Commit b04caa75 authored by Markus Holzer's avatar Markus Holzer Committed by Jan Hönig
Browse files

Dataclasses for method creation

parent 4e47c1eb
......@@ -2,7 +2,7 @@ import numpy as np
import sympy as sp
from pystencils.datahandling import create_data_handling
from pystencils import create_kernel
from pystencils import create_kernel, Target
from pystencils.slicing import make_slice
from lbmpy.creationfunctions import create_lb_collision_rule, create_lb_function
......@@ -18,11 +18,11 @@ from numpy.testing import assert_allclose
all_results = dict()
targets = ['cpu']
targets = [Target.CPU]
try:
import pycuda.autoinit
targets += ['gpu']
targets += [Target.GPU]
except Exception:
pass
......@@ -30,19 +30,19 @@ try:
import pystencils.opencl.autoinit
from pystencils.opencl.opencljit import get_global_cl_queue
if get_global_cl_queue() is not None:
targets += ['opencl']
targets += [Target.OPENCL]
except Exception:
pass
class PeriodicPipeFlow:
def __init__(self, stencil, streaming_pattern, wall_boundary=None, target='cpu'):
def __init__(self, stencil, streaming_pattern, wall_boundary=None, target=Target.CPU):
if wall_boundary is None:
wall_boundary = NoSlip()
self.target = target
self.gpu = target in ['gpu', 'opencl']
self.gpu = target in [Target.GPU, Target.OPENCL]
# Stencil
self.stencil = stencil
......
......@@ -9,7 +9,7 @@ from lbmpy.relaxationrates import relaxation_rate_from_lattice_viscosity
from lbmpy.macroscopic_value_kernels import pdf_initialization_assignments
from lbmpy.stencils import get_stencil
from pystencils import create_kernel, create_data_handling, Assignment
from pystencils import create_kernel, create_data_handling, Assignment, Target
from pystencils.slicing import slice_from_direction, get_slice_before_ghost_layer
def flow_around_sphere(stencil, galilean_correction, L_LU, total_steps):
......@@ -21,7 +21,7 @@ def flow_around_sphere(stencil, galilean_correction, L_LU, total_steps):
dim = len(stencil[0])
Q = len(stencil)
target = 'gpu'
target = Target.GPU
streaming_pattern = 'aa'
timesteps = get_timesteps(streaming_pattern)
......@@ -49,7 +49,7 @@ def flow_around_sphere(stencil, galilean_correction, L_LU, total_steps):
'pre_simplification': True
}
lb_method = create_lb_method(optimization=optimization, **method_params)
lb_method = create_lb_method(**method_params)
def get_extrapolation_kernel(timestep):
boundary_assignments = []
......
%% Cell type:code id: tags:
``` python
import pytest
pytest.importorskip('pycuda')
```
%%%% Output: execute_result
<module 'pycuda' from '/home/markus/miniconda3/envs/pystencils/lib/python3.8/site-packages/pycuda/__init__.py'>
%% Cell type:code id: tags:
``` python
%load_ext autoreload
%autoreload 2
```
%% Cell type:code id: tags:
``` python
import sympy as sp
import numpy as np
from numpy.testing import assert_allclose
from pystencils.session import *
from pystencils import Target
from lbmpy.session import *
from lbmpy.stencils import get_stencil
from lbmpy.methods.centeredcumulant import CenteredCumulantForceModel
from lbmpy.macroscopic_value_kernels import macroscopic_values_getter, macroscopic_values_setter
```
%% Cell type:markdown id: tags:
## Pipe Flow Scenario
%% Cell type:code id: tags:
``` python
class PeriodicPipeFlow:
def __init__(self, method_params, optimization=dict()):
wall_boundary = NoSlip()
self.stencil = method_params.get('stencil', get_stencil("D2Q9"))
self.streaming_pattern = method_params.get('streaming_pattern', 'pull')
self.target = optimization.get('target', 'cpu')
self.target = optimization.get('target', Target.CPU)
self.gpu = self.target in ['gpu', 'opencl']
self.gpu = self.target == Target.GPU
# Stencil
self.q = len(self.stencil)
self.dim = len(self.stencil[0])
# Streaming
self.inplace = is_inplace(self.streaming_pattern)
self.timesteps = get_timesteps(self.streaming_pattern)
self.zeroth_timestep = self.timesteps[0]
# Domain, Data Handling and PDF fields
self.pipe_length = 60
self.pipe_radius = 15
self.domain_size = (self.pipe_length, ) + (2 * self.pipe_radius,) * (self.dim - 1)
self.periodicity = (True, ) + (False, ) * (self.dim - 1)
force = (0.0001, ) + (0.0,) * (self.dim - 1)
self.force = method_params.get('force', force)
self.dh = create_data_handling(domain_size=self.domain_size,
periodicity=self.periodicity, default_target=self.target)
self.pdfs = self.dh.add_array('pdfs', self.q)
if not self.inplace:
self.pdfs_tmp = self.dh.add_array_like('pdfs_tmp', self.pdfs.name)
method_params['force'] = self.force
optimization['symbolic_field'] = self.pdfs
if not self.inplace:
optimization['symbolic_temporary_field'] = self.pdfs_tmp
self.lb_collision = create_lb_collision_rule(optimization=optimization, **method_params)
self.lb_method = self.lb_collision.method
self.lb_kernels = []
for t in self.timesteps:
self.lb_kernels.append(create_lb_function(collision_rule=self.lb_collision,
optimization=optimization,
timestep=t,
**method_params))
# Macroscopic Values
self.density = 1.0
self.density_field = self.dh.add_array('rho', 1)
u_x = 0.0
self.velocity = (u_x,) * self.dim
self.velocity_field = self.dh.add_array('u', self.dim)
setter = macroscopic_values_setter(
self.lb_method, self.density, self.velocity, self.pdfs,
streaming_pattern=self.streaming_pattern, previous_timestep=self.zeroth_timestep)
self.init_kernel = create_kernel(setter, ghost_layers=1, target=self.target).compile()
self.getter_kernels = []
for t in self.timesteps:
getter = macroscopic_values_getter(
self.lb_method, self.density_field, self.velocity_field, self.pdfs,
streaming_pattern=self.streaming_pattern, previous_timestep=t)
self.getter_kernels.append(create_kernel(getter, ghost_layers=1, target=self.target).compile())
# Periodicity
self.periodicity_handler = LBMPeriodicityHandling(
self.stencil, self.dh, self.pdfs.name, streaming_pattern=self.streaming_pattern)
# Boundary Handling
self.wall = wall_boundary
self.bh = LatticeBoltzmannBoundaryHandling(
self.lb_method, self.dh, self.pdfs.name,
streaming_pattern=self.streaming_pattern, target=self.target)
self.bh.set_boundary(boundary_obj=self.wall, mask_callback=self.mask_callback)
self.current_timestep = self.zeroth_timestep
def mask_callback(self, x, y, z=None):
y = y - self.pipe_radius
z = z - self.pipe_radius if z is not None else 0
return np.sqrt(y**2 + z**2) >= self.pipe_radius
def init(self):
self.current_timestep = self.zeroth_timestep
self.dh.run_kernel(self.init_kernel)
def step(self):
# Order matters! First communicate, then boundaries, otherwise
# periodicity handling overwrites reflected populations
# Periodicty
self.periodicity_handler(self.current_timestep)
# Boundaries
self.bh(prev_timestep=self.current_timestep)
# Here, the next time step begins
self.current_timestep = self.current_timestep.next()
# LBM Step
self.dh.run_kernel(self.lb_kernels[self.current_timestep.idx])
# Field Swaps
if not self.inplace:
self.dh.swap(self.pdfs.name, self.pdfs_tmp.name)
# Macroscopic Values
self.dh.run_kernel(self.getter_kernels[self.current_timestep.idx])
def run(self, iterations):
for _ in range(iterations):
self.step()
@property
def velocity_array(self):
if self.gpu:
self.dh.to_cpu(self.velocity_field.name)
return self.dh.gather_array(self.velocity_field.name)
def get_trimmed_velocity_array(self):
if self.gpu:
self.dh.to_cpu(self.velocity_field.name)
u = np.copy(self.dh.gather_array(self.velocity_field.name))
mask = self.bh.get_mask(None, self.wall)
for idx in np.ndindex(u.shape[:-1]):
if mask[idx] != 0:
u[idx] = np.full((self.dim, ), np.nan)
return u
```
%% Cell type:markdown id: tags:
## General Setup
%% Cell type:code id: tags:
``` python
stencil = get_stencil('D3Q19')
dim = len(stencil[0])
target = 'gpu'
target = Target.GPU
streaming_pattern = 'aa'
optimization = { 'target': target }
viscous_rr = 1.1
force = (0.0001, ) + (0.0,) * (dim - 1)
```
%% Cell type:markdown id: tags:
## 1. Reference: SRT Method
%% Cell type:code id: tags:
``` python
srt_params = {
'stencil': stencil,
'method': 'srt',
'relaxation_rate': viscous_rr,
'force_model': 'simple',
'force' : force,
'streaming_pattern': streaming_pattern
}
srt_flow = PeriodicPipeFlow(srt_params, optimization)
srt_flow.init()
srt_flow.run(400)
```
%% Cell type:code id: tags:
``` python
srt_u = srt_flow.get_trimmed_velocity_array()
ps.plot.vector_field_magnitude(srt_u[30,:,:,:])
ps.plot.colorbar()
```
%%%% Output: execute_result
<matplotlib.colorbar.Colorbar at 0x7f4f5b6cbcd0>
<matplotlib.colorbar.Colorbar at 0x7f2eaa33eca0>
%%%% Output: display_data
![]()
%% Cell type:markdown id: tags:
## 2. Centered Cumulant Method with Implicit Forcing
The default setup of the centered cumulant method does not use a force model to compute the force contributions on all populations, but instead applies the force in cumulant space simply by setting the momentum relaxation rate $\omega_1 = 2$. Due to the half-force shift of the equilibrium input velocity, the first central moments (which correspond to momentum relative to the moving frame of reference) are not zero, but equal to $-F/2$. The relaxation process causes the first central moments to simply change sign:
$$
\kappa_{100}^* = - \kappa_{100}.
$$
Thus, $\kappa_{100}^* = F_x /2$. In total, the entire acceleration given by the force is added onto the momentum.
%% Cell type:code id: tags:
``` python
cm_method_params = {
'method' : 'monomial_cumulant',
'stencil': stencil,
'relaxation_rate': viscous_rr, # Specify viscous relaxation rate only
'force_model': CenteredCumulantForceModel(force),
'force' : force,
'streaming_pattern' : streaming_pattern
}
optimization = {
'target': target,
'pre_simplification' : True
}
cm_impl_f_flow = PeriodicPipeFlow(cm_method_params, optimization)
```
%% Cell type:code id: tags:
``` python
lb_method = cm_impl_f_flow.lb_method
assert all(rr == 2 for rr in lb_method.relaxation_rates[1:4])
assert all(rr == viscous_rr for rr in lb_method.relaxation_rates[4:9])
```
%% Cell type:code id: tags:
``` python
cm_impl_f_flow.init()
cm_impl_f_flow.run(400)
```
%% Cell type:code id: tags:
``` python
cm_impl_f_u = cm_impl_f_flow.get_trimmed_velocity_array()
ps.plot.vector_field_magnitude(cm_impl_f_u[30,:,:,:])
ps.plot.colorbar()
```
%%%% Output: execute_result
<matplotlib.colorbar.Colorbar at 0x7f4f5b34bf40>
<matplotlib.colorbar.Colorbar at 0x7f2ea7a6e910>
%%%% Output: display_data
![]()
%% Cell type:code id: tags:
``` python
assert_allclose(cm_impl_f_u, srt_u, rtol=1, atol=1e-4)
```
%% Cell type:markdown id: tags:
## 3. Centered Cumulant Method with Explicit Forcing
%% Cell type:code id: tags:
``` python
from lbmpy.forcemodels import Simple
cm_method_params_expl_force = {
'method' : 'cumulant',
'stencil': stencil,
'relaxation_rates': [viscous_rr], # Specify viscous relaxation rate only
'force_model': Simple(force),
'force' : force,
'streaming_pattern' : streaming_pattern
}
optimization = {
'target': target,
'pre_simplification' : True
}
cm_expl_f_flow = PeriodicPipeFlow(cm_method_params_expl_force, optimization)
```
%% Cell type:code id: tags:
``` python
lb_method = cm_expl_f_flow.lb_method
assert all(rr == 0 for rr in lb_method.relaxation_rates[1:4])
assert all(rr == viscous_rr for rr in lb_method.relaxation_rates[4:9])
```
%% Cell type:code id: tags:
``` python
cm_expl_f_flow.init()
cm_expl_f_flow.run(400)
```
%% Cell type:code id: tags:
``` python
cm_expl_f_u = cm_expl_f_flow.get_trimmed_velocity_array()
ps.plot.vector_field_magnitude(cm_expl_f_u[30,:,:,:])
ps.plot.colorbar()
```
%%%% Output: execute_result
<matplotlib.colorbar.Colorbar at 0x7f4f58d67490>
<matplotlib.colorbar.Colorbar at 0x7f2ea7881df0>
%%%% Output: display_data
![]()
%% Cell type:code id: tags:
``` python
assert_allclose(cm_expl_f_u, srt_u, rtol=1, atol=1e-4)
assert_allclose(cm_expl_f_u, cm_impl_f_u, rtol=1, atol=1e-4)
```
......
......@@ -250,8 +250,8 @@ def run(re=6000, eval_interval=0.05, total_time=3.0, domain_size=100, u_0=0.05,
def create_full_parameter_study(gpu=False):
"""Creates a parameter study that can run the Kida vortex flow with entropic, KBC, Smagorinsky and MRT methods."""
opt_cpu = {'target': 'cpu', 'openmp': 4}
opt_gpu = {'target': 'gpu'}
opt_cpu = {'target': ps.Target.CPU, 'openmp': 4}
opt_gpu = {'target': ps.Target.GPU}
mrt_one = [{'method': 'mrt3', 'relaxation_rates': ['viscosity', 1, 1], 'stencil': stencil}
for stencil in ('D3Q19', 'D3Q27')]
......
......@@ -16,7 +16,7 @@ from lbmpy.boundaries import FixedDensity, NoSlip
from lbmpy.geometry import add_pipe_inflow_boundary, add_pipe_walls
from lbmpy.lbstep import LatticeBoltzmannStep
from lbmpy.relaxationrates import relaxation_rate_from_lattice_viscosity
from pystencils import create_data_handling
from pystencils import create_data_handling, Target
from pystencils.slicing import make_slice, slice_from_direction
......@@ -135,4 +135,4 @@ def test_rod_scenario_simple():
if __name__ == '__main__':
# High Re (Entropic method)
rod_simulation(stencil_name=sys.argv[1], re=500, diameter=80, entropic=True, time_to_simulate=17,
parallel=False, optimization_params={'target': 'gpu'})
parallel=False, optimization_params={'target': Target.GPU})
......@@ -124,7 +124,7 @@ def schaefer_turek_2d(cells_per_diameter, u_max=0.3, max_lattice_velocity=0.05,
(u_max, domain_size, dx, dt, omega, re_lattice))
initial_velocity = get_pipe_velocity_field(domain_size, max_lattice_velocity)
scenario = create_channel(domain_size=domain_size, u_max=max_lattice_velocity, kernel_params={'omega_0': omega},
scenario = create_channel(domain_size=domain_size, u_max=max_lattice_velocity, relaxation_rate=omega,
initial_velocity=initial_velocity, **kwargs)
scenario.boundary_handling.set_boundary(NoSlip('obstacle'), mask_callback=geometry_callback)
parameter_info['u_bar_l'] = u_bar_l
......@@ -159,5 +159,5 @@ def test_schaefer_turek():
if __name__ == '__main__':
long_run(entropic=True, method='trt-kbc-n1', compressible=True,
optimization={'target': 'gpu', 'gpuIndexingParams': {'blockSize': (16, 8, 2)}})
long_run(entropic=True, method='trt_kbc_n1', compressible=True,
optimization={'target': Target.GPU, 'gpuIndexingParams': {'blockSize': (16, 8, 2)}})
......@@ -8,6 +8,7 @@ import numpy as np
import sympy as sp
import pytest
from pystencils import Target
from lbmpy.creationfunctions import update_with_default_parameters
from lbmpy.relaxationrates import (
......@@ -166,7 +167,7 @@ def create_full_parameter_study():
'relaxation_rates': ["omega", str(relaxation_rate_from_magic_number(sp.Symbol("omega")))],
'equilibrium_order': eqOrder,
'maxwellian_moments': mbEq,
'optimization': {'target': 'cpu', 'split': True, 'cse_pdfs': True}}
'optimization': {'target': Target.CPU, 'split': True, 'cse_pdfs': True}}
for method in ('srt', 'trt')
for stencil in ('D3Q19', 'D3Q27')
for comp in (True, False)
......@@ -222,7 +223,7 @@ def test_shear_wave():
'stencil': 'D3Q19',
'compressible': True,
"optimization": {"target": "gpu"}
"optimization": {"target": Target.GPU}
}
run(32, nu=1e-2, equilibrium_order=2, method='srt', y_size=1, periodicity_in_kernel=True,
relaxation_rates=[sp.Symbol("omega"), 5, 5], maxwellian_moments=True, **params)
......@@ -6,7 +6,7 @@ Silva, Semiao
python3 scenario_square_channel.py server
python3 scenario_square_channel.py client --host i10staff41 -P '{ "optimization" : { "target" : "gpu"} }'
python3 scenario_square_channel.py client --host i10staff41 -P '{ "optimization" : { "target" : Target.GPU} }'
"""
import numpy as np
......
......@@ -46,7 +46,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 3,
"metadata": {},
"outputs": [
{
......@@ -113,7 +113,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
"version": "3.8.2"
}
},
"nbformat": 4,
......
......@@ -144,7 +144,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
"version": "3.8.2"
}
},
"nbformat": 4,
......
%% Cell type:code id: tags:
``` python
import pytest
pytest.importorskip('scipy.ndimage')