diff --git a/pystencils/__init__.py b/pystencils/__init__.py index bfe5b3da4a27d3770afa067385381e5d8f3008dd..4b23e64c79dd4ad71bfbd8b34e3a17feb3683a91 100644 --- a/pystencils/__init__.py +++ b/pystencils/__init__.py @@ -9,7 +9,7 @@ from .display_utils import get_code_obj, get_code_str, show_code, to_dot from .field import Field, FieldType, fields from .config import CreateKernelConfig from .kernel_decorator import kernel, kernel_config -from .kernelcreation import create_kernel +from .kernelcreation import create_kernel, create_staggered_kernel from .simp import AssignmentCollection from .slicing import make_slice from .spatial_coordinates import x_, x_staggered, x_staggered_vector, x_vector, y_, y_staggered, z_, z_staggered @@ -19,7 +19,7 @@ __all__ = ['Field', 'FieldType', 'fields', 'TypedSymbol', 'make_slice', 'CreateKernelConfig', - 'create_kernel', + 'create_kernel', 'create_staggered_kernel', 'Target', 'Backend', 'show_code', 'to_dot', 'get_code_obj', 'get_code_str', 'AssignmentCollection', diff --git a/pystencils/boundaries/boundaryconditions.py b/pystencils/boundaries/boundaryconditions.py index c53d248aca3353f57ebf423c30e753af35f1ce81..65243177dafe6dbce44cfb14bf7f1eb5c53fa39c 100644 --- a/pystencils/boundaries/boundaryconditions.py +++ b/pystencils/boundaries/boundaryconditions.py @@ -1,6 +1,6 @@ from typing import Any, List, Tuple -from pystencils import Assignment +from pystencils.astnodes import SympyAssignment from pystencils.boundaries.boundaryhandling import BoundaryOffsetInfo from pystencils.typing import create_type @@ -14,7 +14,7 @@ class Boundary: def __init__(self, name=None): self._name = name - def __call__(self, field, direction_symbol, index_field) -> List[Assignment]: + def __call__(self, field, direction_symbol, index_field) -> List[SympyAssignment]: """Defines the boundary behavior and must therefore be implemented by all boundaries. Here the boundary is defined as a list of sympy assignments, from which a boundary kernel is generated. @@ -63,13 +63,13 @@ class Neumann(Boundary): neighbor = BoundaryOffsetInfo.offset_from_dir(direction_symbol, field.spatial_dimensions) if field.index_dimensions == 0: - return [Assignment(field.center, field[neighbor])] + return [SympyAssignment(field.center, field[neighbor])] else: from itertools import product if not field.has_fixed_index_shape: raise NotImplementedError("Neumann boundary works only for fields with fixed index shape") index_iter = product(*(range(i) for i in field.index_shape)) - return [Assignment(field(*idx), field[neighbor](*idx)) for idx in index_iter] + return [SympyAssignment(field(*idx), field[neighbor](*idx)) for idx in index_iter] def __hash__(self): # All boundaries of these class behave equal -> should also be equal @@ -103,11 +103,11 @@ class Dirichlet(Boundary): def __call__(self, field, direction_symbol, index_field, **kwargs): if field.index_dimensions == 0: - return [Assignment(field.center, index_field("value") if self.additional_data else self._value)] + return [SympyAssignment(field.center, index_field("value") if self.additional_data else self._value)] elif field.index_dimensions == 1: assert not self.additional_data if not field.has_fixed_index_shape: raise NotImplementedError("Field needs fixed index shape") assert len(self._value) == field.index_shape[0], "Dirichlet value does not match index shape of field" - return [Assignment(field(i), self._value[i]) for i in range(field.index_shape[0])] + return [SympyAssignment(field(i), self._value[i]) for i in range(field.index_shape[0])] raise NotImplementedError("Dirichlet boundary not implemented for fields with more than one index dimension") diff --git a/pystencils/boundaries/boundaryhandling.py b/pystencils/boundaries/boundaryhandling.py index 52a314d75e5783085d73772439d91d0c44fb4d02..dcdd9e09e520c71fdfcc34d59e8de7c7d2edb4c0 100644 --- a/pystencils/boundaries/boundaryhandling.py +++ b/pystencils/boundaries/boundaryhandling.py @@ -2,7 +2,7 @@ import numpy as np import sympy as sp from pystencils import create_kernel, CreateKernelConfig, Target -from pystencils.assignment import Assignment +from pystencils.astnodes import SympyAssignment from pystencils.backends.cbackend import CustomCodeNode from pystencils.boundaries.createindexlist import ( create_boundary_index_array, numpy_data_type_for_boundary_object) @@ -445,7 +445,7 @@ class BoundaryOffsetInfo(CustomCodeNode): def create_boundary_kernel(field, index_field, stencil, boundary_functor, target=Target.CPU, **kernel_creation_args): elements = [BoundaryOffsetInfo(stencil)] dir_symbol = TypedSymbol("dir", np.int64) - elements += [Assignment(dir_symbol, index_field[0]('dir'))] + elements += [SympyAssignment(dir_symbol, index_field[0]('dir'))] elements += boundary_functor(field, direction_symbol=dir_symbol, index_field=index_field) config = CreateKernelConfig(index_fields=[index_field], target=target, **kernel_creation_args) return create_kernel(elements, config=config) diff --git a/pystencils/cpu/kernelcreation.py b/pystencils/cpu/kernelcreation.py index a937d3cf274290b7fe345c841878ccd2a396f9a8..7e4216568c169cf0be1eb46a52c25df765952da6 100644 --- a/pystencils/cpu/kernelcreation.py +++ b/pystencils/cpu/kernelcreation.py @@ -1,4 +1,4 @@ -from typing import List, Union +from typing import Union import sympy as sp import numpy as np @@ -96,8 +96,8 @@ def create_kernel(assignments: Union[AssignmentCollection, NodeCollection], return ast_node -def create_indexed_kernel(assignments: AssignmentCollection, index_fields, function_name="kernel", - type_info=None, coordinate_names=('x', 'y', 'z')) -> KernelFunction: +def create_indexed_kernel(assignments: Union[AssignmentCollection, NodeCollection], + config: CreateKernelConfig) -> KernelFunction: """ Similar to :func:`create_kernel`, but here not all cells of a field are updated but only cells with coordinates which are stored in an index field. This traversal method can e.g. be used for boundary handling. @@ -109,12 +109,17 @@ def create_indexed_kernel(assignments: AssignmentCollection, index_fields, funct Args: assignments: list of assignments - index_fields: list of index fields, i.e. 1D fields with struct data type - type_info: see documentation of :func:`create_kernel` - function_name: see documentation of :func:`create_kernel` - coordinate_names: name of the coordinate fields in the struct data type + config: Kernel configuration """ - fields_read, fields_written, assignments = add_types(assignments, type_info, check_independence_condition=False) + function_name = config.function_name + index_fields = config.index_fields + coordinate_names = config.coordinate_names + fields_written = assignments.bound_fields + fields_read = assignments.rhs_fields + + assignments = assignments.all_assignments + assignments = add_types(assignments, config) + all_fields = fields_read.union(fields_written) for index_field in index_fields: diff --git a/pystencils/datahandling/parallel_datahandling.py b/pystencils/datahandling/parallel_datahandling.py index 1fb8fe0bea37c60e764068f038fb37586b094278..9d1e898d7368c22faf6c1699a619587cb1c613a1 100644 --- a/pystencils/datahandling/parallel_datahandling.py +++ b/pystencils/datahandling/parallel_datahandling.py @@ -9,7 +9,7 @@ from pystencils.datahandling.blockiteration import block_iteration, sliced_block from pystencils.datahandling.datahandling_interface import DataHandling from pystencils.enums import Backend from pystencils.field import Field, FieldType -from pystencils.kernelparameters import FieldPointerSymbol +from pystencils.typing.typed_sympy import FieldPointerSymbol from pystencils.utils import DotDict from pystencils import Target diff --git a/pystencils/gpucuda/kernelcreation.py b/pystencils/gpucuda/kernelcreation.py index f6daa669769f3fe936808fb8c089932d54ad4229..21721bb7f635e6424dd02bc17a7b41cc93fa02bf 100644 --- a/pystencils/gpucuda/kernelcreation.py +++ b/pystencils/gpucuda/kernelcreation.py @@ -1,26 +1,36 @@ +from typing import Union + import numpy as np from pystencils.astnodes import Block, KernelFunction, LoopOverCoordinate, SympyAssignment +from pystencils.config import CreateKernelConfig from pystencils.typing import StructType, TypedSymbol from pystencils.typing.transformations import add_types from pystencils.field import Field, FieldType from pystencils.enums import Target, Backend from pystencils.gpucuda.cudajit import make_python_function -from pystencils.gpucuda.indexing import BlockIndexing +from pystencils.node_collection import NodeCollection +from pystencils.gpucuda.indexing import BlockIndexing, indexing_creator_from_params +from pystencils.simp.assignment_collection import AssignmentCollection from pystencils.transformations import ( get_base_buffer_index, get_common_shape, parse_base_pointer_info, resolve_buffer_accesses, resolve_field_accesses, unify_shape_symbols) -def create_cuda_kernel(assignments, - function_name="kernel", - type_info=None, - indexing_creator=BlockIndexing, - iteration_slice=None, - ghost_layers=None, - skip_independence_check=False): - assert assignments, "Assignments must not be empty!" - fields_read, fields_written, assignments = add_types(assignments, type_info, not skip_independence_check) +def create_cuda_kernel(assignments: Union[AssignmentCollection, NodeCollection], + config: CreateKernelConfig): + + function_name = config.function_name + indexing_creator = indexing_creator_from_params(config.gpu_indexing, config.gpu_indexing_params) + iteration_slice = config.iteration_slice + ghost_layers = config.ghost_layers + + fields_written = assignments.bound_fields + fields_read = assignments.rhs_fields + assignments = assignments.all_assignments + + assignments = add_types(assignments, config) + all_fields = fields_read.union(fields_written) read_only_fields = set([f.name for f in fields_read - fields_written]) @@ -103,13 +113,20 @@ def create_cuda_kernel(assignments, return ast -def created_indexed_cuda_kernel(assignments, - index_fields, - function_name="kernel", - type_info=None, - coordinate_names=('x', 'y', 'z'), - indexing_creator=BlockIndexing): - fields_read, fields_written, assignments = add_types(assignments, type_info, check_independence_condition=False) +def created_indexed_cuda_kernel(assignments: Union[AssignmentCollection, NodeCollection], + config: CreateKernelConfig): + + index_fields = config.index_fields + function_name = config.function_name + coordinate_names = config.coordinate_names + indexing_creator = indexing_creator_from_params(config.gpu_indexing, config.gpu_indexing_params) + + fields_written = assignments.bound_fields + fields_read = assignments.rhs_fields + assignments = assignments.all_assignments + + assignments = add_types(assignments, config) + all_fields = fields_read.union(fields_written) read_only_fields = set([f.name for f in fields_read - fields_written]) diff --git a/pystencils/gpucuda/periodicity.py b/pystencils/gpucuda/periodicity.py index 5a402c606fee50024c049efc3ad50ab40f417515..7cad51654de75c2462d7d846baccc916aa102d4d 100644 --- a/pystencils/gpucuda/periodicity.py +++ b/pystencils/gpucuda/periodicity.py @@ -1,9 +1,9 @@ import numpy as np from itertools import product +from pystencils import CreateKernelConfig, create_kernel import pystencils.gpucuda from pystencils import Assignment, Field -from pystencils.gpucuda.kernelcreation import create_cuda_kernel from pystencils.enums import Target from pystencils.slicing import get_periodic_boundary_src_dst_slices, normalize_slice @@ -26,13 +26,14 @@ def create_copy_kernel(domain_size, from_slice, to_slice, index_dimensions=0, in eq = Assignment(f(*i), f[tuple(offset)](*i)) update_eqs.append(eq) - ast = create_cuda_kernel(update_eqs, iteration_slice=to_slice, skip_independence_check=True) + config = CreateKernelConfig(target=Target.GPU, iteration_slice=to_slice, skip_independence_check=True) + + ast = create_kernel(update_eqs, config=config) return ast -# TODO: type flot is dangerous here def get_periodic_boundary_functor(stencil, domain_size, index_dimensions=0, index_dim_shape=1, ghost_layers=1, - thickness=None, dtype=float, target=Target.GPU): + thickness=None, dtype=np.float64, target=Target.GPU): assert target in {Target.GPU} src_dst_slice_tuples = get_periodic_boundary_src_dst_slices(stencil, ghost_layers, thickness) kernels = [] diff --git a/pystencils/kernel_decorator.py b/pystencils/kernel_decorator.py index a8db7cb979008b76cde1ea64d4856df93436b43e..ad5d625929058ef383402e2a1d97c0dfadbf5fda 100644 --- a/pystencils/kernel_decorator.py +++ b/pystencils/kernel_decorator.py @@ -77,10 +77,10 @@ def kernel_config(config: CreateKernelConfig, **kwargs) -> Callable[..., Dict]: and updates the function name accordingly. Changes the meaning of the '@=' operator. Each line containing this operator gives a symbolic assignment - in the result list. Furthermore the meaning of the ternary inline 'if-else' changes meaning to denote a + in the result list. Furthermore, the meaning of the ternary inline 'if-else' changes meaning to denote a sympy Piecewise. - The decorated function may not receive any arguments, with exception of an argument called 's' that specifies + The decorated function may not receive any arguments, with exception to an argument called 's' that specifies a SymbolCreator() Args: config: Specify whether to return the list with assignments, or a dictionary containing additional settings @@ -89,16 +89,15 @@ def kernel_config(config: CreateKernelConfig, **kwargs) -> Callable[..., Dict]: decorator with config Examples: - >>> import pystencils.kernel_creation_config >>> import pystencils as ps - >>> config = pystencils.kernel_creation_config.CreateKernelConfig() - >>> @kernel_config(config) + >>> kernel_configuration = ps.CreateKernelConfig() + >>> @kernel_config(kernel_configuration) ... def my_kernel(s): - ... f, g = ps.fields('f, g: [2D]') - ... s.neighbors @= f[0,1] + f[1,0] - ... g[0,0] @= s.neighbors + f[0,0] if f[0,0] > 0 else 0 - >>> f, g = ps.fields('f, g: [2D]') - >>> assert my_kernel['assignments'][0].rhs == f[0,1] + f[1,0] + ... src, dst = ps.fields('src, dst: [2D]') + ... s.neighbors @= src[0, 1] + src[1, 0] + ... dst[0, 0] @= s.neighbors + src[0, 0] if src[0, 0] > 0 else 0 + >>> f, g = ps.fields('src, dst: [2D]') + >>> assert my_kernel['assignments'][0].rhs == f[0, 1] + f[1, 0] """ def decorator(func: Callable[..., None]) -> Union[List[Assignment], Dict]: """ diff --git a/pystencils/kernelcreation.py b/pystencils/kernelcreation.py index 9c2198a815a1f2287b4b8559ab6a6866a70d2428..c63946bf0b05dd321a5c1da1672369932c80fe1e 100644 --- a/pystencils/kernelcreation.py +++ b/pystencils/kernelcreation.py @@ -11,7 +11,6 @@ from pystencils.cpu.vectorization import vectorize from pystencils.enums import Target, Backend from pystencils.field import Field, FieldType from pystencils.node_collection import NodeCollection -from pystencils.gpucuda.indexing import indexing_creator_from_params from pystencils.simp.assignment_collection import AssignmentCollection from pystencils.kernel_contrains_check import KernelConstraintsCheck from pystencils.simplificationfactory import create_simplification_strategy @@ -157,11 +156,7 @@ def create_domain_kernel(assignments: NodeCollection, *, config: CreateKernelCon elif config.target == Target.GPU: if config.backend == Backend.CUDA: from pystencils.gpucuda import create_cuda_kernel - ast = create_cuda_kernel(assignments, function_name=config.function_name, type_info=config.data_type, - indexing_creator=indexing_creator_from_params(config.gpu_indexing, - config.gpu_indexing_params), - iteration_slice=config.iteration_slice, ghost_layers=config.ghost_layers, - skip_independence_check=config.skip_independence_check) + ast = create_cuda_kernel(assignments, config=config) if not ast: raise NotImplementedError( @@ -174,7 +169,7 @@ def create_domain_kernel(assignments: NodeCollection, *, config: CreateKernelCon return ast -def create_indexed_kernel(assignments: AssignmentCollection, *, config: CreateKernelConfig): +def create_indexed_kernel(assignments: NodeCollection, *, config: CreateKernelConfig): """ Similar to :func:`create_kernel`, but here not all cells of a field are updated but only cells with coordinates which are stored in an index field. This traversal method can e.g. be used for boundary handling. @@ -218,24 +213,28 @@ def create_indexed_kernel(assignments: AssignmentCollection, *, config: CreateKe [0., 0., 0., 4.3, 0.], [0., 0., 0., 0., 0.]]) """ - # TODO do this in backends - assignments = assignments.all_assignments + # --- eval + assignments.evaluate_terms() + + # FUTURE WORK from here we shouldn't NEED sympy + # --- check constrains + check = KernelConstraintsCheck(check_independence_condition=not config.skip_independence_check, + check_double_write_condition=not config.allow_double_writes) + check.visit(assignments) + + assignments.bound_fields = check.fields_written + assignments.rhs_fields = check.fields_read + ast = None if config.target == Target.CPU and config.backend == Backend.C: from pystencils.cpu import add_openmp, create_indexed_kernel - ast = create_indexed_kernel(assignments, index_fields=config.index_fields, type_info=config.data_type, - coordinate_names=config.coordinate_names) + ast = create_indexed_kernel(assignments, config=config) if config.cpu_openmp: add_openmp(ast, num_threads=config.cpu_openmp) elif config.target == Target.GPU: if config.backend == Backend.CUDA: from pystencils.gpucuda import created_indexed_cuda_kernel - idx_creator = indexing_creator_from_params(config.gpu_indexing, config.gpu_indexing_params) - ast = created_indexed_cuda_kernel(assignments, - config.index_fields, - type_info=config.data_type, - coordinate_names=config.coordinate_names, - indexing_creator=idx_creator) + ast = created_indexed_cuda_kernel(assignments, config=config) if not ast: raise NotImplementedError(f'Indexed kernels are not yet supported for {config.target} with {config.backend}') @@ -358,11 +357,8 @@ def create_staggered_kernel(assignments, target: Target = Target.CPU, gpu_exclus [SympyAssignment(s.lhs, s.rhs) for s in subexpressions if hasattr(s, 'lhs')] + \ [last_conditional] - if target == Target.CPU: - from pystencils.cpu import create_kernel as create_kernel_cpu - ast = create_kernel_cpu(final_assignments, ghost_layers=ghost_layers, omp_single_loop=False, **kwargs) - else: - ast = create_kernel(final_assignments, ghost_layers=ghost_layers, target=target, **kwargs) + config = CreateKernelConfig(target=target, ghost_layers=ghost_layers, omp_single_loop=False, **kwargs) + ast = create_kernel(final_assignments, config=config) return ast for assignment in assignments: @@ -379,6 +375,8 @@ def create_staggered_kernel(assignments, target: Target = Target.CPU, gpu_exclus if 'cpu_prepend_optimizations' in kwargs: prepend_optimizations += kwargs['cpu_prepend_optimizations'] del kwargs['cpu_prepend_optimizations'] - ast = create_kernel(final_assignments, ghost_layers=ghost_layers, target=target, omp_single_loop=False, - cpu_prepend_optimizations=prepend_optimizations, **kwargs) + + config = CreateKernelConfig(ghost_layers=ghost_layers, target=target, omp_single_loop=False, + cpu_prepend_optimizations=prepend_optimizations, **kwargs) + ast = create_kernel(final_assignments, config=config) return ast diff --git a/pystencils_tests/test_abs.py b/pystencils_tests/test_abs.py index 2940295b00f8fb838e410227c8d8ceb7d74c7dc7..277cf4f5c4a39598aafbded82a267e6619c15bee 100644 --- a/pystencils_tests/test_abs.py +++ b/pystencils_tests/test_abs.py @@ -9,10 +9,6 @@ from pystencils.typing import CastFunc, create_type @pytest.mark.parametrize('target', (ps.Target.CPU, ps.Target.GPU)) def test_abs(target): - # TODO: GPU: Remove this !!!!!!!! - if target == ps.Target.GPU: - return True - x, y, z = ps.fields('x, y, z: float64[2d]') default_int_type = create_type('int64') diff --git a/pystencils_tests/test_buffer_gpu.py b/pystencils_tests/test_buffer_gpu.py index 2b3f55df59a7b0b1218c41f7cf464e37bb36efbb..39750301a43288ada788f94cc469e055cb55f749 100644 --- a/pystencils_tests/test_buffer_gpu.py +++ b/pystencils_tests/test_buffer_gpu.py @@ -3,9 +3,9 @@ import numpy as np import pytest -from pystencils import Assignment, Field, FieldType +import pystencils +from pystencils import Assignment, Field, FieldType, CreateKernelConfig, create_kernel from pystencils.field import create_numpy_array_with_layout, layout_string_to_tuple -from pystencils.gpucuda import create_cuda_kernel, make_python_function from pystencils.slicing import ( add_ghost_layers, get_ghost_region_slice, get_slice_before_ghost_layer) from pystencils.stencil import direction_string_to_offset @@ -57,16 +57,20 @@ def test_full_scalar_field(): pack_eqs = [Assignment(buffer.center(), src_field.center())] pack_types = {'src_field': gpu_src_arr.dtype, 'buffer': gpu_buffer_arr.dtype} - pack_code = create_cuda_kernel(pack_eqs, type_info=pack_types) - pack_kernel = make_python_function(pack_code) + config = CreateKernelConfig(target=pystencils.Target.GPU, data_type=pack_types) + pack_ast = create_kernel(pack_eqs, config=config) + + pack_kernel = pack_ast.compile() pack_kernel(buffer=gpu_buffer_arr, src_field=gpu_src_arr) unpack_eqs = [Assignment(dst_field.center(), buffer.center())] unpack_types = {'dst_field': gpu_dst_arr.dtype, 'buffer': gpu_buffer_arr.dtype} - unpack_code = create_cuda_kernel(unpack_eqs, type_info=unpack_types) - unpack_kernel = make_python_function(unpack_code) + config = CreateKernelConfig(target=pystencils.Target.GPU, data_type=unpack_types) + unpack_ast = create_kernel(unpack_eqs, config=config) + + unpack_kernel = unpack_ast.compile() unpack_kernel(dst_field=gpu_dst_arr, buffer=gpu_buffer_arr) dst_arr = gpu_dst_arr.get() @@ -91,17 +95,21 @@ def test_field_slice(): pack_eqs = [Assignment(buffer.center(), src_field.center())] pack_types = {'src_field': gpu_src_arr.dtype, 'buffer': gpu_buffer_arr.dtype} - pack_code = create_cuda_kernel(pack_eqs, type_info=pack_types) - pack_kernel = make_python_function(pack_code) + config = CreateKernelConfig(target=pystencils.Target.GPU, data_type=pack_types) + pack_ast = create_kernel(pack_eqs, config=config) + + pack_kernel = pack_ast.compile() pack_kernel(buffer=gpu_buffer_arr, src_field=gpu_src_arr[pack_slice]) # Unpack into ghost layer of dst_field in N direction unpack_eqs = [Assignment(dst_field.center(), buffer.center())] unpack_types = {'dst_field': gpu_dst_arr.dtype, 'buffer': gpu_buffer_arr.dtype} - unpack_code = create_cuda_kernel(unpack_eqs, type_info=unpack_types) - unpack_kernel = make_python_function(unpack_code) + config = CreateKernelConfig(target=pystencils.Target.GPU, data_type=unpack_types) + unpack_ast = create_kernel(unpack_eqs, config=config) + + unpack_kernel = unpack_ast.compile() unpack_kernel(buffer=gpu_buffer_arr, dst_field=gpu_dst_arr[unpack_slice]) dst_arr = gpu_dst_arr.get() @@ -127,8 +135,11 @@ def test_all_cell_values(): pack_eqs.append(eq) pack_types = {'src_field': gpu_src_arr.dtype, 'buffer': gpu_buffer_arr.dtype} - pack_code = create_cuda_kernel(pack_eqs, type_info=pack_types) - pack_kernel = make_python_function(pack_code) + + config = CreateKernelConfig(target=pystencils.Target.GPU, data_type=pack_types) + pack_code = create_kernel(pack_eqs, config=config) + pack_kernel = pack_code.compile() + pack_kernel(buffer=gpu_buffer_arr, src_field=gpu_src_arr) unpack_eqs = [] @@ -138,8 +149,10 @@ def test_all_cell_values(): unpack_eqs.append(eq) unpack_types = {'dst_field': gpu_dst_arr.dtype, 'buffer': gpu_buffer_arr.dtype} - unpack_code = create_cuda_kernel(unpack_eqs, type_info=unpack_types) - unpack_kernel = make_python_function(unpack_code) + + config = CreateKernelConfig(target=pystencils.Target.GPU, data_type=unpack_types) + unpack_ast = create_kernel(unpack_eqs, config=config) + unpack_kernel = unpack_ast.compile() unpack_kernel(buffer=gpu_buffer_arr, dst_field=gpu_dst_arr) dst_arr = gpu_dst_arr.get() @@ -167,8 +180,9 @@ def test_subset_cell_values(): pack_eqs.append(eq) pack_types = {'src_field': gpu_src_arr.dtype, 'buffer': gpu_buffer_arr.dtype} - pack_code = create_cuda_kernel(pack_eqs, type_info=pack_types) - pack_kernel = make_python_function(pack_code) + config = CreateKernelConfig(target=pystencils.Target.GPU, data_type=pack_types) + pack_ast = create_kernel(pack_eqs, config=config) + pack_kernel = pack_ast.compile() pack_kernel(buffer=gpu_buffer_arr, src_field=gpu_src_arr) unpack_eqs = [] @@ -178,8 +192,10 @@ def test_subset_cell_values(): unpack_eqs.append(eq) unpack_types = {'dst_field': gpu_dst_arr.dtype, 'buffer': gpu_buffer_arr.dtype} - unpack_code = create_cuda_kernel(unpack_eqs, type_info=unpack_types) - unpack_kernel = make_python_function(unpack_code) + config = CreateKernelConfig(target=pystencils.Target.GPU, data_type=unpack_types) + unpack_ast = create_kernel(unpack_eqs, config=config) + unpack_kernel = unpack_ast.compile() + unpack_kernel(buffer=gpu_buffer_arr, dst_field=gpu_dst_arr) dst_arr = gpu_dst_arr.get() @@ -206,8 +222,10 @@ def test_field_layouts(): pack_eqs.append(eq) pack_types = {'src_field': gpu_src_arr.dtype, 'buffer': gpu_buffer_arr.dtype} - pack_code = create_cuda_kernel(pack_eqs, type_info=pack_types) - pack_kernel = make_python_function(pack_code) + config = CreateKernelConfig(target=pystencils.Target.GPU, data_type=pack_types) + pack_ast = create_kernel(pack_eqs, config=config) + pack_kernel = pack_ast.compile() + pack_kernel(buffer=gpu_buffer_arr, src_field=gpu_src_arr) unpack_eqs = [] @@ -217,6 +235,8 @@ def test_field_layouts(): unpack_eqs.append(eq) unpack_types = {'dst_field': gpu_dst_arr.dtype, 'buffer': gpu_buffer_arr.dtype} - unpack_code = create_cuda_kernel(unpack_eqs, type_info=unpack_types) - unpack_kernel = make_python_function(unpack_code) + config = CreateKernelConfig(target=pystencils.Target.GPU, data_type=unpack_types) + unpack_ast = create_kernel(unpack_eqs, config=config) + unpack_kernel = unpack_ast.compile() + unpack_kernel(buffer=gpu_buffer_arr, dst_field=gpu_dst_arr) diff --git a/pystencils_tests/test_cuda_known_functions.py b/pystencils_tests/test_cuda_known_functions.py index 7828c99f884450fd884084d6a2383729a30fcc66..b9e17ebdde786cf54a0d21177f870151eaf5c15f 100644 --- a/pystencils_tests/test_cuda_known_functions.py +++ b/pystencils_tests/test_cuda_known_functions.py @@ -5,7 +5,7 @@ import pytest import pystencils from pystencils.astnodes import get_dummy_symbol from pystencils.backends.cuda_backend import CudaSympyPrinter -from pystencils.functions import address_of +from pystencils.functions import AddressOf from pystencils.enums import Target @@ -16,7 +16,7 @@ def test_cuda_known_functions(): x, y = pystencils.fields('x,y: float32 [2d]') assignments = pystencils.AssignmentCollection({ - get_dummy_symbol(): sympy.Function('atomicAdd')(address_of(y.center()), 2), + get_dummy_symbol(): sympy.Function('atomicAdd')(AddressOf(y.center()), 2), y.center(): sympy.Function('rsqrtf')(x[0, 0]) }) @@ -31,7 +31,7 @@ def test_cuda_but_not_c(): x, y = pystencils.fields('x,y: float32 [2d]') assignments = pystencils.AssignmentCollection({ - get_dummy_symbol(): sympy.Function('atomicAdd')(address_of(y.center()), 2), + get_dummy_symbol(): sympy.Function('atomicAdd')(AddressOf(y.center()), 2), y.center(): sympy.Function('rsqrtf')(x[0, 0]) }) @@ -43,7 +43,7 @@ def test_cuda_unknown(): x, y = pystencils.fields('x,y: float32 [2d]') assignments = pystencils.AssignmentCollection({ - get_dummy_symbol(): sympy.Function('wtf')(address_of(y.center()), 2), + get_dummy_symbol(): sympy.Function('wtf')(AddressOf(y.center()), 2), }) ast = pystencils.create_kernel(assignments, target=Target.GPU) diff --git a/pystencils_tests/test_cudagpu.py b/pystencils_tests/test_cudagpu.py index 520d859bf5cd94195a7622702bfed83432959afd..a65a08ba6d24b30002822e9916b2d3d44639d26a 100644 --- a/pystencils_tests/test_cudagpu.py +++ b/pystencils_tests/test_cudagpu.py @@ -4,9 +4,8 @@ import pycuda.gpuarray as gpuarray import sympy as sp from scipy.ndimage import convolve -from pystencils import Assignment, Field, fields -from pystencils.gpucuda import BlockIndexing, create_cuda_kernel, make_python_function -from pystencils.gpucuda.indexing import LineIndexing +from pystencils import Assignment, Field, fields, CreateKernelConfig, create_kernel, Target +from pystencils.gpucuda import BlockIndexing from pystencils.simp import sympy_cse_on_assignment_list from pystencils.slicing import add_ghost_layers, make_slice, remove_ghost_layers @@ -22,8 +21,9 @@ def test_averaging_kernel(): update_rule = Assignment(dst_field[0, 0], (src_field[0, 1] + src_field[0, -1] + src_field[1, 0] + src_field[-1, 0]) / 4) - ast = create_cuda_kernel(sympy_cse_on_assignment_list([update_rule])) - kernel = make_python_function(ast) + config = CreateKernelConfig(target=Target.GPU) + ast = create_kernel(sympy_cse_on_assignment_list([update_rule]), config=config) + kernel = ast.compile() gpu_src_arr = gpuarray.to_gpu(src_arr) gpu_dst_arr = gpuarray.to_gpu(dst_arr) @@ -43,8 +43,9 @@ def test_variable_sized_fields(): update_rule = Assignment(dst_field[0, 0], (src_field[0, 1] + src_field[0, -1] + src_field[1, 0] + src_field[-1, 0]) / 4) - ast = create_cuda_kernel(sympy_cse_on_assignment_list([update_rule])) - kernel = make_python_function(ast) + config = CreateKernelConfig(target=Target.GPU) + ast = create_kernel(sympy_cse_on_assignment_list([update_rule]), config=config) + kernel = ast.compile() size = (3, 3) src_arr = np.random.rand(*size) @@ -76,8 +77,9 @@ def test_multiple_index_dimensions(): update_rule = Assignment(dst_field[0, 0], sum([src_field[offset[0], offset[1]](i) for i in range(src_size[-1])])) - ast = create_cuda_kernel([update_rule]) - kernel = make_python_function(ast) + config = CreateKernelConfig(target=Target.GPU) + ast = create_kernel([update_rule], config=config) + kernel = ast.compile() gpu_src_arr = gpuarray.to_gpu(src_arr) gpu_dst_arr = gpuarray.to_gpu(dst_arr) @@ -102,8 +104,10 @@ def test_ghost_layer(): update_rule = Assignment(dst_field[0, 0], src_field[0, 0]) ghost_layers = [(1, 2), (2, 1)] - ast = create_cuda_kernel([update_rule], ghost_layers=ghost_layers, indexing_creator=LineIndexing) - kernel = make_python_function(ast) + + config = CreateKernelConfig(target=Target.GPU, ghost_layers=ghost_layers, gpu_indexing="line") + ast = create_kernel(sympy_cse_on_assignment_list([update_rule]), config=config) + kernel = ast.compile() gpu_src_arr = gpuarray.to_gpu(src_arr) gpu_dst_arr = gpuarray.to_gpu(dst_arr) @@ -122,9 +126,11 @@ def test_setting_value(): iteration_slice = make_slice[:, :] f = Field.create_generic("f", 2) update_rule = [Assignment(f(0), sp.Symbol("value"))] - ast = create_cuda_kernel(update_rule, iteration_slice=iteration_slice, indexing_creator=LineIndexing) - kernel = make_python_function(ast) + config = CreateKernelConfig(target=Target.GPU, gpu_indexing="line", iteration_slice=iteration_slice) + ast = create_kernel(sympy_cse_on_assignment_list(update_rule), config=config) + kernel = ast.compile() + kernel(f=arr_gpu, value=np.float64(42.0)) np.testing.assert_equal(arr_gpu.get(), np.ones((5, 5)) * 42.0) diff --git a/pystencils_tests/test_custom_backends.py b/pystencils_tests/test_custom_backends.py index e5942fcbf7f102017f2d240f89f0f841b22a596c..3d0088796e6d6ea6683f69124731cd64fad09507 100644 --- a/pystencils_tests/test_custom_backends.py +++ b/pystencils_tests/test_custom_backends.py @@ -1,7 +1,6 @@ from subprocess import CalledProcessError import pytest -import sympy import pystencils import pystencils.cpu.cpujit diff --git a/pystencils_tests/test_indexed_kernels.py b/pystencils_tests/test_indexed_kernels.py index fd994c7f9326d0b175a1adf7042e43938e621ad3..87b24b354accb1f5936660378078d8a9f70a94fa 100644 --- a/pystencils_tests/test_indexed_kernels.py +++ b/pystencils_tests/test_indexed_kernels.py @@ -1,7 +1,5 @@ import numpy as np - -from pystencils import Assignment, Field -from pystencils.cpu import create_indexed_kernel, make_python_function +from pystencils import Assignment, Field, CreateKernelConfig, create_kernel, Target def test_indexed_kernel(): @@ -15,8 +13,10 @@ def test_indexed_kernel(): indexed_field = Field.create_from_numpy_array('index', index_arr) normal_field = Field.create_from_numpy_array('f', arr) update_rule = Assignment(normal_field[0, 0], indexed_field('value')) - ast = create_indexed_kernel([update_rule], [indexed_field]) - kernel = make_python_function(ast) + + config = CreateKernelConfig(index_fields=[indexed_field]) + ast = create_kernel([update_rule], config=config) + kernel = ast.compile() kernel(f=arr, index=index_arr) for i in range(index_arr.shape[0]): np.testing.assert_allclose(arr[index_arr[i]['x'], index_arr[i]['y']], index_arr[i]['value'], atol=1e-13) @@ -29,9 +29,7 @@ def test_indexed_cuda_kernel(): pycuda = None if pycuda: - from pystencils.gpucuda import make_python_function import pycuda.gpuarray as gpuarray - from pystencils.gpucuda.kernelcreation import created_indexed_cuda_kernel arr = np.zeros((3, 4)) dtype = np.dtype([('x', int), ('y', int), ('value', arr.dtype)]) @@ -43,8 +41,10 @@ def test_indexed_cuda_kernel(): indexed_field = Field.create_from_numpy_array('index', index_arr) normal_field = Field.create_from_numpy_array('f', arr) update_rule = Assignment(normal_field[0, 0], indexed_field('value')) - ast = created_indexed_cuda_kernel([update_rule], [indexed_field]) - kernel = make_python_function(ast) + + config = CreateKernelConfig(target=Target.GPU, index_fields=[indexed_field]) + ast = create_kernel([update_rule], config=config) + kernel = ast.compile() gpu_arr = gpuarray.to_gpu(arr) gpu_index_arr = gpuarray.to_gpu(index_arr) diff --git a/pystencils_tests/test_types.py b/pystencils_tests/test_types.py index 164d941cf6e9d1d4fbed300c901c73709c82005e..8ac96f84e732debd8e1ff50426c483b6b5523868 100644 --- a/pystencils_tests/test_types.py +++ b/pystencils_tests/test_types.py @@ -5,7 +5,7 @@ import sympy as sp import numpy as np import pystencils as ps -from pystencils.typing import TypedSymbol, get_type_of_expression, VectorType, collate_types, create_type, \ +from pystencils.typing import TypedSymbol, get_type_of_expression, VectorType, collate_types, \ typed_symbols, CastFunc, PointerArithmeticFunc, PointerType, result_type, BasicType