MESA_PD_KernelLoadBalancing.cpp 27.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
//======================================================================================================================
//
//  This file is part of waLBerla. waLBerla is free software: you can
//  redistribute it and/or modify it under the terms of the GNU General Public
//  License as published by the Free Software Foundation, either version 3 of
//  the License, or (at your option) any later version.
//
//  waLBerla is distributed in the hope that it will be useful, but WITHOUT
//  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
//  for more details.
//
//  You should have received a copy of the GNU General Public License along
//  with waLBerla (see COPYING.txt). If not, see <http://www.gnu.org/licenses/>.
//
//! \file   MESA_PD_KernelLoadBalancing.cpp
//! \author Sebastian Eibl <sebastian.eibl@fau.de>
//
//======================================================================================================================

#include "Accessor.h"
#include "check.h"
#include "Contact.h"
#include "CreateParticles.h"
#include "NodeTimings.h"
#include "Parameters.h"
#include "SelectProperty.h"
#include "sortParticleStorage.h"
#include "SQLProperties.h"

#include <mesa_pd/vtk/ParticleVtkOutput.h>

#include <mesa_pd/collision_detection/AnalyticContactDetection.h>
#include <mesa_pd/data/LinkedCells.h>
#include <mesa_pd/data/ParticleAccessor.h>
#include <mesa_pd/data/ParticleStorage.h>
#include <mesa_pd/data/ShapeStorage.h>
38
#include <mesa_pd/data/SparseLinkedCells.h>
39
40
41
42
43
44
45
#include <mesa_pd/domain/BlockForestDataHandling.h>
#include <mesa_pd/domain/BlockForestDomain.h>
#include <mesa_pd/domain/InfoCollection.h>
#include <mesa_pd/kernel/AssocToBlock.h>
#include <mesa_pd/kernel/DoubleCast.h>
#include <mesa_pd/kernel/ExplicitEulerWithShape.h>
#include <mesa_pd/kernel/InsertParticleIntoLinkedCells.h>
46
#include <mesa_pd/kernel/InsertParticleIntoSparseLinkedCells.h>
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#include <mesa_pd/kernel/ParticleSelector.h>
#include <mesa_pd/kernel/SpringDashpot.h>
#include <mesa_pd/mpi/ContactFilter.h>
#include <mesa_pd/mpi/ReduceProperty.h>
#include <mesa_pd/mpi/SyncNextNeighbors.h>
#include <mesa_pd/mpi/SyncNextNeighborsBlockForest.h>
#include <mesa_pd/mpi/notifications/ForceTorqueNotification.h>
#include <mesa_pd/sorting/HilbertCompareFunctor.h>
#include <mesa_pd/sorting/LinearizedCompareFunctor.h>

#include <blockforest/BlockForest.h>
#include <blockforest/Initialization.h>
#include <blockforest/loadbalancing/DynamicCurve.h>
#include <blockforest/loadbalancing/DynamicParMetis.h>
#include <blockforest/loadbalancing/PODPhantomData.h>
#include <core/Abort.h>
#include <core/Environment.h>
#include <core/Hostname.h>
#include <core/math/Random.h>
#include <core/mpi/Gatherv.h>
#include <core/mpi/RecvBuffer.h>
#include <core/mpi/Reduce.h>
#include <core/mpi/SendBuffer.h>
#include <core/grid_generator/SCIterator.h>
#include <core/logging/Logging.h>
#include <core/OpenMP.h>
#include <core/timing/Timer.h>
#include <core/timing/TimingPool.h>
#include <core/waLBerlaBuildInfo.h>
#include <pe/amr/level_determination/MinMaxLevelDetermination.h>
#include <pe/amr/weight_assignment/MetisAssignmentFunctor.h>
#include <pe/amr/weight_assignment/WeightAssignmentFunctor.h>
Sebastian Eibl's avatar
Sebastian Eibl committed
79
#include <sqlite/SQLite.h>
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#include <vtk/VTKOutput.h>

#include <functional>
#include <memory>
#include <string>
#include <type_traits>

namespace walberla {
namespace mesa_pd {

int main( int argc, char ** argv )
{
   using namespace walberla::timing;

   Environment env(argc, argv);
   auto mpiManager = walberla::mpi::MPIManager::instance();
   mpiManager->useWorldComm();

98
99
   WALBERLA_LOG_DEVEL_ON_ROOT("MESA_PD_KernelLoadBalancing" );

100
101
   //   logging::Logging::instance()->setStreamLogLevel(logging::Logging::INFO);
   //   logging::Logging::instance()->setFileLogLevel(logging::Logging::INFO);
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

   WALBERLA_LOG_INFO_ON_ROOT( "config file: " << argv[1] );
   WALBERLA_LOG_INFO_ON_ROOT( "waLBerla Revision: " << WALBERLA_GIT_SHA1 );

   math::seedRandomGenerator( static_cast<unsigned int>(1337 * mpiManager->worldRank()) );

   std::map< std::string, walberla::int64_t > integerProperties;
   std::map< std::string, double >            realProperties;
   std::map< std::string, std::string >       stringProperties;

   WALBERLA_LOG_INFO_ON_ROOT("*** READING CONFIG FILE ***");
   auto cfg = env.config();
   if (cfg == nullptr) WALBERLA_ABORT("No config specified!");
   const Config::BlockHandle mainConf  = cfg->getBlock( "GranularGas" );
   Parameters params;
   loadFromConfig(params, mainConf);

   WALBERLA_LOG_INFO_ON_ROOT("*** BLOCKFOREST ***");
   // create forest
   auto forest = blockforest::createBlockForestFromConfig( mainConf );
   if (!forest)
   {
      WALBERLA_LOG_INFO_ON_ROOT( "No BlockForest created ... exiting!");
      return EXIT_SUCCESS;
   }

   forest->recalculateBlockLevelsInRefresh( params.recalculateBlockLevelsInRefresh );
   forest->alwaysRebalanceInRefresh( params.alwaysRebalanceInRefresh );
   forest->reevaluateMinTargetLevelsAfterForcedRefinement( params.reevaluateMinTargetLevelsAfterForcedRefinement );
   forest->allowRefreshChangingDepth( params.allowRefreshChangingDepth );

   forest->allowMultipleRefreshCycles( params.allowMultipleRefreshCycles );
   forest->checkForEarlyOutInRefresh( params.checkForEarlyOutInRefresh );
   forest->checkForLateOutInRefresh( params.checkForLateOutInRefresh );

   auto ic = make_shared<pe::InfoCollection>();

   //   pe::amr::MinMaxLevelDetermination regrid(ic, regridMin, regridMax);
   //   forest->setRefreshMinTargetLevelDeterminationFunction( regrid );

   bool bRebalance = true;
   if (params.LBAlgorithm == "None")
   {
      bRebalance = false;
   } else if (params.LBAlgorithm == "Morton")
   {
      forest->setRefreshPhantomBlockDataAssignmentFunction( pe::amr::WeightAssignmentFunctor( ic, params.baseWeight ) );
      forest->setRefreshPhantomBlockDataPackFunction( pe::amr::WeightAssignmentFunctor::PhantomBlockWeightPackUnpackFunctor() );
      forest->setRefreshPhantomBlockDataUnpackFunction( pe::amr::WeightAssignmentFunctor::PhantomBlockWeightPackUnpackFunctor() );

      auto prepFunc = blockforest::DynamicCurveBalance< pe::amr::WeightAssignmentFunctor::PhantomBlockWeight >( false, true, false );
      prepFunc.setMaxBlocksPerProcess( params.maxBlocksPerProcess );
      forest->setRefreshPhantomBlockMigrationPreparationFunction( prepFunc );
   } else if (params.LBAlgorithm == "Hilbert")
   {
      forest->setRefreshPhantomBlockDataAssignmentFunction( pe::amr::WeightAssignmentFunctor( ic, params.baseWeight ) );
      forest->setRefreshPhantomBlockDataPackFunction( pe::amr::WeightAssignmentFunctor::PhantomBlockWeightPackUnpackFunctor() );
      forest->setRefreshPhantomBlockDataUnpackFunction( pe::amr::WeightAssignmentFunctor::PhantomBlockWeightPackUnpackFunctor() );

      auto prepFunc = blockforest::DynamicCurveBalance< pe::amr::WeightAssignmentFunctor::PhantomBlockWeight >( true, true, false );
      prepFunc.setMaxBlocksPerProcess( params.maxBlocksPerProcess );
      forest->setRefreshPhantomBlockMigrationPreparationFunction( prepFunc );
   } else if (params.LBAlgorithm == "Metis")
   {
      auto assFunc = pe::amr::MetisAssignmentFunctor( ic, params.baseWeight );
      forest->setRefreshPhantomBlockDataAssignmentFunction( assFunc );
      forest->setRefreshPhantomBlockDataPackFunction( pe::amr::MetisAssignmentFunctor::PhantomBlockWeightPackUnpackFunctor() );
      forest->setRefreshPhantomBlockDataUnpackFunction( pe::amr::MetisAssignmentFunctor::PhantomBlockWeightPackUnpackFunctor() );

      auto alg     = blockforest::DynamicParMetis::stringToAlgorithm(    params.metisAlgorithm );
      auto vWeight = blockforest::DynamicParMetis::stringToWeightsToUse( params.metisWeightsToUse );
      auto eWeight = blockforest::DynamicParMetis::stringToEdgeSource(   params.metisEdgeSource );

      auto prepFunc = blockforest::DynamicParMetis( alg, vWeight, eWeight );
      prepFunc.setipc2redist(params.metisipc2redist);
      addParMetisPropertiesToSQL(prepFunc, integerProperties, realProperties, stringProperties);
      forest->setRefreshPhantomBlockMigrationPreparationFunction( prepFunc );
   } else if (params.LBAlgorithm == "Diffusive")
   {
      forest->setRefreshPhantomBlockDataAssignmentFunction( pe::amr::WeightAssignmentFunctor( ic, params.baseWeight ) );
      forest->setRefreshPhantomBlockDataPackFunction( pe::amr::WeightAssignmentFunctor::PhantomBlockWeightPackUnpackFunctor() );
      forest->setRefreshPhantomBlockDataUnpackFunction( pe::amr::WeightAssignmentFunctor::PhantomBlockWeightPackUnpackFunctor() );
      auto prepFunc = blockforest::DynamicDiffusionBalance< pe::amr::WeightAssignmentFunctor::PhantomBlockWeight >( 1, 1, false );
      //configure(cfg, prepFunc);
      //addDynamicDiffusivePropertiesToSQL(prepFunc, integerProperties, realProperties, stringProperties);
      forest->setRefreshPhantomBlockMigrationPreparationFunction(prepFunc);
   } else
   {
      WALBERLA_ABORT("Unknown LBAlgorithm: " << params.LBAlgorithm);
   }

   auto domain = std::make_shared<domain::BlockForestDomain>(forest);

   WALBERLA_LOG_INFO_ON_ROOT("*** SETUP - START ***");

   //init data structures
   auto ps = std::make_shared<data::ParticleStorage>(100);
   auto ss = std::make_shared<data::ShapeStorage>();
   ParticleAccessorWithShape accessor(ps, ss);
   auto lc = std::make_shared<data::LinkedCells>(domain->getUnionOfLocalAABBs().getExtended(params.spacing), params.spacing );
   forest->addBlockData(domain::createBlockForestDataHandling(ps), "Storage");

   auto center = forest->getDomain().center();
   auto  smallSphere = ss->create<data::Sphere>( params.radius );
   ss->shapes[smallSphere]->updateMassAndInertia(real_t(2707));
   for (auto& iBlk : *forest)
   {
      for (auto pt : grid_generator::SCGrid(iBlk.getAABB(),
210
                                            Vector3<real_t>(params.spacing) * real_c(0.5) + params.shift,
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
                                            params.spacing))
      {
         WALBERLA_CHECK(iBlk.getAABB().contains(pt));
         auto tmp = dot( (pt - center), params.normal );
         if (tmp < 0)
         {
            createSphere(*ps, pt, params.radius, smallSphere);
         }
      }
   }
   int64_t numParticles = int64_c(ps->size());
   walberla::mpi::reduceInplace(numParticles, walberla::mpi::SUM);
   WALBERLA_LOG_INFO_ON_ROOT("#particles created: " << numParticles);

   WALBERLA_LOG_INFO_ON_ROOT("*** SETUP - END ***");

   WALBERLA_LOG_INFO_ON_ROOT("*** VTK ***");
Sebastian Eibl's avatar
Sebastian Eibl committed
228
   auto vtkDomainOutput = walberla::vtk::createVTKOutput_DomainDecomposition( forest, "domain_decomposition", 1, params.vtk_out, "simulation_step" );
229
   auto vtkOutput       = make_shared<mesa_pd::vtk::ParticleVtkOutput>(ps) ;
Sebastian Eibl's avatar
Sebastian Eibl committed
230
   auto vtkWriter       = walberla::vtk::createVTKOutput_PointData(vtkOutput, "Bodies", 1, params.vtk_out, "simulation_step", false, false);
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
   vtkOutput->addOutput<SelectRank>("rank");
   vtkOutput->addOutput<data::SelectParticleOwner>("owner");
   vtkOutput->addOutput<SelectIdx>("idx");
   //   vtkDomainOutput->write();

   WALBERLA_LOG_INFO_ON_ROOT("*** SIMULATION - START ***");
   // Init kernels
   kernel::ExplicitEulerWithShape        explicitEulerWithShape( params.dt );
   kernel::InsertParticleIntoLinkedCells ipilc;
   kernel::SpringDashpot                 dem(1);
   dem.setStiffness(0, 0, real_t(0));
   dem.setDampingN (0, 0, real_t(0));
   dem.setDampingT (0, 0, real_t(0));
   dem.setFriction (0, 0, real_t(0));
   collision_detection::AnalyticContactDetection              acd;
   kernel::AssocToBlock                  assoc(forest);
   kernel::DoubleCast                    double_cast;
   mpi::ContactFilter                    contact_filter;
   mpi::ReduceProperty                   RP;
   mpi::SyncNextNeighborsBlockForest     SNN;
   std::vector<Contact>                  contacts;
   contacts.reserve(4000000);

   // initial sync
   ps->forEachParticle(true, kernel::SelectLocal(), accessor, assoc, accessor);
   SNN(*ps, forest, domain);
   sortParticleStorage(*ps, params.sorting, lc->domain_, uint_c(lc->numCellsPerDim_[0]));
   //   vtkWriter->write();

   WcTimingPool tpImbalanced;
   WcTimingPool tpBalanced;

263
   WALBERLA_LOG_INFO_ON_ROOT("*** RUNNING UNBALANCED SIMULATION ***");
264
265
266
267
268
269
270
271
   WALBERLA_MPI_BARRIER();
   tpImbalanced["AssocToBlock"].start();
   for (int64_t i=0; i < params.simulationSteps; ++i)
   {
      ps->forEachParticle(true, kernel::SelectLocal(), accessor, assoc, accessor);
   }
   tpImbalanced["AssocToBlock"].end();

272
273
274
275
276
277
278
279
280
   WALBERLA_MPI_BARRIER();
   tpImbalanced["GenerateLinkedCells"].start();
   for (int64_t i=0; i < params.simulationSteps; ++i)
   {
      lc->clear();
      ps->forEachParticle(true, kernel::SelectAll(), accessor, ipilc, accessor, *lc);
   }
   tpImbalanced["GenerateLinkedCells"].end();

281
282
283
   int64_t imbalancedContactsChecked  = 0;
   int64_t imbalancedContactsDetected = 0;
   int64_t imbalancedContactsTreated  = 0;
284
285
286
287
288
   WALBERLA_MPI_BARRIER();
   tpImbalanced["ContactDetection"].start();
   for (int64_t i=0; i < params.simulationSteps; ++i)
   {
      contacts.clear();
289
290
291
      imbalancedContactsChecked  = 0;
      imbalancedContactsDetected = 0;
      imbalancedContactsTreated  = 0;
292
293
294
295
296
      lc->forEachParticlePairHalf(true,
                                  kernel::SelectAll(),
                                  accessor,
                                  [&](const size_t idx1, const size_t idx2, auto& ac)
      {
297
         ++imbalancedContactsChecked;
298
299
         if (double_cast(idx1, idx2, ac, acd, ac ))
         {
300
            ++imbalancedContactsDetected;
301
302
            if (contact_filter(acd.getIdx1(), acd.getIdx2(), ac, acd.getContactPoint(), *domain))
            {
303
               ++imbalancedContactsTreated;
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
               contacts.emplace_back(acd.getIdx1(), acd.getIdx2(), acd.getContactPoint(), acd.getContactNormal(), acd.getPenetrationDepth());
            }
         }
      },
      accessor );
   }
   tpImbalanced["ContactDetection"].end();

   WALBERLA_MPI_BARRIER();
   tpImbalanced["DEM"].start();
   for (int64_t i=0; i < params.simulationSteps; ++i)
   {
      for (auto& c : contacts)
      {
         dem(c.idx1_, c.idx2_, accessor, c.contactPoint_, c.contactNormal_, c.penetrationDepth_);
      }
   }
   tpImbalanced["DEM"].end();

   WALBERLA_MPI_BARRIER();
   tpImbalanced["ReduceForce"].start();
   for (int64_t i=0; i < params.simulationSteps; ++i)
   {
      RP.operator()<ForceTorqueNotification>(*ps);
   }
   tpImbalanced["ReduceForce"].end();

   WALBERLA_MPI_BARRIER();
   tpImbalanced["Euler"].start();
   for (int64_t i=0; i < params.simulationSteps; ++i)
   {
      ps->forEachParticle(true, kernel::SelectLocal(), accessor, explicitEulerWithShape, accessor);
   }
   tpImbalanced["Euler"].end();

   WALBERLA_MPI_BARRIER();
   tpImbalanced["SNN"].start();
   for (int64_t i=0; i < params.simulationSteps; ++i)
   {
      SNN(*ps, forest, domain);
   }
   tpImbalanced["SNN"].end();

347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
   auto SNNBytesSent     = SNN.getBytesSent();
   auto SNNBytesReceived = SNN.getBytesReceived();
   auto SNNSends         = SNN.getNumberOfSends();
   auto SNNReceives      = SNN.getNumberOfReceives();
   auto RPBytesSent      = RP.getBytesSent();
   auto RPBytesReceived  = RP.getBytesReceived();
   auto RPSends          = RP.getNumberOfSends();
   auto RPReceives       = RP.getNumberOfReceives();
   walberla::mpi::reduceInplace(SNNBytesSent, walberla::mpi::SUM);
   walberla::mpi::reduceInplace(SNNBytesReceived, walberla::mpi::SUM);
   walberla::mpi::reduceInplace(SNNSends, walberla::mpi::SUM);
   walberla::mpi::reduceInplace(SNNReceives, walberla::mpi::SUM);
   walberla::mpi::reduceInplace(RPBytesSent, walberla::mpi::SUM);
   walberla::mpi::reduceInplace(RPBytesReceived, walberla::mpi::SUM);
   walberla::mpi::reduceInplace(RPSends, walberla::mpi::SUM);
   walberla::mpi::reduceInplace(RPReceives, walberla::mpi::SUM);
   auto cC = walberla::mpi::reduce(imbalancedContactsChecked, walberla::mpi::SUM);
   auto cD = walberla::mpi::reduce(imbalancedContactsDetected, walberla::mpi::SUM);
   auto cT = walberla::mpi::reduce(imbalancedContactsTreated, walberla::mpi::SUM);
   WALBERLA_LOG_DEVEL_ON_ROOT( "SNN bytes communicated:   " << SNNBytesSent << " / " << SNNBytesReceived );
   WALBERLA_LOG_DEVEL_ON_ROOT( "SNN communication partners: " << SNNSends << " / " << SNNReceives );
   WALBERLA_LOG_DEVEL_ON_ROOT( "RP bytes communicated:  " << RPBytesSent << " / " << RPBytesReceived );
   WALBERLA_LOG_DEVEL_ON_ROOT( "RP communication partners: " << RPSends << " / " << RPReceives );
   WALBERLA_LOG_DEVEL_ON_ROOT( "contacts checked/detected/treated: " << cC << " / " << cD << " / " << cT );
   auto minLinkedCells = walberla::mpi::reduce(lc->cells_.size(), walberla::mpi::MIN);
   auto maxLinkedCells = walberla::mpi::reduce(lc->cells_.size(), walberla::mpi::MAX);
   WALBERLA_LOG_DEVEL_ON_ROOT( "linked cells: " << minLinkedCells << " / " << maxLinkedCells );

375
376
377
   WALBERLA_MPI_BARRIER();
   if (bRebalance)
   {
378
      WALBERLA_LOG_INFO_ON_ROOT("*** RUNNING LOAD BALANCING ***");
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
      domain::createWithNeighborhood( accessor, *forest, *ic );
      for (auto pIt = ps->begin(); pIt != ps->end(); )
      {
         using namespace walberla::mesa_pd::data::particle_flags;
         if (isSet(pIt->getFlags(), GHOST))
         {
            pIt = ps->erase(pIt);
         } else
         {
            pIt->getGhostOwnersRef().clear();
            ++pIt;
         }
      }
      forest->refresh();
      domain->refresh();
      lc = std::make_shared<data::LinkedCells>(domain->getUnionOfLocalAABBs().getExtended(params.spacing), params.spacing );
      ps->forEachParticle(true, kernel::SelectLocal(), accessor, assoc, accessor);
      SNN(*ps, forest, domain);
      sortParticleStorage(*ps, params.sorting, lc->domain_, uint_c(lc->numCellsPerDim_[0]));
   }

400
401
402
   WALBERLA_MPI_BARRIER();
   WALBERLA_LOG_INFO_ON_ROOT("*** RUNNING BALANCED SIMULATION ***");

403
404
405
406
407
408
409
410
   WALBERLA_MPI_BARRIER();
   tpBalanced["AssocToBlock"].start();
   for (int64_t i=0; i < params.simulationSteps; ++i)
   {
      ps->forEachParticle(true, kernel::SelectLocal(), accessor, assoc, accessor);
   }
   tpBalanced["AssocToBlock"].end();

411
412
413
414
415
416
417
418
419
   WALBERLA_MPI_BARRIER();
   tpBalanced["GenerateLinkedCells"].start();
   for (int64_t i=0; i < params.simulationSteps; ++i)
   {
      lc->clear();
      ps->forEachParticle(true, kernel::SelectAll(), accessor, ipilc, accessor, *lc);
   }
   tpBalanced["GenerateLinkedCells"].end();

420
421
422
   int64_t balancedContactsChecked  = 0;
   int64_t balancedContactsDetected = 0;
   int64_t balancedContactsTreated  = 0;
423
424
425
426
427
   WALBERLA_MPI_BARRIER();
   tpBalanced["ContactDetection"].start();
   for (int64_t i=0; i < params.simulationSteps; ++i)
   {
      contacts.clear();
428
429
430
      balancedContactsChecked  = 0;
      balancedContactsDetected = 0;
      balancedContactsTreated  = 0;
431
432
433
434
435
      lc->forEachParticlePairHalf(true,
                                  kernel::SelectAll(),
                                  accessor,
                                  [&](const size_t idx1, const size_t idx2, auto& ac)
      {
436
         ++balancedContactsChecked;
437
438
         if (double_cast(idx1, idx2, ac, acd, ac ))
         {
439
            ++balancedContactsDetected;
440
441
            if (contact_filter(acd.getIdx1(), acd.getIdx2(), ac, acd.getContactPoint(), *domain))
            {
442
               ++balancedContactsTreated;
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
               contacts.emplace_back(acd.getIdx1(), acd.getIdx2(), acd.getContactPoint(), acd.getContactNormal(), acd.getPenetrationDepth());
            }
         }
      },
      accessor );
   }
   tpBalanced["ContactDetection"].end();

   WALBERLA_MPI_BARRIER();
   tpBalanced["DEM"].start();
   for (int64_t i=0; i < params.simulationSteps; ++i)
   {
      for (auto& c : contacts)
      {
         dem(c.idx1_, c.idx2_, accessor, c.contactPoint_, c.contactNormal_, c.penetrationDepth_);
      }
   }
   tpBalanced["DEM"].end();

   WALBERLA_MPI_BARRIER();
   tpBalanced["ReduceForce"].start();
   for (int64_t i=0; i < params.simulationSteps; ++i)
   {
      RP.operator()<ForceTorqueNotification>(*ps);
   }
   tpBalanced["ReduceForce"].end();

   WALBERLA_MPI_BARRIER();
   tpBalanced["Euler"].start();
   for (int64_t i=0; i < params.simulationSteps; ++i)
   {
      ps->forEachParticle(true, kernel::SelectLocal(), accessor, explicitEulerWithShape, accessor);
   }
   tpBalanced["Euler"].end();

   WALBERLA_MPI_BARRIER();
   tpBalanced["SNN"].start();
   for (int64_t i=0; i < params.simulationSteps; ++i)
   {
      SNN(*ps, forest, domain);
   }
   tpBalanced["SNN"].end();

   WALBERLA_LOG_INFO_ON_ROOT("*** SIMULATION - END ***");

   if (params.checkSimulation)
   {
      check(*ps, *forest, params.spacing);
   }


   WALBERLA_LOG_INFO_ON_ROOT("*** SQL OUTPUT - START ***");
495
496
497
498
499
500
501
502
503

   SNNBytesSent     = SNN.getBytesSent();
   SNNBytesReceived = SNN.getBytesReceived();
   SNNSends         = SNN.getNumberOfSends();
   SNNReceives      = SNN.getNumberOfReceives();
   RPBytesSent      = RP.getBytesSent();
   RPBytesReceived  = RP.getBytesReceived();
   RPSends          = RP.getNumberOfSends();
   RPReceives       = RP.getNumberOfReceives();
504
505
506
507
508
509
510
511
   walberla::mpi::reduceInplace(SNNBytesSent, walberla::mpi::SUM);
   walberla::mpi::reduceInplace(SNNBytesReceived, walberla::mpi::SUM);
   walberla::mpi::reduceInplace(SNNSends, walberla::mpi::SUM);
   walberla::mpi::reduceInplace(SNNReceives, walberla::mpi::SUM);
   walberla::mpi::reduceInplace(RPBytesSent, walberla::mpi::SUM);
   walberla::mpi::reduceInplace(RPBytesReceived, walberla::mpi::SUM);
   walberla::mpi::reduceInplace(RPSends, walberla::mpi::SUM);
   walberla::mpi::reduceInplace(RPReceives, walberla::mpi::SUM);
512
513
514
   cC = walberla::mpi::reduce(balancedContactsChecked, walberla::mpi::SUM);
   cD = walberla::mpi::reduce(balancedContactsDetected, walberla::mpi::SUM);
   cT = walberla::mpi::reduce(balancedContactsTreated, walberla::mpi::SUM);
515
516
517
518
519
   WALBERLA_LOG_DEVEL_ON_ROOT( "SNN bytes communicated:   " << SNNBytesSent << " / " << SNNBytesReceived );
   WALBERLA_LOG_DEVEL_ON_ROOT( "SNN communication partners: " << SNNSends << " / " << SNNReceives );
   WALBERLA_LOG_DEVEL_ON_ROOT( "RP bytes communicated:  " << RPBytesSent << " / " << RPBytesReceived );
   WALBERLA_LOG_DEVEL_ON_ROOT( "RP communication partners: " << RPSends << " / " << RPReceives );
   WALBERLA_LOG_DEVEL_ON_ROOT( "contacts checked/detected/treated: " << cC << " / " << cD << " / " << cT );
520
521
522
   minLinkedCells = walberla::mpi::reduce(lc->cells_.size(), walberla::mpi::MIN);
   maxLinkedCells = walberla::mpi::reduce(lc->cells_.size(), walberla::mpi::MAX);
   WALBERLA_LOG_DEVEL_ON_ROOT( "linked cells: " << minLinkedCells << " / " << maxLinkedCells );
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

   auto tpImbalancedReduced = tpImbalanced.getReduced();
   WALBERLA_LOG_INFO_ON_ROOT(*tpImbalancedReduced);

   auto tpBalancedReduced = tpBalanced.getReduced();
   WALBERLA_LOG_INFO_ON_ROOT(*tpBalancedReduced);

   numParticles = 0;
   int64_t numGhostParticles = 0;
   ps->forEachParticle(false,
                       kernel::SelectAll(),
                       accessor,
                       [&numParticles, &numGhostParticles](const size_t idx, auto& ac)
   {
      if (data::particle_flags::isSet( ac.getFlagsRef(idx), data::particle_flags::GHOST))
      {
         ++numGhostParticles;
      } else
      {
         ++numParticles;
      }
   },
   accessor);
   auto minParticles = walberla::mpi::reduce(numParticles, walberla::mpi::MIN);
   auto maxParticles = walberla::mpi::reduce(numParticles, walberla::mpi::MAX);
   WALBERLA_LOG_DEVEL_ON_ROOT("particle ratio: " << minParticles << " / " << maxParticles);
   walberla::mpi::reduceInplace(numParticles, walberla::mpi::SUM);
   walberla::mpi::reduceInplace(numGhostParticles, walberla::mpi::SUM);
551
552
553
554
555
556
   walberla::mpi::reduceInplace(imbalancedContactsChecked, walberla::mpi::SUM);
   walberla::mpi::reduceInplace(imbalancedContactsDetected, walberla::mpi::SUM);
   walberla::mpi::reduceInplace(imbalancedContactsTreated, walberla::mpi::SUM);
   walberla::mpi::reduceInplace(balancedContactsChecked, walberla::mpi::SUM);
   walberla::mpi::reduceInplace(balancedContactsDetected, walberla::mpi::SUM);
   walberla::mpi::reduceInplace(balancedContactsTreated, walberla::mpi::SUM);
557
558
559
560
561
562
563
564
565
566
567
568
569
570
   double linkedCellsVolume = lc->domain_.volume();
   walberla::mpi::reduceInplace(linkedCellsVolume, walberla::mpi::SUM);
   size_t numLinkedCells = lc->cells_.size();
   walberla::mpi::reduceInplace(numLinkedCells, walberla::mpi::SUM);
   size_t local_aabbs         = domain->getNumLocalAABBs();
   size_t neighbor_subdomains = domain->getNumNeighborSubdomains();
   size_t neighbor_processes  = domain->getNumNeighborProcesses();
   walberla::mpi::reduceInplace(local_aabbs, walberla::mpi::SUM);
   walberla::mpi::reduceInplace(neighbor_subdomains, walberla::mpi::SUM);
   walberla::mpi::reduceInplace(neighbor_processes, walberla::mpi::SUM);

   uint_t runId = uint_c(-1);
   WALBERLA_ROOT_SECTION()
   {
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
      stringProperties["walberla_git"]                  = WALBERLA_GIT_SHA1;
      stringProperties["tag"]                           = "mesa_pd";
      integerProperties["mpi_num_processes"]            = mpiManager->numProcesses();
      integerProperties["omp_max_threads"]              = omp_get_max_threads();
      integerProperties["num_particles"]                = numParticles;
      integerProperties["num_ghost_particles"]          = numGhostParticles;
      integerProperties["minParticles"]                 = minParticles;
      integerProperties["maxParticles"]                 = maxParticles;
      integerProperties["imbalancedContactsChecked"]    = imbalancedContactsChecked;
      integerProperties["imbalancedContactsDetected"]   = imbalancedContactsDetected;
      integerProperties["imbalancedContactsTreated"]    = imbalancedContactsTreated;
      integerProperties["balancedContactsChecked"]      = balancedContactsChecked;
      integerProperties["balancedContactsDetected"]     = balancedContactsDetected;
      integerProperties["balancedContactsTreated"]      = balancedContactsTreated;
      integerProperties["local_aabbs"]                  = int64_c(local_aabbs);
      integerProperties["neighbor_subdomains"]          = int64_c(neighbor_subdomains);
      integerProperties["neighbor_processes"]           = int64_c(neighbor_processes);
      integerProperties["SNNBytesSent"]                 = SNNBytesSent;
      integerProperties["SNNBytesReceived"]             = SNNBytesReceived;
      integerProperties["SNNSends"]                     = SNNSends;
      integerProperties["SNNReceives"]                  = SNNReceives;
      integerProperties["RPBytesSent"]                  = RPBytesSent;
      integerProperties["RPBytesReceived"]              = RPBytesReceived;
      integerProperties["RPSends"]                      = RPSends;
      integerProperties["RPReceives"]                   = RPReceives;
      realProperties["linkedCellsVolume"]               = linkedCellsVolume;
      integerProperties["numLinkedCells"]               = int64_c(numLinkedCells);
598
599
      integerProperties["minLinkedCells"]               = int64_c(minLinkedCells);
      integerProperties["maxLinkedCells"]               = int64_c(maxLinkedCells);
600
601
602
603
604
605

      addBuildInfoToSQL( integerProperties, realProperties, stringProperties );
      saveToSQL(params, integerProperties, realProperties, stringProperties );
      addDomainPropertiesToSQL(*forest, integerProperties, realProperties, stringProperties);
      addSlurmPropertiesToSQL(integerProperties, realProperties, stringProperties);

Sebastian Eibl's avatar
Sebastian Eibl committed
606
607
608
      runId = sqlite::storeRunInSqliteDB( params.sqlFile, integerProperties, stringProperties, realProperties );
      sqlite::storeTimingPoolInSqliteDB( params.sqlFile, runId, *tpImbalancedReduced, "imbalanced" );
      sqlite::storeTimingPoolInSqliteDB( params.sqlFile, runId, *tpBalancedReduced, "balanced" );
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
   }
   if (params.storeNodeTimings)
   {
      storeNodeTimings(runId, params.sqlFile, "NodeTimingImbalanced", tpImbalanced);
      storeNodeTimings(runId, params.sqlFile, "NodeTimingBalanced", tpBalanced);
   }
   WALBERLA_LOG_INFO_ON_ROOT("*** SQL OUTPUT - END ***");

   return EXIT_SUCCESS;
}

} // namespace mesa_pd
} // namespace walberla

int main( int argc, char* argv[] )
{
   return walberla::mesa_pd::main( argc, argv );
}