGdc3W1pa6d++u8adTV61aJXhGdc3c3Jzat29Pa9asUfuTV/r8nKM+TSKRkIODAzk7Oxv0eC8vLxo6dCj99ddfapeTzZs3V/l8qlmzJoWHh1NycjK1bNnSoP85IyODli1bpvF05tu3b6+yzHZ2dhQQEEANGzakFi1aUNeuXen999+nkJAQvZ7HysqKunXrRrt27dL4MxY7d+6sstw1atSgoKAgio2NpZYtW1L37t1p0KBB9Oabb+r9XElJSVp/unvXrl1VupyYmZmRm5sbhYWFUWJiIuXk5FCPHj30nucAqEGDBjR79mx68ODBK8+tbnl3c3OjWrVqkUQi0fvxpqamlJWVRcuXL1f5qa6qXE5edUtMTKSvvvqKbt++rddPCYulhYaGUrdu3QTPwY0bN27cuHHjxo0bN27cuHHjxo0bN27cuHHj9iqbt7c3vf3227R+/XqV41JV7VX8VLTgRXncuHDx/4pJkyYJvrL6v9ASExNp2rRp9NlnnwmeRVszMTGhZs2a0XfffadSnDZz5kzBs2lqNjY21L17d9q+fTuVlZWpLN9ff/214Pk0NalUSq1bt6ZVq1ZVKEr75ptvBM+nrVlaWtJrr71GGzZsoJKSEkXu+fPnC56tsubh4UEffPAB/fbbb4pCr4ULFwqeq7Lm7OxM/fr1o0OHDilyL168WPBclbWGDRvSzJkz6d69e4rlZMmSJYLn0tYcHBzonXfeoaNHj6oUAy5fvlzwbNpacHAwjR8/nm7evKmyPhFrQbG82dra0htvvEEHDx5Umd9iLShWbhYWFvTaa6/Rli1bFEXRq1evFjyXrs3e3p7eeOMN2rNnD61Zs0bwPPo2U1NTql+/vuA5uHHjxo0bN27cuHHjxo0bN27cuHHjxo0bN27cuGlvNjY2NGbMGI0nkXkZXLj4f7SBCxf/J0ycOFHwFZQhK7Tw8HDBc/yvN0tLS+rYsSOtWbOGRo0aJXgeXZqPjw8NGzaMzp49S0REEyZMEDyTLs3Z2ZneffddOnLkCMlkMqM6E6qbmxsNGDCAjh07RtOmTRM8jz4tIiKCPv/8c9EXFJdvISEhNHr0aBo5cqTgWXRtUqmU2rRpQ6tXr6YvvvhC8Dy6tsjISJo2bRrduXOHZs2aJXgeXZqJiQllZ2fTL7/8QsXFxaIu4C7fwsPDaerUqXTnzh2aN2+e4Hn0ad7e3jRixAij/UKIq6ur4Bm4cePGjRs3bty4cePGjRs3bty4cePGjRs3bty4/e80KysrysnJoblz51Y4+UpVehWFixJ6URjHREwikXgDuA4A169fh7e3t8CJmCEmTpyIjz76SOgYlfL390d2djays7PRuHFjTJw4EZ999pnQsfRiZWWFmjVr4vLly0JH0ZulpSUKCwuFjqGX2NhY1KhRA9u2bRM6il5q166NmjVrYufOnUJH0ZuLiwvu3bsndAwmctbW1nj27JnQMfRiZmaG4OBgnD17VugoenFzc0OtWrWwf/9+oaPoRSqVIjQ0FKdPnxY6CmOMMcYYY4wxxhhjjDHGGGNMR56ensjJyUFOTg6aNm0KKyurV/6aN27cgI+Pj/yqDxHdeNnn5MJFI8CFi/8btm/fjrVr15Y/m6YuZ9zUev+///6LHTt2GJzLxMQESUlJyM7ORlZWFsLDwyGRSBT3b9iwAevXr0dRURGKiopQXFysuFy+abrvVa9nJBIJ6tWrh4yMDKSnpyMpKQnr1q3Dxo0b8eTJE42tuLj4lebSl1QqRUBAACwsLGBrawszMzM8fvwYjx49wqNHj5Cfny90RK1MTExQq1YtuLm5GVVuAPD19YWfnx+eP3+O/Px8RSsqKhI6mkYSiQQODg7w9/eHubk5Hj9+rGhPnjwROp5WDg4OcHBwgJOTEwoKChTz2xiKdu3t7eHq6oqSkhI8fPhQ9PNazsrKCnZ2digrK8PDhw8hk8mEjlQpc3NzODk5wczMDPn5+UYzrx0cHODo6Agiwv37940mt6WlJVxcXBTrkwcPHhjFcgK82P44OjrC0tISRUVFyM/PR0lJidCxdCaRSGBnZwdbW1sUFhbi6dOnot7+AC8y29vbw97eHlZWVpBKpSgqKkJhYSGeP3+u+CumZcjOzg7u7u5wcXGBg4MDiAjFxcWKVlJSonJdXatujo6O8PLyQs2aNeHk5AQAKC0trdBKSkrU3q7LfWVlZVWaWSqVwsfHB97e3vDw8IClpSXKysqqpJWWlla4rbi4GPfv33/p3NbW1vD19YWPjw88PT1hZmYGmUyGsrIyyGQylcvqbjNk2itXrrz0Fwysra3h5+cHX19feHl5KXLLGxGpXK+K2+7cuYPz58+/VG4rKyv4+vrC398fXl5eMDc3V7ye8r6u8vWXvU8mk2HLli0vldvCwgJ+fn7w9/eHj48PLC0tte67V9X1ffv24cYNw8f/LCws4O/vj4CAAPj6+sLCwkLtdOr221/mtrNnz77Ul8QsLS3h7++PwMBA+Pn5KXLLxyuUxy203abvYwoKCvDll18anNva2hoBAQEICgqCn58fpFIpJBJJlTZ51vJtypQpuH37tkG5bWxsEBQUpJLbxMQEEomkwl91t73M3+XLlxv8RUhbW1sEBQWhVq1a8PX1VeQ2pMnz6NpOnTqFMWPGGDy/g4ODERwcjICAAJXcpqamKq9T1dfLysrQpUsXg7ZBlpaWivkdGBgIS0tLldfQ9FeXaXT5+/nnnxu0rJiZmcHf3x8hISEIDg6Gra2t1tfR9TZd7zt27BgGDx6sd24A8PDwQEhICEJCQuDq6vrS81CfaSUSCfLy8vDPP//ondva2hrBwcEIDQ1VjFupWx5e1eWtW7diypQpVTbPK2vlP2f6NuXH9+/fH5cuXdI7t5mZGfz8/FCrVi3UqlULdnZ2Kuu18us4TffpOl35648ePcLbb79t0DyXj4mHhIQgKCgIVlZWiufXtP2pyss3btzAZwaeuMHU1BR+fn4IDg5GUFCQYr5XRwOA58+fY/jw4QYff3F1dVVsj9zc3GBiYgIAKq9Rvu9RlfcvXboUp06dMii7fJkPCgpCYGAgrK2tK+0Lls+j67TqLpeVlWHy5MkoLS01KL+8jx4YGAh/f/8KfV11qvK+0tJSfPnllwaP20ilUvj5+SEgIAD+/v6wtrY26HlextKlS3Hnzh2DH+/h4YGAgAAEBATAyclJ7Xx6lcc2V69ejevXrxv8ePl+R0BAAHx8fCCVSlXuf1XZ9+7dq3juc+fOvdQxnZo1ayIwMBCBgYEa34Oqsnfv3grL+7Nnz/D3338b/JzlP8eWlpaK+3T5X3SZZs+ePRXG7pQfd+XKlZcaF3Nzc0NQUJBiO6C8rq4sa/nblK/v2rVLZf2oaX1aWFiIP/74w+D88j6n8n6Vtter7PKvv/6qdqxU07aDiHDs2DGDj0VYWFgo9q+Cg4MVy5C2bZWm3PIM+mz/ZDIZDh48aPD6wtbWFsHBwahVq1al81/dbTt27FAZc69sOSt//9WrV3Hz5k2DskskEnh7eyMwMBBBQUFwcHDQmEFbJkOn2bp1K06ePKlTVnViYmIUxYr16tV7petPdV5F4aLZyz4BY0w3zZo1Q7Nmzar8ed988029CxcdHR2RmZmJ7OxsZGZmKg6EqpOVlYWsrCyD8xERysrKKhQzjhs3DvPmzTP4eX18fJCeno6MjAykpaXBxcVF5f727dujffv2Wp+juLhYY1GjvPirfNu9e/dL7Uwos7CwQHx8PBo3bozGjRsjPj5e6w5eWVkZnjx5oigI1KfdunWryosgLCwsEBsbi+TkZCQnJyMhIQGOjo5qcysXMurT7t69i+fPn1dpbgAIDw9HUlKSIntAQIDajXpRUREeP36sKKxTvqzttvz8fJw5c6ZKM1tZWSE+Ph7JyclISUlBQkICbG1t1U4rk8lQUFCgUsyorcn/j8ePH+PixYsGH+xSx9zcHA0bNkSjRo3QqFEjJCYmwt7eXu20xcXFKnk0zWd1lx89evRSB3TVsbCwQFxcHFJSUhTzvHz20tJSPH78GA8fPlQst/pcfpXFmq6urorlPCkpCfXr14e5uTlkMhkeP36M+/fv48GDB4qmfF3d5eoueKxRowZiY2ORkJCAXr16wcHBAQ8ePMC9e/dU2v379zVeLygoqLa8cvL3OCYmBosWLUJcXFyFjOpyKzchzpRZWFiIGzduwMLCAh988AE++ugjyGSyCsuDtmVF3qq6EKoyMpkMdnZ2SEhIQI8ePZCRkYHCwkJF8bx8HaG8TtF0n/LlVzk4aW1tjYSEBMU6PS4uTmWdXlJSgqdPn6KgoEDxV960XVe+fPbs2Spbn5uamqJhw4ZITU1FamoqkpKSNG6DlJWUlFQoZlT+q+62Z8+eYeTIkS/9OXBzc0NaWhqaNWuGtLQ0+Pn5vdTzyfu02gob161bh48//tjg13ByclL0bzMyMqrlC2vyAs66desafLbb+vXrIzMzE5mZmYiPj68wWP4qff3113jnnXf0fpyJiQkSEhLQokULtGzZEtHR0YqDdNXh/v37CAwM1PtxEokE8fHxyMrKEiQ3AHTp0sWgwsWYmBhF7oYNG1Z77l9++cWgwsWoqCjFPnF8fDzMzKp3GO3Bgwfw9/fX+3ERERGKX1IQIjcAZGRk6P2YiIgI5OTkKHKbmpq+gmTaTZw4Ue/H1KlTRzFgLMTyDQBHjhzBhx9+qNdj6tWrh1atWiEnJwf169ev9oFuAHj69CmGDRum12PkuVu1aiXIAL3c0qVL9Zo+KioKubm5yM3NRUxMjGC558+fr1c/KygoCK1bt0Zubi4SExMF+VwCwL///os9e/boPL2rqytatWqF3NxcNGvWrFrOOqHJpEmTdJ7WwsICaWlpaN26NXJyclCzZs1XmEy7DRs26FW0GBYWplhWYmNjBVkXAi/6t0OGDNF5egsLCzRr1gy5ubmCz/MDBw7oVbTo4uKCnJwc5ObmIj09XZDCITl9C/+8vLwUn9HU1FSNX6yoDvruT7i6uiI7O1uxfrGxsXlFySo3bdo0vcYuzM3N0aRJE8X2X+mAc7W7c+cOxo4dq9djPD09FdmbNm2qUiRU3ZYtW6Z30WJISIiiz5iUlCRIH11u0aJFeo/z+vn5KfI3btxY0M/tmTNn9P6ykZ2dHZo3b46cnBy0bNmywjHF6nb27Fm9jzXWq1dP8R7Ur19fsG0tAJw6dQp16tTR6zG2trYq74Grq+srSqebDz74ANOmTdPrMWL6HD958gQBAQF6PcbS0hLNmjVTjBd4eXm9onS6+eSTT/QuXIyOjla8Bw0aNKjSz8Ho0aP1mn7Lli3IzMzU6zHBwcGK/MnJyVUyjjpy5EiDHrdw4UIcOHBAr8fI10Py/fGXmf+GfnEEeHH8Pjg4WK/HODg4oGXLlsjJyUFmZqaiWLG6PX36FAsXLtTrMfLPrnzMzNPT8xWlE1BV/N40t1fbAHjjv98Iv379OjEmd/HiRTIzM9PpN+3Dw8NpyJAhtGfPHiopKRE09+3bt8nW1lan3PJma2tL2dnZ9OWXX9KZM2dIJpNVe+47d+5QjRo19Mqt3KytralZs2Y0evRo2r17Nz1//rxacj99+pR8fHwMzi1vzs7OlJubS5MmTaIDBw5QYWHhK8+ek5Pz0rnNzc0pKSmJhg4dSmvXrqV79+698tzr169/6dyOjo6Uk5NDkyZNooMHD1JRUdErz11aWkpRUVEvldvGxobS09Np9OjRtGvXLnr27Nkrz01E9N133730PLe3t6cWLVrQ+PHjae/evdWyjN+7d49cXFxeOjsACgsLo969e9OCBQvo77//rvL1ZFlZGT148IAuXLhAR44coaysrCrJDYBMTEyobt261LdvX/r+++/pwoULVZK/sLCQbt68SSdPnqRff/2Vli9fTh999FGV5ZY3BwcHyszMpJEjR9KmTZvo/v37L5X76dOndO3aNfrtt99o27ZttHTpUvrqq68oODi4yrP7+/vTa6+9RtOnT6eDBw++9LZJJpPRo0eP6NKlS3Ts2DHasmULTZ8+vUozW1hYUFJSEg0ePJhWrVpF//7770tlVqesrIzy8/Np0KBBVZLZ1dWV2rRpQ9OmTaMjR45QcXFxlWdW9vz5c/L39zc4r6mpKcXHx9NHH31EmzdvpsePH7/SvMqWLVtmUGYbGxtq2bIlTZs2jf74449q7yuWlpZSZGSkXpnNzMwoJSWFxowZQ0eOHKHS0tJqzSz3/fff65XbycmJOnfuTIsWLXolnz9dPXv2jDw9PXXO7ebmRj169KBly5a99Hr6ZemzLXJ2dqa8vDxasmQJ3b17V9Dcp0+fJolEolNuOzs7atu2Lc2fP5/++ecfQXOXlZVRnTp1dMptaWlJWVlZNHv2bLp69aqguYmIPv74Y51ym5ubU/Pmzemrr76iS5cuCR2b9u3bp1NuqVRK6enp9OWXX4oi95MnT3Tqm0ulUsrIyKCvvvqKrly5InRsIiJq2bKlTrmbN29Os2bNEsXyTUQ0depUnZeTmTNniib3yZMndepPpaam0vTp0+nixYtCRyYiopKSEgoMDKw0e2xsLI0bN45Onz4tyPibOrr0y4ODg2nw4MG0b98+wfpV5R0/frzS3A4ODtS1a1dasWJFtfa7tZHJZBQXF6c1t0QiocTERJo4cSKdPXtW6MgKa9eurXSeOzo6Urdu3WjlypX05MkToSMrZGZmVpq9Vq1aNHjwYNq7d69olvNHjx7pNGYeHR1Nn3zyCR07dkw065br16+Tubl5pdlr165NQ4cOpf3794tmvj99+pTc3d0rze7s7Ezdu3enlStXimYdQ0Q0ZMgQnfqL9evXp5EjR9Lx48dFs9yUlpZSeHi4Tn2BRo0a0eTJk0W1niwpKaGgoKBK80skEoqPj6dx48YJMs6iTefOnXVafgICAqh///60bdu2ajm+oitd95fk+6dz5swRXX1A+/btdfof/P396b333qOtW7dWy/EWXf37779kZWWl0+c4NTWVpk6dSufOnRM6tooJEybo9B54eHjQm2++SWvXrqWnT58KHVvh/v37ZGdnV2l+c3NzyszMFNV+LNGL/nJ8fHyl+U1MTCglJYUmTZokWH2DOrpuCywsLKhFixb09ddfi2o9NHv2bJ2W/+DgYBo0aBDt3LnzlR+T0dWkSZOM+rNL9KIPrZTVm6qiJq4qnoQbFy4yYfTq1Uvrhrx58+b05ZdfimaAVK5///46bcjj4uLo448/pj179ohip+Kdd97RaUMib7a2tpSZmUkTJkygAwcOCPY/fPrpp3rlVt6Y9+zZk+bNmydIZ2rz5s0G5XZycqKcnByaOHEi7du3r9oKROWKioooJCRE79ze3t7UuXNnmj17Np06dYrKysqqNTcR0TfffKN3bkdHR2rVqhVNnjyZDh8+LEjH78mTJ+Th4aF39po1a1KHDh3oyy+/pN9++02Qgcfhw4cbtJzLC3KHDBlCa9asqfZChvPnz+s0sKvtc5qVlUXjxo2jHTt2VOuBgnbt2hmcG3gxWFGvXj3q27cvfffdd3T27Nlq+bweP36cTExMXiq7ra0tNWnShIYNG0Zr1qyhW7duvfLcRETdu3d/qdw+Pj7UsWNHmj59Oh0+fLjatqf//POP3l+0kLegoCDFNvTs2bPVvg3VdedXebmOi4ujoUOH0qZNmwQ7mFFUVKTTwXTgRdFfUlISjRw5kvbu3St4X1HX4r+goCB65513aPXq1ZSfny9oZiKi4uLiSue5/GDFZ599RocOHRLNgbrKiqIlEgklJCTQ6NGj6dixY4L0rdS5ffs2WVtba81ev359+vjjj+nAgQOimd9ElR+YCA0NpUGDBtGvv/4q+GdS2YoVKyrdzvTt25fWr18vqoHAygbxa9asSb1796ZffvlFVEUXRETNmjXTmNvV1ZV69uwpuoPnREQTJ07UmFusB/2JiI4cOWKUuZ89e6ax4MLBwYG6dOlCy5cvp0ePHgkdtYKOHTuqzW1jY0Pt2rWjxYsXC14kr87ixYvV5pYfDPz666/p5s2bQsesQNu2MzY2lsaPH09//vmnaA4CKmvTpo3Gbc97771H27dvF80BNGXbtm1Tm9vCwoKysrLo22+/rbb9SX3IZDJq2LCh2uz+/v40YMAA2rFjh+Bf6ldH27o8Pj6eJkyYQH/99Zcol/OxY8dq3GdLS0ujGTNm0OXLl4WOqda7776rNruJiQk1atSIpkyZQn///bfQMdXStj8UGhpKgwcPFsVJLNS5e/cu2djYaFzPiLFAQpm2L1zWqFGDOnXqRD/88IMo+wJE2k8AYGNjQ23atKEFCxaIcj1PRPTXX39p/EKdiYkJJSUl0YQJE0T1BYzy0tPTNb4H8kKVNWvWiGr/VNkff/yhMb/8iw0TJkygU6dOifY90PalGAcHB+rcuTP9+OOP9ODBA6GjqvXkyRNydnbW+D/Uq1ePPv30Uzp69KhoxsPK++STTzTmd3Nzo169etGqVatEN94ht2XLFo357ezsqEOHDrR48eJqOZmOIRYuXKh1/r/++uuiHG8ienHCEk0nbBJroahcQUGB1i/Myr+wIaaxbHW4cPH/aAMXLjI1zp8/T6ampiorMzEfuJC7dOkSSaVSjQNIb731Fq1cuVJ0ncE///yzwvxW15nNycmhKVOm0NGjR0UxKHDlyhWytLTUmls+kNSwYUMaOHAg/fzzz4LvlBYXF1NYWFiluYEXBQDdu3enuXPn0l9//SX4hnzatGk65Q4LC6M333yTFi9eTJcvXxa88/To0SNydXWtNLeHhwd16tSJZs2aRX/88Yfg85tI9+K/4OBg6tWrFy1YsIDOnz8v+Dy/cOGCzsV/zs7Oghbklpedna1TbvlgRVRUFPXp04e+++47OnfunGDzXtvOpLZlvm3btjRp0iTavXs3FRQUVHvusrIynb69V36+R0REUO/evWnu3Ln0xx9/CFL8ous3iOVNKpVSfHw8DRw4kH766SdB+749e/bUKbOJiQnVr1+f+vfvTz/99JPgZxa7e/dupWe7MDU1pdjYWBoyZAht3LhRNIUMX375pdbcUVFR9P7779P69etFk5noRcFlQECA2sx2dnbUunVrmj17Nl24cEHoqBVo+tKCu7s79ejRg5YuXSrKAbYnT56Qm5tbhdwuLi7UrVs3+vHHH0WZm0j94LidnR21a9dOFGcn1OT333+vkFv5y3JiXL6JXmxDIyIiKqy35QezxHbmEGXq+rgxMTE0cuRIUR982Lt3b4XcderUoeHDh9PBgwdFVYyrTN3ZFuVnVxLT2dvUKd83F3uxgtyMGTNUcisXFYmxkEuu/MFyDw8P6tOnD23cuFHw/TRtSktLVb5kWaNGDUVxqBi+TKHN0KFDVfYXxFxkqaz8Qf3o6Gj69NNP6cSJE6Ld9sg1atRIkdvR0ZG6du0qurMTqlP+S9D169enUaNG0e+//y76ea78qzPyAtG5c+cKeoZzXTx+/JicnJwU2e3t7alTp060ZMkS0Y3vl3fz5k2ysLBQZJcXny9atEi0+xJyz549o5o1a6r0b1NSUkR3Zj9Nyp+B3tXVVfQFKnJlZWUVzrYYGBhI77//Pv3666+i7sMQvTjDVvlfdPHx8aF33nmHNm3aJOq+jFz5sy3a2dlR+/btadGiRYL/SoEu1I2VygtVxLyfp6z8lxrl78F3331Hd+7cETpepdSdbTEkJIQ++OAD2rVrl6j3oeQ+//xzlfwWFhbUsmVLURd9K3vw4AHZ29tXGPeVjxuI/XMgk8koISFBJb9Yz/CqjrqzLRrT/P/6668rrIM6dOhA33//vej7cOVPOKF8Zt0bN24IHU9nXLj4f7SBCxeZGj169CAA1KBBA/rss89EX3kt17VrV5WBjDZt2tDs2bNFUUSkjbqf6nBxcaG2bdvSF198IdjZ2irToUMHjQfRmzdvTqNHj6YdO3YIUoijjabiP1NTU2rQoAG9//77tHLlStEN3mn6OXF57oEDB9KqVatEufP24Ycfqp3ngYGB1LNnT9EU+5V36dIllUFGeZNIJFS3bl167733RFFIpE5ubq7aeQ68+OkfIc94qs26des05gb+/88mjx49mrZt2yaag2CFhYWVng3V0tKSkpKS6IMPPqCffvqJrl27Jop5P3/+fK255YO8OTk5NHbsWNq+fbso5ntpaSnVrVtXa255YeiUKVNo//79ohkg1Xa2C0tLS0pNTaWPP/6YtmzZIop5rUzdGSNMTExUChXFlpmIKD8/v0LBiI+PD/Xq1YuWLFkium2+slmzZqlsf2JjY+mTTz6hvXv3ivqgxfPnz8nb21vRV0lJSaHx48fTiRMnRL9fIf85HIlEQnFxcfTZZ5/RkSNHRJ/75s2bii8VhYeH04cffkg7d+4U/YAmEVHr1q0JeHGW8LfeeovWrFkjun0IdeRnQ3F0dKTOnTvTkiVLRD+ISfSiCN3W1pasra0pNzeXvv32W9EX6Mg1a9ZMcfa2mTNniuanlCszadIkMjMzo6ZNm9L06dNFW4xb3vHjxxXrcGMpViB6sQ3y8vKi2NhYGjt2rKjPxlJeXl4eRURE0PDhw+nw4cOi3/bILV26lHx8fOjdd98V7Vn+1Ll3757iFyqMochSWV5enuLnwi9duiR0HJ3t3r2bfH19qX///kZRhCMnk8koNTWVmjVrRl999ZWofkqwMr/99pviDLk///yz6Au3lH3++efk4+ND/fr1o61btxpFv1ZuwIAB5OnpSW+//bbRFGzJffnll2Rra2tUxVpy8rMtRkRE0LBhw0R3lvnKLF++XPFFqM8//1y0Z/zVZNGiRQS8OGPxmDFjjKKwW5n8CyTyAiFjW+8QvTjboqWlJWVnZxtdoQrR//9ihvJPQBvbezBo0CBR/wR0ZeRnW6xZsya98cYbRjM+o+zTTz8lqVRKGRkZ9NVXX4n2zMyabNmyRfFLL+PHjzeq/VmiF2felUqllJ6ebnTzX362RWMqFJWTn21R+bMr1jPrVuZVFC5K6EVhHBMxiUTiDeA6AFy/fh3e3t4CJ2JCKyoqwrJly5CRkQEPDw+h4+jszJkz6NOnD9LS0pCRkYGGDRvCzMxM6FiV2rx5M1q0aAF3d3c0btxY0WrXrg0TExOh42m0a9cuNGnSBADg7e2N5ORkJCcnIykpCVFRUTA1NRU4oXp37txBSEgI8vPzYWdnh4SEBEXuuLg42NjYCB1Ro759+2LOnDmwtLREfHw8UlJSkJKSgvj4eNjZ2QkdT6MLFy4gPDwcJSUliIiIQKNGjdCoUSOkpKTAy8tL6HhadejQAStXroS5uTliY2MV8zwxMRE1atQQOp5G27ZtQ0ZGBgBAKpUiJiYGSUlJSEpKQmJiItzd3QVOqF5hYSEiIyNx8eJFxW3h4eFITExEQkICEhISEBoaKsp144QJEzB8+HCV24KDgxEfH4/4+HjExcWhTp06MDc3Fyiheg8fPkRISAju3bunuE0qlaJevXoq2QMCAiCRSARMWtHXX3+Nd955R3HdzMwMdevWRUJCgmKZ8fX1FV1uIkJiYiIOHToEAHByckJycjJSUlKQnJyM+vXri245kTt37hwiIyMhk8kQExOD1NRUpKamIjk5Gfb29kLH0+qTTz7BrFmz0LRpU6SlpaFZs2YIDg4W3fJR3tOnT9GkSRPUqVMHGRkZaNasGZycnISOpZMVK1Zg69ataNGiBdLS0kS93VRWUlKCDz74AHFxccjIyICrq6vQkXT2yy+/4NatW2jRogX8/f2FjqOz+/fv49tvv0XLli0RFRUl+s+lsu+++06xvTeGfU+5o0eP4v79+0hNTYWlpaXQcXT2+PFj7NixA82aNYOtra3QcfTy66+/IiYmBg4ODkJH0cuZM2fg6uoKFxcXoaPo5f79+ygqKoKnp6fQUfRCRLh69apRrcPlbt++DTc3N6NahwMv1iuWlpai7X9r8/DhQzg6OgodQ28PHz6Eg4OD0S0rpaWlKCgoMLr1OPBiLNTJycmo+ipyly9fhr+/v9EtLwDw119/oXbt2kaZ/ffff0ft2rVhYWEhdBS9Xb58GUSEwMBAoaMY5MCBAwgJCTG6vpfcjh07EB4ejpo1awodxSBHjx6FtbU1wsPDjfKz++TJE+zatQtpaWmwtrYWOo5BDh06BDs7O6N9D4gIa9euRaNGjYyynwYAFy9exIMHDxATEyPK4zC62L59O+Li4kR93FSbY8eOwdfXF25ubkJHMcjRo0cRGhoq+uMF6ty6dQv37t1DRESE0a2DLl26hPv37xv1Z1fuxo0b8PHxkV/1IaIbL/ucXLhoBLhwkf2vICKj24gAwO7du+Hh4YFatWoZVf45c+bA3t4eycnJ8PX1FTqOztauXYtr164hOTlZ1AWW5T19+hTffPMNEhISEBMTY1SD6ps3b0ZRURGSk5Ph7OwsdByd3b59G/PmzUNKSgpiY2ON5qAuEWHo0KFwdHREUlISGjZsCCsrK6Fj6WTmzJlYt26dokgxLi7OKA4KXLt2DfHx8YiMjFQU+sXFxRnFIGO/fv2wceNGRe74+HjUrVtX9Mv7vXv3kJKSgtDQUMXy0qBBA6MYlNu1axfmz5+vKFQMCwszmh3JzZs3o6ysDMnJyUZThCZ35swZhISEGM12X660tBSmpqZG1UdkjDHGGGOMMcYYY4wxxhjTFxcu/h/FhYuMMcYYEwNjLUB/+vQprKysjKb4TNndu3eN6mxicsXFxZBKpUa5vDDGGGOMMcYYY4wxxhhjjDHGVL2KwkXjO/c8Y4wxxhgThLEWoYn5J+YrY4xFiwCM6qyzjDHGGGOMMcYYY4wxxhhjjLHqZ3ynnWGMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxpjR4sJFxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOMVRsuXGSMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxli14cJFxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOMVRsuXGSMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxli14cJFxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOMVRsuXGSMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxli14cJFxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOMVRsuXGSMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxli14cJFxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOMVRsuXGSMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxli14cJFxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOMVRsuXGSMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxli14cJFxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOMVRsuXGSMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxli14cJFxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOMVRsuXGSMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxli14cJFxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOMVRsuXGSMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxli14cJFxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOMVRsuXGSMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxli14cJFxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOMVRsuXGSMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxli14cJFxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOMVRsuXGRMZO7evSt0BMYYY4wxxpgGRCR0BIPIZDKUlpYKHcMgz549EzqCQZ4/f47i4mKhYxjk3r17QkcwyK1btyCTyYSOobf79+/j4cOHQsfQW2lpKf7880+jXC8ePXoUT58+FTqG3k6dOoULFy4IHUNvt27dwtatW1FUVCR0FL0QEX788Udcu3ZN6Ch627p1K/bs2YOSkhKho+jlypUrWLx4Me7cuSN0FL0QEebNm4fjx48b3XboyJEj+Pnnn5Gfny90FL0QEebPn48zZ84Y3Xbo3LlzWLt2LQoKCoSOoredO3fixIkTRjfPAWDHjh24cuWK0DEMcvToUaPNfu/ePRw9etTo1o1yf/75p9Ftk5SdPn3a6Nbvyi5fvozbt28LHcNgJSUl+O2334xynSl3/vx5o9xXlSMiHD582GjHw4AX/WNj3QYAL96DXbt2Gd2+oLK9e/ca7TgZAGzevBn3798XOoZB/v77bxw6dAhlZWVCR9Hb5cuXcePGDaFjGA0uXGRMZEaOHIkGDRpg7NixOHXqlNF0aCdOnIjZs2cbXeHlli1bcPToUaOZz3JXr17F7t27jS438KKDdPbsWaFj6I2IMHfuXFy+fFnoKHp7/PgxvvnmGzx48EDoKHq7cOECdu3aZZSDW3///bfRrRPlbt26ZZQ7AgCM8gC03PPnz41yvQ4AhYWFRjsQSkTYu3evUS7zMpkMM2fOxPnz54WOorf8/Hy89dZbWLt2LQoLC4WOo5d169ahXbt2+OGHH4xq8FYikaBt27bo0aMHfvnlF6NaX27ZsgV16tTBJ598gmPHjhnNulIikaBOnTro1KkTlixZYlR9sU8//RQNGzbEmDFjcPLkSaOZ5ydPnoSHhwd69+6N1atXG81yLpVKERYWhiZNmmDatGlGs143MzPDRx99hMDAQLz33nvYsmWL0RyMOHbsGJydndGyZUvMnj0bV69eFTqSTqysrBAWFobQ0FAMGjQIO3bsMIoCaTc3NwwePBjOzs7Izc3F3LlzjWIAXyKR4K+//oKfnx+ioqIwdOhQoykGdHd3R+PGjeHq6oqOHTviu+++w61bt4SOVSlfX19MmzYN7u7uaNiwIUaOHInDhw+Lvq8ukUjw/PlzNGjQAJ6enujZsyd++ukno+grhoSE4M0334SLiwtSU1MxadIknD59WvTbfolEgps3byI8PByBgYHo168f1q9fbxTbfn9/f7z77rtwdnZGRkYGZsyYYTTbfltbW8TExMDLywtvvPEGVq1ahSdPnggdSyf5+fkICAhAREQEhgwZgt27dxvF+hx4se8vzy7fFhlLEY6joyN69OgBT09P9O7dG7/88ovRLDPAi/EuDw8PxMfHY+zYsfj9999Fv35UduvWLbi4uKBp06aYPn260axr5MzMzODv74+4uDijnP9SqRSffvopvL290adPH6xfv97ovpj57NkzuLm5oXHjxpgyZQrOnj1rVO+BRCLBwoUL4e7ujq5du2L58uV49OiR0LH0Ymtri6ioKERFRWHYsGE4cOCA6PvGyiQSCZYvXw5nZ2e0bdsWCxcuNLqC5MuXL8PNzQ1JSUmYMGGCUdVvAMBvv/0GNzc3pKSkYOLEiUb1BdSaNWsiKysLHh4e6NmzJ1auXInHjx8LHUsnVlZWCA0NRb169fDpp5/iyJEjRnmsu9oQETeRNwDeAAgAXb9+ndj/titXrpCZmRnJ3/PAwEAaOHAg7dq1i0pKSoSOp9GuXbsIAJmamlKLFi3o+++/p8ePHwsdq1IHDx4kABQZGUlTp06l27dvCx1JJ0VFReTm5kbBwcE0fvx4unnzptCRdLZ582YCQPHx8TRnzhx6+PCh0JF09sknnxAASklJoW+//ZYePXokdCSdpaenk7m5ObVp04Z+/vlnKiwsFDqSTp49e0ZOTk7k6+tLw4cPpzNnzggdSWdnzpwhqVRKubm5tGrVKioqKhI6ks527NhB3t7eNGLECDp//rzQcfSyb98+qlu3Ls2YMYPu3bsndBy93Lx5k2rXrk1jx46la9euCR1HL2VlZVSnTh3q2LEjrV+/noqLi4WOpJe8vDzy8PCggQMH0pEjR0gmkwkdSWcffvghAaC6devS+PHjjeoz27t3bwJAtra21LFjR1q+fDk9efJE6FiVKikpoeDgYAJAZmZm1KxZM5o1axbduHFD6GiV2rhxo2I/w9LSknJycmjevHmi7wOXlZVRVFSUIrunpye9/fbbtGnTJtH3aaZPn67IbWpqSqmpqTR9+nS6ePGi0NG0unr1KkmlUkV2X19f6tevH23ZskXUfRqZTEZxcXGK3BYWFtSyZUuaM2eO6D+jY8aMUeQGQKGhoTR48GDas2ePqMcCjh07ppLbxsaG2rRpQwsWLKBbt24JHU+jwsJC8vHxUckeFRVFw4YNo/3791NpaanQETXq1auXSm47Oztq166d6Of5qlWrVHIDoOjoaBo2bBjt27dPtPP8wYMHVKNGDZXcNWrUoA4dOtDChQtFPc87dOhQYZ7Xr1+fPv74Yzpw4IBo5/natWsr5HZ2dqa8vDxasmQJ3b17V+iIaqlbr5iamlJycjKNHz+efvvtN9HuZ4wbN67CPPfx8aG33nqLVq9eLdo+en5+Pjk5OanktrCwoObNm9OMGTNEvW/0zTffVJjnwcHB1L9/f9qyZQs9f/5c6IgatWrVSiW3VCqltLQ0mjp1Kp09e1a0y7lMJqN69epVWJ937NiRFi1aRHfu3BE6olZZWVkq2R0dHem1116jH374QfTjX8uWLVPJbm5uTunp6TRjxgzR7xcRVVzmvb29qU+fPrR+/Xp69uyZ0PG0kslklJSUpJI/JCSEBg0aRDt37jSK8bt33nmnwvx/++23jWL+ExEdPXpUJb+lpSVlZ2cbxT6qXNu2bStsr95//33avn27qMcH5MqPb5iZmVGTJk1o6tSpdO7cOaHj6eSjjz6q0Dfu1q0bLV++3CiOU167do3Mzc1V/ofY2FgaPXo0nThxQrR9B7mSkhKqVauWSn4/Pz/q168fbdq0SdT9NiKix48fk7Ozs0p+f39/evfdd2nz5s2iz19+X0Xe95w+fbqo+/tERIMGDVLJ7u7uTq+//jr98ssvot3H0sX169eV/y9vqoqauKp4Em5cuMiq1uuvv15h4ELeEenRowetWrWKCgoKhI6pQt2Ov5WVFXXq1InWrFkj2s5r+dxmZmaUm5tLa9asEf1O27BhwxS5TUxMKCsri1atWiX63GVlZYqD/fIBxddee402b94s2kFzuZs3b6oUFltYWFDHjh1p3bp1op/v69evrzC41adPH9q7d6/odwrK75Q1bNiQvvzyS9EPKBIRNWvWTGUd/u6779KxY8dEP89lMhmFhYUpsqekpNCCBQuMoiMtk8kUxS3m5ubUoUMH2rhxo+jXL3Lyg4sSiYTS09NpyZIlRjEIR0T05ZdfKpYZV1dXGjBggFEs70QViy6Cg4Pp008/NYpi6Rs3bqgMvskPSH/++eeiPwBw7tw5kkgkFQZwc3NzafHixaL+csO8efPU9tfj4uJowoQJdPbsWaEjqiWTySgmJqZCbolEQklJSTRp0iT6+++/hY6p1k8//aR2ntvZ2VGHDh3o+++/pwcPHggds4KnT/8fe3cdHsX19QH8zO7GXSFG3AULERKSEOKOleLW4u5QSilQHIoWL+7uBHd3p7hbCAkhECDZ8/7Bb/fdJOuRmW3P53nuk83uZvfLMHJn5sydfKxSpYrU7L6+vjhs2DA8ffo0FhUVsR21lJ9//lnhNH/37h3bMUuRLNAt2WrXro0jR47k5IHxnJwcNDMzk5rb3NwcW7VqxdmTEqmpqVJzMwyDwcHBOHr0aLx8+TLnpvncuXNlzisWFhbYqlUrXLNmDee2R/fv3y+2X1qy1alTB0eOHInnzp3j1LpF2nGjkvN58+bNOVmA8fvvv8vMDQAYGBiII0aMwNOnT3Nqv+PGjRul+lolp3mLFi1wxYoVnCoGFAqFGBQUJDM3wzAYEhKCv//+O+fm8/nz58udV2xtbbFDhw64YcMGTq3P8/Ly0NLSUmZuycK0W7ducWp9Pm7cOLnT3N3dHXv37s25YsCvX7+is7OzzNz6+vqYmpqKc+bMwcePH7Mdt5hLly7Jneaurq7Ys2dPTp4Il1YYXbLfMmrUKLxw4QKn5nPE0sVPko3H42FYWBiOHTsWr1y5wrnsRUVF6OvrKzO/t7c3DhgwAA8fPszJY+wXL16UmV1PT09chMbV87f79++Xmd/ExASbNWuGy5cv51z/S0RawZPk9E9NTcV58+ZxenAPWftLAIA1a9bEX3/9Fc+ePcupPo2kK1euyMxvbGyMTZs2xWXLlnGqP1lSly5dZP4bRMW8Bw8e5OQ6CBHx7du3aGhoKDW/QCDA6OhonDp1KqeLuEoWIUs2Ozs77Ny5M27fvh3z8/PZjirV8uXL5fbb0tPTccGCBZxdF40fP15mfgMDA8zIyMCFCxfiixcv2I5airTCS8nm6enJ2WX41atXqKenJzW3trY2xsfH46xZs/DRo0dsR1UJFS7+RxtQ4eJ/zt27d5HH48k9ACAaIWXRokWcGSFF3kbbzMwMO3XqhIcPH+Zc51vWQUVra2vs378/Xr9+ne2IUj18+FDqAWhra2scMGAAp4stpk6dKrNzOnToUM6e7EdE/PHHH6Vm53qRTsmCUcnm7OyMw4cP5+zVZY8fP0Y+ny91hyw1NRXXr1/PuQOhIlu2bJE6zX19fXHSpEmc3AkQkSxCk9yBad++PR49epST87nInDlzZK5fuFqQIyIawbjkAaBOnTrhyZMnOT3dc3Nz0cjIqFR+Hx8fHDduHOdHkYyIiJC6vNaqVQsnT57M6X54u3btZPbB6tSpg5MmTeLszq+0kYBETUtLCxMSEnDBggWcK1b/8uVLqRF1SjZvb28cNmwY50bx3Lx5s9zcouxDhw7lVEFdUVER+vj4yM3N5/Oxfv36OG3aNHzw4AHbkcUmT56scJpXrVoVf/75Z9y+fTtnCtYfPnwotzhKNM0jIyNxypQpnDlALhQKsU6dOgqnub29PXbt2hV37drFmb5kyVEXpTWBQIANGjTAadOmcaZA/cKFCwpzA3wfvatr1664c+dOTkzzL1++oKOjo8LcotFSJ0+ezJmRpGQVFktbt3To0AE3btzIibtibN++XancPB4PQ0NDccyYMZwYpU7aqG6ymqWlJbZu3RpXr17NieLuVq1aKZVbVLDDlWLAzMxMpXIDfD8O1qZNG1yzZg3rFzF8/foVXVxclMotEAgwMjISx48fj1evXmV9PlemvyJqTk5O2K1bN9yxYwfrJ5c/fvyI1tbWSuWWLAbkwv7R4sWLlZ7mfn5+OGjQIM4UdjVu3FilaT537lxOHBMQCoUYGBioVHYbGxvs2LEjbtq0iRPbUMTSI//J63OJRqRjexkVkXUhWslmamrKyZEkMzIylMpfo0YNHD58OKf2pYVCIdarV0+p/ld4eDiOHz8er1+/zvp2SZK8gifJVqtWLRwxYgQn+jKSSl4wLatVrVoVO3bsiJs3b+bc4DXKrPcZhsG6deviuHHj8Nq1a5yah548eVLqwm9pTVTMy7V1EGLxwWzkNU9PT+zfvz9n+gwiT58+lVmELNl0dXUxOTkZ58yZw4m+g0hhYSF6enoq9X9Qu3Zt/O233zi1LlJ0oZJkCwwM5NzFkIouVpJchn/44QdOFVP3799fqeyiu4Bw+e4IIlS4+B9tQIWL/0nKHlgUdQbDwsJw0qRJrBZkfPnyBW1sbBTmtbOzwwEDBnBmlIuPHz+isbGx3MxBQUE4Z84czo20kJSUJDd33bp1ceHChZwbJS07O1vmFQaiFhoaivPmzePUFeiIiCdPnlQ4j3O1SGf69OkKswcFBXFyNMMmTZoo7Iz+/PPPnBtBsrCwEKtVqyYzN4/Hw8TERFy7di0nTt5KysnJQQMDA5nZ3dzcOHtL4w8fPsi8AhGA2yNICoVCuVehe3p64rhx4zh7K5GePXvK7a80aNAAlyxZwpmD/pIUFXMxDIORkZE4b948TpyElnT9+nWl+ozBwcE4ZcoUTo3YIW/kgpLry/r16+OsWbM4c+XqzJkzle6v29vbY48ePfDAgQOsHzQsedtlRc3GxgY7d+7Midsyr1y5UuncAN8P+AwfPhzPnTvHav/g48ePSh8cBPh+gjcjIwP//vtv1i9Sk3U3AFnN29sbBw8ezPqtdnfu3KlSbtHtjRcvXsxqPzgnJwdNTU1Vyu7j44ODBw9m/Va7yp5Il5zP09LScP78+ayu1xWNjiatubq6Yu/evXHfvn2s3V3i0aNHSp14k2ySt1Ni69iRopH0ZDVbW1v86aefWL2dkrInSiSbaASsP/74g7VRR+/evSv1QkBFzdraGtu2bYtr165lpRhQKBRieHh4maY5W0Wvy5YtUzk3wPf+4s8//4ybN29mZX8pPz9fqeO6JZvkrZnZWrfIukBamW3ogAED8ODBg6ysz799+4YeHh4q5zY2NsYmTZrg4sWL8eXLl5WeGxHx2rVrckd0ldX8/f1xyJAheOzYMfz27Rsr2eWNzi1vGxoTE8PqNhRR+f1nySYqAPnrr79YPRag6n6o5DqdC0VQly9fVmtb2q5dO9ywYQPm5uaylh0R8cCBAyrnd3Z2xp49e2JmZibrxwKULXiSbKIiwC1btnCiCFDeqIuytq8JCQk4e/ZsThTbX716VeV5SPJWtGzPQ4iIXbt2VXkdFB4ejhMmTMAbN26wft4pKytL7jkPaU1UDL5y5UpOHM/u3r27yvMRlwrCVT0uKbku4sKtgSdOnKix+VUpvBQ1UTH12LFjWb1QTN6oi7KapaUltmnTBtevX896H0KaiihcZPB7YRzhMIZh7AHgKQDA06dPwd7enuVERB03b96Ec+fOAZ/PBx6PJ/4p6/Hdu3ehZ8+ean2Xj48PpKenQ3p6OtSpUwd4PJ7auZ88eQKnT58GQ0NDqc3AwAD4fL74/WPHjoVffvlF6c/38vKCFi1aQPPmzcHNzU3tnCW9efMGTpw4Aebm5uJmYWEBurq6Ut/fu3dvmDFjhsLP1dXVhYYNG0KHDh0gOjq6TNNWmqysLDh27BhYWlqCpaUlWFhYgLm5OQgEAqnv3759O6SlpSn8XAMDA2jWrBl07NgRQkNDgWGYcs399u1bOHbsGJiZmYGZmRmYm5uDmZkZGBoayvyun3/+GRYuXKjws3V1daFRo0bQrl07iI6OLja/ldWbN2/gyJEjYGJiUqrp6elJzY6IEBQUBOfPn1f4+QzDQHR0NLRu3RoaNWoERkZG5Zrb2NhY3ExMTMDY2BgMDQ1lzpcfPnwAe3t7yMvLU/gdfD4fEhISoHXr1pCWlgZ6enplzv327Vs4fPiwStNb5NixYxAREaHU9zg7O0Pr1q2hdevW5bJeyc7OhgMHDojnb1NTUzAzMwMTExOl5scJEybAkCFDFL7P1NQUmjVrBu3atYPg4OAyL6e5ubmwf//+YutAc3NzhdNaUpcuXWDevHly38MwDMTGxkL79u0hIyND5npWWXl5ebB3715xXgsLC7nrb1m6d+8Of/31l9z3iNaN7du3h7CwsDJN87y8PMjMzBRPb9G6UN56UJa//voLunfvLvc9PB4P4uLioH379pCWlqb2dM/NzYXMzEypy6W+vr7K2f/55x/w9PRU+D59fX1o2LAhtGnTBho0aKDyuj07Oxv27t1brD9Ssn+ira2t0mcWFRWBp6cn3L9/X+F7tbS0ICEhAZo3bw5paWlgYGCg1HdkZWVBZmYm6Onpga6uLujq6kp9LPqpra2t9P9BSkoK7Ny5U6n3AgCEhobCDz/8AE2aNFG4f/HmzRvIzMwEbW1t0NbWBi0tLak/FT0n6/85ISEBMjMzlc4OAFC3bl1o1KgRNG7cGJycnKS+5/Xr15CZmQkCgQD4fH6xn8o8VvT6t2/fwNvbG96+fatSdjMzM0hNTYWGDRtCXFwc6Ovrl8q9Z88eqfsIZf0perx161YYNGiQSrkBAIyMjCAxMRHS09MhKSkJTE1NS+Xm8XjAMIz4+0StPJ5DREhNTVV5mgMA2NraQlpaGqSnp0P9+vVBR0cHAL7P37t27RJ/j+i7JH/KeqzKcwsWLIAVK1aonJthGKhbty6kpaVBWloaeHl5Fcst+q6Kao8ePYKuXbuqnBsAwMrKClJSUiAtLQ1iY2PBwMAA3r59K15Xib5D9Fjac8o8lvVcly5d4M2bNyrnZhgGQkNDITU1FdLS0sDb2xuysrJkrmOlraeVfU7a80uXLoX9+/ernBsAwNLSEpKSkiA1NRXi4uLg69evsH37dgAAkDz+VxGPr1+/rrDvJU/t2rUhNTUVUlJSwNHREbZt2yb+DlmtrK8jInz79g1+//13KCoqUiu3kZERxMXFQUpKCgQHB8OpU6cAEUEoFBb7Ke05WT+Vfc+aNWvg0aNHak9zd3d3SE5Ohnr16kFWVhbweDwQCoXFmug71W3S/v7KlStw/PhxtXNra2tDREQEREVFAY/HA0tLS/FnFxUVFfsp67Gyz0k+zsvLg02bNqmdG+D7tqhBgwZgZGQEXl5eoKWlVez7RU3yd2Vfk/e+AwcOQE5Ojtq5+Xw+1KlTB2xtbcHHxwdsbGxKTTtlmyrvv3//Pty8ebNM07xKlSrg7u4OPj4+4OnpCdra2irlVeff8vXrV9i7d2+ZcgsEAnBzcwNfX1/w8fEBa2trmd+naJqq8vqVK1fg6dOnZcpubW0Nfn5+4OPjAy4uLiAQCMpt3pb1OD8/v8zTXFdXF7y9vcHPzw+8vb3ByMioXNYtil6/cuUK3Lp1q0zZHR0dwc/PD3x9fcHBwQEAoEzrbmXbli1b4P3792rn1tfXB19fX/H8oq+vX2y7UXL7p85zsl5fuHAhfPnyRe3s1tbW4O/vD35+fuDm5gZ8Pr/UdlrV35V975IlS9TaHxKxs7MDf39/8Pf3B2dnZ2AYRt0BV1T+m1OnTsG+ffvUzm5ubg4BAQEQEBAAHh4e4nMmsjLJek2Zx9JemzVrFrx48UKt7Hw+Hzw8PCAgIAD8/f3ByspK/PnK/lTlvdL+dvz48ZCdna1Wfm1tbfD19YXq1auDn58fGBsbS90vqMjnFi1aBNevX1crv0AgAC8vL/H8Y25urnSGsjyWfO769etKnQ+Txc7OTjz/ODs7i4+RVERWWY+nTZsGjx8/Viu/trY2+Pj4QEBAAPj6+oKxsbHC7y/P586fPw/v3r0r0zrI0tIS/Pz8wM/PD9zd3cXHOcuybCrKf+HCBfG+KiLCuXPn1O6rMQwDLi4u4u1ulSpVZH6vonWOotcuX74MhYWFpV7LycmBo0ePqpUfAMDQ0BC8vb3Bx8cHPDw8xMf2ymO9DwBw5cqVYrlLNqFQCPv37wehUKhWfj6fD25ubuDl5QVeXl5gZmZW6jtKfre0LCWfu379OhQWFip835cvX8q0L87n88HFxQW8vLzA09NTan5ZmaU9f+PGDXFuWf9uyedv3boFL1++VDu/mZmZeBl2c3MTnz8q67pUmfeuWLECrl69qlZuLS0tiIyMhJSUFEhJSQFXV1e1Pqc8PXv2TLzfAQAOiPisrJ9JhYsagAoX/x2mTZsGffv2rfTvtbGxEZ+gi46OFm/ElbV69Wpo0aKF3Pfo6emJCwUYhoEHDx6olTUoKAhatGgBzZo1g6pVq6r1GSK7d++GpKQkqVklC3hEj3Nzc2HdunUqfUe1atWgbdu20K5dO3BxcSlTXpEDBw5ATExMqefNzMyKFTOKHpuZmcHIkSPh27dvSn+Hl5cXdOzYEVq3bl2sY1oW+/btg7i4uFLPCwSCUsWMop9v376FtWvXqvQ99vb20KZNG2jXrh24u7uXOXdmZiYkJCRIfU1LS0tqIY+JiQncunULzp49q9J3lbVIR9LevXshPj5e5utGRkbFihkl26FDh+Dhw4cqfZ+RkRE0adIEWrVqJT45pI6DBw9CgwYNpL4mEAjEmWW1adOmQX5+vkrfGRoaCq1bt4ZmzZqBubm5WrlPnDgB4eHhUl8zNjYuVdBY8nFRURH07t1bpe/08PCAtm3bQuvWrSU7fyo5f/481KlTp9TzOjo6pYoZSzbR88+ePYO2bdsq/Z2mpqbQvHlzaN++PQQGBqpVCHjp0iWoVatWqef19PTERYySBY2yHr98+RKio6OV/l53d3do3749tGnTBuzs7FTOffnyZahZs2ap50XrwZIFjdKeEz3W0tKCgIAA+PTpk1LfbWZmBs2bN4d27dqpPN0vXLgAgYGBUl8TCARyl0lRMzU1LfZ7jx49lCruFrGxsYGWLVtCmzZtwN/fX6m/OXPmDISEhMh9j5aWltzCRmm/7927F3bs2KF0doDv6/eMjAxo0aIFxMXFgZaWlsz3ylufSMMwjNwCR8nHT58+hTNnzqiUXSQsLExcxGhra1vq9SNHjkBUVJRany2JYRipRY35+flqHzwHAKhVqxY0btwYGjduXKxw9vDhw1C/fv0y565Ienp6EB8fDw0bNoSUlBQwNzcvt+ld0QQCAURFRYkvmHr06JHSFxmwzcjICBISEiAtLQ0sLCyk7jdwlYeHB6SlpYGzs7PCIncu0dHRgZiYGPD394fx48ezHUclLi4uEBQUBGvWrGE7ikq0tLSgVq1aam8b2GRpaQlZWVlsxyCEEEIIIYQQQgghhDO8vb0hJSUFUlNTITQ0VObgVxWpIgoXpVa7UuNWA7pV9L/ClClTJIdMZaUZGhpi06ZNceXKlUrf8lid2yaVtfF4PIyNjcXFixerfZvgFStWVGrmyMhIXLp0aZmHnF+7dm2lZRYIBJiRkYHbt28v8605KjO3qIWFheGCBQvKNEQyG7kBvt9yccCAAXj16lW1cq9fv56V3ADfb100ePBgvHbtmsq5N23axFpuLS0tbNiwIW7atEnl2xJs376dtdwMw2BMTAwuX74c8/PzVcq9Z88e1nIDAPr5+eGUKVNUvsXlvn37WM0tun33+vXrVZpX1LnlSkU0X19fnDRpktK3i+JKblGrXr06TpkyRWH+/fv3s55VWrOwsMAuXbrgkSNHpN66gqu5RY1hGKxXrx7OnDkTX7x4wZnlUpXm6+uLI0aMwCtXrmhUbgBAPp+PDRo0wF69erGeRZ3m7u7OegZ1Go/HYz0DNWrUqFGjRo0aNWrUqFGjRo0aNWrUqFGjpmwzNzfHli1b4urVqzE7O1vp85llVRG3ima9KI8aFS7+V0yaNIn1lZdkEwgE2KBBA5w5c6bc+Wrq1Kms5tTR0cHGjRvjxo0b8fPnz0pP7xkzZrCS18jICDt27IjHjx9HoVCo8nwye/ZsVnLb2tri0KFD8e7duypnRkScM2cOa/OInp4etmrVCvfv3y+1SEQeNgpzSzZli3QkLVq0iPXcAIA1atTAyZMnFytukWfx4sWsZwb43pHr2rUrnjp1SqnldNmyZaxnBvi+funQoQMeOXJEqdyrVq1iPTPA9+1Neno6btmyBb9+/aowN1sFxdKahYUF9u7dGy9fvqww94YNG1jPK9n4fD6mpKTghg0b8MuXLzJzs1lQLK/xeDxMSEjAVatWSS3a3bp1K+sZFTV7e3scOHAgXrp0SbzMslkIrWpjGAYjIyNx9uzZlX5BSHk1Gxsb1jNQo0aNGjVq1KhRo0aNGjVq1KhRo0aNGjVq1KhVVDMwMMAJEybIPR9YXiqicFG9ez0SQlRWVFTEdoRirK2twdnZGezs7MDY2Fjm+z5+/FiJqUr78uULbNy4ERo3bgxVqlSBDh06wP79+xVOz3fv3lVSwuLy8vJg0aJFEB4eDl5eXjBu3Dh4/vy50n/P1u2wXrx4AePGjQN3d3eIioqCZcuWKX2LUgCA9+/fV2A6+T5//gwrVqyAmJgYcHZ2hl9//RXu37+v1N/m5ORUbDglXLlyBfr37w92dnaQmJgIq1atUjjtP3z4UEnp5Lt8+TIMGDAA7O3tIS4uDpYvXy53nZGbm1uJ6WTLzs6GOXPmQGhoKHh6esKoUaPk3uKeC/MJwPf1y99//w2RkZHg5uYGv//+u9zbfpfltqvlqbCwELZu3QoZGRlgb28P/fv3h+vXr8t8P1vrb2nevXsH06dPhxo1akDt2rVh1qxZMqcrV6a3SFFREezYsUN8699evXrBpUuXRBfFiHFl/i5JKBTCnj17oEWLFlC1alXo0KEDHDp0CIRCIQCw3z9RxrNnz2DSpElQs2ZN8PX1hdGjR8tdZrkGEeHIkSPQvXt3aN26Ndtx1PLy5Uu2IxBCCCGEEEIIIYQQQgghhJQrKysraNeuHWzcuBFevnwJgwYNAm1tbbZjqac8qh+p0YiLRLGxY8eyWmXN4/EwLCwM//jjD7x8+bLSowEOGjSI9Qrxkq1KlSrYp08fube77tmzJ+s5Jad9YmIirlu3TuFtR7mU29jYGDt37oxnz55VOL8MGDCA9bwlW7169XDRokX44cMHmbl/+eUX1nNKa0ZGRti+fXs8ePCg1FEkf//9d9Yzymr6+vrYsmVLPHDggEblBgAMDw/H+fPnl1q3cD13ZGQk/v3336Xm9VGjRrGeTV4LDAzE2bNnlxq+fPTo0axnk9e0tbXxhx9+wD179mBhYaE49/jx41nPpkwLCAjAP//8U3wL7z///JP1TKq0atWq4bBhwzi/XFLjRtPUWwCbmZmxnkGdVrVqVdYzqNMsLS1Zz6BOMzExYT2DOk1fX5/1DOo0HR0d1jP8l3Lr6uqynkGdpqenx3oGdZqBgQHrGdRphoaGrGf4L01vbW1t1jNQo0aNGjVq1KhRo0aNGjVq/+Xm5+eHQ4cOxZMnTxY7R1mZKmLERQZLjLpCuIdhGHsAeAoA8PTpU7C3t2c5EVFHZmYmbNu2DYqKikAoFIJQKBQ/lvZcTk4OHDx4sEzfaWlpCQkJCZCcnAxxcXFgbm6u8mesW7cOdu/eDR8/fpTbKlKVKlUgKipK3Dw9PYFhGLl/s3TpUtizZw9kZ2dDdnY2vHv3DrKzs1kb8U0gEEDNmjUhJSUFBgwYAPr6+lLfJ8qdlZVVrBUUFFRy4uIaNWoEf/75J1SrVk3q6ytXroRdu3ZBdnY2vH//Ht6/fy9+zNZoo4aGhhASEgKxsbHQo0cPqdN8w4YNsG3bNsjNzRW3nJwc8WPRyF6VycXFBcLDw6FevXoQHh4udX7fvHkzbNmyBT58+CBuubm54sefP3+u9Nx6enoQEhICERERUK9ePQgJCQEDA4NSuTdv3lxseks2Nkem9fT0FE/3+vXrF5vXN23aBJs3bxbP2zk5OeLHbC+bIk5OThAXFwe//fYb2NraAgDAxo0bYdOmTeL1oGhdmJOTU2rUPTbp6OhAx44dYcyYMWBmZgabN2+GDRs2iPOKGldG7JRkb28Pbdu2hd69e8OpU6dg3bp14nWfaJqzuR6URyAQQGpqKiQmJsLx48dLLY+idSEXs+vq6oKHhwdYWVmBhYVFsf5Ifn5+sd+5kl8gEEBQUBC4ubnB27dvwcTEBAoLC6GgoAA+f/5c7Ke0x2zg8XgQFBQEDRo0AAcHB7hw4QIUFRXB169f4du3b8V+Kvuc6GdF/r+4urpCfHw8xMfHg4WFBaxcuRKKioqgsLAQCgsLy/3xu3fvytxf4PP5EBYWBgkJCZCYmAgCgQDmzJkjdX9B3r6EKj9zc3PljjasDC0tLYiMjISkpCRISkoCoVAIs2fPFudDRPHj8nzu7NmzKo0MXhKPx4O6detCcnIyJCcng7a2NsycOVP8+aKDJZLfqcxzil5/8OAB3L59u0zTvEaNGpCcnAwpKSlgZmYmzq1Mk8ykSvv06RPs2bOnTLnd3d0hJSUFUlJSwNbWFmbPni15oaZKj1X5m127dpVpZHgHBwdITU2FlJQUcHZ2htmzZxd7vWR/Slr/Sp33nDlzBi5fvqxmagA7OztISUmB1NRUcHd3h1mzZhV7XXLfQtZjdV578uQJrFu3rlxye3p6wowZM8SfL63Jek3V54uKiuCPP/6AwsJCtXKL5pO0tDTw8vKCKVOmAI/HE3++6LG851R9v+jxnDlz4NatW2rldnR0hLS0NHHuSZMmAY/HEzfRd6jb5P393r17YdWqVWrlrlatGqSlpUF6ejr4+vrC+PHjxZ/L5/OL/Szvx2/evIHu3burldvW1hbS0tIgIyMDqlevDuPGjSuWV97j8nhft27d1Br528zMDFJSUiAjIwOCg4Nh4sSJMr+7ZCvr63w+H9auXQsLFixQObe2tjbExMRARkYGREVFwaxZs9T6fmWatM/Jzc2FJk2aqNVHrF69OmRkZEBcXBysWbMGBAJBmaalqn87duxY2L9/v8q5TUxMIDk5GRISEuDkyZOgq6ur0vyr6LGi11++fAnt27dXOTcAgI+PDyQlJcGTJ0/Axsam2Gerur5Q5+/+/vtv2LJli8q5eTwehIaGAo/HAzc3NzAzMyuX9bcqrX///vDs2TOVswsEArC1tQVXV1dwcXEBExMTqdtGWY/L8hyPxwNEhF69ekF+fr7K2QG+91lcXFzA1dUVzM3Ni/UrRN8l6/fyeM/YsWPhxYsXamU3NTUVT3dbW1uuQQv2AADmDElEQVTg8/ky+1ry+k/qvv/YsWOwbds2tbLz+Xywt7cX5zcyMpL6vSUzyHpNmcclf587dy48ffpUrfza2trg5OQErq6u4OTkBLq6uuLPrqyfs2bNUvtON9ra2uDo6CjOr6enJ35N9B3Svlfd16W9d/PmzXDz5k218jMMA/b29uDi4gIuLi5gamqq9PeX1+MHDx7AmjVr1MoPAGBsbCye/+3s7EAgEFT6v2H58uXw5MkTtfLzeDyoVq2aeP1pbGxcIfOOrNf37dsHHz9+lHsnKEVE/wdubm5QrVo18TpUVgZZP1V5b2ZmJhQVFYl/v3//Prx9+1at/DweDxwdHcHd3R3c3d2L/R/I+6nKekb0eM+ePVBYWFjqPfn5+WU63mFtbQ3u7u7g4eEBdnZ25ba+Fz3evXs3fP36VebnIiIcO3ZM7WPB5ubm4OnpCV5eXsXmIUXbH0Xv2blzpzi3vM/5+vUrHD16VK3sAN+Pf3h6eoK3tzdYW1uX6q8ok1ny+Z07d8KXL1/En69ovrtx44bad1gyMDAAV1dXcHd3B0dHR9DS0ir2+RX9eOPGjXDt2jW1souOwaempkJqaio4Ozur9Tnl6dmzZ+Dg4CD61QERVd8pKIEKFzUAQ4WL/0kjR46E33//XeW/CwwMFJ88DAwMBD6fXwHpihMKhfD582f4+PEjtGnTBvbu3Vumz6tatSpERUVBZGQkREUpV6iorMLCQsjJyREXMooKY8aMGQN3794tl+8A+F5sGRoaCnXr1oXQ0FCoXbt2sZ05VX369KlYIeO7d+8gKysLduzYUebpXZKxsTEEBwdDSEgIhISEQFBQEFhaWqr1WYgIeXl5xQoZRY8nTpwI9+7dK7fczs7OEBYWBnXr1oW6deuCn59fmeZ/RIT8/PxSxTzv37+HLl26lMvtmhmGgYCAAHGRYnh4ONjZ2ZX5c79+/Qp5eXmlihqfPHmi9omWkkxMTCA8PFxcqFi7du0yDT8tOjEuq6jx7NmzsHDhwnLJzufzoWbNmsWmu7W1tVqfVVBQIC5klCxolHx8/PhxOHv2bLlkl8wfFhYmbqJiRWWIClZKFnaXLHDMzs6Gq1evqnS7e2UwDAM+Pj7i9WNoaCh4eHgAj8eT+3eFhYXw/v17cSFjycLGkr8/ffq0Qm5jr6OjA4GBgeLsISEhcqe/aD0oWdBYsrCx5ONXr17B69evyz27kZERhISEiNeTwcHBYGJiIje7vOVSstBbsh05cqRcc5uZmYmXVVXWN4gIX79+lVvYKPl7fn4+LF++XO0TAJIEAgHUqVMHoqKioH79+lC3bt1SxdzKEv075BU2FhQUwOjRo+H06dNlyu3l5QUxMTEQExMDkZGRxQ7kliehUFiswDEuLg4uXryo1mcZGRlBdHQ0xMfHQ1xcHLi6upZzWtmePHkC7u7u8PXrV5X/1s7OTlyoGBMTI3dZrAi9e/cWFwWpwt7eXryvER0dDUZGRhWQTrZ//vkHvL29VT5AaGFhAYmJiZCUlATx8fFqXdBVFogIERERcPz4cZX+Tl9fH2JiYiAlJQWSkpLKpZ+oqmnTpkHfvn1V+huBQAARERGQkpICycnJ4OHhUUHpZLt9+zb4+vqqNK8wDAMhISHiYkU/P79y2w9VVmFhIXh5ecH9+/dV+rs6deqIi/5q1KhR6bkBADp27Ah///23Sn9Tu3Zt8YHXmjVrspJ7xYoV0Lp1a5X+JjAwUFysWL16dVZyP3r0CNzd3VUquAwMDBQXKwYEBLCSWygUgr+/v0onnWvWrAnp6emQnp7O2vQGABgwYABMmTJF6ff7+vqKcwcGBirc36kox44dg4iICKXfX61aNcjIyICMjAwIDw8Xn9CpbN++fQMPDw949OiRUu8XFc5lZGRAQkJCpfdRJP32228watQopd7L4/GgXr16kJGRAenp6ayehHrx4gW4uLgUO3koj62trXheiYyMZPWWZKr0bRmGgbp164qXTzb6KSIfP34EJycnpQuJ9PT0ID4+HtLT0yElJUXt47Xl4ejRoxAZGan0+01MTCApKQnS09MhISGh0vd/JK1btw6aNWum9PsNDAwgISEB0tPTISkpCSwsLCownXxnz56F4OBgpd/P432/aEu0/ff09KzAdPIJhUKoWbMmXL16Vem/sbS0hJSUFEhLS4PY2FgwNDSswITy3bx5E/z8/FS6GNzFxUU87dncpgIAnD59GkJDQ1X6G2dnZ3FfPSIigtX1fFZWFjg7O6s0iIqZmRkkJSVBamoqxMfHV9gxLmW1atUKVq5cqfT7GYaB0NBQSEtLg9TUVPD29matHwzwvWDO09NTpYuRraysIDk5mRPLMADAwIEDYfLkyUq/n2EYCAoKEu/7sXGMQFJOTg44OTmpNMCDpaVlsf8DNvvIAAA9e/YsdXGlPFpaWlC/fn1IS0uDlJQUcHR0rMB0ii1ZskSli2V4PB6EhYWJl2M2t8MAqu2nAHw/LhkXFwepqamQnJwMVapUqcB08mVlZYGTk5NKF54EBASIt8O1a9dmbZ88OzsbnJycIC8vT+m/MTc3h+TkZPE2zNjYuAITqq4iChdZvw0yNcUN6FbR/znv3r1DY2NjpYaDNTY2xqZNm+LixYvx5cuXrOY+c+aMWkPaVq1aFX/88UecO3cu3r59W+nbWJeXU6dOlWlIXj6fj7Vq1cLu3bvjypUr8cGDB5Xyb8jPz0dHR8cyZefxeBgQEICdOnXCv//+G2/evCn11sTl7ezZs8gwjNq5tbW1MTQ0FPv3748bN27EFy9eVHhmkUWLFqmdW0dHB+vVq4dDhw7FXbt2yb3deUXo16+f2tmrVq2KTZs2xZkzZ+Lly5crdfhpoVCI0dHRamfX09PD+vXr44gRI3Dv3r1ybx9e3r58+YIeHh5lWk5NTEwwISEBR48ejQcPHsSPHz9WSvbPnz+jq6trmbIDfN9OxcXF4W+//YZ79uyplPm+qKgIQ0NDy5wd4PutiZs1a4bTpk3DM2fO4JcvXyo8f69evcolu5ubG7Zp0wbnzp2LV69erZTldv369eUyzVu0aIFz5szB69evV8p2CRHx2rVrat9aWCAQYGhoKA4dOhQzMzMxLy+vUjKL3L59G/l8vsq5bWxssHXr1rh06VJ89uxZpWYW2bVrl0qZGYbBwMBA/OWXX/DIkSP49etXVnIjInbs2FGleSQqKgonTJiAV65cqfT+rqSnT58qfbtHPp+P9erVw3HjxrGeGxGxZcuWSk/zGjVq4C+//MLqbTNE9u7dq3RuZ2dn7NGjB+7Zswc/f/7Mau78/HysUqWKUrmtrKywbdu2uH79eszJyWE1NyJi8+bNlcot2p9eunQpvnnzhu3YuHjxYqVy6+vrY3p6Oi5cuLBS94VkuX//PgoEAoW5dXV1MTk5GefNm8fadkdSYWEhenp6Ksyto6ODSUlJOHfuXE7kRkTs1KmTwtza2tqYmJiIc+bM4czxRGX6igKBAGNiYnDmzJn4+PFjtiMjIuKbN28U3uqeYRgMDw/HyZMn4927d9mOLBYXF6dwmlevXh1/++03vHjxIuvbehFl1od2dnbYrVs33Lt3b6XspykjJycHTU1NFa4L09PTcfHixfj27Vu2I4v17dtX4TT38fHBYcOG4dmzZyttP02Rly9foq6ursL1eHJyMi5YsABfvXrFdmSxiRMnKpzmlpaW2KFDB9y6dSvm5+ezHVksJiZGYXYHBwfs0aMH7tu3jzPLaFFREfr5+SnMbmNjg507d8Zdu3ax3ieXlJKSojC7gYEBNmrUCJcsWcKJ/q3Ipk2blOrnent74+DBg/H48eOs78dJ+vHHHxVmZxgG69ati+PHj8cbN25wZpuKiJiQkKBU/tDQUBw7dixeu3aNU/mHDh2q1Pzj4eGB/fv3x8OHD+O3b9/Yji12+/ZtpY45GhoaYuPGjTm3/CIitm/fXqn/Ay7cwlSa169fK+zPA/z/vvaiRYs41WdARBw5cqRS/wc+Pj44ZMgQPHHiBKf+D549e4Y6OjoK81tYWGCbNm1w/fr1mJuby3ZssW/fvil1vszIyAibNm2Ky5Ytw6ysLLZji71//x5NTEyU7gPt2LEDP336xHZsMWW2A1paWhgbG4szZ87ER48esR1ZbPjw4Uotu15eXjhw4EA8evQop7Zh0lTEraJZL8qjRoWLpDRFK18/Pz8cNGgQHj58mNWTtZKEQiGGhYUpteJlu1BRUmFhIdauXVup3KJmaWmJqampOHbsWDx06FClFRGV9Ouvv6qUGwCwSpUqmJ6ejuPGjcNDhw5VemEF4vcDRMHBwSrltra2xoyMDJw4cSKeOHGCtQNGubm5Sp+8BfhecJaUlITjxo3DY8eOsXqg686dO0qdTBQ1Z2dnbNu2LS5cuBD/+ecfVpfTzZs3qzS/mJubY1paGk6aNAlPnTrF6sHRyZMnq7ycOjs7Y6tWrXDOnDl49epV1k4G/PHHHypnBwD09PTEdu3a4bx58/DatWus7BwvWbJErew6OjoYFhaGAwYMwI0bN+Lz588rPfu1a9fUKkDT0dHB8PBwHDRoEG7ZsgVfv35d6dk/ffqETk5OKmf39fXFLl264IoVK1g9Oa3MQVxR4/P5GBISgkOGDME9e/awsj2V1LhxY6VyGxkZYVpaGs6YMQNv3rzJ+kHooqIirFGjhsLcNjY22K5dO1y1ahVnTu7+888/CpdVe3t7/Pnnn3HTpk2cOtDWpUsXubmtra2xbdu2uHbtWszOzmY7rtjNmzflXvhiYGCAGRkZOH/+fM4UFiF+308KCQmRuz6JjIzESZMmcWK5lKSoH1OzZk0cPnw4nj59mjPFC4iIN27ckDuvuLm5Yd++ffHAgQOcOYmOqPgguIODA3bt2pVzJ9AR5RdyV61aFX/66SfOFVwgIq5cuVJmbisrK2zfvj1u3ryZtX1+WR4/foxaWlpSc5ubm2ObNm1ww4YNlXrBljKKioowICBAam5jY2Ns1qwZrlq1qtIv8FOGrON0urq6mJaWhn///TfnTi4jyr7AmMfjYVRUFP7555/44MEDtmOWUlhYiO7u7jL3HbhWOCdJ1n60ubk5tm3blpPrFMTvxbl6enqlcouKcCZOnIh37txhO6ZUAwYMkDrNTU1NsVWrVrhhwwbW99ekyc/PR2tra5l9lQEDBuCxY8c4VXAgcvLkSZnbzxo1anCuEFqSvOI5f39/HD58OGfXL+fPn5e7z9y5c2fcuXMn5/qJiN/3iWTt+4v2h6ZMmYL//PMP21GlkrcvamBggA0bNsTFixezcixOGfIGHNHX18eMjAz8+++/OZs/KysLDQ0NZfZpIiIicPLkyZzdTiEitmrVSub/QbVq1bB79+6YmZmJBQUFbEeV6v79+zKPgWlpaWFMTAxOnz6dk/1KkYEDB8r8P7Czs8MuXbrgzp07OVWoJUnexTECgQCjo6Nx2rRpeP/+fbajytSzZ0+Z/weigi2u9n0QEZcuXSozv6OjI/bo0YNTF1SVJK/wtUaNGjhixAg8d+4cJ/tA8rYDZmZm2KpVK1y3bh2njr+LvHv3Do2MjGT2gaKiojjdB5KFChf/ow2ocPE/5c2bN2hgYFBq5yE1NRXnzp3LmavNS5J31TyXChVLmj9/vszcoh2f6tWrY5cuXXDp0qWsF3CJ3L17V+FIOdra2hgSEoJ9+vTBNWvW4KNHjziRXdFV8wzDYEBAAHbp0gWXLVuG9+7d40RuRMRBgwbJzW5nZ4c//vgjzpo1C69cucKpDnZqaqrc7L6+vti1a1dctWoVp7Y1BQUFCq9iqlatGrZs2RLnzp1bqaOzKfLy5UuZHVLJnco6depgnz59cP369ZwYMQcR8cmTJ0pdgWhgYID169fHYcOG4Y4dOzhxBVlOTo7Mg//SdigrezRFeYRCIUZFRSmV3cbGBps0aYJTp07F06dPs54dEXHMmDEKc2tpaWFoaCgOHDgQt23bhu/evWM7NiIi7tmzR27ukoWKXCoEkDdytJaWFkZGRuLo0aPx1KlTnLtSb82aNVJz6+joYGxsLE6aNAmvXr3KmX6ApBYtWkid3tHR0Thp0iTOjU4g8vDhw1LFLgzDYFBQEI4cOZKzB6gQEZs1a1Zqmru5uWHv3r1x7969nD3AL21UUUtLS2zdujWuXbuWkwU6iIgfP35EKyurUvulaWlpnCsOLankvMLn87F+/fo4ZcoUTp/MKrmfxDAMBgcH4+jRo/Hy5cucXKcgIj548KDUBVLVq1fHX3/9lbMn/hG/F0Z5eXkVyy0amYJro4OU1K1bt2K5XV1dsV+/fnjkyBHObeslbdmypVhue3t78UlaLvRlZXn37l2xkyQWFhbYrl07zhagSZIcmUtPTw8zMjJwyZIlnLkQRJZVq1YVWxeGhYXhpEmTOH8y5+PHj2hhYVHsWEWvXr3w4MGDnF42ERGHDBkizq2trY1JSUk4f/581u/uo8jbt2+LHUd3cHDAnj174oEDBzhzsb8s06ZNK7ZODAoKwrFjx3JulDZpEhMTix3XatCgAc6YMYNTI9tIU7J4TtRH5Hqhh0h6enqxeSYgIAB//fVXTu/DiZTsAxgZGeEPP/yAK1as4MxxIXlKjuZuZ2fH2QuKpElKSiqVv0uXLhqTf9iwYcXyiy540ZT5586dO8VGWxTt540ZM4YTd7ZQRocOHYr9H5ibm2Pr1q05WyhUkrTRFmvXro0jR47ECxcuaMT/wahRo4rlNzMzwxYtWuCaNWs4e1xJ0vPnz4uNtqhpBVvfvn0rdWFVUFCQxizHJQtftbS0MD4+HmfPns3ZuhNJv/zyS7Fp7+7ujv379+f8MRDE0qMtmpqaYvPmzXHVqlWcGjBAVVS4+B9tQIWL/yn9+/cvdhIuMzOT8zsPBQUF6OLiIl5BVa1aFZs3b47z5s3DO3fucHaD/e7du2IHFEWdvaSkJBw9ejTu37+fU4UJIkKhsNgBIlFzcXHB5s2b4/Tp0/HMmTOcPHkrraDIyMgIY2Nj8bfffsPMzExO3FpOmnv37pUqFvXy8sKff/4Zly1bVmm3CFdHydsT8vl8rFOnDvbv3x+3bNnCiWIzWSZMmFBqXheNzrZy5UpOd6ql3T7B1NQUExMTccyYMXjo0CHOjToj8sMPP5TKLlrPtGzZEmfPno0XL17k5E5B7969pWbnwmiKiqxbt05qdj6fj7Vq1cIePXrgqlWrOFOILun58+elLrwA+H6Lk7i4OBw9ejRn5/nCwsJSt4ri8/kYHByMgwcPxt27d3OyP4D4vU9Qr169Ytlr1KiBAwYMwD179nD6ZPrXr1+LHfDx9vbGPn364O7duzk5n0i6du2aeLSFatWqYefOnXHLli2cnU8kiQ42m5mZ4Y8//ojLli3j7KgKkq5evYoMw4iv5P/zzz85XYAmIhQKsU6dOuJlc/jw4Xjq1ClOF0SJiPpgjo6O2L17d9y9ezfn90sREa9fv44Mw6C5uTm2atVKYw7ii0ZbFI3Y8vfff3PutlSy/PTTT6itrY0JCQkac9AbEXH16tXigoU///wT7927x3YkpTx79gx1dXUxNDQUx40bx7mRWmURCoVYu3ZtrF69Oo4YMUJjThAiIo4YMQJdXFw0ojhU0sWLF9HS0hLbt2/PyRFPZSkqKsLatWtz8ra+ikyePBkDAgJwxIgRnB1tTpp3796hg4MDtmzZEtevX68RfVqRX375RSOn+efPn9HZ2RkTEhJwzpw5nDw+IcvZs2c5P0quLNu2bRPfvnHFihUadbL40qVL4n2hGTNm4MOHD9mOpDShUIi1atVCR0dH7NmzJ6dHo5Lm1q1byOPxxEVOmrSuQfz/0RY1Nb9olC0XFxfs3bs37t+/X6PmH0TE1q1bi28/vHDhQs5fFFCSaLRFTbqFaUmDBg1CXV1dTE5Oxrlz53L6QkxpREVn7u7u2K9fP87dCl0ZvXv3FvcfVq5cqRFFx5KWLVuGenp6mJaWhgsWLODMACTKGjVqlPgW3Fy8O4M82dnZaGpqiuHh4Thx4kS8ffs225GU9u7dOzQ2Nhbf+eXQoUOcv7hKWRVRuMjg98I4wmEMw9gDwFMAgKdPn4K9vT3LiUhFKSoqgkWLFkH9+vXB3d2d7ThKW716NWzfvh2ioqIgKioK3N3dgWEYtmMp1LNnTzh06BDUrVsXQkNDITQ0FDw8PIDH47EdTa6tW7dC69atoU6dOhASEgIhISEQHBwM1tbWbEdTqH///rBlyxaoW7cu1K1bF8LCwsDX1xf4fD7b0RT64Ycf4PHjx1CvXj0IDw+HsLAwsLKyYjuWQoWFhRAaGgoGBgYQEREB9erVg9DQUDA0NGQ7mkKvXr0CPz8/cHd3h3r16kG9evUgLCwMzM3N2Y6m0NmzZyEkJAScnZ0hLCxM3Hx8fDi/jjl48CA0aNAAdHV1ITAwsNg6skqVKmzHk+vatWtQs2ZNKCoqAkdHR3HukJAQqFGjBmhra7MdUab8/Hzw9vaGp0+fgpmZGYSGhorXlXXq1OH8Mtu2bVtYtmwZVKlSRbyerFevHgQEBIBAIGA7nlwLFiyArl27Qu3ataF+/foQFRUFYWFhYGRkxHY0hXbs2AE9e/aE2NhYiImJgfr162vEtgkAYOPGjbB27VqIj4+HuLg4cHBwYDuS0mbOnAnfvn2DhIQE8Pb21oh+LwBAXl4eTJo0CeLj4yE4OJjzy6akTZs2AcMwEBMToxHLpsiTJ08gMzMTkpKSwM7Oju04SkNEWLx4MQQHB4OPj4/GzOMA3/sxOjo6EBISohH7GCKPHz+G27dvQ1RUFOjo6LAdR2lFRUWwe/duiIqK4nxfpaQzZ86Ah4cHmJmZsR1FJY8ePQI9PT3O98tL+vTpE7x58wacnJzYjqKyJ0+egIODg0atCwEAsrKywMzMTKPWhQAAX758ga9fv2rU9l4kOztbI45XlJSXlwc6Ojqc3l+W5c2bNxpxPLSkvLw8QEQwNjZmO4rKnj9/DlZWVho5v9y7dw8cHBw0qq8lcu/ePbCysgITExO2o6jsw4cP8OjRI/D399e4bSkAwM2bN8HExESj9uckXbp0CaytrTU2/927d+Hbt28adexFUlFRERw4cADq1asHenp6bMdRy7Vr10BXV1ejzllLQkQ4ePAghISEgIGBAdtx1PL48WMoKCgAT09PtqOoBRHh1KlTEBgYqJH9BwCAq1evgpubG+jr67MdRS3Xr18Hb29vjds3BPh+nlggEIClpSXbUVT24MED+Pr1K3h6emrkNkyeZ8+eSZ7PcUDEZ2X9TCpc1ABUuEhIxcjLy9PIA6GvXr0CKysrjexgvHv3DiwsLNiOoTJEhE+fPmnkjs3Xr18BETXyoFx2djbo6upq5M7AjRs3wMLCAqpWrcp2FJVlZmaCubk5VK9eXeN2JDdv3gyICKGhoWBjY8N2HJWcOXMGrl+/DnXr1gVPT0/OF7hKys/Ph/Xr10NYWBi4ublp3E7Y+fPnwcPDQyNPGmlqX4YQQgghhBBCCCGEEEIIIYRoFipc/I+iwkVCCCGEEEIIIYQQQgghhBBCCCGEEEIIIWyoiMJFzRnKhRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIRqPChcJIYQQQgghhBBCCCGEEEIIIYQQQgghhBBSaTS2cJFhmECGYUYwDLOXYZhnDMN8YRjmI8Mw/zAMs5hhmPBy+p6RDMOgki2qPL6TEEIIIYQQQgghhBBCCCGEEEIIIYQQQgj5txKwHUAdDMMcBYB6Ul7SBgD3/7V2DMMsA4CfEfFrZeYjhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKIdBpZuAgAtv/7+QIA1gPAMQB4AgB8AAgFgP4AYAcAbQBACwBalNP3+it4/WE5fQ8hhBBCCCGEEEIIIYQQQgghhBBCCCGEEPKvpKmFi7cBYBgAbETEohKvnWYYZjkAnAAADwBozjDMXEQ8WtYvRcTrZf0MQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkv4zHdgB1IGIKIq6TUrQoej0Lvo+6KNKkcpIRQgghhBBCCCGEEEIIIYQQQgghhBBCCCFEHo0sXFTSIYnHrqylIIQQQgghhBBCCCGEEEIIIYQQQgghhBBCiNi/uXBRR+Kx1JEZCSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQUrn+zYWLkRKPb5XHBzIMs5dhmDcMw3z938/DDMMMYRjGrDw+nxBCCCGEEEIIIYQQQgghhBBCCCGEEEII+bcTsB2gIjAMwwOAIRJPrSunj46VeGwF34sjIwFgMMMw7RBxqzofyjCMvYK3VFXncwkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEK75VxYuAkBfAAj63+NNiHihjJ93DQC2AMBZAHgBAFoA4AkALQEgDgBMAWAjwzCpiLhbjc9/WsZ8hBBCCCGEEEIIIYQQQgghhBBCCCGEEEKIRmAQke0M5YphmEgA2A/fizLfAIA/Ir4pw+eZImKOnNc7A8Dc//36AgBcEbFAxe9Q+j/h6dOnYG+vaIBGQgghhBBCCCGEEEIIIYQQQgghhBBCCCGk7J49ewYODg6iXx0Q8VlZP/NfNeIiwzC+ALAZvv+7CgCgaVmKFgEA5BUt/u/1eQzD1AGAjgBgCwCNAWClil/joOD1qgBwTsXPJIQQQgghhBBCCCGEEEIIIYQQQgghhBBCOOdfU7jIMIwzAOwFADMAKAKAHxHxaCV9/Tz4XrgIABAJKhYuKqpAZRhGzViEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgi38NgOUB4YhrGF77eHtgUABIAOiLi1EiPclHhsV4nfSwghhBBCCCGEEEIIIYQQQgghhBBCCCGEaBSNL1xkGMYSAPYBgMv/nuqJiMsqOQZW8vcRQgghhBBCCCGEEEIIIYQQQgghhBBCCCEaSaMLFxmGMQGATADw+d9TQxBxNgtRfCQev2Dh+wkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEI2gsYWLDMPoA8BOAKj1v6f+QMQJLMXpLPH4CEsZCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQztPIwkWGYbQBYDMAhP3vqemIOFyNz2nHMAz+r42U8ro/wzBuCj6jEwD89L9fX/0vFyGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQqQQsB1ATasBIO5/jw8CwCKGYfzkvP8rIv6jxvfUBoCFDMMcAoDdAHANAN7B9+nmBQAtJXIUAUAnRMxX43sIIYQQQgghhBBCCCGEEEIIIYQQQgghhJD/BE0tXGwk8TgaAK4qeP9jAHBS87v4ABDzvybLOwDoiIjb1fwOQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkP0FTCxcryy4A6AgAoQBQEwCqAIAFADAAkA0AVwBgDwAsQcQPbIUkhBBCCCGEEEIIIYQQQgghhBBCCCGEEEI0hUYWLiIiU06fswQAlsh5/Q0A/P2/RgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkDLisR2AEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh/x1UuEgIIaRcICLbEdTy7NkztiOoLSsri+0IasvLy2M7gtq+ffvGdgS1aepySoi6EFFj5/uioiIoLCxkO4ZaPnz4AEVFRWzHUMvLly/ZjqCWZ8+eaeT88vbtW/jw4QPbMVT28eNHjZxXhEIh3Lt3j+0Yarl16xYIhUK2Y6js1q1b8PXrV7ZjqOzOnTuQk5PDdgyVPXr0CB4+fMh2DJVlZ2fDmTNnNG7bKRQKYffu3fDx40e2o6js4MGD8OjRI7ZjqOzatWtw4sQJjdvm5+fnw7p16+D9+/dsR1HZrl274MaNGxq3T/HgwQPYuXMnfPr0ie0oKtuyZQvcv3+f7Rgqe/78OezatUsjp/mZM2fg8uXLGjefAwAcPnxYI7f9AACnTp3SyHkdAODJkydw6tQpjeu7iBw7dkwj9+dE9u/fr5HbVJEjR47A69ev2Y6hths3bsD169c1cp0JAFBYWKix2yuRCxcuwK1btzT2/6CgoAC2b98O+fn5bEdR2759++Dx48dsx1Db4cOHNXo53rJlCzx58oTtGGo5deoU7N69Gz5//sx2FJVdu3YNduzYodHrTy6jwkVCKkl+fj6cO3dOIzeCT58+1djcmrjzvH37drhy5QrbMVT266+/wogRIzTuZOiiRYvA398fxo8fr3EdvbFjx0J4eDj89ddf8PbtW7bjqOSPP/6AuLg4WLp0qcYVLCxfvhySk5Nh9erVGtdBffz4McTFxcGSJUs0sni0X79+MHHiRI0sOD569Ch07twZjh49qnGFFwUFBdC0aVOYO3euxq1rAABatWoFAwYMgNOnT2vUtOfxeJCQkADt27eHbdu2adTO/Pv378HR0RF++ukn2L59u0ZlHzFiBNSoUQNGjBgB58+f15h55vbt22BtbQ0tW7aENWvWaEzBEcMw4OzsDLGxsTBjxgyNOemop6cHsbGxUKdOHRg1ahRcunRJI/aXeDweDBw4ELy8vGDAgAFw5MgRjSl+Wbp0KdjZ2cFPP/0EW7du1ZgD/KdPnwZLS0to0qQJLFmyRGNO0OXm5oKVlRVERUXBpEmTNOakkKGhIQQEBICPjw8MHDgQDh8+rBEXHZmamkLnzp2hatWq0Lp1a1izZg1kZ2ezHUshHo8H27dvBwsLC4iNjYWpU6fC7du3NWJeyc3NBWdnZ/Dx8YH+/fvD/v374cuXL2zHUsjW1hYSExPB2toamjVrBkuWLIFXr16xHUshAwMDWL16NVhaWkJYWBiMGTNGY/pZ3759Az8/P3B0dIROnTrB5s2bNeIYhoODA/Tq1QvMzc0hPj4epk2bpjHL5+vXr8HNzQ08PDygd+/esGfPHo3Yn7CxsYHBgweDhYUFJCYmwowZM+Du3btsx1KKsbEx1K5dG+zt7eGnn36CjRs3Qm5uLtuxlPLx40dwcXEBb29v6N+/Pxw4cEBjLhoRCoXg5uYGnp6e0K9fP43ZFgEAWFtbww8//CDuu6xevVoj+i4ib968AVtbW6hduzaMGDECTp8+rVHnkS5cuABWVlYQEREBEyZM0LjimydPnoCNjQ0EBQXBqFGj4MKFCxrRJxAxMzODOnXqgJOTE3Tr1g127dqlEdspEYFAAKtXrwZzc3NITEyE2bNna9wFPQYGBuDn5weurq7Qq1cvyMzMhIKCArZjKU1XVxf+/vtvcZ9h1qxZGnM8TOTdu3fg5OQE/v7+MGTIEDh27JjGHF8CANDS0gJ/f39wdnaG7t27a9xy/PjxY3B0dISAgAAYOnQoHD9+XGOmv6urKzRp0gQsLCwgNTUV5syZozHn5l1cXKBDhw5gYWEBSUlJGrn+5DTRKCTUuNsAwB4AEADw6dOnSDSTUCjE4OBgdHJywgEDBuDZs2dRKBSyHUspkydPRn9/f5wxYwZmZ2ezHUdpmzdvRicnJxw/fjy+efOG7ThKy8zMRADAwMBAnDt3Lubm5rIdSSknT55E0boqLCwM58+fjzk5OWzHUujVq1eora0tzh4REYHz5s3Dd+/esR1NoQcPHiCPx0MAQD6fj4mJibh8+XLMy8tjO5pCjx8/Rj6fjwCAurq62LRpU9yyZQt++fKF7WgK5efno5mZGQIAGhoaYps2bXDfvn1YWFjIdjSlpKWlIQCgnp4eNm/eHHft2oXfvn1jO5ZStm3bhgCADMNgdHQ0Ll68WGPWkYWFheji4oIAgA4ODjho0CC8cuWKxvQFRowYIV7XxMXF4aJFizSmTyCabwAA7e3tsU+fPnj8+HEsKipiO5pC69atE2c3MDDAJk2a4MqVKzVi+9qhQwdxdn19fWzYsCEuWbIEs7Ky2I4m1/3798XbJwBAW1tb7Ny5M+7cuRM/f/7MdjyZhEIh1q1bV5xbIBBgdHQ0Tps2De/fv892PLmGDh0qzg0A6Ofnh0OHDsWTJ09yetu6Zs2aYrnt7e2xS5cunJ9XLl68WCy3qakpNm/eHFetWsXp9fqbN2/QwMBAnFtHRwcTExNx9uzZ+PjxY7bjyfTt2zd0dXUV52YYBoODg3HUqFF48eJFTvcDkpOTi80rzs7O2KNHD9yzZw+n5/FffvmlWG5jY2Ns0qQJLl68GF+9esV2PJm2bt1aLDePx8OwsDD8448/8PLly5ydV549e4Y6Ojql5pVu3brhjh07MD8/n+2IUgmFQqxVq1ax3AYGBpiWloZz5szBR48esR1RJlG/XLLVrFkThw0bhseOHePsvt21a9eQYZhiua2trbF169a4cuVKfPv2LdsRpRIKhRgUFFQst0AgwMjISBw/fjynl8+lS5eWmlecnJywa9euuG3bNs4eO/r69at431nUdHV1MTExEWfMmIH//PMP2xFl2rRpU6lp7ubmhj179sRdu3bhp0+f2I4oU5s2baTO5xMmTMBr165xdj4XnXORzG5oaIgZGRk4f/58zp9Pi4+P19jsc+bMkdp3GTt2LOePdxUVFWH16tWL5be0tMTWrVvjmjVrOL1fhIiYl5eHVlZWxfJXq1YNu3btyun+l8i3b9/Q09OzWP6qVatihw4dcOPGjfjhwwe2IyrUp0+fYvn19PQwOTkZ//rrL07vn4r8888/xY59AQD6+PjgwIED8ciRI5ztT0pq2bJlsfz6+vqYlpaG8+fPx2fPnrEdT6HLly+X6jNo0v9BYWEh+vr6FstvZmaGzZs3xxUrVnD++C8iYlxcXKnlOCUlBefMmYNPnjxhO55cnz59Qltb21LTv0WLFrhy5UrOn98ePHhwqfnfz88PBw8ejEePHuX0/D9lyhSZy+7hw4fx69evbEesFE+fPpWcBvZYHjVx5fEh1KhwkSin5MELURHjmTNnOL0j9/btW3Fhl46ODrZs2RIPHz7M6cyI3w90WVtbIwCgtrY2tmrVCk+cOMH53EVFRejs7Fysw92+fXvOZxcKhVi7du1SBxZ//PFH3L17N6dPPLdr165UR0NLSwvT09Nx/fr1nD4x17hx41LZ9fT08Mcff8Rt27ZxuhDwhx9+KJXdzMwMO3XqhEeOHOF0UdGgQYNKZbexscH+/fvjpUuXOL2s7t+/v1T2KlWqYJ8+ffDChQuczi5Z/Fdyft+xYwfndwqmT59eatr7+vri2LFj8eHDh2zHk+v169elTkpraWlhSkoKrlixgtMHFYuKitDHx0fqMtujRw88cuQIZ7dRhYWFpQ7miqZ9QkICzps3j7NFGHfv3hUX15c8mREZGYlTp07lbEFd+/btS+UG+F7Q0LBhQ1y8eDEnL4rZu3ev1NyiAyhDhgzBEydOcG5+f/v2bbGCNMlmZWWF7dq1w40bN3Lu5HphYaHUdYuo/56eno4LFizAly9fsh21lIyMDKm5+Xw+RkZG4uTJk/H27dtsxyxF2oFNUQsICMBhw4bhqVOnODePL1myRGZuOzs77NSpE27bto1zJxjPnz8vM7doHp8/fz4+f/6c7ajFvHv3Do2NjWVmr1OnDo4cORLPnTvHqf0NoVCIderUkZnb1tYWf/rpJ9y0aRPn+l19+/aVmVtHRwcTEhJw+vTpePfuXbajFrNr1y6ZuUXbzv79++P+/fs5tV+dk5MjvpBOWjMxMcEmTZrgokWLOLd8tmjRQmZuUWH3b7/9hqdPn+bUulxeH0u0fHbo0AHXrVuH79+/ZzuuWGFhIXp7e8vMra2tjQ0aNMDJkyfj9evXOXUsQFrRpWRzdXXFHj164M6dOzm1/ZRWFC3ZdHV1ObtOvHfvXqkiFslmb2+PnTp1wi1btnCuX65oGQ0ICMAhQ4Zw8kT4mTNn5GavXr06Dh06lJOF6V++fEFHR0eNnGcQEbds2SIzO5/Px3r16uH48eM5W7g7efJkueuapKQknD17Nmcvxli1apXM/FpaWtigQQOcOnUq3rlzh+2oUr18+RL19PRk/hv8/f1xyJAhnFx2RaSdExM1U1NTbNasGS5btoyzF5fcuXNH6nFHUatRowYOHz6ck8cIRKSd2yv5f7B8+XLO/h9IXnBfskkWs1+9epWT69FTp04p7D8MHToUjx8/zsl5aObMmXKnf3h4OI4bN46T0//t27doaGgoM7+ZmRn++OOPnJz/8/PzsWrVqjKzm5iY4A8//IBLly7l5PmD8kKFi//RBlS4+K9RWFiIHh4eUldkjo6O2L9/f84WMTZv3rxUZg8PD5w4cSK+fv2a7Xgy9evXT+oO/7x58zi5wywyduxYqfOJj48PTp06lXMbapHFixfL3Fjb2NjgwIED8fr162zHLOXSpUtyO6jGxsbYvn17PHDgAOc6qMePH5ebXVQIePjwYU6dmEMsPkqntFatWjUcPHgwXr16le2opTx69EjujrGvry+OHz+ek1dmCYVCmYUWovXMuHHjOJkdEfHPP/+Umd3Kygp79uzJ2VGNP3z4IPdEelhYGM6ePZuz6/hOnTrJzK6rq4uNGzfGdevWcerEkYiiE19VqlTBrl274oEDBzh3QFHethXg+0ne8PBwnDp1KucKYFu3bi03O8D3qymHDx+O586d48xyq+iknWi6h4WF4YQJE/DWrVtsR0bE7+v30NBQhdOci8WAQ4YMUZhbW1sb4+PjcdasWZwZwaDkqIuyWp06dXDUqFGcubhBUd9X1Nzd3bFfv3548OBBTlwcIK/IteQ83rZtW9ywYQMnRmb+9u0buru7K8wtOsHIpVE6RCN1K2o1a9bEX3/9FU+fPs2JfY7ffvtNqdxVqlTBdu3a4fr16zkxmvHu3buVyi06mTtlyhS8desW6+uV169fo76+vtLrlV69enFi5M6SoxXLa4aGhpieno5z587lxPI5btw4pXIDfD8GNmTIEDxy5Ajr63Jpo/vIahYWFti8eXNctmwZ68cdhUIhRkZGKpWbz+djWFgYjhkzBi9cuMD6OnH9+vVKzyvVqlXDTp064aZNm1jffhYWFqKXl5dSuXV1dTE+Ph6nTZuGd+7cYX2dqKgoWrJxbTTGn3/+WaXt0OTJk/HmzZusT3OhUIj16tVTKrvoZPLixYs5c4FRSkqKUtlFJ/GXLVvGmRPhCxcuVCq7trY2xsXF4bRp0zhTtCttEAZ568cuXbrg9u3bOXPMKz8/H6tUqaJUfl9fXxw0aBCnRoKSdyGgtHVl7969cd++fZy6mGTAgAFKL7tcHAVNmWNfAN+Pf4WGhuKYMWM4c0xDpG3btkr9H1haWmKbNm1w7dq1nLrIRNqI5PL+D7g2Gn9RURH6+/sr9X/g4OCAXbp04dyosElJSUrlNzc3x5YtW+KqVas4sxx//vwZ7e3tld6OiUbl5UKfE7H03TI0aR0kbYASWdlDQkJw9OjRnL/riqqocPE/2oAKF/9VFixYoHBFJipiPH36NGdWYocOHZKZV0tLC5s0aYKZmZmsH5Ar6dq1azJzGxsbY8+ePfHmzZtsxyzl5cuXKBAIZGbX1tbGZs2a4b59+zg1zT99+oQWFhYK5/HatWvjjBkzOFWcExUVpVRHw9bWFvv378+ZToaikTkkm729PQ4cOJAznTtELHU7F1nN398fx48fz4mTRCLyroiT7JhGRUXhwoULOXEyVGTu3LlKZa9fvz7+/fffrJ+0kJSTkyP3aixR8/DwwFGjRuGDBw/YjlxM//79FWYXCASYlJSEK1eu5ExRESLi7du3lVpeDQwMsHnz5rh161YsKChgOzYifh+F2cHBQan8VlZW2KlTJ9y7dy8nDuh+/fpV7igGJVuNGjVw1KhRnBgV4NatW0odgBM1Ozs77NatG2ZmZrJ+MFrZg5+S65wBAwawPorHnj17VMqtra2NCQkJOHv2bFYL1pUtSJNsAQEB+Msvv7BaKKXKyRZRc3BwwK5du+KuXbtYLdpp2LChSrlNTU3xxx9/ZP1kizJFrpJNS0sLY2JicPr06ayO8rps2TKVcovm8WHDhrF62/SStxZXdjvatm1bXLduHWv935ycHDQ1NVUpt0AgwPr167NahKFKIZ1kc3FxwR49erBa+KLqsgnw/7fUmz17Nmt99oMHD6qcG+B7AcCAAQPwwIEDrPRZPn78KL7DiCrN2NgYGzdujAsXLmTtFnodO3ZUa5rXrl0bhw8fjidOnGClr6XoolFZrUqVKtimTRtctWoVK7fMKyoqwpo1a6qcWyAQYFRUFE6YMIG1W77KG8VH0Tqxe/furJ0YFwqFGBYWpnJuydths1XY9fjxY/Fdl1Rpjo6O2LVrV9y+fTt+/PiRlexHjhxRe93y66+/sjoilzr9LdEotb///juro0h//foVXV1dVc7v7u6Offr0wb1797J63Gjnzp1qL6szZ85k/ZjjtGnTVM7PpZGg1FnPGxoaYsOGDXHhwoX44sULVvOrcvGOqHHtlurq9MtEo6lu3bqVtXW+iLLFl5JNdKeJSZMmcaL4vlmzZmr9H3Tu3JkTd27YuHGjWutRrly0ee7cOZXz83g8zozKO2fOHLWmPxduba/obhmymuhuFJs3b2bt3Nnnz59L3apbU7KXl4ooXGTwe2Ec4TCGYewB4CkAwNOnT8He3p7lREQdX758ga9fvwLDMODh4QEvX75U6u+qVasGTZs2haZNm0JQUBAwDFPBSYsTCoXi7/T09IS7d+/Kfb+TkxN07NgR2rdvD3Z2dpURUSpRboZhoE6dOnD+/Hm5769fvz507doVMjIyQEtLq5JSllZQUAA5OTlgaWkJzZs3hw0bNij8G2dnZ+jYsSO0a9eOtWmek5MDt2/fBjMzM5g6dSrMnz9fqb/T0tKC5ORkaNu2LSQlJYG2tnYFJy3u1atXcOLECTAyMoITJ07AqFGjVPp7Hx8faNmyJbRo0QKcnJwqJqQUr169guPHj4OhoSEYGhrCvn37VM7u7e0NLVu2hObNm4OLi0sFJS3uzZs3cPToUTAyMgIjIyMwNDSEvXv3wsCBA1X6nIiICGjZsiU0adIEzM3NKyjt/8vKyoIjR46AsbFxsXb16lVISkpS+nN0dHQgLS0NWrVqBQkJCRU+v2dnZ8OhQ4fAxMQEjI2NwcTERPwYEcHe3h5ycnKU+iw9PT1IT0+H1q1bQ1xcHAgEggrPXXJ6Gxsbg4GBAfB4POjVqxfMnDlT6c8MCwuD1q1bQ9OmTStsnsnOzoaDBw+CoaGheP6WfKynpwcMw8Djx4/BxcUFhEKhUp+rr68P6enp0LJlS4iLiyv3bVRWVhYcOHAA9PX1xU1PT6/U77q6usAwDKSnp8O2bduU/nwTExNo2LAhNGvWDBo0aFBu+d+8eQMHDhwAHR0d0NHRAW1tbfFjWb/Pnz8fBg0apNL3mJubQ0ZGBjRp0gQaNGhQ5uX21atXcPDgQRAIBMWalpaW3OeWLVsG48aNU/n73N3doWHDhtCwYUMICgoCHo+nVu6XL1/CgQMHgMfjAZ/PBx6PJ24lfy/53ODBg+HMmTMqf6exsTEkJSVBeno6JCYmgomJiVq59+/fL+4TSjYejyf1eVG7f/8+9O/fX+XvBACwsLCA5ORkSEtLg7i4ODAyMlIrNwCI++HK/gQA6N27N7x+/Vqt7DVq1IDU1FRIS0uDWrVqqTTPvHr1Cvbt2yf1NWn7MCWfmz9/Phw9elS1wP9TpUoVSElJgdTUVIiJiQEDAwOl//b169ewd+9etb4XAGDv3r2wYsUKtf5WX18fYmNjITU1FZKTk6Fq1apK/+2bN29gz549Ml9XdKzn+vXrMHnyZKW/TxKfz4ewsDBITU2FlJQU8PT0VHo/9e3bt7B79+5SGUWPpT0n+TgrKwuGDBmiVm6A7/33lJQUSElJgdDQUKX7NKLcJQ+qibIpeq6wsBAGDRoEX758USu3paUlJCUlQUpKCsTFxSm9TszKyoKdO3eKcwiFwmK55P0uevznn3/Cs2fP1MotEAigXr16kJycDCkpKeDh4aHUvCLKLcogFAqLNWWe27RpE1y4cEGt3ADf97OTk5MhOTkZoqKiQFdXV+HfvHv3Dnbs2AFFRUXiHKLH0p6T9vjixYuwa9cutXPr6elBdHQ0JCUlQVJSklL7qe/evYPt27dDUVFRsbzSmqzXsrKyYMmSJWrnBgDw8vIS5w4PDwcdHR2578/OzoZt27ZBUVERFBYWFssj+bui15YsWQKfPn1SO7ehoSHExMRAYmIiJCYmgoODg9z3v3//HrZu3SrOUVhYWOyxtOekvX706FG4c+eO2rkBAPz9/cW5w8LC5PbVJXNLy6fs88+ePSvTdhcAwMzMDGJjYyExMRHi4+PBxsZG5ntzcnJgy5YtSmeU99rGjRvLNK8wDANBQUHiaV67dm3g8/lS35ubmwubN2+Wm6nkc7Lec/XqVbh06ZLauQEA7OzsICEhARISEiAmJgZMTU2lvi8vLw82btwodZ5Vdn4X/fz27RusXLlS6X1naXR0dCAyMhISEhIgMTFRZp/l48ePsGHDBrXWIdJeu3HjBpw6dUrt3AAAbm5ukJSUBImJiRAZGQl6enql3pOfnw/r16+Xuc6W12Stz3fs2AHPnz9XO7domicmJkJSUhK4u7uXmuafP3+GdevWSc1SctupyutLly6Fjx8/qp3dwsICEhISICkpCeLj48HCwqLY6wUFBbB27VqVtuuKHot+X7FiBbx7907t7FWqVBFP89jY2GLL6JcvX2DNmjWl+k7yWsmM8trx48fV2ucXMTAwgNjYWHEfQHR+49u3b7Bq1Sqp/T55fUJlX0dEKCoqgtmzZ0NBQYHa+b29vSE5OVncf2EYBlauXFnsu2U9lveaMu/79OkTzJo1S+3sou1ScnIyJCQkwI0bNwAAin2HtO8t62uix4WFhTBz5kz49u2b2v+GmjVrgoODAwQEBIj7vbKySPupynul/c2WLVsUnjOVx9zcHAICAsDf3x+8vLxAIBAozKXqv0Pec0+fPoV169apnV8gEICnpyf4+/uDn58fWFhYKMygzr9J3uvr1q2DFy9eqP1vsLCwEOd3dXUFgUCgMIMqeRW99+HDh7B9+/Yy/R94eHiAr68v+Pj4gJmZWbnkUvbvhEIhLFiwAAoLC9X+N9jY2ICPjw94e3tDtWrVgGGYcp/X5T23du1a+PDhg9r5zczMwNvbG7y9vcHFxUXmPFQRz3358gWWL1+udnaA730IT09P8PDwENcgqbrNUve9Bw8ehPfv36udnc/ng7OzM3h4eICHhweYmZmpvU1S9f3nzp2D+/fvq51dW1sbIiMjxced3Nzc1P4sNjx79kzy2IcDIqp34FCSaCanxt0GNOLiv8L8+fNVrrwu2apVq4b9+vXDU6dOVVoF/759+1BbWxvt7OzQxMREpSsOUlJScOvWraxcCX3y5EnU1tZGR0dHtLKyUjq3jY0NjhgxgrVlTXJkS1WvcGVzmqs6uo+0ZmlpiT179sTz589X2vy9Y8eOMucWtbCwMJwzZ06lXEGvztWg8lpISAjOmDEDX716VaG5MzMzyzW3lpYWpqWl4dq1ayt0ZBF1R+GQ1ywsLLBbt2548uTJCpvfjx07JvP7BQKB3Ftdy2vW1tbYu3fvCltW5Y1kwTAMmpiYoJmZmVrZtbW1sWHDhrhx48Zyv6Jb0QgcPB4PjY2N0dbWVu6Iuormm65du+Lx48fL7Wp6ZUclYBgG9fX1UU9Pr0zzfadOnfDgwYNlHsngwIED5b5cKmqmpqbYtm1b3L59u9rzz759+yo9t6jZ2tpit27dcN++fSqPJLl3717WcgN8X9/Hxsbi7NmzVeqjsZ0b4P9HNPzrr7+Uzr5//37WcwN87xd36tQJt2/frtR2tiK2l+o0HR0dTEpKwjlz5ig1zdUdnaUiWlBQEI4ePVqpW/+oO/JTRTQ3Nzfs27cvHjhwQOH65eTJk6znFTXRrX5Wr16t8HZRp06dYj2vqAkEAoyOjsYpU6bgnTt35OY+c+YM63klm6urK/bu3Vvh6DrqjHpQkU1fXx9TU1Nx7ty5ckenPX/+POtZSzYfHx8cMGAAHjx4UObIgMrePr4ym4GBAaanp+O8efNkTvPLly+znlNa8/X1xYEDB8qc5levXmU9o7RmZGSEDRs2xPnz50vdft64cYP1jLJajRo1cOjQoVJvh63sqPFsNAsLC2zRogUuX7681O2w7969y3o+WY3P52O9evXwjz/+KHU3kgcPHrCeT15zcnLCrl274rZt24qNEvX48WPWs8lrskZjfP78OevZFDVXV9dSowK/evWK9VyKGo/Hw9DQUBw9erT4tu9ZWVms51KmiUYTmzBhAl67dg2zs7NZz6RKq169Og4bNozV4yfqNmNjY5VHtqdGjRo1atSoUfPw8MC+ffvi/v37Wb8TlTLoVtH/0QZUuPivMHPmzHJdgTk4OFRKEePKlSvLnNXW1hZ/+eWXSh06X53hqSUbn8/HRo0a4f79+yt1mGd1b4NSstnY2ODQoUPx3r17lZJ7zZo15Tp/+/r64sSJEyt8uP/Vq1eXe+dCS0sLU1NTK7SYbu3ateWeWzTfx8fH49KlSyvk1sAbNmyokNwA30+ytG3bFvfu3Vvut3bZunVrheUG+H4boxEjRuA///xTrrnLszBXVvP29saxY8eW65Dyu3btqvDcAN+L0Dp16oTHjh0rlyLA8ijgVqU5Ojri0KFD8dq1a2XKvXv37krNLWpVq1bFnj17ql2EyVZuUTM2NsZWrVrhli1bVFrXs51b1MzMzLBNmzZK56/s+VtRq127No4ePRqvXr0qt59W3gXz5dFq1aqFI0eOLHWSVxIXT9Do6elhWloaLliwAF++fCk1N1cKF0u2mjVr4ogRI2TeQo1LhYuSrVq1atitWzfcvXu31FtKc6lwUbKZmJhgs2bNcPny5VIv6OFS4aJk4/P5GBUVJbMY8PTp06xnlNXc3d3FhaMlD26ePXuW9Xyymug2b4sWLSq1Xrlw4QLr+eQ1f39/HDJkCB47dqzYRYNcLACUbEZGRti4cWNctGhRsX3tK1eusJ5NUfPz88NBgwbhoUOHxIVp165dYz2XomZoaIgZGRnFCjBv3rzJei5lp7nk7bDv3LnDeiZlmuh22AsWLMAXL17gvXv3WM+kTGMYBgMDA3H48OF48uRJzhcASraqVati27Ztcc2aNZwucC3ZtLW1MSYmBqdMmYKHDx9mPY8qzd3dHXv16oWrVq1iPYsqTVSAOW7cONazqNqqVq2KLVq0YD2HOs3e3p71DNSoUaNGjRo1atSUa0ZGRtioUSOpx8u4ggoX/6MNqHDxX2HSpEkVtgJzcHDAvn374smTJ8ttBCaRadOmlVtOhmEwNjYW161bV+HV4uVZKOrp6YnTpk1TOApHeZg9e3a5zx/R0dG4atUqqSc8y8ucOXMqZN7m8XiYkJCAq1evrpAiwPIYCVVeq6hiukWLFlVoboDvBxObNm2KmzdvLreR6ZYsWVLhuQG+H0zs06cPnjt3rlwKj5cvX14puQEAg4ODcebMmfjmzZsy5y6PwnNlG8MwGBUVhYsWLSpz0Wt5F0Ir05ycnHD48OF4+/ZttXOvX7++0nOLWkBAAI4fP16tAtKyFvqXR3NwcMD+/furtMxu2bKF9dyiZmhoiD/++CNu2LAB8/Pz5ebetm0b63lLNn19fWzUqBGuWLFCZl+nsgqK1WnOzs7Yt29fPHz4cKkRp7lWcFmy2dvbY7du3fD69evFcnOxcLFkCwoKwpUrVxZbZrlauCjZbGxscOTIkcX6lVwtXJRsBgYG+PPPPxfrH3C1cFGy8Xg8TEtLK3YxFVcLF0u24OBgPHfunDg3lwsXJZurqyvu2LFDnJtrIxfKanZ2drhgwQLx8QyuFwCKmpOTE/7+++/idYomFAACfD/GMXjwYPGI+9evX2c9kzLN19cXhw0bhjdu3EBExFu3brGeSdnpPWTIEDx9+jQKhUKNKQCsVq0a9u7dW9zHun//PuuZlGmiC3Q2b96M+fn5+OjRI9YzKdP4fD42aNAAZ82ahU+fPi15IojTzdHREfv06YNHjhzBJ0+esJ5HlWkeHR2NM2fO5HzBfMlmYmKCLVu2rJTjg+Xdqlatiu3atWM9hzrN2tqa9QzUqFGjRo0aNWrU/v1NdEeh+fPnV2h9h7qocPE/2oAKF/8VxowZU+ErMSsrKxw8eDDm5eWVW+5hw4ZVSFZLS0vs379/mYpE5Bk6dGi5Z9bT08OOHTvihQsXKiQzIuLIkSMrbP4wNzfH3r17l3l0Lmkq40pZExMT/Pnnn/H48ePlNgrm5MmTKzy3qNnY2GDfvn3L5fa606dPr7TcAN9Hpvvpp5/KfHvX8h55Vpnm4eGBI0eOLHYrHVVVREGxoiYQCDA5ORnXrFmjsBBKlooqKFbUdHV1sVmzZrhjxw6Vb0eLWPEFxYpaYGAgTp8+vdStuhRZvHgxq7lFrV69ejh37lylb1u/YsUK1jNLNldXVxw2bBheuXJF7rqyokaeLWvT19fHLl26yJz+mzZtYj2jrObp6YmDBg2Smn379u2s55PWGIbBkJCQYrfvksSVES5LNj6fjxEREThx4kS8efNmqXmdC7e4ltZ4PB6Gh4fj+PHj8caNG6Vyc7lwMTAwEEeOHCm1H8blwkVfX18cMmQInjhxolQfjMuFix4eHti/f3+pBcVcuuVyyebu7i4zN9duuSzZvL29cdCgQXj8+PFS8wmXCzECAgJw+PDhUkdD5XIBYGBgoMxRf7k6AiDDMBgaGorjx4/HW7duldrOc7UAkGEYDAsLw0mTJkkdnf6ff/5hPaOsFhQUhOPGjZM6vblcAOjn54e//vqr1JGhuVwAaGdnh927d8f9+/eX2gflcgGgnp4eZmRk4NKlS/Hdu3fFcr948YL1fOrMK69fv2Y9m7LTXHK/5+3bt6xnU9RsbW2xa9euuHfvXvGAAJpyC2APDw8cPHgwnjp1CouKijA3N5f1TMo2Ly8vHDJkCJ46dUqjcgN8PxbduXNn3Lx5M+tZVG1aWlrYoEED1nNQo0aNGjVq1KhVVrOwsMC2bdvixo0by7XWpyJUROGiAAghlaKgoKDcP1NPTw8iIiIgNjYWYmJiwN/fH3g8Xrl+x9u3b8v180SysrJgypQpMGXKFKhXrx4MGjQIUlJSyu3zX7x4UW6fJfL582dYtGgRLFq0CIKDg6Fbt27www8/gK6ubrl9R0VNbwCA7OxsmD59OkyfPh1CQkKgc+fO0Lp1a+Dz+WX+7Pfv35dDQvlyc3NhwYIFsG/fPmjXrh0MGjQI9PT0yvSZeXl55ZROMSMjI/j48SPcunUL3N3dwdjYWO3P+vjxYzkmk4/H44GrqyuYmJhAfn4+fP78GQwNDdX6rMqc3iLv37+Ha9euwZ49e6B169ZgYmKi8md8+PChApLJV1hYCDt37oSLFy/CgQMH4PfffwcbGxuVPiM3N7eC0slXUFAAa9euhbVr10JgYCDMmjULgoODlf57Nqa3pPPnz8P58+dh6NChMHz4cOjXrx/o6Ogo/LvKXC7lOXbsGFy4cAF27NgBo0ePhho1ash9/6dPnyonmBJ4PB5YWloCwPftYWFhIWhpaUl975cvXyozmlxaWloQFhYGsbGxEBcXBzVr1pS5bS0sLKzkdLIZGhpCgwYNICEhAeLj48HZ2Vnme4VCYSUmk8/MzAwSEhIgOTkZ4uPjxfOMNFzKbW5uDklJSeLcZmZmbEdSiomJCSQkJEBqaiokJCSAhYUF25GUoqenB7GxsZCSkgLJyclga2vLdiSlaGlpQf369SElJQVSUlLkLpdcwufzoV69epCamgopKSng4eHBdiSl8Hg8CA8Ph9TUVEhNTQVPT0+Z72UYphKTySc5vVNTU8Hd3V3me7mUWyAQQFRUFKSlpUFqaio4OTnJfC+Xcmtra0N0dDSkp6dDamoq2NnZyXxveexblxcdHR2IiYkR565atarM93Ixd0ZGBqSmpkKVKlVkvlcg4M5hbYFAAPXr14eMjAxIT0/XmPmEYRgIDQ2FjIwMaNiwIbi5ucl8L5emNwCAp6cnNGzYEBo2bAiBgYEyj4dyLbepqSmkpqZCw4YNIT4+HvT19aW+j2u5lZ1XuDR/i5iZmUFqaipkZGTInOZcm94iXl5e4mkubT7n4vQWCQ4OhoyMDMjIyAAvL69ir5X3+YvyxDAMhISEQHp6OqSnpxfLzqXjJ7L4+PiIs9epUwd4PB6njp/IY2xsDElJSZCeng6JiYmgr68P2trabMdSmru7O6Snp0NKSgpERUWxHUdlfn5+cP36dbZjEEIIIf8pbm5u4r5baGgoZ/dLKsN/919OSCVr0aIF1KhRA3JycqBLly5qnbhmGAYCAwMhJiYGYmNjITQ0tFyL5qTp1q0bREVFwdWrV2HChAnl8pna2tpQs2ZNCAoKEjd5B0fV0b17d4iIiICLFy/C7Nmzy/WzdXR0QCgUwsmTJ8HAwAAaNWpUbidWGjduDA4ODvDy5UuYMWOGaNTVcuHo6AhBQUEQHBwMQUFBUKtWrXI7wBUREQHfvn2DnJwc2LRpU7kVTPH5fKhRowaEhYWJm7wTAKoKCAiAVq1aQV5eHly6dAmePHlSbp/t6+sLkZGREBERARERESoXnSn67DZt2kBeXh58/PgRbt68Cc+fPy+Xz+bxeFCrVi2IioqCqKgoCA8PV6vYTxpfX19o3bo15OXlidvDhw/LtWC3SpUqEBUVBZGRkRAZGQne3t5lXj69vb2hVatW8OHDh2Lt7du35V4c6OLiIp5n6tWrB66urmrn9/b2hpYtW8KHDx8gNzcXcnNziz0uKioq1+wA3w+qi7LXq1cPHB0dVf4MT0/PUtNblP3Dhw8VdsDVwMAAQkNDxdM/KChIpeJoDw8PaNOmDXz8+FG8bJb8WVHZDQ0NITw8HCIjIyEqKgpq164ts+CvJDc3N2jXrh18/vwZPn36BJ8+fZL7uLwFBARAdHQ0NGjQAOrVq6f0+sbV1RU6duwIX758ga9fv8KXL1/ETdbvHz58gPz8/HLJ7ePjA3FxcRAbGwsRERFKF3Q7OztDp06doLCwEL59+waFhYXFmqzn3rx5A0+fPi1z7oCAAEhISICEhAQICwtT+iSAo6MjdO7cGYRCobgVFRUp9fjSpUvw6tWrMuWuUaMGJCcnQ1JSEgQFBSm9A1+tWjXo0qWL1Cv4hEKh3Cv8Pnz4ADt27ChTbn9/f3EBWnBwsNL9Lnt7e+jatau4H6jqzy1btkB2drbauT08PCAlJQVSU1MhLCxM6fWJra0tdO3aVfx7yX6sot9PnjxZphMl9vb24tz169dXeh1uY2NTLHdJivrjt2/fhsOHD6sStRhLS0tITk6G1NRUiIuLAyMjI6X+rmrVqtCtWze1v/fVq1ewadMmtf/e1NQUEhMTxUWtyhbjVqlSpVhuyX6O6LG050SPCwoKYN68eWrnNjY2FhfjJiYmKl2Ma21tLc7NMIy4Sf6u6LXZs2ervS01NjYWT+/ExEQwNzdX6u+srKygW7du4hw8Hq9YRmWeW758OTx+/Fit3CYmJpCUlARpaWmQkJAApqamSv2dhYUFdO/eXZxFsinzHMMwsGvXLjhx4oRauc3MzCA5ORnS09MhPj5e6eXS3NwcunfvLs7B5/MVPi75+6VLl2DFihVq505JSRHnVrZ/YmZmBt27dwc+ny/OInpcssl67f379/DLL7+oldvExARSUlLERUXKTm8TExNxboFAIM4i+ViZ3wcPHgxv3rxRObeBgQEkJiZCRkYGJCcnKz1/GxsbQ/fu3UEgEIizlHyszHPLly+HPXv2qJxbS0sLoqOjoWHDhpCeni63qFWSkZER9OjRo1iOkrlkPSf5+927d+HXX39VOTcAQGBgoLhY0dvbW6m/MTQ0hB49esjMKu/fIfkan8+H7t27w+vXr1XObWtrKy4+i4yMVKpvpa+vXy7TWyAQwM6dO2Hx4sUq55acV9LS0pQ6rqWnpyeev1Wdt0u+hojQsWNHtYrF7OzsxNM8IiJC4TTX1dUtth5Udp0i67VDhw7BggULVM4NIL/gryQdHR1xbnnrbnmt5N9NnjwZrl69qnJu0fySkZEBaWlpci8c0tbWFm8vS2aQ9ljZ1wcOHAhZWVkqZ9fW1i5WNC9rvailpaXUdl7ZPoDk41GjRqm1z88wDISFhYlPeEu7oEUgEBTLXd5t165dsH37dpWzAwA4ODhAWloapKenQ2RkZLFjFEKhELp166ZUX1DZPmLJ5xmGgaFDh6p1ETXDMBAcHFysyJVhGEBEcW7J76+Ix58/f4ZBgwapdQ5JdDFUeno6pKWlgYuLC/To0aPU/oC8n8q8R97fCIVCGDRokNqDvoim//Xr18HU1BT4fL5SOVTNLO9vFi5cCBcvXlQrv5GRETg7O4OLiwvY2dmBQCCQ+73K5lL0nOTj+/fvw5QpU9TKz+fzoVq1auDi4gKurq5gaGio1Heq+ljR65MmTYJ79+6p9W8wNzcHV1dXcHNzAxsbGxAIBBXyb5D3+MqVKzBr1iy18mtpaYGLiwu4u7uDi4sL6Ovrl3l6qvq4sLAQevbsqfZ5DwcHB3B3dwcPDw+wtLRUO3dZnuvTp49a/QeA78ciPT09wdPTEywtLcuUV53XP3z4IPeYpjwCgQBcXV3B29sbvLy8wMTEROq2U9r6W5X3yXutXbt2au1f8Xg8cHZ2Bm9vb/Dx8QFTU1OF2yVVt2OKXps6dSocOnRI5ewM8/0iGVH/R9R/IACs3waZmuIGdKvof5WJEyeqNCysq6srdu7cGTds2FDqtiGVqUWLFmoNa8swDPr4+GC7du3wr7/+wnPnzolvZ1EZmjZtWqZheY2NjTEiIgL79OmDS5cuxWvXrpW6bVhF+PPPP8uU28TEBGNjY3H48OG4bds2fPnyZYVnRkQ8ffp0mXIbGRlhXFwc/v7777h///5KGwr506dP6ODgoHZuhmGwRo0a2Lt3b9y4cSO+efOmUnIjIhYUFKCrq6va2Xk8HtapUwcHDhyIO3fuxJycnErL/u3bN/Tx8SnTPGNnZ4ctWrTAefPm4e3bt8vtNuLKaNiwYZmyAwD6+Phgly5dcNWqVZW6jV+1alWZs/P5fAwMDMS+ffvipk2bKm2+z8vLQ0dHxzLnNzMzw7S0NJw0aRKeOXNGrdtaq+rr1684d+7cMmc3MjLCpKQknDBhAp45c6ZStkuI39eV9vb2Zcru7u6OnTt3xrVr11bquhIRsXHjxmrntrKywhYtWuDixYvx2bNnlZobETEtLU2t3Kampti0aVNctGgRK7lzc3PR3Nxc5dyGhobYsGFDXLhwISu5ERFHjx6tcm5dXV1MTk7Gv/76Cx8/fsxK7ps3byLDMCrlFggEWL9+fZw6dSreuXOHldwFBQVqrV+CgoJw9OjReOnSpUrtA0iKiYlRObefnx8OHToUT548WerWvpWlR48eaq3D+/Xrh4cOHaqU7aY0M2bMUDm3s7Mz9urVC/fv31+p+6KSMjMzVc7t5OSEvXr1wn379rGW+/79+8jn81XO3bt3bzxw4ABr88mnT5+watWqKs8nffr0wYMHD7KWGxFVvi2io6Mj9u7dGw8ePFhpfUJphg8frlJu0a199+3bx+r0PnjwoEq5rayssGPHjrh9+3b89OkTa7nz8vJU6mMZGhpi06ZNcdWqVZW6zy9Nq1atlM7N5/Oxfv36OGPGDHzy5Amruffu3avSvCK6Ne7p06exqKiItdyFhYXo6empdG4DAwNs0qQJrly5Et+/f89abkTEpUuXqjTNvby8cOjQoXj27FnW+oWIiEKhEGvVqqV0boFAgHFxcfjXX3+xtu8joup238jICJs1a4arV69mfd2yb98+leYXExMTbNmyJa5btw4/fPjAavazZ8+qlF1XVxfT0tJw0aJF+Pr1a1azf/36FZ2dnVXKX716dRwxYgReuHCB1WUVEXH79u0qZdfR0cGUlBRcsGBBpZ1vkWfKlCkq5Rf1B5YvX87quUYRVY9Pi6b//Pnz8cWLF2zHxxcvXqCurq5K/4bAwEAcNWoUXrlyhfX5HxGxdevWKuW3srLCDh064JYtW/Djx49sx8fr16+rdAyMx+NhREQETp48Gf/55x+24yMiYlJSkkr/Bw4ODti9e3fMzMzEgoICtuPj33//rVJ+AwMDbNy4MS5btgyzsrLYjo979uxRKb++vj5mZGTg4sWLK/3chjS///67Svmtra2xY8eOuHXrVszPz2c1u6rHsE1NTbFFixa4du1a1vudL1++VGn9r6uri6mpqbhw4UJ89eoVq9nLS0XcKpr1ojxqVLj4X5KdnY1mZmZyV17m5ubYtGlTnDdvHj548IDtyIiIeODAAaVXvvb29tioUSMcP348Hjx4EHNzc1nLvW3bNpU73fHx8ThkyBBct24d3r17l5WDi8+fP0cjIyOlc2tpaWGdOnWwR48euGzZMrx9+zYruYuKijAoKEilaV6tWjVs3rw5zpo1Cy9dusTaidsxY8aolJvP52OdOnVwwIABuG3bNszOzmYlN6LqByj4fD4GBQXhoEGDcNeuXawuo3PmzFEpO8D3E3Nt2rTBRYsW4b1791jbwVf1BBfA9x3j2rVrY9++fXHz5s349u1bVrLn5+erVRyiq6uLkZGROHz4cNy7dy9rB3anTp2qcnYAQBsbG2zWrBnOnj0br127xsp68tOnT1itWjWVsxsbG2NKSgpOmjQJz507x9pJaVUvvgD4flK6TZs2uGTJEtYKuRBVPxGgo6ODMTExOGHCBLx06RKrJxtVvSggMDAQhw8fjsePH2e1gAFRtYMnXl5e2L9/fzxw4ABrBToi79+/R1NTU6VyOzg4YJcuXXDHjh2sH/BBRPzxxx+Vym1hYYGtW7fGtWvXsn5SGhFx9uzZSuU2MDDAhg0b4qJFizhxoujYsWNK5dbW1sa4uDicOXMmPnz4kO3Y+OzZM9TW1laYm8/nY0REBE6aNAlv377Ndmz8/Pkz2traKszNMAzWrVsXx40bh9evX2f9hJBQKMS6desqNa8EBwfjH3/8gVevXmU9NyJix44dlcodFBSEY8aM4UxuZQtc69Spg6NHj+ZM7hMnTiiVu2bNmvj777/j5cuXOZH7/fv3aGxsrDC3r68v/vLLL3ju3DlO5EZEjI6OVpjb2dkZ+/Xrh0ePHmXtmEVJkydPVphbVGS5Y8cO/Pz5M9uRERHx3r17yOPx5OYWFeQsXryYEyczRSIjIxVO89q1a+OYMWPwxo0bnJnH161bp1S/sH379rht2zZWC3IlKVtwGRQUhOPGjcNbt26xHVls165dSvVpmzZtyokCUUk///yzwuxVq1bFzp074+7duzlRMCESERGhMLu9vT326NGD9aL5kpS5UNHCwgLbtWuHmzdv5kSxkMjixYsVZufz+RgdHY3Tp0/nxL6QiFAoxDp16ig17du2bYubNm3i1LT/9OkTVqlSRWF+Ozs77Nq1K+eW2aKiIvT29laY39LSkpPzPiJiv379FObX1tbGxMREnDNnDuvF6SX9888/CvtlAN+P1w0ePBhPnDjBmb6wiDLHwESFckuXLuVU3xIR8dy5cwrzAwDWqlULR44ciRcvXuRMHxPx+8AkygyqIrke4sp+CeL37UBoaKhSfZ+ff/6Z9YvXSsrNzVXq+LWPjw8OGTKE1YunpWnZsqXC7I6OjtirVy9WL4yVZsCAAQqzSxZ6c+GcQXmjwsX/aAMqXPzXGDx4sNSOa3R0NI4bNw7Pnz/PqY0G4vfRT2QdKBKN6vfLL7/gli1b8Pnz52zHFfvw4YPcEfSqVauGGRkZ+Pvvv+P27dvx2bNnnOnwKepse3h4YKtWrXDGjBl45swZzuxwLlmyRG5uHo+HNWrUwB49euDq1atZv1pe5MWLF2hgYCA3u5aWFtatWxeHDBmCu3fvZv1KXJGsrCyFHVM+n4/BwcE4ePBg1gsVJeXk5KCVlZXCzp2Liwu2b98elyxZwpmDW4WFhVi9enWF2bW1tTE8PByHDRuGu3fv5sy0HzlypFI7xCYmJpicnIzjx4/HEydOcGJd8/btWzQxMVEqv6urK7Zv3x4XL17MapGrpHHjximV3dTUFNPS0nDKlCl44cIFTvQNsrKylJr2FhYW2LRpU5wzZw7euXOHE9NdKBQqdVI6ICAABwwYgJmZmZw6CKFo5CVLS0ts2bIlrlixgvXRFiRlZ2fLnWd0dXUxMTERZ82ahffv32c7bjHy1pOigqg//viDM1fIi9y4cUPulaq+vr44ZMgQPH78OCfWKyIFBQVoZ2cnt9/evXt33LNnD6cOcCLKH23RysoK27Vrhxs3buRM31FE3miLJiYm+OOPP+LKlSs5MQqHpJkzZ8rMbWBggI0aNcLFixdzal2IKH8EID09PUxLS8OFCxdyohhX0sOHD1EgEEjNraOjg8nJyZwZ7USSvAJXbW1tTEhI4OSJQ0TEhIQEqbkFAgE2aNAAZ86cyeqFILLIGqWYYRgMDw/HyZMn4927d9mOWYq8QtEaNWrgyJEjObetR/w+j8saUdTJyQn79u2LR44c4dS2XkRWUZRo5LMNGzZU2p03VHH8+HGpuXk8HkZFReH06dM5uWwKhUKZxy6qVauGvXr1wkOHDrF+sZM0sgouBQIBxsTE4OzZszm5Hpd3ApyLxcSSnjx5glpaWlKzi0YQPXXqFKsX9cly5MgRmetzf39//PXXX/H8+fOcW58jIl6+fFlmdldXV+zXrx8eOXKEk8vpt2/f0N3dXWp20ch+K1asYPWCf3l2794tc9q7ublh//79OXXRQknTp0+XmT8gIIDT8z2i/MJ6d3d3HDBgAB47doyz0//169eop6cnNb+5uTm2adMGN2zYwLljAZLatWsns39Tr149nDx5Mmt35VDGrVu3ZB4Ds7W1xS5dunCuUK4kWYXrWlpaGB8fj7Nnz+bMeVRpli1bJnM5Fo2uy+X1kLxjNX5+fjhs2DA8c+YMJ/s+iIh//PGHzGU4IiICp0yZwpmRRUu6c+eOzMLp2rVrc2pk2pLevHmD+vr6UrN7enrioEGDOFnoXd6ocPE/2oAKF/8Vnj17Jh42tkaNGjhw4EDMzMzkfJW1aMOnra2NwcHB2LNnT1y+fDneuXOHsxtrRMTevXsjwPcD5Z6envjjjz/ixIkTcd++fZy7qkbS/v37Sx3USklJwVGjRmFmZibnTh6K5ObmlrrCz8DAABs0aIC//fYb7t27lzNFWyV16NChVOdCR0cHIyMj8ddff8X9+/dzdjnt1atXqex8Ph9DQkI4V2RZ0qBBg2QeDP35559xxYoVnN3mLViwQGp2fX19jImJwVGjRuHhw4c5Vfgk8uTJE5kHVWxsbPCHH37AmTNn4uXLlznZse7WrZvcg9HdunXDNWvWcKqQXuTVq1cyR9M1MzPDjIwM/PPPP1kdfVYeWVcRGxoaYnJyMk6dOhUvX77Myb6BrNtzVq1aFdu0aYPLly/nXLGIiLTRXXk8HtatWxdHjx6N586d4+Q0R5R+y0hHR0fs1q0b7ty5k7Pb1uzs7FKjRpmYmGCzZs1w+fLlrI2Wq4xmzZoVy62trY3x8fE4c+ZMzozkLk3J0RYZhsHQ0FBOjTonjbTRFv39/XHYsGGcPamL+H2/VEdHp1huNzc37Nu3L+u3yJXn8+fPpQpcHRwcsFu3bpw+GSEUCjEsLKxUn4uLV+uX1Llz51L7pu3bt+fkaCeS/vrrr1L9rFatWuH69es5u2+EWHp0aNEJ/5UrV3L2hD9i6VsWi27hpwm3QJK8LRuPx8PIyEj8888/OXPBnCwlt5sBAQH422+/4aVLlzi7zUT8fmJDsiiqatWq2KVLF8zMzGR9tG1FEhMTi83jqamp+Pfff3O6X4iIuGPHjmLzio+PD/7yyy+cPoGMWLrgUl9fHxs1aoTLly/n9PoQsfT+m2jEVi4X34j07NmzWPbg4GDOjWYpS2xsbLH1uehk/b1799iOplCTJk2KTfc6dergmDFj8Nq1a5xeThERV6xYUSy7ZKEQFy5+lkdakXFwcDCOHTuWU6PmylLyQh2ujmopS1FREfr5+RU7BlC3bl2cMGGCRqxzEEuf2+B6oXFJ9+/fRz6fX+xcXqNGjXDp0qWc79+IlBytrXr16pwv2JV08eJFqfut69at4+y5VEmFhYXo4eEhzi+6uGTmzJn46NEjtuMpJBQKMTw8vNh6tH79+vjnn39y7gJ7aT58+FBsP5xrt+BWpG3btuLsokLdv/76i7PnhCUNGTKk2PYrPDwcJ06cyIk71VQmKlz8jzagwsV/hT179uDq1avxzZs3bEdRWmFhIS5evBjPnTvH+YOIkvLz83H27Nl4/PhxTl6pLUtRURH+9NNP2K9fP1y7di0+fPhQIzrYiIgDBw5EOzs7/OGHH3D69Ol44cIFjdhBu3jxIjIMU6zg7MiRI5w98Snpzp07KBAIUCAQiAsV9+zZw+mTcSIPHjwQ357Q29sbu3TpgmvWrOHcaC3S5ObmorW1NQJ8HxUvNTUVJ02ahGfOnOHsiX5JLVq0KFakwLURCeW5du2a+Cos0S3PBwwYgFu3buVsUbckyZP/FhYW2KhRI5w+fTpeuXKFs8UtIpLLrI6ODkZHR+OYMWPw1KlTnJ/vi4qKsFatWgjwfVSrhIQEnDJlikacBJA8kG5ra4sdOnTAdevWcf5kHeL30VENDQ1RIBBg/fr1cfLkyXjz5k3OT3NExF9//VW8fRowYAAePnyY8/M5IuL169eRYRisUqUKdujQATdt2qQRfQJRMZqRkRE2adIElyxZwrnR8mSJiYkRF4fOmjVLIw7MIn4/KS0aQWHixIl469YtjVg2Z82aJT6ZO3r0aM7cIlcR0YVp1atXx+HDh+PZs2c5v91HRHz8+DFqaWmhl5cXDho0iHMjtcry5csXdHBwQGdnZ+zTpw+ni3FLSktLQxsbG07eflOeiRMnoqmpKbZq1Yqzo+VJc+HCBfEtif/++2+NOVb39etXdHJywrCwMJw8ebJGFOWI9O7dG93c3HDgwIF48uRJjVgXIiKeP38ejY2NsUWLFrh+/XqNmceFQiHWrVsXQ0JCcMKECZweMamk7du3o7m5ObZr1w63bt3K6SL/kqKjo7FmzZr4+++/c3aUGGlevnyJxsbGGBcXh3/99RcnR7OU5fTp06inp4fp6em4ePFijVmfI34fMV9HR0d8sl6TpnthYSF6e3ujn58f/vLLLxrTxxXZv39/sRHEuXoxqyyzZ89GY2NjbNasGecvcpFm48aN4uV20aJFGnMMQOTt27doZGSEoaGhOG7cOI053iWpY8eO4n2PXbt2acT5MEl37txBXV1djSqUK6lhw4bo4uKCffv2xUOHDmnMfqvIypUr0cTEBFu0aIFr1qzBnJwctiOp5NChQ2hkZIQ//PADp0cHlmX8+PGcvQW3Ivfv30crKyts2bKlxhTqimRlZWGVKlUwIyND4/qd5a0iChcZ/F4YRziMYRh7AHgKAPD06VOwt7dnOREhhBT38uVLqFq1KjAMw3YUlRw6dAh0dXWhdu3aoK2tzXYclezfvx+EQiHUrVsXDA0N2Y6jkt27d0N+fj5ERESAtbU123FUcuDAAbh16xZERESAn58f8Hg8tiMp7dmzZzBp0iQIDw+H8PBwsLGxYTuSSsaOHQsFBQUQEREBISEhGjXfP3v2DAYMGADh4eEQFRUFPj4+GjXvTJs2DbKysiA6Ohrq1q0Lurq6bEdS2sWLF2HdunUQFxencdnv378PGzduhISEBPD399eobeyJEyfg9evXEBMTA8bGxmzHURoiwrJly6BevXrg4uLCdhyVHD16FHR1dSEwMFCj1i/37t2Dhw8fQmRkpEb1xT58+AAHDhyA2NhYjdoeCYVC2LRpE9SvXx8sLCzYjqOS3bt3Q40aNTSu/3LixAmwt7cHR0dHtqOo5ObNmyAQCMDDw4PtKCp59eoVvH37Fvz8/DRqu1lYWAiXLl2C2rVra9Q6HADgypUr4OPjA1paWmxHUcnDhw/B2toaDAwM2I6iktzcXCgoKIAqVaqwHUVl9+/fBxcXF41aNgEAXrx4AZaWlhrVTwEA+Pr1K7x9+xbs7OzYjqKyJ0+egK2tLQgEArajqOTbt2/w/PlzcHJyYjuKyl6+fAl6enpgamrKdhSVPXjwAKpUqaJx63OA79sic3NzMDExYTuKynJzc+Hdu3cat98scvv2bbC3t9eofTlJ165dA09PT43bNoncvHkTnJycQF9fn+0oann+/DkIBAKN7I8BfD/2deXKFQgICNC4fQ+Rx48fg6mpqUauPwEAioqK4M6dO+Dt7a1xfWORu3fvgpOTk8btB4o8fvwYbGxsNHY9+uDBA3B2dtbI+Sc7OxuMjIw0ct55//496Orqgp6eHttRWPfs2TNwcHAQ/eqAiM/K+plUuKgBqHCREEIIIYQQQgghhBBCCCGEEEIIIYQQQggbKqJwUTNL6QkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEKKRqHCREEIIIYQQQgghhBBCCCGEEEIIIYQQQgghlYYKFwkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEFJpqHCREEIIIYQQQgghhBBCCCGEEEIIIYQQQgghlYYKFwkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEFJpqHCREEIIIYQQQgghhBBCCCGEEEIIIYQQQgghlYYKFwkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEFJpqHCREEIIIYQQQgghhBBCCCGEEEIIIYQQQgghlYYKFwkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEFJpqHCREEIIIYQQQgghhBBCCCGEEEIIIYQQQgghlYYKFwkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEFJpqHCREEIIIYQQQgghhBBCCCGEEEIIIYQQQgghlYYKFwkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEFJpqHCREEIIIYQQQgghhBBCCCGEEEIIIYQQQgghlYYKFwkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEFJpqHCREEIIIYQQQgghhBBCCCGEEEIIIYQQQgghlYYKFwkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEFJpqHCREEIIIYQQQgghhBBCCCGEEEIIIYQQQgghlYYKFwkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEFJpqHCREEIIIYQQQgghhBBCCCGEEEIIIYQQQgghlYYKFwkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEFJpqHCREEIIIYQQQgghhBBCCCGEEEIIIYQQQgghlYYKFwkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEFJpqHCREEIIIYQQQgghhBBCCCGEEEIIIYQQQgghlYYKFwkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEFJpqHCREEIIIYQQQgghhBBCCCGEEEIIIYQQQgghlYYKFwkhhBBCCCGEEEIIIYQQQgghhBA1ff78GV6+fMl2DLVlZ2fD06dP2Y6htoKCArhy5QogIttR1Hb69GnIz89nO4babt26BQ8fPmQ7htpycnLg+PHjUFhYyHYUtQiFQsjMzNTYeaioqAj27NkDnz59YjuKWv755x+4cOECCIVCtqOo7MWLF3D27FmNzL5161ZYvHgxPH/+nO0opAyocJEQQgghhBBCCCGEEEIIIYQQQqTQ1EKo/Px8uHbtmsbl//TpE/Tt2xc2bdoEubm5bMdRmq6uLqSnp0P16tVh0KBBcODAAfjy5QvbsZRmaGgIkZGR4OvrC/369YPMzEz4/Pkz27GUpqurC/379wc7Ozto3749rFmzBt69e8d2LJWcOHECzM3NITY2FqZOnQo3b97UqOVXV1cXPD09wcvLC/r06aNx85CJiQn0798frKys4IcffoDFixdrVDEyj8eDLVu2gLm5OcTFxcGff/4Jd+7c0Zh5iM/nw9q1a8Hc3BwSExNhxowZcO/ePbZjKc3a2hpiYmLA1tYW2rdvD+vXr4ecnBy2YynFysoKfvzxR6hatSq0bdsW1q1bpzHZa9WqBV27dgV7e3vw9/eH/v37w969ezVq3UMAGE1ZUf2XMQxjDwBPAQCePn0K9vb2LCcihBBCCCGShEIhMAwDDMOwHUUlnz9/hqysLHBwcGA7iko+fPgAhw8fhtjYWNDT02M7jtLev38PK1euhNTUVHB0dGQ7jtLevXsHc+fOheTkZKhevbrGzOfv3r2DOXPmQHJyMtSoUUOjci9cuBBSUlLAx8dHY3K/f/8eVq9eDcnJyRo1f+fk5MCuXbsgISEBzM3N2Y6jtNzcXDhx4gTUr19fo9aDubm5cOPGDQgODgY+n892HKV9+PABnj59qlHLJABAXl4evH//HqpVq8Z2FJV8/PgRCgoKwNLSku0oKvn48SMIhUIwNjZmO4pK8vPzgWEY0NfXZzuKSj59+gQ8Hg90dXXZjqKS/Px84PP5GplbE+eTvLw8EAqFYGJiwnYUlXz48AHy8/PBxsaG7Sgqyc3NhRcvXoCXl5dGbS9zcnLgwoULEBYWplHL5ocPH2Dt2rUQGxsLTk5ObMdRWl5eHowYMQKioqKgfv36GrPdzM/Ph5SUFAgICID4+HiIjIwEAwMDtmMphIgQHh4ODx8+hLi4OIiPj4eYmBiwsrJiO5pCgwYNgkmTJgGfz4eQkBCIj4+HuLg4CAwM5PS+xL59+yAuLk78u76+PkRFRUF8fDzEx8eDh4cHp9eRy5cvhzZt2oh/19XVhcjISIiPj4eEhATOr+PPnDkDISEh4t8ZhoGgoCBISEiA+Ph4CAoK4vT88/nzZ3Bzc4MXL16In3NwcICEhARISEiABg0acL5f061bN5gzZ474dz09PYiKioLExERISEgAd3d3FtMpVnIZBgCoUaMGJCYmQmJiIoSGhoJAIGApnWLPnj0DNze3YkXTzs7OkJiYCElJSVC/fn1O9+kfPnwIHh4exUa9dHd3F+ePjIzkdH/tjz/+gOHDh4t/5/P5ULduXUhKSoKkpCTw9/fn7Dp0yZIl0L59e/HvouzJycmQlJQEfn5+nM3er18/+PPPP4s9p6urCxEREeLtr6Yd0+OyZ8+eSZ5TdEDEZ2X9TCpc1ABUuEgIIYSw59u3b8AwDKd3RqX59u0bnDt3DkJCQoDH05xBtr99+wZjxoyBpKQkCAoK0pgdia9fv4ozN2nSBGrWrKkR2RERAgMDgcfjQaNGjaBhw4bg5eXFdiylREdHw5kzZyAuLg4yMjIgOTlZIwocUlJSYOfOnRAQEABpaWmQlpYGtWvX5vxy2qhRI9i8eTM4ODhASkoKpKSkQHR0NKcPFAH8f247OztITk6GlJQUaNCgAacP0AEApKenw7Zt28DJyUk8vbl+YA4AIDk5GXbt2gX+/v7i3JpQoBYXFwcHDhyAunXrinNrwsGsqKgoOHv2LDRo0ABSUlIgOTmZ88cLEBFCQ0Ph3r17kJiYCMnJyRAfHw9mZmZsR5MLEaF27dqQnZ0tPmAbHR3N+aLRoqIiccG56CB53bp1QUtLi+1ochUWFoKfnx+YmppCUlISJCYmasS28uvXr+Dv7w+2traQkJAAiYmJnD4pIVJQUAABAQHg5OQkPqGrCevAz58/Q/Xq1cHV1VV8IoLrJ9IBvucOCAgAV1dXcQGJJkzvgoIC8Pf3B0dHR4iNjYW4uDioXr0655fLL1++gJ+fH1hbW4tzBwUFcX7//tu3b+Dn5wc6Ojri3PXq1eN8H1YoFEKtWrUgKysL4uLiIDY2ViMKpBARIiMj4fz58xAREQFxcXEQFxcHvr6+nF82GzduDJs2bQJ3d3dx7qioKM4XA/bu3RtmzJgBfD4fQkNDxdm5XpA2a9Ys6NmzJwAAaGlpQXh4uDh7jRo1OLtOPHbsGERERIh/ZxgGatWqJd4OhYaGgra2NosJpXv37h24uLjAhw8fij1vbm4OMTEx4vxc2wdCRGjQoAEcOnRI6uuOjo7ivgsXi9BE+xA3btyQ+rqDg4O4iLFBgwZgampauQGVIDqmIo2ZmRnExsaK/w/s7OwqOZ1ic+fOha5du0p9TSAQQN26dcWFjFzsj7148QJcXV2hoKBA6uuurq7i/aWoqCjOFYEjIkRFRcHRo0elvm5iYgKxsbHiQkxbW9tKTqhY3759Ydq0aVJf09HRgcjISPG+tru7O+f6O126dIF58+ZJfU1PTw8aNGggLmTk2sUbeXl54OzsLHO0Vzs7O3H2mJgYMDIyquSEshUWFoKPjw/cvXtX6usODg7iY0vR0dFgaGhYyQlle/v2Lbi6ukJeXp7M99jZ2RW7iMPCwqISE/67VEThIiAiNY43ALAHAAQAfPr0KRJCCNcUFBTgx48f2Y7xf+3ddXgc5frG8fuNJ5XUXam7l7pr0kiTFulBCuWHHKToaQ9eOMVb4BR3py3ucoCDHChaHOouQJFSb+z5/REhaWyTbnZ22+/nuubKzuzs7N3t7L4jz7xTYTt37rT333/fsrOzvY5SITt37rR58+bZunXrvI5SIbt377YTTzzRFi5caDt37vQ6js+ysrJswIABdtppp9nbb79tWVlZXkfy2YQJE6xZs2Z23nnn2ZIlSywnJ8frSD6ZOXOmSbKWLVvaBRdcYJ988klIZL/lllssf5utVatWduGFF9rHH38c9NmfeuqpgtySrFOnTnbJJZfY559/HtTZ33nnnSK5w8LCbNiwYTZ//nxbvXq11/FK9emnnxbJLckaN25s//d//2cvvfSS7dmzx+uIJfryyy+L5Y6Li7OUlBS77777bOvWrV5HLNFXX31VLHdMTIwlJibanXfeaRs2bPA6YomWLl1aLHe1atUsNTXV7rvvPtuyZYvXEUv02WefFctdt25dO/74423RokX2xx9/eB2xRB999FGx3K1atbKzzjrLXnvtNdu7d6/XEUv07rvvFsvdo0cPu+SSS2zJkiVBu83yxhtvFMkcHh5uw4YNs+uvv96+//77oG17XnzxxWK/JQkJCXb77bcH9Xb5ge18fHy8TZ061R588MGg/e02M3v88ceL5K5fv74df/zx9sQTT9ivv/7qdbxSPfjgg0VyN2nSxE4++WRbvHhx0P4Gmpndd999RXI3a9bMTjnlFHv66aeDOvfdd99dJHfz5s3tlFNOsaeeesp+//13r+OV6sDcTZo0senTp9uTTz5p27Zt8zpeqe6///5i38tp06bZQw89ZJs3b/Y6XqkeeeSRIrlr1qxpqampdscdd9jKlSuDtt1ZvHhxkdzR0dE2evRou+6662zp0qVBeyzr1VdfLbZ90qtXL5s1a5a99dZbQbtd9eGHH5a4n3bCCSfYo48+GrRt5o8//mhhYWFFckdERNiQIUPsqquuso8//jgotwl//vlnq1atWrHPvFatWjZlyhS75557bO3atV7HLGb//v3WqlWrYrlD4TcxISGhxNz5+5qTJk2yBQsW2PLly4Pqd/Hqq68uNXf+0LlzZzv33HPttddes927d3sd2czMlixZUm7u/H2hwYMH21VXXWWffPJJ0Hxfn3vuOZ/zDxo0KOjyf/311+ac8+nf0K1bN7vooovsrbfesn379nkd3cxyf2tat27tU/6GDRvaCSecYE888URQbUdecMEFPuWPjo62sWPH2rx58+yHH34Imt+f999/36f8+cdhZs+ebe+9955lZGR4Hd3MzH766SeLi4vzKX+bNm3srLPOsldeeSVofkM3btxo0dHRPuXv1KmTnX/++fbWW2/Z/v37vY5uZmY33nijT9kjIyNt1KhRdtNNNwXN8bDHHnvMp+xRUVE2duxYu+WWW2zFihVexzYzsyuvvNLn761zzvr162eXXHKJvf/++0Hz3Q0VGzduLPx5NjN/1MT5YyEMFC6ifDk5OUHR4BxOQrEgLSsry84880x79dVXg2YnzxfZ2dnWs2dPmzZtmr388ssh08Dn5OTYgAEDrEmTJjZz5kz76KOPQmadSUtLM0nWv39/u+mmm4L6ZGlh5513nkmy2NhYmzJlii1evDgkil7vuOOOgo2wBg0a2N///nd79913g/57+vbbbxfZGG/RooVdeOGF9tlnnwV1m7Ru3ToLDw8vkr1ly5Z24YUXBnUR465du6xu3brFdoKaN29uM2fOtA8++CAof2Oys7OtY8eOJe7AtWjRwmbOnGnvvfde0K3vOTk5Nnjw4DIPPF566aVBWYA5ceLEUnPHxsYWFAP+9NNPXkctYvLkyWXu8Pfr18+uuuoqW7p0aVB95vltZlkHGIOx0Ku8z7tv37525ZVX2meffRZUvy1JSUmlZo6IiLCRI0faTTfdZMuWLQuq9WT8+PGl5s4v0r333nuD7iTkyJEjS81dr149O+GEE2zx4sW2fft2r6MWKO/3u1WrVnbmmWcGXdFoTk6O9e3bt9TcXbp0sYsuusjefffdoNofys7Oth49epSau0+fPnb55ZcHXWFDVlaWdenSpcTMYWFhNnDgQLvqqquC7jcwMzPTOnToUGLu/BPT//rXv+yLL74Iutzt2rUrM/fVV18ddJ93RkaGtW3btsz15Morrwy6Nr6s3M4569u3r1188cX27rvvBs3JN7Pc9aS0/QZJ1rVrVzv//PODqnDELPf3pGvXrqXmbt26tZ122mn29NNPB1XBa3Z2tvXp06fU3PXr17djjz3WHnjggaA6Z5CTk2PDhg0rc39n/PjxNm/ePPvmm2+CanswOTm5zO3v7t2724UXXmhvvvlmUF1wNmPGjDJz165dOyiLAS+//PIyc0uy9u3b21lnnWUvvvii7dixw+vIZmb26KOPlps7/zfxggsusDfeeCMo1peSLkYsa3v81FNPtWeeecbzCxh27txpDRo08Dl7fhHUjTfe6PlvTHm/KSUNderUsaOPPtoeeOAB27Rpk2fZc3JyrF+/fpXKf8wxx9iDDz7o+QWX06ZNq3D+uLg4mzRpkt122222cuVKT/MfeOGFL4Nzzo488ki74oorPN/+3bZtm1WvXr3C/4aWLVvaaaedZs8//7znv/tlHScqbahZs6alp6fbfffd5+l32Mxs9uzZFc4fExNjEyZMsFtvvdXz78A555xT4fzVq1e31NRUu/vuuz29WH337t3WqFGjSq3/Z5xxhr300kuenTfNysqyzp07Vzh7u3btbObMmfbGG294VgS+Y8cOq1evXoWzS7IaNWpYSkqK3XHHHUHdKUawqIrCRW4VHQK4VfShITs7W6mpqZo4caKOO+64oL9dQ2G33XabevTooaFDh3odpUJOPPFEffjhhzrjjDN00kknqU6dOl5H8snFF1+sa6+9Vk2aNNEJJ5ygk046Se3bt/c6Vrluv/12nXXWWZKkunXraurUqZo2bZoGDx4cdF3VF/bss88qPT29YLx58+Y66qijdNRRR6lfv35B10V6vk8++UQDBgwoMu3II4/UUUcdpSlTpqhFixYeJSvbhg0b1KZNG2VlZRVMi4uLU2Jioo466iglJCQE5a2P9u7dqxYtWujXX38tMr1x48aaMmWKjjrqKA0aNCjo1nWz3NsAL126tNhzrVu31lFHHaWjjz5aPXv2DLp1/bjjjtPjjz9e4nOtWrUq+Nz79u0bVNmvuuoqXXHFFaU+37hxY6WlpSk9PV1Dhw4NmluUPfLIIzrxxBPLnKd+/fpKSUlRWlqaRo0apejo6AClK90bb7yhCRMmlDtfs2bNlJKSopSUFA0fPtzzWyCV9BteEuecjjzySCUnJyspKcnzW5V99dVX6tWrl0/zNmvWrMgtpb28neo333yjHj16+DRv/fr1lZCQoEmTJmncuHGebrNXJHejRo0KboU9ZswYT2/VsXTpUvXp08enedu2bVuwngwdOtTT76av30tJ6tOnT8Hn7fXtaw+87VtpIiIiNHTo0ILP2+v9i3feeUejR48ud764uLiCW2EnJCR4fjzktddeU0JCQrnzxcfHa/z48UpMTNTEiRM9v0Xmiy++qJSUlHLnq1evniZMmKCEhASNHz/e833oA/fVStOgQYOC3OPGjfP81uOLFy/W0UcfXe58DRs2LLjN3rhx4zy/TdGiRYt0zDHHlDtfvXr1NG7cuILcDRs2DEC60i1cuFDHHntsufPVrl1bY8aMKbgtoNe/J75+3tWrV9fIkSMLbmnVtm1bT7cHff1eRkVFaejQoQW3UO3evbun7eVLL72k5OTkcucLCwtTv379CnIfeeSRioyMDEDCkr311lsaO3asT/N26tSp4PbMw4cP93R7cMmSJRo0aJBP8zZq1Ehjx44tGBo1alTF6Ur33XffqXv37vLlnFlMTEzBOj527Fh1797ds+/mxo0b1a5dO+3fv9+n+YPlttI7duzQEUccUeqtFA+Uf3vU/M+8T58+ntxWOjs7Wz179tR3333n82uio6MLbkM+fvx4de3aNWDrS05Ojnbu3KmMjAxNnz5dr776aoVeHx4eriOPPLJgnenXr19AjmVlZmbq22+/VUZGhu677z7df//9lVpO48aNCz73sWPHql69en5OWtS+ffv01FNPKTMzU998841uvfXWg1pe165dC7Zdhg4dqpiYGD8lLSojI0MLFy5UZmZmwfDhhx9q0aJFB7Xc7t27F+QfMmSI348lZmZmFsudmZmprKwsrVy5Uvfee+9BLT//lsbjx4/XyJEj/da2ZmVl6cknn1RWVlZB3gMf79+/X9ddd50yMzMr/T61a9cu2G4fP368GjdufFC5c3Jy9Pjjjys7O7sgZ1nDc889px9++KHS7xcZGakhQ4YU3Fa6sr+dZqbHHnusIHdpfw+c9v333+ull16qdH4p9zswceJETZw4UYMGDarwduXjjz+uzMxMZWdnFxnyM5Y1bdu2bXrwwQcPKn/btm0Lbms8fPhwn4/vPvnkk8rIyCiWMScnp9i00qZv3bpVjz322EHl79atW0F+Xz7/hQsXav/+/aVmOnBaWePvvPOOvv7660pnj46O1ogRI4rc0ru83Dk5OQUZ8h+XNq2s8Y8++qjUW6X7Ii4uTmPGjCm4rXShWwoX8fjjj2vfvn3KyMhQZmamMjIyCobC4xV5bu3atdqxY0els+dr06ZNQfs1cuTIoLqldzDgVtGH6SB6XDxkXHbZZSbldr1/yimn2GeffeZ1JJ/k3+powoQJ9vnnn3sdx2eFbyEZGxtrM2bMsKVLl3odq1zr1q0r1o394MGD7b777vP8CqOy7Nq1y2rXrl3sKoUWLVrYrFmz7Ouvvw6qq6jNcm9x/ccff9gRRxxR4hUWrVq1sn/84x/2xRdfBFX2HTt22Nq1a8u88n7AgAE2b948W79+vddxC/z222/2xRdf2NixY0vNHRcXZ0cffbQ9/fTTQdNDw9atW+21116zqVOnlnlFTtOmTe3cc8+1jz76KCjWl/Xr19sDDzxg06dPL/dqorZt29oll1wSFN/TFStW2NVXX11ujwGFv6cXXXSRffrpp55m/+abb+z000+3448/3ueruOrXr2+nnnqqvfHGG571zPT5559bamqqpaSkVPgKtGOPPdYWL17sya3fP/roIxs6dKgNHz7c51u/5A/x8fF27LHH2qJFi+zPP/8MaO4PPvjAevXqZb179y7Wq6gvQ+vWrW3mzJn21ltvBXSdef/9961r167WtWtXi4iIqHDu2NhYS05OtnvuuSegV9x/8MEH1rlzZ+vcuXOlckdGRtqYMWPslltusVWrVgUs94cffnhQn3dUVJSNHz/eFixYYGvWrAlY7k8++cR69uxpPXv2rFTuGjVqWHp6uj344IP2888/Byz3F198Yf3797f+/ftXKnfDhg3t5JNPtmeffTag2+pfffWVDRkyxAYPHlyp35O2bdvaueeeG/Bb6Xz77bc2cuRIGzFiRKVy5/eQ+tFHHwW094jvv//exo0bZ2PGjKlwu+Ocs/79+9ucOXPs888/D2hvdcuWLbOEhAQbP358hXOHhYXZoEGDbO7cufbll18GdDtrxYoVlpycbAkJCZXO7UWvhitXrrTJkydbYmJihdft/N5RrrzyyoDfZm/VqlWWlpZmkyZNqnBuSda7d2/75z//GfBbo61Zs8bS0tIq9XlLubeVPO+88+z1118PaE9YB5vbq16w1q1bZ5MnT7aJEydW+Hsp5d654G9/+5s9/PDDAd0eXL9+vSUnJ9v48eOL3U7Xl6FGjRqWnJxst912W0Bvn7phwwZLSEiw0aNHV6q9jIyMtOHDh9vcuXPt008/DdhvysaNG23MmDE2bNgwi4yMrNQ63q1bN7vgggvs9ddfD9hxoU2bNtmQIUOsf//+Pt+W8MChYcOGdtxxxwV0Hd+8ebP16tXLOnfubDExMZXK7cVtpTdv3mxHHHGENWvWzKKioiqVW8rtSXLq1Kl27733BuT455YtW6x69eoHlTl/aNSokZ1wwgn22GOPVfm+z08//XTQeQsPtWrVsvT0dLvnnnuq9A5Av/zyi19zS7nbW3369LGLL764yrZbfv/9d7/nzh/ye0K7+eab/X5L3T///LPKcucPcXFxlpiYaP/+979txYoVfsm/e/fuKs+dP+Tf0vWGG2446GPo+/fvD1juwkPPnj1t9uzZlb5LQHZ2tie584emTZvajBkz7Omnn67wXSW8zJ0/1KxZ09LS0uzee+/1ud6jMsepqmqIjY21hIQEW7BgQbnHSSu7PVXVn/+UKVPs/vvvL3Vbzdfba3sxtG3b1s455xx7/fXXi92dpGbNmp7nK2vo1q2bzZo1y95//33LzMwMic+78BAREWHDhg2zuXPnBt1dKLzCraIP00EULh4SlixZYscdd1yxH7s+ffrYPffc48lJf1+sWLGioOAyf5gyZYr98MMPXkcr03vvvWdpaWklHkwdNGiQPf7440F1u518L7zwgnXp0qXUjbq4uDg74YQT7L///W9QNYyPPfaYxcbGlnswtUuXLjZ37tyAnkQvS0W622/btq1dfPHF9tVXX3le2PXYY49VaKNqwIABNn/+fE+7RjczW7hwYYVyV6tWzY455hh79tlnPb2lylNPPVXhDdkWLVrYBRdc4Gkx3TPPPFOpjfCOHTva5Zdfbt99950nuZ9//vlK70DkFxt7cSvsg8kt5R5wP+mkk+yVV14JaFf6L7zwwkHllnJvw5OUlGQPPvig/frrrwHJ/eKLLx50bin3oOP48ePtzjvvDMjtX1966SW/5JZyCzCPOeYYe+KJJ6r8lnavvPKK33JLudu/V155ZZVfGPDaa6/5NXfHjh3twgsvtHfffbfIQRZ/e+ONN/yau0uXLvaPf/yj2MEhf3vrrbf8ljm/gOfqq6+u8oKp//73v37LHRUVZWPHjrVbb721ym8r8v777/std+Gi0aq+Rf2HH37ot9z16tWz448/3hYuXFjlxTtLlizxW+5GjRrZySefbM8880yVF7t+8sknfsvdpEkTmzFjhj3zzDNVXvj/2Wef+fXznj59ui1atKjK28svvvjCb7nr1q1r06ZNs0ceeaTKCxoqcutIX35PJk+ebHfffXeVFjOYmX399dd+yx0TE2Pjxo2zefPm2XfffVel7c63337rt9yFb4f90UcfVWk7/8MPP/gtt/RXcVpV30J12bJlfs3dsmVLO+WUU2zx4sX222+/VVnulStX+jV3nTp1Cgq8qvK7uXr1ar/mjo6OttGjR9v1119vS5curbJjoevXr/drbumvW6dXZQHmpk2b/J47ELeV3rp1q99zS7IOHTrY2WefbS+99FKVnGupikK6/KFXr142a9Yse/vtt/1+TOi3336rstyFP/eXX37Zr5/79u3bqzS3lHtL0eTkZLv99tv9drHizp07qzx3/tC8eXObMWOGLV68+KC3c/fs2ROw3PlD69at7fTTTz+oWwJnZGQEPHf+0KRJEzvppJNs0aJFFd4m8LoAUMrdbk9NTbW77rqrQtsGlbmApSqG8PBwGzp0qM2dO9eWLl1a7vZ7MBUA5g9du3a1iy66yN55551Sz1cHYwFg/tC+fXubOXNmiYV0oVCQ1qtXL7v44ovtf//7X8F+VI0aNTzP5csQGxtriYmJdvvtt9vatWtL7FQoWIdatWrZUUcdZQ8//LDFx8d7nqcyQ7169Wz+/PmedUYSDChcPEwHUbh4SJg3b16ZP3I1atSwM844w77++muvoxaxYMGCEvOGhYXZ9OnTq+wAxsEqLXfhoWHDhnbppZcG1ffq9ttv97lhPOKII+yqq64Kih717rzzzgo37AMHDrQFCxYEtEedA919992V2ijp0KGDXXbZZZ4Vdt13332V3qAaOHCgZ0WM+b23VmaoXr26TZs2zZ577rliO0FVrSIFriUNXvXc+fjjjx/0BniXLl1szpw59uOPPwYsd0ULXEsbWrdubf/4xz/s888/D8jnvnjxYr/klnKv/jvuuOPs+eefr/Ki3coWuJY2hIeH26hRo+y2226zTZs2VVnugy0ULW3o37+/zZ07t8oKd/xVcFnS5z5y5Eh79dVXqyS3vwsXCw9Nmza1O++8s0p69nj99derLHedOnXs1ltvrZICgTfffLPKcjds2NAefPDBKjnp+/bbb1dZ7g4dOtjrr7/u98xmZu+++26V5R4+fLh98803VZL7gw8+qLLcJ5xwgm3durVKcn/00UdVkjkqKsouu+yyKms3/VkAWHioV6+e3XvvvVVWiPH5559XSe6OHTvayy+/XCWZzcyWLl3q98zOORs5cqR9/PHHVZbbn4V0+UO1atXs6KOPtu+//77KcvuzkC5/aNKkiZ155plVWsTt70I6SdapUye79NJLq/Q4y/Lly/2eu1+/fnbddddV6X7+qlWr/J574MCBNm/evCrNvXbtWr/n7t+/v91www1VelHuhg0b/J67S5cuduWVV9q3335bZbmropCuSZMmdvbZZ9t7771XZb0BVkUhXUxMjKWlpdkTTzxRZQX/VVVI17lzZ7vsssuq7K4cVVVIFxkZaRMnTrT777+/Si6qrMpCuri4OJs6daotWrTI70WXVV1Il38x60MPPeTXi0QCVUjXvXt3mzNnjt8uXAhkT3pRUVGWmJhoDzzwgG3btu2gcmdmZgYsd+H1Pj093R5//PEK956XLycnJ+C584eIiAgbP3683X333ZU6jhgMBYA9e/a0OXPmVOi4RTAVANarV89mzJhhL7/8crkd1QRjAWBERISNGTPGbr/99lLXoWAvAMxfhw48fxQqBYBdu3a1Sy+91JYtW2ZmZrVq1fI8k69DdHS0JSYm2r333mt169b1PE9l1p1q1ap5nsPXwTlngwcPtvnz51f5RZqhoCoKFyMEICAyMzMVFxenPXv2lPj8zp07deedd+rOO+/U4MGDdfPNN6tfv34BTlncTz/9pLCwMOXk5BSZnpOTo4ceekiPP/64TjvtNF1yySVq1KiRRymL27x5c7nz/Pzzz/rXv/6la6+9VqmpqTrzzDM1YsQIOecCkLBkv//+u8/zrlmzRpdffrmuuOIKpaWlaf78+WrRokUVpivdrl27KvyaJUuW6IcfftA777yjK664Qj169KiCZGXbu3dvpV63evVqvfPOO3LOacaMGQH/3Pfv31/p165cuVKffPKJatasqWnTpik2NtaPycq2b9++Sr92165deu+99xQVFaXw8HBNmjQpYN/Vyq4n+datW6eHH35YmzZt0mmnnaZhw4b5KVnZDja3JH3//fe65ZZb9PXXX+u8887TkCFD/JCsbAeznhS2du1a3X///Vq3bp1OPfVUjR492i/LLU1GRobflrVjxw599tlnql27tuLj4zVixAi/LftAWVlZfl1etWrVVKtWLUVFRSk7O9uvyy7M38uOiorS8OHDlZCQoMTERDVs2NCvy89nuRcl+U1kZKSGDx+uxMREJSYmql27dn5dflWJiorSqFGjlJSUpEmTJnm2/VJRcXFxGjdunJKSkqp0PfF3+1a7dm0lJCQoOTlZ48ePV3x8vF+Xn8/fuZs0aaLk5GQlJSVp1KhRiomJ8evy8/k7d+fOnZWcnKzk5GT1799f4eHhfl1+Pn/mDgsL0+DBgws+7w4dOvht2QfyZ+5q1appwoQJSk5OVkJCgurVq+e3ZR8oLCzMb8tq1qyZkpOTlZKSohEjRigqKspvyz6QP3P37dtXKSkpSk1NVZcuXap0W9xf35vo6GiNHTtWqampSkpKUoMGDfyy3NJERPjnMGu9evWUnJysyZMna8yYMVX2+5cvMjLSL8tp06aN0tPTlZaWpn79+vl1/SuJv747vXv3VlpamtLS0tSpUye/LLMs/sjtnNOgQYMKPu+WLVv6IVnZ/JV76NChBbmbNWvmh2Rli46O9styBg0apClTpgTs8/ZX7h49emjKlClKT08PyPrtr9zNmjXTlClTNGXKFA0cOLDKf0/8lTsuLk6JiYmaMmWKEhISVL16db8stzT+3Ibo3r17wbrSuXNnvy23JP7MHR0drfHjx2vKlClKSkpSrVq1/LbsA/l7m61GjRpKTk5Wenq6xo8fr7i4OL8uP19VbGvGxcVp4sSJmjJlihITE1WjRg2/v4e/tk9K0q9fP6Wnpys9PV1t27b167KrMrf012efnp6uxMRE1axZ0y/Lrar91gPFx8crKSlJaWlpflnvnXMKDw+v0mOQhcXGxmrChAlKS0vTpEmTDuo3JzIy0q/Hk32Rvw2ZlpamyZMnq3Xr1hVeRkREhN+PJ1dEy5YtNXnyZE2ePFmDBw/2ed2NiIg4qPNq/pL/HU5NTVViYqJq165d5vyB+m76KiwsTMOGDVNqaqpSUlLUqlWrEucLttz5nHMaPHhwQf4D24BgzZ2vVq1amjRpklJTUzV+/PiCbc2LL77Y42TlCw8P1/Dhw5WSkqLk5GS1atVKzZo10+7du72OVqr8zOnp6Zo8ebIaN27sdaRDGoWLQIDMmjVLn376qZ599tki051z6tSpk/r06aO+ffuqT58+6tmzp6pVq+ZR0qL++c9/6vnnn9f3339f4vOZmZm67bbbdP/992vWrFmaPXu23w72HIyrr75azjlde+21pc4TGxur7t27q2fPnurZs6diY2OVmZlZpSeOynP66aerYcOGOvXUU8ucr0OHDho4cKAGDRqkgQMHqlOnTp5uUE2dOlXNmjXTcccdV+ZOYnx8vIYNG6YRI0ZoxIgR6tGjh6e5J0yYoIcfflhnnXWWdu7cWea83bt31+jRozV69GgNGzasSg7I+Gro0KFasGCB5s6dq59++qnMeWNiYjRs2DCNGTNGY8eOVffu3av8gG9p+vbtqzlz5ujhhx/WmjVryp0/Pj5eI0eO1JgxYzRmzBi1b9/ek8Lizp0768wzz9R//vMfrVixwqfX1KhRQ8OHD9eYMWM0evToKj+5W5IWLVooLS1N33//vZYvX+7z62JiYjR06FCNHj1aY8aMUc+ePQP6Pa1Tp44GDBign376SevWravQa/Oz568zPXv2DNj6HhMTo1atWmn37t3atm1bhV9fu3ZtjRkzRuPGjdPYsWMDcjJMyt0OqVatmjIzMyt9sKxXr16aMGGCJkyYoIEDB1b5QVpJxS6oqIxmzZopMTFRCQkJGjVqVJWfVPKX+vXrKzExUZMmTdLYsWP9dpC6qjVo0ECJiYlKSkrS2LFjA/J5++N3t0mTJkpKSlJycrJGjhwZkIJ/f+Ru06ZNwYGgwYMH+62Ypiz+yN2rV6+Cz7t3794BaTsP9j3Cw8M1bNiwgqK/Nm3a+ClZ2fJzO+cqVRQdyKK/wsLDwxUVFSXnXKVOGuQXtOZ/J6u6oCtfRESEqlevLudcufsNJenZs2dBsWKvXr0Ctl0YGRmpWrVqKTw8XL///nuF1pWIiAiNGjWq4LckEAVG+aKjo1WvXj2Fh4dr27ZtFWr34+PjNWnSJE2ePLnIgfxAiI6OVqNGjRQREaEtW7ZUKHeLFi2KnIALxO92vpiYGDVp0kSRkZHatGlThU78du/evaDor2vXrgHd54mJiVGzZs0UFRWlDRs2VOgEav4J27S0tEqdsD0Ylc0dFhZW5KRJkyZNqjhpUbGxsWratKmio6O1ceNGZWZm+vS6sLAwjRgxQlOmTNHkyZMDftFzTEyMGjdurKioKG3dutXnfZ78Isv8YsWmTZtWcdKioqOjVb9+fUVFRWnbtm0V2lfr3bt3QdFfoC9siomJUXx8vKKjo7V9+/YK5W7ZsqWmTp2qKVOmBKT4ubDo6GhFR0crKipKe/furdDvSfXq1ZWUlKQpU6ZowoQJVVZ8VpL8Y/D5v70V3SbMX1fS09PVvn17v+crzcGeO4iNjVVCQoLfC7fK449zBrVr11ZKSoqmTJmiMWPGBOQ8ir+O0dSoUUNJSUlKT08PyLoeHh5e6X2dAznnNGTIkII2tCovnqyKQrqaNWsWfPZVVeTqnFNkZKTP7XtF1K9fX6mpqUpLS9OoUaP8fv4tMjKySgsX/V1smS8iIiIghYsREREaPXq0Jk+erJSUlIPeFgvkfkq+Ll26FBRb9uzZs1L7HF6eh6xbt66Sk5OVmpqqsWPHVujYohef94FiYmI0fvx4paamatKkST4dP/LqHGRJKnJBYzDlzte8efOCi0iHDRtWYrserAWX1atX14QJE5SSkqKEhATVqVOnyPOBOI9UUZGRkRozZozS09OVkpISsOOlkJy/e/2A/znnmknaKEkbN24M6MFi+M9LL72klJQUdejQoaBIsW/fvurZs2fQnig3M5144olauHChGjdurCZNmhQZDpxWu3ZtT3srLGzt2rXq2rVrQQ+X9evXV69evQqKFHv27Kn27dsHXWOek5OjIUOGaMmSJQXTqlevrv79+xcUKR555JGqW7euhylLNnv2bF1//fVFptWqVatIoWL37t2D7jN/5JFHdOKJJxab3rp164JCxVGjRlV57xwV9f7772v48OHFpjvn1Ldv34LCrUGDBgXshK4vVq5cqc6dO5d4EDgyMlKDBw8uyN6nT5+g2DGTpO3bt6tNmzal9ooaGRmpQYMGFRT79e3bNyg2urOzs9WrVy99++23pc4TFhamfv36FRRZDhw4MCjWmWOPPVYLFy4scx7nnPr06VOwzgwePNjz7Ndee61PV7hFRERo4MCBGjdunMaNG6c+ffp4+vv43HPPKS0tzad569atq3HjxmnChAkaN26cJz0um5mys7P1xRdfaMCAAT69Jjw8XIMHD1ZCQoISEhICfnJdyu3hcs+ePVq3bp169erlc0FDr169NGnSJCUmJgb8JJ6U26Po7t27tXXrVvXs2dPnA9ndu3cv6FWxf//+Ac+dmZmpXbt2adu2berevbvPRVK9evUqKEILVPFcYZmZmdqzZ4+2bdumrl27+pQ7/6r5/NwdO3YMeO7s7Gzt379fP//8szp27OjTAfjCvW8mJSWpefPmAUhaVE5OjrKzs7Vlyxa1b9/ep9w1a9bUxIkTlZycrIkTJ5Z7hXxVWr9+vdq2bevTCfamTZsWFP2NGDHC0zZz9erV6tChg08nmHr06FGQu0+fPp7uc65YsUKdOnUq9/c7IiKiyJXkgbogoTTLli1T586dyz3xW6NGDSUkJCg1NVUTJ06ssh5affXjjz+qS5cu5eZu2rSpUlNTlZqaquHDh3u+He5r7s6dOxcUK3rR3hzI1/Vk4MCBBbn93UtRZSxfvlydOnUqM3d+8Vz+Cc9AF/2VZPXq1Wrfvn2Zvyf5J5qnTJmilJQU1a9fP4AJS+ZLuxOMubds2aLWrVuX2c7nF4dOnTrVkyLLkvz6669q0aJFuXdU6Nevn6ZOnar09HQdccQRAUpXuh07dqhFixb6888/y5zviCOOKChW9LqNl3LvANG6detyLxKuWbNmQfHZuHHjPNumyt8vds6pc+fOPl1se+SRRxYUKwa6cDufmem3335TVFSUxo8fr48//rjc11SvXl2TJk1Senq6Jk6c6FmnDz/88IOioqJ0wQUX6MUXX/TpNfXr19fkyZOVnp6ukSNHerKd8p///EeRkZF6+OGH9dBDD/n8uvxCy/T09ID0An2gu+66SxEREfr666912223Vei14eHhBYXzqampAf1NP/fccyXl3jXprrvuqtQy6tatq9TUVKWnp2vUqFEBKXKdOXOmzEyRkZGKjIzU1q1b9cgjj1RqWc2aNSu4SGTIkCFVeszzvPPOU3Z2tiIiIgqyR0REaOfOnZo/f36lltmgQYOCYsuRI0dWSWcn5513nrKysgry5g/54+Hh4brmmmvKbUtLEhcXV9AzZGJiol97oz3//POVmZlZJHPhITw8vODxc889p/fff79S7zNgwICCfQ5/XIhxwQUXaP/+/UUylvU3PDxcy5cv1x133FGp98u/MC01NVVDhgyp9HmuCy+8UPv27SvIlD8UzlnatD///FOXXHJJpd63du3aSkpKUmpqqsaNG1fhdveiiy7Snj17CrKEhYUVy1vetG3btmnOnDmVyl9az4TlmTVrlnbt2lVivsLjvjz3zDPP6D//+U+l8nfr1q3gGIcvF7/Onj1bO3fuVFhYWMGQn+XAx+WNh4eH691339UzzzxTqeyNGjUqKNQt74LjK664Qtu3b1dUVJQiIyMVFRV10I/zO6GpiJiYGE2YMEHp6ekH3Zvu4WLTpk2Fj+M3N7NNB71Qf9xvmqFqB0nNlHeP8I0bNxpC07Jly2zHjh1ex6iQrKws27Ztm2VnZ3sdpcLuuecemzt3rr3yyiu2ZcsWy8nJ8TqSTx5++GFr27atHX/88XbnnXfaV199ZVlZWV7HKtfatWstKirKatWqZcnJyTZ//nxbunRp0Gffu3evtWjRwiRZ/fr17eijj7Z77rnHVq9e7XW0MuXk5NiAAQMsv21o27atnX766fb000/bb7/95nW8Mh111FEFuSVZz5497cILL7TXX3/ddu3a5XW8Us2aNatIbuec9erVK+izP/TQQ0Vy5w+dO3e2s88+21544QXbvn271zGL+fzzz0vMLcnatGljp512mj311FNBt77/9ttvFh8fX2r2du3a2ZlnnmkvvPCC/fnnn17HLZCVlWWdO3cuNXdYWJgNHDjQ5syZY5988klQ/bZPmjSp1NySrEGDBnbiiSfa4sWL7Y8//vA6boEZM2aUmTs2NtaSkpLs7rvvDqrt/3PPPbfM3FFRUTZ+/Hi77bbbbN26dV7HLfCPf/yjzNzR0dE2ceJEu/POO4Pq877ooovKzF2tWjVLS0uzhx56yH755Rev4xY477zzysxdt25dO+GEE+zpp58Oqv2js846q8zcrVq1snPOOcfeeust279/v9dxC5x22mll5u7du7ddeeWVtnTp0qDaJzr55JNLzRwREWFjxoyxf//730H1W2JmduKJJ5aau2bNmnb00UfbE088EVRtjpnZ8ccfX2ruJk2a2BlnnGGvv/667du3z+uoRZSVu3PnznbxxRfbp59+GnTHLMrKfeSRR9p1111ny5cv9zpmMaWt3+Hh4TZ69Gi7/fbbbdOmTV7HLKa035PIyEhLSEiw++67z7Zt2+Z1zGJK+/2Ojo62pKQke+ihh+z333/3OmYx55xzTqnbgYmJifbggw8G3X6aWenbVeHh4TZ27Fi7++677eeff/Y6ZjGXX355qb8nAwYMsHnz5gVdW2lmdsMNN5Sau127dnbxxRcH3baJmdndd99dau5atWrZ9OnT7ZVXXgm69vLpp58uc3tw8ODBdvPNN9v69eu9jlrE//73vzJz16xZ044//nh7/vnnbc+ePV7HLbBhwwaLiIgoM3vjxo3trLPOsv/+979Bcwxl37591qRJkzJzS7nHyE899VR74403LCMjw+vYZmaWkJBQbu7CbdH9999vv/76q9ex7aabbvIpd+H15swzz7R33nnHMjMzvY5f7r7mgUPbtm1t1qxZ9sknnwTF9vmcOXMqlL9FixZ27rnn2vvvvx8U39t33nmnQvlr1aplJ5xwgj333HO2e/dur+Pb7t27rX79+j7nj4iIsLFjx9odd9xhmzdv9jq+mZlNnTq1Qv8HXbt2tcsuu8y++OKLoNjGueKKKyqUv3nz5nb22Wfb22+/HRS//xdeeGHI5t+zZ481bNjQ5+xhYWE2bNgwmz9/vufnp7Ozs61r164V+uw7depks2fPto8//tjT3/+VK1daWFiYT5mrV69uRx99tC1evNh27tzpWeZQtXHjxsKfZzPzR02cPxbCQOEiAP8IpoMwFbF06dKQKFQ80P/+9z+bN2+eff3110GxM+2r9957z44++mi79957be3atV7H8dmnn35qrVu3tlNOOcUWLlwYVEUWZdmwYYPFxMQUFMwtXrw4KE98HWjv3r3WvHlzk2TNmjWz6dOn26OPPho0O/5lGTNmTMFGb926de2oo46ye++919asWeN1tDIdWBxVq1YtS09Pt7vvvjuosz/66KMlHiw96aSTbNGiRUF54tHMbMmSJcVyO+fsyCOPtDlz5thnn30WlL/tq1atsvDw8BIPkP7973+3V199NSi3B7Zu3WoxMTHFctevX9+mT59uzzzzTFAVoeX75ZdfLC4ursTcJ510kj377LNBeXCitNxNmza1M844w1577TXbu3ev1zGL+emnnyw2NrZY7g4dOthFF11kH3zwQVBuL27evNmio6OL5T7yyCNt7ty59u233wbFQecDrV+/3iIjI4tkjoqKsgkTJtgdd9xhGzZs8DpiidasWVPsZG98fLxNmzbNFi5cGJQXVZiZrV69utjvd7NmzezMM8+0N998M6gKWgsrqd3p0qVL0Bb95Ssp98CBA+36668PyqK/fAeuJ/mFuMFa9Jdv7dq1RXLnF889+OCDQXHivzQbNmwo8jsYGxtraWlp9thjjwXtb4mZ2ZYtWywqKqpI7vT0dHvyySeDcnsq37Zt24q08zExMZaamhr0n/fvv/9u1atXL8gdGRlpEydODJrCltLs3LnT6tSpU2RfZ8iQIXbLLbcEbRtvlnssolGjRsVOZl5++eX2zTffBOU2lVnuBX1t2rQpkrtu3bp2yimn2Ouvvx607XxOTo717du32MnvESNG2IIFC4K67UlKSiq2/V2nTh076aSTgrJANN/MmTNLPAHeokULO++88+zDDz8Myu2re++9t9ST902aNLGzzjrL3n333aDbX/vqq6/KLDzIb/sff/zxoGqL9u3bZ40bNy63cKJVq1Z2wQUX2EcffRRU683mzZuLbKuUNnTr1s2uvPLKoPt9P7ANLW3o1KmTXXLJJUFTaFbY6NGjy83fuHFjO+OMM+w///mP54VaB7rlllvKzR8XF2dpaWn26KOPBt0FOz/88IM558rM75yzQYMG2Y033mgrV670OnIRf/75p9WqVavc/4OuXbvapZdeap9//nlQfQe2bdtm1apV8+k3KJiKRfP9+9//Ljd7TEyMJScn2wMPPBBU50qfffbZcrM752zw4MF244032ooVK7yOXOD//u//ysydX+D9wgsvBOX5l1BC4eJhOojCRQDAIWD37t1BtfPgqxUrVoRUgWi+JUuW2B133GHLly8Pqc/9gw8+sLFjx9oNN9xgS5cuDaqDdmXZtGmT1ahRwwYPHmxz5syxJUuWBMXV0eXJyMiwI444wiIiImzEiBF23XXX2VdffRUS68zYsWNNktWuXduOOeYYe+SRR4JqJ78006dPLziZNHjwYLvmmmuC7gBvSQr3ote1a1f75z//aR999FHQndQ4UOEec7t06WKzZ8+2Dz/8MKRyB2uPeSW54IILCtbvYcOG2U033RTUBUb58nuPio2NteTkZLv33ntt69atXscq19///veCk+rB2ItlaU499dSCk3QzZ84MiqvhfXHKKaeYlNtj+OWXXx50B8ZLM2PGDAsLC7OhQ4faTTfdFHQnVEpzyimnWGRkpE2YMMHuvvtu27Jli9eRfHLaaadZbGysTZ482R555JGgOwFXmjPPPLOgx4FFixaFxG+JWW7xSI0aNWzatGn2zDPPBG1P+Af6xz/+YTVq1LBjjz3WnnnmmaDoFccXl112mcXFxdnUqVNt0aJFQXnxR0nmzp1rUVFRlpSUZA8//HDIfC9vvvlmc87Z8OHDbcGCBSFxEaJZ7l1w8k8kz5kzx77//nuvI/lk0aJFJuX22n/66afbW2+9FRL79G+99ZZJub2Hjhkzxu666y776aefvI5Vrm+//bZgfye/h78333wz6LcJt23bVuQCszZt2tisWbPs008/DertwqysLGvXrl2Rk/ctW7YMyoK5Ax1zzDHFCg/y29Cnn346aNv+snpw7dixY9AWy+XL37cvaejfv79df/31QVWscqCyervs06ePzZ0713744QevY5bq448/LjV/mzZt7KKLLgrq7+6+ffusadOmJeavU6eOnXjiifb8888H9TZwab3oF95HDebjRtdee225BWfBfGzgkksuKTF//rGNefPm2apVq7yOWaJ9+/ZZs2bNylz/n3vuuaBsv3JycqxXr16lFlomJSXZ/fffH5Q91ZdWcF+/fn37v//7v6C+ECkUVUXhYoQAAAACIC4uzusIldKuXTuvI1TKgAEDNGDAAK9jVNjgwYP15ptveh2jwsLCwrRx40bFx8d7HaVC1q9fr/nz52vUqFGqUaOG13F8tn79evXt21dXXHGFjjzySEVEhMZuzc8//6zMzEw9+uijmjBhgurVq+d1JJ/8/vvvWrNmjf79738rKSlJrVq18jqST/7880/9+OOPuuWWW5SUlKQjjjjC60g+2blzp9asWaM777xTkyZNUrNmzbyO5JNdu3bpt99+06OPPqqJEyeqbt26Xkfyye7du2VmevHFFzV69OiQ2V7Zs2ePateurffff18DBw4Mmd/Bffv2qW3btvrmm2/UtWtXOee8juSTjIwM9e3bV5deeqlatmzpdRyfZWVlacSIEbr22mtVv359r+P4LDs7WwkJCZo3b55q1qzpdRyf5eTkKDk5WfPnzw+Z3xIp96L2yZMn66abblJMTIzXcXxmZkpNTdX111+v6Ohor+NUSGJioubMmRNSn7ckjRw5UrNnzw6p9VuS+vXrp23btoXU74kktWnTRlu2bFGjRo28jlIhNWvW1LJly9ShQwevo1TIjh079N///ldDhw5VeHi413F8tnTpUt13331KSUkJmf1LSXr00Ud15plnasqUKSH1mS9YsEAtW7ZUenq6pkyZou7du4fE9uwzzzyjlStXqn379kpPT1d6erp69+4d9NlXrVqlxYsXS5Jq166tlJQUpaena8yYMUHdhmZlZemGG24oMq1nz54Fn32nTp08Suab33//XXfddVfBeFhYmIYOHar09HSlpqaqefPmHqYr3759+zRv3ryCceechgwZorS0NE2ePDkk9ueuueaaIuM9evTQ5MmTlZaWFhL70Y888og2b95cMN60aVNNnjxZkydP1rBhw4L++MWaNWv0xBNPFIxXr15dCQkJmjx5shISEoJ+m3LPnj2aP39+wXhUVJTGjBmj1NRUJScnq2HDhh6mK9/27du1YMGCgvGYmBiNGzdOKSkpmjRpkho0aOBhuvI9/PDD2rRpU8F4q1atlJqaqpSUFA0ZMiSo1/9XXnlFX375ZcF43bp1lZSUpJSUFI0dO1bVqlXzMF3Z5s+fr4yMDElS48aNlZaWpvT0dA0dOjSoP3P8xVluj34IYs65ZpI2StLGjRtD5sQVAAAAAAAAAAAAkM/Mgr7wpiSbN29W06ZNvY5RYc8884w6dOigLl26hNTnfsUVV+jnn39Wenq6RowYocjISK8j+eTJJ5/UtGnTNGDAAKWnpystLS1kLqSUpDlz5mju3LkaPXq00tPTlZycHPSFQoXdfffdOvvsszVq1CilpaUpJSUl6Au1Cvv222/Vs2dPDRgwoKDYMpTWn6ysLHXo0EFRUVEFxYp9+/YNqd+e0047Tc8//7xSUlKUmpqq0aNHh9SFUrfeeqsuv/xyJSYmavLkyZowYUJIdVhw9dVX6+abb1ZSUpJSU1M1bty4oC6YKywzM1MdOnRQrVq1CtafULnIwcw0YMAA/frrrwWFloMGDQqJor/ff/9dw4cP17hx45Senq4BAwYoLCzM61iHtE2bNhW+kKG5mW0qa35fULgYAihcBAAAAAAAAAAAAHA4CNUC17feeksdO3YM2XO5r732mgYOHKhatWp5HaVSPvjgA3Xr1i1k83///feqU6eOGjdu7HWUSvn111+1bdu2oO9ZtDRmps8//1y9e/cOmd6AD/T111+rU6dOioqK8jpKpXz11Vfq0qVLyBSrF/bHH39ox44dIdGz64F2796ttWvXhtxFDpK0f/9+RUVFhVzuUEbh4mGKwkUAAAAAAAAAAAAAAAAAgBeqonCRPjIBAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAAAChsJFAAAAAAAAAAAAAAAAAAAQMBQuAgAAAAAAAAAAAAAAAACAgKFwEQAAAAAAAAAAAAAAAAAABAyFiwAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAAAAAFD4SIAAAAAAAAAAAAAAAAAAAgYChcBAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAAAChsJFAAAAAAAAAAAAAAAAAAAQMBQuAgAAAAAAAAAAAAAAAACAgKFwEQAAAAAAAAAAAAAAAAAABAyFiwAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAAAAAFD4SIAAAAAAAAAAAAAAAAAAAgYChcBAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAAAChsJFAAAAAAAAAAAAAAAAAAAQMBQuAgAAAAAAAAAAAAAAAACAgKFwEQAAAAAAAAAAAAAAAAAABAyFiwAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAAAAAFD4SIAAAAAAAAAAAAAAAAAAAgYChcBAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAAAC5pAoXHTOtXTOzXPOLXPO7XbO/e6c+8w5d5FzLs6P7zPROfecc26Tc25/3t/nnHMT/fUeAAAAAAAAAAAAAAAAAAAcyiK8DnCwnHNJkh6TVLPQ5DhJffOGU5xziWa26iDeI0zSPZJmHPBU07wh1Tl3n6TTzCynsu8DAAAAAAAAAAAAAAAAAMChLqR7XHTO9ZK0SLlFi7skXSJpkKTRku7Nm629pFecczUO4q3m6q+ixS8lHSupf97fL/OmnyLpXwfxHgAAAAAAAAAAAAAAAAAAHPJCvcfFWyXFSsqSNM7MlhR67h3n3EpJNyi3ePECSVdW9A2cc+0lXZg3+rmkYWa2N2/8M+fci5LeU27vjhc55x44mN4dAQAAAAAAAAAAAAAAAAA4lIVsj4vOuf6ShuaN3n9A0WK+eZJ+zHs80zkXWYm3Old/FXieXahoUZJkZnsknZ03GiHpvEq8BwAAAAAAAAAAAAAAAAAAh4WQLVyUlFro8YMlzWBmOZIeyRutJWlkRd7AOeckpeSNLjOzj0t5n48lLc8bTcl7HQAAAAAAAAAAAAAAAAAAOEAoFy4Oyfu7W9IXZcz3XqHHgyv4Hq0lNSlhOWW9T1NJrSr4PjjE5eTk6Msvv/Q6RqWZmdcRKiQjI8PrCAAAAAAAAABw2Am1Y8n5QjF3Tk6OcnJyvI5RYdnZ2crOzvY6RoVlZmaGZO79+/crKyvL6xgVRu7AyszMDMnc2dnZIZnbzELy90RSSLY7wKEsFH9LzCwkt71RdUK5cLFT3t9VZlbWFsmyEl7jq86lLMff74ND2KpVqzR8+HD17t1bgwcP1uuvv+51JJ+89957atasmWrWrKnIyEh98MEHXkfyyZo1a1SvXj3FxcWpdevWevjhh72O5JMff/xRNWvWVM2aNVW3bl0tXrzY60g+Wb58eZHcTz75pNeRfLJixQrVqlVLNWvWVO3atfXEE094Hcknq1atKpL70Ucf9TqST1avXq3atWsX5A6V7+XatWtVp06dgtwPPPCA15F8sn79etWtW1c1atRQrVq1dN9993kdyScbNmxQvXr1VKNGDcXHx+uee+7xOpJPNm7cqPr166tmzZqKj4/XXXfd5XUkn2zevFkNGzYs+A2/4447vI7kky1btqhRo0YFuRcsWOB1JJ/89NNPaty4cUHuW2+91etIPvnll1/UpEmTgtzz58/3OpJPtm3bpqZNmxbkvummm7yO5JPffvtNzZs3L8h93XXXeR3JJ3/88UdB7vj4eM2dO9frSD7Zvn27WrZsWZD7qquu8jqST/7880+1atWqIPcVV1zhdSSf7NixQ61bty5Yvy+77DKvI/lk586datOmTUHuSy65xOtIPtm1a5fatWun+Ph41axZUxdffLHXkXyye/dutW/fXvHx8apRo4Zmz57tdSSf7N69Wx06dFB8fLyqVaumiy66yOtIPtmzZ486d+6sWrVqKS4uThdeeKHXkXyyd+/egtyxsbE6//zzvY7kk71796pbt26qXbu2YmJiQib3vn371L17d9WuXVvR0dE699xzvY7kk/3796tXr16qU6eOoqKidM4553gdySf79+9X7969VbduXUVFRemss87yOpJPMjIy1LdvX9WtW1eRkZEhlbt///6qV6+eIiIidOaZZ3odyScZGRkaMGCA6tWrp8jISJ199tleR/JJRkaGBg0apAYNGoTU9zIjI0NDhw5Vw4YNFR0dHVK5hw8froYNGyo2NlYzZ870OpJPMjMzNXLkSDVq1EixsbEhs35nZWUVyX3GGWd4Hckn2dnZGj16tBo1aqTo6GjNmDHD60g+ycnJ0dixY9WwYUNFRUXpxBNP9DqST8xM48ePV8OGDRUZGamjjz7a60g+mzhxoho0aKDIyEhNnjzZ6zgVYmbauHGj1zEqzMz09NNPa/369V5HqRAz0zXXXKMnn3xSP//8s9dxfGZmOuuss3TRRRfpzTff1J49e7yO5LO///3vmjp1qh544AFt2bLF6zg+O/HEE3X88cfrvvvu06pVqyhkPNzlV7OG0iApRpLlDS/7MP+uvHmXVPB9Ti/0PlPKmXdKoXlPq+D7NCtn6Ju/7I0bNxpCx6+//mpxcXFWaN0wSbZjxw6vo5Vr6NChRTK3a9fO9uzZ43WsMmVlZdmgQYOK5G7durVlZWV5Ha1cI0aMKJZ7//79Xscq1+jRo4vkbtmype3bt8/rWOUaN25ckdzNmzcP+vXbzGzixIlFcjdt2tR2797tdaxyJSYmFsnduHFj27Vrl9exypWcnFwkd6NGjWznzp1exypXWlpakdwNGjQIiXZn6tSpRXLXr1/ftm/f7nWsch199NFFctetW9f++OMPr2OVa9q0aUVy16lTx3777TevY5XrhBNOKJK7Vq1atm3bNq9jlWv69OlFcsfHx9svv/zidaxyzZgxo0jumjVr2k8//eR1rHKdeuqpRXLXqFHDtm7d6nWscp1xxhlFclerVs22bNnidaxynXnmmUVyx8XF2aZNm7yOVa5zzjmnSO7Y2FjbsGGD17HKdd555xXJHRMTY+vWrfM6VrkuvPDCIrmjo6NtzZo1Xscq16xZs4rkjoqKspUrV3odq1wXX3xxsdwrVqzwOla5LrvssiK5IyMj7ccff/Q6VrmuvPLKIrkjIiLsu+++8zpWua6++upiub/55huvY5XrmmuuKZI7PDzcvvzyS69jlev6668vlvuLL77wOla5brrppiK5w8LC7JNPPvE6VrluvvnmYrmXLFnidaxyLViwoEhu55x98MEHXscq1x133FEs97vvvut1rHLdddddxXK//fbbXscq17333lss95tvvul1rHI98MADxc6TvPrqq17HKtdDDz1ULPfzzz/vdaxyPfroo8VyP/30017HKtcTTzxRLPfChQu9jlWuhQsXFsv9xBNPeB2rXE899VSx3I899pjXscr13HPPFcv9+OOPex2rXC+88EKx3I888ojXscr1yiuvFMv98MMPex2rQo455hhr0aKF/e1vf7O77rrLvv/+e8vJyfE6Vrnyj121atXKTjzxRHvwwQdt7dq1Xscq1xVXXFGwrnTp0sXOOecce/7554P+vMmNN95Y5DjKqFGj7JprrrFPP/00qGsNbr/99iLfzx49etjs2bPtvffes4yMDK/jlerAfc2mTZvatGnT7J577rHly5eHxHf0cLVx48bC/3fNzB81gP5YSKAHSfULfRALfZj/57x5v63g+1xU6H0mlDPvxELzXlDB9ynW4Jc2ULgYWnbs2FHi/2Own1h6//33S8x9//33ex2tTO+8806JuZ988kmvo5Xp3XffLTH3vffe63W0Mn3wwQcl5r7rrru8jlamjz76qMTct912m9fRyvTJJ5+UmPvWW2/1OlqZPv/88xJzz58/3+toZfryyy9LzH3jjTd6Ha1M33zzTYm5r7/+eq+jlen7778vMfc111zjdbQy/fjjjyXmvvrqq72OVqYVK1aUmPuKK67wOlqZVq1aZc65YrkvvfRSr6OVae3atSXm/uc//+l1tDKtX7/ewsLCiuX+xz/+4XW0Mm3atKnE3BdeeKHX0cq0ZcsWCw8PL5b7/PPP9zpamX766acSc8+cOdPraGX65ZdfLCIioljus846y+toZfr1118tMjKyWO4zzjjD62hl+uOPPywqKqpY7lNPPdXraGX6888/LTo6uljuk08+2etoZdqxY4fFxMQUyz19+nSvo5Vp165dJV74efzxx3sdrUy7d++2atWqFct97LHHeh2tTHv37rWaNWsWy33UUUd5Ha1M+/bts1q1ahXLPWXKFK+jlWn//v1Wp06dYrlTU1O9jlamjIwMq1evXrHcSUlJXkcrU1ZWljVs2LBY7sTERK+jlSkrK8uaNGlSLPf48eO9jlamnJwca968ebHcY8aM8TpamXJycqxVq1bFco8aNcrraOVq27ZtsdwjRozwOla5OnXqVCz3sGHDvI5Vrh49ehTLPWTIEK9jlatfv37Fcg8aNMjrWOUaOHBgsdz9+/f3Ola5DuxQQ5L17dvX61jlKil3z549vY5VrsGDBxfL3a1bN69jlauk3J06dfI6VrmGDBlSLHe7du28jlUhBx6TqFevnl111VW2d+9er6OVKTY2tthn37x5c7vjjjuCupCuevXqxXJLss6dO9vLL7/sdbxSxcfHl5jbOWeTJ08O2gtw69atW2JuSdawYUN76KGHLDs72+uYxdSvX7/EzOHh4ZaQkGDvvPOO1xFRiqooXAzVW0XHFHqc4cP8+/P+xlbh++wv9Lii74NDVI0aNRQZGVls+h9//OFBGt9169ZNTZo0KTItPj5eaWlpHiXyzbBhw9SmTZsi0+Li4tS7d2+PEvlm0KBBxXJXr15dEyZM8CiRb4488ki1a9euyLS4uDhNnDjRo0S+6devn9q3b19kWmxsrCZNmuRRIt/07t1bHTt2LDItJiZGSUlJHiXyTc+ePdWlS5ci06Kjo5WcnOxRIt90795d3bp1KzItOjpaqamp3gTyUZcuXdSjR48i06KiooI+d8eOHdWrV68i0yIjI4O+3enQoUOxNiYiIiLoc7dt21b9+vUrMi0iIkJTp071KJFvjjjiCPXv37/ItPDwcB111FEeJfJNq1atNHDgwCLTwsLCgv52MC1atNCgQYOKTAuF3E2bNtXQoUOLTHPOBX3uxo0ba8SIEUWmOeeCfv1u2LChRo0aVWx6sOeuX7++xowZU2x6sK8ndevW1dixY4tND/bctWrV0vjx44tNP+aYYzxI47uaNWuWuG8zbdo0D9L4rkaNGkpISCg2PdhzV6tWLSRzx8XFKTExsdj04447zoM0vouJiSlx/T7++OM9SOO76OjokMwdFRVVYu5gv61hZGRkSOYODw8vsd0Jhdzjxo0rNv2kk07yII3vnHMlbp+EQu6StgdPPvlkD9JUzIH7DVJo5B48eHCxaaGQu2/fvsWmhULu7t27F5sW7N9LSeratWuxaaHweR94PFYKjdyhun4feJxNCo3cw4cPLzYtFHKPHj262LRQyF3YjBkzFB0draOOOkovvfSStmzZossuu0wxMTHlv9hD+bedr1Onjk4//XS9//77Wrdunc444wyFh4d7nK50f//73wset27dWrNnz9aXX36p7777rsT952Bx+umnFzx2zmnYsGFasGCBNm/erGeffVatW7f2MF3pDvw+1qxZU9OmTdPixYu1cuVKnXjiiQoLC76ysLPPPrvI+ODBg3X77bdr69ateuWVVzRy5EiPksET/qh+DPSgQ6/HRW4VfQj717/+VXA1eLVq1WzBggUh0bXtiy++WKS6Pdh7Ycp35513Fsl95513eh3JJ4sWLSqS+4YbbvA6kk+efvrpIrmDvXe0fM8//3yR3MHeO1q+l156qUjuK6+80utIPnn11VeL5A723tHyvfHGG0VyB3vvaPneeuutIrlnzZrldSSfHNj77AUXXOB1JJ8c2PtssPcylu/A3meDvZexfB9//HGR3guDvZexfJ9//nmR3MHey1i+L774okjvhTNmzPA6kk++/PLLIrmDvZexfN98802R3gtPOOEEryP55LvvviuS+29/+5vXkXzyww8/FOl18ZhjjvE6kk+WLVtWpNfFqVOneh3JJytWrCjSw0F6errXkXyyevXqIr0upqSkeB3JJ2vXri3S62Kw9zKWb/369UV6XQz2Xsbybdq0qUiPEsHey1i+LVu2FOl1MRR66zLL7e23cE8YodDrlVlub7+Fe10cMGCA15F8sm3btiK9LoZC71FmZr/99ps1aNCgIHfPnj1D4njs77//bo0aNSrI3a1bt5DIvX379iK9RXbq1Ckoe3U50J9//lmkt8j27dsHde9F+Xbs2FGkt8jWrVtbZmam17HKtWvXLmvXrl2RHqOC+faF+Xbv3m0dO3YsyN2oUSPbv3+/17HKtWfPHuvSpUtB7rp169qePXu8jlWuvXv3Wvfu3Qty165d23bv3u11rHLt27evSO+ctWrVsl27dnkdq1z79u2znj17hlzu/fv3W69evYqsJ6GQOyMjo0juOnXq2M6dO72OVa5QzV3YO++8Y9u3b/c6RoXddddd9tJLL4VEu1PYZZddZueff759+umnIbEtm+/iiy+2YcOG2YIFC2zLli1ex/HZ3LlzrVGjRnbaaafZ66+/HjLry/z5861Lly52zTXXBG1vlihZVfS46Cy3cC6kOOdiJO3NG33FzMrsJss5t0tSNUkfm1nxyzBKf93pku7MG51qZk+XMe8USU/ljZ5uZnf7+j4+5GgmaaMkbdy4Uc2aNfPXohEgO3bs0AMPPKCkpKRiPesFsw8++EBRUVGKj49X69atFR0d7XWkcmVnZ2vjxo365Zdf9Mcff5R4hXWw+uqrr5SZmanMzEz169evxN46g9HXX3+tjIwMZWZmqm/fvoqKivI6kk/yP++srCz17t07JNZv6a/POzs7W7169QqZ3Pmfd3Z2tnr27Bn0V7LlK/x59+jRQ7GxodGpcqjm/uabb7R//37l5OSoW7duiouL8zqST/Jzm5m6dOmiatWqeR3JJ/m5JalTp06qXr26x4l8880332jfvn2SpM6dO4dM7m+//bYgd8eOHVWjRg2PE/nm22+/1d69ubteHTt2VM2aNT1O5JvvvvtOe/bskRRaub///nvt2bNHZqYOHTooPj7e60g++eGHHwpyt2/fPmRy//jjj9q1a1dB7lq1ankdySeFc7dr1061a9f2OpJPQjX3smXLtGPHDkm5vRbXqVPH40S+yc8dFhamI444IuRyh4eHq1WrVqpbt67XkXyybNky/fnnn4qIiAjJ3FFRUWrRokVI5d6+fbuio6PVvHlz1atXz+tIPlm2bJn++OMPxcbGqnnz5iHzeS9fvly//fabqlWrpmbNmoVU7l9//VXVq1dX06ZNQ2Y9WbFihbZt26YaNWqoadOmIfN5r1ixQr/88ovi4+PVpEmTkMm9cuVK/fTTT6pVq1ZI5V61apU2b96sunXrqmnTpiGzXbV69Wpt2LBBDRs2VNOmTUNmv2HNmjVavXq1mjZtqubNm4fM/vy6deu0fPlyNW/eXC1atAiZ4yfr16/Xjz/+qJYtW6pFixYhc5xtw4YN+uGHH9SiRYuQ+rw3bNigZcuWFazfoXL8ZMOGDVqxYoUaNWoUUr+DGzdu1MqVK1W/fn01btw4ZLZPNm7cqNWrV6tOnTpq1KiRGjRo4HUkBDEzk3PO6xgVtmPHjpD5DSxs+fLlateuXVD2qliWrVu3qlGjRiG5rhzuNm3apObNm+ePNjezTQe7zJAsXJQk59yvkupK+trMepYxX21Jv+eNPmVmPt+zyjk3SdJLeaPnmdktZcx7nqT5eaOJZvaqr+/jQw4KFwEAAAAAAAAAAAAAAAAAAVcVhYuhVXZb1A95f9s65yLKmK9jocc/VvI9DlyOv98HAAAAAAAAAAAAAAAAAIDDQigXLv4v7281SX3KmG94occfVvA91kraUsJySjIs7+9mSesq+D4AAAAAAAAAAAAAAAAAABwWQrlw8flCj08qaQbnXJikE/JGt0v6b0XewHLvo/1C3mhH59yAUt5ngP7qcfEFC9X7bwMAAAAAAAAAAAAAAAAAUMVCtnDRzD6V9EHe6Azn3MASZrtAUqe8x7eaWWbhJ51zI5xzljc8VMpb3SIpO+/xAudc7AHLiJW0IG80K29+AAAAAAAAAAAAAAAAAABQgpAtXMwzU9JeSRGS3nTO/dM5N8A5N9I5d7ekG/LmWyFpXmXewMxWSLoxb7SvpA+dc0c75/o6545W7u2n++Y9f6OZrazsPwYAAAAAAAAAAAAAAAAAgENdhNcBDoaZfZlXPPiYpJqSrilhthWSEs1s50G81SWSGkg6WVIvSQtLmOd+SZcexHsAAAAAAAAAAAAAAAAAAHDIC/UeF2VmL0nqLulm5RYp7pG0XdLnkmZJ6mVmqw7yPXLMbIakREkvSNoiKSPv7wuSEszsFDPLOZj3AQAAAAAAAAAAAAAAAADgUOfMzOsMKIdzrpmkjZK0ceNGNWvWzONEAAAAAAAAAAAAAAAAAIDDwaZNm9S8efP80eZmtulglxnyPS4CAAAAAAAAAAAAAAAAAIDQQeEiAAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAABAwFC4CAAAAAAAAAAAAAAAAAAAAobCRQAAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAgIChcBEAAAAAAAAAAAAAAAAAAAQMhYsAAAAAAAAAAAAAAAAAACBgKFwEAAAAAAAAAAAAAAAAAAABQ+EiAAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAABAwFC4CAAAAAAAAAAAAAAAAAAAAobCRQAAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAgIChcBEAAAAAAAAAAAAAAAAAAAQMhYsAAAAAAAAAAAAAAAAAACBgKFwEAAAAAAAAAAAAAAAAAAABQ+EiAAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAABAwFC4CAAAAAAAAAAAAAAAAAAAAobCRQAAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAgIChcBEAAAAAAAAAAAAAAAAAAAQMhYsAAAAAAAAAAAAAAAAAACBgKFwEAAAAAAAAAAAAAAAAAAABQ+EiAAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAABAwFC4CAAAAAAAAAAAAAAAAAAAAobCRQAAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAgIChcBEAAAAAAAAAAAAAAAAAAAQMhYsAAAAAAAAAAAAAAAAAACBgKFwEAAAAAAAAAAAAAAAAAAABQ+EiAAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAABAwFC4CAAAAAAAAAAAAAAAAAAAAobCRQAAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAgIChcBEAAAAAAAAAAAAAAAAAAAQMhYsAAAAAAAAAAAAAAAAAACBgKFwEAAAAAAAAAAAAAAAAAAABQ+EiAAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAABAwFC4CAAAAAAAAAAAAAAAAAAAAobCRQAAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAgIChcBEAAAAAAAAAAAAAAAAAAAQMhYsAAAAAAAAAAAAAAAAAACBgKFwEAAAAAAAAAAAAAAAAAAABQ+EiAAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAABAwFC4CAAAAAAAAAAAAAAAAAAAAobCRQAAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAgIChcBEAAAAAAAAAAAAAAAAAAAQMhYsAAAAAAAAAAAAAAAAAACBgKFwEAAAAAAAAAAAAAAAAAAABQ+EiAAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAABAwFC4CAAAAAAAAAAAAAAAAAAAAobCRQAAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAgIChcBEAAAAAAAAAAAAAAAAAAAQMhYsAAAAAAAAAAAAAAAAAACBgKFwEAAAAAAAAAAAAAAAAAAABQ+EiAAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAABAwFC4CAAAAAAAAAAAAAAAAAAAAobCRQAAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAgIChcBEAAAAAAAAAAAAAAAAAAAQMhYsAAAAAAAAAAAAAAAAAACBgKFwEAAAAAAAAAAAAAAAAAAABQ+EiAAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAABAwFC4CAAAAAAAAAAAAAAAAAAAAobCRQAAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAgIChcBEAAAAAAAAAAAAAAAAAAAQMhYsAAAAAAAAAAAAAAAAAACBgKFwEAAAAAAAAAAAAAAAAAAABQ+EiAAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAABAwFC4CAAAAAAAAAAAAAAAAAAAAobCRQAAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAgIChcBEAAAAAAAAAAAAAAAAAAAQMhYsAAAAAAAAAAAAAAAAAACBgKFwEAAAAAAAAAAAAAAAAAAABQ+EiAAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAABAwFC4CAAAAAAAAAAAAAAAAAAAAobCRQAAAAAAAAAAAAAAAAAAEDAhW7jonGvlnDvbOfeMc26lc26Pc26fc26Tc+5559wxzrkIP7zPCOec+Thc6Yd/GgAAAAAAAAAAAAAAAAAAh6yDLuzzgnPuakmXSHIlPN00b0iRdL5zboqZbQhkPgAAAAAAAAAAAAAAAAAAULKQLFyU1Fi5RYu7JT0n6W1JKyXtk9RJ0jmS+uUNbznnepvZLj+878mSPivj+V/88B4AAAAAAAAAAAAAAAAAAByyQrVw8TdJsyTdaWY7D3juC+fck5KekHSUpHaSzpd0lR/ed62ZfeeH5QAAAAAAAAAAAAAAAAAAcFgK8zpAZZjZLDO7oYSixfznsyX9XVJG3qQpAQsHAAAAAAAAAAAAAAAAAABKFZKFi74ws98kfZM32sbLLAAAAAAAAAAAAAAAAAAAINchW7iYJzrvb7anKQAAAAAAAAAAAAAAAAAAgKRDuHDROddAUqe80R/9tNi5zrn1zrn9zrk/nHNfOududs6199PyAQAAAAAAAAAAAAAAAAA4pEV4HaAKXaS//n2L/bTMQYUeR0nqmTec45y7WtIcM7OKLtQ516ycWRpVdJkAAAAAAAAAAAAAAAAAAASjQ7Jw0Tl3pKRz80Y3SbrzIBe5VdKzkv4naY2kLEktJE2SdIKkSElXKLeY8eJKLH/jQeYDAAAAAAAAAAAAAAAAACAkHHKFi865hpKeVu6/zSSdaGZ7DmKRn0lqaWaZB0xfKul559w9kt6UFC9ptnNukZl9fRDvBwAAAAAAAAAAAAAAAADAISusKhfunDM/DNMr8H41JL0iKf/Wy7PN7J2D+TeY2e4SihYLP/+ppLPyIxR6XBHNyxn6VWKZAAAAAAAAAAAAAAAAAAAEnUOmx0XnXIykFyT1yZt0k5ndEKC3Xyjpdkk1JQ2v6IvNbFNZzzvnKhkLAAAAAAAAAAAAAAAAAIDgUtWFi538sIyt5c3gnIuQtFjSyLxJ95nZRX54b5+YWZZzboWkvpKaBup9AQAAAAAAAAAAAAAAAAAINVVauGhmy6py+ZLknAuT9KikpLxJiySdVtXvWwLz4D0BAAAAAAAAAAAAAAAAAAgpYV4H8IO7JR2T9/glSceZWU4gA+T1+Ng+b3RLIN8bAAAAAAAAAAAAAAAAAIBQEtKFi865+ZJOyRt9W9JUM8vyIMrRkuLzHr/nwfsDAAAAAAAAAAAAAAAAABASQrZw0Tl3paTz8kY/kpRiZvsruIxWzjnLG94t4fnazrkR5Syjv6Tb8kZN0p0VyQAAAAAAAAAAAAAAAAAAwOEkwusAleGcO1vSFXmjmyX9Q1Jr51xZL1tuZpkVfKt4Sf91zn0j6XlJX0jaKilbUgtJkyQdLykqb/6bzOyLCr4HAAAAAAAAAAAAAAAAAACHjZAsXJSUXuhxU0n/8+E1rSWtq+T7dc8bSpMt6WpJV1Vy+QAAAAAAAAAAAAAAAAAAHBZCtXAxULZImippoKT+yi2SrCcpRtKfkpZLelfSfWa2zpuIAAAAAAAAAAAAAAAAAACEjpAsXDSzEX5azjpJpd5f2swyJD2dNwAAAAAAAAAAAAAAAAAAgIMU5nUAAAAAAAAAAAAAAAAAAABw+KBwEQAAAAAAAAAAAAAAAAAABExI3ir6MBSe/2Dr1q1e5gAAAAAAAAAAAAAAAAAAHEYOqFkLL22+inBm5o/loAo55/pK+szrHAAAAAAAAAAAAAAAAACAw1o/M/v8YBfCraIBAAAAAAAAAAAAAAAAAEDA0ONiCHDORUvqlje6TVK2h3FQOY30V6+Z/ST95GEWAACCFe0lAADlo70EAKB8tJcAAJSP9hIAgPLRXv4lXFL9vMffmtn+g11gxMEuAFUv7z/6oLvXhHecc4VHfzKzTV5lAQAgWNFeAgBQPtpLAADKR3sJAED5aC8BACgf7WUx6/25MG4VDQAAAAAAAAAAAAAAAAAAAobCRQAAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAgIChcBEAAAAAAAAAAAAAAAAAAAQMhYsAAAAAAAAAAAAAAAAAACBgKFwEAAAAAAAAAAAAAAAAAAABQ+EiAAAAAAAAAAAAAAAAAAAIGGdmXmcAAAAAAAAAAAAAAAAAAACHCXpcBAAAAAAAAAAAAAAAAAAAAUPhIgAAAAAAAAAAAAAAAAAACBgKFwEAAAAAAAAAAAAAAAAAQMBQuAgAAAAAAAAAAAAAAAAAAAKGwkUAAAAAAAAAAAAAAAAAABAwFC4CAAAAAAAAAAAAAAAAAICAoXARAAAAAAAAAAAAAAAAAAAEDIWLAAAAAAAAAAAAAAAAAAAgYChcBAAAAAAAAAAAAAAAAAAAAUPhIlDFnHMtnXPznHPLnHO7nXO/O+c+c85d5JyL8zofAABVwTnXwDk3yTl3lXPuNefcr845yxseqsTyJjrnnnPObXLO7c/7+5xzbmIVxAcAICCcc32dc5c7594s1Mbtcs6tcM496JwbUsHl0V4CAA4pzrmazrlj8o6vvuecW+Wc+9M5l+Gc+8U5965z7h/Oubo+Lm+Qc+4x59x659w+59xPzrk3nHPHVvW/BQAArzjnri90bNaccyN8eA37lwCAQ9IBbWJZw7s+LIv28iA5M/M6A3DIcs4lSXpMUs1SZlkhKdHMVgUuFQAAVc85V9ZG5sNmNt3H5YRJukfSjDJmu0/SaWaW43tCAAC85Zx7X9JQH2Z9RNL/mVlGGcuivQQAHJKcc2Mk/ceHWX+VdJyZvVHGsq6UdJlK79DhFUlTzGxfRXMCABCsnHM9JX0mKaLQ5JFm9m4p87N/CQA4pJVzDrOw98xsRCnLoL30E3pcBKqIc66XpEXKLVrcJekSSYMkjZZ0b95s7SW94pyr4UlIAAACY4OkNyv52rn6a6P/S0nHSuqf9/fLvOmnSPrXwQQEAMADTfL+bpF0q6Qpym3jBko6X9LmvOdPkPRQOcuivQQAHMo2KreQf6akNOW2lYMlHS3pKUnZkupJetE516OkBTjnTpN0hXLPiaxWbrvZX1KqpP/mzZYo6YGq+kcAABBohYoqIiT94uPL2L8EABwu7pTUrYzhpDJeS3vpJ/S4CFSRQr1nZEkaZmZLDnj+Ikk35I3OMbMrA5sQAICq45ybo9wreT8zs5+dc60krc172qceF51z7SV9r9wDa58rtz3dW+j5OEnvSeqr3Pa2E70YAwBChXPuZeUWYTxjZtklPF9P0ofKveBNkoab2fslzEd7CQA4ZDnnwktqJw+YJ1XSc3mjz5lZ2gHP15G0RlK8ci+s62NmvxZ+j7zXJ+VNKrUXKgAAQolz7lxJN0tapty27p95T5XY1rF/CQA4HBTqcbFSdTq0l/5Fj4tAFXDO9ddft/y6/8CixTzzJP2Y93imcy4yIOEAAAgAM7vCzF42s58PYjHn6q9bmJxdeKM/7z32SDo7bzRC0nkH8V4AAASUmU0ys8WlFWPkFVRcUGjSlFIWda5oLwEAh6jyihbz5nle0vK80aElzHKKcosWJWlW4aLFQu/xd+X23ChJF1UqLAAAQcQ510LS1Xmjp0vK8OFl54r9SwAAynOuaC/9hsJFoGqkFnr8YEkz5N3H/pG80VqSRlZtJAAAQodzzklKyRtdZmYflzRf3vT8E1Qpea8DAOBQ8d9Cj9sc+CTtJQAABXbm/Y0p4bnUvL87JD1b0ovNbJOkt/JGRzvnavg1HQAAgXe7pOrKvfvNe+XNzP4lAADlo730PwoXgaoxJO/vbklflDFf4R2FwVUXBwCAkNNaUpO8x+UdWMt/vqmkVlUVCAAAD0QXelxSj1O0lwCAw55zroOknnmjyw54LkpS/7zRJWZWVm9T+W1ltHJv6QUAQEhyzh0laZKk3yVd6OPL2L8EAKB8tJd+RuEiUDU65f1dZWZZZcxX+EBap1LnAgDg8NO50ONlpc5V/HnaUwDAoWR4occ/lvA87SUA4LDknItzzrVzzp2v3JNB+bfpuuWAWdtLCs97TFsJADjkOedqSbo1b3SWmf3q40vZvwQAHG6mOud+cM7tcc7tdM6tdM497Jwr626ptJd+FlH+LAAqwjkXI6le3uimsuY1sz+cc7slVZPUvKqzAQAQQpoVelxmeyppY6HHtKcAgEOCcy5M0uxCkxaXMBvtJQDgsOGcmy7pwTJmuU7SEwdMo60EABxubpDUSNKHku6vwOtoMwEAh5vOB4y3zRtOcM49L2m6mf15wDy0l35G4SLgfzUKPd7lw/z5hYvVqyYOAAAhqSLt6e5Cj2lPAQCHivP0160tnzWzL0qYh/YSAADpK0mnmtlnJTxHWwkAOGw454ZKOkVSlqTTzcwq8HLaTADA4WKPpBclva3cXhF3Saqv3LvfnC6prqRUSS8458aaWWah19Je+hmFi4D/xRR6nOHD/Pvz/sZWQRYAAEJVRdrT/YUe054CAEKec264cnuNkqRfJJ1Ryqy0lwCAw8nzkj7PexwrqY2koyRNlvSkc+5cM3v5gNfQVgIADgvOuShJ90hykm42s+8quAjaTADA4aKpmW0vYfp/nHMLJL0mqZdyCxnPkPTvQvPQXvpZmNcBgEPQvkKPo3yYPzrv794qyAIAQKiqSHsaXegx7SkAIKQ557pIek65F5vukzTVzH4pZXbaSwDAYcPMtpvZd3nDZ2a20MzSJJ0g6Qjl9oYx/YCX0VYCAA4XF0vqKGmDpDmVeD1tJgDgsFBK0WL+cz9LmiIpv5fFsw+YhfbSzyhcBPxvZ6HHvnT3Wi3vry+3lQYA4HBRkfa0WqHHtKcAgJDlnGst6U1JtSVlSzrGzN4v4yW0lwCAw56ZPSrpKeWe77jNOVen0NO0lQCAQ55zrqOkf+aNnm1mu8uavxS0mQAASDKzNZL+kzfa1jnXpNDTtJd+xq2iAT8zs33Oud+Ue9/7ZmXN65yrrb9+rDZWdTYAAELIpkKPy2xPJTUv9Jj2FAAQkvIOgL0lqYkkk3Symb1QzstoLwEAyPWCcm8bXU3SBElP5E2nrQQAHA7OU26vT2skxTnnjilhnq6FHo9yzjXKe/xSXqEjbSYAAH/5QVJC3uOmkrbkPaa99DMKF4Gq8YOkocqtvo4ws6xS5utY6PGPVR8LAICQ8UOhxx1Lnav487SnAICQ45yrp9yreI/Im3S2mT3iw0tpLwEAyLWt0OOWhR6vUG4vxuGirQQAHLryb0V5hKQnfZj/skKPW0vaLfYvAQAozEqZTnvpZ9wqGqga/8v7W01SnzLmG17o8YdVFwcAgJCzVn9dvTS8rBklDcv7u1nSuqoKBABAVXDOxUt6Q1LnvEmzzex2H19OewkAQK6mhR4X3ILLzDIkfZo3OtA5F1XGMvLb0v2SPvdvPAAAgh77lwAA/KVzocdbCj2mvfQzCheBqvF8occnlTSDcy5M0gl5o9sl/bdqIwEAEDrMzJR7qy9J6uicG1DSfHnT869YeiHvdQAAhATnXJykVyT1zps018yu9/X1tJcAABSYWujxtwc893ze35qS0kp6sXOumaQxeaNvm9lOv6YDAKAKmdl0M3NlDZLmFHrJyELPrctbBvuXAABIcs61ljQ2b3S1mW3Of4720v8oXASqgJl9KumDvNEZzrmBJcx2gaROeY9vNbPMgIQDACB03KLcW3pJ0gLnXGzhJ/PGF+SNZuXNDwBASMjr8ek5SYPzJt1qZpdWYlG3iPYSAHCIcs5Nd87FlDPPeZIS8kbX6q/jsvnuk/Rn3uPrnHN1D3h9uKQ7lHs7aUm68aBCAwAQum4R+5cAgEOYcy7JORdRxvMNJT0jKb+3/jtKmO0W0V76jaOoE6gazrleyr39c6xyb09yjXJ7VYyVdIykU/NmXSGpL1fxAgAOJc65IZLaFppUT3+d/PlQuSeOCpjZQ6Us51pJs/NGv5R0vaTVktpImiWpV95z15rZxf7IDgBAIDjnntFfvT69I+lcSWUdpMkwsxWlLIv2EgBwSHLOrZNUQ7knjv6n3PZtV960bpL+pr8uAsiQlGhmb5WwnNMk3ZU3ulrSXOX2zNhEuW3wyLznnjSzaVXwTwEAwFPOuSslXZE3OtLM3i1lPvYvAQCHrLx9zEjl7mMuUe4tnPcq9zzmCEmn5T2WcvdBx5jZ/hKWQ3vpJxQuAlXIOZck6THl3oakJCuUezBtVeBSAQBQ9ZxzD0k60df5825XUtJywiTdK+nkMl5+v6RTzSynIhkBAPCSc66iB2TWm1mrUpZFewkAOCTlnVRq6cOsmySdbGb/KWNZcyRdJqnE/U9Jr0pKN7N9Fc0JAECwq0DhIvuXAIBDVgX2MZ+RdIqZbS9lObSXfkLhIlDFnHMtJc2UlCipmXKv/F0l6SlJt5nZHg/jAQBQJfxVuFhoeQnK7a24n3KvdPpV0meS7jaz1yqfFAAAb/izcLHQMmkvAQCHFOdcB+UeVx2s3F79G0qqq9weMX6R9JWklyUt9uU4q3NukKQzJQ3NW9Z2SV9LetDMnvT/vwAAgODga+FiofnZvwQAHHKcc8MlDZc0UNIRym3jaiq3Z/+Nkj6S9LCZLfFxebSXB4nCRQAAAAAAAAAAAAAAAAAAEDBhXgcAAAAAAAAAAAAAAAAAAACHDwoXAQAAAAAAAAAAAAAAAABAwFC4CAAAAAAAAAAAAAAAAAAAAobCRQAAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAgIChcBEAAAAAAAAAAAAAAAAAAAQMhYsAAAAAAAAAAAAAAAAAACBgKFwEAAAAAAAAAAAAAAAAAAABQ+EiAAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAABAwFC4CAAAAAAAAAAAAAAAAAAAAobCRQAAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAgIChcBEAAAAAAAAAAAAAAAAAAAQMhYsAAAAAAAAAAAAAAAAAACBgKFwEAAAAAAAAAAAAAAAAAAABQ+EiAAAAAAAAAAAAAAAAAAAIGAoXAQAAAAAAAAAAAAAAAABAwFC4CAAAAAAAAAAAAAAAAAAAAobCRQAAAAAAAAAAAAAAAAAAEDAULgIAAAAAAAAAAAAAAAAAgIChcBEAAAAAAAAAAAAAAAAAAAQMhYsAAAAAAAAAAAAAAAAAACBgKFwEAAAAAAAAAAAAAAAAAAABQ+EiAAAAAAAAAAAAAAAAAAAImP8H1u43xgz+OPIAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 3200x1200 with 1 Axes>" ] @@ -821,7 +966,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -836,7 +981,7 @@ " 6⋅ω₀ " ] }, - "execution_count": 13, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -849,7 +994,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -864,7 +1009,7 @@ " 9 3⋅ω₠9⋅ω₀" ] }, - "execution_count": 14, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } diff --git a/doc/notebooks/10_tutorial_conservative_allen_cahn_two_phase.ipynb b/doc/notebooks/10_tutorial_conservative_allen_cahn_two_phase.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..47ff269287c06b97bf44e27451057f31432a3e75 --- /dev/null +++ b/doc/notebooks/10_tutorial_conservative_allen_cahn_two_phase.ipynb @@ -0,0 +1,832 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# The conservative Allen-Cahn model for high Reynolds number, two phase flow with large-density and viscosity constrast" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from pystencils.session import *\n", + "from lbmpy.session import *\n", + "\n", + "from pystencils.simp import sympy_cse\n", + "from pystencils.boundaries import BoundaryHandling\n", + "\n", + "from lbmpy.phasefield_allen_cahn.contact_angle import ContactAngle\n", + "from lbmpy.phasefield_allen_cahn.force_model import MultiphaseForceModel, CentralMomentMultiphaseForceModel\n", + "from lbmpy.phasefield_allen_cahn.kernel_equations import *\n", + "from lbmpy.phasefield_allen_cahn.parameter_calculation import calculate_parameters_rti\n", + "\n", + "from lbmpy.advanced_streaming import LBMPeriodicityHandling\n", + "from lbmpy.boundaries import NoSlip, LatticeBoltzmannBoundaryHandling" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If `pycuda` is installed the simulation automatically runs on GPU" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "try:\n", + " import pycuda\n", + "except ImportError:\n", + " pycuda = None\n", + " gpu = False\n", + " target = 'cpu'\n", + " print('No pycuda installed')\n", + "\n", + "if pycuda:\n", + " gpu = True\n", + " target = 'gpu'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The conservative Allen-Cahn model (CACM) for two-phase flow is based on the work of Fakhari et al. (2017) [Improved locality of the phase-field lattice-Boltzmann model for immiscible fluids at high density ratios](http://dx.doi.org/10.1103/PhysRevE.96.053301). The model can be created for two-dimensional problems as well as three-dimensional problems, which have been described by Mitchell et al. (2018) [Development of a three-dimensional\n", + "phase-field lattice Boltzmann method for the study of immiscible fluids at high density ratios](http://dx.doi.org/10.1103/PhysRevE.96.053301). Furthermore, cascaded lattice Boltzmann methods can be combined with the model which was described in [A cascaded phase-field lattice Boltzmann model for the simulation of incompressible, immiscible fluids with high density contrast](http://dx.doi.org/10.1016/j.camwa.2019.08.018)\n", + "\n", + "\n", + "The CACM is suitable for simulating highly complex two phase flow problems with high-density ratios and high Reynolds numbers. In this tutorial, an overview is provided on how to derive the model with lbmpy. For this, the model is defined with two LBM populations. One for the interface tracking, which we call the phase-field LB step and one for recovering the hydrodynamic properties. The latter is called the hydrodynamic LB step." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Geometry Setup\n", + "\n", + "First of all, the stencils for the phase-field LB step as well as the stencil for the hydrodynamic LB step are defined. According to the stencils, the simulation can be performed in either 2D- or 3D-space. For 2D simulations, only the D2Q9 stencil is supported. For 3D simulations, the D3Q15, D3Q19 and the D3Q27 stencil are supported. Note here that the cascaded LBM can not be derived for D3Q15 stencils." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "stencil_phase = get_stencil(\"D2Q9\")\n", + "stencil_hydro = get_stencil(\"D2Q9\")\n", + "assert(len(stencil_phase[0]) == len(stencil_hydro[0]))\n", + "\n", + "dimensions = len(stencil_phase[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Definition of the domain size" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# domain \n", + "L0 = 256\n", + "domain_size = (L0, 4 * L0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Parameter definition\n", + "\n", + "The next step is to calculate all parameters which are needed for the simulation. In this example, a Rayleigh-Taylor instability test case is set up. The parameter calculation for this setup is already implemented in lbmpy and can be used with the dimensionless parameters which describe the problem." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# time step\n", + "timesteps = 8000\n", + "\n", + "# reference time\n", + "reference_time = 4000\n", + "# density of the heavier fluid\n", + "rho_H = 1.0\n", + "\n", + "# calculate the parameters for the RTI\n", + "parameters = calculate_parameters_rti(reference_length=L0,\n", + " reference_time=reference_time,\n", + " density_heavy=rho_H,\n", + " capillary_number=0.44,\n", + " reynolds_number=3000,\n", + " atwood_number=0.998,\n", + " peclet_number=1000,\n", + " density_ratio=1000,\n", + " viscosity_ratio=100)\n", + "# get the parameters\n", + "rho_L = parameters.get(\"density_light\")\n", + "\n", + "mu_H = parameters.get(\"dynamic_viscosity_heavy\")\n", + "mu_L = parameters.get(\"dynamic_viscosity_light\")\n", + "\n", + "tau_H = parameters.get(\"relaxation_time_heavy\")\n", + "tau_L = parameters.get(\"relaxation_time_light\")\n", + "\n", + "sigma = parameters.get(\"surface_tension\")\n", + "M = parameters.get(\"mobility\")\n", + "gravitational_acceleration = parameters.get(\"gravitational_acceleration\")\n", + "\n", + "\n", + "drho3 = (rho_H - rho_L)/3\n", + "# interface thickness\n", + "W = 5\n", + "# coeffcient related to surface tension\n", + "beta = 12.0 * (sigma/W)\n", + "# coeffcient related to surface tension\n", + "kappa = 1.5 * sigma*W\n", + "# relaxation rate allen cahn (h)\n", + "w_c = 1.0/(0.5 + (3.0 * M))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fields\n", + "\n", + "As a next step all fields which are needed get defined. To do so, we create a `datahandling` object. More details about it can be found in the third tutorial of the [pystencils framework]( http://pycodegen.pages.walberla.net/pystencils/). This object holds all fields and manages the kernel runs." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# create a datahandling object\n", + "dh = ps.create_data_handling((domain_size), periodicity=(True, False), parallel=False, default_target=target)\n", + "\n", + "# pdf fields. g is used for hydrodynamics and h for the interface tracking \n", + "g = dh.add_array(\"g\", values_per_cell=len(stencil_hydro))\n", + "dh.fill(\"g\", 0.0, ghost_layers=True)\n", + "h = dh.add_array(\"h\",values_per_cell=len(stencil_phase))\n", + "dh.fill(\"h\", 0.0, ghost_layers=True)\n", + "\n", + "g_tmp = dh.add_array(\"g_tmp\", values_per_cell=len(stencil_hydro))\n", + "dh.fill(\"g_tmp\", 0.0, ghost_layers=True)\n", + "h_tmp = dh.add_array(\"h_tmp\",values_per_cell=len(stencil_phase))\n", + "dh.fill(\"h_tmp\", 0.0, ghost_layers=True)\n", + "\n", + "# velocity field\n", + "u = dh.add_array(\"u\", values_per_cell=dh.dim)\n", + "dh.fill(\"u\", 0.0, ghost_layers=True)\n", + "\n", + "# phase-field\n", + "C = dh.add_array(\"C\")\n", + "dh.fill(\"C\", 0.0, ghost_layers=True)\n", + "C_tmp = dh.add_array(\"C_tmp\")\n", + "dh.fill(\"C_tmp\", 0.0, ghost_layers=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As a next step the relaxation time is stated in a symbolic form. It is calculated via interpolation." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# relaxation time and rate\n", + "tau = 0.5 + tau_L + (C.center) * (tau_H - tau_L)\n", + "s8 = 1/(tau)\n", + "\n", + "# density for the whole domain\n", + "rho = rho_L + (C.center) * (rho_H - rho_L)\n", + "\n", + "# body force\n", + "body_force = [0, 0, 0]\n", + "body_force[1] = gravitational_acceleration * rho" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Definition of the lattice Boltzmann methods" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For both LB steps, a weighted orthogonal MRT (WMRT) method is used. It is also possible to change the method to a simpler SRT scheme or a more complicated CLBM scheme. The CLBM scheme can be obtained by commenting in the python snippets in the notebook cells below. Note here that the hydrodynamic LB step is formulated as an incompressible velocity-based LBM. Thus, the velocity terms can not be removed from the equilibrium in the central moment space." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " <table style=\"border:none; width: 100%\">\n", + " <tr style=\"border:none\">\n", + " <th style=\"border:none\" >Moment</th>\n", + " <th style=\"border:none\" >Eq. Value </th>\n", + " <th style=\"border:none\" >Relaxation Rate</th>\n", + " </tr>\n", + " <tr style=\"border:none\">\n", + " <td style=\"border:none\">$1$</td>\n", + " <td style=\"border:none\">$\\rho$</td>\n", + " <td style=\"border:none\">$0$</td>\n", + " </tr>\n", + "<tr style=\"border:none\">\n", + " <td style=\"border:none\">$x$</td>\n", + " <td style=\"border:none\">$\\rho u_{0}$</td>\n", + " <td style=\"border:none\">$1.82082623441035$</td>\n", + " </tr>\n", + "<tr style=\"border:none\">\n", + " <td style=\"border:none\">$y$</td>\n", + " <td style=\"border:none\">$\\rho u_{1}$</td>\n", + " <td style=\"border:none\">$1.82082623441035$</td>\n", + " </tr>\n", + "<tr style=\"border:none\">\n", + " <td style=\"border:none\">$x^{2} - y^{2}$</td>\n", + " <td style=\"border:none\">$\\rho u_{0}^{2} - \\rho u_{1}^{2}$</td>\n", + " <td style=\"border:none\">$1$</td>\n", + " </tr>\n", + "<tr style=\"border:none\">\n", + " <td style=\"border:none\">$x y$</td>\n", + " <td style=\"border:none\">$\\rho u_{0} u_{1}$</td>\n", + " <td style=\"border:none\">$1$</td>\n", + " </tr>\n", + "<tr style=\"border:none\">\n", + " <td style=\"border:none\">$3 x^{2} + 3 y^{2} - 2$</td>\n", + " <td style=\"border:none\">$3 \\rho u_{0}^{2} + 3 \\rho u_{1}^{2}$</td>\n", + " <td style=\"border:none\">$1$</td>\n", + " </tr>\n", + "<tr style=\"border:none\">\n", + " <td style=\"border:none\">$3 x^{2} y - y$</td>\n", + " <td style=\"border:none\">$0$</td>\n", + " <td style=\"border:none\">$1$</td>\n", + " </tr>\n", + "<tr style=\"border:none\">\n", + " <td style=\"border:none\">$3 x y^{2} - x$</td>\n", + " <td style=\"border:none\">$0$</td>\n", + " <td style=\"border:none\">$1$</td>\n", + " </tr>\n", + "<tr style=\"border:none\">\n", + " <td style=\"border:none\">$9 x^{2} y^{2} - 3 x^{2} - 3 y^{2} + 1$</td>\n", + " <td style=\"border:none\">$0$</td>\n", + " <td style=\"border:none\">$1$</td>\n", + " </tr>\n", + "\n", + " </table>\n", + " " + ], + "text/plain": [ + "<lbmpy.methods.momentbased.momentbasedmethod.MomentBasedLbMethod at 0x7f8d7a8b3dc0>" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "method_phase = create_lb_method(stencil=stencil_phase, method=\"mrt\", compressible=True, weighted=True,\n", + " relaxation_rates=[1, 1, 1, 1])\n", + "\n", + "method_phase.set_first_moment_relaxation_rate(w_c)\n", + "\n", + "# method_phase = create_lb_method(stencil=stencil_phase, method=\"central_moment\", compressible=True,\n", + "# relaxation_rates=[0, w_c, 1, 1, 1], equilibrium_order=4)\n", + "method_phase" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " <table style=\"border:none; width: 100%\">\n", + " <tr style=\"border:none\">\n", + " <th style=\"border:none\" >Moment</th>\n", + " <th style=\"border:none\" >Eq. Value </th>\n", + " <th style=\"border:none\" >Relaxation Rate</th>\n", + " </tr>\n", + " <tr style=\"border:none\">\n", + " <td style=\"border:none\">$1$</td>\n", + " <td style=\"border:none\">$\\rho$</td>\n", + " <td style=\"border:none\">$0$</td>\n", + " </tr>\n", + "<tr style=\"border:none\">\n", + " <td style=\"border:none\">$x$</td>\n", + " <td style=\"border:none\">$u_{0}$</td>\n", + " <td style=\"border:none\">$0$</td>\n", + " </tr>\n", + "<tr style=\"border:none\">\n", + " <td style=\"border:none\">$y$</td>\n", + " <td style=\"border:none\">$u_{1}$</td>\n", + " <td style=\"border:none\">$0$</td>\n", + " </tr>\n", + "<tr style=\"border:none\">\n", + " <td style=\"border:none\">$x^{2} - y^{2}$</td>\n", + " <td style=\"border:none\">$u_{0}^{2} - u_{1}^{2}$</td>\n", + " <td style=\"border:none\">$\\frac{1}{0.664004086170318 - 0.147603677553286 {{C}_{(0,0)}}}$</td>\n", + " </tr>\n", + "<tr style=\"border:none\">\n", + " <td style=\"border:none\">$x y$</td>\n", + " <td style=\"border:none\">$u_{0} u_{1}$</td>\n", + " <td style=\"border:none\">$\\frac{1}{0.664004086170318 - 0.147603677553286 {{C}_{(0,0)}}}$</td>\n", + " </tr>\n", + "<tr style=\"border:none\">\n", + " <td style=\"border:none\">$3 x^{2} + 3 y^{2} - 2$</td>\n", + " <td style=\"border:none\">$3 u_{0}^{2} + 3 u_{1}^{2}$</td>\n", + " <td style=\"border:none\">$1$</td>\n", + " </tr>\n", + "<tr style=\"border:none\">\n", + " <td style=\"border:none\">$3 x^{2} y - y$</td>\n", + " <td style=\"border:none\">$0$</td>\n", + " <td style=\"border:none\">$1$</td>\n", + " </tr>\n", + "<tr style=\"border:none\">\n", + " <td style=\"border:none\">$3 x y^{2} - x$</td>\n", + " <td style=\"border:none\">$0$</td>\n", + " <td style=\"border:none\">$1$</td>\n", + " </tr>\n", + "<tr style=\"border:none\">\n", + " <td style=\"border:none\">$9 x^{2} y^{2} - 3 x^{2} - 3 y^{2} + 1$</td>\n", + " <td style=\"border:none\">$0$</td>\n", + " <td style=\"border:none\">$1$</td>\n", + " </tr>\n", + "\n", + " </table>\n", + " " + ], + "text/plain": [ + "<lbmpy.methods.momentbased.momentbasedmethod.MomentBasedLbMethod at 0x7f8d61b4a640>" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "method_hydro = create_lb_method(stencil=stencil_phase, method=\"mrt\", compressible=False, weighted=True,\n", + " relaxation_rates=[s8, 1, 1, 1])\n", + "\n", + "# method_hydro = create_lb_method(stencil=stencil_phase, method=\"central_moment\", compressible=False,\n", + "# relaxation_rates=[s8, 1, 1], equilibrium_order=4)\n", + "\n", + "method_hydro" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Initialization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The probability distribution functions (pdfs) are initialised with the equilibrium distribution for the LB methods." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "h_updates = initializer_kernel_phase_field_lb(h, C, u, method_phase, W)\n", + "g_updates = initializer_kernel_hydro_lb(g, u, method_hydro)\n", + "\n", + "h_init = ps.create_kernel(h_updates, target=dh.default_target, cpu_openmp=True).compile()\n", + "g_init = ps.create_kernel(g_updates, target=dh.default_target, cpu_openmp=True).compile()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Following this, the phase field is initialised directly in python." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# initialize the domain\n", + "def Initialize_distributions():\n", + " Nx = domain_size[0]\n", + " Ny = domain_size[1]\n", + " \n", + " for block in dh.iterate(ghost_layers=True, inner_ghost_layers=False):\n", + " x = np.zeros_like(block.midpoint_arrays[0])\n", + " x[:, :] = block.midpoint_arrays[0]\n", + " \n", + " y = np.zeros_like(block.midpoint_arrays[1])\n", + " y[:, :] = block.midpoint_arrays[1]\n", + "\n", + " y -= 2 * L0\n", + " tmp = 0.1 * Nx * np.cos((2 * np.pi * x) / Nx)\n", + " init_values = 0.5 + 0.5 * np.tanh((y - tmp) / (W / 2))\n", + " block[\"C\"][:, :] = init_values\n", + " block[\"C_tmp\"][:, :] = init_values\n", + " \n", + " if gpu:\n", + " dh.all_to_gpu() \n", + " \n", + " dh.run_kernel(h_init)\n", + " dh.run_kernel(g_init)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "<matplotlib.image.AxesImage at 0x7f8d617272e0>" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA64AAAFlCAYAAADrtrUsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAbkUlEQVR4nO3df7DddX3n8df75ibhl5IAMQLBBiVV6Q+pjZSq46i0CnSn0K51dXaUseyws6Pd7tqZLd3dGXfa3f7Y6dbWbtcdtlhwp611aa2MtVqKWmstSLQUREQigiRCEkISfuTnveezf9xv7BUJkNybez+59/GYuXO/53O+55zPzXzm3vvM93u+t1prAQAAgF6NzfcEAAAA4OkIVwAAALomXAEAAOiacAUAAKBrwhUAAICuCVcAAAC6Nj7fE3g6p512Wlu7du18TwOAheLAl+d7BgvD0u+f7xkAsEB88YtffLi1tuqZ9us6XNeuXZsNGzbM9zQAWCBGD62b7yksCGPP97MZgNlRVfc/m/2cKgwAAEDXhCsAAABde8ZwraoPVNXWqvrytLFTqurGqrpn+LxyGK+qel9Vbayq26vq5dMec/mw/z1VdfnR+XIAAABYaJ7NEddrk1z0pLGrktzUWluX5KbhdpJcnGTd8HFlkvcnU6Gb5D1JfiTJ+UneczB2AQAA4Ok8Y7i21j6b5JEnDV+a5Lph+7okl00b/2CbcnOSFVV1epI3JrmxtfZIa21Hkhvz3TEMAAAA3+VI3+O6urX24LD9UJLVw/aZSR6Ytt+mYexQ49+lqq6sqg1VtWHbtm1HOD0AAAAWihlfnKm11pK0WZjLwee7urW2vrW2ftWqZ/xzPgAAACxwRxquW4ZTgDN83jqMb05y1rT91gxjhxoHAACAp3Wk4XpDkoNXBr48yUenjb99uLrwBUl2DacUfzLJG6pq5XBRpjcMYwAAAPC0xp9ph6r64ySvTXJaVW3K1NWBfz3Jh6vqiiT3J3nzsPvHk1ySZGOS3UnekSSttUeq6leS3Drs98uttSdf8AkAAAC+yzOGa2vtrYe468Kn2LcleechnucDST5wWLMDAABg0ZvxxZkAAADgaBKuAAAAdE24AgAA0DXhCgAAQNeEKwAAAF0TrgAAAHRNuAIAANA14QoAAEDXhCsAAABdE64AAAB0TbgCAADQNeEKAABA14QrAAAAXROuAAAAdE24AgAA0DXhCgAAQNeEKwAAAF0TrgAAAHRNuAIAANA14QoAAEDXhCsAAABdE64AAAB0TbgCAADQNeEKAABA14QrAAAAXROuAAAAdE24AgAA0DXhCgAAQNeEKwAAAF0TrgAAAHRNuAIAANA14QoAAEDXhCsAAABdE64AAAB0TbgCAADQNeEKAABA14QrAAAAXROuAAAAdE24AgAA0DXhCgAAQNeEKwAAAF0TrgAAAHRNuAIAANA14QoAAEDXhCsAAABdE64AAAB0TbgCAADQNeEKAABA14QrAAAAXROuAAAAdE24AgAA0DXhCgAAQNeEKwAAAF0TrgAAAHRtRuFaVf++qu6sqi9X1R9X1XFVdXZV3VJVG6vqT6pq2bDv8uH2xuH+tbPyFQAAALCgHXG4VtWZSf5tkvWtte9PsiTJW5L8RpL3ttbOSbIjyRXDQ65IsmMYf++wHwAAADytmZ4qPJ7k+KoaT3JCkgeTvD7J9cP91yW5bNi+dLid4f4Lq6pm+PoAAAAscEccrq21zUl+M8k3MxWsu5J8McnO1trEsNumJGcO22cmeWB47MSw/6lH+voAAAAsDjM5VXhlpo6inp3kjCQnJrlophOqqiurakNVbdi2bdtMnw4AAIBj3ExOFf6xJN9orW1rrR1I8mdJXpVkxXDqcJKsSbJ52N6c5KwkGe4/Ocn2Jz9pa+3q1tr61tr6VatWzWB6AAAALAQzCddvJrmgqk4Y3qt6YZKvJPl0kjcN+1ye5KPD9g3D7Qz3f6q11mbw+gAAACwCM3mP6y2ZusjSl5LcMTzX1Ul+Mcm7q2pjpt7Des3wkGuSnDqMvzvJVTOYNwAAAIvE+DPvcmittfckec+Thu9Ncv5T7Ls3yc/M5PUAAABYfGb653AAAADgqBKuAAAAdE24AgAA0DXhCgAAQNeEKwAAAF0TrgAAAHRNuAIAANA14QoAAEDXhCsAAABdE64AAAB0TbgCAADQNeEKAABA14QrAAAAXROuAAAAdE24AgAA0DXhCgAAQNeEKwAAAF0TrgAAAHRNuAIAANA14QoAAEDXhCsAAABdE64AAAB0TbgCAADQNeEKAABA14QrAAAAXROuAAAAdE24AgAA0DXhCgAAQNeEKwAAAF0TrgAAAHRNuAIAANA14QoAAEDXhCsAAABdE64AAAB0TbgCAADQNeEKAABA14QrAAAAXROuAAAAdE24AgAA0DXhCgAAQNeEKwAAAF0TrgAAAHRNuAIAANA14QoAAEDXhCsAAABdE64AAAB0TbgCAADQNeEKAABA14QrAAAAXROuAAAAdE24AgAA0DXhCgAAQNeEKwAAAF0TrgAAAHRNuAIAANC1GYVrVa2oquur6qtVdVdV/WhVnVJVN1bVPcPnlcO+VVXvq6qNVXV7Vb18dr4EAAAAFrKZHnH9nSSfaK29JMnLktyV5KokN7XW1iW5abidJBcnWTd8XJnk/TN8bQAAABaBIw7Xqjo5yWuSXJMkrbX9rbWdSS5Nct2w23VJLhu2L03ywTbl5iQrqur0I319AAAAFoeZHHE9O8m2JH9QVf9QVb9fVScmWd1ae3DY56Ekq4ftM5M8MO3xm4YxAAAAOKSZhOt4kpcneX9r7YeSPJF/Oi04SdJaa0na4TxpVV1ZVRuqasO2bdtmMD0AAAAWgpmE66Ykm1prtwy3r89UyG45eArw8HnrcP/mJGdNe/yaYew7tNaubq2tb62tX7Vq1QymBwAAwEJwxOHaWnsoyQNV9eJh6MIkX0lyQ5LLh7HLk3x02L4hyduHqwtfkGTXtFOKAQAA4CmNz/DxP5fkD6tqWZJ7k7wjUzH84aq6Isn9Sd487PvxJJck2Zhk97AvAAAAPK0ZhWtr7bYk65/irgufYt+W5J0zeT0AAAAWn5n+HVcAAAA4qoQrAAAAXROuAAAAdE24AgAA0DXhCgAAQNeEKwAAAF0TrgAAAHRNuAIAANA14QoAAEDXhCsAAABdE64AAAB0TbgCAADQtfH5ngAAzJV97UCSZCxjGUslSZaU/8N9OpNtlCQZpWWUqe3j53NCACxKwhWAReP6x5+f4+pAVix5IqeO7c7JYweyYmwsJ4wtzXiWiNjBZBtlIpPZPTqQnaNRdo2WZvvohOycPDF729K8bb4nCMCiI1wBWDR+9dp/kdHy5MCJLZOnHshpz3s0563anFedfE/OW/5A1oxP5DljyxZlxB6M1cdG+7NpYjy37Tsrf7drXW7bdmYe3vLcLHlkaZY+Xhnbn7ztv833bAFYbIQrAIvG2j/4ejI+niwdz+jE4zOx8sTcecYP5PMvfFn2vGRvXrnu3vzUaV/Ky5d/K6uXLMvyGl/wATvZRtnXJrJlcn++tO+M/Om2H87N97wwx9+9PCffO8qKb+3LaTsez9gTe5L9B5LJyUS4AjDHhCsAi8bElq1TGzWWGqssWbIkJy9blpUnnpDR81bmvnUvzn962UuzYv22/OzZn8+FJ3wtpy/QgD0YrA9O7s+NT7w41973o9m5YVVO+8dRXnzProxt3ZTRE7vT9u9Pm5zMxKglw/tdAWCuCVcAFo/Whs+TUw02MZG2b19Gjz+eenh7nvP15Tn5Cyuz79PPy/vOvyz/+1Xb8851f5MfP3FjVi9ZnuW1dF6nP1v2tQPZMrkvNz5xTv7n116bib87Jatv3ZtTNz6Q0SM70vbty8Tk5D/9ewHAPBOuANBa2sRE2sRERnv2ZnzrtnzPXSuy//Nn5Lde/dP5v6/7Vt599l/llcdty8ljx2VpLZnvGR+RA20yu0Z78/m9q/Kb974x2z9zes743J4su+frmdyxMxMHJpLR5HxPEwC+i3AFgOlGk2n7JjOxZWuW7NiZtRtXZveX1uQXXnd5Xv3aL+ddq2/Ki5ceyPG17Jg5fXiyjbKn7c/dB8byOw9dnJv/5vuy5lMHsvaOezP5yI5M7N/v6CoAXROuAPBUWps6ZfahLTlux85879dW5+7bvi9veuP35ude8em86bm35/Qlx3d/9PVAm8yDk3ty/aM/mN+99XU5/RNLs+4L38rowS2Z2LdPsAJwTBCuAPB0Wsto796M7t+UFdt35OSvrsm1r78of/7Gl+U/v+hjecXyXXnu2HHdHX2dbKM8OtqbW/atzK9+/U3Z9YnT85JP70zde08mHn/CKcEAHFOEKwA8G6PJTD76aOrOjVnz4IrsufMF+TcXXZHLXvOF/KtTP5cXLl3azcWbdo/25/6Jifz+9lfnz//m/LzgkxM587aNGW1/JKOJifmeHgAcNuEKAIehHdifya3bctzfPp4Xf+P0fPaOH8lfXnJurvr+T+THT7gvp83j6cMH2mQentyTG3evza/dcXFO+suT8uK/3ZK2+aFM7tnjtGAAjlnCFQAOV2sZ7d6dbLwvq7Y9kpVffUF+7cfenD+78Ot591mfzMuW7clJtXzOTh+ebKM83vblH/cfn9964J/na3/9opx10xMZv+urmdz1qNOCATjmCVcAOFKjyUzu3JmxL+7OC795WrbfsTaX//iVedMFt+Ztp/x9Xjieo3r14YNXC753Irlu+6vykZtfkTU3tpy94f5Mbns4k64WDMACIVwBYCYOXn34Ww/lpL/amZd+9Yx8ZsMF+ciF5+Vnf+DzufS5t+V7xivLa+msnUJ8oE1mXzuQ+ydaPvroebnm9lfmlJuOy0tufjjtm9/KxJ69jrICsKAIVwCYDaPJjJ54InXPN7LqoYdz6j+ekf93wYW59tUX5K3nbshPPPe2vHB8b54ztizjWXLYR2En2ygTmcxjo/25d2JZ/uLRH84f3fmKnPS5E7Lull0Zu/e+jB57LM3FlwBYgIQrAMyiNjGRyZ07U7c/kdPvf05GXzgjH/uh1+SDr3hlfvTcjfnJ027LDyz/VlYtGeWEWpKltSRjGctY6jueZ5SWUUY50Cazu01m2+RY7th3Rm54+Lz8/VfOySm3judFX3osY/fdndGuxzI5ccBpwQAsWMIVAGZba1NXH97+SGrXY1l970lZ/Xer8s2XfG9++dyXZv9L9uQHz9qU9Su+mXOOeyjPH9+V59a+LK1RkmRvW5In2rI8NHFKNu59fjbsfEFuf2BNlt11fE79ymReevfO5KFtGT36uGAFYFEQrgBwtBwM2Ed2pHY9mufctzwn33xyJp+3MtvXnJ3rzzwne55f2XfKZNpJkxlbNvW+1NG+JaknlmT59iU5fkvLczZP5pxNT2TJ1i0Z7dyV0b59aZOTghWARUO4AsDR1lraxETaxERGu3entmzNCXcvy4nHH5c67ri045cny5eljU+977UmRsm+/ak9+9L27k3bszdt//5MiFUAFinhCgBzaVrEZs+eqbEaS43903tcW5I2akkbffsxALCYCVcAmC8Hg7RNfrtRAYDvdnT+IjoAAADMEuEKAABA14QrAAAAXROuAAAAdE24AgAA0DXhCgAAQNeEKwAAAF0TrgAAAHRNuAIAANA14QoAAEDXhCsAAABdE64AAAB0TbgCAADQNeEKAABA14QrAAAAXROuAAAAdE24AgAA0DXhCgAAQNeEKwAAAF0TrgAAAHRNuAIAANC1GYdrVS2pqn+oqo8Nt8+uqluqamNV/UlVLRvGlw+3Nw73r53pawMAALDwzcYR159Pcte027+R5L2ttXOS7EhyxTB+RZIdw/h7h/0AAADgac0oXKtqTZKfSPL7w+1K8vok1w+7XJfksmH70uF2hvsvHPYHAACAQ5rpEdffTvIfkoyG26cm2dlamxhub0py5rB9ZpIHkmS4f9ew/3eoqiurakNVbdi2bdsMpwcAAMCx7ojDtar+WZKtrbUvzuJ80lq7urW2vrW2ftWqVbP51AAAAByDxmfw2Fcl+cmquiTJcUmem+R3kqyoqvHhqOqaJJuH/TcnOSvJpqoaT3Jyku0zeH0AAAAWgSM+4tpa+6XW2prW2tokb0nyqdbav0zy6SRvGna7PMlHh+0bhtsZ7v9Ua60d6esDAACwOByNv+P6i0neXVUbM/Ue1muG8WuSnDqMvzvJVUfhtQEAAFhgZnKq8Le11j6T5DPD9r1Jzn+KffYm+ZnZeD0AAAAWj6NxxBUAAABmjXAFAACga8IVAACArglXAAAAuiZcAQAA6JpwBQAAoGvCFQAAgK4JVwAAALomXAEAAOiacAUAAKBrwhUAAICuCVcAAAC6JlwBAADomnAFAACga8IVAACArglXAAAAuiZcAQAA6JpwBQAAoGvCFQAAgK4JVwAAALomXAEAAOiacAUAAKBrwhUAAICuCVcAAAC6JlwBAADomnAFAACga8IVAACArglXAAAAuiZcAQAA6JpwBQAAoGvCFQAAgK4JVwAAALomXAEAAOiacAUAAKBrwhUAAICuCVcAAAC6JlwBAADomnAFAACga8IVAACArglXAAAAuiZcAQAA6JpwBQAAoGvCFQAAgK4JVwAAALomXAEAAOiacAUAAKBrwhUAAICuCVcAAAC6JlwBAADomnAFAACga8IVAACArglXAAAAuiZcAQAA6JpwBQAAoGtHHK5VdVZVfbqqvlJVd1bVzw/jp1TVjVV1z/B55TBeVfW+qtpYVbdX1ctn64sAAABg4ZrJEdeJJL/QWjs3yQVJ3llV5ya5KslNrbV1SW4abifJxUnWDR9XJnn/DF4bAACAReKIw7W19mBr7UvD9mNJ7kpyZpJLk1w37HZdksuG7UuTfLBNuTnJiqo6/UhfHwAAgMVhVt7jWlVrk/xQkluSrG6tPTjc9VCS1cP2mUkemPawTcMYAAAAHNKMw7WqTkryp0n+XWvt0en3tdZaknaYz3dlVW2oqg3btm2b6fQAAAA4xs0oXKtqaaai9Q9ba382DG85eArw8HnrML45yVnTHr5mGPsOrbWrW2vrW2vrV61aNZPpAQAAsADM5KrCleSaJHe11n5r2l03JLl82L48yUenjb99uLrwBUl2TTulGAAAAJ7S+Awe+6okb0tyR1XdNoz9xyS/nuTDVXVFkvuTvHm47+NJLkmyMcnuJO+YwWsDAACwSBxxuLbWPpekDnH3hU+xf0vyziN9PQAAABanWbmqMAAAABwtwhUAAICuCVcAAAC6JlwBAADomnAFAACga8IVAACArglXAAAAuiZcAQAA6JpwBQAAoGvCFQAAgK4JVwAAALomXAEAAOiacAUAAKBrwhUAAICuCVcAAAC6JlwBAADomnAFAACga8IVAACArglXAAAAuiZcAQAA6JpwBQAAoGvCFQAAgK4JVwAAALomXAEAAOiacAUAAKBrwhUAAICuCVcAAAC6JlwBAADomnAFAACga8IVAACArglXAAAAuiZcAQAA6JpwBQAAoGvCFQAAgK4JVwAAALomXAEAAOiacAUAAKBrwhUAAICuCVcAAAC6JlwBAADomnAFAACga8IVAACArglXAAAAuiZcAQAA6JpwBQAAoGvCFQAAgK4JVwAAALomXAEAAOiacAUAAKBrwhUAAICuCVcAAAC6JlwBAADomnAFAACga8IVAACArglXAAAAujbn4VpVF1XV3VW1saqumuvXBwAA4Ngyp+FaVUuS/F6Si5Ocm+StVXXuXM4BAACAY8tcH3E9P8nG1tq9rbX9ST6U5NI5ngMAAADHkLkO1zOTPDDt9qZhDAAAAJ7S+HxP4Mmq6sokVw43H6+qu+dzPgvcaUkenu9JsChZe8wXa28WVNV8T+FYZO0xn6w/5suzWXvf82yeaK7DdXOSs6bdXjOMfVtr7eokV8/lpBarqtrQWls/3/Ng8bH2mC/WHvPF2mM+WX/Ml9lce3N9qvCtSdZV1dlVtSzJW5LcMMdzAAAA4Bgyp0dcW2sTVfWuJJ9MsiTJB1prd87lHAAAADi2zPl7XFtrH0/y8bl+XZ6SU7KZL9Ye88XaY75Ye8wn64/5Mmtrr1prs/VcAAAAMOvm+j2uAAAAcFiE6wJVVT9TVXdW1aiq1j/pvl+qqo1VdXdVvXHa+EXD2Maqumra+NlVdcsw/ifDhbXgGVXVf6mqzVV12/BxybT7DmsdwkxZWxxtVXVfVd0xfL/bMIydUlU3VtU9w+eVw3hV1fuG9Xh7Vb18fmfPsaSqPlBVW6vqy9PGDnutVdXlw/73VNXl8/G1cGw5xNqbk9/3hOvC9eUkP53ks9MHq+rcTF3N+fuSXJTkf1XVkqpakuT3klyc5Nwkbx32TZLfSPLe1to5SXYkuWJuvgQWiPe21s4bPj6eHPE6hCNmbTGHXjd8vzv4n8ZXJbmptbYuyU3D7WRqLa4bPq5M8v45nynHsmsz9fNzusNaa1V1SpL3JPmRJOcnec/B2IWncW2+e+0lc/D7nnBdoFprd7XW7n6Kuy5N8qHW2r7W2jeSbMzUN6vzk2xsrd3bWtuf5ENJLq2pvzL/+iTXD4+/LsllR/0LYKE7rHU4j/Nk4bC2mC+XZupnZ/KdP0MvTfLBNuXmJCuq6vR5mB/HoNbaZ5M88qThw11rb0xyY2vtkdbajiQ35qmDBL7tEGvvUGb19z3huvicmeSBabc3DWOHGj81yc7W2sSTxuHZetdwatIHpv1P7uGuQ5gpa4u50JL8VVV9saquHMZWt9YeHLYfSrJ62LYmmW2Hu9asQWbTUf99T7gew6rqr6vqy0/x4SgCc+YZ1uH7k7woyXlJHkzyP+ZzrgBH2atbay/P1Olv76yq10y/s039KQd/zoGjzlpjjs3J73tz/ndcmT2ttR87godtTnLWtNtrhrEcYnx7pk4pGR+Ouk7fH571Oqyq/5PkY8PNw12HMFNPt+ZgVrTWNg+ft1bVRzJ1OtyWqjq9tfbgcHrm1mF3a5LZdrhrbXOS1z5p/DNzME8WmNbaloPbR/P3PUdcF58bkrylqpZX1dmZeqP+F5LcmmRdTV1BeFmm3kh9w/A/dp9O8qbh8Zcn+eg8zJtj0JPer/VTmbpoWHKY63Au58yCZW1xVFXViVX1nIPbSd6Qqe95N2TqZ2fynT9Db0jy9uGKrxck2TXtNE84Eoe71j6Z5A1VtXI4tfMNwxgclrn6fc8R1wWqqn4qye8mWZXkL6rqttbaG1trd1bVh5N8JclEkne21iaHx7wrU9+wliT5QGvtzuHpfjHJh6rqvyb5hyTXzPGXw7Hrv1fVeZk6Xem+JP86SY5wHcIRa61NWFscZauTfGTqmoYZT/JHrbVPVNWtST5cVVckuT/Jm4f9P57kkkxdrGR3knfM/ZQ5VlXVH2fqaOlpVbUpU1cH/vUcxlprrT1SVb+SqYhIkl9urT3bi+6wSB1i7b12Ln7fq6kDagAAANAnpwoDAADQNeEKAABA14QrAAAAXROuAAAAdE24AgAA0DXhCgAAQNeEKwAAAF0TrgAAAHTt/wO4DKC00SnD+AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1152x432 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Initialize_distributions()\n", + "plt.scalar_field(dh.gather_array(C.name))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Source Terms" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the Allen-Cahn LB step, the Allen-Cahn equation needs to be applied as a source term. Here, a simple forcing model is used which is directly applied in the moment space: \n", + "$$\n", + "F_i^\\phi (\\boldsymbol{x}, t) = \\Delta t \\frac{\\left[1 - 4 \\left(\\phi - \\phi_0\\right)^2\\right]}{\\xi} w_i \\boldsymbol{c}_i \\cdot \\frac{\\nabla \\phi}{|{\\nabla \\phi}|},\n", + "$$\n", + "where $\\phi$ is the phase-field, $\\phi_0$ is the interface location, $\\Delta t$ it the timestep size $\\xi$ is the interface width, $\\boldsymbol{c}_i$ is the discrete direction from stencil_phase and $w_i$ are the weights. Furthermore, the equilibrium needs to be shifted:\n", + "\n", + "$$\n", + "\\bar{h}^{eq}_\\alpha = h^{eq}_\\alpha - \\frac{1}{2} F^\\phi_\\alpha\n", + "$$\n", + "\n", + "The hydrodynamic force is given by:\n", + "$$\n", + "F_i (\\boldsymbol{x}, t) = \\Delta t w_i \\frac{\\boldsymbol{c}_i \\boldsymbol{F}}{\\rho c_s^2},\n", + "$$\n", + "where $\\rho$ is the interpolated density and $\\boldsymbol{F}$ is the source term which consists of the pressure force \n", + "$$\n", + "\\boldsymbol{F}_p = -p^* c_s^2 \\nabla \\rho,\n", + "$$\n", + "the surface tension force:\n", + "$$\n", + "\\boldsymbol{F}_s = \\mu_\\phi \\nabla \\phi\n", + "$$\n", + "and the viscous force term:\n", + "$$\n", + "F_{\\mu, i}^{\\mathrm{MRT}} = - \\frac{\\nu}{c_s^2 \\Delta t} \\left[\\sum_{\\beta} c_{\\beta i} c_{\\beta j} \\times \\sum_{\\alpha} \\Omega_{\\beta \\alpha}(g_\\alpha - g_\\alpha^{\\mathrm{eq}})\\right] \\frac{\\partial \\rho}{\\partial x_j}.\n", + "$$\n", + "\n", + "In the above equations $p^*$ is the normalised pressure which can be obtained from the zeroth order moment of the hydrodynamic distribution function $g$. The lattice speed of sound is given with $c_s$ and the chemical potential is $\\mu_\\phi$. Furthermore, the viscosity is $\\nu$ and $\\Omega$ is the moment-based collision operator. Note here that the hydrodynamic equilibrium is also adjusted as shown above for the phase-field distribution functions.\n", + "\n", + "\n", + "For CLBM methods the forcing is applied directly in the central moment space. This is done with the `CentralMomentMultiphaseForceModel`. Furthermore, the GUO force model is applied here to be consistent with [A cascaded phase-field lattice Boltzmann model for the simulation of incompressible, immiscible fluids with high density contrast](http://dx.doi.org/10.1016/j.camwa.2019.08.018). Here we refer to equation D.7 which can be derived for 3D stencils automatically with lbmpy." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "force_h = [f / 3 for f in interface_tracking_force(C, stencil_phase, W)]\n", + "force_g = hydrodynamic_force(g, C, method_hydro, tau, rho_H, rho_L, kappa, beta, body_force)\n", + "\n", + "\n", + "if isinstance(method_phase, CentralMomentBasedLbMethod):\n", + " force_model_h = CentralMomentMultiphaseForceModel(force=force_h)\n", + "else:\n", + " force_model_h = MultiphaseForceModel(force=force_h)\n", + "\n", + "\n", + "if isinstance(method_hydro, CentralMomentBasedLbMethod):\n", + " force_model_g = CentralMomentMultiphaseForceModel(force=force_g, rho=rho)\n", + "else:\n", + " force_model_g = MultiphaseForceModel(force=force_g, rho=rho)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Definition of the LB update rules" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The update rule for the phase-field LB step is defined as:\n", + "\n", + "$$\n", + "h_i (\\boldsymbol{x} + \\boldsymbol{c}_i \\Delta t, t + \\Delta t) = h_i(\\boldsymbol{x}, t) + \\Omega_{ij}^h(\\bar{h_j}^{eq} - h_j)|_{(\\boldsymbol{x}, t)} + F_i^\\phi(\\boldsymbol{x}, t).\n", + "$$\n", + "In our framework the pull scheme is applied as streaming step. Furthermore, the update of the phase-field is directly integrated into the kernel. As a result of this, a second temporary phase-field is needed." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "allen_cahn_lb = get_collision_assignments_phase(lb_method=method_phase,\n", + " velocity_input=u,\n", + " output={'density': C_tmp},\n", + " force_model=force_model_h,\n", + " symbolic_fields={\"symbolic_field\": h,\n", + " \"symbolic_temporary_field\": h_tmp},\n", + " kernel_type='stream_pull_collide')\n", + "\n", + "# allen_cahn_lb = sympy_cse(allen_cahn_lb)\n", + "\n", + "ast_allen_cahn_lb = ps.create_kernel(allen_cahn_lb, target=dh.default_target, cpu_openmp=True)\n", + "kernel_allen_cahn_lb = ast_allen_cahn_lb.compile()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The update rule for the hydrodynmaic LB step is defined as:\n", + "\n", + "$$\n", + "g_i (\\boldsymbol{x} + \\boldsymbol{c}_i \\Delta t, t + \\Delta t) = g_i(\\boldsymbol{x}, t) + \\Omega_{ij}^g(\\bar{g_j}^{eq} - g_j)|_{(\\boldsymbol{x}, t)} + F_i(\\boldsymbol{x}, t).\n", + "$$\n", + "\n", + "Here, the push scheme is applied which is easier due to the data access required for the viscous force term. Furthermore, the velocity update is directly done in the kernel." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "hydro_lb_update_rule = get_collision_assignments_hydro(lb_method=method_hydro,\n", + " density=rho,\n", + " velocity_input=u,\n", + " force_model=force_model_g,\n", + " sub_iterations=2,\n", + " symbolic_fields={\"symbolic_field\": g,\n", + " \"symbolic_temporary_field\": g_tmp},\n", + " kernel_type='collide_stream_push')\n", + "\n", + "# hydro_lb_update_rule = sympy_cse(hydro_lb_update_rule)\n", + "\n", + "ast_hydro_lb = ps.create_kernel(hydro_lb_update_rule, target=dh.default_target, cpu_openmp=True)\n", + "kernel_hydro_lb = ast_hydro_lb.compile()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Boundary Conditions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As a last step suitable boundary conditions are applied" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "# periodic Boundarys for g, h and C\n", + "periodic_BC_C = dh.synchronization_function(C.name, target=dh.default_target, optimization = {\"openmp\": True})\n", + "\n", + "periodic_BC_g = LBMPeriodicityHandling(stencil=stencil_hydro, data_handling=dh, pdf_field_name=g.name,\n", + " streaming_pattern='push')\n", + "periodic_BC_h = LBMPeriodicityHandling(stencil=stencil_phase, data_handling=dh, pdf_field_name=h.name,\n", + " streaming_pattern='pull')\n", + "\n", + "# No slip boundary for the phasefield lbm\n", + "bh_allen_cahn = LatticeBoltzmannBoundaryHandling(method_phase, dh, 'h',\n", + " target=dh.default_target, name='boundary_handling_h',\n", + " streaming_pattern='pull')\n", + "\n", + "# No slip boundary for the velocityfield lbm\n", + "bh_hydro = LatticeBoltzmannBoundaryHandling(method_hydro, dh, 'g' ,\n", + " target=dh.default_target, name='boundary_handling_g',\n", + " streaming_pattern='push')\n", + "\n", + "contact_angle = BoundaryHandling(dh, C.name, stencil_hydro, target=dh.default_target)\n", + "contact = ContactAngle(90, W)\n", + "\n", + "wall = NoSlip()\n", + "if dimensions == 2:\n", + " bh_allen_cahn.set_boundary(wall, make_slice[:, 0])\n", + " bh_allen_cahn.set_boundary(wall, make_slice[:, -1])\n", + "\n", + " bh_hydro.set_boundary(wall, make_slice[:, 0])\n", + " bh_hydro.set_boundary(wall, make_slice[:, -1])\n", + " \n", + " contact_angle.set_boundary(contact, make_slice[:, 0])\n", + " contact_angle.set_boundary(contact, make_slice[:, -1])\n", + "else:\n", + " bh_allen_cahn.set_boundary(wall, make_slice[:, 0, :])\n", + " bh_allen_cahn.set_boundary(wall, make_slice[:, -1, :])\n", + "\n", + " bh_hydro.set_boundary(wall, make_slice[:, 0, :])\n", + " bh_hydro.set_boundary(wall, make_slice[:, -1, :])\n", + " \n", + " contact_angle.set_boundary(contact, make_slice[:, 0, :])\n", + " contact_angle.set_boundary(contact, make_slice[:, -1, :])\n", + "\n", + "\n", + "bh_allen_cahn.prepare()\n", + "bh_hydro.prepare()\n", + "contact_angle.prepare()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Full timestep" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "# definition of the timestep for the immiscible fluids model\n", + "def timeloop():\n", + " # Solve the interface tracking LB step with boundary conditions\n", + " periodic_BC_h()\n", + " bh_allen_cahn() \n", + " dh.run_kernel(kernel_allen_cahn_lb)\n", + " dh.swap(\"C\", \"C_tmp\")\n", + " \n", + " # apply the three phase-phase contact angle\n", + " contact_angle()\n", + " # periodic BC of the phase-field\n", + " periodic_BC_C()\n", + " \n", + " # solve the hydro LB step with boundary conditions\n", + " dh.run_kernel(kernel_hydro_lb)\n", + " periodic_BC_g()\n", + " bh_hydro()\n", + "\n", + " \n", + " # field swaps\n", + " dh.swap(\"h\", \"h_tmp\")\n", + " dh.swap(\"g\", \"g_tmp\")" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "<video controls width=\"80%\">\n", + " <source src=\"data:video/x-m4v;base64,AAAAIGZ0eXBpc29tAAACAGlzb21pc28yYXZjMW1wNDEAAAAIZnJlZQAAlXFtZGF0AAACcgYF//9u3EXpvebZSLeWLNgg2SPu73gyNjQgLSBjb3JlIDE2MSByMzAzOSA1NDRjNjFmIC0gSC4yNjQvTVBFRy00IEFWQyBjb2RlYyAtIENvcHlsZWZ0IDIwMDMtMjAyMSAtIGh0dHA6Ly93d3cudmlkZW9sYW4ub3JnL3gyNjQuaHRtbCAtIG9wdGlvbnM6IGNhYmFjPTAgcmVmPTMgZGVibG9jaz0xOjA6MCBhbmFseXNlPTB4MToweDExMSBtZT1oZXggc3VibWU9NyBwc3k9MSBwc3lfcmQ9MS4wMDowLjAwIG1peGVkX3JlZj0xIG1lX3JhbmdlPTE2IGNocm9tYV9tZT0xIHRyZWxsaXM9MSA4eDhkY3Q9MCBjcW09MCBkZWFkem9uZT0yMSwxMSBmYXN0X3Bza2lwPTEgY2hyb21hX3FwX29mZnNldD0tMiB0aHJlYWRzPTEzIGxvb2thaGVhZF90aHJlYWRzPTIgc2xpY2VkX3RocmVhZHM9MCBucj0wIGRlY2ltYXRlPTEgaW50ZXJsYWNlZD0wIGJsdXJheV9jb21wYXQ9MCBjb25zdHJhaW5lZF9pbnRyYT0wIGJmcmFtZXM9MCB3ZWlnaHRwPTAga2V5aW50PTI1MCBrZXlpbnRfbWluPTI1IHNjZW5lY3V0PTQwIGludHJhX3JlZnJlc2g9MCByY19sb29rYWhlYWQ9NDAgcmM9Y3JmIG1idHJlZT0xIGNyZj0yMy4wIHFjb21wPTAuNjAgcXBtaW49MCBxcG1heD02OSBxcHN0ZXA9NCBpcF9yYXRpbz0xLjQwIGFxPTE6MS4wMACAAAAQhGWIhAvyYoAAqcScnJycnJycnJycnJycnJycnJycnJycnJycnJycnJycnJycnJycnJycnJycnJycnJycnJycnJycnJycnJycnJycnJycnJycnXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/jQAERLYewAG6MSiITXLPGYXpZBkEsl5THd8/ARshIpS9jMUrGAAQHDH5bxIQlbMytSf7m24JcKtxDSXHq94InO+Dpt3GHNJ6CGUBUinsuBtr/EgzP/iFAATeTR1vMIojCHlgv5u14z5gYdwyr3/Zri1EGUWiQYn0+btcRwkJjwi+A8COgp7yjRVARshIpS9jMUrceYOxDVwps6f//WogyitJeWCnjdrwL7k77nCmsH1hwMnfhjrTx2Mo7eAA3RiURCa5Z4zC4Yfh//FnwAGSISD9zxemyJEdGrLyfJd1Xffffffffffffffffffffffff4/hh4b8AbroIrl3+EAATAIDA6FGcMADj0EjnpDHGQEASWQAEFFXMCOvzzwDpCQ7m1tbW18f+Hgs4DrGGlsIAgOP0Eiag0BAEl/EAO999999999999999999999999/j7/DhTwAE2Zn7GADBlYxdOxlTqGa6666666666667w3hrrFAG+++++++++++++++++++++++nm6PpaWlp6xQBvvvvvvvvvvvvvvvvvvvvvvvrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrp6euuunrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrp6euuunrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr/42peMYHMBwACgBQURluABZiUtvOUsrz0u70AcsoaUqFNCmL4SkE+81KP/kb9BKHvHOQ8DTz65nAEdJrwIV8bU1kYbOMlxrjXHq9/CDQSzxfAAQ0IL9bqEf3L3gSGmQAlDg9X1qJAbGAlJ/+AElKJ1vxKe8Q/RawkD3rzXoYgg9XuISGzRBlr7+d/95mQ2cZCc5ol7DOmY+5TqxOOWrASW6h2uuuuuuuuuuuuuuuuuuuuuuunp6666euuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu+8NdddddddddddddddddddddddddPT11109ddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddPT11109ddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddPT11109ddddddddddddddddddddddddddddddddddddddf/G1KsMYHMBwACgBQURluAA+JT54oyl96Xf/fI1GRi8qL5cDGp5huCv5w35vuASHx9enHUKpCx1rwHBa+jWe59Aj6a1kYbKMlxrDXHq9/CGCWeL4ACGhBfrdQj+5e8CXmZDZ1IVEF5LOcAjJMAn6pw2pvCUonW/EhK92Hyt3AEdBryCCDamAWEhskYZa+/nf/eZkNnGQnOaJewzxnj7lOrNxy2cCS6h2uuuuuuuuuuuuuuuuuuuuuuunp6666euuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu+8NddddddddddddddddddddddddfD/8FYdDnAEGGPJBRclyRZYFfLBQ+QJKPAAxlWY+hM7vYOcQnH+YEgtLPQozV+P/n9gtCO3K//ZOo2v//+C4JcAJqszCRwfwAyL5Xp9wAx1ZtJPvh9x9gtFZkmGJF34Iw1CASkIESM8dAbECH27P6IIK+eodrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr/BYf6DQalk/+iHuIAARASBIAIMQkO54dIdzISO5CLdPCs7n1WqVP1WEcRuAldY/AZeLGRP2hNHCAALUKFAcYMALk+gRQdU7ApbLoDYdXXhmb75PiiOfOetwrdyxebfFLas/6qvUIdkvScKPZCCgcBN8EQAlBQPv4bIcmUB0TccB4wuVx86cxWccL8FfP/4Pd6DvKXxUKZAFBMEh5kdCQWz/CAAgV4j4DqSWNX+A1iFJSgW1r+wPbhW+cDuJDBRpPyd33/kG4CEdTGAIZsCYXmOIfGOZgJh24oYj8W54QABcMW4MAVNACRtWCYovbpyn4Mrz7hQAEy8AEyASHHYjn/VlKw++xfu/O///wVl/WGASWEQENgf3p6Ybrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrp5uCBgw8LoR/s3/19m/H3HEf/QKzsy9f334td2tPT11111111111111111111111111111111111111/8bRIVGMDWAC4g2HehxoEKCJ6vASS9hEi6MXs7ha9AAY4dI9IivNrD0GcjmpCnh8IE9MAAFRkOeBvhxUAtQfUbLaQpDO/9oa5hUiqMWwxhi9xHCEQRyKL4IJQ9vcY9AEZInq8AJIUT73EJ/+XnHumOAAFRkFEva5B1WGganPMekCc+PV7w1KL9ZiU/3KzgST2QBgqy5734ASIvcQfmtLVYQ0z2NJUqoGuodrrrrrrrrrrrrrrrrrrrrrrrp6euuunp6666666666666666666666666666666666666677/XXXXXXXXXXXXXXXXXXXXXXXXXT09dddPT1111111111111111111111111111111111111111111111111111111111111111109PXXXT09dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddPT11109PXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/jjsELD3ABTDTiIeSwp56vYApBmfviFdWfEwFi4JhbXZL2P93vwAVglwqHkNKeer2gCuN9QcsrnUEf85QAyjZSGjkf9w9/61EGYWiXENIN2nAIyynPJebU3McOIJIYvgSXoe30gpdBUS/v3+IL9zEL0RX5CCAACA6AAIADFjQBYRpT0gvPj1e1IgAkntAMOt8978AKC/cwCpuu05iD9xqpSUBrqH666666666666666666666666enrrrp6euuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu+/111111111111111111111111109PXXXT09dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddPT11109PXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXT09dddPT111111111111111111111111111111111111111/fOAIIWGw5gAJkQ3dCERxfQj8ugAYlTduJy/sBYjRqa/6/+DPymCAACBGAAIAzAAPGoxK3ly+UgAAoAAIAr2QNgAIRF7iD81pa7HsLgA+bzMx+1V94cP4BgHBAWyINEHSSW80k9Xv7vvvv/8cBHhXAATIhldBGYklbGL+RmIjKK20EIa1RAAAgKgBhDXB3fffffffff/44CMIVwAEyIZXQRmJJWxifkZiIyittBCGtQQAAICoAYQ1we++++++++/h+LQABw7gAIE5WEJC6ffrZzdnPhoISmt1ik8huqDgsDywPLA6Q7mEXrbESFLA6Q7mEXrbMRS2tra2v4ceIcF0BwABAVADCPS3wERaYHkKX4Mil7777//HD4VwAENRCUVmtYjls1fwkFITe4xqfQ2kDFIKr77777777//HDHCuAAkRiKyCs1JCWNT8zIZHURtIJQ1iAeHfffffffff/DHDhCuAAkRiKzCs1JC1NT8zIZHURtIJQ1iAcAFswAgUsoos0zd/fcP1DNdddddddddddddd4a666/+P/CgWgCAAEGG+XWcXQdQDgACA0ADDT8sAIh+tZTXd6kr56vyGxDkcZ/LKW9y4Y+IAGAHv+AAIC1quygCAbyKweAkIGLSOdSTs+oCVlBzzqDVlrsAAAIDhARkY1QhMAAi95AEj/Y3Bko40NKTZgCOgp7yhtT5TIaIUghyt4YwAjILBvUBtTBOnmEQSyHGM3a/SiDILRLjG7tAn+qsHiX8JlAVgYSmoD8fzD0TyfcFUUUg6RMxC1Alo///Au5nQ4QTZ3XLT/hr2ZjMYJpxRxBRu0BPBlKFai2Yelnv//1Dddddddf/H/h8KYALCZQChTN/NIsNm7X6mD831DsUAA7cM4ZJ9B1FuYFbmarQYgpxJOL6/7rAqYBIphV0Nmv4gAAkAAcBqDgK0WKkiSWhF+rNBfMcHPSnjPo7f+gARkFw55T01t7kY1xCI53IZ+gmYVlV2Hvn/fEUZjmhSncoYdrQD3pQ8k8v1vMIwlkOMY43a/6/3/wmcDQNINXCZOOIo5X+/yIxFZBWakhLHpD8ohR3Pkg7XreGHUMigDfffffffk4UDBcemGgAXGDZQiizSDiz1e4ArQsZZ0mkgjKLD4ABDKPgos4tNbeY9sV0ZSkzHKGDFgkaAGn4p8mo3754AAgDekGxQBtbW1tb77///4UDEABzXFCiOkaCk32VhbbAAGJVCGCzhvvDZ6tHgAGQA4GpS3qKhPEMG7NwJGiQGLJS1lhTP+4SxmDIPsOqtzN72DFNiZhBaKSjx/gRCKyl/d8+zW4wiC0QDEuh03aATBdiNpzzUX7WQZBJJeUxpu14kGZ/8R1Vi5PGwzvtildGJm9zMSoUnY6EKwYZgABEBQ9+W97zNm/Zv8MsPiCePvvvvvv/w+YcKBoAC4A2DrVuFHhzBoP34FxCOYKSeUIFnd8/wRGDZQiyjyBKR6vAAPESBYeiqINPkn/4MHj8AQEdqcFAdtqzTRyKCAGknKMofUQnpQ13qMhmOFw4oSju1wBGM5HMqnAAEAikgF0ojEcAQgg8sCRfdoBQMxmATl7qxs3ZU0CPi4HHU3h/CdG4JDjJsjFLT6AA+lGQzACEknFgSLbtcZGMj45lIOhiww7AAh1CU0mBtT4yMZHxzKQdDF+GobPAG++++++/+IH4jwoGgAeGYwMJ2WLMMh/nwCmuKOI2/QQm6wqJ7j4GFImRE5LEMT/cz4DgAGQBwJah8fJgAEM7+znHcSAsq/9va9mACArGMeL6xJ5gCONS/4sNqaAABEAQeMZ5ggBG8sG/Dg2pgSL5jgAp6U8ZoCpMCA0ZABzjzr0GL37nIxqKhDTl+AU7ymQ0FSiwM1cJUgFIgyC0S4pu7Qf6eYRBLIcUzdqlEGQWiXFN3a/1D/rrrrrrrrrrrrrrrrrrrrvvrrrrrrrrrvrrrrrrrrvrrrrrrrrvrrrrrrrrrvrrrrrrrrrvrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrwAAABUQZo4F+AIB5g1gAzrfK6fvd4AR/PDfyhwBwLqyZ8CQIh2Guw0AEriJz0+XvHgEqkTMVyEgCCtt0g6oDE/X919hDE8TADE9dN/ffH/AGb1/efv+AooAAAAG0GaVAX4AaB8ocAECic9R7/gSBEOwzPGYQwFXAAAABFBmmAvwH34Igxu7Avvu4AaZgAAAA9BmoAvwB5z3wSBxd+gDy4AAAAVQZqgL8AcR5Q5mxQImvr763VXgDyoAAAAHEGawC/AIB4Iwxu7wIguU+NiPEeI4AkDLVoAQSgAAAAQQZrgL8AcH3AlPyUCDoA8yAAAACBBmwAvwCiHhAUBxHiPEcASD2UdlxwIb9a1BJ4nlQB5kAAAABhBmyAvwCiYQ3hHAjCuAI/1rdByD3gDyoAAAAA9QZtAL8Aoi4QhnEeI8RwIvAk2I4EX4Ej4Ej4Ej4Ej4Ej4Ej4Ecv6/8CRr8EgIOEbUdr8EZdOfp6u1igDyYAAAACdBm2AvwDGcGOI8R4yErQD8ZavvL4EZ5ZKFRQI/hoKwwZbr8a7gDhIAAAAvQZuAL8Axh/P5/PwIvBTYyFLQIvwJHwJHwJHwJHwI7+CaBIfoFHoFGv98FDwB5cAAAAAdQZugL8A6nBDiFxC4hYB9H61qgRGFW8CO8J+AODgAAAAoQZvAL8B9+CQMO7u8Bs8FOIRcR4jgGsfawJHkMMe+n5WhEXuiwQB5cAAAADFBm+AvwDqH8/n8/ANh2gg33Aia14bHYbMtrgt8UD/eevpkLHH8CNdnCpEwi+H8AcJAAAAAKUGaAC/AIB7DW7gEc4N/g5xCPiOBF+BI+BI+BI+BI+BJXk68+vQiUAeTAAAAMkGaIC/AffkDG7gSfQn/6//X/6/gNXgxxHjJLYjgFk7QyKBJpVz/hzqbFzhIRS+t4A8qAAAAN0GaQC/AEOH8/n8/ALR2gg8CJ2hkV3Yc3SfX8MjNVjW+n/PXw+3P4EXw0EYKaW5xfhrPf28AcHAAAAA8QZpgL8ATJwW4hcR4jgEg9BBvuBE18n39yBB58gRbWBI+BI+BI+BI+BI+BI+BI+BI+BI+BI+BI+BI+CWAAAAAO0GagC/AMYLhJ+o+4DW4KcR4ztiOARztDpSZaCLwIz80EgS5s7eJkopU/DVSZ55kY2z/gRvIESWzMAcJAAAAb0GaoC/AIB4Iw097oETxAl3d3e8QotRCvELAii3dsXq+fWL1aA1bgf+/v74BIDywIlWccsMYE/+vafueuG89pEU1/v9nwRHf4ETXd+cesKZf/lwI3wJHwJHwJHwJHwJHwJHwJHwJHwJHwJHwJHwSwAAAAENBmsAvwH8MQKAotD4hYCNwEBQXa/V4DVPF5/P55YEXgpuoFmBF+BI+BHL/5KD3fydqVIEVeoJPNnb2CiCiBIy4A4OAAAAAQ0Ga4C/AfgxAod8QsCOvAQGBIOwrAbB4+BI4LcQTiF+CWAR2yfzhyLjLOP+/v1Zz18Ps1+BFyQ0NSBbfdfwWe58AcJAAAABxQZsAL8BaH8/AjeCQMO7uyBKEIrgI871wdosWL1ygNUX0y8FvwW/BjAjfAkfAjd52Jk7QaKKBDuznX4NXL9P0czgGuCr5Eapq0tkCt6BYwVF7rqCo5V/DWhxHWfhMiCB5heHYqQjbGRzd+f6gRsTgDg4AAABAQZsgL8AonoKP+r0LUVvARx/PL1A9wGqfgSOCnEeI8RwGmeEa19TgiX8RCQ3Nd68EJyYTN4ES/dZWhZE8uAODgAAAAD1Bm0AvwCAeCMNXu8CMIRxWAWbCGzsbAi8P4r+CGAje5e4EPtBS/rv2+rPg409SvBV4bRX7/eseBEq4A4WAAAAAUEGbYC/AKJ5Qo94DZPKsXrFjNcoCNxHOx+fz8CLwc3wK8CL8CR1Aj+cNMmqGs+f0/KDY5Fykjb/g4r0VwBF1OJSD8P6PeXEH19O43/DEAcFAAAAAW0GbgC/AffhQMcv3eXy/u7wJPiive7viFH/AST+I4CNO8BscCDnnz+fgJHuBDfk9k7ydBAwvLBRxr3Ll9dOflKWGXqPlfh6Kdf2soEXNBELgyvd/UEMpvX+gDg4AAABSQZugL8AoZ2CZ+EOIQVFaEK4EU7vPwEgfoQ8BqnQnPPR+BFqBP6+vrgROXrk7gQ32QnoCdr8MBrPDmyVOpt+vL9gToEZfhoWTCZufhll/3gDg4AAAAGtBm8AvwDqC2EmNoEjCGBI9f/r/F618FcBGnQTgSODHEeX//4MYCMfr2aGQQLvBHwVfKiDEU18ddN6le+n6L2pecq+DVy/gRfIdIK1/6yYEb4Ej4Ej4Ej4Ej4Ej4Ej4Ej4Ej4Ej4Ej4Ej4I4AAAAGxBm+AvwCjDEFD0fELi2EndARmMoKvYvvAR4vVyAjsRgSF/8P/B3l//gRvvuBDfknFL4ac69n8vr79Q4elHHC5jwtera6w53cqMOJ6OvXHXmqBTrdT1KVPq5t/gRqfpTiQAnER3wa7fcfwBwcAAAABLQZoAL8AonghChVFCv+r/EQIwtxW1n87CB+BHxOAWXg5QVaz8CJ3XDeI684SXCuX+BDL+l5Ckwu/Sfd79v3WD36s9U+ff+BFq4A4SAAAAQUGaIC/AMWd7PCjgRTvR/PwGv6L369ARx5c/n8/Ai8G9ilgRaIDba8GnWgkUX4Ise79AjOtznWGOLwOty/arwBwcAAAAV0GaQC/AIB4kMbu94CM9XgJI8sCQJ8RwIouUV/oXrWL16AjTxtn4EbgSd+sCK/JQacrQEhYvc9c2hN53zcoS7nr8Zm3EWBX+CGpM3IEXJBEeB+l6QQBwkAAAAF5BmmAvwH36DCYgJMXKK3xHAii3tAkHdZ+hHAii/9jN3QJAvsz8BqneBIfakFLvpT3AyzU9oomj+p/fTGpf3ib+/VwIuoaKXRHNaNnf/uGSg8s6dJ2BH/jYXkZWAOCgAAAAPUGagC/AKJ4UCm7u7u93u7viFgSDq4CPO7Gj7oWwkJe8CJiMAkHGyc8CJqxO5cfnqmHET6w/wI2TvE+AODgAAABZQZqgL8B/egUPiFLn0EXQI41bwIotnY2gSPV8/R3gRDsJF4EwXCd4CNP4vV8+sYqxoDUfknGLEpr9PJs9fzkS7fupU9/wQ1Jm5AivX9oMnA+S/UJ35/wBwcAAAABVQZrAL8B9+CQMO93gSPQx7EIe4CQP+J4thA/eBHPCcCKd8/n4EZfwJfrngI7iIEZ9qcUvhvsf0p6+QJYlCXX3N1f5M2fwzUmboLvT/8CKX//efwBwcAAAAD5BmuAvwCjcRARx2FGMBIYYwJAt1az8BrbUCTv7nNgo+cfHnqMF7/XUCLqGsMmTp1BIPbP/wzO5+p26/8AcHAAAAFdBmwAvwDFnYJC/6CL58VxC4jgRcVgSDvAk/AjnfPwCPF/X/Xs0orPzZ3Dhcoy6Ycalm3nbLo09fnnXMFUt7//DMc9Py+GM9/Ait8RPIL8Os+/lqcUAcHAAAABHQZsgL8B+eCMEm7viFDAyz8EYu7u8CKJR4CPyVeBJP5/PwGqKc/Aa/kFExn/BJLv6nnv7giLlzUCM9U/UMwt7+UPsr/gDg4AAAAAuQZtAL8Ao4yFH/AbPoc6BDOyOU7n4EY8I0d4EMWxQh7wGzr5MCRr5bOOe+AODgAAAAE5Bm2AvwH36DDJfVgBDHsU6+tf0PfOr/V4CPP5+A1TscXgEh855wUkNzVEn0hzAOPo339/t3FeBFaWdhqSzXrAdn0//4ZjnfX4YZ9+AODgAAABTQZuAL8ApB2CJwIgtjxW1m/58OEr+hR10ARDsIOQ8fARp3z+fgSfRXgEcfqhnb3VcvU9cO4Ef9/zlX5QqMvXAjanIvyIx1/+8/OU4oJ39n/gDg4AAAABIQZugL8AohsPg3wRgohd3+gfQJgthCyBEOwi4Ec7GJgTBEXAJBywI9nlJy38Nwv5m/qjwMw2Cp+BGerf4Zh4yp50+GMC/AHBwAAAAM0GbwC/Affigxu7E7uAkfV6Fyit+tXgI072L7wCz4RwI2phD38kvP4EjUNa3WH9H/vAHBwAAAE1Bm+AvwH8MQJi4xAjegm9BXoaC5xbzH2H8NKX+xnf+xocr+gRj7gJA/n4BajsU4EZ8S5yr/DkV43/Ai8Z6hoihf7nT6g9Gu8/d1OAODgAAAENBmgAvwH4EECQtF9NPAkhlBEVyt0D/kLbFUBHncVgH4L/6oQx6qVPc27TgR9QrPnjy8g9M+/9wrdhP2+cUF3H/wBwcAAAAY0GaIC/AKNWgo8CMdwa6Bm+H/xHsHzFb7wIwjzf//D9A/Ci+wqGwZDvQVDoYEnxIq973ARo6NugEf84pf4TOG/O9ZfcOF4zovBXipP+C/i82d4JtmDj6X8CM9b/BCQP/v9AHBwAAAC9BmkAvwH36DDy+J7uVRvAj+i3gRclXgCQPBIIbxpcPUN+y2uHcCfwJGu8/XKAODgAAAFFBmmAvwH34oMaN33J6GPAihePdDQ0P7JfoJ4CPDbFCH1r/Xul+tYB+fMVTbrc5V/h+IpX5p84EXYryQ0ZQ2ZbrC69ejGov+GaMy31+dNXgDg4AAABIQZqAL8B9+UMcvXoUlQEYeyuvmhNCgpFuUTHRp8B/yFtiAkCFFcQsA2TwIMCBgI3X3r2Md8CJTEeSCKzNmQWX3/PUMs5/wBwcAAAAP0GaoC/AffnDC/Fs0MvnpX4t8CME0V6CMtzi1DKUYRj70XgEe9ld3gFn8gQd+vXok5V/BXwIwJDSytkdfXAHBwAAAERBmsAvwH96BI8CN6HvIdiHAhnfFxb/WFN2mFQNhIc5zmOnOuO5joAj/fL/vgtNe7ivw7qBEy/JRi356hgZ9/94S8AcFAAAAGRBmuAvwH56BA8CSFY0VkFStH39lKUZzjhLjgrmi1OiQaxWdvOwd5SnYXRocr3gJDwRXfeAfXzilXCHDLj+v4cPjXswvCL2LwI78RCoiTObJLykRh3Of+4ZmxWXnF/DGnej4A4OAAAAQ0GbAC/AKMFYUkOoJiOPmPHFniTjpSjRUx96Jpb4BsfBEd3vFAanX7CD3rcx+X/ISXC/AjPWzkXyBURI/xE2VveAODgAAABhQZsgL8B9+QMbuXwTdyK7veBD9GeBIND//Yf2LhOLf/lOHL9BSln6vneAWf0fKA1S+/qEwhxrIS/7N/DgnLE2L/Dcy+cy/Rpoev9Mgc0fAi+Gs2cFRud/3l5/ULOf+AODgAAAAGBBm0AvwH35gxnUOAkzfGv/Z8g/YOwdHdCeYWMV+TlHHAim+scAzy3nGyltAuxP9YXU5Fo7THXiTVxdBQge/Np35Tm8A+hfp/Q6rfK+9V/DN34oecX/AivJad97skuAODgAAAA7QZtgL8Ao1cAjp2CBwJhgq4DxGYcwT6NA8hd690AjnhoJCXPFcYef9+cWvDc73gR9TilIWFhf91ygDg4AAACLQZuAL8B/hBAiCiyX008CMGYREg4GboSZeivf2h86P1jrXwTxd48PvumTRXNFnzor0FVU7TnZQodgevK3A9DMaKE85Xa2V4EYKrVzl7A0DYNBfyHQCReisgNTpDHS9QIb6S/BgTPni6jxX8l+/BfjK34bIwvrIWPT/0iSgRLvft9FgljXuLPnlAHBwAAAAGlBm6AvwCiBeFBA8jCGJlIpuQ7nQzQoFDMTcw68AkAYZ0mEU204jkDuwv7QJQY/5Wyl85lBEFdJ36ugNnzjF/CPcwIj3/tSi9zF2nrVYEV+Ef4aFbnxfOWDWd/4Z5M4Qwz7Hwd6nd8AcHAAAAAvQZvAL8AotaCXd4Irv3gNU7wG56OVIDUf1fnFd/hHx/bXSGVAi6nqjG53/efwBwcAAAA+QZvgL8Aot6CnQJFcA+1UchG/hHuORlqlAFQInhMQXPzfYiUTn9P1gRnqaCUQ6/A3rnPcMy3Qe/0h97/gDg4AAABFQZoAL8B9+CQMTlJ6UUyvLwTcl0Ii53dQEbfAEfE++pPOKWGMA/1vdb71UJFyfPn6OSD4faf4EUv5vglz38mdvF9dQBwcAAAAUEGaIC/AKLWgpUCTfAPrVHJ3ie4evzsvR64Ildjwke+uBEdPnEL4YRPfj4YV5xcXgQ7nr/Aj6hoVLcmSqCugLtjk7+4ZrO5b/p89qQafAHBwAAAAVEGaQC/AEOm4//2EiG4RvAV4sHl31wCynhP6OGDF/MXCH31AkdHFHF+r/35huY4HvVrnEL5Ew/Fejh39QIr1NDXhWuXzJnv7hXszfnlDjAVBfwBwcAAAAD5BmmAvwBxHRw0v4a0YEPogiNL5ff1ND4936oaUVP8NCGpPWEPn8/gRn5p8OMA0mevl/3i+uGNgljUi2AOCgAAAADNBmoAvwCjl+v4Ajwn9fSRw0uUsOPXy+CPwe8eBE8EIguX1T/1rlLPmBGerbuv3ZMmQBwcAAABeQZqgL8AcH4YDXL8EP6Nj+QNhL+Fqj34bz1+BD61vYZEc36cJYx39UNi8QJDnh2DjmF4Ci6ndcAjz6fU+C8RENNN+pRw92pC//rgRfCsfy/xPqo01/+zkVJgX//AHBwAAADtBmsAvwCjegt6AI96ORcaLJa8/K+sEfNhSLoEOpN79rXRMIEbUNdQt8dPlBITKvn/hknJNXyfO/AHBwAAAAF9BmuAvwCi+gp6i/61AR4a8wrKTQRDuUVlWHp/tMpQCRHeAi37ozy1R6KXhNUE/wIngwEPaiWHqHey8YDJ/zj+6JH+n6/JAivyQqMmz5qEFhhzR/vE8EvHJMPH3/wBwcAAAAElBmwAvwCiegs0AR/0ci4fRd5rtm8vR6/gxUvAhvkrW9oVBZf18LF5e5m/OvzBIMJwYEbUNdQv5fhxnr3l4Z7qIjumIh9zP8AcHAAAAQkGbIC/AHB9IOSkonL/tZ64Duu5/gQ6k3v+qE17go7vzYVMv6+hlQIz8kK30uPNB0lHw3mn/3Px0jTfG3koL3wBwcAAAAIRBm0ArwCi+ICRAZWtfxVVyrp/pWgI4M6ncU7oJjMK/OXKdMe23gRwm51Up1k06Y8gnH+Mwv+AWdfQcEZqGzuMFybNfXyUkcJmF4R7n+ihLUOscgQ+jiF1K/6+wzEOdfhO4yp+3S4Ly3DHsc00HtYo4qRi/Ai6W+zSeb8sEvE6Xf3IA4OAAAABAQZtgJ8A63UA1vRwwv8FFHrJr9BvszUXC+O8NMmBE6BII5u9r85V9Qm49Z+5IEVbeeoYipF0Xx8FNLnf3tcAcHAAAAHZBm4ArwH36C3oEov/Wit+rfia1qtQIpisJz+saec4creQNXH6PRZS0xuFegMh053MIoHKd5SlJpThVZDow+/oU587ehsDYOTG/q0CN6tANc/eTo4kqf4TeY71Ah8m9l0GHDf5Sl74EZ6tghiWHg3rgiieeUAcHAAAARkGboCfAKIT+u3wVhBdZlzlNa2+oCRrgR+oBZug2K5pLhu5sI+uRs8liJwiVP8E3p3Ho4QXBfzv+BEXWYw3V9rWu4YgDyYAAAABYQZvAL8Aoxf/4EiuBG6+qL9foLNANZ1QyJpEskOeCL5q1f4ZRNflCG3AotAEXVC/nRYc8GX1eGb8P/DQ6e56mWDcST/wI3Z8sObl/9hnqmqn3T4bwHfAHBwAAAF9Bm+AvwCidV1+CIKVW0CL4Itat+vv1b8nVQIvucpq+oEgJqxpWE5GOv+BF1gEfqQ4pfylwO6f8v+1319HrhZevgWen6wIfJ+YRzdr9FwgRn9hnyZnK5NOFTb3rrlAHBwAAAERBmgAvwDqdILNXStAj7wCzdHELwZ2fk1Dg3jc4vDc7n/UCIus4UUGUGH19l//OVSXnW+BG1cJXX95bnqG4ntgX/gDg4AAAAF9BmiAvwCi+woq/wTdVVdvyco8oEZ71+vfSt+hzIEUv/6GtXS9Aa/JAavRxC/w9nPV5Jxff4SPbepDilw4zv+BD47XwixHLrdecq+EfH/HADf4EWr3XYIfN3+1OKAODgAAAALBBmkAvwH36DSd/QhoEz1ZAjeYfqsLc5wxSc/DDM5SjzhDrhRwy4687B0DNMCKGdWUdeLWZSm9+x/99gj8lO/LJ+BGXSQJZ1Oq1thXkKZz8xYpSU9scpyKVkCPyQCP9BwVpDWFwl95Qf3Afy++XnKup799HLF4Q6Yb/o4pf4OxqBEWtBwz6yy8wuG4evyBp+CYvL107wIz1sM3vghiGRx//hXmzPhN++CTw36WBP4A4OAAAAHBBmmAvwCiP1QUb8FGqqqqrV5qsGqgRel6uoEh9f4ItM6e0CR1Ai79cAj3Rxi/sMO7r6R+vo5TC8I9bfCPc9HFLj8z+BEX9eHB/Hq+/wFm7Sr8FoQJ+Xv2gRn5Wfljj1s1mGm6+8nPVvdn/64Y4A4KAAAAAc0GagC/AfwhYEjzBStQIy91brBRqqlKrNq8lawI3S1Aj1VBXVD9+Q612jCuBG+BL5IDUf0GxnL14ZZ9/uc8X+CX07vfX5TYQ3hYERfQIjZIer0FTJr845QSPH97N3mO8guMg0hlLieBG7BIR34N6v8NQBwUAAACBQZqgL8B9+CQNaq0CQdmMov8FI2q61rXv31JD4Iuq9l9/oEeqnHmgRda8EOq219K0CL1VUrQI++v1b9WgRvVoEj4DW6OMX+Gorz3R9XUn0U27gRC/rCGDAgr750sEOQ9NqeEmUo6RXDEkH8CM/U9fODMEj2zSKfUyM8yX/0waQBwUAAAAl0GawC/AIB4Iw1WvoEXyHrWX/8ENV7fgl1VV2ugRX7/X4So12lwI/S96/ZJyi4EjqBHEa/VoEfXuIgNSpA4M3deHUT7/LRYKqvo9eHHG/0ci5gPfPwOyfWBE6MSd9V5wivDss/9UGxhs+/9XIHsCMspRJQz4d4ZwAMV1c/M4/T+qsZDXJ5yhvBnCLRm5UZwcH26+4YgDgoAAAABqQZrgL8B++gRNQxbQIvVdIf30tQIxf6+quBF9Wrd2OvurQIu4JK1t3gk1W3r9QIvq0Aj/Rxi/mLg9Ea/tfRzr/AN3w3K+imu8CH1r5SEe9r85VDcvzvF50+mQH4EZ+SCTEc++yS8/98AcFAAAAIRBmwAvwCieCcKLXWrfgirX6u16BH7+l6BF66pW/NVf1Ai/90X3/gRer3gR+laA1ejjFyogiXPv9SXknOvBKrPtR/qBD5lfa+CcVn8+er6DJbVLC/nX+BE/dyelZWz4IYhkDtyFgOthhcjz7ara5fNAifAkfAkfAkfAkfAkfAkfAkfAKNAAAABpQZsgL8AonV+YKYazmBFrGayUUodaLOpWs6/atv81czq11qBG/0vqBF6ragRta+AjvW0BHvpr3vUEgjiGD9SHMuISPA+5eBE6DO29Rs+cL7AvZPr/+tD/wIr+0OzH5ZMSwI/DGIQI4AzuAAAAdkGbQC/Afa+oEvxYUrVawIvoc3uhrV0rQIvoY1dWd4DVEIeq6VoEb1aAjqkDgwuPd+YdH3lmVhJwzvhAIX0cqYeCP43r/UCH/2YRzdvpQXlTfL+ocm///9DcIETyDZ/+wmGjw7v+z8PswTbPIPr4EfjMQgRwBncAAACdQZtgK8Aopf/oWEieq53KBH19xVddV7/S+gRvfVVXAjddV+CKurQIvkqvFEhqgxbHWQIh48XXS19LUCQX/9bQEY+mgRjJfsfV6Rysf4JB4zHeQNmj3dcGvL/gRF+Gd7y+GoviwPYwEZdGE3h6p8Nm2PqUGjHcOIf1unwIy9s9wQNPDjdbcfZ33YV80dk3UkSiF5b/6OC9R9F7+AOCgAAAAHVBm4AnwH34oLaqq7GIRcrwRiVrTMCP6O0CN39/a1Ai9gk1q3qtfIra/gRfBNWtdW9LrVoEbVWqtWxGoCPPwEa+mjjFyB0Jnuf9SHroYkv76OVeCPZmV+v4ETq/KQPe+BGf27eEqSVeoV82FQZsDBWPzf4A4OAAAACVQZugJ8Aoi7wRhBa2y//q3WCKq7b3XFsYmyBE3rX6Q3oEXv1X3vAj9Ajqu1awIuvlwJPYIqr+gI71a/VoERN8QcYx4LvO/ryz1/glaG5XfRi3vX6MxAiVIHPN1KLhHxyu9b/wRj8Ef/rqvDIzDTlwlDLsv+BGJ9fPeDD5ITEXtSfDu5NY+9b7sF+0T6TvX5i1QXuAODgAAABlQZvAK8AousCT19QIvX/3+CQJKu0CL/3XUCLqtQJW2tQGqvo4xf4dZ99W/SOXvBF8wlwH9CSfQbM5aZzBPml/wIfV9HErw3b//glNe5/7oEbsJ33d/yhrP32NSLIfeX4EeqgDPIAAAABfQZvgJ8AonsILrW/r8IdVWutQI3X0rfcCN9+61gRda6+laBFFuL1AkC9W/W1eCTVbQJFwOkCPfAil/6a1+h0F9a/Pf+DFs8CJUgcw9Uu6l+HJYnv4EZeocm66rn3wBwkAAACCQZoAJ8Aopf/rfrAk+CEISZ2zscTgRNa3IPWv1AR3raBJq4EYW4u1YSq0COIxdDO0CJ0cZlpwi19P6PDd4ZdZrpZ9H6FR/UgcFRlevAdViWeAUe4+/v0jOgRHyUfF+RGHF+zK664EbsMwlX6fUgauWzB/GpryhqXvqtf7mDSBn3AHBwAAAIlBmiAnwCidZf/9e/4UCC11WutatAi+rfT6r6BHqtvtegRd61VvqBEFsIG7pO2EdVASGhUCMI1ARz6aDgx38v5UQfZ3f55U/kE8f33qq0jli45zgl9e0iSgRC/VeidXgkE8Pe7SiR1nIodWJD4Bn9Hfx71vkgRNogZhl1vvRZdd5w0pquQK/gDg4AAAAIJBmkAnwCia91+gg31Ai7+tdLUCNqtQI/gn1qq1tXgiqqq0CQIxf62gRxWTIjfwERAjCN596/gRBLqz6gRF8gcFF0RzIjDhE58MNYv9HIuR/mHX/cCAgiVXUHH19HHHK1C0z/AiE/p//s43x/CJ35+vgRuzjlJ8P5IWNRb+ybk+AODgAAAAfUGaYCfAKJvAka32gh0CL4Iq1tfQI61tAjdgl1qtdUX/81VwIp3EfwEhpfwIxf/7L//AR1QEBAi9IUU/0CMhc0T/BVSb4g5VycEx8+1P+g3P/qnsaPwIn77gRfnPX+HZZGqPUdEh8/gRl9hkj5sXNUee/tZ7PXX//3inwBwUAAAAdEGagCfAKJ0gg1L91XAjdQJHVawJGrqvL79a1Aj8DhivvgRMJKTgcICNPrf8CK+mjilkSybAh9zzli+kRKKEQr6QcCGMLuP4R4fa/R9z41L88XAiVJXmwi5z/E7vV3vgRl9mI9/smPr42C/CAR/8ICw2ADgoAAAAmkGaoCfAfnoEDSeCMWq7QIvgpOq1XWtW9zZW4EfU3Vfjuq1rWoEbaBHVevwSdVatTa1i2ECdoEaoCMQRfrX+d4ESl6gIT4VoWwhZAjP4H9BNoEX0EmgS3/Ai9HPB8BI/Tbq9dxCMwfRzwc1Bkuv9Bu75zgemtmw1o+BEJ99fnMsovMv+qKEXlul1nFL8I2HfreLwI3aNLVdwBwcAAACUQZrAJ8AofgkDirV0m7G1qBF7VvTVq1WoEQWwgF9HVydOgjrX61AjE/X/X0CPhLASHAmd8CSIlgReguO3d385nLx3vpviEZKL6Dh7vX8cK60FX1AidGM59lZS+g4Jl+vDs73/PUCT+bun6V/gRrZziJRgSHh1n0dF3tTB8R2ZhrP11oEv0ra/HRIAm2NJ/AkcVAGdwAAAAJFBmuAnwH2/dBZNAk+Q9aronVeqtAjbVbr6BF6Xu4CgXsn6/6tr9egRb++vW0CJfXDdF//gRP6XFderQIn9wT4iV4jeK4ETga4EjhE47YFLDRrijUuwt4RRmM7BLXQcDzu8osc4weQoqTh6Hr1IGeXK/jUv02BE6OZYYtx/r+vgRl3e+7xsGMEYbOBGELiFgDO4AAAAf0GbACfAKPuggxAieCIILVXUX//qkEW+lqBFL/+tZf/1rL6/5f39agRl/8D5r+BFza9X6kgR64El/wIvBDAjrqQ4qCNFkslf/o4heHeL9vUkwla5frkz3IHVy/+BEX9dQI3BIQMwQ+7evgnBgHr13JmFPDqJ9/ynrmHmM/gDg4AAAACPQZsgJ8B9+CgLc31Vz8opVqBH9FbfpmGqq/St6q0CNdC9a6rL+6+/uBG4CKV8v/+X1f8vwE5+vYthCyBEbf98CT6CLQI5f/8+s8sCQI4CM6DIzl7k4bBN6Xv/6voN7vY4buaIC8fqjD6zrAy+j3Ama/NuOBE6OIX4O4anD6X13Ij1AjF/+zmX+GYp1XfAHBwAAAB7QZtAJ8B+iECAXQhRPAI27COb+8CLwEFl9/Vay//7/WveBGL/+rZfW4HCB0y//raAjvVq6VoEUvwO3+IWqgJiA1Og0Ix1l9MFR2X4Xs8d799Ak3fn+oETo4hflF5obr7MeXzb8M5/r4Owa4EXm+UEJg2rPvquybk+AODgAAAAikGbYCfAWp5YCO4CCy//gpCmqqvVVb1+1r1VyBFL/fr2X/6BHqusv/wEkvV6CDQIm6CLZf+BsgcMv9/iP4HyAjeAgOqgReBsy//59wGt0cQpLS/v3OKXBmDD4T8Nu99HEwfkTjJQ+oETr8ovH6a+BGL/3YcCHJi8JfMGimmRLfdnrDSyLQVf/fAHBQAAAI1Bm4ArwCAeCMMaqmECJ2j1XRuqgRi+1+CSq9vgfsn1/A7eX1/NqvwERAi318CN6K9erwInAQH8CPXAkfAlHhGhDwInQcDh++p0y7xMt+jisIz3/fQcEl/WNFCSasJ/3MepXy/hvPvwIlUCQksavdVAjcoY273bqsouNNf8oL8fX3Jl6/mDIEb0N7XwBwcAAAB6QZugJ8AonSCHb7UEda6rgI7Fscm0CIX/gcvfrk+9/yBFVWBG3gR+AgP1b9WgR3/AI/0hT/V9Bjy+78spY6aedOCV6zgI/R/xYQafR6/PR7wInX5zr+Gbd/o4h/CLkZ/z1CFy0v/4UT4EbsEJhXeRtd5OeWT3yf4A4KAAAABsQZvAL8AohPV9r9ffSoKNAjP7p/XyQInoc0nQIQiq7QI+hH6tAir+AR+pDintiJHMFAaz5+s4hcgyX/fSPB9QIlf4sS7vd3f4cER2nY/w3bH4EZVyhw2q4f4dwHVee/CbTC/4Ee2iBeMe4AzyAAAAfkGb4C/Af3oEjQIz/1qu//agRX/ASGkUKquBIf8Bs+bd3+W94EVdSCBnNLEc+sWxIZUx8V9SIVB1hnqTFBa53/wInRyLDUux/+FB97u7vdjd7u9VoRKBGL91dhkz5t5GQUlTDcTUwZlC5R/zhqO0f+upCYyfgR/OEVrP/wBnkAAAAIpBmgAvwH34JA0q7S++qgRH/v7R23ye+uBFL//l//3wEpwIvA+QJJf/4Egv/8Bs4KAWeDkGECK/o4hYQ3fP/qgSG3fLfggDOMhul+jhbsN56DsOT3HP9BnpJd+Dsa4ETv7ONXDt+f8v/0CwU7u7u7vhzof+BGX2CIzu7y1+Fr3vVN38LIesCPlwBnkAAACPQZogL8Aohff4HrL/X5f+AgPL8BJfwIpfS/y/38COOhJNsv/6t+rQI3AQ0CQ/gIKA2cEFXgRi/T+GhTxL3Xx6aHUa/oNme74SjkdD+wdMnDMMuxXwhxCBHrXOHoP44L8wcfwno9Qfmf8CJUhCFf5f8IpfagRqL13Z8UkblT+u8EfPKUUCO7xZziVjn/4AzyAAAACJQZpAL8Aohf69BRsv795f1+BHqAjICSPqBFXwEhAI/0cQoEPscOWyz7//o5u/Hd9dCECH6DIa3dh8ErQ2f4Z58H/L581wInV3NAjPuUPwRO06bZYdcHu3DbcbwzfY2iYa4sOy1gk9jYV9De72g9U7JalMX+w0sgokL42KZI+g08Gu/3Aj+tQBnkAAAACMQZpgL8Aohfe/yfX/kClay/+sCL6CDScqCbQI4hReJ4EWvr+B0gSeB6gNVeBU+qtQjGdAInQIhRbyZ2sCv6EIM/RwwsF9thpLFvRQf9HqPzP+BEX+Xwx6zi1/DK3/qjiF4dt/w3bv58MfwGay/g+YEV+N67GFRMNd8CP55xfgRfp5/c5ykFDEf/4AzuAAAAC+QZqAL8B/DECQ2N+iNvfBGPVdoEQvu/oThl/XV618BHb/V3SwIhfr8ENa2/Vv++BFFZPELAjrgI54En4Ej4CPP54nP9ZBF7gRC/l+FRXDT2vXWLC/1QYM73ef6mLRo9vE/8BG4gg/WrSEQfgh4lwS5UCJ0cy4dt3/r8o95s3/+GTYQ85qCrl2/+BFdYZ67sP2s8neEvluXI4BL7v7qR8wuZHei2cgAr0Th+J4R6EsCP6JF+GRIwv6/N3/fwBncAAAAIZBmqAvwH34JwxquqpRAkHfL9eoIz1VYMv9Vq1E9fXya1l//gQzv8DpAkcDp1AUkCP8CR8CR8CR9HhOBJEcCJchw4sG8FnwrfX7nJL/jBEb/Bb7DP0cqw3Faw3L8/HAbyjr0/UCJ18MfRt20wIz8fy/9prh8oL4cef/mxNfw9F/8COtvgDPIAAAAIJBmsAvwH54JATKqq0CQX17wShNV9VrL/W4mtdVVcBOZf/4EPgITL//8BBd8CP8CPpwJB4uBJ+BI+BJPEwIvSDXfSJhnYTzxe/UNhi98v46Hl9/DO74oYBnr/gRF+cy/DEu7rrqRC4oEblDJBCxyNzrG3gj/Zr+z1j5Uj4T/wI/wBnkAAAAbUGa4C/AKHwNmX9fQS9l/6zVX6StR2FCcCJcBWUKQVgSaOoCQxOBIp4DU84qph0Ntz/059X0r/R7/BtPr4ETrqQ4lfxlE5PS/5YEd/OGxHN/o5T/65cEW7WLajPAjXEnIsNZ9/7zli/Cd+fAGdwAAAC3QZsAL8AolwFBk/bfryft9f9MJLrL/+goyBErp8TwI3wJHwJHwJHwJB4I4Ek/AjdHDClsfZ8EPxv+HyfXyfbVc2GyTfUx3dtTuC8oXMF9gwA4YhBHqQNDM2DC/wR7G9vCPW5MDv9H5T3f8CJV/aE9VZyKH1vvhiX4/AjLu0Rt8tgvlX946YWmOJfHU4dFjxsOxXGSBG2zh5YRe+vh1l/2j1v4M//gR/gSPgSPgSPgSPgSPgSPgFEgAAAAe0GbIC/AfvoFDQJC6gcKL//r+BEL/rwJefAap4VEvdgQMBGny54CY+AhsTjvgInQIhB7Lf2X2/pEyxbBDNYj1q4bDkvvlxkJjKeBFub8EYk/9dSQI6rlDIh9NzmQDPYdtw0X9gil4+v1Aj+CKXTZs/DMck+oTvC//AGdwAAAALlBm0AvwH34cDCrVfiry+CPqrIETgfMv8BAfl//ZV18BAdcCJ9fAjfAkXwJFd1mLu4EUXgsmmP30LkP3gRuBVgR/BFu7viYVxH4FnAiF/f2HL3v8PXfe/EvvzD4dUqGEy4Y4GGdh2sC1+jhxfB8a4ETw0R91p5cm/+kN78Lm47StSOvCXtr/UCMX72eU9cCR7XuvkXiULa6oOS9/vDK/OdQ+t+BH8NEVdh4YEVPwsv/9z1/oIr7/AGdwAAAAHFBm2AvwCiF/16ELAk58CLXASHlCW7vhKAjRGHHvBB8FHg5ZbvgRcBAbwKOBE6OKylTDrO/DkU6/z9SA8etdwXID/zsO0/Ugcff7u7uBE6sv1k7Pc8MCMX/u/s5l+Vgq2BHL+356wCPXw+fgn2N++AM8gAAAG1Bm4AvwCAew1qoEQvv/l//3/ALNffD0CLwJHwQfXsFUCLgIDZ4bgReCEoeiu87D/XvrDQc58WEj1oNw3z7DDUkn6DM2Gp1FXnf/AiVIci/Dcv59yQJBP0/li9fKCIuZjBAj/3Oci+EGn/8AZ3AAAAAg0GboC/AfghAmUnnHr4q+BEyAfsQj4hHy+v/fAR542AjT9n4EU/Z+BF4IPhT4Y+GIEb6PwInQaDirqUPD7P/8/D84UhLxOrA8+v3d8CLwmj9XuTyKYEYv/dgmMeUaom9xTfwvnsvl4Eep/U5FBG+KP+BH+BI+BI+BI+BI+BI+BI+AUSAAAAAZEGbwC/AKKIX5svr/8BBIEjIETDGAWkQg78IQEb5As7u9/R8rcvOGH52H6fqcOMJQYCR9PP/VHr4PzPAidfgjONr+u5vqBGL/3Kcy+ScOpzuu6NenAj3Ociw6zv4JnhuF/eAM7gAAABRQZvgL8Ao4hYBZuGPhCBGwhvhiBG+j8CI+iI4eVoffXgf87/nqjip//Ow/n/UgceaECL0rK6/OdQ/LWfCd26/AjLuym59Akd/ZyL4SYKf4AzuAAAAXUGaAC/AKOIWAI8L+X8nnDi/B+Eg3L9fo9QdZr+BEL/X14c3oa/Di31ol6gRRkOxxgw+vsWHI/T73rqw1w32WsOPv4Efs5FhMOGff8n2/+Gd7qRLzPT/wI4iCGAL0gAAAGJBmiAvwCiYQ2IWAWY/n4EbgQaEfwIMCL8CPVaT6OHF8Efp/29YNS/r4EI/o5zizg1+BFvVnec7HDy3f4EjlDJhCxfVzMr/39ns/I84vYEe5w0RrJiwXcPV//PX4fiv3wBncAAAAHBBmkAvwCj8BAQDWn8/n8/Ai8DjfA8wIhf384eUhYdi//A4HqwrZh+WD/64HAN5fevyWGkkv93Cyy4ETrf5xP/4/c7+oEaq33hk2WVcJc2v8v/A3YIpeH3uxAj9nIv4Q4M9e+89QSfMOPkPRfP4AzuAAAAAR0GaYC/AGeH8/n8/AieCUPQ491rL3i1vXcAtPfvpeqgRKk+AWgpzr26uoEZdWUj3IH75c0Zps8CP2ciwl8wf/56pou//gDO4AAAAUkGagC/AGfn4EX2HMV52Hc/+C8ObvYZfrHQVR0SH/z1+GGffgRegRFrVvoM1XZhm/HcIyeZ4EZX+vv7gR289hoRm69hvNfAp4ek/2CHhb7cADO4AAABbQZqgL8AcH1rfOHFHiJ46Lj7WtKw+CGXBDnHQInR6/h23Hv9H2PyE5f6BCJfeoEbsNiEz+0viK9j11nwxM4PfcdS3e8CP2GjN32DjxVf9znrPVD/t/8CPbwBekAAAAERBmsAvwBw/kDkPf+BF8EUv3quupDi7/Cd218CMvsMiAq1fVZX/vuxXO3jFMCP4aNq0QfDcXCcysNz5/4IeHz9pxAGdwAAAAD1BmuAvwBwZf38NB7P6/DrPvrelwt+pd7e6V0CJ1r9CX1/AR65cE4rdKI3ufKGd3uQi4qL4CH9rHb/4AzuAAAAARkGbAC/AKLwziP4RgCPfOHHHjATfCHjyXzDd3+Xu99Zxi/DcV6KDP58UDu4v/gR+kL+QIy6soh35f6ltegR/BIaTM6iAM8gAAABhQZsgL8AolQKOIhRKI8QTAEePrBEKPy5ub3zcV34It7WH7mIhR7wIlyHKsDG21/+vr6BCJJ6exAjL7DIjkXU68rv1+SVesCOm2LaDJr3g2cd4NLasD2VFqU9R0iajvwBncAAAAEtBm0AvwCieYKO/434uBH+BI+BI+BI+BI+BI+BI+jwnAiv4xhrkhv7rfqXu4EZXyI7fUCP2GyTs1b+JV994JLyeyBH7Rs4r3XKAM7gAAABXQZtgL8AonlCTv+EcR/DMCIdimwJotmJ2QDVl/f0WpF9fghu/BAidAnPD8XIsfG6fGV56w0trYv/oMiUr4Z+H05fwEdynCC/LSN/3FhnL7qHE1NR38AZ3AAAARkGbgC/AKINxQBoKHP4jz8BsH4BZfYc3cnny+Crzv4EXoEh1VVd9QI6+9fwI/hwVE6X7CHQ80We/r7DPVTmP4Zvwa81wBncAAABiQZugL8AxnBz8EPwU/BzAin4En4Ej4Ej4Ej4Ej4EeqOHOh5DOvHSX74KA13e+YJBNx3b//hm5adyE38f8CJWcq/iUP38EFdIT9Aj+cUv8JumAjvuU5q8NM9fXawI4hAhgC9IAAABpQZvAL8AxnBT8HOIX4KYEX4Eg/Ak/AkfAkfAkfAjPoyDIe5esDrpfIjH2fR2H64KChyXC/AjdHOryP/6RO6o4sq0Y7/gRuxIp88uPVXy5uMUwI/ZzdvDccycOs+6lDW71KGpu8/X8AZ3AAAAAPkGb4C/AMYd8/n8/Ai8GPxNcFMCL8CR8CR8CR8CR8CT9cFECL5Axe4Eov/LZfLwI/KcRBYsIOG1frrV4AzuAAAAAQEGaAC/AOpw/8GPwV/BPAi/AkfAkfAkfAkfAk/T4LFQc6BGfXvXXKAj13KclfK/HX/XeG93tM+E7/vzDT/wBncAAAABTQZogL8A6nBb8EOIX4KYEX4Ej4Ej4Ej4Ej4En64IIEXo4YWGltP/gg/PWZRfwI66sNy99U4e+yPknrrFUU0IYU4+BH7BgIvd0tfBD9bvw/FagBnkAAABGQZpAL8A6nD/w3iFxCwIvwJHwJHwJHwJHwJD+HIEnhooWeGVM/mJe/zjZnw+l4vgI7sOBJS3/CNHDuf/qc9+EH/WMf4AzuAAAADhBmmAvwDqHfP5/PwItQc4hcQuIWAa/xQa5fhx7+hukQCO5ThJf4E5+O3rX4Z8Xw+VbXMP7WAM7gAAAADtBmoAvwBDnBDiF+H/ghgR/gSPgSPgSPgSP+HiByqwIvVl+vBDgI7sOEzSJhhSieEthef13cCQ3juALzgAAAEpBmqAvwH35gw+5XhXq6BE9C+r1/+vQGrwT4jxHiOAWXwQjjZ8oEnqvQ+dAjL7KMn/XJwI6+VGf8N5PqUTgk+ZhPh69XgR+MgC9IAAAADxBmsAvwCi+gh+vW8BqnX4K8QuIWAWXwyMyZUu46GzwJXXWcfOhjvv+Ajl3KcJN4Ce7j7wrDKJbrvgDO4AAAABOQZrgL8AonoIXv16A1Tsbn8/nlgRbgde/EL8FMAjj9UHnkfvAjL6/OVflGoqB/BCNdv2QI3QIxnDXDoEjsFxvPu2SD67s9VgkbT3/AGdwAAAAVEGbAC/AKJ6CXQCQcEeIXqBJxCwCOeIGTfVcvghqv0CIviDiV+HZazov/1+hM6AjR7H1rX67s4IF4StPX9oeG+XD9VVKk0/gR+g0E4x7rNvz+AL0gAAAAD5BmyAvwBDh3gSOCmuCnEcAjq178F4cmxLq/L8yUNw7HAi+Q/L36E7IEd70YYfJPAjq7i0Zj7BHqvoEf4AvSAAAAD9Bm0AvwDHHhB/r+A1TsTn8/nngRa4DXfkkDjN7k8nky0xPgReqdegjeBGX6GagSF3KhGGquVFigR7ieyYAvOAAAABEQZtgL8B9+YMbuXwR7u7wIniCu+77OoowIp3efcBrnhGBIuAge67++A2FvwGtcWCEPT+5hau85VwX5aDw3J7wI/cAXpAAAABNQZuAL8AoohBQVxCwIx3FYEs87gI08bAkcFvwf/Aj4jgRa4Ej4Ecv2l6DnfBY4S5dmfwGuPYfrWv38qBEVNfovQI9sacy/CFufZMAXnAAAAB6QZugL8B9+gwlxCGOBIwEBQReBKPwJNa/gNU7E54nP5+BF4N7ELAi/Ajl/X/g2OGF8xDhpDnzw7XgvDk2cmax1mQd/+CaonTvfoDV5TmXhp32ZWGEsT2GS8zytzbuF/Aj9qAt3Fnr8J3sb4Ef4Ej4Ej4Ej4Ej4Ej4BRIAAABiQZvAL8AovoKP+r4hXAjHVwI53z+fgEe4N/g/xH8GMCL8CQtA2zCCfvgwBb1Sarg/U4oEbzefgR+oEhfLrvDV71w1LL8LIa8CP56wFf1/PwymfgSPgSPgSPgSPgSPgSPgFEgAAABhQZvgL8B9+KDG7u916HPAR+ENnhNwCy1A89fX1wI1eM6RARbsMioce6mPj7P+VpifAi+cSv4fW7wJHQkmZfxym6Nw97Aj8qNi+WBH7PWEXvr/AkfAkfAkfAkfAkfAkfAKJAAAAEhBmgAvwBDh3zwksXrWM16A1cQCOzxMCKv/ghxCwIvnCi/ETWRd8CN5ROM1YEoXC8zBIwIyvi0CCc1XEwI6T89YRe+v/csAXnAAAACAQZogL8B/egTPXlGu7uBDO+MYl+oQoo4hXAineBIL//YjcCOfgRhMrgJM8bAi3Aw+wziP4LYER+u/QYBgGuXFrUMxJfb9+G8Th9jrNv8BH9QIx2Hfs4IF8wnK8477gR+z1hhFT/+zlIkLv39fDEV/+BH+BI+BI+BI+BI+BI+AUSAAAABoQZpAL8AxZ2Ch0IhPPwIwt7QEidnWL1tjHWoDV434Id//DMCJ7HTf8YCPSvh11wwevwyin/Aa3K7u+r516BHuz2YINjTvw8Ip//KGSjsr6kB4/hvkTZmM/Aj/AkfAkfAkfAkfAkfAKJAAAACGQZpgL8B/+gUPAijGExX/ELQxXfFsIXQI+AgcCL6CLyC2OP3gI48I/r0Bq8I5f//gh+JgRH5Ah+CERkz1f8QG+Xa+fp/t3fAR3R/Z338CMdh3Xy6+gXh7IvvTVZn/Aj9hrLlmsEP1vvw9Fef7OdQYNff/v///gR64Ej4Ej4Ej4Ej4Ej4BRIAAAABSQZqAL8AowhBZwEefz+I4CNO8CR6E//X9H1ARpf/jfhGBIqG6W/AjL6KIWdPX8BHl/7lBGIkbuy/L6wI71z3wm9tfAn/Hb1/85V+bqo/vXwBecAAAAFVBmqAvwCAeCEMbu6AjDssCRjMCQd7PwEeLlWoEV+BIwEitcwwMdj7L/9wGt2f0r7h6u/7PX+NXJAj9nrTxIf/Z6mDz0/+BH+BI+BI+BI+BI+BI+AUSAAAATEGawC/AffgkDD3d4CTO8CKLY68CUeEc/+rwEeeWAjsEG+JgNbr8gq7wI5f1lnXDL/y5fHUYEe4s98O8ngJz/X/P+89ft+quu/+ALzgAAAAxQZrgL8AoZ2CR0MQRFbwJAjo+4EU7wEgLe0CSeWvX8A13Kx0/wJD1lPWGsGv/lgC84AAAAD9BmwAvwCAegw8CIM/4CTOywIh2EHAk+gi8CRgIDANivlgSFfhoQdndhAJf1p/5/gQn4+R/6iT1nGz7T//AF5wAAABTQZsgL8AgHiQxsb3eBE9FehCvNHj/hQSv74EQ7+EMCSfefgST+dhA/AinhHP4jgFm8Lc/verKHZwf+oCQfPsRL7gR+X8/vgEL3bjZ/MCOeHYAqyAAAABAQZtAL8Axh2FhWz+LYQd4DUxmBLwjgNjyC59fAR/UCOvlPX8Yp1/Aj1KfDKIPyxLNwi8//VefjRPXo/j//AF5wAAAAChBm2AvwH4IQJHjFsYhYCQPHwEcd4Ec7wJB3gEhXXAk9QEhcb8sAXnAAAAAcEGbgC/AffgqDHDUR7tDd7piBJFsor47m//9CZg6gfsT9Cm//9BLffzD4/D0H4yXn52FHAiiITderwEcfz7xPANh1ARz7C1GYy/8urwI/YczUylLACrX1jhqX5rZrUp+Ojh3HUdleHLenAjiIdgCrIAAAAA6QZugL8B/jECYuPAR4iEYEY75/P4jgGw8hsuQGs+6BNvelLKKBIXaKGp/pQeGWDryU8p/f4fZ6wBecAAAADlBm8AvwCh+gSPAJIeE4BHS+/1fgjFXDjk6/ZC4+BF6+oCPXV6+0VgBH76lP744kadx8COIQdgCrIAAAAA5QZvgL8B9+gwyXwt3Gefd2Hi3wEYd4Ew7FH4BZMmBHL+/kK+4CS6gSfKXnaBHqJOZeEXvr+42ALzgAAAAW0GaAC/AIB6DDoEP0KZm4vl9woo937AkDv/YlXiFefgRDsJOQ3//sgEULsJyHSHfoe/2gGv9ipfkte2j1Bry/+BH6gR+oEddSovQJCvY/ScWScimEYTvP/8AXnAAAABFQZogL8B+egRJUBI9D3gSQnux/nO8pT59wI3q8CQLe0As5fz/IKq+8ngSOoCS5YEflPeZ5Q/BBeNJ5VoS++YEgQg/AFWQAAAAW0GaQC/AffgoDE6i73d69Dn/V4Ec0f++mJCJg73sT9Cm/D/wU5yP0D9mhfAP9h+Qf4BHRbK02faAJEtc4xRznFv/3Lj4EXr6/Y17wGtyod3USeuE78/Aj8KQBVkAAABUQZpgL8AogVYUFHIK5kDA0F9hD575BbHXgRBcf6BI7xPQt8oEgQTALI+iL3vwiKly9y/FfAay+UpY6mP8k/4Eeok5u8JPengn8fflJ6v8+XPj4AvOAAAAYkGagC/AKMI4Ef0Fr4v9m//+Fecc6FAjm//+CTsHaBHN1//hcuweYPbYrgRjf7f2W/3sTvaAR8v7/Ivr6OOXwwz78CJ1Ak8n1AkdBs/DNIXHtfwI6u48xn38p6/w/D+8AXnAAAAAdUGaoC/AIB6DTwInoS9BTcoebYxpu3BDDm87F/5TsKq44L1p2BYy/GLMLecmgZS1x2BFC/9hIilGHUNDnKZy/9AjnY4vAldoe8CP6vAI+T76r5FroZhAj9fSGtAa3Kcc44cdzw8luvKeuJL83Jf8CQuEOAKrgAAAAFlBmsAvwCieQJPuBKDPI+c4gdBUNDlOlO5V0D7Cu5ijAu2UQTt85QgWRFFYPi2ED9kCMIhFwDW3Rx1YWYvh1n375OgQzUS3gReoDYTcXKrjynr+BP67u+ALzgAAAIVBmuAvwH34XDG73uvsxbXGIQN+fGLbGLevKe7wIniRLoT93hNY0L2BQeHLpWP0EQpoderwIwZ7HEYrkO2M51AZhWUnBvFXl9361AkCFcAtHIitAivpJBLpOj1+YkHpaPAi8lec6xoWNr/3JAj9GvIvAR7+U4heEXtn9fr+BHrIF4x7gCrIAAAAUkGbAC/AKN4IQkbe8CN61ANl6K8CL4Igk79dyHqEvnfx4MgiEs4aJ0e6H26/8CN1AR/lPw34CQrlj+49iL3Aj8pxqx3v4Ej4Ej4Ej4Ej4Ej4BRIAAAAyQZsgL8AongtCRrMHee94Aj93okhf6rOMWDeCqEjjIn+BG6rpD2gNbl1fFwI9123AFVwAAABKQZtAL8B/iECJwI/lCI7TuA1TvL6GPAkeCHe6eARt9YIiO/FL1AidHOsNL9/6uTvgNa4/5Tm75Xyh+BHvgSPgSPgSPgSPgSPgFEgAAABnQZtgL8Bbn4CN8eEnzlSA7kLpd3WS+cHgGuFRKQCOqus4WUybyhv+l9fUCN5xKvI//s9fh2XYloH84lvqNPgR+oCPuNQSI2vlP1xlE/Aj+cq/CFufufVR3/gR/gSPgSPgSPgSPgFEgAAAAFNBm4AvwCAeCENZ2EK6BDND//YKSU/Qr34SGuQr5V4B9qpFbGbNwBGr2r8lyQInVdfq8BH3UCOl5flQSigR9TlrAlPffv/gSPgSPgSPgSPgSPgFEgAAAHRBm6AvwCi1oKPAbQhFUCOE9rY7RijP+h4DWulaBHujhJYaz3/1q4XmDPCbpeg0Fp5pawywGQPZEx4uTBr9BmkTNx8q8v4EXkgSF9HOoqP/8l7wEeX/59flNLlwI9oaGix7usBWuvm8EXptfZ5yVTzk/+AKrgAAAEJBm8AvwBnm6CDwI5f384SUsyf+/o9fDcVL4+LFrWvqBEuSuoDXV8eXe9fLAju/OdYEpTu83/3nrfbV8EHx+6fgCq4AAABOQZvgL8AXoNij4cUCOT+vqrHSUyAi9HCi/Bd53/gwvPl74I+Cr4wJD7qj1ILkH2f/1ACgR1VQUIKsQEdyQJHfywI79TjlhmK9eHc/4AqyAAAAT0GaAC/AGgdHDS/hHuYETqrr9GygReQ5V+G7d/5yr6C2u8TgSPCXVX1Akcp78c78CRUT1wI7rs5KwId43j/h2J/9WesAfz+9/8w0//gCq4AAAABLQZogL8AZ30g0RpfL4N/gIfSFa6ktfQaLLj8edMf+QP/6kgRksnAa5f/l0vcCPynKsAg92j/8/gE/+3P5vgSPgSPgSPgSPgSPgFEgAAAAWUGaQC/AEPBOEmpzv+cV9jASPkK74CM6OM7xPeHXGL0exwi9i8O53gQ6kQrV9a6s5cX4HVgqvgRuoDY5YEjlBFXXu4ROWUBBv79P//Aj/AkfAkfAkfAkfAKJAAAAVUGaYC/AKL6CzQD7dHJh/AIv9U1nPaEEG36GMAIR4b7mQJNfVrWleBF5PqAkOSBIL/yzlPMvN66lXoEe489fgJn7r5vye/9cCP8CR8CR8CR8CR8AokAAAABsQZqAL8AonglCg1Bf40SWgH38OGwy9sfzixtJqh7fSHPAh9dyHEdBKNjcJU9sDXqlOEV4e+/tHCGX4524GfnqDKl/8CLc0BsL5wQn5Hv8qvAj3Fr356gk2YfPw9Ln+BH+BI+BI+BI+BI+AUSAAAAAYkGaoC/AGd9HDT8pYG95+TUwRVfUhwg/8D3S8CIX3+jil8dLrzA1u+QN7vZhhFemL/1AjVIcSsPLWWCX6oEQTvdMgI3UBIF/+WBITwjgiCh/cuWZPfr8M5Hvr4I9G+X8AVXAAAAATEGawC/AKMX/XQWb9WgH0fThwmO+1xosmZ/0Na9Vf6DYzDv92dwmre/wIaeTQrD6rqBG5P4DY5WJvevlNe8CPcWesCV7Xk//q5OAKrgAAABQQZrgL8Aopf/4B9ujhxc4XD+a+TVBNIvQIwlqbN0CH0hVdyLXf3SCPdUcYoe7d84XGXqQTwI3VNOaDxh0IN3/AjrrgNe48EQa1WDu3lbgCq4AAABUQZsAK8AgHoMMgRS//orQJXUA1nRzL/Bipem0Ne+jlAReCNV5/o4Qi46jXBjS8CJ0cQvh9Ek+QPv4EW4hCX7uBIXJwEi++BHuPOSD8wvJTeuEAVXAAAAAd0GbICfAfghYEnuxbD3oB8+g4fZjscuG89E2a8nRwi54EnobFwTfnd+oEO5jhpdSv/1XRwjX+BN+9737nGHFMDraJKdX/4EZdZxKh9bXn6L8R+CEMhTX9OIDW7OGIvCzoaE0Fv1C2TeZTTVFHU/4Ee41G7u4AquAAAAAXUGbQCvAfwhYEZ+qCjSC2M9Aiehrfq0A13SM4JQj9HrgdXL/AiVIcQoQ8N6/9dIf35xlfjBfED3qFoESv/qvmgSDsEcBHdCw1bjVN8oEjnOIg8NM9fuPgRxCBHAEyQAAAJ1Bm2AnwCiF+vwmEJgovqsLLMKlO0oxCsbj2YVIUYtj2vgpysqta6t3q0CLqvUX6XwT+MOy4zN/oEc3/+L1Ql2JgUga7B6FZhrouU78h32KUsY00CR0rfUCP8Bq1IGxXHucZR0dl8O4D9IW15Jyr/BN6dp8NjsuCHMv6PPuBDrvpC4tb8CLURXkFS/1NAjdQGxcecj4+iTL31/dwBVcAAAATUGbgCfAKQLYIPQIq7qukPaBI1VoCP5IDV6OIXLUei/6vJ+j64h34ESpDiIKMqceFx9dIJmF1RByvgRrmq5oEf4DX51y+WBHEIEcATJAAAAAZUGboCfAf/oPNAil//Q1sv3+rX6GMgRN76gRQpGrIdpWOh85SgsAs/SEPqstH67GTlX+HcCPRxTH8oz6wIfJfRxa/wQPJcAjcleHBV7r9HffY8CPcyLrrJL7wJHr0BH1F9x8AVXAAAAAiEGbwCfAKIX//L+/70sE4QrVar7L/vglrU55Vn6BFDGvCN7v2ERC0ow6Yp+Y7lG2F6+4EbpW+l6BHHPndyQCO1IcU/KJgy2eUuPP/lnOVutX++vo4hcOM7/AiVJ3N+HBt5evAkel53+qOOwmGQ/gzuL5R0MoqfAjdI708EHgEeuEe6gR+EIAmSAAAABlQZvgJ8Aohf68YEF1ZKtVnKKY5P1XoEjoF1Vs1rbL9fojQEd6t5MCT1AavXY2pV3Uh68D3PPhnc/RRG5LAhpxgLPuY5l8bK2HkDS6gRrpBHv4Ee6gJHkRO1zRqugR+WBI4UgCZIAAAABwQZoAJ8AofoPNeuX/9ja1Ajd/iuq1r8EdV2gJAUsCL6tAa9SHFLw0wHw9puWcSUXM/GeiYEb6DnivvCb7Nw7FSejiF/jqNQInVVIcWv8EjzXdZxWvx0OXfTgRqzlXzwkf3Qa3usOLeP8Aj9wj3wBVcAAAAG9BmiAnwCj9GCC1UCL1XhKcfXVVX0CSuvQIva+roEWq7Y3WKBGFKoBHujjFw4zSwv/q+voN93XA5nO/gRKkRnzenCn2C0N4e9r+/1+GgoX9Qi4ypeFZ/Ai1nGrNWvsn11jOcEKxrv4BHldwjq/gCq4AAABhQZpAJ8B9+gs0vr6BE8FB1rJf9+CTVVau4EjqA1+laA1X010J3knMv8OxUfqBEXUiGSov/yHHrw1bT/RxC/HQ9blnqcCMuSv4EhcnAa/Kid8sCPeGg3AjK6Z9Y73/ZMATHAAAAI1BmmAnwH4IQIDYBI3QRrL/9dOrV6HNAiaoa34LNVqq6qvq7gRvVoEj1b8EXVWz6gRj8BrdBwVu65QiB+53MiCt9eryQ4fhRsLwjOG1H+gRm7eUCHyfnNBGXtWHB3reuvzneNBksR/4EXmBEES8y98P+5oEdcn88Br85wov8N9nqLgR6c4RrCb8/9ywBMcAAAB9QZqAJ8AolOQIE/7lqvX5dagRv8ntwQ1WrfraBF69J0JV/BNWq1X79WgRTcPn42Cn0Je1dQJFVn4Ej1tARnRhm76E7yfoN7nzXBjy/C19YEToMkfdfIjIHoel2NzfW/UEJbK+KBF6QTguuBF/5YDYV8IoLQdwjAj3XbwBMcAAAACIQZqgJ8AgHgmC2q1VWQIhf/r69fwRnqqtAj65fr9egRegRV1aulqBH3+nXUCMJ1Aa/Rxi/lHxh9eryTlTDwicNLhtn/qBEXyHEKmetH/k6m1lVBk+XKeEjk8v4blo9x3gRfQRwgSPgSP+WBI5IEjl+WBHuNOIImE+jn4QtzgSPgSPgSPgSPgFEgAAAGxBmsAnwH35gsqrQhYEjVFaBLOxxOBFXuUIrWuoEXqBJEfqrQGrcQcYvDrO/7R66LjeHYr1vJBIXhVqSrUhzL+LCgROvqug0V76kTkr8CL6CMEAkK+fuEYEe8NDHGWjxYT6Of/anMvw+4/wBMcAAABsQZrgJ8AomoIQhVbVqCOd9lYgRuq66WBF3rtegRulauwUa1Vdv1aAjfW2fUBHdHGL+UKDD65a9eSHC3nxdQm8wj9xAbNN9cotn4PjUCJcR3Xd9Wy1WBHvxsFsN3DAMsAjyvj9X3Aj232sATHAAAAAiUGbACfAfwxAgVoEYv/9P6gI7dhFa/St9QI3WKVfUCQI8Z4oEcRuBGGdoEfo4xcqILr6/R4b4dH7XRxUn7fkhwtI09f4aiS+oEP2Ll/uIOEF+oQ8f39VEHOvDdv/3Me4C0T/hwPcGHngReM7tXfPAjHYfgNnl+WBHuN7zhxQLvzGvgg+P3T8ATHAAAAAfEGbICfAKH4Ig9WrvrvgRjuJ99AkHqu34K9VVVWurQIuv0I6rqoEkv/8CN6t9LGgJAR0M1aBE6DgwdZNzPjHMPjsX/R6/w13O8SIOWLmqARiqm57fge4FXUkCJ18ldq5AjcnUkCOv4CR5IEfn1/Aj3FnrGu/7z1Tu3/wBMcAAAB3QZtAJ8Aom/WwlqunVMq+KBLWtaq0CLqrfgh6q0CUO7QI5f/4EnpWgSBEsCOK4EVctBgdHcvb+X+HWfe0euHU+n++kWDT+GzO+uDrNfAiVJ8iG99dUjQyBF+BI+BI+vL5uBGOw7Ak3CvxMCPf3nDihC457/4AmOAAAACSQZtgJ8B+egQN+rQJHSHt6wEaLY5W+kEbfXuC2q1rW0CN4Jq1Va6oRwJFwOitAjYHyrVerQEavoEgxy5wfXcFnf6Ry91BvBV4IWj71r2g2ZV3/z3YES4JT4MJ8MvWi/7gj7vvDJ6rchK4wv/wItV391AkKvV4Eev7XUCPyrhAkcuvuBHuN74En4Ej4Ej4Ej4BQoAAAACUQZuAJ8B9+gsi6BJ7BMdnrVVb1/NVf0CSc+tWIEXsvVezBLVa1/JWsCN4KNVqq+r4EbcE9V1XaAkTqoCO6OMrTh3c8tg12e4g9cTN5na//YPgER2B/sMu/6QW1r9EYAROlZ+Gxef1/DNvteiQQI3hu96hi3/R/+oEddcBI8sCPUSQmf/ve4Ee42BI+BI+BI+BI+AUSAAAAHNBm6AnwCjde8CRughX6CTICO2kFWxGoEUS4vELAlCFFwIo7F0nwOnwPkCKX/pEQ7PpfP+/gesFP8CjWkevAk/jeP/pTmIESs9n8PpJNFS91VBkt3wf4DvRaP8exIkeIvVr8CI/g2gSe4DY5YEi4R74AmOAAAAAm0GbwCfAf/goBFWqqqtAjblCOqsWxxOkgRdQSBGq7e4Icp6rfgi1X6BG3BJVdrOwgTgRNL6QTtAlCNQIovF2oRwEb0HByT7i0P2GFsqY/LvSz1wNZiWfRRWrfR6/kTD8V69Bu7+NNsR3jrNQIi25PkQnv0Ziu0NeBE5oEj4Eg7CcBI8rD15f40N73XzPmfAj3GnlB+GUPP98ATHAAAAAq0Gb4CfAffigtqtagSdRR611X2IrqtV6gpqtVX1VulBRVa1W0CL0CTWre69Xguquq1qBFL/+CLVde1Q7TaBIPwEderfA4QEavkBIKJgjns9EDd7pMMDrwVVPYS8fet6R8MYR6HCwM+PkpIiR+g3Ph88qdm/gQ+quI71z5PVvXzyNJEWP/wInwJH3eevzvngBF+uX4uBF+BI+BI+rhFEb54EX4Ej4Ej4Ej4BRoAAAAIJBmgAnwCAeCMLKu0CJtI7fatAj7+4I9a19LXtQI1wEktoEe+hS/AuQIt+K/lrgTIETgILdfAji5zdJYiWBE6OFMq5N9HYVxHr6DgUvdcg+CF8YP9LnIEVfIi9r/X4Zmi76/AO8sdoPgRvORSPr9C4LYbuOAwI664BH7hHvQLsoAmOAAAAAlEGaICfAKGLYIFdl//rsUEdVrX1Ai9V2CTVfQI3AQlCMXAi8BJVcBFXUBQQIfwJHyCOBEO+diYEfo4Sg/CX8vNdq+g5u+Ef2YXh69H4cFNRjUvqgRLiDkWGIch/9HEr/DNu/6MzXyHLBDAh/X/gR7iIEfoMy/dfFR8CT8BH3KK5/P/b4ECJy+95tAj3G6bjXRMoAmOAAAAB0QZpAJ8AoQjrSQQr6Wvr3gRPQQbL/+CMIrXbHd8v/4Ia12+AkFfOwkoEPgIiuBagSfgSPgSPgSDw/Ai9HCxSw1xTu/6RGL6OXWOcZChipf9LnAETr66o+E8OLeOBny7wI/JAkevfLAI/cIo3fPAjnQJYAhyAAAACdQZpgJ8Aoj7dBDvgJBe91tl+/1aBE4CQsv/9C2ErIEP++BH/uu+BG+BI+TG4ETgIX4CRgR+gwJl/Fe58aM1UvYj3EIjF9Bwpe78v5QcMvXUh+TnwY0v4EMwhj/9hoI2LfiXUOhzsSdidSHCi/DiHf++TQnX0Y176zlXwwv1/wIouH4IGL6qQ4IFvO/wJC5OA1+SBIJ6Vwjei9VAExwAAAAHZBmoAnwH35QtWoEjgIjJ+7r4IzqqrVl/gJDsk7+BHL/ASH5f/1aAWWuBH6OIYFLB7PRBz/0cy8ELZmE/vo5YOOIwo+PS/XVLhAidHIuHL5N/6//DIl3epBfOff/wI1xlVwI1ywGx4csc8q1kr4Ei4TQrLvgCY4AAAAYEGaoCfAIA99BZMIEQvvARH660e2X//J+sD59wI5fvgJDy//wDWLqQ4jvxCa61tGwvoNlvdZtMDvCXBpKC99HqDqNcpqzYETrqT+BIqSBIqoDY5IEdXPCfzwI4hB+AIcgAAAAHpBmsAnwH34JAoqragghwX+TL228COX1+AgMv//hEBAb/gR/gRjsJi63gRqgdP4Ef4Eg8bAknlo8sCJ0cOOQ7LZB3UX/9HMrfIMmF8HWEjJt+Siv9K4AiVVVIf34Z7X6uBGrV4EjlBDu7ugSeUEOX8UBr3CaEZd1AExwAAAAGpBmuAnwH8IQIlAjL/J9f/Rf9XgI30FWxCqqCoCqgSK4EiuA1Og0KzkmmSlgl+p+Fcv+jkVt1KGvupFKX0crkDpcv4nvAiL5OpFf6gRq/pzd7gJHzSL8BH8Kfgju7veBGHsO1vf9wj3wBMcAAAAjEGbACfAffoKMC+CbququQIhf/wQlWtsv/+t/L9fwJFQERAj19cAsnRxEEwVEzX/o5O4YRU7w0hOYfzDXd3iMN+vok4ruHIfwr3nMWILoUVH6BD480agROvrXeHL7vjRWXCX7kOd/+AZX52L+BG67mgRhDDMCSuTgSPBOHnu97vAk+CG97oEe4R74AmOAAAAjEGbICfAKIX//GwheBHFOLrVWgR+Bw+XL//ALIvkBeI3Lkv1HEdf/0iY8XCIoDcxi2Po458bez945Pd/QZ4fypU+a/wIlSHvh2WX4DK4ck8n6/X9QI6vhBX/FW73v1UCNyK8CR66yetfF4IuT3x7D9P88J4QEd4JA473ZAkXCPdoY8CPtHBGsd7+AIcgAAAAeUGbQCfAKJoDxiOtwRBCq2gRqgJjr6qBFrgR64Eg7wJR4Rz8CPwYa/gRV1BF+cOLh2H9sHfhdghD6mPf73+NbELrXFh59NN/0W74ETonL666o51AnX689f/wI3UCR+X/9GeBHXy/LAR/m4/TAj35P7/hPuE4Ee6gCHIAAACGQZtgJ8B9+go7CCCCr7beBKqAjIEbgJDFQv1wIvATkCR8CQd4Ek8J5+BI4IPgggRejhxzBnZ8pIPZ9/wwSiu9FX7k5R0wXrERAbxEEf0cEEGUdMMujIfDqGXp/DPFbqId8DtS/gROqqSBH6gSOvmgR+Je83ASPgjyL3lAj3CffAj2l28AQ3AAAACCQZuAJ8BaHlgTPBGGlXaBG4LMvu/cCJwE5T/gSqPgEdwYfgi+CD8ol7wInQaFZMV/k5y/2wyTadU6MeR/OwQ4j+gyHt3WGMVMMvCn+oESpNV/c3VAhEh8iwn4oEa5mIN+BI/9egR/+dXQI/LAkVl3v8u9wI9wn3wI956/CFufdQBDcAAAAIdBm6AnwH34sKTf1UCQd+q+AgMv/7PWvgISBGf9L+BIERsAjtAYPwQYhfBXgRH6QVC17u61bBnZ/+2CYmXLn96o8EO8FVQ0HHe6/UwPej1IGb1r4oheBF6De71eOE/+uqWX5zr4IHz+r/gRuoEj4DZ5IEavqP7hNhK9wI913hkSMMfr4/3wBDcAAACIQZvAJ8AgHgmCnPeqsgRKgKCi/98CNX1wCQcPa/gRqASG8DTgROg0TJi9DdzcXKDwO1K/zk6MlfanbcgV6gQ/gl+jlWHt1KDeYKhuT1/fGWhtAIlzb4Jvf56w3b7cO21uEQI9RC9AkVr0CTyFvdsBH+ev8fuASLhP54Ed356wi99fCPzGeAIcgAAAAGlBm+AnwCiiP4CAgFmwEgI+CD4IPQKIEUv/9iEWBE8Eoc5fu9fOcmHylpagk2dinYIc/vpUHH+j1A+cv/gRPWwr6gSUskUTd4EfmgSP+c+D6yvgI/zTsz+BI4n54Ef+p4Ef4Ej4Ej4BRIAAAACJQZoAJ8AgHnCi+KvgRC//7/rKaBIEwvAI7wNGIXEL8DhAineBH6OGlKFBud5z49F9b4avfKsbtLPtEPs/vv7pIN3rKDDSJEAi35jMHTVMDnlvhnd3g/i14ES5lsKvwzz+v4fW066rujiVr0Gs/+BGXxlckCN8BsF/34EioRIED+f9wnAj1J3wBDcAAACeQZogJ8B9+Fwpqqrr8Q6+BJ4Gj4JK2s7wIn0eF4Eb4Ej4Ejgi+GMR/AkQIvwJB3s/AieGg1nwtIrjcv/W+GLv4de8v8Ow/vj2Havf8/rVwRhzdzJ9HqJl/4ETo/DAurHJf9dHrDS3NwZ/7Ez/AjfAkVN9GGPeAR9cIyhyP0ujdfnfO/xIWysUN93+Z+YEe4/vPUBBn6/7/8J8P7/gCG4AAABgQZpAJ8AoojxC4hYBHeCz4JOoGb4KIEX4Eg7LZ+BE6qoEXP5f1qgRBzVyqAEXo9fh6X82BJqb6DVd3/GBvveBH+BI+AkeEIEfn+JZL3Aj+esJbC/PhvNeBI+BI+BI+AUSAAAAd0GaYCfAEOcFGI8R4jgRTy51zrnWA1H1hoOZ8dQ7nB+Z//DF3u99Ro0aaK2p5YLyUDi/dvpVf6PeB+5f/Ai3N1R/fmD0VA5PX8nDIsGZB9fATv/7f/wI/UCPxWT9/hTQ7UAj/Egh8vZAkLrDXd1gmGz9D/6jYAhuAAAAcUGagCfAf4hAkC/wEWoQgNjg6+Cr4KvgwgRfgSPgSTwU0fgRC/l+CIOPfh7u7va1z1jpFCPDtfi/4Ie4/6UCJ1r9XrwQixun4IEYv1xH8kCPUZ8kCPfAk8sBIF/43Q50COufPWG89eCB49a+njdXQBDcAAAAc0GaoCfAf2AgsCNjP8CP8CR8CRUDB19X0NUCKeWBIrgSfz8CLVHDmH4Vvr3uNAvq96hry0X5Swblo3jmqPXxM14ESpPr6UpQI/QI7y+/4ve73gR+lf4qAR+oZIQfpr6esEON0sXdAj86wQJH9cCP8CR8AokAAABLQZrAJ8B+4CAwCP8HFP4zuAkIDVvVMgI5f38gY3erdEt+oL+eTy+fGFw8i6H/33PgEXwR3vd9LKBH5IEipleBI9mvcAkFRqwdcAQ3AAAAWUGa4CfAfghYDY4YvhCAR07wI9UFQxLLLfUysHsz/e+epUeG1+v2X9aXqoETo9fw9L89F/+lfugSjVvd7ygR6mgR+M3/AjrvQS6A2fElvP5/gR7hNEg74AhuAAAAX0GbACfAOpx91wI/PAI75Axu9/Syt+p6/KWCPDe7/nqGW5/8CL1XnGqEGPv/gRritfEHGLO9fwI/wGz5dDlYAjr4VDPl9fHbn/hbIvyL3UrF/gR+dCMvnXCBHOgSwDqQAAAAOUGbICfAOpfAkXB339+IWARyqBEGJbJcWW9+/BHu/D8M5cd+L4mX4ETrqT6+oEfqBI5oBZ6jeuAIbgAAE9dliIIDfJigAC0dJycnJycnJycnJycnJycnJycnJycnJycnJycnJycnJycnJycnJycnJycnJycnJycnJycnJycnJycnJycnJycnJycnJycnJydddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddf+NAAREgsOYACZkMjhmNxBI8tx+iMQrCtEqsJO75+AMZiIzit1BCltUYAAWADgYblvBIYNn3Mvc9KFH2ZAToHeYITZUPV7wEJpKaE9qppx5NnEEDFD+ljXSwba/wkFITe4xoAq+O0eszGI0ooQqyN6m7Xg3sUOLUMXNKqfuhZEIVpZYkIcuszdriOEhMeEXwHgBBWCFVWDRVAGMxEZxW6ghS2q4eMLNc61nj41J//1kQhWlliVWRpQbteASoompzXnj0jt4cAxLTZwRXuCWFKPbwAEzIZHDMbiCR5bj4Yfh//CZ8ABIiERgdjDw/xcRYnII277u/1JEmb77777777777777777777777/H8P4/wAw2bSAh12vHu+EAAdABgCgEQgnCjAAcP4Tlk2xxwhAYADSyAACQDh1zAErpTeFwPSBEW5tbW1tfH/h4LOA6NwElsIAAkAHBaQQgjKB0BgANL+DwPe45X3333333333333333333333+Pv8OFB/AATMZS+qcAAQCAMvOZsIwb1DNddddddddddddd4bw16xQACF99999999999999999999999PXXXXTBEqgjrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrp66666euuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuunrrrrp666666666666666666666666666666666666666/+NqBEIwOYDgAHAAcBR+W4AFjCYSWoogkVsjtbvQBxVoVuKh7oaQ/wTjFLvve5aVO9FAnA98Ycw0AWFH1zOAAIO8auFvdjamshio0x5wtR1Y9Xv4bQQGxfAAQbDFrr/c5aFN9QYMQADiPAXLVrjwAXOQYq//ACJxylWbz3sSFHbErBMB700avxbyh6veQIg2IpBhJMKWw7zGxTFBHP5RYWe8T4Y6dTivSpWmi0ODUgfpih+uuuuuuuuuuuuuuuuuuuuuuunrrrrp66666666666666666666666666666666666666677w1111111111111111111111111080KA88SpqGWWay6SYUP1BXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXTDwKdMTDdddLTDzqCOuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuunp6666euuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuv/jalWGMDmA4ABwAHAUfluAAmCKPiaSYQTKlrO+Q0xSOZZUKu+AwSjxTtii/fFVG+4BIDUFSe3jMDrQwPpPAHg+LwahtReg1r6kshio8x5wtR1Q9Xv4QwSwRfAAQbDFrr/c5aFN9QfmNimK4z8YWp7lOAAQZ4wL7+lBtTeCccpVm88Glckjova4AAg7hq6zyxtTADAiDYikGEkwpbDvMbFMUEc/lFhZzxPhjp1OK9KlaaL9wa6huuuuuuuuuuuuuuuuuuuuuuuvhgofjoaGoATaLGpGddqMQgf2AMF9oS09UFb8l+UyzQTkh7wwACwAsMIhinAAaF7MLWkW3glAqoABcf4IRFueAGvj5O7+ogsAmpCQ7nOp+uZ6R/wK25Tf48JppA9u/8GCqGS1CAAIiINCEKHBxMxSB2CUOt4DK1kcybWJoHfIwLAt48AWk05YJZt4ZVeLu3zgeZkIsyFe2kw3X/k8iyHCAahN1ADJ4G4GcNPZcxLM6BcoHsAEnM4IMbdnKOj+EAEAAQEQNASCAAyjwAPob3a0ZweiQAFMcs4hGzUjy4cAGxc/k0NOAAepMOVZhIj7+v7v3+v0bw//BXAfmZTmWhloZLKZ2EAEBBnAgGQpwOKAAWb4+LVAFbnw6YdrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrvvDXXXXXXXXXXXXXXXXXXXXXXXXXT/mlPnoFgasBIJOIwYtdKhBdnCJkGGB67IGxw1vIn/BsxsqfRRP+36f0oHsN/zAKCjMCZ3kxzBiA+EAAVBRDARIMoF2vRyHlQ8FQrbWQE9YGD/3g7eWyyM54eh07bi3rn/tb2thzASLS49DK8zIAIc74CYmNuMU6zEYMqhp88IAA0BwNFAKACLAANR3DcIYWPv/QlFYbHU4AB179ACxISr7MJ+0Qgcw3Wt2Wn//grFxgkoMcedhwgABACAMFEggACgIYR31+37/DD7bfmGpRdSsDDphxtMFtdddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddPZOlPp/YbDjWVjaPErQ1D1QUeFE0gZQ87qWPoDepDWPBAuCGIsSAOK3XAeoAQBYtOe9ACF1BdRhwAD9CXP//7CEnOQQUPedgk4vy7zMpJhpakb9hBcHOZ1MaiNVA1QBfgGz0SFjjxbXIcAAuB/uJh2np666666666666666666666666666666666666666666666666666666666666666666en///YbBBcq0IqQ+6qRTQFkmyKrQgD7C05vzCwBPm/P/H/fGUFbSoOl9rFbTK2g7/X0wGCJDEZ0wXARKxpnG4FdxGfB42uESFcTBDT09dddddddddddddddddddddddddddddddddddddf/G0SFRjA5gAuEKg01xwsJeE56vAKJ+YNLw2xLOifiVAASHj8Rcs5KYzJh+Ax2QuCJY0mCcKAlgAA6DOOPAFrDirikBq4btLEIcQ1/7Qb4wd4ZYljRbxK9xHCEQSQxfsE4Hs0wYvwJXrz1eAETDlLvec9aVN5Ayu4AAdBnBC6/1kHVYNgNRhoxfoTv2PV7wbjlrrOe9aFM5QG0RsxA41FmOvfgBEN9rKBv721kkp4n2NJSJJQMd/8uvT/qHa66666666666666666666666en///YbBJNOctYjNJbAukfwgdEtzVXMPdc///uWK2mSt039fTt8HvvU19MC6GAiF9nzw0RRz5ku4dgSm4UlcTBDT09dddddddddddddddddddddddddddddddddddddd9/rrrrrrrrrrrrrrrrrrrrrrrrrp6f//9wQQUmpFi+u9nNulb+69M4FkQ2INSsYew4hHuTSuF25/L/vgtaE0LOd480s5QKnrgWFkF9sPYtKw034qzf6YIaenrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrp6f//9w9EPg26FV0zYWedvhpTHbTXumYEiEIghbAGy8g8Fm4iE1MfAkTTGrTDwcSDuEIy3P//sN6AVIzNNRmaaq6AWRJN7896oBVWstKi7fmqAImp5ph+np666666666666666666666666666666666666666666666666666666666666666666enhZh4CbzzZrd9d+bPyVbDf8f/sN6EUy1jhc1CajvDfD9MP09PXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/jjsELD3ABcYGyhmGiUmFT1ewBJBSE2nGNT6G4jAEgtCLMpqWiik/3e/ABeQE6B2GiE2FT1e4ABVAm5I92LmlKHv/cRAAYpnYwsOZVT0a/9ZEIVxeCVGE1DdpwAII0QoqyqbU3EcOIIpFF8EEoFssoQrwatVnq9xeEJtpIY3eV6dcgQAAQNwABAYYsNAJRRYhXo3boer2+AAkRtkAGB3nyj34ASE20kB+60xd5Lj/Y1VFJQMd/8H/qH666666666666666666666666en4U+uajjgTTebjFMHpn2S1BVS6NlhBdyC1QBkSFZSGQp1QJwqJcaAHTDuQDZjrjq7/+ROXsN6ykKFjSMSffp/hAAEQpBAuUPWvb/WU2BnUobPfwwaF6pU/3pgnp6euuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu+/111111111111111111111111109Pa2tdPT1111111111111111111111111111111111111111111111111111111111111111109PXXXT09dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddPT11109PXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX984AghYbDmAAmJinKwzuWWtzl48oAAQAQ2X+kC/X9gKhOhUyp/7J/8GDZYAAgggACBMwAAkNM5HMsrOupAABwAAQHxLIEMABBDfaygb+9tZJKeJgA+Ne5XOt7lX8OH8AwDggLhCFRx7zxsVX1Xm7+++++PwAEN2H7s97nO1z3/8AB2EQ460FFIee0orwgymGUkssYdW8mMBw7777777774/AAQ3YfuR73Oclz3/8AB2EQ460FFIee0orwgymGUkssYdW8mMBw777777777+H4tAA4dJAAQIpyCFgmiJOtiHcPfBsMWuv9zloU9Kgahw1EwPLA6ItzAZfdZhEgpYHSHcwi9bYiQpbW1tbX8OPEOC6A4AAgNgAwxCW+LUAjgeQUvwPIUvb333/+OGGCAqgAIGUMe7OSWU5TSkv+BEDnP1KCiyVuLQx99999999//jh8K4ACIIph1ILKS855Rb/jDIcZaSi0OPcWUwHh333333333/wxw4QrgAIgimHUgspLznkFt+MMhxlpKLQ49xZTAcADxlAQa6442+9nMO/B+oZrrrrrrrrrrrrrrvDXXXX/x/4UC0AQAAVAIC1CJA0RQdQDgACBsAAIAwLCcsAIIFRrxSqmM+6jpVD8QZBHsSYah4r6qn4Y+IAFAANFVQABA0126KBwd2mcHgAiMEM9NG2GbPqAE5HAKEvSF0CC7AAACBsQC5EMroIzABSO+cAkGvIE0I7zDou0lYQAEFYIVVYG1PiIxFZBWFDkN8LMAAgjBIR16G1MbNUZjEUVohJhLdr9EQhVF4JSYT3aGzX62DxL+EygCMOIhRPwzdrbFlCQc8BMopgUgbuEq1HGNtwBcoyUEnBuDaCXJ/wN2MZxiBFyDRBhg3aAk4O1p5btKwJ+l7//9Q2KAARvvvvvvx//8PhTABYEZwAUCCu1izJQubtcWog65vqHYoABzXFCiOkaCk32VhXcw3LQCCGlF2bI4j/YYAnBGB1ElGBWTVvuIAAMAACAqAHoPYFaHrLERXTObTc0BOg/gTfOFil3FcgABBGCVFWIKppeZEMroIzEkpYxICyCMYOVmI4evPPvKIUdz5IO163hh4oyADReOJivjfrMxiMK0Qk0kkbtf9f7/4TOBoA2wJSguRg0yztf7/EEUw6kFle055Rbw/FBGxTj0ijSz3lhh1DNddddddfcKcFy6YaABaGOrxCDZFgk2er3sAVoPXWOi6yMX8pvcAAIgYgLYbJNm1N4w8yCp5XtZiCVhjC+B0ZAANl4KExd5v3/xVJSJJIMOkGxQACFra2trfff///CgYgAOGVBzwxM/gOVLPMhbbAABAJDZgYUGFD3PJ6erR4AAgCgACACANclvVVCeIYN2bgCY2bAMJZ6qlMQQ/7wVRxyhEW5il6RTRD5gGHGwjGHG+S7zZ3wBCM9Ht3VppOYqzIYjC8EBDjMVm7QA6ASmGVka+skldkYhWFWJVYSVN2vCQUhN7jGr9DcR4aikprMa1PIZiPMjGR0FZqCUKagMMwAAuAHA03LeZtjdSrar+/DUPhrrrrrrr/w+YcKBoAC0ABmA7yP4URFETwW34FoRhyBLJFokHHd8/EgBCGOrxH2iLBFo9XgAlCZhuNwVJZ1+K//wySDj8AQAgqLJGg1ikoSJH0e2wGhMophALuEq7VeN6hiOM8TYgwTZ3a4AEEIWxZH+SADqdB+ahDMOBTDBFsKlu7QCgDCEKDtfvdEzUza2gEFxuBJqyPDfG7NwEwUxuiLII93wBmahiOMBTLJBsKlm7XDE5xF8SR7DWEEhh2AACIHIC22iQ2p8MTnEXxJHsNYQT4ahs8AAhfffffff/gfiPCgaAB4DCEBRNEUaIkYt58AoboKaFIm7BKpRxgf3PAGDnTIZWjx71V8ivgOAAIAYACgGtQ+PkwAAIEMShSDB2FQVav/b2mZjAMEpJJKl1SVHmAAgoJYVUFhtTQAANgAICwQ5zBAAII0SEdRUNqYEglxAoDSPe4c2CEjAgBsRgAFCCL09jiG/cZEMrh2MLHI7BxPxEYisHazQBSGwctAIiEKwvBKjCe7Qf6MxiMK0Qowlu1REIVheCVGE92v9Q/6666666666666666666667666666666666666666766666666666666666667666666667766666666666666666666666666666666666666666666666666666666666666666666666666666668AAABbQZo4E+AJkP+BLxHn4BINQI+SBHxGX/rgR/BWIlh3wJHgJDP54BA+LDgDgXVkz+ABH7+q6gwLPZcACXVTd9P4MO8cQABW/XOrsMOABf1V/9f7f8AGPTr78/4CigAAADxBmlQE+AJlPLn4Ebgr+TEL8Fed4ET4Efr4KEHsL4KCdV9QInSO2/9/9wI3NAkcnxUCP8BIc8BIUb3AENwAAAA4QZpgL8AVWd/h/4TxH8PwIvwJNdcJEDm7gI9fNAj8VAkfAk3wJHLAj+CS8/1r4RgR7hNCnG+AIbgAAAApQZqAK8AVZwhYyErwEa2y1gSevr6gRl8RAk8kBH8sBsc/xMCPc3fAOnAAAAA9QZqgJ8B9+YKO7uXy3e4BrxEsBGv6vWBF61/AkcnURAj1/EQI/wJHLASPgjEXvUCPUf1wI9FnFtjvfwDqQAAAAEtBmsAvwCieICTvu/EeI8RjfgCy8M/B3iF7uBF+BHL+/kFDvv+GO+uoEdXDEn1AR3HfFQI/wJHHwEgX/fBJP5/1AkXCvfAjvyngHUgAAAA9QZrgL8AVYfz+fz8CNwWwI635PYcNY76v8BE63/v6gR1XEQJHNAJD6ygRjsO9RqBJ3XAj19ZxKhBuf8A6cAAAAE9BmwAvwCiC4SDrLPiFxC4hYBreDP4Lfgt+CuBG+uCo4pY6zHQw//PUtX8BHLqIgR+I7hKBH+BI5YEgv3G/AkVnrwpueBIqEeqgR7l74B04AAAASEGbIC/AKILhAVviELxC4hYBreC/P5/4MYEUn3wXb0gxhASPJAJDzwJHl3n4Efn6j4Efz3wFc6+bwief36U9fr++BH+BI+AUSAAAAGxBm0AvwCiYCAwJPCPwj8MwI3wJHwJHwJHwI5+z8CI+uvryhyWBfgRfBEe96vpC4oEdckRAj8IfJAj/AbBf98wQz/89cHt/wI9RqNF8TAj9Boo/52dYYRU/+kJOVRd56+BB//i/4Ef4Ej4BRIAAAABSQZtgL8AxnBr8EOI/ghgRfgSPgSPgSPgRzvAlfXBAg5UCM+vXBBBFAjquIgSeMgFn4nXDuidAj9HrDrL+HYnr/OVRB/P/H/5E0Z//Aj/AkfAKJAAAAFFBm4AvwDGcFPwQ4j+CmBF+BI+BI+BI+BI+BJ+uCBBzKA1uOgSLhiAkOeAkEsEsvxKJBAjpOLw1fPiw4zT4JnjML/QZK1idTB56fm+H9r4B04AAAAAxQZugL8Axh3+CnELnWAa7hPEcBH8muqgR/gSPy/r8CP8CTywEfzwJHP1HwI/wJHwCiQAAADhBm8AvwDGn8/AjVAo9ROIX4MYBZjvn/0HJQIy+vqAj+K+FIEf9fwI96M6A2KjeuBHS+SuurgHTgAAAAEhBm+AvwDqcGPwY4hcQsCL8CR8CR8CR8CT9eGg5WTF+mG4djgI5dTfJAj+U0rF/JAj8cvQJF4Icv3d8Br8vygh3vUCPcI98A6cAAABEQZoAL8A6h3z/wQ6/gR/gSPgSPgSPgRX5NhOI//8c5PE+A1eOgSeFoDX8EgUbn+CBI4sERD/lb4l5/gR6ngSPgSPgFEgAAABJQZogL8A6x/OsCLwziFxC4hYBHH5LDk373z1/hDx/e37qwAR3UCTcLFJy8CPwtASPLASHLAj3Cp5Sxs945A9LdN9Hqmvx/8A6cAAAAE1BmkAvwBDnCPwziF+EYEX4Ej4Ej4EneuEEHOgI9VUUSZvAj1/GQI/wJHwJHCMBIcaciwpuf7/WKBH5g1J+4nE4aZ/Rzf5+P8yi+4B04AAAAFJBmmAvwBDnBP8E+I8RwIvwJHwJHwI/kDxsXrQJtesv7/vP4EV/gjLiH23+bl8COq5n5+BI4r5IEf4BIOJ/DJr3yjdz/gR6jyEJ/rPXw3bj4B04AAAAS0GagC/AffoNPAJCdi8/8HPwVwI5f/4Ej4EY8I19HeBDfZt/8FQLQ5yZNBeCA1lXDnxECP8CR3ASPIuUCOviSEz/X6xQI9T6quAdOAAAAFNBmqAvwCAeCYNbu9/4ET0J/+v/1/+v4DVOx+fo/Ai8HOI/grxCwGq9bOGl8wVlu37/b4lyAjuRegR+IgSOFPhyAR9fCK61+8bpfwI9y9UjZQDpwAAAAD1BmsAvwH35A1u4BIcRgSLgKXuu/vgNR+b+CEmL8LW+C3lzVeoEfyZv/YRQe+BG5ICQ4agEh4mBHuFe+AdOAAAAWEGa4C/AEyHfP51+FYEXgQfhbELiuBF+BHL915A8W5M+CoM8c7UPZ98fDD87D9LfBGHpofQGtxncOKyBH/4YgR+4DYe+Ce95/P9a+FYEeo/qkZ4EjIIgGLgAAABhQZsAL8B+CECguRC4hcQsCOJQVgRju8XvWfxnigEd4M8R4ztjO8BGvXOKXxr/3uC/lzLgr60hk8/+z18TI8CP7CIwvwIy7mgGw9DtfhvP+Ur5X/Aj3C5xC8I/fP90rwDpwAAAAHFBmyAvwCiC2FH/nV0dXAinfPwI/ov4DYOwjn8/n4Eb2FHfvg58QsCI/N/BIKC1dUs4SeeoPZn+BE8ER8X+gJHjPioEf4Ei9jJfgSeWBI7gR18M6/OJ75nzPgR6ikYt1n64ck9fgR8pziVjn/4Ej4BRIAAAAGNBm0AvwH35g07u5fBHvd0CJhCjveEavARx/OuI4DWPCMCPwb9QNPXAjPWDZBrrW+CPVfQIy79d8CQq5oEfiIEjhr4IIBH/NG0HwJBf7Wc5BY3iFH/nXoEdtc/TnEqEG5/wDFwAAABxQZtgL8Aop0FhXOtHYQbAjCoTo7wEcfWfgNXhH4Mfh9X+G4EQv2/QaFbuo60kjL/5fQQr1lb4efefwI/seML8CNdQJHEQC0PfC4zIvz+skJIf8uf4EfiUbuo+BHJ9e/nnF+G4/rOUgox307jfAj/AKJAAAABdQZuAL8AQ4dhQVz9HeBH9F6AjuEfhHP/CMCJ5xy/A7UvkfeXd3AirvOdfhyWPvziV8J3+vgI/iChC9wI/DUCR8BIc8CT4Iy8/lAj8T8SjdAj6RyrAV3XzfwJHwCiQAAAAbUGboC/AfvoFD4hXiFgRRbCoo/2dVAinfP0fgRRbq1n1nYScCNgaPWgm8CKdlxetsQ6gI4v/wrnYvPwIz+w2GJM1MWmHT19rfJzWt5/AR3JAj8dAkXB13wCz1H9YI8L0x+gR6z1gh2NGv/XAMXAAAABkQZvAL8BbH8/Ai+gTPAji3d4Eg72eE3AjHeBLEbgRj9H4CN4RridfCcCIX8364Zp8MOcUsemjDP4CO6gGw8El4ZUzqBI4n4mBHqc9YQeHfgTPY2zf3GnKoEHf75j/zNGf/wDFwAAAAHdBm+AvwH34Iw5e6WBJFs4r7ELiFxCwJB+BGP5/EcCSdjmwI+EcCMKhdIBHvXKEL3Al+CEaT94COXwt8RAj/AkfAbHnFa8YufXqG8nk64/Y+BH4k5n5nh/i3n+BH6DRaN0lhEsr98AnV/Pj9f+z1/fh/fwI/wCiQAAAADpBmgAvwDGneAkT+I4BIPQeggSPQ1oEZfNAkcmvhqBH+BIuCCASDi0EGHlgR+U5Vgm8K1/1FwI/wCiQAAAAQUGaIC/AMYdhZ0fgRTscXgSDviWPz8BJComAjH2snkCHNQBrc0CT4kRe8vuBGCDBPWtfAJD2QER/fqPgR6+uAYuAAAAASUGaQC/AKILhYUHx3ELiFxCwJHq8CKd6O8CR6vARwudeej6gSS//wJPsIS2TMCL3ASBf//ioEcvvvo0oBaOJ+Vln+BHqL64Bi4AAAAAzQZpgL8AgHgjDzu7vAap4l0I4CPPLAjetQG13AR/NALR5hhF5/AkVCPxMCPVIkutcoBi4AAAAP0GagC/AMYd6O8BIn4Br13NAjr478oIOXgSC+v7NWoEgvr/AR/F/HwI/NAkc/yss/wI9Trl04Z3uoevx/8AxcAAAAEBBmqAvwH34Jw9u7u7vL6ugRxiO752ObAinj7O8CPhHAEfcVASBff9BJkBs80COt5flgR6jRRyfu/7XKBHvgFEgAAAAQ0GawC/AKGLYKLMYgiK+xC4hYEk+4EkWxl4EQ7H5/EcCMNZRLjY5bUI2gDX8RAj+gozL/rwCzvef4uBH54Eg6BPAKJAAAABDQZrgL8B+jECgQ0SqIXELARgtlGaPAkC3VsQx/6vn8/AknYw/AhncvQqEYA2BdRvxLCE/wI9TnweEXmFNDHX/uNgGLgAAAD5BmwAvwFqfz8CMMQJnYgJI7CMAbAteA13l5xmsYuWP/xcCPxIc8+ZfrGnl89TPhC877KR9H96wI4hAhgFEgAAAADdBmyAvwCjnhZwIp3eb//4IexV6vAFDcnxECOtl/phC9wJC9YEdb8BsL4R1/Aj1XzQI918dAKHAAAAAK0GbQC/AKILYWFf8R5v//hbd9/s3//w/fgNQ7wCQdS9QBZtwv1HwI+TAKJAAAAA2QZtgL8AofoEzwJvoqeAKFL/wk/5d7gRy/7vALQvhMl761wzrVSsSv+BHqjE5r3PAj1XRMAocAAAAMkGbgC/AfnoEzwJZv//hYI33sV8Wxh+ngH0t7tYBH/ORfM+Z8CPvALRUI9cCPc/RMAocAAAAQEGboC/AKIbb//YWd99ie/lKo3//yzjB7v8odeBG9XgH76gI/kgSNYBZ3g55hxVF9fC8CPUfpKrgR6+tlJr4BQ4AAAA7QZvAL8AoohBYVgSBPm//+bf6B0D+gGt6l6gRLquoCP5IEjzhJn7ueAEla5yL5nzPgFnqP64EevrgFDgAAAAwQZvgL8AonghCz3vAPxvZPrydYBZgmwsVj/97wCQL3gSLhfqPgR7c51+HWffrgFDgAAAAIEGaACvAMefgGwfXALKd4BaeJ7heBH84Jlgi/PP/AKJAAAAAE0GaICfAHD8kAUNUI9cCPX1wChwAAAfHbW9vdgAAAGxtdmhkAAAAAAAAAAAAAAAAAAAD6AAAJxAAAQAAAQAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAABvF0cmFrAAAAXHRraGQAAAADAAAAAAAAAAAAAAABAAAAAAAAJxAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAABAAAAABIAAAAGwAAAAAAAkZWR0cwAAABxlbHN0AAAAAAAAAAEAACcQAAAAAAABAAAAAAZpbWRpYQAAACBtZGhkAAAAAAAAAAAAAAAAAAA8AAACWABVxAAAAAAALWhkbHIAAAAAAAAAAHZpZGUAAAAAAAAAAAAAAABWaWRlb0hhbmRsZXIAAAAGFG1pbmYAAAAUdm1oZAAAAAEAAAAAAAAAAAAAACRkaW5mAAAAHGRyZWYAAAAAAAAAAQAAAAx1cmwgAAAAAQAABdRzdGJsAAAAqHN0c2QAAAAAAAAAAQAAAJhhdmMxAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAABIABsABIAAAASAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGP//AAAALmF2Y0MBQsAe/+EAFmdCwB7ZAEgN6EAAAAMAQAAADwPFi5IBAAVoy4PLIAAAABRidHJ0AAAAAAAAd4cAAHeHAAAAGHN0dHMAAAAAAAAAAQAAASwAAAIAAAAAGHN0c3MAAAAAAAAAAgAAAAEAAAD7AAAAHHN0c2MAAAAAAAAAAQAAAAEAAAEsAAAAAQAABMRzdHN6AAAAAAAAAAAAAAEsAAAS/gAAAFgAAAAfAAAAFQAAABMAAAAZAAAAIAAAABQAAAAkAAAAHAAAAEEAAAArAAAAMwAAACEAAAAsAAAANQAAAC0AAAA2AAAAOwAAAEAAAAA/AAAAcwAAAEcAAABHAAAAdQAAAEQAAABBAAAAVAAAAF8AAABWAAAAbwAAAHAAAABPAAAARQAAAFsAAABiAAAAQQAAAF0AAABZAAAAQgAAAFsAAABLAAAAMgAAAFIAAABXAAAATAAAADcAAABRAAAARwAAAGcAAAAzAAAAVQAAAEwAAABDAAAASAAAAGgAAABHAAAAZQAAAGQAAAA/AAAAjwAAAG0AAAAzAAAAQgAAAEkAAABUAAAAWAAAAEIAAAA3AAAAYgAAAD8AAABjAAAATQAAAEYAAACIAAAARAAAAHoAAABKAAAAXAAAAGMAAABIAAAAYwAAALQAAAB0AAAAdwAAAIUAAACbAAAAbgAAAIgAAABtAAAAegAAAKEAAAB5AAAAmQAAAGkAAABjAAAAhgAAAI0AAACGAAAAgQAAAHgAAACeAAAAmAAAAJUAAACDAAAAkwAAAH8AAACOAAAAkQAAAH4AAABwAAAAggAAAI4AAACTAAAAjQAAAJAAAADCAAAAigAAAIYAAABxAAAAuwAAAH8AAAC9AAAAdQAAAHEAAACHAAAAaAAAAFUAAABhAAAAZgAAAHQAAABLAAAAVgAAAF8AAABIAAAAQQAAAEoAAABlAAAATwAAAFsAAABKAAAAZgAAAG0AAABCAAAARAAAAFcAAABKAAAAPAAAAD8AAABOAAAAQAAAAFIAAABYAAAAQgAAAEMAAABIAAAAUQAAAH4AAABmAAAAZQAAAEwAAACEAAAAbAAAAIoAAABWAAAAWQAAAFAAAAA1AAAAQwAAAFcAAABEAAAALAAAAHQAAAA+AAAAPQAAAD0AAABfAAAASQAAAF8AAABYAAAAZgAAAHkAAABdAAAAiQAAAFYAAAA2AAAATgAAAGsAAABXAAAAeAAAAEYAAABSAAAAUwAAAE8AAABdAAAAWQAAAHAAAABmAAAAUAAAAFQAAABYAAAAewAAAGEAAAChAAAAUQAAAGkAAACMAAAAaQAAAHQAAABzAAAAZQAAAJEAAACBAAAAjAAAAHAAAABwAAAAjQAAAIAAAAB7AAAAlgAAAJgAAAB3AAAAnwAAAK8AAACGAAAAmAAAAHgAAAChAAAAegAAAGQAAAB+AAAAbgAAAJAAAACQAAAAfQAAAIoAAACGAAAAiwAAAIwAAABtAAAAjQAAAKIAAABkAAAAewAAAHUAAAB3AAAATwAAAF0AAABjAAAAPQAAE9sAAABfAAAAQAAAADwAAAAtAAAAQQAAAE8AAABBAAAAUwAAAEwAAABwAAAAVgAAAFUAAAA1AAAAPAAAAEwAAABIAAAATQAAAFEAAABWAAAATwAAAFcAAABBAAAAXAAAAGUAAAB1AAAAZwAAAHUAAABhAAAAcQAAAGgAAAB7AAAAPgAAAEUAAABNAAAANwAAAEMAAABEAAAARwAAAEcAAABCAAAAOwAAAC8AAAA6AAAANgAAAEQAAAA/AAAANAAAACQAAAAXAAAAFHN0Y28AAAAAAAAAAQAAADAAAABidWR0YQAAAFptZXRhAAAAAAAAACFoZGxyAAAAAAAAAABtZGlyYXBwbAAAAAAAAAAAAAAAAC1pbHN0AAAAJal0b28AAAAdZGF0YQAAAAEAAAAATGF2ZjU4Ljc2LjEwMA==\" type=\"video/mp4\">\n", + " Your browser does not support the video tag.\n", + "</video>" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Initialize_distributions()\n", + "\n", + "frames = 300\n", + "steps_per_frame = (timesteps//frames) + 1\n", + "\n", + "if 'is_test_run' not in globals():\n", + " def run():\n", + " for i in range(steps_per_frame):\n", + " timeloop()\n", + " \n", + " if gpu:\n", + " dh.to_cpu(\"C\")\n", + " return dh.gather_array(C.name)\n", + "\n", + " animation = plt.scalar_field_animation(run, frames=frames, rescale=True)\n", + " set_display_mode('video')\n", + " res = display_animation(animation)\n", + "else:\n", + " timeloop()\n", + " res = None\n", + "res" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that the video is played for 10 seconds while the simulation time is only 2 seconds!" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/doc/notebooks/demo_create_method_from_scratch.ipynb b/doc/notebooks/demo_create_method_from_scratch.ipynb index b99a251bf099b08823cdc60a48313bc7b53a4e00..8bb9db5c89fff53ac848f40a76c2445c2d8c15bf 100644 --- a/doc/notebooks/demo_create_method_from_scratch.ipynb +++ b/doc/notebooks/demo_create_method_from_scratch.ipynb @@ -174,10 +174,11 @@ } ], "source": [ - "from lbmpy.maxwellian_equilibrium import get_moments_of_continuous_maxwellian_equilibrium\n", + "from lbmpy.maxwellian_equilibrium import get_equilibrium_values_of_maxwell_boltzmann_function\n", "\n", - "eq_moments = get_moments_of_continuous_maxwellian_equilibrium(moments, order=2, dim=2, \n", - " c_s_sq=sp.Rational(1, 3))\n", + "eq_moments = get_equilibrium_values_of_maxwell_boltzmann_function(moments, order=2, dim=2, \n", + " c_s_sq=sp.Rational(1, 3),\n", + " space=\"moment\")\n", "omega = sp.symbols(\"omega\")\n", "relaxation_info = [(moment, eq_value, omega) for moment, eq_value in zip(moments, eq_moments)]\n", "relaxation_info" @@ -248,7 +249,7 @@ " " ], "text/plain": [ - "<lbmpy.methods.momentbased.momentbasedmethod.MomentBasedLbMethod at 0x7fc9d1ff5d60>" + "<lbmpy.methods.momentbased.momentbasedmethod.MomentBasedLbMethod at 0x7f3aca401520>" ] }, "execution_count": 7, @@ -282,7 +283,7 @@ "<div>Subexpressions:</div><table style=\"border:none; width: 100%; \"><tr style=\"border:none\"> <td style=\"border:none\">$$vel0Term \\leftarrow f_{4} + f_{6} + f_{8}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$vel1Term \\leftarrow f_{1} + f_{5}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$\\rho \\leftarrow f_{0} + f_{2} + f_{3} + f_{7} + vel0Term + vel1Term$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$u_{0} \\leftarrow \\frac{F_{0}}{2} - f_{3} - f_{5} - f_{7} + vel0Term$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$u_{1} \\leftarrow \\frac{F_{1}}{2} - f_{2} + f_{6} - f_{7} - f_{8} + vel1Term$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$forceTerm_{0} \\leftarrow \\left(1 - \\frac{\\omega}{2}\\right) \\left(- \\frac{4 F_{0} u_{0}}{3} - \\frac{4 F_{1} u_{1}}{3}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$forceTerm_{1} \\leftarrow \\left(1 - \\frac{\\omega}{2}\\right) \\left(- \\frac{F_{0} u_{0}}{3} + \\frac{F_{1} \\left(2 u_{1} + 1\\right)}{3}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$forceTerm_{2} \\leftarrow \\left(1 - \\frac{\\omega}{2}\\right) \\left(- \\frac{F_{0} u_{0}}{3} + \\frac{F_{1} \\left(2 u_{1} - 1\\right)}{3}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$forceTerm_{3} \\leftarrow \\left(1 - \\frac{\\omega}{2}\\right) \\left(\\frac{F_{0} \\left(2 u_{0} - 1\\right)}{3} - \\frac{F_{1} u_{1}}{3}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$forceTerm_{4} \\leftarrow \\left(1 - \\frac{\\omega}{2}\\right) \\left(\\frac{F_{0} \\left(2 u_{0} + 1\\right)}{3} - \\frac{F_{1} u_{1}}{3}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$forceTerm_{5} \\leftarrow \\left(1 - \\frac{\\omega}{2}\\right) \\left(\\frac{F_{0} \\left(2 u_{0} - 3 u_{1} - 1\\right)}{12} + \\frac{F_{1} \\left(- 3 u_{0} + 2 u_{1} + 1\\right)}{12}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$forceTerm_{6} \\leftarrow \\left(1 - \\frac{\\omega}{2}\\right) \\left(\\frac{F_{0} \\left(2 u_{0} + 3 u_{1} + 1\\right)}{12} + \\frac{F_{1} \\left(3 u_{0} + 2 u_{1} + 1\\right)}{12}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$forceTerm_{7} \\leftarrow \\left(1 - \\frac{\\omega}{2}\\right) \\left(\\frac{F_{0} \\left(2 u_{0} + 3 u_{1} - 1\\right)}{12} + \\frac{F_{1} \\left(3 u_{0} + 2 u_{1} - 1\\right)}{12}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$forceTerm_{8} \\leftarrow \\left(1 - \\frac{\\omega}{2}\\right) \\left(\\frac{F_{0} \\left(2 u_{0} - 3 u_{1} + 1\\right)}{12} + \\frac{F_{1} \\left(- 3 u_{0} + 2 u_{1} - 1\\right)}{12}\\right)$$</td> </tr> </table><div>Main Assignments:</div><table style=\"border:none; width: 100%; \"><tr style=\"border:none\"> <td style=\"border:none\">$$d_{0} \\leftarrow f_{0} + forceTerm_{0} + \\omega \\left(- f_{5} - f_{6} - f_{7} - f_{8} + \\frac{\\rho u_{0}^{2}}{3} + \\frac{\\rho u_{1}^{2}}{3} + \\frac{\\rho}{9}\\right) - \\omega \\left(- f_{1} - f_{2} - f_{5} - f_{6} - f_{7} - f_{8} + \\rho u_{1}^{2} + \\frac{\\rho}{3}\\right) - \\omega \\left(- f_{3} - f_{4} - f_{5} - f_{6} - f_{7} - f_{8} + \\rho u_{0}^{2} + \\frac{\\rho}{3}\\right) + \\omega \\left(- f_{0} - f_{1} - f_{2} - f_{3} - f_{4} - f_{5} - f_{6} - f_{7} - f_{8} + \\rho\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$d_{1} \\leftarrow f_{1} + forceTerm_{1} - \\frac{\\omega \\left(- f_{5} - f_{6} + f_{7} + f_{8} + \\frac{\\rho u_{1}}{3}\\right)}{2} + \\frac{\\omega \\left(- f_{1} + f_{2} - f_{5} - f_{6} + f_{7} + f_{8} + \\rho u_{1}\\right)}{2} - \\frac{\\omega \\left(- f_{5} - f_{6} - f_{7} - f_{8} + \\frac{\\rho u_{0}^{2}}{3} + \\frac{\\rho u_{1}^{2}}{3} + \\frac{\\rho}{9}\\right)}{2} + \\frac{\\omega \\left(- f_{1} - f_{2} - f_{5} - f_{6} - f_{7} - f_{8} + \\rho u_{1}^{2} + \\frac{\\rho}{3}\\right)}{2}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$d_{2} \\leftarrow f_{2} + forceTerm_{2} + \\frac{\\omega \\left(- f_{5} - f_{6} + f_{7} + f_{8} + \\frac{\\rho u_{1}}{3}\\right)}{2} - \\frac{\\omega \\left(- f_{1} + f_{2} - f_{5} - f_{6} + f_{7} + f_{8} + \\rho u_{1}\\right)}{2} - \\frac{\\omega \\left(- f_{5} - f_{6} - f_{7} - f_{8} + \\frac{\\rho u_{0}^{2}}{3} + \\frac{\\rho u_{1}^{2}}{3} + \\frac{\\rho}{9}\\right)}{2} + \\frac{\\omega \\left(- f_{1} - f_{2} - f_{5} - f_{6} - f_{7} - f_{8} + \\rho u_{1}^{2} + \\frac{\\rho}{3}\\right)}{2}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$d_{3} \\leftarrow f_{3} + forceTerm_{3} + \\frac{\\omega \\left(f_{5} - f_{6} + f_{7} - f_{8} + \\frac{\\rho u_{0}}{3}\\right)}{2} - \\frac{\\omega \\left(f_{3} - f_{4} + f_{5} - f_{6} + f_{7} - f_{8} + \\rho u_{0}\\right)}{2} - \\frac{\\omega \\left(- f_{5} - f_{6} - f_{7} - f_{8} + \\frac{\\rho u_{0}^{2}}{3} + \\frac{\\rho u_{1}^{2}}{3} + \\frac{\\rho}{9}\\right)}{2} + \\frac{\\omega \\left(- f_{3} - f_{4} - f_{5} - f_{6} - f_{7} - f_{8} + \\rho u_{0}^{2} + \\frac{\\rho}{3}\\right)}{2}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$d_{4} \\leftarrow f_{4} + forceTerm_{4} - \\frac{\\omega \\left(f_{5} - f_{6} + f_{7} - f_{8} + \\frac{\\rho u_{0}}{3}\\right)}{2} + \\frac{\\omega \\left(f_{3} - f_{4} + f_{5} - f_{6} + f_{7} - f_{8} + \\rho u_{0}\\right)}{2} - \\frac{\\omega \\left(- f_{5} - f_{6} - f_{7} - f_{8} + \\frac{\\rho u_{0}^{2}}{3} + \\frac{\\rho u_{1}^{2}}{3} + \\frac{\\rho}{9}\\right)}{2} + \\frac{\\omega \\left(- f_{3} - f_{4} - f_{5} - f_{6} - f_{7} - f_{8} + \\rho u_{0}^{2} + \\frac{\\rho}{3}\\right)}{2}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$d_{5} \\leftarrow f_{5} + forceTerm_{5} + \\frac{\\omega \\left(- f_{5} - f_{6} + f_{7} + f_{8} + \\frac{\\rho u_{1}}{3}\\right)}{4} - \\frac{\\omega \\left(f_{5} - f_{6} - f_{7} + f_{8} + \\rho u_{0} u_{1}\\right)}{4} - \\frac{\\omega \\left(f_{5} - f_{6} + f_{7} - f_{8} + \\frac{\\rho u_{0}}{3}\\right)}{4} + \\frac{\\omega \\left(- f_{5} - f_{6} - f_{7} - f_{8} + \\frac{\\rho u_{0}^{2}}{3} + \\frac{\\rho u_{1}^{2}}{3} + \\frac{\\rho}{9}\\right)}{4}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$d_{6} \\leftarrow f_{6} + forceTerm_{6} + \\frac{\\omega \\left(- f_{5} - f_{6} + f_{7} + f_{8} + \\frac{\\rho u_{1}}{3}\\right)}{4} + \\frac{\\omega \\left(f_{5} - f_{6} - f_{7} + f_{8} + \\rho u_{0} u_{1}\\right)}{4} + \\frac{\\omega \\left(f_{5} - f_{6} + f_{7} - f_{8} + \\frac{\\rho u_{0}}{3}\\right)}{4} + \\frac{\\omega \\left(- f_{5} - f_{6} - f_{7} - f_{8} + \\frac{\\rho u_{0}^{2}}{3} + \\frac{\\rho u_{1}^{2}}{3} + \\frac{\\rho}{9}\\right)}{4}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$d_{7} \\leftarrow f_{7} + forceTerm_{7} - \\frac{\\omega \\left(- f_{5} - f_{6} + f_{7} + f_{8} + \\frac{\\rho u_{1}}{3}\\right)}{4} + \\frac{\\omega \\left(f_{5} - f_{6} - f_{7} + f_{8} + \\rho u_{0} u_{1}\\right)}{4} - \\frac{\\omega \\left(f_{5} - f_{6} + f_{7} - f_{8} + \\frac{\\rho u_{0}}{3}\\right)}{4} + \\frac{\\omega \\left(- f_{5} - f_{6} - f_{7} - f_{8} + \\frac{\\rho u_{0}^{2}}{3} + \\frac{\\rho u_{1}^{2}}{3} + \\frac{\\rho}{9}\\right)}{4}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$d_{8} \\leftarrow f_{8} + forceTerm_{8} - \\frac{\\omega \\left(- f_{5} - f_{6} + f_{7} + f_{8} + \\frac{\\rho u_{1}}{3}\\right)}{4} - \\frac{\\omega \\left(f_{5} - f_{6} - f_{7} + f_{8} + \\rho u_{0} u_{1}\\right)}{4} + \\frac{\\omega \\left(f_{5} - f_{6} + f_{7} - f_{8} + \\frac{\\rho u_{0}}{3}\\right)}{4} + \\frac{\\omega \\left(- f_{5} - f_{6} - f_{7} - f_{8} + \\frac{\\rho u_{0}^{2}}{3} + \\frac{\\rho u_{1}^{2}}{3} + \\frac{\\rho}{9}\\right)}{4}$$</td> </tr> </table>" ], "text/plain": [ - "AssignmentCollection: d_6, d_5, d_8, d_2, d_7, d_1, d_4, d_0, d_3 <- f(f_8, f_5, f_4, f_7, f_2, f_1, f_3, F_0, omega, F_1, f_0, f_6)" + "AssignmentCollection: d_1, d_2, d_7, d_4, d_3, d_0, d_8, d_5, d_6 <- f(omega, F_1, F_0, f_5, f_4, f_0, f_7, f_3, f_2, f_1, f_8, f_6)" ] }, "execution_count": 8, @@ -310,10 +311,10 @@ { "data": { "text/html": [ - "<table style=\"border:none\"><tr><th>Name</th><th>Runtime</th><th>Adds</th><th>Muls</th><th>Divs</th><th>Total</th></tr><tr><td>OriginalTerm</td><td>-</td> <td>293</td> <td>261</td> <td>0</td> <td>554</td> </tr><tr><td>sympy_cse</td><td>44.95 ms</td> <td>114</td> <td>67</td> <td>0</td> <td>181</td> </tr></table>" + "<table style=\"border:none\"><tr><th>Name</th><th>Runtime</th><th>Adds</th><th>Muls</th><th>Divs</th><th>Total</th></tr><tr><td>OriginalTerm</td><td>-</td> <td>293</td> <td>261</td> <td>0</td> <td>554</td> </tr><tr><td>sympy_cse</td><td>45.13 ms</td> <td>114</td> <td>67</td> <td>0</td> <td>181</td> </tr></table>" ], "text/plain": [ - "<pystencils.simp.simplificationstrategy.SimplificationStrategy.create_simplification_report.<locals>.Report at 0x7fc9d1dd6610>" + "<pystencils.simp.simplificationstrategy.SimplificationStrategy.create_simplification_report.<locals>.Report at 0x7f3aca401190>" ] }, "execution_count": 9, @@ -363,7 +364,7 @@ "<h5 style=\"padding-bottom:10px\">Initial Version</h5> <div style=\"padding-left:20px;\">$$d_{7} \\leftarrow f_{7} + forceTerm_{7} - \\frac{\\omega \\left(- f_{5} - f_{6} + f_{7} + f_{8} + \\frac{\\rho u_{1}}{3}\\right)}{4} + \\frac{\\omega \\left(f_{5} - f_{6} - f_{7} + f_{8} + \\rho u_{0} u_{1}\\right)}{4} - \\frac{\\omega \\left(f_{5} - f_{6} + f_{7} - f_{8} + \\frac{\\rho u_{0}}{3}\\right)}{4} + \\frac{\\omega \\left(- f_{5} - f_{6} - f_{7} - f_{8} + \\frac{\\rho u_{0}^{2}}{3} + \\frac{\\rho u_{1}^{2}}{3} + \\frac{\\rho}{9}\\right)}{4}$$</div><h5 style=\"padding-bottom:10px\">expand</h5> <div style=\"padding-left:20px;\">$$d_{7} \\leftarrow - f_{7} \\omega + f_{7} + forceTerm_{7} + \\frac{\\omega \\rho u_{0}^{2}}{12} + \\frac{\\omega \\rho u_{0} u_{1}}{4} - \\frac{\\omega \\rho u_{0}}{12} + \\frac{\\omega \\rho u_{1}^{2}}{12} - \\frac{\\omega \\rho u_{1}}{12} + \\frac{\\omega \\rho}{36}$$</div><h5 style=\"padding-bottom:10px\">replace_second_order_velocity_products</h5> <div style=\"padding-left:20px;\">$$d_{7} \\leftarrow - f_{7} \\omega + f_{7} + forceTerm_{7} + \\frac{\\omega \\rho u_{0}^{2}}{12} - \\frac{\\omega \\rho u_{0}}{12} + \\frac{\\omega \\rho u_{1}^{2}}{12} - \\frac{\\omega \\rho u_{1}}{12} + \\frac{\\omega \\rho \\left(u0Pu1^{2} - u_{0}^{2} - u_{1}^{2}\\right)}{8} + \\frac{\\omega \\rho}{36}$$</div><h5 style=\"padding-bottom:10px\">expand</h5> <div style=\"padding-left:20px;\">$$d_{7} \\leftarrow - f_{7} \\omega + f_{7} + forceTerm_{7} + \\frac{\\omega \\rho u0Pu1^{2}}{8} - \\frac{\\omega \\rho u_{0}^{2}}{24} - \\frac{\\omega \\rho u_{0}}{12} - \\frac{\\omega \\rho u_{1}^{2}}{24} - \\frac{\\omega \\rho u_{1}}{12} + \\frac{\\omega \\rho}{36}$$</div><h5 style=\"padding-bottom:10px\">factor_relaxation_rates</h5> <div style=\"padding-left:20px;\">$$d_{7} \\leftarrow f_{7} + forceTerm_{7} + \\omega \\left(- f_{7} + \\frac{\\rho u0Pu1^{2}}{8} - \\frac{\\rho u_{0}^{2}}{24} - \\frac{\\rho u_{0}}{12} - \\frac{\\rho u_{1}^{2}}{24} - \\frac{\\rho u_{1}}{12} + \\frac{\\rho}{36}\\right)$$</div><h5 style=\"padding-bottom:10px\">replace_density_and_velocity</h5> <div style=\"padding-left:20px;\">$$d_{7} \\leftarrow f_{7} + forceTerm_{7} + \\omega \\left(- f_{7} + \\frac{\\rho u0Pu1^{2}}{8} - \\frac{\\rho u_{0}^{2}}{24} - \\frac{\\rho u_{0}}{12} - \\frac{\\rho u_{1}^{2}}{24} - \\frac{\\rho u_{1}}{12} + \\frac{\\rho}{36}\\right)$$</div><h5 style=\"padding-bottom:10px\">replace_common_quadratic_and_constant_term</h5> <div style=\"padding-left:20px;\">$$d_{7} \\leftarrow f_{7} + forceTerm_{7} + \\omega \\left(- f_{7} + \\frac{f_{eq common}}{36} + \\frac{\\rho u0Pu1^{2}}{8} - \\frac{\\rho u_{0}}{12} - \\frac{\\rho u_{1}}{12}\\right)$$</div><h5 style=\"padding-bottom:10px\">factor_density_after_factoring_relaxation_times</h5> <div style=\"padding-left:20px;\">$$d_{7} \\leftarrow f_{7} + forceTerm_{7} + \\omega \\left(- f_{7} + \\frac{f_{eq common}}{36} + \\rho \\left(\\frac{u0Pu1^{2}}{8} - \\frac{u_{0}}{12} - \\frac{u_{1}}{12}\\right)\\right)$$</div><h5 style=\"padding-bottom:10px\">subexpression_substitution_in_main_assignments</h5> <div style=\"padding-left:20px;\">$$d_{7} \\leftarrow f_{7} + forceTerm_{7} + \\omega \\left(- f_{7} + \\frac{f_{eq common}}{36} + \\rho \\left(\\frac{u0Pu1^{2}}{8} - \\frac{u0Pu1}{12}\\right)\\right)$$</div><h5 style=\"padding-bottom:10px\">add_subexpressions_for_divisions</h5> <div style=\"padding-left:20px;\">$$d_{7} \\leftarrow f_{7} + forceTerm_{7} + \\omega \\left(- f_{7} + \\frac{f_{eq common}}{36} + \\rho \\left(\\frac{u0Pu1^{2}}{8} - \\frac{u0Pu1}{12}\\right)\\right)$$</div><h5 style=\"padding-bottom:10px\">sympy_cse</h5> <div style=\"padding-left:20px;\">$$d_{7} \\leftarrow f_{7} + forceTerm_{7} + \\omega \\left(\\rho \\left(- \\xi_{95} + \\xi_{96}\\right) + \\xi_{64} + \\xi_{92}\\right)$$</div>" ], "text/plain": [ - "<pystencils.simp.simplificationstrategy.SimplificationStrategy.show_intermediate_results.<locals>.IntermediateResults at 0x7fc9d1da2880>" + "<pystencils.simp.simplificationstrategy.SimplificationStrategy.show_intermediate_results.<locals>.IntermediateResults at 0x7f3aca39b160>" ] }, "execution_count": 11, diff --git a/doc/sphinx/lbmpy.bib b/doc/sphinx/lbmpy.bib index 55a756d145e174d616bbcea53726923c49379eaf..83163c4d84fb34cfe45c9a6132fee546ba92a663 100644 --- a/doc/sphinx/lbmpy.bib +++ b/doc/sphinx/lbmpy.bib @@ -73,7 +73,6 @@ keywords = {lbm,multiphase,phasefield}, mendeley-tags = {lbm,multiphase,phasefield}, pages = {1--11}, title = {{Ternary free-energy lattice Boltzmann model with tunable surface tensions and contact angles}}, -volume = {033305}, year = {2016} } @@ -81,21 +80,27 @@ year = {2016} author = {Geier, Martin and Sch{\"{o}}nherr, Martin and Pasquali, Andrea and Krafczyk, Manfred}, title = {{The cumulant lattice Boltzmann equation in three dimensions: Theory and validation}}, journal = {Computers \& Mathematics with Applications}, +volume = {70}, +number = {4}, +pages = {507-547}, year = {2015}, -doi = {10.1016/j.camwa.2015.05.001} +issn = {0898-1221}, +doi = {10.1016/j.camwa.2015.05.001}, } @Article{Coreixas2019, - author = {Christophe Coreixas and Bastien Chopard and Jonas Latt}, - journal = {Physical Review E}, - title = {Comprehensive comparison of collision models in the lattice Boltzmann framework: Theoretical investigations}, - year = {2019}, - month = {sep}, - number = {3}, - pages = {033305}, - volume = {100}, - doi = {10.1103/physreve.100.033305}, - publisher = {American Physical Society ({APS})}, + title = {Comprehensive comparison of collision models in the lattice Boltzmann framework: Theoretical investigations}, + author = {Coreixas, Christophe and Chopard, Bastien and Latt, Jonas}, + journal = {Phys. Rev. E}, + volume = {100}, + issue = {3}, + pages = {033305}, + numpages = {46}, + year = {2019}, + month = {Sep}, + publisher = {American Physical Society}, + doi = {10.1103/PhysRevE.100.033305}, + url = {https://link.aps.org/doi/10.1103/PhysRevE.100.033305} } @PhdThesis{Geier2006, @@ -104,3 +109,14 @@ doi = {10.1016/j.camwa.2015.05.001} title = {Ab inito derivation of the cascaded lattice Boltzmann automaton}, year = {2006}, } + +@article{Fakhari2018, +title = {A phase-field lattice {Boltzmann} model for simulating multiphase flows in porous media: Application and comparison to experiments of {CO2} sequestration at pore scale}, +journal = {Advances in Water Resources}, +volume = {114}, +pages = {119-134}, +year = {2018}, +issn = {0309-1708}, +doi = {10.1016/j.advwatres.2018.02.005}, +author = {Fakhari, A. and Li, Y. and Bolster, D. and Christensen, K. T.}, +} diff --git a/doc/sphinx/maxwellian_equilibrium.rst b/doc/sphinx/maxwellian_equilibrium.rst index b2656cb6eb62b11eafa6e60ce82a617904a15d2d..3d9a3b2d98a5ede09cd145babd71d1ded6f375ee 100644 --- a/doc/sphinx/maxwellian_equilibrium.rst +++ b/doc/sphinx/maxwellian_equilibrium.rst @@ -11,7 +11,7 @@ Maxwellian Equilibrium .. autofunction:: lbmpy.maxwellian_equilibrium.continuous_maxwellian_equilibrium - .. autofunction:: lbmpy.maxwellian_equilibrium.get_moments_of_continuous_maxwellian_equilibrium + .. autofunction:: lbmpy.maxwellian_equilibrium.get_equilibrium_values_of_maxwell_boltzmann_function .. autofunction:: lbmpy.maxwellian_equilibrium.get_moments_of_discrete_maxwellian_equilibrium diff --git a/doc/sphinx/tutorials.rst b/doc/sphinx/tutorials.rst index 0a8f6e3c429fa5c905d7ec779612b3e695b0c309..4d7f260b31982cb241b3785be4d6fa90998fb679 100644 --- a/doc/sphinx/tutorials.rst +++ b/doc/sphinx/tutorials.rst @@ -17,6 +17,7 @@ You can open the notebooks directly to play around with the code examples. /notebooks/07_tutorial_thermal_lbm.ipynb /notebooks/08_tutorial_shanchen_twophase.ipynb /notebooks/09_tutorial_shanchen_twocomponent.ipynb + /notebooks/10_tutorial_conservative_allen_cahn_two_phase.ipynb /notebooks/demo_stencils.ipynb /notebooks/demo_create_method_from_scratch.ipynb /notebooks/demo_moments_cumulants_and_maxwellian_equilibrium.ipynb diff --git a/lbmpy/continuous_distribution_measures.py b/lbmpy/continuous_distribution_measures.py index c89960fa8935cd317291780fbc2ca84c22c989b7..461967bbcfbe68db2930e480a092c8465e5b1582 100644 --- a/lbmpy/continuous_distribution_measures.py +++ b/lbmpy/continuous_distribution_measures.py @@ -6,11 +6,11 @@ import sympy as sp from lbmpy.moments import polynomial_to_exponent_representation from pystencils.cache import disk_cache, memorycache -from pystencils.sympyextensions import complete_the_squares_in_exp +from pystencils.sympyextensions import complete_the_squares_in_exp, scalar_product @memorycache() -def moment_generating_function(generating_function, symbols, symbols_in_result): +def moment_generating_function(generating_function, symbols, symbols_in_result, velocity=None): r""" Computes the moment generating function of a probability distribution. It is defined as: @@ -21,6 +21,8 @@ def moment_generating_function(generating_function, symbols, symbols_in_result): generating_function: sympy expression symbols: a sequence of symbols forming the vector x symbols_in_result: a sequence forming the vector t + velocity: if the generating function generates central moments, the velocity needs to be substracted. Thus the + velocity symbols need to be passed. All generating functions need to have the same parameters. Returns: transformation result F: an expression that depends now on symbols_in_result @@ -55,9 +57,27 @@ def moment_generating_function(generating_function, symbols, symbols_in_result): return sp.simplify(result) -def cumulant_generating_function(func, symbols, symbols_in_result): +def central_moment_generating_function(func, symbols, symbols_in_result, velocity=sp.symbols("u_:3")): + r""" + Computes central moment generating func, which is defined as: + + .. math :: + K( \vec{\Xi} ) = \exp ( - \vec{\Xi} \cdot \vec{u} ) M( \vec{\Xi}. + + For parameter description see :func:`moment_generating_function`. """ - Computes cumulant generating func, which is the logarithm of the moment generating func. + argument = - scalar_product(symbols_in_result, velocity) + + return sp.exp(argument) * moment_generating_function(func, symbols, symbols_in_result) + + +def cumulant_generating_function(func, symbols, symbols_in_result, velocity=None): + r""" + Computes cumulant generating func, which is the logarithm of the moment generating func: + + .. math :: + C(\vec{\Xi}) = \log M(\vec{\Xi}) + For parameter description see :func:`moment_generating_function`. """ return sp.ln(moment_generating_function(func, symbols, symbols_in_result)) @@ -93,16 +113,16 @@ def multi_differentiation(generating_function, index, symbols): @memorycache(maxsize=512) -def __continuous_moment_or_cumulant(func, moment, symbols, generating_function): +def __continuous_moment_or_cumulant(func, moment, symbols, generating_function, velocity=sp.symbols("u_:3")): if type(moment) is tuple and not symbols: symbols = sp.symbols("xvar yvar zvar") dim = len(moment) if type(moment) is tuple else len(symbols) # not using sp.Dummy here - since it prohibits caching - t = tuple([sp.Symbol("tmpvar_%d" % i, ) for i in range(dim)]) + t = sp.symbols(f"tmpvar_:{dim}") symbols = symbols[:dim] - generating_function = generating_function(func, symbols, t) + generating_function = generating_function(func, symbols, t, velocity=velocity) if type(moment) is tuple: return multi_differentiation(generating_function, moment, t) @@ -128,6 +148,18 @@ def continuous_moment(func, moment, symbols=None): return __continuous_moment_or_cumulant(func, moment, symbols, moment_generating_function) +def continuous_central_moment(func, moment, symbols=None, velocity=sp.symbols("u_:3")): + """Computes central moment of given function. + + Args: + func: function to compute moments of + moment: tuple or polynomial describing the moment + symbols: if moment is given as polynomial, pass the moment symbols, i.e. the dof of the polynomial + """ + return __continuous_moment_or_cumulant(func, moment, symbols, central_moment_generating_function, + velocity=velocity) + + def continuous_cumulant(func, moment, symbols=None): """Computes cumulant of continuous function. diff --git a/lbmpy/creationfunctions.py b/lbmpy/creationfunctions.py index 78d48ad416a208c2f7bd028c3f88d9614698706c..a08f9ad9d7713002c9797aea24b816e090faf6ac 100644 --- a/lbmpy/creationfunctions.py +++ b/lbmpy/creationfunctions.py @@ -198,7 +198,8 @@ import lbmpy.forcemodels as forcemodels import lbmpy.methods.centeredcumulant.force_model as cumulant_force_model from lbmpy.fieldaccess import CollideOnlyInplaceAccessor, PdfFieldAccessor, PeriodicTwoFieldsAccessor from lbmpy.fluctuatinglb import add_fluctuations_to_collision_rule -from lbmpy.methods import (create_mrt_orthogonal, create_mrt_raw, create_srt, create_trt, create_trt_kbc) +from lbmpy.methods import (create_mrt_orthogonal, create_mrt_raw, create_central_moment, + create_srt, create_trt, create_trt_kbc) from lbmpy.methods.abstractlbmethod import RelaxationInfo from lbmpy.methods.centeredcumulant import CenteredCumulantBasedLbMethod from lbmpy.methods.momentbased.moment_transforms import PdfsToCentralMomentsByShiftMatrix @@ -417,7 +418,7 @@ def create_lb_method(**params): 'equilibrium_order': params['equilibrium_order'], 'force_model': force_model, 'maxwellian_moments': params['maxwellian_moments'], - 'c_s_sq': params['c_s_sq'], + 'c_s_sq': params['c_s_sq'] } cumulant_params = { @@ -454,6 +455,8 @@ def create_lb_method(**params): nested_moments = params['nested_moments'] if 'nested_moments' in params else None method = create_mrt_orthogonal(stencil_entries, relaxation_rate_getter, weighted=weighted, nested_moments=nested_moments, **common_params) + elif method_name.lower() == 'central_moment': + method = create_central_moment(stencil_entries, relaxation_rates, **common_params) elif method_name.lower() == 'mrt_raw': method = create_mrt_raw(stencil_entries, relaxation_rates, **common_params) elif method_name.lower().startswith('trt-kbc-n'): @@ -529,7 +532,7 @@ def force_model_from_string(force_model_name, force_values): 'silva': forcemodels.Buick, 'edm': forcemodels.EDM, 'schiller': forcemodels.Schiller, - 'cumulant': cumulant_force_model.CenteredCumulantForceModel + 'cumulant': cumulant_force_model.CenteredCumulantForceModel, } if force_model_name.lower() not in force_model_dict: raise ValueError("Unknown force model %s" % (force_model_name,)) @@ -682,6 +685,6 @@ def update_with_default_parameters(params, opt_params=None, fail_on_unknown_para stencil_entries = stencil_param else: stencil_entries = get_stencil(params_result['stencil']) - params_result['relaxation_rates'] = sp.symbols("omega_:%d" % len(stencil_entries)) + params_result['relaxation_rates'] = sp.symbols(f"omega_:{len(stencil_entries)}") return params_result, opt_params_result diff --git a/lbmpy/cumulants.py b/lbmpy/cumulants.py index 954463609df654f5a8b1c44632ee59f6f50ac7ab..e4c084f78a1deaa1aa95ce648727acd8a800b185 100644 --- a/lbmpy/cumulants.py +++ b/lbmpy/cumulants.py @@ -124,7 +124,7 @@ def discrete_cumulant(func, cumulant, stencil): assert len(stencil) == len(func) dim = len(stencil[0]) - wave_numbers = tuple([sp.Symbol("Xi_%d" % (i,)) for i in range(dim)]) + wave_numbers = sp.symbols(f"Xi_:{dim}") generating_function = __get_discrete_cumulant_generating_function(func, stencil, wave_numbers) if type(cumulant) is tuple: diff --git a/lbmpy/maxwellian_equilibrium.py b/lbmpy/maxwellian_equilibrium.py index a210ceeb9f25807f04d81feb4c498937e24bbb05..e719e7c53898f851b9d8c26bfaa951a2fb9451b8 100644 --- a/lbmpy/maxwellian_equilibrium.py +++ b/lbmpy/maxwellian_equilibrium.py @@ -10,6 +10,10 @@ import sympy as sp from sympy import Rational as R from pystencils.cache import disk_cache +from pystencils.sympyextensions import remove_higher_order_terms + +from lbmpy.moments import MOMENT_SYMBOLS +from lbmpy.continuous_distribution_measures import continuous_moment, continuous_central_moment, continuous_cumulant def get_weights(stencil, c_s_sq=sp.Rational(1, 3)): @@ -50,7 +54,7 @@ get_weights.weights = { @disk_cache -def discrete_maxwellian_equilibrium(stencil, rho=sp.Symbol("rho"), u=tuple(sp.symbols("u_0 u_1 u_2")), order=2, +def discrete_maxwellian_equilibrium(stencil, rho=sp.Symbol("rho"), u=sp.symbols("u_:3"), order=2, c_s_sq=sp.Symbol("c_s") ** 2, compressible=True): """ Returns the common discrete LBM equilibrium as a list of sympy expressions @@ -101,18 +105,19 @@ def discrete_maxwellian_equilibrium(stencil, rho=sp.Symbol("rho"), u=tuple(sp.sy @disk_cache -def generate_equilibrium_by_matching_moments(stencil, moments, rho=sp.Symbol("rho"), u=tuple(sp.symbols("u_0 u_1 u_2")), +def generate_equilibrium_by_matching_moments(stencil, moments, rho=sp.Symbol("rho"), u=sp.symbols("u_:3"), c_s_sq=sp.Symbol("c_s") ** 2, order=None): """ Computes discrete equilibrium, by setting the discrete moments to values taken from the continuous Maxwellian. The number of moments has to match the number of directions in the stencil. For documentation of other parameters - see :func:`get_moments_of_continuous_maxwellian_equilibrium` + see :func:`get_equilibrium_values_of_maxwell_boltzmann_function` """ from lbmpy.moments import moment_matrix dim = len(stencil[0]) Q = len(stencil) assert len(moments) == Q, "Moment count(%d) does not match stencil size(%d)" % (len(moments), Q) - continuous_moments_vector = get_moments_of_continuous_maxwellian_equilibrium(moments, dim, rho, u, c_s_sq, order) + continuous_moments_vector = get_equilibrium_values_of_maxwell_boltzmann_function(moments, dim, rho, u, c_s_sq, + order, space="moment") continuous_moments_vector = sp.Matrix(continuous_moments_vector) M = moment_matrix(moments, stencil) assert M.rank() == Q, "Rank of moment matrix (%d) does not match stencil size (%d)" % (M.rank(), Q) @@ -121,8 +126,8 @@ def generate_equilibrium_by_matching_moments(stencil, moments, rho=sp.Symbol("rh @disk_cache def continuous_maxwellian_equilibrium(dim=3, rho=sp.Symbol("rho"), - u=tuple(sp.symbols("u_0 u_1 u_2")), - v=tuple(sp.symbols("v_0 v_1 v_2")), + u=sp.symbols("u_:3"), + v=sp.symbols("v_:3"), c_s_sq=sp.Symbol("c_s") ** 2): """ Returns sympy expression of Maxwell Boltzmann distribution @@ -141,15 +146,14 @@ def continuous_maxwellian_equilibrium(dim=3, rho=sp.Symbol("rho"), return rho / (2 * sp.pi * c_s_sq) ** (sp.Rational(dim, 2)) * sp.exp(- vel_term / (2 * c_s_sq)) -# -------------------------------- Equilibrium moments/cumulants ------------------------------------------------------ - - +# -------------------------------- Equilibrium moments ---------------------------------------------------------------- @disk_cache -def get_moments_of_continuous_maxwellian_equilibrium(moments, dim, rho=sp.Symbol("rho"), - u=tuple(sp.symbols("u_0 u_1 u_2")), - c_s_sq=sp.Symbol("c_s") ** 2, order=None): +def get_equilibrium_values_of_maxwell_boltzmann_function(moments, dim, rho=sp.Symbol("rho"), + u=sp.symbols("u_:3"), + c_s_sq=sp.Symbol("c_s") ** 2, order=None, + space="moment"): """ - Computes moments of the continuous Maxwell Boltzmann equilibrium distribution + Computes equilibrium values from the continuous Maxwell Boltzmann equilibrium. Args: moments: moments to compute, either in polynomial or exponent-tuple form @@ -159,19 +163,27 @@ def get_moments_of_continuous_maxwellian_equilibrium(moments, dim, rho=sp.Symbol c_s_sq: symbol for speed of sound squared, defaults to symbol c_s**2 order: if this parameter is not None, terms that have a higher polynomial order in the macroscopic velocity are removed + space: function space of the equilibrium values. Either moment, central moment or cumulant space are supported. - >>> get_moments_of_continuous_maxwellian_equilibrium( ( (0,0,0), (1,0,0), (0,1,0), (0,0,1), (2,0,0) ), dim=3 ) + >>> get_equilibrium_values_of_maxwell_boltzmann_function( ( (0,0,0), (1,0,0), (0,1,0), (0,0,1), (2,0,0) ), dim=3 ) [rho, rho*u_0, rho*u_1, rho*u_2, rho*(c_s**2 + u_0**2)] """ - from pystencils.sympyextensions import remove_higher_order_terms - from lbmpy.moments import MOMENT_SYMBOLS - from lbmpy.continuous_distribution_measures import continuous_moment - # trick to speed up sympy integration (otherwise it takes multiple minutes, or aborts): # use a positive, real symbol to represent c_s_sq -> then replace this symbol afterwards with the real c_s_sq c_s_sq_helper = sp.Symbol("csq_helper", positive=True, real=True) mb = continuous_maxwellian_equilibrium(dim, rho, u, MOMENT_SYMBOLS[:dim], c_s_sq_helper) - result = [continuous_moment(mb, moment, MOMENT_SYMBOLS[:dim]).subs(c_s_sq_helper, c_s_sq) for moment in moments] + if space == "moment": + result = [continuous_moment(mb, moment, MOMENT_SYMBOLS[:dim]).subs(c_s_sq_helper, c_s_sq) + for moment in moments] + elif space == "central moment": + result = [continuous_central_moment(mb, moment, MOMENT_SYMBOLS[:dim], velocity=u).subs(c_s_sq_helper, c_s_sq) + for moment in moments] + elif space == "cumulant": + result = [continuous_cumulant(mb, moment, MOMENT_SYMBOLS[:dim]).subs(c_s_sq_helper, c_s_sq) + for moment in moments] + else: + raise ValueError("Only moment, central moment or cumulant space are supported") + if order is not None: result = [remove_higher_order_terms(r, order=order, symbols=u) for r in result] @@ -180,7 +192,7 @@ def get_moments_of_continuous_maxwellian_equilibrium(moments, dim, rho=sp.Symbol @disk_cache def get_moments_of_discrete_maxwellian_equilibrium(stencil, moments, - rho=sp.Symbol("rho"), u=tuple(sp.symbols("u_0 u_1 u_2")), + rho=sp.Symbol("rho"), u=sp.symbols("u_:3"), c_s_sq=sp.Symbol("c_s") ** 2, order=None, compressible=True): """Compute moments of discrete maxwellian equilibrium. @@ -235,32 +247,12 @@ def compressible_to_incompressible_moment_value(term, rho, u): res += t return res - -# -------------------------------- Equilibrium moments ----------------------------------------------------------------- - - -def get_cumulants_of_continuous_maxwellian_equilibrium(cumulants, dim, rho=sp.Symbol("rho"), - u=tuple(sp.symbols("u_0 u_1 u_2")), c_s_sq=sp.Symbol("c_s") ** 2, - order=None): - from lbmpy.moments import MOMENT_SYMBOLS - from lbmpy.continuous_distribution_measures import continuous_cumulant - from pystencils.sympyextensions import remove_higher_order_terms - - # trick to speed up sympy integration (otherwise it takes multiple minutes, or aborts): - # use a positive, real symbol to represent c_s_sq -> then replace this symbol afterwards with the real c_s_sq - c_s_sq_helper = sp.Symbol("csq_helper", positive=True, real=True) - mb = continuous_maxwellian_equilibrium(dim, rho, u, MOMENT_SYMBOLS[:dim], c_s_sq_helper) - result = [continuous_cumulant(mb, cumulant, MOMENT_SYMBOLS[:dim]).subs(c_s_sq_helper, c_s_sq) - for cumulant in cumulants] - if order is not None: - result = [remove_higher_order_terms(r, order=order, symbols=u) for r in result] - - return result +# -------------------------------- Equilibrium cumulants --------------------------------------------------------------- @disk_cache def get_cumulants_of_discrete_maxwellian_equilibrium(stencil, cumulants, - rho=sp.Symbol("rho"), u=tuple(sp.symbols("u_0 u_1 u_2")), + rho=sp.Symbol("rho"), u=sp.symbols("u_:3"), c_s_sq=sp.Symbol("c_s") ** 2, order=None, compressible=True): from lbmpy.cumulants import discrete_cumulant if order is None: diff --git a/lbmpy/methods/__init__.py b/lbmpy/methods/__init__.py index 7583b3390208198375ab2173591140d8a2ccc20c..d73e0aca929fb4a0c72f9ce705636bd5a0b1ad7d 100644 --- a/lbmpy/methods/__init__.py +++ b/lbmpy/methods/__init__.py @@ -1,5 +1,5 @@ from lbmpy.methods.creationfunctions import ( - create_mrt_orthogonal, create_mrt_raw, create_srt, create_trt, create_trt_kbc, + create_mrt_orthogonal, create_mrt_raw, create_central_moment, create_srt, create_trt, create_trt_kbc, create_trt_with_magic_number, create_with_continuous_maxwellian_eq_moments, create_with_discrete_maxwellian_eq_moments, mrt_orthogonal_modes_literature, create_centered_cumulant_model, create_with_default_polynomial_cumulants, @@ -13,7 +13,7 @@ from .conservedquantitycomputation import DensityVelocityComputation __all__ = ['RelaxationInfo', 'AbstractLbMethod', 'AbstractConservedQuantityComputation', 'DensityVelocityComputation', 'create_srt', 'create_trt', 'create_trt_with_magic_number', 'create_trt_kbc', - 'create_mrt_orthogonal', 'create_mrt_raw', + 'create_mrt_orthogonal', 'create_mrt_raw', 'create_central_moment', 'create_with_continuous_maxwellian_eq_moments', 'create_with_discrete_maxwellian_eq_moments', 'mrt_orthogonal_modes_literature', 'create_centered_cumulant_model', 'create_with_default_polynomial_cumulants', 'create_with_polynomial_cumulants', diff --git a/lbmpy/methods/abstractlbmethod.py b/lbmpy/methods/abstractlbmethod.py index 8bdd0606bb5e42126217a9f7f6946229b54945f6..07f36344c4d7299cc7d530b473e801256d7cbf75 100644 --- a/lbmpy/methods/abstractlbmethod.py +++ b/lbmpy/methods/abstractlbmethod.py @@ -32,12 +32,12 @@ class AbstractLbMethod(abc.ABC): @property def pre_collision_pdf_symbols(self): """Tuple of symbols representing the pdf values before collision""" - return sp.symbols("f_:%d" % (len(self.stencil),)) + return sp.symbols(f"f_:{len(self.stencil)}") @property def post_collision_pdf_symbols(self): """Tuple of symbols representing the pdf values after collision""" - return sp.symbols("d_:%d" % (len(self.stencil),)) + return sp.symbols(f"d_:{len(self.stencil)}") # ------------------------- Abstract Methods & Properties ---------------------------------------------------------- diff --git a/lbmpy/methods/centeredcumulant/centered_cumulants.py b/lbmpy/methods/centeredcumulant/centered_cumulants.py index 7c7d2db04a608a0dd48bc63c04065d0738c8a6a3..8572db1c28c97d9160f99e5aa065fd8d204fa73b 100644 --- a/lbmpy/methods/centeredcumulant/centered_cumulants.py +++ b/lbmpy/methods/centeredcumulant/centered_cumulants.py @@ -6,10 +6,6 @@ from pystencils.stencil import have_same_entries from lbmpy.moments import MOMENT_SYMBOLS, moment_sort_key, exponent_to_polynomial_representation -def statistical_quantity_symbol(name, exponents): - return sp.Symbol(f'{name}_{"".join(str(i) for i in exponents)}') - - def exponent_tuple_sort_key(x): return moment_sort_key(exponent_to_polynomial_representation(x)) diff --git a/lbmpy/methods/centeredcumulant/centeredcumulantmethod.py b/lbmpy/methods/centeredcumulant/centeredcumulantmethod.py index 27f2202ed7b6bc6e711b3c4439abeca4f341ce7b..099f8ee0c9bfe829803108b4d9fe5073fec0d54b 100644 --- a/lbmpy/methods/centeredcumulant/centeredcumulantmethod.py +++ b/lbmpy/methods/centeredcumulant/centeredcumulantmethod.py @@ -14,12 +14,12 @@ from lbmpy.methods.conservedquantitycomputation import AbstractConservedQuantity from lbmpy.moments import ( moments_up_to_order, get_order, monomial_to_polynomial_transformation_matrix, - moment_sort_key, exponent_to_polynomial_representation, extract_monomials, MOMENT_SYMBOLS) + moment_sort_key, exponent_to_polynomial_representation, extract_monomials, MOMENT_SYMBOLS, + statistical_quantity_symbol) # Local Imports -from lbmpy.methods.centeredcumulant.centered_cumulants import ( - statistical_quantity_symbol, exponent_tuple_sort_key) +from lbmpy.methods.centeredcumulant.centered_cumulants import exponent_tuple_sort_key from lbmpy.methods.centeredcumulant.cumulant_transform import ( PRE_COLLISION_CUMULANT, POST_COLLISION_CUMULANT, @@ -429,7 +429,7 @@ class CenteredCumulantBasedLbMethod(AbstractLbMethod): if self._force_model is not None and \ not isinstance(self._force_model, CenteredCumulantForceModel) and include_force_terms: force_model_terms = self._force_model(self) - force_term_symbols = sp.symbols("forceTerm_:%d" % (len(force_model_terms, ))) + force_term_symbols = sp.symbols(f"forceTerm_:{len(force_model_terms)}") force_subexpressions = [Assignment(sym, force_model_term) for sym, force_model_term in zip(force_term_symbols, force_model_terms)] subexpressions += force_subexpressions diff --git a/lbmpy/methods/centeredcumulant/cumulant_transform.py b/lbmpy/methods/centeredcumulant/cumulant_transform.py index f054856680b9d6d2db5118d87857133d2c77c43b..6ec8d95520c91a03e6578bccb708cf9d4eab73cf 100644 --- a/lbmpy/methods/centeredcumulant/cumulant_transform.py +++ b/lbmpy/methods/centeredcumulant/cumulant_transform.py @@ -5,13 +5,11 @@ from pystencils import Assignment, AssignmentCollection from pystencils.simp import SimplificationStrategy, add_subexpressions_for_divisions from pystencils.simp.assignment_collection import SymbolGen -from lbmpy.moments import moments_up_to_order, get_order +from lbmpy.moments import moments_up_to_order, get_order, statistical_quantity_symbol from itertools import product, chain -from lbmpy.methods.centeredcumulant.centered_cumulants import ( - statistical_quantity_symbol, exponent_tuple_sort_key -) +from lbmpy.methods.centeredcumulant.centered_cumulants import exponent_tuple_sort_key from lbmpy.methods.momentbased.moment_transforms import ( AbstractMomentTransform, PRE_COLLISION_CENTRAL_MOMENT, POST_COLLISION_CENTRAL_MOMENT ) diff --git a/lbmpy/methods/centeredcumulant/galilean_correction.py b/lbmpy/methods/centeredcumulant/galilean_correction.py index 788289ab148610a6d3336118e462a71cb6f38a27..c5550536cb5ecff4417753735ca7586d4abac730 100644 --- a/lbmpy/methods/centeredcumulant/galilean_correction.py +++ b/lbmpy/methods/centeredcumulant/galilean_correction.py @@ -2,8 +2,7 @@ from pystencils.simp.assignment_collection import AssignmentCollection import sympy as sp from pystencils import Assignment -from lbmpy.moments import MOMENT_SYMBOLS -from lbmpy.methods.centeredcumulant.centered_cumulants import statistical_quantity_symbol +from lbmpy.moments import MOMENT_SYMBOLS, statistical_quantity_symbol from lbmpy.methods.centeredcumulant.cumulant_transform import PRE_COLLISION_CUMULANT x, y, z = MOMENT_SYMBOLS diff --git a/lbmpy/methods/creationfunctions.py b/lbmpy/methods/creationfunctions.py index 55aede9b11d236d07f3325dd5571815893505fe1..0c9234bc74fa04dfbab142be8ed95bc2ea651817 100644 --- a/lbmpy/methods/creationfunctions.py +++ b/lbmpy/methods/creationfunctions.py @@ -6,8 +6,7 @@ from functools import reduce import sympy as sp from lbmpy.maxwellian_equilibrium import ( - compressible_to_incompressible_moment_value, get_cumulants_of_continuous_maxwellian_equilibrium, - get_moments_of_continuous_maxwellian_equilibrium, + compressible_to_incompressible_moment_value, get_equilibrium_values_of_maxwell_boltzmann_function, get_moments_of_discrete_maxwellian_equilibrium, get_weights) from lbmpy.methods.abstractlbmethod import RelaxationInfo @@ -19,13 +18,14 @@ from lbmpy.methods.centeredcumulant.cumulant_transform import CentralMomentsToCu from lbmpy.methods.conservedquantitycomputation import DensityVelocityComputation from lbmpy.methods.momentbased.momentbasedmethod import MomentBasedLbMethod -from lbmpy.methods.momentbased.moment_transforms import PdfsToCentralMomentsByShiftMatrix +from lbmpy.methods.momentbased.centralmomentbasedmethod import CentralMomentBasedLbMethod +from lbmpy.methods.momentbased.moment_transforms import FastCentralMomentTransform from lbmpy.moments import ( MOMENT_SYMBOLS, discrete_moment, exponents_to_polynomial_representations, get_default_moment_set_for_stencil, gram_schmidt, is_even, moments_of_order, moments_up_to_component_order, sort_moments_into_groups_of_same_order, - is_bulk_moment, is_shear_moment, get_order) + is_bulk_moment, is_shear_moment, get_order, set_up_shift_matrix) from lbmpy.relaxationrates import relaxation_rate_from_magic_number from lbmpy.stencils import get_stencil @@ -34,7 +34,9 @@ from pystencils.sympyextensions import common_denominator def create_with_discrete_maxwellian_eq_moments(stencil, moment_to_relaxation_rate_dict, compressible=False, - force_model=None, equilibrium_order=2, c_s_sq=sp.Rational(1, 3)): + force_model=None, equilibrium_order=2, c_s_sq=sp.Rational(1, 3), + central_moment_space=False, + central_moment_transform_class=FastCentralMomentTransform): r"""Creates a moment-based LBM by taking a list of moments with corresponding relaxation rate. These moments are relaxed against the moments of the discrete Maxwellian distribution. @@ -51,6 +53,10 @@ def create_with_discrete_maxwellian_eq_moments(stencil, moment_to_relaxation_rat force_model: force model instance, or None if no external forces equilibrium_order: approximation order of macroscopic velocity :math:`\mathbf{u}` in the equilibrium c_s_sq: Speed of sound squared + central_moment_space: If set to True and instance of + `lbmpy.methods.momentbased.centralmomentbasedmethod.CentralMomentBasedLbMethod` is returned. + Thus the collision will be performed in the central moment space. + central_moment_transform_class: class to transform PDFs to the central moment space. Returns: `lbmpy.methods.momentbased.MomentBasedLbMethod` instance @@ -62,18 +68,29 @@ def create_with_discrete_maxwellian_eq_moments(stencil, moment_to_relaxation_rat "The number of moments has to be the same as the number of stencil entries" density_velocity_computation = DensityVelocityComputation(stencil, compressible, force_model) - eq_values = get_moments_of_discrete_maxwellian_equilibrium(stencil, tuple(mom_to_rr_dict.keys()), + + moments = tuple(mom_to_rr_dict.keys()) + eq_values = get_moments_of_discrete_maxwellian_equilibrium(stencil, moments, c_s_sq=c_s_sq, compressible=compressible, order=equilibrium_order) + if central_moment_space: + N = set_up_shift_matrix(moments, stencil) + eq_values = sp.simplify(N * sp.Matrix(eq_values)) rr_dict = OrderedDict([(mom, RelaxationInfo(eq_mom, rr)) for mom, rr, eq_mom in zip(mom_to_rr_dict.keys(), mom_to_rr_dict.values(), eq_values)]) - return MomentBasedLbMethod(stencil, rr_dict, density_velocity_computation, force_model) + if central_moment_space: + return CentralMomentBasedLbMethod(stencil, rr_dict, density_velocity_computation, + force_model, central_moment_transform_class) + else: + return MomentBasedLbMethod(stencil, rr_dict, density_velocity_computation, force_model) def create_with_continuous_maxwellian_eq_moments(stencil, moment_to_relaxation_rate_dict, compressible=False, - force_model=None, equilibrium_order=2, c_s_sq=sp.Rational(1, 3)): + force_model=None, equilibrium_order=2, c_s_sq=sp.Rational(1, 3), + central_moment_space=False, + central_moment_transform_class=FastCentralMomentTransform): r""" Creates a moment-based LBM by taking a list of moments with corresponding relaxation rate. These moments are relaxed against the moments of the continuous Maxwellian distribution. @@ -92,6 +109,10 @@ def create_with_continuous_maxwellian_eq_moments(stencil, moment_to_relaxation_r force_model: force model instance, or None if no external forces equilibrium_order: approximation order of macroscopic velocity :math:`\mathbf{u}` in the equilibrium c_s_sq: Speed of sound squared + central_moment_space: If set to True and instance of + `lbmpy.methods.momentbased.centralmomentbasedmethod.CentralMomentBasedLbMethod` is returned. + Thus the collision will be performend in the central moment space. + central_moment_transform_class: class to transform PDFs to the central moment space. Returns: `lbmpy.methods.momentbased.MomentBasedLbMethod` instance @@ -102,18 +123,32 @@ def create_with_continuous_maxwellian_eq_moments(stencil, moment_to_relaxation_r assert len(mom_to_rr_dict) == len(stencil), "The number of moments has to be equal to the number of stencil entries" dim = len(stencil[0]) density_velocity_computation = DensityVelocityComputation(stencil, compressible, force_model) - eq_values = get_moments_of_continuous_maxwellian_equilibrium(tuple(mom_to_rr_dict.keys()), dim, c_s_sq=c_s_sq, - order=equilibrium_order) + moments = tuple(mom_to_rr_dict.keys()) + + if compressible and central_moment_space: + eq_values = get_equilibrium_values_of_maxwell_boltzmann_function(moments, dim, c_s_sq=c_s_sq, + order=equilibrium_order, + space="central moment") + else: + eq_values = get_equilibrium_values_of_maxwell_boltzmann_function(moments, dim, c_s_sq=c_s_sq, + order=equilibrium_order, space="moment") if not compressible: rho = density_velocity_computation.defined_symbols(order=0)[1] u = density_velocity_computation.defined_symbols(order=1)[1] eq_values = [compressible_to_incompressible_moment_value(em, rho, u) for em in eq_values] + if central_moment_space: + N = set_up_shift_matrix(moments, stencil) + eq_values = sp.simplify(N * sp.Matrix(eq_values)) rr_dict = OrderedDict([(mom, RelaxationInfo(eq_mom, rr)) for mom, rr, eq_mom in zip(mom_to_rr_dict.keys(), mom_to_rr_dict.values(), eq_values)]) - return MomentBasedLbMethod(stencil, rr_dict, density_velocity_computation, force_model) + if central_moment_space: + return CentralMomentBasedLbMethod(stencil, rr_dict, density_velocity_computation, + force_model, central_moment_transform_class) + else: + return MomentBasedLbMethod(stencil, rr_dict, density_velocity_computation, force_model) def create_generic_mrt(stencil, moment_eq_value_relaxation_rate_tuples, compressible=False, @@ -254,6 +289,45 @@ def create_mrt_raw(stencil, relaxation_rates, maxwellian_moments=False, **kwargs return create_with_discrete_maxwellian_eq_moments(stencil, rr_dict, **kwargs) +def create_central_moment(stencil, relaxation_rates, maxwellian_moments=False, **kwargs): + r""" + Creates moment based LB method where the collision takes place in the central moment space. + + Args: + stencil: nested tuple defining the discrete velocity space. See :func:`lbmpy.stencils.get_stencil` + relaxation_rates: relaxation rates (inverse of the relaxation times) for each moment + maxwellian_moments: determines if the discrete or continuous maxwellian equilibrium is + used to compute the equilibrium moments. + Returns: + :class:`lbmpy.methods.momentbased.CentralMomentBasedLbMethod` instance + """ + if isinstance(stencil, str): + stencil = get_stencil(stencil) + moments = get_default_moment_set_for_stencil(stencil) + sorted_moments = sort_moments_into_groups_of_same_order(moments) + if len(relaxation_rates) == len(sorted_moments) - 2: + relaxation_rates = [0, 0, *relaxation_rates] + + if len(relaxation_rates) == len(moments): + rr_dict = OrderedDict(zip(moments, relaxation_rates)) + elif len(relaxation_rates) == len(sorted_moments): + full_relaxation_rates_list = list() + for i in sorted_moments: + full_relaxation_rates_list.extend([relaxation_rates[i]] * len(sorted_moments[i])) + rr_dict = OrderedDict(zip(moments, full_relaxation_rates_list)) + else: + raise ValueError(f"The number of relaxation rates does not fit to the method. " + f"You can either choose {len(moments)} relaxation rates to relax every central moment with " + f"a specific value or {len(sorted_moments)} relaxation rates to relax each order of " + f"central moments or {len(sorted_moments) - 2} relaxation rates to relax the conserved " + f"moments with zero and the higher order moments with the defined values.") + + if maxwellian_moments: + return create_with_continuous_maxwellian_eq_moments(stencil, rr_dict, central_moment_space=True, **kwargs) + else: + return create_with_discrete_maxwellian_eq_moments(stencil, rr_dict, central_moment_space=True, **kwargs) + + def create_trt_kbc(dim, shear_relaxation_rate, higher_order_relaxation_rate, method_name='KBC-N4', maxwellian_moments=False, **kwargs): """ @@ -480,7 +554,7 @@ def mrt_orthogonal_modes_literature(stencil, is_weighted): def create_centered_cumulant_model(stencil, cumulant_to_rr_dict, force_model=None, equilibrium_order=None, c_s_sq=sp.Rational(1, 3), galilean_correction=False, - central_moment_transform_class=PdfsToCentralMomentsByShiftMatrix, + central_moment_transform_class=FastCentralMomentTransform, cumulant_transform_class=CentralMomentsToCumulantsByGeneratingFunc): r"""Creates a cumulant lattice Boltzmann model. @@ -526,8 +600,9 @@ def create_centered_cumulant_model(stencil, cumulant_to_rr_dict, force_model=Non cumulants_to_relaxation_info_dict[d] = RelaxationInfo(0, cumulant_to_rr_dict[d]) # Polynomial Cumulant Equilibria - polynomial_equilibria = get_cumulants_of_continuous_maxwellian_equilibrium( - higher_order_polynomials, dim, rho=density_symbol, u=velocity_symbols, c_s_sq=c_s_sq, order=equilibrium_order) + polynomial_equilibria = get_equilibrium_values_of_maxwell_boltzmann_function( + higher_order_polynomials, dim, rho=density_symbol, u=velocity_symbols, + c_s_sq=c_s_sq, order=equilibrium_order, space="cumulant") polynomial_equilibria = [density_symbol * v for v in polynomial_equilibria] for i, c in enumerate(higher_order_polynomials): diff --git a/lbmpy/methods/momentbased/centralmomentbasedmethod.py b/lbmpy/methods/momentbased/centralmomentbasedmethod.py new file mode 100644 index 0000000000000000000000000000000000000000..4e2835844e06e44cf9043aa553739199800d19a5 --- /dev/null +++ b/lbmpy/methods/momentbased/centralmomentbasedmethod.py @@ -0,0 +1,294 @@ +import sympy as sp +from collections import OrderedDict + +from pystencils import Assignment, AssignmentCollection + +from lbmpy.methods.abstractlbmethod import AbstractLbMethod, LbmCollisionRule, RelaxationInfo +from lbmpy.methods.conservedquantitycomputation import AbstractConservedQuantityComputation +from lbmpy.methods.momentbased.moment_transforms import (FastCentralMomentTransform, + PRE_COLLISION_CENTRAL_MOMENT, POST_COLLISION_CENTRAL_MOMENT) + +from lbmpy.moments import (polynomial_to_exponent_representation, MOMENT_SYMBOLS, moment_matrix, set_up_shift_matrix, + statistical_quantity_symbol) + + +def relax_central_moments(moment_indices, pre_collision_values, + relaxation_rates, equilibrium_values, + post_collision_base=POST_COLLISION_CENTRAL_MOMENT): + + post_collision_symbols = [sp.Symbol(f'{post_collision_base}_{"".join(str(i) for i in m)}') for m in moment_indices] + equilibrium_vec = sp.Matrix(equilibrium_values) + moment_vec = sp.Matrix(pre_collision_values) + relaxation_matrix = sp.diag(*relaxation_rates) + moment_vec = moment_vec + relaxation_matrix * (equilibrium_vec - moment_vec) + main_assignments = [Assignment(s, eq) for s, eq in zip(post_collision_symbols, moment_vec)] + + return AssignmentCollection(main_assignments) + +# =============================== LB Method Implementation =========================================================== + + +class CentralMomentBasedLbMethod(AbstractLbMethod): + """ + Central Moment based LBM is a class to represent the single (SRT), two (TRT) and multi relaxation time (MRT) + methods, where the collision is performed in the central moment space. + These methods work by transforming the pdfs into moment space using a linear transformation and then shiftig + them into the central moment space. In the central moment space each component (moment) is relaxed to an + equilibrium moment by a certain relaxation rate. These equilibrium moments can e.g. be determined by taking the + equilibrium moments of the continuous Maxwellian. + + Args: + stencil: see :func:`lbmpy.stencils.get_stencil` + moment_to_relaxation_info_dict: a dictionary mapping moments in either tuple or polynomial formulation + to a RelaxationInfo, which consists of the corresponding equilibrium moment + and a relaxation rate + conserved_quantity_computation: instance of :class:`lbmpy.methods.AbstractConservedQuantityComputation`. + This determines how conserved quantities are computed, and defines + the symbols used in the equilibrium moments like e.g. density and velocity + force_model: force model instance, or None if no forcing terms are required + central_moment_transform_class: class to transform PDFs to the central moment space. + """ + + def __init__(self, stencil, moment_to_relaxation_info_dict, conserved_quantity_computation=None, force_model=None, + central_moment_transform_class=FastCentralMomentTransform): + assert isinstance(conserved_quantity_computation, AbstractConservedQuantityComputation) + super(CentralMomentBasedLbMethod, self).__init__(stencil) + + self._force_model = force_model + self._moment_to_relaxation_info_dict = OrderedDict(moment_to_relaxation_info_dict.items()) + self._conserved_quantity_computation = conserved_quantity_computation + self._weights = None + self._central_moment_transform_class = central_moment_transform_class + + @property + def central_moment_transform_class(self): + return self._central_moment_transform_class + + @property + def moments(self): + return tuple(self._moment_to_relaxation_info_dict.keys()) + + @property + def moment_equilibrium_values(self): + return tuple([e.equilibrium_value for e in self._moment_to_relaxation_info_dict.values()]) + + @property + def first_order_equilibrium_moment_symbols(self, ): + return self._conserved_quantity_computation.first_order_moment_symbols + + @property + def force_model(self): + return self._force_model + + @property + def relaxation_info_dict(self): + return self._moment_to_relaxation_info_dict + + @property + def relaxation_rates(self): + return tuple([e.relaxation_rate for e in self._moment_to_relaxation_info_dict.values()]) + + @property + def zeroth_order_equilibrium_moment_symbol(self, ): + return self._conserved_quantity_computation.zeroth_order_moment_symbol + + def set_zeroth_moment_relaxation_rate(self, relaxation_rate): + e = sp.Rational(1, 1) + prev_entry = self._moment_to_relaxation_info_dict[e] + new_entry = RelaxationInfo(prev_entry[0], relaxation_rate) + self._moment_to_relaxation_info_dict[e] = new_entry + + def set_first_moment_relaxation_rate(self, relaxation_rate): + for e in MOMENT_SYMBOLS[:self.dim]: + assert e in self._moment_to_relaxation_info_dict, "First moments are not relaxed separately by this method" + for e in MOMENT_SYMBOLS[:self.dim]: + prev_entry = self._moment_to_relaxation_info_dict[e] + new_entry = RelaxationInfo(prev_entry[0], relaxation_rate) + self._moment_to_relaxation_info_dict[e] = new_entry + + def set_conserved_moments_relaxation_rate(self, relaxation_rate): + self.set_zeroth_moment_relaxation_rate(relaxation_rate) + self.set_first_moment_relaxation_rate(relaxation_rate) + + def set_force_model(self, force_model): + self._force_model = force_model + + @property + def moment_matrix(self): + return moment_matrix(self.moments, self.stencil) + + @property + def shift_matrix(self): + return set_up_shift_matrix(self.moments, self.stencil) + + @property + def relaxation_matrix(self): + d = sp.zeros(len(self.relaxation_rates)) + for i in range(0, len(self.relaxation_rates)): + d[i, i] = self.relaxation_rates[i] + return d + + def __getstate__(self): + # Workaround for a bug in joblib + self._moment_to_relaxation_info_dict_to_pickle = [i for i in self._moment_to_relaxation_info_dict.items()] + return self.__dict__ + + def _repr_html_(self): + table = """ + <table style="border:none; width: 100%"> + <tr {nb}> + <th {nb} >Central Moment</th> + <th {nb} >Eq. Value </th> + <th {nb} >Relaxation Rate</th> + </tr> + {content} + </table> + """ + content = "" + for moment, (eq_value, rr) in self._moment_to_relaxation_info_dict.items(): + vals = { + 'rr': f"${sp.latex(rr)}$", + 'cumulant': f"${sp.latex(moment)}$", + 'eq_value': f"${sp.latex(eq_value)}$", + 'nb': 'style="border:none"', + } + content += """<tr {nb}> + <td {nb}>{cumulant}</td> + <td {nb}>{eq_value}</td> + <td {nb}>{rr}</td> + </tr>\n""".format(**vals) + return table.format(content=content, nb='style="border:none"') + + # ----------------------- Overridden Abstract Members -------------------------- + + @property + def conserved_quantity_computation(self): + """Returns an instance of class :class:`lbmpy.methods.AbstractConservedQuantityComputation`""" + return self._conserved_quantity_computation + + @property + def weights(self): + """Returns a sequence of weights, one for each lattice direction""" + if self._weights is None: + self._weights = self._compute_weights() + return self._weights + + def get_equilibrium(self, conserved_quantity_equations=None, subexpressions=False, pre_simplification=False, + keep_cqc_subexpressions=True): + """Returns equation collection, to compute equilibrium values. + The equations have the post collision symbols as left hand sides and are + functions of the conserved quantities + + Args: + conserved_quantity_equations: equations to compute conserved quantities. + subexpressions: if set to false all subexpressions of the equilibrium assignments are plugged + into the main assignments + pre_simplification: with or without pre_simplifications for the calculation of the collision + keep_cqc_subexpressions: if equilibrium is returned without subexpressions keep_cqc_subexpressions + determines if also subexpressions to calculate conserved quantities should be + plugged into the main assignments + """ + r_info_dict = {c: RelaxationInfo(info.equilibrium_value, 1) + for c, info in self._moment_to_relaxation_info_dict.items()} + ac = self._central_moment_collision_rule( + r_info_dict, conserved_quantity_equations, pre_simplification) + if not subexpressions: + if keep_cqc_subexpressions: + bs = self._bound_symbols_cqc(conserved_quantity_equations) + return ac.new_without_subexpressions(subexpressions_to_keep=bs) + else: + return ac.new_without_subexpressions() + else: + return ac + + def get_equilibrium_terms(self): + equilibrium = self.get_equilibrium() + return sp.Matrix([eq.rhs for eq in equilibrium.main_assignments]) + + def get_collision_rule(self, conserved_quantity_equations=None, pre_simplification=False): + """Returns an LbmCollisionRule i.e. an equation collection with a reference to the method. + This collision rule defines the collision operator.""" + return self._central_moment_collision_rule( + self._moment_to_relaxation_info_dict, conserved_quantity_equations, pre_simplification, True) + + # ------------------------------- Internals -------------------------------------------- + + def _bound_symbols_cqc(self, conserved_quantity_equations=None): + f = self.pre_collision_pdf_symbols + cqe = conserved_quantity_equations + + if cqe is None: + cqe = self._conserved_quantity_computation.equilibrium_input_equations_from_pdfs(f) + + return cqe.bound_symbols + + def _compute_weights(self): + defaults = self._conserved_quantity_computation.default_values + cqe = AssignmentCollection([Assignment(s, e) for s, e in defaults.items()]) + eq_ac = self.get_equilibrium(cqe, subexpressions=False, keep_cqc_subexpressions=False) + + weights = [] + for eq in eq_ac.main_assignments: + value = eq.rhs.expand() + assert len(value.atoms(sp.Symbol)) == 0, "Failed to compute weights" + weights.append(value) + return weights + + def _central_moment_collision_rule(self, moment_to_relaxation_info_dict, + conserved_quantity_equations=None, + pre_simplification=False, + include_force_terms=False): + stencil = self.stencil + dim = len(self.stencil[0]) + f = self.pre_collision_pdf_symbols + density = self.zeroth_order_equilibrium_moment_symbol + velocity = self.first_order_equilibrium_moment_symbols + cqe = conserved_quantity_equations + + if cqe is None: + cqe = self._conserved_quantity_computation.equilibrium_input_equations_from_pdfs(f) + + moments_as_exponents = list() + for moment in self.moments: + _, exponent_tuple = polynomial_to_exponent_representation(moment)[0] + moments_as_exponents.append(exponent_tuple[:dim]) + + # 1) Get Forward Transformation from PDFs to central moments + pdfs_to_k_transform = self._central_moment_transform_class( + stencil, moments_as_exponents, density, velocity, conserved_quantity_equations=cqe) + pdfs_to_k_eqs = pdfs_to_k_transform.forward_transform(f, simplification=pre_simplification) + + # 2) Collision + moment_symbols = [statistical_quantity_symbol(PRE_COLLISION_CENTRAL_MOMENT, exp) + for exp in moments_as_exponents] + + relaxation_infos = [moment_to_relaxation_info_dict[m] for m in self.moments] + relaxation_rates = [info.relaxation_rate for info in relaxation_infos] + equilibrium_value = [info.equilibrium_value for info in relaxation_infos] + + collision_eqs = relax_central_moments( + moments_as_exponents, tuple(moment_symbols), + tuple(relaxation_rates), tuple(equilibrium_value)) + + # 3) Get backward transformation from central moments to PDFs + d = self.post_collision_pdf_symbols + k_post_to_pdfs_eqs = pdfs_to_k_transform.backward_transform(d, simplification=pre_simplification) + + # 4) Now, put it all together. + all_acs = [] if pdfs_to_k_transform.absorbs_conserved_quantity_equations else [cqe] + all_acs += [pdfs_to_k_eqs, collision_eqs] + subexpressions = [ac.all_assignments for ac in all_acs] + subexpressions += k_post_to_pdfs_eqs.subexpressions + main_assignments = k_post_to_pdfs_eqs.main_assignments + + # 5) Maybe add forcing terms. + if self._force_model is not None and include_force_terms: + force_model_terms = self._force_model(self) + force_term_symbols = sp.symbols(f"forceTerm_:{len(force_model_terms)}") + force_subexpressions = [Assignment(sym, force_model_term) + for sym, force_model_term in zip(force_term_symbols, force_model_terms)] + subexpressions += force_subexpressions + main_assignments = [Assignment(eq.lhs, eq.rhs + force_term_symbol) + for eq, force_term_symbol in zip(main_assignments, force_term_symbols)] + + return LbmCollisionRule(self, main_assignments, subexpressions) diff --git a/lbmpy/methods/momentbased/moment_transforms.py b/lbmpy/methods/momentbased/moment_transforms.py index e31d2e6e440f09258e3d7321c04e4fcf867d4040..1a13d8ef068bc326a41694c67600d00597f5fcc2 100644 --- a/lbmpy/methods/momentbased/moment_transforms.py +++ b/lbmpy/methods/momentbased/moment_transforms.py @@ -8,11 +8,11 @@ from pystencils.simp.assignment_collection import SymbolGen from pystencils.sympyextensions import subs_additive, fast_subs from lbmpy.moments import moment_matrix, set_up_shift_matrix, contained_moments, moments_up_to_order +from lbmpy.moments import statistical_quantity_symbol as sq_sym from lbmpy.methods.momentbased.momentbasedsimplifications import ( substitute_moments_in_conserved_quantity_equations, split_pdf_main_assignments_by_symmetry) -from lbmpy.methods.centeredcumulant.centered_cumulants import statistical_quantity_symbol as sq_sym # ============================ PDFs <-> Central Moments ============================================================== diff --git a/lbmpy/methods/momentbased/momentbasedmethod.py b/lbmpy/methods/momentbased/momentbasedmethod.py index 299faa02370f5143b03a3b59f3ca2b41c639b739..70b05a633aa385d7a6dd3b3450b3ffd57cac485a 100644 --- a/lbmpy/methods/momentbased/momentbasedmethod.py +++ b/lbmpy/methods/momentbased/momentbasedmethod.py @@ -218,7 +218,7 @@ class MomentBasedLbMethod(AbstractLbMethod): if self._forceModel is not None and include_force_terms: force_model_terms = self._forceModel(self) - force_term_symbols = sp.symbols("forceTerm_:%d" % (len(force_model_terms,))) + force_term_symbols = sp.symbols(f"forceTerm_:{len(force_model_terms)}") force_subexpressions = [Assignment(sym, force_model_term) for sym, force_model_term in zip(force_term_symbols, force_model_terms)] all_subexpressions += force_subexpressions @@ -243,7 +243,7 @@ class MomentBasedLbMethod(AbstractLbMethod): for rt in unique_relaxation_rates: rt = sp.sympify(rt) if not isinstance(rt, sp.Symbol): - rt_symbol = sp.Symbol("rr_%d" % (len(subexpressions),)) + rt_symbol = sp.Symbol(f"rr_{len(subexpressions)}") subexpressions[rt] = rt_symbol new_rr = [subexpressions[sp.sympify(e)] if sp.sympify(e) in subexpressions else e diff --git a/lbmpy/moments.py b/lbmpy/moments.py index 09a1f56ab129edeb8d9a8f78af690a9527040b7c..db3590bd1fe47d247d24ffdda629d8a76a17e4c5 100644 --- a/lbmpy/moments.py +++ b/lbmpy/moments.py @@ -191,6 +191,10 @@ def sort_moments_into_groups_of_same_order(moments): # -------------------- Common Function working with exponent tuples and polynomial moments ----------------------------- +def statistical_quantity_symbol(name, exponents): + return sp.Symbol(f'{name}_{"".join(str(i) for i in exponents)}') + + def is_even(moment): """ A moment is considered even when under sign reversal nothing changes i.e. :math:`m(-x,-y,-z) = m(x,y,z)` @@ -377,7 +381,7 @@ def moment_matrix(moments, stencil, shift_velocity=None): return sp.Matrix(len(moments), len(stencil), generator) -def set_up_shift_matrix(moments, stencil, velocity_symbols=None): +def set_up_shift_matrix(moments, stencil, velocity_symbols=sp.symbols("u_:3")): """ Sets up a shift matrix to shift raw moments to central moment space. @@ -387,13 +391,14 @@ def set_up_shift_matrix(moments, stencil, velocity_symbols=None): - stencil: Nested tuple of lattice velocities - velocity_symbols: Sequence of symbols corresponding to the shift velocity """ + # TODO: this function takes quite some time for D3Q27. Needs to be optimised x, y, z = MOMENT_SYMBOLS dim = len(stencil[0]) nr_directions = len(stencil) directions = np.asarray(stencil) - u = velocity_symbols if velocity_symbols is not None else sp.symbols(f"u_:{dim}") + u = velocity_symbols[:dim] f = sp.symbols(f"f_:{nr_directions}") m = sp.symbols(f"m_:{nr_directions}") diff --git a/lbmpy/phasefield_allen_cahn/contact_angle.py b/lbmpy/phasefield_allen_cahn/contact_angle.py new file mode 100644 index 0000000000000000000000000000000000000000..c3195e4caa7fce7ed98b9bc3ed7f9d18a3d1b5af --- /dev/null +++ b/lbmpy/phasefield_allen_cahn/contact_angle.py @@ -0,0 +1,67 @@ +import math +import sympy as sp + +from pystencils import Assignment + +from pystencils.boundaries.boundaryhandling import BoundaryOffsetInfo +from pystencils.boundaries.boundaryconditions import Boundary + +from pystencils.data_types import TypedSymbol + + +class ContactAngle(Boundary): + r""" + Wettability condition on solid boundaries according to equation 25 in :cite:`Fakhari2018`. + + Args: + contact_angle: contact angle in degrees which is applied between the fluid and the solid boundary. + interface_width: interface width of the phase field model. + name: optional name of the boundary + data_type: data type for temporary variables which are used. + """ + + inner_or_boundary = False + single_link = True + + def __init__(self, contact_angle, interface_width, name=None, data_type='double'): + self._contact_angle = contact_angle + self._interface_width = interface_width + self._data_type = data_type + + super(ContactAngle, self).__init__(name) + + def __call__(self, field, direction_symbol, **kwargs): + + neighbor = BoundaryOffsetInfo.offset_from_dir(direction_symbol, field.spatial_dimensions) + + if field.index_dimensions == 0: + if math.isclose(90, self._contact_angle, abs_tol=1e-5): + return [Assignment(field.center, field[neighbor])] + + dist = TypedSymbol("h", self._data_type) + angle = TypedSymbol("a", self._data_type) + tmp = TypedSymbol("tmp", self._data_type) + + result = [] + result.append(Assignment(tmp, sum([x * x for x in neighbor]))) + result.append(Assignment(dist, 0.5 * sp.sqrt(tmp))) + result.append(Assignment(angle, math.cos(math.radians(self._contact_angle)))) + + var = - dist * (4.0 / self._interface_width) * angle + tmp = 1 + var + else_branch = (tmp - sp.sqrt(tmp * tmp - 4 * var * field[neighbor])) / var - field[neighbor] + update = sp.Piecewise((field[neighbor], dist < 0.001), (else_branch, True)) + + result.append(Assignment(field.center, update)) + return result + else: + raise NotImplementedError("Contact angle only implemented for phase-fields which have a single " + "value for each cell") + + def __hash__(self): + return hash("ContactAngle") + + def __eq__(self, other): + if not isinstance(other, ContactAngle): + return False + return self.__dict__ == other.__dict__ diff --git a/lbmpy/phasefield_allen_cahn/force_model.py b/lbmpy/phasefield_allen_cahn/force_model.py index 85b405116a6145561e70cc96936f22eee09f280e..c3ff81f3aff504609ae9542ed72417125806c019 100644 --- a/lbmpy/phasefield_allen_cahn/force_model.py +++ b/lbmpy/phasefield_allen_cahn/force_model.py @@ -1,7 +1,7 @@ import sympy as sp -import numpy as np -from lbmpy.forcemodels import Simple +from pystencils import Assignment +from lbmpy.forcemodels import Simple, Luo class MultiphaseForceModel: @@ -12,26 +12,34 @@ class MultiphaseForceModel: def __init__(self, force, rho=1): self._force = force self._rho = rho + self.force_symp = sp.symbols(f"F_:{len(force)}") + self.subs_terms = [Assignment(rhs, lhs) for rhs, lhs in zip(self.force_symp, force)] def __call__(self, lb_method): - stencil = lb_method.stencil - - force_symp = sp.symbols("force_:{}".format(lb_method.dim)) - simple = Simple(force_symp) - force = [f / self._rho for f in simple(lb_method)] + simple = Simple(self.force_symp) + force = sp.Matrix(simple(lb_method)) moment_matrix = lb_method.moment_matrix - relaxation_rates = sp.Matrix(np.diag(lb_method.relaxation_rates)) - mrt_collision_op = moment_matrix.inv() * relaxation_rates * moment_matrix - result = -0.5 * mrt_collision_op * sp.Matrix(force) + sp.Matrix(force) + return sp.simplify(moment_matrix * force) / self._rho + - for i in range(0, len(stencil)): - result[i] = result[i].simplify() +class CentralMomentMultiphaseForceModel: + r""" + A simple force model in the central moment space. + """ + def __init__(self, force, rho=1): + self._force = force + self._rho = rho + self.force_symp = sp.symbols(f"F_:{len(force)}") + self.subs_terms = [Assignment(rhs, lhs) for rhs, lhs in zip(self.force_symp, force)] - subs_dict = dict(zip(force_symp, self._force)) + def __call__(self, lb_method, **kwargs): + luo = Luo(self.force_symp) + force = sp.Matrix(luo(lb_method)) - for i in range(0, len(stencil)): - result[i] = result[i].subs(subs_dict) + M = lb_method.moment_matrix + N = lb_method.shift_matrix - return result + result = sp.simplify(M * force) + return sp.simplify(N * result) / self._rho diff --git a/lbmpy/phasefield_allen_cahn/kernel_equations.py b/lbmpy/phasefield_allen_cahn/kernel_equations.py index b81271a97dcd171c2b2e20e9bb24268f0d8e843e..eb6d5db16299be78da63a4da975f02a29e365b51 100644 --- a/lbmpy/phasefield_allen_cahn/kernel_equations.py +++ b/lbmpy/phasefield_allen_cahn/kernel_equations.py @@ -1,11 +1,16 @@ from pystencils.fd.derivation import FiniteDifferenceStencilDerivation -from pystencils import Assignment, AssignmentCollection +from pystencils import Assignment +from lbmpy.methods.momentbased.centralmomentbasedmethod import CentralMomentBasedLbMethod +from lbmpy.moments import get_order from lbmpy.maxwellian_equilibrium import get_weights -from lbmpy.fieldaccess import StreamPushTwoFieldsAccessor, CollideOnlyInplaceAccessor +from lbmpy.fieldaccess import StreamPullTwoFieldsAccessor, StreamPushTwoFieldsAccessor, CollideOnlyInplaceAccessor +from lbmpy.methods.abstractlbmethod import LbmCollisionRule + +from lbmpy.phasefield_allen_cahn.phasefield_simplifications import create_phasefield_simplification_strategy +from lbmpy.phasefield_allen_cahn.force_model import CentralMomentMultiphaseForceModel import sympy as sp -import numpy as np def chemical_potential_symbolic(phi_field, stencil, beta, kappa): @@ -43,8 +48,7 @@ def chemical_potential_symbolic(phi_field, stencil, beta, kappa): lap += res.apply(phi_field.center) # get the chemical potential - mu = 4.0 * beta * phi_field.center * (phi_field.center - 1.0) * (phi_field.center - 0.5) - \ - kappa * lap + mu = 4.0 * beta * phi_field.center * (phi_field.center - 1.0) * (phi_field.center - 0.5) - kappa * lap return mu @@ -260,37 +264,41 @@ def interface_tracking_force(phi_field, stencil, interface_thickness, fd_stencil return result -def get_update_rules_velocity(src_field, u_in, lb_method, force, density, sub_iterations=2): +def get_update_rules_velocity(src_field, u_in, lb_method, force_model, density, sub_iterations=2): r""" Get assignments to update the velocity with a force shift Args: src_field: the source field of the hydrodynamic distribution function u_in: velocity field lb_method: mrt lattice boltzmann method used for hydrodynamics - force: force acting on the hydrodynamic lb step + force_model: one of the phase_field force models which are applied in the collision space density: the interpolated density of the simulation sub_iterations: number of updates of the velocity field """ stencil = lb_method.stencil dimensions = len(stencil[0]) + rho = lb_method.conserved_quantity_computation.zeroth_order_moment_symbol + u_symp = lb_method.conserved_quantity_computation.first_order_moment_symbols + + force = force_model._force + force_symp = force_model.force_symp + moment_matrix = lb_method.moment_matrix - eq = lb_method.moment_equilibrium_values - first_eqs = lb_method.first_order_equilibrium_moment_symbols + moments = lb_method.moments indices = list() - for i in range(dimensions): - indices.append(eq.index(first_eqs[i])) + for i in range(len(moments)): + if get_order(moments[i]) == 1: + indices.append(i) - src = [src_field.center(i) for i, _ in enumerate(stencil)] - m0 = np.dot(moment_matrix.tolist(), src) + m0 = moment_matrix * sp.Matrix(src_field.center_vector) update_u = list() - update_u.append(Assignment(sp.symbols("rho"), m0[0])) + update_u.append(Assignment(rho, m0[0])) index = 0 - u_symp = sp.symbols("u_:{}".format(dimensions)) - aleph = sp.symbols("aleph_:{}".format(dimensions * sub_iterations)) + aleph = sp.symbols(f"aleph_:{dimensions * sub_iterations}") for i in range(dimensions): update_u.append(Assignment(aleph[i], u_in.center_vector[i])) @@ -303,14 +311,17 @@ def get_update_rules_velocity(src_field, u_in, lb_method, force, density, sub_it index += 1 subs_dict = dict(zip(u_symp, aleph[index - dimensions:index])) + + for i in range(dimensions): + update_u.append(Assignment(force_symp[i], force[i].subs(subs_dict))) + for i in range(dimensions): - update_u.append(Assignment(u_symp[i], m0[indices[i]] + force[i].subs(subs_dict) / density / 2)) - # update_u.append(Assignment(u_in.center_vector[i], m0[indices[i]] + force[i].subs(subs_dict) / density / 2)) + update_u.append(Assignment(u_symp[i], m0[indices[i]] + force_symp[i] / density / 2)) return update_u -def get_collision_assignments_hydro(lb_method, density, velocity_input, force, sub_iterations, symbolic_fields, +def get_collision_assignments_hydro(lb_method, density, velocity_input, force_model, sub_iterations, symbolic_fields, kernel_type): r""" Get collision assignments for the hydrodynamic lattice Boltzmann step. Here the force gets applied in the moment @@ -319,64 +330,169 @@ def get_collision_assignments_hydro(lb_method, density, velocity_input, force, s lb_method: moment based lattice Boltzmann method density: the interpolated density of the simulation velocity_input: velocity field for the hydrodynamic and Allen-Chan LB step - force: force vector containing a summation of the surface tension-, pressure-, viscous- and bodyforce vector + force_model: one of the phase_field force models which are applied in the collision space sub_iterations: number of updates of the velocity field symbolic_fields: PDF fields for source and destination kernel_type: collide_stream_push or collide_only """ + if isinstance(lb_method, CentralMomentBasedLbMethod) and not \ + isinstance(force_model, CentralMomentMultiphaseForceModel): + raise ValueError("For central moment lb methods a central moment force model needs the be applied") + stencil = lb_method.stencil dimensions = len(stencil[0]) + rho = lb_method.conserved_quantity_computation.zeroth_order_moment_symbol + src_field = symbolic_fields['symbolic_field'] dst_field = symbolic_fields['symbolic_temporary_field'] + if kernel_type == 'collide_stream_push': + accessor = StreamPushTwoFieldsAccessor() + else: + accessor = CollideOnlyInplaceAccessor() + + u_symp = lb_method.conserved_quantity_computation.first_order_moment_symbols + moment_matrix = lb_method.moment_matrix - rel = lb_method.relaxation_rates - eq = lb_method.moment_equilibrium_values + rel = sp.diag(*lb_method.relaxation_rates) + eq = sp.Matrix(lb_method.moment_equilibrium_values) - first_eqs = lb_method.first_order_equilibrium_moment_symbols - indices = list() - for i in range(dimensions): - indices.append(eq.index(first_eqs[i])) + force_terms = force_model(lb_method) + eq = eq - sp.Rational(1, 2) * force_terms - eq = np.array(eq) + pre = sp.symbols(f"pre_:{len(stencil)}") + post = sp.symbols(f"post_:{len(stencil)}") - g_vals = [src_field.center(i) for i, _ in enumerate(stencil)] - m0 = np.dot(moment_matrix.tolist(), g_vals) + to_moment_space = moment_matrix * sp.Matrix(accessor.read(src_field, stencil)) + to_moment_space[0] = rho - mf = np.zeros(len(stencil), dtype=object) - for i in range(dimensions): - mf[indices[i]] = force[i] / density + main_assignments = list() + subexpressions = get_update_rules_velocity(src_field, velocity_input, lb_method, force_model, + density, sub_iterations=sub_iterations) - m = sp.symbols("m_:{}".format(len(stencil))) + for i in range(0, len(stencil)): + subexpressions.append(Assignment(pre[i], to_moment_space[i])) - update_m = get_update_rules_velocity(src_field, velocity_input, lb_method, force, - density, sub_iterations=sub_iterations) - u_symp = sp.symbols("u_:{}".format(dimensions)) + if isinstance(lb_method, CentralMomentBasedLbMethod): + n0 = lb_method.shift_matrix * sp.Matrix(pre) + to_central = sp.Matrix(sp.symbols(f"kappa_:{len(stencil)}")) + for i in range(0, len(stencil)): + subexpressions.append(Assignment(to_central[i], n0[i])) + pre = to_central + + collision = sp.Matrix(pre) - rel * (sp.Matrix(pre) - eq) + force_terms for i in range(0, len(stencil)): - update_m.append(Assignment(m[i], m0[i] - (m0[i] - eq[i] + mf[i] / 2) * rel[i] + mf[i])) + subexpressions.append(Assignment(post[i], collision[i])) - update_g = list() - var = np.dot(moment_matrix.inv().tolist(), m) - if kernel_type == 'collide_stream_push': - push_accessor = StreamPushTwoFieldsAccessor() - post_collision_accesses = push_accessor.write(dst_field, stencil) - else: - collide_accessor = CollideOnlyInplaceAccessor() - post_collision_accesses = collide_accessor.write(src_field, stencil) + if isinstance(lb_method, CentralMomentBasedLbMethod): + n0_back = lb_method.shift_matrix.inv() * sp.Matrix(post) + from_central = sp.Matrix(sp.symbols(f"kappa_post:{len(stencil)}")) + for i in range(0, len(stencil)): + subexpressions.append(Assignment(from_central[i], n0_back[i])) + post = from_central + + to_pdf_space = moment_matrix.inv() * sp.Matrix(post) for i in range(0, len(stencil)): - update_g.append(Assignment(post_collision_accesses[i], var[i])) + main_assignments.append(Assignment(accessor.write(dst_field, stencil)[i], to_pdf_space[i])) for i in range(dimensions): - update_g.append(Assignment(velocity_input.center_vector[i], u_symp[i])) + main_assignments.append(Assignment(velocity_input.center_vector[i], u_symp[i])) + + collision_rule = LbmCollisionRule(lb_method, main_assignments, subexpressions) + + simplification = create_phasefield_simplification_strategy(lb_method) + collision_rule = simplification(collision_rule) + + return collision_rule + + +def get_collision_assignments_phase(lb_method, velocity_input, output, force_model, symbolic_fields, kernel_type): + r""" + Get collision assignments for the phasefield lattice Boltzmann step. Here the force gets applied in the moment + space. Afterwards the transformation back to the pdf space happens. + Args: + lb_method: moment based lattice Boltzmann method + velocity_input: velocity field for the hydrodynamic and Allen-Chan LB step + output: output field for the phasefield (calles density as for normal LB update rules) + force_model: one of the phase_field force models which are applied in the collision space + symbolic_fields: PDF fields for source and destination + kernel_type: stream_pull_collide or collide_only + """ + + stencil = lb_method.stencil + + src_field = symbolic_fields['symbolic_field'] + dst_field = symbolic_fields['symbolic_temporary_field'] + output_phase_field = output['density'] + + if kernel_type == 'stream_pull_collide': + accessor = StreamPullTwoFieldsAccessor() + else: + accessor = CollideOnlyInplaceAccessor() + + subexpressions = list() + main_assignments = list() + + rho = lb_method.conserved_quantity_computation.zeroth_order_moment_symbol + u_symp = lb_method.conserved_quantity_computation.first_order_moment_symbols + + moment_matrix = lb_method.moment_matrix + rel = sp.diag(*lb_method.relaxation_rates) + eq = sp.Matrix(lb_method.moment_equilibrium_values) + + force_terms = force_model(lb_method) + eq = eq - sp.Rational(1, 2) * force_terms + + pre = sp.symbols(f"pre_:{len(stencil)}") + post = sp.symbols(f"post_:{len(stencil)}") + + to_moment_space = moment_matrix * sp.Matrix(accessor.read(src_field, stencil)) + to_moment_space[0] = rho + + subexpressions.append(Assignment(rho, sum(accessor.read(src_field, stencil)))) + for i in range(lb_method.dim): + subexpressions.append(Assignment(u_symp[i], velocity_input.center_vector[i])) + subexpressions.extend(force_model.subs_terms) + + for i in range(len(stencil)): + subexpressions.append(Assignment(pre[i], to_moment_space[i])) + + if isinstance(lb_method, CentralMomentBasedLbMethod): + n0 = lb_method.shift_matrix * sp.Matrix(pre) + to_central = sp.Matrix(sp.symbols(f"kappa_:{len(stencil)}")) + for i in range(0, len(stencil)): + subexpressions.append(Assignment(to_central[i], n0[i])) + pre = to_central + + collision = sp.Matrix(pre) - rel * (sp.Matrix(pre) - eq) + force_terms + + for i in range(len(stencil)): + subexpressions.append(Assignment(post[i], collision[i])) + + if isinstance(lb_method, CentralMomentBasedLbMethod): + n0_back = lb_method.shift_matrix.inv() * sp.Matrix(post) + from_central = sp.Matrix(sp.symbols(f"kappa_post:{len(stencil)}")) + for i in range(0, len(stencil)): + subexpressions.append(Assignment(from_central[i], n0_back[i])) + post = from_central + + to_pdf_space = moment_matrix.inv() * sp.Matrix(post) + + for i in range(len(stencil)): + main_assignments.append(Assignment(accessor.write(dst_field, stencil)[i], to_pdf_space[i])) + + main_assignments.append(Assignment(output_phase_field.center, sum(accessor.write(dst_field, stencil)))) + + collision_rule = LbmCollisionRule(lb_method, main_assignments, subexpressions) - hydro_lb_update_rule = AssignmentCollection(main_assignments=update_g, - subexpressions=update_m) + simplification = create_phasefield_simplification_strategy(lb_method) + collision_rule = simplification(collision_rule) - return hydro_lb_update_rule + return collision_rule def initializer_kernel_phase_field_lb(lb_phase_field, phi_field, velocity_field, mrt_method, interface_thickness, diff --git a/lbmpy/phasefield_allen_cahn/phasefield_simplifications.py b/lbmpy/phasefield_allen_cahn/phasefield_simplifications.py new file mode 100644 index 0000000000000000000000000000000000000000..f1806a0ccc03156f4267d14eaa773eea79412514 --- /dev/null +++ b/lbmpy/phasefield_allen_cahn/phasefield_simplifications.py @@ -0,0 +1,19 @@ +import sympy as sp + +from pystencils.simp import SimplificationStrategy, apply_to_all_assignments + +from lbmpy.methods.centeredcumulant.simplification import insert_aliases, insert_zeros, insert_constants + + +def create_phasefield_simplification_strategy(lb_method): + s = SimplificationStrategy() + expand = apply_to_all_assignments(sp.expand) + + s.add(expand) + + s.add(insert_zeros) + s.add(insert_aliases) + s.add(insert_constants) + s.add(lambda ac: ac.new_without_unused_subexpressions()) + + return s diff --git a/lbmpy/quadratic_equilibrium_construction.py b/lbmpy/quadratic_equilibrium_construction.py index 207534a26206978e7a94de5b8581bdedda453ae2..40e531576be6616e246557cde47ef1d503d7e305 100644 --- a/lbmpy/quadratic_equilibrium_construction.py +++ b/lbmpy/quadratic_equilibrium_construction.py @@ -94,12 +94,13 @@ def moment_constraint_equations(stencil, equilibrium, moment_to_value_dict, u=sp def hydrodynamic_moment_values(up_to_order=3, dim=3, compressible=True): """Returns the values of moments that are required to approximate Navier Stokes (if up_to_order=3)""" - from lbmpy.maxwellian_equilibrium import get_moments_of_continuous_maxwellian_equilibrium + from lbmpy.maxwellian_equilibrium import get_equilibrium_values_of_maxwell_boltzmann_function from lbmpy.moments import moments_up_to_order moms = moments_up_to_order(up_to_order, dim) c_s_sq = sp.Symbol("p") / sp.Symbol("rho") - moment_values = get_moments_of_continuous_maxwellian_equilibrium(moms, dim=dim, c_s_sq=c_s_sq, order=2) + moment_values = get_equilibrium_values_of_maxwell_boltzmann_function(moms, dim=dim, c_s_sq=c_s_sq, order=2, + space="moment") if not compressible: moment_values = [compressible_to_incompressible_moment_value(m, sp.Symbol("rho"), sp.symbols("u_:3")[:dim]) for m in moment_values] diff --git a/lbmpy_tests/centeredcumulant/test_central_moment_transform.py b/lbmpy_tests/centeredcumulant/test_central_moment_transform.py index 533911a87db6c239bae11abab73ce2e05f1cec5f..c7c4ec2705c2f6120aedc274e8677ba44f25730e 100644 --- a/lbmpy_tests/centeredcumulant/test_central_moment_transform.py +++ b/lbmpy_tests/centeredcumulant/test_central_moment_transform.py @@ -1,9 +1,8 @@ import sympy as sp -from lbmpy.moments import get_default_moment_set_for_stencil, extract_monomials +from lbmpy.moments import get_default_moment_set_for_stencil, extract_monomials, statistical_quantity_symbol import pytest from lbmpy.stencils import get_stencil -from lbmpy.methods.centeredcumulant.centered_cumulants import statistical_quantity_symbol from lbmpy.methods.momentbased.moment_transforms import ( PdfsToCentralMomentsByMatrix, FastCentralMomentTransform, PdfsToCentralMomentsByShiftMatrix, PRE_COLLISION_CENTRAL_MOMENT, POST_COLLISION_CENTRAL_MOMENT diff --git a/lbmpy_tests/phasefield_allen_cahn/test_analytical.py b/lbmpy_tests/phasefield_allen_cahn/test_analytical.py new file mode 100644 index 0000000000000000000000000000000000000000..36f854b800d7d30f4c9329d08a5f0572b33a6b0f --- /dev/null +++ b/lbmpy_tests/phasefield_allen_cahn/test_analytical.py @@ -0,0 +1,37 @@ +import numpy as np + +from lbmpy.phasefield_allen_cahn.parameter_calculation import calculate_dimensionless_rising_bubble, \ + calculate_parameters_rti + +from lbmpy.phasefield_allen_cahn.analytical import analytic_rising_speed + + + +def test_analytical(): + parameters = calculate_dimensionless_rising_bubble(reference_time=18000, + density_heavy=1.0, + bubble_radius=16, + bond_number=30, + reynolds_number=420, + density_ratio=1000, + viscosity_ratio=100) + + np.isclose(parameters["density_light"], 0.001, rtol=1e-05, atol=1e-08, equal_nan=False) + np.isclose(parameters["gravitational_acceleration"], -9.876543209876543e-08, rtol=1e-05, atol=1e-08, equal_nan=False) + + parameters = calculate_parameters_rti(reference_length=128, + reference_time=18000, + density_heavy=1.0, + capillary_number=9.1, + reynolds_number=128, + atwood_number=1.0, + peclet_number=744, + density_ratio=3, + viscosity_ratio=3) + + np.isclose(parameters["density_light"], 1/3, rtol=1e-05, atol=1e-08, equal_nan=False) + np.isclose(parameters["gravitational_acceleration"], -3.9506172839506174e-07, rtol=1e-05, atol=1e-08, equal_nan=False) + np.isclose(parameters["mobility"], 0.0012234169653524492, rtol=1e-05, atol=1e-08, equal_nan=False) + + rs = analytic_rising_speed(1-6, 20, 0.01) + np.isclose(rs, 16666.666666666668, rtol=1e-05, atol=1e-08, equal_nan=False) \ No newline at end of file diff --git a/lbmpy_tests/phasefield_allen_cahn/test_codegen_3d.py b/lbmpy_tests/phasefield_allen_cahn/test_codegen_3d.py index 6ca2a1dd35d0a1d3aa483dad67aaf2e9983bfc02..b03428fd2b18173a94d90ad8bf84712cbd43571c 100644 --- a/lbmpy_tests/phasefield_allen_cahn/test_codegen_3d.py +++ b/lbmpy_tests/phasefield_allen_cahn/test_codegen_3d.py @@ -1,123 +1,96 @@ -import numpy as np - -from lbmpy.creationfunctions import create_lb_method, create_lb_update_rule -from lbmpy.phasefield_allen_cahn.analytical import analytic_rising_speed +from lbmpy.creationfunctions import create_lb_method from lbmpy.phasefield_allen_cahn.force_model import MultiphaseForceModel -from lbmpy.phasefield_allen_cahn.kernel_equations import ( +from lbmpy.phasefield_allen_cahn.kernel_equations import ( get_collision_assignments_phase, get_collision_assignments_hydro, hydrodynamic_force, initializer_kernel_hydro_lb, initializer_kernel_phase_field_lb, interface_tracking_force) -from lbmpy.phasefield_allen_cahn.parameter_calculation import ( - calculate_dimensionless_rising_bubble, calculate_parameters_rti) from lbmpy.stencils import get_stencil -from pystencils import AssignmentCollection, fields +from pystencils import fields -def test_codegen_3d(): +def test_allen_cahn_lb(): stencil_phase = get_stencil("D3Q15") + dimensions = len(stencil_phase[0]) + # fields + u = fields("vel_field(" + str(dimensions) + "): [" + str(dimensions) + "D]", layout='fzyx') + C = fields("phase_field: [" + str(dimensions) + "D]", layout='fzyx') + C_tmp = fields("phase_field_tmp: [" + str(dimensions) + "D]", layout='fzyx') + + h = fields("lb_phase_field(" + str(len(stencil_phase)) + "): [" + str(dimensions) + "D]", layout='fzyx') + h_tmp = fields("lb_phase_field_tmp(" + str(len(stencil_phase)) + "): [" + str(dimensions) + "D]", layout='fzyx') + + M = 0.02 + W = 5 + w_c = 1.0 / (0.5 + (3.0 * M)) + + method_phase = create_lb_method(stencil=stencil_phase, method='srt', relaxation_rate=w_c, compressible=True) + + h_updates = initializer_kernel_phase_field_lb(h, C, u, method_phase, W) + + force_h = [f / 3 for f in interface_tracking_force(C, stencil_phase, W)] + force_model_h = MultiphaseForceModel(force=force_h) + + allen_cahn_lb = get_collision_assignments_phase(lb_method=method_phase, + velocity_input=u, + output={'density': C_tmp}, + force_model=force_model_h, + symbolic_fields={"symbolic_field": h, + "symbolic_temporary_field": h_tmp}, + kernel_type='stream_pull_collide') + + allen_cahn_lb = get_collision_assignments_phase(lb_method=method_phase, + velocity_input=u, + output={'density': C_tmp}, + force_model=force_model_h, + symbolic_fields={"symbolic_field": h, + "symbolic_temporary_field": h_tmp}, + kernel_type='collide_only') + +def test_hydro_lb(): + stencil_hydro = get_stencil("D3Q27") - assert (len(stencil_phase[0]) == len(stencil_hydro[0])) dimensions = len(stencil_hydro[0]) - parameters = calculate_dimensionless_rising_bubble(reference_time=18000, - density_heavy=1.0, - bubble_radius=16, - bond_number=30, - reynolds_number=420, - density_ratio=1000, - viscosity_ratio=100) - - np.isclose(parameters["density_light"], 0.001, rtol=1e-05, atol=1e-08, equal_nan=False) - np.isclose(parameters["gravitational_acceleration"], -9.876543209876543e-08, rtol=1e-05, atol=1e-08, equal_nan=False) - - parameters = calculate_parameters_rti(reference_length=128, - reference_time=18000, - density_heavy=1.0, - capillary_number=9.1, - reynolds_number=128, - atwood_number=1.0, - peclet_number=744, - density_ratio=3, - viscosity_ratio=3) - - np.isclose(parameters["density_light"], 1/3, rtol=1e-05, atol=1e-08, equal_nan=False) - np.isclose(parameters["gravitational_acceleration"], -3.9506172839506174e-07, rtol=1e-05, atol=1e-08, equal_nan=False) - np.isclose(parameters["mobility"], 0.0012234169653524492, rtol=1e-05, atol=1e-08, equal_nan=False) - - rs = analytic_rising_speed(1-6, 20, 0.01) - np.isclose(rs, 16666.666666666668, rtol=1e-05, atol=1e-08, equal_nan=False) - density_liquid = 1.0 density_gas = 0.001 surface_tension = 0.0001 - M = 0.02 + W = 5 # phase-field parameter drho3 = (density_liquid - density_gas) / 3 - # interface thickness - W = 5 # coefficient related to surface tension beta = 12.0 * (surface_tension / W) # coefficient related to surface tension kappa = 1.5 * surface_tension * W - # relaxation rate allen cahn (h) - w_c = 1.0 / (0.5 + (3.0 * M)) - # fields u = fields("vel_field(" + str(dimensions) + "): [" + str(dimensions) + "D]", layout='fzyx') C = fields("phase_field: [" + str(dimensions) + "D]", layout='fzyx') - h = fields("lb_phase_field(" + str(len(stencil_phase)) + "): [" + str(dimensions) + "D]", layout='fzyx') - h_tmp = fields("lb_phase_field_tmp(" + str(len(stencil_phase)) + "): [" + str(dimensions) + "D]", layout='fzyx') - g = fields("lb_velocity_field(" + str(len(stencil_hydro)) + "): [" + str(dimensions) + "D]", layout='fzyx') g_tmp = fields("lb_velocity_field_tmp(" + str(len(stencil_hydro)) + "): [" + str(dimensions) + "D]", layout='fzyx') # calculate the relaxation rate for the hydro lb as well as the body force density = density_gas + C.center * (density_liquid - density_gas) # force acting on all phases of the model - body_force = np.array([0, 1e-6, 0]) + body_force = [0, 0, 0] relaxation_time = 0.03 + 0.5 relaxation_rate = 1.0 / relaxation_time - method_phase = create_lb_method(stencil=stencil_phase, method='srt', relaxation_rate=w_c, compressible=True) method_hydro = create_lb_method(stencil=stencil_hydro, method="mrt", weighted=True, - relaxation_rates=[relaxation_rate, 1, 1, 1, 1, 1], - maxwellian_moments=True, entropic=False) + relaxation_rates=[relaxation_rate, 1, 1, 1, 1, 1]) # create the kernels for the initialization of the g and h field - h_updates = initializer_kernel_phase_field_lb(h, C, u, method_phase, W) g_updates = initializer_kernel_hydro_lb(g, u, method_hydro) - force_h = [f / 3 for f in interface_tracking_force(C, stencil_phase, W)] - force_model_h = MultiphaseForceModel(force=force_h) - force_g = hydrodynamic_force(g, C, method_hydro, relaxation_time, density_liquid, density_gas, kappa, beta, body_force) force_model_g = MultiphaseForceModel(force=force_g, rho=density) - h_tmp_symbol_list = [h_tmp.center(i) for i, _ in enumerate(stencil_phase)] - sum_h = np.sum(h_tmp_symbol_list[:]) - - method_phase.set_force_model(force_model_h) - - allen_cahn_lb = create_lb_update_rule(lb_method=method_phase, - velocity_input=u, - compressible=True, - optimization={"symbolic_field": h, - "symbolic_temporary_field": h_tmp}, - kernel_type='stream_pull_collide') - - allen_cahn_lb.set_main_assignments_from_dict({**allen_cahn_lb.main_assignments_dict, **{C.center: sum_h}}) - allen_cahn_update_rule = AssignmentCollection(main_assignments=allen_cahn_lb.main_assignments, - subexpressions=allen_cahn_lb.subexpressions) - # --------------------------------------------------------------------------------------------------------- - hydro_lb_update_rule_normal = get_collision_assignments_hydro(lb_method=method_hydro, density=density, velocity_input=u, - force=force_g, + force_model=force_model_g, sub_iterations=2, symbolic_fields={"symbolic_field": g, "symbolic_temporary_field": g_tmp}, @@ -126,7 +99,7 @@ def test_codegen_3d(): hydro_lb_update_rule_push = get_collision_assignments_hydro(lb_method=method_hydro, density=density, velocity_input=u, - force=force_g, + force_model=force_model_g, sub_iterations=2, symbolic_fields={"symbolic_field": g, "symbolic_temporary_field": g_tmp}, diff --git a/lbmpy_tests/phasefield_allen_cahn/test_contact_angle.py b/lbmpy_tests/phasefield_allen_cahn/test_contact_angle.py new file mode 100644 index 0000000000000000000000000000000000000000..cba55b41d264243651848d8d08bf885dc3700409 --- /dev/null +++ b/lbmpy_tests/phasefield_allen_cahn/test_contact_angle.py @@ -0,0 +1,38 @@ +import math + +import pystencils as ps +from pystencils.boundaries.boundaryconditions import Neumann +from pystencils.boundaries.boundaryhandling import BoundaryHandling + +from lbmpy.phasefield_allen_cahn.contact_angle import ContactAngle +from lbmpy.stencils import get_stencil + +import numpy as np + + +def test_contact_angle(): + stencil = get_stencil("D2Q9") + contact_angle = 45 + phase_value = 0.5 + + domain_size = (9, 9) + + dh = ps.create_data_handling(domain_size, periodicity=(False, False)) + + C = dh.add_array("C", values_per_cell=1) + dh.fill("C", 0.0, ghost_layers=True) + dh.fill("C", phase_value, ghost_layers=False) + + bh = BoundaryHandling(dh, C.name, stencil, target='cpu') + bh.set_boundary(ContactAngle(45, 5), ps.make_slice[:, 0]) + bh() + + h = 1.0 + myA = 1.0 - 0.5 * h * (4.0 / 5) * math.cos(math.radians(contact_angle)) + + phase_on_boundary = (myA - np.sqrt(myA * myA - 4.0 * (myA - 1.0) * phase_value)) / (myA - 1.0) - phase_value + + np.testing.assert_almost_equal(dh.cpu_arrays["C"][5, 0], phase_on_boundary) + + assert ContactAngle(45, 5) == ContactAngle(45, 5) + assert ContactAngle(46, 5) != ContactAngle(45, 5) diff --git a/lbmpy_tests/phasefield_allen_cahn/test_phase_field_allen_cahn_2d.ipynb b/lbmpy_tests/phasefield_allen_cahn/test_phase_field_allen_cahn_2d.ipynb index cdf0127472986eb98f54cc26afb02050fb7e91e1..d368fee0bf4890e26aa65a858424dc073a72a330 100644 --- a/lbmpy_tests/phasefield_allen_cahn/test_phase_field_allen_cahn_2d.ipynb +++ b/lbmpy_tests/phasefield_allen_cahn/test_phase_field_allen_cahn_2d.ipynb @@ -6,19 +6,22 @@ "metadata": {}, "outputs": [], "source": [ + "from collections import OrderedDict\n", "import math\n", "\n", - "from lbmpy.session import *\n", "from pystencils.session import *\n", + "from lbmpy.session import *\n", + "\n", + "from pystencils.boundaries.boundaryhandling import BoundaryHandling\n", "\n", "from lbmpy.moments import MOMENT_SYMBOLS\n", - "from collections import OrderedDict\n", "\n", "from lbmpy.methods.creationfunctions import create_with_discrete_maxwellian_eq_moments\n", "\n", "from lbmpy.phasefield_allen_cahn.parameter_calculation import calculate_parameters_rti\n", "from lbmpy.phasefield_allen_cahn.kernel_equations import *\n", - "from lbmpy.phasefield_allen_cahn.force_model import MultiphaseForceModel" + "from lbmpy.phasefield_allen_cahn.force_model import CentralMomentMultiphaseForceModel\n", + "from lbmpy.phasefield_allen_cahn.contact_angle import ContactAngle" ] }, { @@ -48,6 +51,7 @@ "source": [ "stencil_phase = get_stencil(\"D2Q9\")\n", "stencil_hydro = get_stencil(\"D2Q9\")\n", + "fd_stencil = get_stencil(\"D2Q9\")\n", "assert(len(stencil_phase[0]) == len(stencil_hydro[0]))\n", "\n", "dimensions = len(stencil_phase[0])" @@ -127,7 +131,9 @@ "dh.fill(\"u\", 0.0, ghost_layers=True)\n", "\n", "C = dh.add_array(\"C\")\n", - "dh.fill(\"C\", 0.0, ghost_layers=True)" + "dh.fill(\"C\", 0.0, ghost_layers=True)\n", + "C_tmp = dh.add_array(\"C_tmp\")\n", + "dh.fill(\"C_tmp\", 0.0, ghost_layers=True)" ] }, { @@ -151,10 +157,11 @@ "metadata": {}, "outputs": [], "source": [ - "method_phase = create_lb_method(stencil=stencil_phase, method='srt', relaxation_rate=w_c, compressible = True)\n", + "method_phase = create_lb_method(stencil=stencil_phase, method=\"central_moment\", compressible=True,\n", + " relaxation_rates=[0, w_c, 1, 1, 1], equilibrium_order=4)\n", "\n", - "method_hydro = create_lb_method(stencil=stencil_hydro, method=\"mrt\", weighted=True,\n", - " relaxation_rates=[s8, 1, 1, 1, 1, 1], maxwellian_moments=True, entropic=False)" + "method_hydro = create_lb_method(stencil=stencil_phase, method=\"central_moment\", compressible=False,\n", + " relaxation_rates=[s8, 1, 1], equilibrium_order=4)" ] }, { @@ -193,7 +200,7 @@ "metadata": {}, "outputs": [], "source": [ - "h_updates = initializer_kernel_phase_field_lb(h, C, u, method_phase, W)\n", + "h_updates = initializer_kernel_phase_field_lb(h, C, u, method_phase, W, fd_stencil=fd_stencil)\n", "g_updates = initializer_kernel_hydro_lb(g, u, method_hydro)\n", "\n", "h_init = ps.create_kernel(h_updates, target=dh.default_target, cpu_openmp=True).compile()\n", @@ -206,10 +213,11 @@ "metadata": {}, "outputs": [], "source": [ - "force_h = [f / 3 for f in interface_tracking_force(C, stencil_phase, W)]\n", - "force_model_h = MultiphaseForceModel(force=force_h)\n", + "force_h = [f / 3 for f in interface_tracking_force(C, stencil_phase, W, fd_stencil=stencil_phase)]\n", + "force_model_h = CentralMomentMultiphaseForceModel(force=force_h)\n", "\n", - "force_g = hydrodynamic_force(g, C, method_hydro, tau, rho_H, rho_L, kappa, beta, body_force)" + "force_g = hydrodynamic_force(g, C, method_hydro, tau, rho_H, rho_L, kappa, beta, body_force)\n", + "force_model_g = CentralMomentMultiphaseForceModel(force=force_g, rho=rho)" ] }, { @@ -220,19 +228,14 @@ }, "outputs": [], "source": [ - "h_tmp_symbol_list = [h_tmp.center(i) for i, _ in enumerate(stencil_phase)]\n", - "sum_h = np.sum(h_tmp_symbol_list[:])\n", + "allen_cahn_lb = get_collision_assignments_phase(lb_method=method_phase,\n", + " velocity_input=u,\n", + " output={'density': C_tmp},\n", + " force_model=force_model_h,\n", + " symbolic_fields={\"symbolic_field\": h,\n", + " \"symbolic_temporary_field\": h_tmp},\n", + " kernel_type='stream_pull_collide')\n", "\n", - "method_phase.set_force_model(force_model_h)\n", - "\n", - "allen_cahn_lb = create_lb_update_rule(lb_method=method_phase,\n", - " velocity_input = u, \n", - " compressible = True,\n", - " optimization = {\"symbolic_field\": h,\n", - " \"symbolic_temporary_field\": h_tmp},\n", - " kernel_type = 'stream_pull_collide')\n", - "\n", - "allen_cahn_lb.set_main_assignments_from_dict({**allen_cahn_lb.main_assignments_dict, **{C.center: sum_h}})\n", "allen_cahn_lb = sympy_cse(allen_cahn_lb)\n", "\n", "ast_allen_cahn_lb = ps.create_kernel(allen_cahn_lb, target=dh.default_target, cpu_openmp=True)\n", @@ -248,11 +251,11 @@ "hydro_lb_update_rule = get_collision_assignments_hydro(lb_method=method_hydro,\n", " density=rho,\n", " velocity_input=u,\n", - " force = force_g,\n", + " force_model=force_model_g,\n", " sub_iterations=2,\n", " symbolic_fields={\"symbolic_field\": g,\n", " \"symbolic_temporary_field\": g_tmp},\n", - " kernel_type='collide_only')\n", + " kernel_type='collide_stream_push')\n", "\n", "hydro_lb_update_rule = sympy_cse(hydro_lb_update_rule)\n", "\n", @@ -267,31 +270,46 @@ "outputs": [], "source": [ "# periodic Boundarys for g, h and C\n", - "periodic_BC_g = dh.synchronization_function(g.name, target=dh.default_target, optimization = {\"openmp\": True})\n", - "periodic_BC_h = dh.synchronization_function(h.name, target=dh.default_target, optimization = {\"openmp\": True})\n", "periodic_BC_C = dh.synchronization_function(C.name, target=dh.default_target, optimization = {\"openmp\": True})\n", "\n", + "periodic_BC_g = LBMPeriodicityHandling(stencil=stencil_hydro, data_handling=dh, pdf_field_name=g.name,\n", + " streaming_pattern='push')\n", + "periodic_BC_h = LBMPeriodicityHandling(stencil=stencil_phase, data_handling=dh, pdf_field_name=h.name,\n", + " streaming_pattern='pull')\n", + "\n", "# No slip boundary for the phasefield lbm\n", "bh_allen_cahn = LatticeBoltzmannBoundaryHandling(method_phase, dh, 'h',\n", - " target=dh.default_target, name='boundary_handling_h')\n", + " target=dh.default_target, name='boundary_handling_h',\n", + " streaming_pattern='pull')\n", "\n", "# No slip boundary for the velocityfield lbm\n", "bh_hydro = LatticeBoltzmannBoundaryHandling(method_hydro, dh, 'g' ,\n", - " target=dh.default_target, name='boundary_handling_g')\n", + " target=dh.default_target, name='boundary_handling_g',\n", + " streaming_pattern='push')\n", + "\n", + "contact_angle = BoundaryHandling(dh, C.name, fd_stencil, target=dh.default_target)\n", "\n", + "contact = ContactAngle(45, W)\n", "wall = NoSlip()\n", + "\n", "if dimensions == 2:\n", " bh_allen_cahn.set_boundary(wall, make_slice[:, 0])\n", " bh_allen_cahn.set_boundary(wall, make_slice[:, -1])\n", "\n", " bh_hydro.set_boundary(wall, make_slice[:, 0])\n", " bh_hydro.set_boundary(wall, make_slice[:, -1])\n", + " \n", + " contact_angle.set_boundary(contact, make_slice[:, 0])\n", + " contact_angle.set_boundary(contact, make_slice[:, -1])\n", "else:\n", " bh_allen_cahn.set_boundary(wall, make_slice[:, 0, :])\n", " bh_allen_cahn.set_boundary(wall, make_slice[:, -1, :])\n", "\n", " bh_hydro.set_boundary(wall, make_slice[:, 0, :])\n", " bh_hydro.set_boundary(wall, make_slice[:, -1, :])\n", + " \n", + " contact_angle.set_boundary(contact, make_slice[:, 0, :])\n", + " contact_angle.set_boundary(contact, make_slice[:, -1, :])\n", "\n", "\n", "bh_allen_cahn.prepare()\n", @@ -303,41 +321,31 @@ "execution_count": 14, "metadata": {}, "outputs": [], - "source": [ - "ac_g = create_lb_update_rule(stencil = stencil_hydro,\n", - " optimization={\"symbolic_field\": g,\n", - " \"symbolic_temporary_field\": g_tmp},\n", - " kernel_type='stream_pull_only')\n", - "ast_g = ps.create_kernel(ac_g, target=dh.default_target, cpu_openmp=True)\n", - "stream_g = ast_g.compile()" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], "source": [ "# definition of the timestep for the immiscible fluids model\n", "def Improved_PhaseField_h_g():\n", - " bh_allen_cahn()\n", " periodic_BC_h()\n", + " bh_allen_cahn()\n", " \n", + " # run the phase-field LB\n", " dh.run_kernel(kernel_allen_cahn_lb)\n", + " dh.swap(\"C\", \"C_tmp\")\n", + " contact_angle()\n", + " # periodic BC of the phase-field\n", " periodic_BC_C()\n", + " \n", " dh.run_kernel(kernel_hydro_lb)\n", - "\n", - " bh_hydro()\n", " periodic_BC_g()\n", - " \n", - " dh.run_kernel(stream_g)\n", + " bh_hydro()\n", + "\n", + " # field swaps\n", " dh.swap(\"h\", \"h_tmp\")\n", " dh.swap(\"g\", \"g_tmp\")" ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 15, "metadata": { "scrolled": false }, @@ -351,7 +359,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -366,7 +374,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ diff --git a/lbmpy_tests/phasefield_allen_cahn/test_phase_field_derivatives.ipynb b/lbmpy_tests/phasefield_allen_cahn/test_phase_field_derivatives.ipynb index 8fcb02a38ae833e6126867ab106f04773777a0cb..c1cf2fd56df787299e0d7b229f6eb9ac65ef1270 100644 --- a/lbmpy_tests/phasefield_allen_cahn/test_phase_field_derivatives.ipynb +++ b/lbmpy_tests/phasefield_allen_cahn/test_phase_field_derivatives.ipynb @@ -203,6 +203,19 @@ "assert a[0] == b" ] }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "ng = normalized_isotropic_gradient_symbolic(C, stencil)\n", + "\n", + "tmp = (sum(map(lambda x: x * x, a)) + 1.e-32) ** 0.5 \n", + "\n", + "assert ng[0] == a[0] / tmp" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -212,7 +225,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -228,7 +241,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -240,7 +253,22 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "pf = pressure_force(C, stencil, 1, 0.1)\n", + "vf = viscous_force(g, C, lb_method, tau, 1, 0.1)\n", + "sf = surface_tension_force(C, stencil, 0, 1)\n", + "\n", + "assert sp.simplify(pf[0] + vf[0] + sf[0] - b[0]) == 0\n", + "assert sp.simplify(pf[1] + vf[1] + sf[1] - b[1]) == 0\n", + "assert sp.simplify(pf[2] + vf[2] + sf[2] - b[2]) == 0" + ] + }, + { + "cell_type": "code", + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -259,7 +287,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -281,7 +309,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -316,7 +344,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.4" + "version": "3.8.2" } }, "nbformat": 4, diff --git a/lbmpy_tests/test_central_moment.py b/lbmpy_tests/test_central_moment.py new file mode 100644 index 0000000000000000000000000000000000000000..e73194209bb0a6c37692a4faa511c45e7c9d4378 --- /dev/null +++ b/lbmpy_tests/test_central_moment.py @@ -0,0 +1,100 @@ +import numpy as np +import sympy as sp + +from lbmpy.creationfunctions import create_lb_method +from lbmpy.forcemodels import Luo +from lbmpy.maxwellian_equilibrium import get_weights +from lbmpy.moments import get_default_moment_set_for_stencil, moment_matrix, set_up_shift_matrix +from lbmpy.scenarios import create_lid_driven_cavity +from lbmpy.stencils import get_stencil + +from lbmpy.methods.momentbased.moment_transforms import FastCentralMomentTransform + + +def test_central_moment_ldc(): + sc_central_moment = create_lid_driven_cavity((20, 20), method='central_moment', + relaxation_rates=[1.8, 1, 1], equilibrium_order=4, + compressible=True, force=(-1e-10, 0)) + + sc_central_mometn_3D = create_lid_driven_cavity((20, 20, 3), method='central_moment', + relaxation_rates=[1.8, 1, 1, 1, 1], equilibrium_order=4, + compressible=True, force=(-1e-10, 0, 0)) + + sc_central_moment.run(1000) + sc_central_mometn_3D.run(1000) + assert np.isfinite(np.max(sc_central_moment.velocity[:, :])) + assert np.isfinite(np.max(sc_central_mometn_3D.velocity[:, :, :])) + + +def test_central_moment_class(): + stencil = get_stencil("D2Q9") + + method = create_lb_method(stencil=stencil, method='central_moment', + relaxation_rates=[1.2, 1.3, 1.4], equilibrium_order=4, compressible=True) + + srt = create_lb_method(stencil=stencil, method='srt', + relaxation_rate=1.2, equilibrium_order=4, compressible=True) + + rho = method.zeroth_order_equilibrium_moment_symbol + u = method.first_order_equilibrium_moment_symbols + cs_sq = sp.Rational(1, 3) + + force_model = Luo(force=sp.symbols(f"F_:{2}")) + + eq = (rho, 0, 0, rho * cs_sq, rho * cs_sq, 0, 0, 0, rho * cs_sq ** 2) + + default_moments = get_default_moment_set_for_stencil(stencil) + + assert method.central_moment_transform_class == FastCentralMomentTransform + assert method.conserved_quantity_computation.zeroth_order_moment_symbol == rho + assert method.conserved_quantity_computation.first_order_moment_symbols == u + assert method.moment_equilibrium_values == eq + + assert method.force_model == None + method.set_force_model(force_model) + assert method.force_model == force_model + + assert method.relaxation_matrix[0, 0] == 0 + assert method.relaxation_matrix[1, 1] == 0 + assert method.relaxation_matrix[2, 2] == 0 + + method.set_conserved_moments_relaxation_rate(1.9) + + assert method.relaxation_matrix[0, 0] == 1.9 + assert method.relaxation_matrix[1, 1] == 1.9 + assert method.relaxation_matrix[2, 2] == 1.9 + + moments = list() + for i in method.relaxation_info_dict: + moments.append(i) + + assert moments == default_moments + + for i in range(len(stencil)): + assert method.relaxation_rates[i] == method.relaxation_matrix[i, i] + + M = method.moment_matrix + N = method.shift_matrix + + assert M == moment_matrix(moments, stencil=stencil) + assert N == set_up_shift_matrix(moments, stencil=stencil) + + assert get_weights(stencil) == method.weights + + eq_terms_central = method.get_equilibrium_terms() + eq_terms_srt = srt.get_equilibrium_terms() + + for i in range(len(stencil)): + assert sp.simplify(eq_terms_central[i] - eq_terms_srt[i]) == 0 + + method = create_lb_method(stencil="D2Q9", method='central_moment', + relaxation_rates=[1.7, 1.8, 1.2, 1.3, 1.4], equilibrium_order=4, compressible=True) + + assert method.relaxation_matrix[0, 0] == 1.7 + assert method.relaxation_matrix[1, 1] == 1.8 + assert method.relaxation_matrix[2, 2] == 1.8 + + method = create_lb_method(stencil="D2Q9", method='central_moment', + relaxation_rates=[1.3] * 9, equilibrium_order=4, compressible=True) + + assert sum(method.relaxation_rates) == 1.3 * 9 \ No newline at end of file diff --git a/lbmpy_tests/test_maxwellian_equilibrium.py b/lbmpy_tests/test_maxwellian_equilibrium.py index 4410f76dc6eeaa6b7618a7eee10ef35b05c6210f..022f481d6e91e3b7719579be213c7777705a96eb 100644 --- a/lbmpy_tests/test_maxwellian_equilibrium.py +++ b/lbmpy_tests/test_maxwellian_equilibrium.py @@ -12,15 +12,17 @@ def test_maxwellian_moments(): rho = sp.Symbol("rho") u = sp.symbols("u_0 u_1 u_2") c_s = sp.Symbol("c_s") - eq_moments = get_moments_of_continuous_maxwellian_equilibrium(((0, 0, 0), (0, 0, 1)), - dim=3, rho=rho, u=u, c_s_sq=c_s ** 2) + eq_moments = get_equilibrium_values_of_maxwell_boltzmann_function(((0, 0, 0), (0, 0, 1)), + dim=3, rho=rho, u=u, c_s_sq=c_s ** 2, + space="moment") assert eq_moments[0] == rho assert eq_moments[1] == rho * u[2] x, y, z = MOMENT_SYMBOLS one = sp.Rational(1, 1) - eq_moments = get_moments_of_continuous_maxwellian_equilibrium((one, x, x ** 2, x * y), - dim=2, rho=rho, u=u[:2], c_s_sq=c_s ** 2) + eq_moments = get_equilibrium_values_of_maxwell_boltzmann_function((one, x, x ** 2, x * y), + dim=2, rho=rho, u=u[:2], c_s_sq=c_s ** 2, + space="moment") assert eq_moments[0] == rho assert eq_moments[1] == rho * u[0] assert eq_moments[2] == rho * (c_s ** 2 + u[0] ** 2) @@ -33,7 +35,8 @@ def test_continuous_discrete_moment_equivalence(): dim = len(stencil[0]) c_s_sq = sp.Rational(1, 3) moments = tuple(moments_up_to_order(3, dim=dim, include_permutations=False)) - cm = sp.Matrix(get_moments_of_continuous_maxwellian_equilibrium(moments, order=2, dim=dim, c_s_sq=c_s_sq)) + cm = sp.Matrix(get_equilibrium_values_of_maxwell_boltzmann_function(moments, order=2, dim=dim, c_s_sq=c_s_sq, + space="moment")) dm = sp.Matrix(get_moments_of_discrete_maxwellian_equilibrium(stencil, moments, order=2, compressible=True, c_s_sq=c_s_sq)) @@ -55,8 +58,10 @@ def test_moment_cumulant_continuous_equivalence(): u = sp.symbols("u_:{dim}".format(dim=dim)) indices = tuple(moments_up_to_component_order(2, dim=dim)) c_s_sq = sp.Rational(1, 3) - eq_moments1 = get_moments_of_continuous_maxwellian_equilibrium(indices, dim=dim, u=u, c_s_sq=c_s_sq) - eq_cumulants = get_cumulants_of_continuous_maxwellian_equilibrium(indices, dim=dim, u=u, c_s_sq=c_s_sq) + eq_moments1 = get_equilibrium_values_of_maxwell_boltzmann_function(indices, dim=dim, u=u, c_s_sq=c_s_sq, + space="moment") + eq_cumulants = get_equilibrium_values_of_maxwell_boltzmann_function(indices, dim=dim, u=u, c_s_sq=c_s_sq, + space="cumulant") eq_cumulants = {idx: c for idx, c in zip(indices, eq_cumulants)} eq_moments2 = [raw_moment_as_function_of_cumulants(idx, eq_cumulants) for idx in indices] pdfs_to_moments = moment_matrix(indices, stencil) @@ -82,8 +87,10 @@ def test_moment_cumulant_continuous_equivalence_polynomial_formulation(): index_tuples = tuple(moments_up_to_component_order(2, dim=dim)) indices = exponents_to_polynomial_representations(index_tuples) c_s_sq = sp.Rational(1, 3) - eq_moments1 = get_moments_of_continuous_maxwellian_equilibrium(indices, dim=dim, u=u, c_s_sq=c_s_sq) - eq_cumulants = get_cumulants_of_continuous_maxwellian_equilibrium(indices, dim=dim, u=u, c_s_sq=c_s_sq) + eq_moments1 = get_equilibrium_values_of_maxwell_boltzmann_function(indices, dim=dim, u=u, c_s_sq=c_s_sq, + space="moment") + eq_cumulants = get_equilibrium_values_of_maxwell_boltzmann_function(indices, dim=dim, u=u, c_s_sq=c_s_sq, + space="cumulant") eq_cumulants = {idx: c for idx, c in zip(index_tuples, eq_cumulants)} eq_moments2 = [raw_moment_as_function_of_cumulants(idx, eq_cumulants) for idx in index_tuples] pdfs_to_moments = moment_matrix(indices, stencil)