Commit a3556a10 authored by Martin Bauer's avatar Martin Bauer
Browse files

Automatic Chapman Enskog Analysis of moment-based methods

parent 9d35ef5d
This diff is collapsed.
%% Cell type:code id: tags:
``` python
import sympy as sp
# Using operator and kets from quantum module to represent differential operators and pdfs
from sympy.physics.quantum import Ket as Func
from sympy.physics.quantum import Operator
# Disable Ket notation |f> for functions
Func.lbracket_latex =''
Func.rbracket_latex = ''
sp.init_printing()
```
%% Cell type:markdown id: tags:
# Chapman Enskog analysis
Particle distribution function $f$:
%% Cell type:code id: tags:
``` python
c = sp.Symbol("c_x")
dt = sp.Symbol("Delta_t")
t = sp.symbols("t")
f = Func("f")
C = Func("C")
```
%% Cell type:markdown id: tags:
Differential operators (defined simply as non-commutative symbols here)
%% Cell type:code id: tags:
``` python
Dx = Operator("\partial_x")
Dt = Operator("\partial_t")
```
%% Cell type:code id: tags:
``` python
taylorOrder = 2
taylorOperator = sum(dt**k * (Dt + c* Dx)**k / sp.functions.factorial(k)
for k in range(1, taylorOrder+1))
taylorOperator
```
%%%% Output: execute_result
![]()
$$\frac{\Delta_{t}^{2}}{2} \left(c_{x} \partial_x + \partial_t\right)^{2} + \Delta_{t} \left(c_{x} \partial_x + \partial_t\right)$$
2 2
Δₜ ⋅(cₓ⋅\partialₓ + \partialₜ)
─────────────────────────────── + Δₜ⋅(cₓ⋅\partialₓ + \partialₜ)
2
%% Cell type:markdown id: tags:
As right-hand-side we use the abstract collision operator $C$, which corresponds to (4.5)
%% Cell type:code id: tags:
``` python
eq_4_5 = (taylorOperator * f) - C
eq_4_5
```
%%%% Output: execute_result
![]()
$$\left(\frac{\Delta_{t}^{2}}{2} \left(c_{x} \partial_x + \partial_t\right)^{2} + \Delta_{t} \left(c_{x} \partial_x + \partial_t\right)\right) {f} - {C}$$
⎛ 2 2 ⎞
⎜Δₜ ⋅(cₓ⋅\partialₓ + \partialₜ) ⎟
⎜─────────────────────────────── + Δₜ⋅(cₓ⋅\partialₓ + \partialₜ)⎟⋅❘f⟩ - ❘C⟩
⎝ 2 ⎠
%% Cell type:markdown id: tags:
Following the same steps as in the book, getting rid of second derivative, and discarding $\Delta_t^3$ we get to (4.7)
%% Cell type:code id: tags:
``` python
eq_4_7 = eq_4_5 - (dt/2)* (Dt + c*Dx) * eq_4_5
eq_4_7 = eq_4_7.expand().subs(dt**3, 0)
eq_4_7
```
%% Cell type:markdown id: tags:
### Chapman Enskog Ansatz
Open Question:
why is not everything expanded equally (derivatives start at 1, spatial terminates one earlier...)
%% Cell type:code id: tags:
``` python
eps = sp.Symbol("epsilon")
ceSymbolsF = [Func("f{}".format(i)) for i in range(3)]
ceSymbolsDt = [Operator("\partial_t^{{ ({}) }}".format(i)) for i in range(1,3)]
ceSymbolsDx = [Operator("\partial_x^{{ ({}) }}".format(i)) for i in range(1,2)]
ceF = sum(eps**k * s for k, s in enumerate(ceSymbolsF, start=0))
ceDt = sum(eps**k * s for k, s in enumerate(ceSymbolsDt, start=1))
ceDx = sum(eps**k * s for k, s in enumerate(ceSymbolsDx, start=1))
ceSubstitutions = {
Dt : ceDt,
Dx : ceDx,
f: ceF
}
ceSubstitutions
```
%% Cell type:markdown id: tags:
Inserting the SRT/BGK collision operator
%% Cell type:code id: tags:
``` python
srtC = -dt / sp.Symbol("tau") * ( ceF - ceSymbolsF[0])
srtC
```
%% Cell type:code id: tags:
``` python
eq_4_7_ce = eq_4_7.subs(ceSubstitutions).subs(C, srtC).expand().collect(eps)
eq_4_7_ce
```
%% Cell type:code id: tags:
``` python
eq_4_9_a = (eq_4_7_ce.coeff(eps) / dt).expand()
eq_4_9_a
```
%% Cell type:code id: tags:
``` python
eq_4_9_b = (eq_4_7_ce.coeff(eps**2) / dt).expand()
eq_4_9_b
```
%% Cell type:markdown id: tags:
Computing moments
%% Cell type:code id: tags:
``` python
import operator
from functools import reduce
def prod(factors):
return reduce(operator.mul, factors, 1)
def getMomentSymbol(idx, order):
momentOrderStr = ['alpha', 'beta', 'gamma', 'delta']
momentOrderStr = "_".join(momentOrderStr[:order-1] + ['x'])
return sp.Symbol("Pi^(%d)_%s" % (idx, momentOrderStr), commutative=False)
def takeMoments(eqn, order):
markerTerms = sp.symbols("c_alpha c_beta c_gamma c_delta")
velocityTermSet = set(markerTerms)
velocityTermSet.add(c)
factor = prod(markerTerms[:order])
eqn = (eqn*factor).expand()
result = 0
for fac in eqn.args:
occuringFs = list(fac.atoms(Func))
assert len(occuringFs) < 2
if len(occuringFs) == 0:
result += fac
continue
fIdx = ceSymbolsF.index(occuringFs[0])
occuringCs = fac.atoms(sp.Symbol).intersection(velocityTermSet)
facWithoutCs = sp.cancel(fac / prod(occuringCs) / occuringFs[0])
assert not facWithoutCs.atoms(sp.Symbol).intersection(velocityTermSet), "Non-linear velocity term"
# TODO handle multiple non-marker terms
moment = getMomentSymbol(fIdx, len(occuringCs))
#momentOrderStr = ['alpha', 'beta', 'gamma', 'delta']
#momentOrderStr = "_".join(momentOrderStr[:len(occuringCs)])
#moment = sp.Symbol("Pi^(%d)_%s" % (fIdx, momentOrderStr), commutative=False)
result += facWithoutCs * moment
return result
```
%% Cell type:code id: tags:
``` python
rho = Func("rho")
u_x = Func("u_x")
momentReplacements = {
getMomentSymbol(0, 0): rho,
getMomentSymbol(0, 1): rho * u_x,
getMomentSymbol(1, 0): 0, # According to eq 4.4
getMomentSymbol(1, 1): 0,
getMomentSymbol(2, 0): 0,
getMomentSymbol(2, 1): 0,
}
momentReplacements
```
%% Cell type:markdown id: tags:
### Moments
Moments of $\epsilon$-sorted equations
$O(\epsilon)$
%% Cell type:code id: tags:
``` python
eq_4_10_a = takeMoments(eq_4_9_a, 0).subs(momentReplacements)
eq_4_10_a
```
%% Cell type:code id: tags:
``` python
eq_4_10_b = takeMoments(eq_4_9_a, 1).subs(momentReplacements)
eq_4_10_b
```
%% Cell type:code id: tags:
``` python
eq_4_10_c = takeMoments(eq_4_9_a, 2).subs(momentReplacements)
eq_4_10_c
```
%% Cell type:markdown id: tags:
$O(\epsilon^2)$
%% Cell type:code id: tags:
``` python
eq_4_12_a = takeMoments(eq_4_9_b, 0).subs(momentReplacements)
eq_4_12_a
```
%% Cell type:code id: tags:
``` python
eq_4_12_b = takeMoments(eq_4_9_b, 1).subs(momentReplacements)
eq_4_12_b
```
%% Cell type:markdown id: tags:
Recombination
%% Cell type:code id: tags:
``` python
(eps * eq_4_10_a + eps**2 * eq_4_12_a).expand()
```
%% Cell type:code id: tags:
``` python
(eps * eq_4_10_b + eps**2 * eq_4_12_b).expand()
```
%% Cell type:code id: tags:
``` python
stressTensorSubs = -
```
%% Cell type:code id: tags:
``` python
from lbmpy.maxwellian_equilibrium import getMomentsOfDiscreteMaxwellianEquilibrium
from lbmpy.stencils import getStencil
from lbmpy.moments import momentsOfOrder
stencil = getStencil("D3Q19")
dim = len(stencil[0])
moments = tuple(momentsOfOrder(2, dim=dim))
print(moments)
u = Func("u_x"), Func("u_y"), Func("u_z")
rho = Func("rho")
pi_ab = getMomentsOfDiscreteMaxwellianEquilibrium(stencil, moments,c_s_sq=sp.Rational(1,3), order=2, u=u, rho=rho)
pi_ab
```
%% Cell type:code id: tags:
``` python
from lbmpy.maxwellian_equilibrium import getMomentsOfContinuousMaxwellianEquilibrium
pi_ab2 = getMomentsOfContinuousMaxwellianEquilibrium(moments, dim, c_s_sq=sp.Rational(1,3), order=2)
pi_ab2
```
%% Cell type:code id: tags:
``` python
sp.solve(eq_4_10_c, getMomentSymbol(1, 2))[0]
```
%% Cell type:code id: tags:
``` python
from lbmpy.chapman_enskog import *
productRule((ceSymbolsDt[0] * pi_ab[1]).expand())
```
%% Cell type:code id: tags:
``` python
dtSubsDict = {
ceSymbolsDt[0] * rho: -ceSymbolsDx[0]*(rho*u[0]),
productRule((ceSymbolsDt[0] * (rho * u[1])).expand()) : sp.Symbol("bla")
}
dtSubsDict
```
%% Cell type:code id: tags:
``` python
-ceSymbolsDx[0]*(rho*u[0])
```
%% Cell type:code id: tags:
``` python
```
This diff is collapsed.
This diff is collapsed.
from lbmpy.chapman_enskog.derivative import DiffOperator, Diff, expandUsingLinearity, expandUsingProductRule, \
normalizeDiffOrder, chapmanEnskogDerivativeExpansion, chapmanEnskogDerivativeRecombination
from lbmpy.chapman_enskog.chapman_enskog import getExpandedName, LbMethodEqMoments, insertMoments, takeMoments, \
CeMoment, chainSolveAndSubstitute, timeDiffSelector, momentSelector
This diff is collapsed.
import sympy as sp
from sympy.physics.quantum import Ket as Func
from sympy.physics.quantum import Operator
from functools import reduce
import operator
# Disable Ket notation |f> for functions
Func.lbracket_latex =''
Func.rbracket_latex = ''
def prod(seq):
return reduce(operator.mul, seq, 1)
def allIn(a, b):
"""Tests if all elements of a are contained in b"""
return all(element in b for element in a)
def isDerivative(term):
return isinstance(term, Operator) and term.args[0].name.startswith("\\partial")
def getDiffOperator(subscript, superscript=None):
symbolName = "\partial_" + subscript
if superscript:
symbolName += "^" + superscript
return Operator(symbolName)
def normalizeProduct(prod):
"""Takes a sympy Mul node and returns a list of factors (with Pow nodes resolved)"""
def handlePow(pow):
if pow.exp.is_integer and pow.exp.is_number and pow.exp > 0:
return [pow.base] * pow.exp
else:
return [pow]
if prod.func == sp.Symbol or prod.func == Func:
return [prod]
if prod.func == sp.Pow:
return handlePow(prod)
assert prod.func == sp.Mul
result = []
for a in prod.args:
if a.func == sp.Pow:
result += handlePow(a)
else:
result.append(a)
return result
def splitDerivativeProd(expr):
"""Splits a term a b \partial c d into three parts: functions before operator (here a b),
the operator itself, and terms the operator acts on (here c d). If the passed expressions does
not have above form, None is returned"""
productArgs = normalizeProduct(expr)
argumentsActedOn = []
remainingArguments = []
derivOp = None
for t in reversed(productArgs):
if isDerivative(t) and derivOp is None:
derivOp = t
elif derivOp is None:
argumentsActedOn.append(t)
else:
remainingArguments.append(t)
if derivOp is None:
return None
return list(reversed(remainingArguments)), derivOp, argumentsActedOn
def getName(obj):
if type(obj) in [Operator, Func]:
return obj.args[0].name
else:
return obj.name
def combineDerivatives(expr):
from collections import defaultdict
def searchAndCombine(termList):
if len(termList) <= 1:
return termList, False
newTermList = []
handledIdxSet = set()
changes = False
for i in range(len(termList)):
if i in handledIdxSet:
continue
for j in range(i + 1, len(termList)):
pre1, post1 = termList[i]
pre2, post2 = termList[j]
rest1 = [item for item in pre1 if item not in post2]
rest2 = [item for item in pre2 if item not in post1]
restEqual = (len(rest1) == len(rest2)) and (set(rest1) == set(rest2))
if allIn(post1, pre2) and allIn(post2, pre1) and restEqual:
handledIdxSet.add(j)
newTermList.append((rest1, post1 + post2))
changes = True
break
else:
newTermList.append(termList[i])
lastIdx = len(termList) - 1
if lastIdx not in handledIdxSet:
newTermList.append(termList[lastIdx])
return newTermList, changes
expr = expr.expand()
if expr.func != sp.Add:
return expr
operatorDict = defaultdict(list) # maps the operator to a list of tuples with terms before and after the operator
result = 0
for term in expr.args:
splitted = splitDerivativeProd(term)
if splitted:
pre, op, post = splitted
operatorDict[op].append((pre, post))
else:
result += term
for op, termList in operatorDict.items():
newTermList, changes = searchAndCombine(termList)
while changes:
newTermList, changes = searchAndCombine(newTermList)
for pre, post in newTermList:
result += prod(pre) * op * prod(post)
return result
def expandDerivatives(expr):
"""Fully expands all derivatives by applying product rule"""
def handleProduct(term):
splittedTerm = splitDerivativeProd(term)
if splittedTerm is None:
return term
remainingArguments, derivOp, argumentsActedOn = splittedTerm
result = 0
for i in range(len(argumentsActedOn)):
beforeOp = prod([argumentsActedOn[j] for j in range(len(argumentsActedOn)) if j != i])
result += beforeOp * derivOp * argumentsActedOn[i]
return prod(remainingArguments) * result
expr = expr.expand()
if expr.func != sp.Add:
return handleProduct(expr)
else:
return sum(handleProduct(t) for t in expr.args)
def commuteTerms(expr):
def commute(term):
forward = {obj: sp.Symbol(getName(obj)) for obj in term.atoms(Func)}
backward = {sp.Symbol(getName(obj)): obj for obj in term.atoms(Func)}
return term.subs(forward).subs(backward)
def handleProduct(term):
splittedTerm = splitDerivativeProd(term)
if splittedTerm is None:
return term
remainingArguments, derivOp, argumentsActedOn = splittedTerm
return commute(prod(remainingArguments)) * derivOp * commute(prod(argumentsActedOn))
expr = expr.expand()
if expr.func != sp.Add:
return handleProduct(expr)
else:
return sum(handleProduct(t) for t in expr.args)
#def splitDerivativeTerm(term):
# if term.func == sp.Mul:
# derivativeIdx = [i for i, arg in enumerate(term.args) if isDerivative(arg)]
# if len(derivativeIdx) > 0:
# idx = derivativeIdx[-1]
# diffOperator = term.args[idx]
# assert not diffOperator.is_commutative
# derivedTerms = [t for t in term.args[idx + 1:] if not t.is_commutative]
#
# newDerivedTerms = []
# for t in derivedTerms:
# if t.func == sp.Pow and t.exp.is_integer and t.exp.is_number and 0 < t.exp < 10:
# newDerivedTerms += [t.base] * t.exp
# else:
# newDerivedTerms.append(t)
# derivedTerms = newDerivedTerms
#
# notDerivedTerms = list(term.args[:idx]) + [t for t in term.args[idx + 1:] if t.is_commutative]
# return diffOperator, notDerivedTerms, derivedTerms
# return None, [], []
#
#
#def productRule(expr):
# """
# Applies product rule to terms with differential operator(s)
# :param expr: sympy expression to apply product rule to
# :return:
# """
# def visit(term):
# diffOperator, notDerivedTerms, derivedTerms = splitDerivativeTerm(term)
# if len(derivedTerms) > 1:
# result = 0
# for i in range(len(derivedTerms)):
# beforeOperator = [t for j, t in enumerate(derivedTerms) if j != i]
# result += prod(notDerivedTerms + beforeOperator + [diffOperator, derivedTerms[i]])
# return result
#
# return term if not term.args else term.func(*[visit(a) for a in term.args])
#
# return visit(expr)
#
#
#def substituteDerivative(expr, diffOperatorToSearch, termsToSearch, substitution):
# def visit(term):
# diffOperator, notDerivedTerms, derivedTerms = splitDerivativeTerm(term)
# if diffOperator == diffOperatorToSearch:
# termMatches = True
# for innerTerm in termsToSearch:
# if innerTerm not in notDerivedTerms and innerTerm not in derivedTerms:
# termMatches = False
# break
# if termMatches:
# pass
#
# if len(derivedTerms) > 1:
# result = 0
# for i in range(len(derivedTerms)):
# beforeOperator = [t for j, t in enumerate(derivedTerms) if j != i]
# result += prod(notDerivedTerms + beforeOperator + [diffOperator, derivedTerms[i]])
# return result
#
# return term if not term.args else term.func(*[visit(a) for a in term.args])
#
# return visit(expr)
#
import sympy
import sympy.core
import sympy as sp