diff --git a/lbmpy_tests/test_lbstep.py b/lbmpy_tests/test_lbstep.py index eabbf2629718bf19796ca956bf424e0a15fc721d..02e3c44a565e239b0be1738085a659038948c894 100644 --- a/lbmpy_tests/test_lbstep.py +++ b/lbmpy_tests/test_lbstep.py @@ -54,24 +54,29 @@ def test_data_handling_2d_opencl(): pystencils.opencl.opencljit.init_globally() print("--- LDC 2D test ---") results = [] - for parallel in [True, False] if parallel_available else [False]: - for gpu in [True, False] if gpu_available else [False]: - if parallel and gpu and not hasattr(wLB, 'cuda'): - continue - print("Testing parallel: %s\tgpu: %s" % (parallel, gpu)) - opt_params = {'target': 'opencl' if gpu else 'cpu', - 'gpu_indexing_params': {'block_size': (8, 4, 2)}} - if parallel: - from pystencils.datahandling import ParallelDataHandling - blocks = wLB.createUniformBlockGrid(blocks=(2, 3, 1), cellsPerBlock=(5, 5, 1), - oneBlockPerProcess=False) - dh = ParallelDataHandling(blocks, dim=2) - rho = ldc_setup(data_handling=dh, optimization=opt_params) - results.append(rho) - else: - rho = ldc_setup(domain_size=(10, 15), parallel=False, optimization=opt_params) - results.append(rho) + # Since waLBerla has no OpenCL Backend yet, it is not possible to use the + # parallel Datahandling with OpenCL at the moment + + # TODO: Activate parallel Datahandling if Backend is available + parallel = False + for gpu in [True, False] if gpu_available else [False]: + if parallel and gpu and not hasattr(wLB, 'cuda'): + continue + + print("Testing parallel: %s\tgpu: %s" % (parallel, gpu)) + opt_params = {'target': 'opencl' if gpu else 'cpu', + 'gpu_indexing_params': {'block_size': (8, 4, 2)}} + if parallel: + from pystencils.datahandling import ParallelDataHandling + blocks = wLB.createUniformBlockGrid(blocks=(2, 3, 1), cellsPerBlock=(5, 5, 1), + oneBlockPerProcess=False) + dh = ParallelDataHandling(blocks, dim=2) + rho = ldc_setup(data_handling=dh, optimization=opt_params) + results.append(rho) + else: + rho = ldc_setup(domain_size=(10, 15), parallel=False, optimization=opt_params) + results.append(rho) for i, arr in enumerate(results[1:]): print("Testing equivalence version 0 with version %d" % (i + 1,)) np.testing.assert_almost_equal(results[0], arr)