From 051578818bfb17646791dbda42e86c413e7131d4 Mon Sep 17 00:00:00 2001 From: Markus Holzer <markus.holzer@fau.de> Date: Mon, 21 Dec 2020 11:37:06 +0100 Subject: [PATCH] Update parallel datahandling --- .gitignore | 3 + doc/notebooks/03_tutorial_datahandling.ipynb | 58 +++++++++---------- pystencils/datahandling/blockiteration.py | 10 ++-- .../datahandling/parallel_datahandling.py | 10 ++-- .../test_small_block_benchmark.ipynb | 24 ++++---- 5 files changed, 53 insertions(+), 52 deletions(-) diff --git a/.gitignore b/.gitignore index a9f092964..3d736e113 100644 --- a/.gitignore +++ b/.gitignore @@ -15,3 +15,6 @@ RELEASE-VERSION test-report pystencils/boundaries/createindexlistcython.c pystencils/boundaries/createindexlistcython.*.so +pystencils_tests/tmp +pystencils_tests/kerncraft_inputs/.2d-5pt.c_kerncraft/ +pystencils_tests/kerncraft_inputs/.3d-7pt.c_kerncraft/ \ No newline at end of file diff --git a/doc/notebooks/03_tutorial_datahandling.ipynb b/doc/notebooks/03_tutorial_datahandling.ipynb index dfa0d2739..522bf3e34 100644 --- a/doc/notebooks/03_tutorial_datahandling.ipynb +++ b/doc/notebooks/03_tutorial_datahandling.ipynb @@ -200,14 +200,14 @@ { "data": { "text/html": [ - "<div class=\"highlight\"><pre><span></span><span class=\"n\">FUNC_PREFIX</span> <span class=\"kt\">void</span> <span class=\"nf\">kernel</span><span class=\"p\">(</span><span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">_data_dst</span><span class=\"p\">,</span> <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"k\">const</span> <span class=\"n\">_data_src</span><span class=\"p\">,</span> <span class=\"kt\">int64_t</span> <span class=\"k\">const</span> <span class=\"n\">_size_dst_0</span><span class=\"p\">,</span> <span class=\"kt\">int64_t</span> <span class=\"k\">const</span> <span class=\"n\">_size_dst_1</span><span class=\"p\">,</span> <span class=\"kt\">int64_t</span> <span class=\"k\">const</span> <span class=\"n\">_stride_dst_0</span><span class=\"p\">,</span> <span class=\"kt\">int64_t</span> <span class=\"k\">const</span> <span class=\"n\">_stride_dst_1</span><span class=\"p\">,</span> <span class=\"kt\">int64_t</span> <span class=\"k\">const</span> <span class=\"n\">_stride_src_0</span><span class=\"p\">,</span> <span class=\"kt\">int64_t</span> <span class=\"k\">const</span> <span class=\"n\">_stride_src_1</span><span class=\"p\">)</span>\n", + "<div class=\"highlight\"><pre><span></span><span class=\"n\">FUNC_PREFIX</span> <span class=\"kt\">void</span> <span class=\"nf\">kernel</span><span class=\"p\">(</span><span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"n\">_data_dst</span><span class=\"p\">,</span> <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"k\">const</span> <span class=\"n\">_data_src</span><span class=\"p\">,</span> <span class=\"kt\">int64_t</span> <span class=\"k\">const</span> <span class=\"n\">_size_dst_0</span><span class=\"p\">,</span> <span class=\"kt\">int64_t</span> <span class=\"k\">const</span> <span class=\"n\">_size_dst_1</span><span class=\"p\">,</span> <span class=\"kt\">int64_t</span> <span class=\"k\">const</span> <span class=\"n\">_stride_dst_0</span><span class=\"p\">,</span> <span class=\"kt\">int64_t</span> <span class=\"k\">const</span> <span class=\"n\">_stride_dst_1</span><span class=\"p\">,</span> <span class=\"kt\">int64_t</span> <span class=\"k\">const</span> <span class=\"n\">_stride_src_0</span><span class=\"p\">,</span> <span class=\"kt\">int64_t</span> <span class=\"k\">const</span> <span class=\"n\">_stride_src_1</span><span class=\"p\">)</span>\n", "<span class=\"p\">{</span>\n", " <span class=\"k\">for</span> <span class=\"p\">(</span><span class=\"kt\">int</span> <span class=\"n\">ctr_0</span> <span class=\"o\">=</span> <span class=\"mi\">1</span><span class=\"p\">;</span> <span class=\"n\">ctr_0</span> <span class=\"o\"><</span> <span class=\"n\">_size_dst_0</span> <span class=\"o\">-</span> <span class=\"mi\">1</span><span class=\"p\">;</span> <span class=\"n\">ctr_0</span> <span class=\"o\">+=</span> <span class=\"mi\">1</span><span class=\"p\">)</span>\n", " <span class=\"p\">{</span>\n", - " <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">_data_dst_00</span> <span class=\"o\">=</span> <span class=\"n\">_data_dst</span> <span class=\"o\">+</span> <span class=\"n\">_stride_dst_0</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span><span class=\"p\">;</span>\n", - " <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"k\">const</span> <span class=\"n\">_data_src_01</span> <span class=\"o\">=</span> <span class=\"n\">_data_src</span> <span class=\"o\">+</span> <span class=\"n\">_stride_src_0</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span> <span class=\"o\">+</span> <span class=\"n\">_stride_src_0</span><span class=\"p\">;</span>\n", - " <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"k\">const</span> <span class=\"n\">_data_src_00</span> <span class=\"o\">=</span> <span class=\"n\">_data_src</span> <span class=\"o\">+</span> <span class=\"n\">_stride_src_0</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span><span class=\"p\">;</span>\n", - " <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"k\">const</span> <span class=\"n\">_data_src_0m1</span> <span class=\"o\">=</span> <span class=\"n\">_data_src</span> <span class=\"o\">+</span> <span class=\"n\">_stride_src_0</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span> <span class=\"o\">-</span> <span class=\"n\">_stride_src_0</span><span class=\"p\">;</span>\n", + " <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"n\">_data_dst_00</span> <span class=\"o\">=</span> <span class=\"n\">_data_dst</span> <span class=\"o\">+</span> <span class=\"n\">_stride_dst_0</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span><span class=\"p\">;</span>\n", + " <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"n\">_data_src_01</span> <span class=\"o\">=</span> <span class=\"n\">_data_src</span> <span class=\"o\">+</span> <span class=\"n\">_stride_src_0</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span> <span class=\"o\">+</span> <span class=\"n\">_stride_src_0</span><span class=\"p\">;</span>\n", + " <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"n\">_data_src_00</span> <span class=\"o\">=</span> <span class=\"n\">_data_src</span> <span class=\"o\">+</span> <span class=\"n\">_stride_src_0</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span><span class=\"p\">;</span>\n", + " <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"n\">_data_src_0m1</span> <span class=\"o\">=</span> <span class=\"n\">_data_src</span> <span class=\"o\">+</span> <span class=\"n\">_stride_src_0</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span> <span class=\"o\">-</span> <span class=\"n\">_stride_src_0</span><span class=\"p\">;</span>\n", " <span class=\"k\">for</span> <span class=\"p\">(</span><span class=\"kt\">int</span> <span class=\"n\">ctr_1</span> <span class=\"o\">=</span> <span class=\"mi\">1</span><span class=\"p\">;</span> <span class=\"n\">ctr_1</span> <span class=\"o\"><</span> <span class=\"n\">_size_dst_1</span> <span class=\"o\">-</span> <span class=\"mi\">1</span><span class=\"p\">;</span> <span class=\"n\">ctr_1</span> <span class=\"o\">+=</span> <span class=\"mi\">1</span><span class=\"p\">)</span>\n", " <span class=\"p\">{</span>\n", " <span class=\"n\">_data_dst_00</span><span class=\"p\">[</span><span class=\"n\">_stride_dst_1</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"mf\">0.25</span><span class=\"o\">*</span><span class=\"n\">_data_src_00</span><span class=\"p\">[</span><span class=\"n\">_stride_src_1</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span> <span class=\"o\">+</span> <span class=\"n\">_stride_src_1</span><span class=\"p\">]</span> <span class=\"o\">+</span> <span class=\"mf\">0.25</span><span class=\"o\">*</span><span class=\"n\">_data_src_00</span><span class=\"p\">[</span><span class=\"n\">_stride_src_1</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span> <span class=\"o\">-</span> <span class=\"n\">_stride_src_1</span><span class=\"p\">]</span> <span class=\"o\">+</span> <span class=\"mf\">0.25</span><span class=\"o\">*</span><span class=\"n\">_data_src_01</span><span class=\"p\">[</span><span class=\"n\">_stride_src_1</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span><span class=\"p\">]</span> <span class=\"o\">+</span> <span class=\"mf\">0.25</span><span class=\"o\">*</span><span class=\"n\">_data_src_0m1</span><span class=\"p\">[</span><span class=\"n\">_stride_src_1</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span><span class=\"p\">];</span>\n", @@ -217,14 +217,14 @@ "</pre></div>\n" ], "text/plain": [ - "FUNC_PREFIX void kernel(double * _data_dst, double * const _data_src, int64_t const _size_dst_0, int64_t const _size_dst_1, int64_t const _stride_dst_0, int64_t const _stride_dst_1, int64_t const _stride_src_0, int64_t const _stride_src_1)\n", + "FUNC_PREFIX void kernel(double * RESTRICT _data_dst, double * RESTRICT const _data_src, int64_t const _size_dst_0, int64_t const _size_dst_1, int64_t const _stride_dst_0, int64_t const _stride_dst_1, int64_t const _stride_src_0, int64_t const _stride_src_1)\n", "{\n", " for (int ctr_0 = 1; ctr_0 < _size_dst_0 - 1; ctr_0 += 1)\n", " {\n", - " double * _data_dst_00 = _data_dst + _stride_dst_0*ctr_0;\n", - " double * const _data_src_01 = _data_src + _stride_src_0*ctr_0 + _stride_src_0;\n", - " double * const _data_src_00 = _data_src + _stride_src_0*ctr_0;\n", - " double * const _data_src_0m1 = _data_src + _stride_src_0*ctr_0 - _stride_src_0;\n", + " double * RESTRICT _data_dst_00 = _data_dst + _stride_dst_0*ctr_0;\n", + " double * RESTRICT _data_src_01 = _data_src + _stride_src_0*ctr_0 + _stride_src_0;\n", + " double * RESTRICT _data_src_00 = _data_src + _stride_src_0*ctr_0;\n", + " double * RESTRICT _data_src_0m1 = _data_src + _stride_src_0*ctr_0 - _stride_src_0;\n", " for (int ctr_1 = 1; ctr_1 < _size_dst_1 - 1; ctr_1 += 1)\n", " {\n", " _data_dst_00[_stride_dst_1*ctr_1] = 0.25*_data_src_00[_stride_src_1*ctr_1 + _stride_src_1] + 0.25*_data_src_00[_stride_src_1*ctr_1 - _stride_src_1] + 0.25*_data_src_01[_stride_src_1*ctr_1] + 0.25*_data_src_0m1[_stride_src_1*ctr_1];\n", @@ -233,9 +233,8 @@ "}" ] }, - "execution_count": 4, "metadata": {}, - "output_type": "execute_result" + "output_type": "display_data" } ], "source": [ @@ -379,14 +378,14 @@ { "data": { "text/html": [ - "<div class=\"highlight\"><pre><span></span><span class=\"n\">FUNC_PREFIX</span> <span class=\"kt\">void</span> <span class=\"nf\">kernel</span><span class=\"p\">(</span><span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">_data_dst</span><span class=\"p\">,</span> <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"k\">const</span> <span class=\"n\">_data_src</span><span class=\"p\">)</span>\n", + "<div class=\"highlight\"><pre><span></span><span class=\"n\">FUNC_PREFIX</span> <span class=\"kt\">void</span> <span class=\"nf\">kernel</span><span class=\"p\">(</span><span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"n\">_data_dst</span><span class=\"p\">,</span> <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"k\">const</span> <span class=\"n\">_data_src</span><span class=\"p\">)</span>\n", "<span class=\"p\">{</span>\n", " <span class=\"k\">for</span> <span class=\"p\">(</span><span class=\"kt\">int</span> <span class=\"n\">ctr_0</span> <span class=\"o\">=</span> <span class=\"mi\">1</span><span class=\"p\">;</span> <span class=\"n\">ctr_0</span> <span class=\"o\"><</span> <span class=\"mi\">29</span><span class=\"p\">;</span> <span class=\"n\">ctr_0</span> <span class=\"o\">+=</span> <span class=\"mi\">1</span><span class=\"p\">)</span>\n", " <span class=\"p\">{</span>\n", - " <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">_data_dst_00</span> <span class=\"o\">=</span> <span class=\"n\">_data_dst</span> <span class=\"o\">+</span> <span class=\"mi\">30</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span><span class=\"p\">;</span>\n", - " <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"k\">const</span> <span class=\"n\">_data_src_01</span> <span class=\"o\">=</span> <span class=\"n\">_data_src</span> <span class=\"o\">+</span> <span class=\"mi\">30</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span> <span class=\"o\">+</span> <span class=\"mi\">30</span><span class=\"p\">;</span>\n", - " <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"k\">const</span> <span class=\"n\">_data_src_00</span> <span class=\"o\">=</span> <span class=\"n\">_data_src</span> <span class=\"o\">+</span> <span class=\"mi\">30</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span><span class=\"p\">;</span>\n", - " <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"k\">const</span> <span class=\"n\">_data_src_0m1</span> <span class=\"o\">=</span> <span class=\"n\">_data_src</span> <span class=\"o\">+</span> <span class=\"mi\">30</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span> <span class=\"o\">-</span> <span class=\"mi\">30</span><span class=\"p\">;</span>\n", + " <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"n\">_data_dst_00</span> <span class=\"o\">=</span> <span class=\"n\">_data_dst</span> <span class=\"o\">+</span> <span class=\"mi\">30</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span><span class=\"p\">;</span>\n", + " <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"n\">_data_src_01</span> <span class=\"o\">=</span> <span class=\"n\">_data_src</span> <span class=\"o\">+</span> <span class=\"mi\">30</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span> <span class=\"o\">+</span> <span class=\"mi\">30</span><span class=\"p\">;</span>\n", + " <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"n\">_data_src_00</span> <span class=\"o\">=</span> <span class=\"n\">_data_src</span> <span class=\"o\">+</span> <span class=\"mi\">30</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span><span class=\"p\">;</span>\n", + " <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"n\">_data_src_0m1</span> <span class=\"o\">=</span> <span class=\"n\">_data_src</span> <span class=\"o\">+</span> <span class=\"mi\">30</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span> <span class=\"o\">-</span> <span class=\"mi\">30</span><span class=\"p\">;</span>\n", " <span class=\"k\">for</span> <span class=\"p\">(</span><span class=\"kt\">int</span> <span class=\"n\">ctr_1</span> <span class=\"o\">=</span> <span class=\"mi\">1</span><span class=\"p\">;</span> <span class=\"n\">ctr_1</span> <span class=\"o\"><</span> <span class=\"mi\">29</span><span class=\"p\">;</span> <span class=\"n\">ctr_1</span> <span class=\"o\">+=</span> <span class=\"mi\">1</span><span class=\"p\">)</span>\n", " <span class=\"p\">{</span>\n", " <span class=\"n\">_data_dst_00</span><span class=\"p\">[</span><span class=\"n\">ctr_1</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"mf\">0.25</span><span class=\"o\">*</span><span class=\"n\">_data_src_00</span><span class=\"p\">[</span><span class=\"n\">ctr_1</span> <span class=\"o\">+</span> <span class=\"mi\">1</span><span class=\"p\">]</span> <span class=\"o\">+</span> <span class=\"mf\">0.25</span><span class=\"o\">*</span><span class=\"n\">_data_src_00</span><span class=\"p\">[</span><span class=\"n\">ctr_1</span> <span class=\"o\">-</span> <span class=\"mi\">1</span><span class=\"p\">]</span> <span class=\"o\">+</span> <span class=\"mf\">0.25</span><span class=\"o\">*</span><span class=\"n\">_data_src_01</span><span class=\"p\">[</span><span class=\"n\">ctr_1</span><span class=\"p\">]</span> <span class=\"o\">+</span> <span class=\"mf\">0.25</span><span class=\"o\">*</span><span class=\"n\">_data_src_0m1</span><span class=\"p\">[</span><span class=\"n\">ctr_1</span><span class=\"p\">];</span>\n", @@ -396,14 +395,14 @@ "</pre></div>\n" ], "text/plain": [ - "FUNC_PREFIX void kernel(double * _data_dst, double * const _data_src)\n", + "FUNC_PREFIX void kernel(double * RESTRICT _data_dst, double * RESTRICT const _data_src)\n", "{\n", " for (int ctr_0 = 1; ctr_0 < 29; ctr_0 += 1)\n", " {\n", - " double * _data_dst_00 = _data_dst + 30*ctr_0;\n", - " double * const _data_src_01 = _data_src + 30*ctr_0 + 30;\n", - " double * const _data_src_00 = _data_src + 30*ctr_0;\n", - " double * const _data_src_0m1 = _data_src + 30*ctr_0 - 30;\n", + " double * RESTRICT _data_dst_00 = _data_dst + 30*ctr_0;\n", + " double * RESTRICT _data_src_01 = _data_src + 30*ctr_0 + 30;\n", + " double * RESTRICT _data_src_00 = _data_src + 30*ctr_0;\n", + " double * RESTRICT _data_src_0m1 = _data_src + 30*ctr_0 - 30;\n", " for (int ctr_1 = 1; ctr_1 < 29; ctr_1 += 1)\n", " {\n", " _data_dst_00[ctr_1] = 0.25*_data_src_00[ctr_1 + 1] + 0.25*_data_src_00[ctr_1 - 1] + 0.25*_data_src_01[ctr_1] + 0.25*_data_src_0m1[ctr_1];\n", @@ -412,9 +411,8 @@ "}" ] }, - "execution_count": 6, "metadata": {}, - "output_type": "execute_result" + "output_type": "display_data" } ], "source": [ @@ -740,7 +738,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5wAAAF1CAYAAACEZuWyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFbtJREFUeJzt3XuspAd53/Hfg9dcwqWUcELBBhxKoCGRMOkKQZymDSVgAoG0KgVSLpXSWqpICxUSCf8kQmoiVW0hVRs1cbm4argICFQJUMAIKKUKl11iUowhpRRix4CXEMqlFGr89I8zlhZzdnfWO8/Oecefj3Tkc5mZfV7tHj/7PfPOu9XdAQAAgE2707YHAAAAYDcJTgAAAEYITgAAAEYITgAAAEYITgAAAEYITgAAAEYITjiPquofVdUXq+rrVfX9254HAO6IqupuVfX7VfW/q+qN254HdpnghLNUVZ+tqm+uovHPq+ptVfXANe53YZKXJXlCd9+ju/9sfloAuGOrqvet9vVdTvr030lyvyTf391Pr6q/X1Uf2NKIsNMEJ9w+P9vd90hy/yRfTPJv1rjP/ZLcNcm1Z/uL1T7frwBwFqrqkiR/LUkneepJX3pwkj/u7ps39Osc2cTjwC7yF1g4B939f5O8KckjkqSq7lJV/7Kq/mR16uxvrU7beViST63u9pWqes/q9j9eVR9ZndLzkar68Vsfe/UT2V+rqv+W5P8keUhV/YWqemVVfb6q/rSq/llVXXB+jxoAFuO5ST6Y5Kokz0uSqnppkl9J8ozV2UrPT/JbSR67+vgrq9sduNNXX/sbVXVDVf1SVX0hyau3cGywCH4aA+egqr4vyTOyv8yS5J8neUiSS5P8vySvTfIr3f2SqvqRJP8ryb27++aquk+StyX5J0lel+TpSd5WVQ896XTb5yR5UvZjtZK8MfvPqD40yd2TvDXJ9Ul+e/pYAWCBnpv9l7N8KMkHq+p+3f2rVdVJHtrdz06SqvpGkn/Q3T9x0n0P3OlJXrL6+l9Kcp/sP1vqSRw4Bd8ccPv8p9VPQL+a5KeT/IuqqiT/MMk/7e4vd/fXkvx6kmee4jGenOR/dPd/7O6bu/t1ST6Z5GdPus1V3X3t6pSf+2Q/Pl/Y3d/o7puSvPw0jw8Ad1hV9RPZj8E3dPfxJP8zyc+ved91dvotSX61u7/V3d/c7PSwOzzDCbfPz3X3u1ensz4tyX/J/k9Avy/J8f09lWT/WclTnfL6gCSfu83nPpfkopM+vv6k9x+c5MIknz/p8e90m9sAAPuel+Rd3f2l1cevXX3u5Wvcdy9n3uknVi+tAU5DcMI56O7vJHlzVf12ksck+WaSH+nuP13j7jdmPyJP9qAk7zj5lzjp/euTfCvJfTd1kQMA2EWr11r+3SQXrF5jmSR3SXLvqnrkAXfp23z8pZx5p9/2PsABnFIL52B19dinJfmL2b/67L9P8vKq+oHV1y+qqiee4u5vT/Kwqvr5qjpSVc/I/sWH3nrQjbv780neleRfVdW9qupOVfWXq+qvb/q4AGDhfi7Jd7K/Vy9dvf1wkv+a/dd13tYXk1xcVXdOku6+JWe304FTEJxw+/x+VX09+6/h/LUkz+vua5P8UpJPZ//CBF9N8u4kDz/oAVYXBnpKkhcl+bMkL07ylJNO/TnIc5PcOcknkvx59q+Qe/+NHBEA7I7nJXl1d/9Jd3/h1rck/zbJ38v3nuX3nuz/4PgLVXXrHl57pwOnVt3OBgAAAGDzPMMJAADACMEJAADACMEJAADACMEJAADACMEJAADAiNteEnoj7nvf+/Yll1wy8dDn7I+Pf2bbIwAcOg/7qw/Z9gindPz48S91996251g6uxlgWXZlN48E5yWXXJJjx45NPPQ5++k7PX3bIwAcOlcfe+O2RzilqvrctmfYBXYzwLLsym52Si0AAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjjqxzo6r6bJKvJflOkpu7++jkUADA6dnNACzBWsG58lPd/aWxSQCAs2U3A3CoOaUWAACAEesGZyd5V1Udr6orJgcCANZiNwNw6K17Su1l3X1jVf1Akqur6pPd/f6Tb7BadlckyYMe9KANjwkA3IbdDMCht9YznN194+q/NyV5S5JHH3CbK7v7aHcf3dvb2+yUAMB3sZsBWIIzBmdV3b2q7nnr+0mekOTj04MBAAezmwFYinVOqb1fkrdU1a23f213v2N0KgDgdOxmABbhjMHZ3Z9J8sjzMAsAsAa7GYCl8M+iAAAAMEJwAgAAMEJwAgAAMEJwAgAAMEJwAgAAMEJwAgAAMEJwAgAAMEJwAgAAMEJwAgAAMEJwAgAAMEJwAgAAMEJwAgAAMEJwAgAAMEJwAgAAMEJwAgAAMEJwAgAAMEJwAgAAMEJwAgAAMEJwAgAAMEJwAgAAMEJwAgAAMEJwAgAAMOLItgdgM9554zXbHgF23hMfcOm2R4CdZIcB7C7PcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBi7eCsqguq6g+r6q2TAwEA67GbATjszuYZzhckuW5qEADgrNnNABxqawVnVV2c5MlJXjE7DgCwDrsZgCVY9xnO30jy4iS3nOoGVXVFVR2rqmMnTpzYyHAAwCnZzQAcemcMzqp6SpKbuvv46W7X3Vd299HuPrq3t7exAQGA72Y3A7AU6zzDeVmSp1bVZ5O8Psnjqup3RqcCAE7HbgZgEc4YnN39ku6+uLsvSfLMJO/p7mePTwYAHMhuBmAp/DucAAAAjDhyNjfu7vcled/IJADAWbObATjMPMMJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADACMEJAADAiDMGZ1Xdtao+XFUfq6prq+ql52MwAOBgdjMAS3Fkjdt8K8njuvvrVXVhkg9U1X/u7g8OzwYAHMxuBmARzhic3d1Jvr768MLVW08OBQCcmt0MwFKs9RrOqrqgqq5JclOSq7v7Q7NjAQCnYzcDsARrBWd3f6e7L01ycZJHV9WP3vY2VXVFVR2rqmMnTpzY9JwAwEnsZgCW4KyuUtvdX0nyviSXH/C1K7v7aHcf3dvb29B4AMDp2M0AHGbrXKV2r6ruvXr/bkken+ST04MBAAezmwFYinWuUnv/JP+hqi7IfqC+obvfOjsWAHAadjMAi7DOVWr/KMmjzsMsAMAa7GYAluKsXsMJAAAA6xKcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjBCcAAAAjDhjcFbVA6vqvVV1XVVdW1UvOB+DAQAHs5sBWIoja9zm5iQv6u6PVtU9kxyvqqu7+xPDswEAB7ObAViEMz7D2d2f7+6Prt7/WpLrklw0PRgAcDC7GYClOKvXcFbVJUkeleRDE8MAAGfHbgbgMFs7OKvqHkl+N8kLu/urB3z9iqo6VlXHTpw4sckZAYAD2M0AHHZrBWdVXZj9hfaa7n7zQbfp7iu7+2h3H93b29vkjADAbdjNACzBOleprSSvTHJdd79sfiQA4HTsZgCWYp1nOC9L8pwkj6uqa1ZvPzM8FwBwanYzAItwxn8Wpbs/kKTOwywAwBrsZgCW4qyuUgsAAADrEpwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMEJwAAACMOGNwVtWrquqmqvr4+RgIADg9uxmApVjnGc6rklw+PAcAsL6rYjcDsABnDM7ufn+SL5+HWQCANdjNACzFxl7DWVVXVNWxqjp24sSJTT0sAHA72c0AbNvGgrO7r+zuo919dG9vb1MPCwDcTnYzANvmKrUAAACMEJwAAACMWOefRXldkj9I8vCquqGqfmF+LADgVOxmAJbiyJlu0N3POh+DAADrsZsBWAqn1AIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADBCcAIAADDiyLYHYDOe+IBLtz0CANwudhjA97r6lm1PsBme4QQAAGCE4AQAAGCE4AQAAGCE4AQAAGCE4AQAAGCE4AQAAGCE4AQAAGCE4AQAAGCE4AQAAGCE4AQAAGCE4AQAAGCE4AQAAGCE4AQAAGCE4AQAAGCE4AQAAGCE4AQAAGCE4AQAAGCE4AQAAGCE4AQAAGCE4AQAAGCE4AQAAGCE4AQAAGDEWsFZVZdX1aeq6tNV9cvTQwEAp2c3A7AEZwzOqrogyW8meVKSRyR5VlU9YnowAOBgdjMAS7HOM5yPTvLp7v5Md387yeuTPG12LADgNOxmABZhneC8KMn1J318w+pzAMB22M0ALMI6wVkHfK6/50ZVV1TVsao6duLEiXOfDAA4FbsZgEVYJzhvSPLAkz6+OMmNt71Rd1/Z3Ue7++je3t6m5gMAvpfdDMAirBOcH0nyQ1X1g1V15yTPTPJ7s2MBAKdhNwOwCEfOdIPuvrmqfjHJO5NckORV3X3t+GQAwIHsZgCW4ozBmSTd/fYkbx+eBQBYk90MwBKsc0otAAAAnDXBCQAAwAjBCQAAwAjBCQAAwAjBCQAAwAjBCQAAwAjBCQAAwAjBCQAAwAjBCQAAwAjBCQAAwAjBCQAAwAjBCQAAwAjBCQAAwAjBCQAAwAjBCQAAwAjBCQAAwAjBCQAAwAjBCQAAwAjBCQAAwAjBCQAAwAjBCQAAwAjBCQAAwIjq7s0/aNWJJJ87i7vcN8mXNj7I4bCrx+a4lmdXj81xLc/ZHtuDu3tvapg7Crv5u+zqsTmu5dnVY3NcyzO2m0eC82xV1bHuPrrtOSbs6rE5ruXZ1WNzXMuzy8e2S3b592lXj81xLc+uHpvjWp7JY3NKLQAAACMEJwAAACMOS3Beue0BBu3qsTmu5dnVY3Ncy7PLx7ZLdvn3aVePzXEtz64em+NanrFjOxSv4QQAAGD3HJZnOAEAANgxhyY4q+rpVXVtVd1SVYu/+lNVXV5Vn6qqT1fVL297nk2pqldV1U1V9fFtz7JJVfXAqnpvVV23+nP4gm3PtAlVddeq+nBVfWx1XC/d9kybVFUXVNUfVtVbtz3LJlXVZ6vqv1fVNVV1bNvzbEpV3buq3lRVn1x9rz122zNxenbzMtjNy2I3L5PdfPsdmuBM8vEkfzvJ+7c9yLmqqguS/GaSJyV5RJJnVdUjtjvVxlyV5PJtDzHg5iQv6u4fTvKYJM/fkd+zbyV5XHc/MsmlSS6vqsdseaZNekGS67Y9xJCf6u5Ld+zy6/86yTu6+68keWR29/dul9jNy3BV7OYlsZuXy26+HQ5NcHb3dd39qW3PsSGPTvLp7v5Md387yeuTPG3LM21Ed78/yZe3Pcemdffnu/ujq/e/lv1vtou2O9W5631fX3144eptJ164XVUXJ3lykldsexbOrKruleQnk7wySbr72939le1OxZnYzctgNy+L3cxhcb5286EJzh1zUZLrT/r4huzA/yDvKKrqkiSPSvKh7U6yGatTW65JclOSq7t7J44ryW8keXGSW7Y9yIBO8q6qOl5VV2x7mA15SJITSV69OtXqFVV1920PxR2K3bxgdvNi2M3Lcl5283kNzqp6d1V9/IC3nfgJ40nqgM/txE+udl1V3SPJ7yZ5YXd/ddvzbEJ3f6e7L01ycZJHV9WPbnumc1VVT0lyU3cf3/YsQy7r7h/L/ql/z6+qn9z2QBtwJMmPJfl33f2oJN9IsjOvoVsyu5nDzm5eBrt5kc7Lbj6y6Qc8ne5+/Pn89bbohiQPPOnji5PcuKVZWFNVXZj9hfaa7n7ztufZtO7+SlW9L/uv81n6hSUuS/LUqvqZJHdNcq+q+p3ufvaW59qI7r5x9d+bquot2T8VcOmvobshyQ0n/RT/TRGch4LdzGFmNy+K3bw852U3O6V2xkeS/FBV/WBV3TnJM5P83pZn4jSqqrJ//vp13f2ybc+zKVW1V1X3Xr1/tySPT/LJ7U517rr7Jd19cXdfkv3vr/fsykKrqrtX1T1vfT/JE7L8v4Sku7+Q5PqqevjqU38zySe2OBJ3PHbzwtjNy2I3L8/52s2HJjir6m9V1Q1JHpvkbVX1zm3PdHt1981JfjHJO7P/Avc3dPe1251qM6rqdUn+IMnDq+qGqvqFbc+0IZcleU6Sx60ud33N6id0S3f/JO+tqj/K/l+2ru7unbpM+Q66X5IPVNXHknw4ydu6+x1bnmlT/nGS16z+PF6a5Ne3PA9nYDcvg928OHbz8tjN56C6vXwBAACAzTs0z3ACAACwWwQnAAAAIwQnAAAAIwQnAAAAIwQnAAAAIwQnAAAAIwQnAAAAIwQnAAAAI/4/V7RA5XxySx0AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5gAAAF1CAYAAACNjUXIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAV/ElEQVR4nO3dfbDlB13f8c/XbHgQcGjlQiEBVlpAgtMEukUwrTOmPERBoJ2KYEU645jaUQc7zKD+06l/4EynHXyotiUihFEeRB46CBQIhUipPO1ioMSARiaQNEIWaQpYC0349o97Ml3C3b1nd79nzzk3r9fMnb337u+e/f5ms/nue8/v/G51dwAAAOBsfcu6BwAAAOBgEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJhwDlXVP6+qz1fVV6rq29c9DwDcHVXVpVX1p4t9/Ox1zwMHSfk+mHB6qurGJA9KckeS/5vkD5P8ZHfftM/XnZ/kS0me2N0fW/WcAEBSVdckuTjJ3+jury4+91+SvKW7f3XxcSd5ZHffsLZB4YDwDCacmR/s7vsmeXCSzyf5d0t8zYOS3CvJdaf7i9Uuf14B4DRU1eEkfz9JJ3nmCT/18JzBPj7Jr3Fo4nHgoPAXVjgL3f1/krwhyUVJUlX3rKp/W1WfXVwK+x+r6t5V9agkn1p82W1V9Z7F8d9TVR+pqv+1+PF77nzsqrqmql5SVf8tyf9O8oiq+s6qurqqvlhVn6qq55zbMwaArfJjST6Y5KokL0iSqvqzJI9I8vuLS2Q/sDj2Y4uPf3hx3DOq6tqquq2q/rCq/vadD1pVN1bVz1XVx5P8pciE/09gwlmoqm9N8sPZXV5J8q+TPCrJJUn+VpILkvzL7v6TJI9dHHP/7r6sqv56krcl+bUk357kpUnedpfXZj4/yRVJ7pfkeJKrk7wmyQOTPC/Jv6+qxwYA2MuPJXn14u1pVfWg7v6bST6bxdVI3f2kxbEXLz7+3ap6fJJXJPln2d3RL0vylqq65wmP/bwkT8/uXr/9XJ0QbDqBCWfmP1XVbdl9TeVTkvybqqokP5HkX3T3F7v7y0l+KclzT/IYT0/yp9392919e3e/Nsknk/zgCcdc1d3XLRbX5Ulu7O5XLo7/aJI3JvnHqzlFANheVfX3snsp7Ou7+1iSP0vyI0t++U8keVl3f6i77+juVyX5apInnnDMr3X3Td39V6ODw5bzdD6cmWd397ur6rwkz0ryB9l91vJbkxzbbc0kSSU57ySP8ZAkn7nL5z6T3Wc973TijYMenuS7F2F7p0NJfvuMzgAADrYXJHlXd39h8fFrFp/75SW+9uFJXlBVP3PC5+6R3d19p1Pe3A/urgQmnIXuviPJm6rqZdn9V82/SvLY7v4fS3z5LdldYCd6WJJ3nPhLnPD+TUn+oLufchYjA8CBV1X3TvKcJOdV1ecWn75nkvtX1cVLPMRNSV7S3S85xTG+FQPswSWycBYWd3d9VpK/lt270f1mkl+uqgcufv6CqnraSb787UkeVVU/UlWHFjcVuCjJW09y/FsXxz+/qs5fvP3dqnrM7FkBwNZ7dna/ndhF2b3C6JIkj0nyX7P7usy7+nx2b/xzp99M8pNV9d2LXX+fqnp6Vd1vxXPD1hOYcGZ+v6q+kt3XYL4kyQu6+7okP5fkhiQfrKovJXl3kkfv9QDd/RdJnpHkRUn+IsmLkzzjhEt57nr8l5M8Nbuv6bwlyeeye1Ohe+51PADcjb0gySu7+7Pd/bk735L8epJ/km++iu9fJXnV4o6xz+nuo9l9HeavJ/mf2d3t//ScTQ9brLo9uw8AAMDZ8wwmAAAAIwQmAAAAIwQmAAAAIwQmAAAAIwQmAAAAI+56i+YRD3jAA/rw4cOreOiz9ifHPr3uEQA2zqP+ziP2P2hNjh079oXu3ln3HNvObgbYLtu6m1cSmIcPH87Ro0dX8dBn7Snf8kPrHgFg41x99PfWPcJJVdVn1j3DQWA3A2yXbd3NLpEFAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABgxKFlDqqqG5N8OckdSW7v7iOrHAoAODW7GYBNtFRgLnxfd39hZZMAAKfLbgZgo7hEFgAAgBHLBmYneVdVHauqK1Y5EACwFLsZgI2z7CWyl3b3LVX1wCRXV9Unu/t9Jx6wWG5XJMnDHvaw4TEBgLuwmwHYOEs9g9ndtyx+vDXJm5M8YY9jruzuI919ZGdnZ3ZKAOAb2M0AbKJ9A7Oq7lNV97vz/SRPTfKJVQ8GAOzNbgZgUy1zieyDkry5qu48/jXd/Y6VTgUAnIrdDMBG2jcwu/vTSS4+B7MAAEuwmwHYVL5NCQAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMOrXsAZrzzlmvXPQIceE97yCXrHgEOJDsM4ODwDCYAAAAjBCYAAAAjBCYAAAAjBCYAAAAjBCYAAAAjBCYAAAAjBCYAAAAjBCYAAAAjBCYAAAAjBCYAAAAjBCYAAAAjBCYAAAAjBCYAAAAjBCYAAAAjBCYAAAAjBCYAAAAjBCYAAAAjBCYAAAAjBCYAAAAjBCYAAAAjBCYAAAAjBCYAAAAjBCYAAAAjlg7Mqjqvqv6oqt66yoEAgOXYzQBsmtN5BvOFSa5f1SAAwGmzmwHYKEsFZlVdmOTpSV6+2nEAgGXYzQBsomWfwfyVJC9O8vWTHVBVV1TV0ao6evz48ZHhAICTspsB2Dj7BmZVPSPJrd197FTHdfeV3X2ku4/s7OyMDQgAfCO7GYBNtcwzmJcmeWZV3ZjkdUkuq6rfWelUAMCp2M0AbKR9A7O7f6G7L+zuw0mem+Q93f2jK58MANiT3QzApvJ9MAEAABhx6HQO7u5rklyzkkkAgNNmNwOwSTyDCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwAiBCQAAwIh9A7Oq7lVVH66qj1XVdVX1i+diMABgb3YzAJvq0BLHfDXJZd39lao6P8n7q+o/d/cHVzwbALA3uxmAjbRvYHZ3J/nK4sPzF2+9yqEAgJOzmwHYVEu9BrOqzquqa5PcmuTq7v7QascCAE7FbgZgEy0VmN19R3dfkuTCJE+oqu+66zFVdUVVHa2qo8ePH5+eEwA4gd0MwCY6rbvIdvdtSa5JcvkeP3dldx/p7iM7OztD4wEAp2I3A7BJlrmL7E5V3X/x/r2TPDnJJ1c9GACwN7sZgE21zF1kH5zkVVV1XnaD9PXd/dbVjgUAnILdDMBGWuYush9P8rhzMAsAsAS7GYBNdVqvwQQAAICTEZgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACMEJgAAACM2Dcwq+qhVfXeqrq+qq6rqheei8EAgL3ZzQBsqkNLHHN7khd190er6n5JjlXV1d39xyueDQDYm90MwEba9xnM7v7z7v7o4v0vJ7k+yQWrHgwA2JvdDMCmOq3XYFbV4SSPS/KhVQwDAJweuxmATbJ0YFbVfZO8McnPdveX9vj5K6rqaFUdPX78+OSMAMAe7GYANs1SgVlV52d3gb26u9+01zHdfWV3H+nuIzs7O5MzAgB3YTcDsImWuYtsJfmtJNd390tXPxIAcCp2MwCbaplnMC9N8vwkl1XVtYu3H1jxXADAydnNAGykfb9NSXe/P0mdg1kAgCXYzQBsqtO6iywAAACcjMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABghMAEAABgxL6BWVWvqKpbq+oT52IgAODU7GYANtUyz2BeleTyFc8BACzvqtjNAGygfQOzu9+X5IvnYBYAYAl2MwCbauw1mFV1RVUdraqjx48fn3pYAOAM2c0AnGtjgdndV3b3ke4+srOzM/WwAMAZspsBONfcRRYAAIARAhMAAIARy3ybktcm+UCSR1fVzVX146sfCwA4GbsZgE11aL8Duvt552IQAGA5djMAm8olsgAAAIwQmAAAAIwQmAAAAIwQmAAAAIwQmAAAAIwQmAAAAIwQmAAAAIwQmAAAAIwQmAAAAIwQmAAAAIwQmAAAAIwQmAAAAIwQmAAAAIwQmAAAAIwQmAAAAIwQmAAAAIwQmAAAAIwQmAAAAIwQmAAAAIwQmAAAAIwQmAAAAIwQmAAAAIw4tO4BmPG0h1yy7hEA4IzYYQDf7Oqvr3uCM+MZTAAAAEYITAAAAEYITAAAAEYITAAAAEYITAAAAEYITAAAAEYITAAAAEYITAAAAEYITAAAAEYITAAAAEYITAAAAEYITAAAAEYITAAAAEYITAAAAEYITAAAAEYITAAAAEYITAAAAEYITAAAAEYITAAAAEYITAAAAEYITAAAAEYITAAAAEYsFZhVdXlVfaqqbqiqn1/1UADAqdnNAGyifQOzqs5L8htJvj/JRUmeV1UXrXowAGBvdjMAm2qZZzCfkOSG7v50d38tyeuSPGu1YwEAp2A3A7CRlgnMC5LcdMLHNy8+BwCsh90MwEZaJjBrj8/1Nx1UdUVVHa2qo8ePHz/7yQCAk7GbAdhIywTmzUkeesLHFya55a4HdfeV3X2ku4/s7OxMzQcAfDO7GYCNtExgfiTJI6vqO6rqHkmem+Qtqx0LADgFuxmAjXRovwO6+/aq+ukk70xyXpJXdPd1K58MANiT3QzApto3MJOku9+e5O0rngUAWJLdDMAmWuYSWQAAANiXwAQAAGCEwAQAAGCEwAQAAGCEwAQAAGCEwAQAAGCEwAQAAGCEwAQAAGCEwAQAAGCEwAQAAGCEwAQAAGCEwAQAAGCEwAQAAGCEwAQAAGCEwAQAAGCEwAQAAGCEwAQAAGCEwAQAAGCEwAQAAGCEwAQAAGCEwAQAAGCEwAQAAGBEdff8g1YdT/KZ0/iSByT5wvggm+Ggnpvz2j4H9dyc1/Y53XN7eHfvrGqYuwu7+Rsc1HNzXtvnoJ6b89o+Y7t5JYF5uqrqaHcfWfccq3BQz815bZ+Dem7Oa/sc5HM7SA7y79NBPTfntX0O6rk5r+0zeW4ukQUAAGCEwAQAAGDEpgTmleseYIUO6rk5r+1zUM/NeW2fg3xuB8lB/n06qOfmvLbPQT0357V9xs5tI16DCQAAwPbblGcwAQAA2HIbE5hV9UNVdV1Vfb2qtv7uTFV1eVV9qqpuqKqfX/c8U6rqFVV1a1V9Yt2zTKqqh1bVe6vq+sV/hy9c90wTqupeVfXhqvrY4rx+cd0zTaqq86rqj6rqreueZVJV3VhV/72qrq2qo+ueZ0pV3b+q3lBVn1z8WXvSumfi1Ozm7WA3bxe7eTvZzcvbmMBM8okk/yjJ+9Y9yNmqqvOS/EaS709yUZLnVdVF651qzFVJLl/3ECtwe5IXdfdjkjwxyU8dkN+zrya5rLsvTnJJksur6olrnmnSC5Ncv+4hVuT7uvuSA3Y79F9N8o7u/s4kF+fg/t4dJHbzdrgqdvM2sZu3l928hI0JzO6+vrs/te45hjwhyQ3d/enu/lqS1yV51ppnGtHd70vyxXXPMa27/7y7P7p4/8vZ/cN1wXqnOnu96yuLD89fvB2IF15X1YVJnp7k5euehf1V1bcl+d4kv5Uk3f217r5tvVOxH7t5O9jN28VuZlOsajdvTGAeMBckuemEj2/OAfgf4t1FVR1O8rgkH1rvJDMWl6pcm+TWJFd394E4ryS/kuTFSb6+7kFWoJO8q6qOVdUV6x5myCOSHE/yysWlUy+vqvuseyjuVuzmLWY3bw27ebusZDef08CsqndX1Sf2eDsQ/4J4gtrjcwfiX6YOuqq6b5I3JvnZ7v7SuueZ0N13dPclSS5M8oSq+q51z3S2quoZSW7t7mPrnmVFLu3ux2f3Ur6fqqrvXfdAAw4leXyS/9Ddj0vyl0kOzGvgtpndzKazm7eD3byVVrKbD53tA5yO7n7yufz11ujmJA894eMLk9yypllYUlWdn90F9uruftO655nW3bdV1TXZfZ3Ott8I4tIkz6yqH0hyryTfVlW/090/uua5RnT3LYsfb62qN2f30r5tfw3czUluPuFf6d8QgbkR7GY2md28Vezm7bOS3ewS2dX4SJJHVtV3VNU9kjw3yVvWPBOnUFWV3evPr+/ul657nilVtVNV91+8f+8kT07yyfVOdfa6+xe6+8LuPpzdP1/vOSgLrKruU1X3u/P9JE/N9v+lI939uSQ3VdWjF5/6B0n+eI0jcfdjN28Zu3m72M3bZ1W7eWMCs6r+YVXdnORJSd5WVe9c90xnqrtvT/LTSd6Z3Rekv767r1vvVDOq6rVJPpDk0VV1c1X9+LpnGnJpkucnuWxx++lrF/8Ct+0enOS9VfXx7P7l6uruPlC3DT+AHpTk/VX1sSQfTvK27n7Hmmea8jNJXr347/GSJL+05nnYh928HezmrWM3bx+7+TRUt5cfAAAAcPY25hlMAAAAtpvABAAAYITABAAAYITABAAAYITABAAAYITABAAAYITABAAAYITABAAAYMT/A35PRtZ9p2wSAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 1152x432 with 2 Axes>" ] @@ -864,9 +862,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIUAAAAUBAMAAABRzuPpAAAAMFBMVEX///8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAImYQu82Z3XZU70SJMqtHo0JKAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAB2ElEQVQ4EaWUPUgcURDHf7fvNud6e/GwsfQsbETIFQFFBD+w9qMJ2BxbHVaJVmITDosQUiSXNhC1EBvxo0uZLVRshK3SulhYKQqixCDqvDVnds+3hJAp9mb2N/PfeXOzC5kS/2OfdfFLffkB7uKB9p6aGRQ82O8NeF6Uiild9Ram6dNh0r6UUwC5ELuu5lCTYHlS1bKJtYIrYcLUyVnZCCTrQ0gP7EozkNMPb6+QDXEuEgo6eFFOAZnukHFYLjMAHTrVr9AWkr/WfsJEwwxcO+QWvtext3knNVaxwpBH/meiXgeiYQZddqiuRKOG6zEqmf1U6PQpGDWMQNXsMHMDhzWsSRZEw9caHgW52WTShxG4iIb0cejjzLIOTiAaQ/90lq+i8fsshXOtMYhoyOic66YuonmYgPJFQ890uY5oyFmWqtVfM9lhLPN/awDOcfXNWm0sekZ+NpopmHcsyjEtn/Tb2tgxmele1P8q0tBAoC6bTvNJdt0IaB0mV1cb8Mznm67auTti8P0pzEtNzF5vvSoZAe7EbUntfwzADh52/bHMSWo83icV0Cc76v1JlA9APIj7qUC/c4zEU/vjQdxPBfrdf/gGNdJLDaf5NxVki5KaScUC/25dcA8aXn5zNx258AAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGoAAAAVCAYAAACuVXuDAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADhUlEQVRoBe2Z7W3bMBCGHaMDGO0G6gZJs0GygeNO0HiDFv1l/yvSDdpOUCQbJBsE9Qb2BnW8gfs+jE5lJUo2bIoS0BxwOvL4dXqPR1LUYLvdDnyezWaZn39J/4tPCjxCPhgOPJrP5x+VPfVUL8luEMhyXxSjnzBDIBWMJc4lPzlFzUPlOHIqOS1Xke4m1/2WfCu+kW5Vrhcrn9tyq/7OlN6E+k1tk9mQ23YwTmpP0Gwkv9OniyhlRkp/lmx0Eg1EAPPapbyH2v5S9pE+xF+Vpq97pTOv2tFJ9TcS34q/qbMf4tr+VSeJTTUvdRROsh0McTS+eXaUJJHAizeSGuHlCkl/LSUA3lmh0sxw8jv7tTb7SPoVX4mJ6J91bVSezKayDRo7Fk5g51Yp26Mm6tyFWHlQy6ucJQ/w4TJdSbEoK5V/FF+orZsVgfI2VZ3YFBOn3Cf4ZjTUg71pn33kfd4wBO6FlOtAgfVLeWrqyqbYOIHhhIi6FD80oSgHEcrBJQxvN7XNyyp72h5tDq7SlU0t4YRvLnHUO/GyDhUNnqmMfcGio1zVnBBaEq3uPs60ujFkcptaxAnfZDgKEEPLlgHGyaNx/7KKDfJNQ1lXRbFtagsnfOMcxewLRoMcxMkpuOR56DY52WY231UpKalNLePESjYiooKUhzJH7rolz7VTuTk5tLyZrrGPoAFHKFPalAAnF0ivhAezzwD14WFv4qaCDzefTpXhigP9SpIPWzY86pfJIqrxsFJuFCmfyqa2ccI3axzFbK+ALAfwohWApX9CL8l3ihFOs+sj0yHPxAvV3ZhSaaK0yJu+BZnEJr1LKzh5eDDZV0M9FuJzr2BXEg/DBclYDhtrSb7JHClNnYn4w7PG3Seie1IZVzsxyA4EFrlFnx3aZDYcjJN1kEs32U90pc5Sxt0Zl6i1pHIOFUSefbxyPcTdHndSA0kMI6o2Yg4POP+L9EyEgpS3T4Hai9Sick1CfdhyjC2MyxisDNwtFidUpZPZpLEdacwoOHn9gdfU/YuSs5Y4LMW/FsbQWGPxKNV4+4zTU5sy2bXEfpY+iEio/LZwJe08OKQQeX2iPtrEQe3vpWy+XHCSqxwqYiOpMViOUn9XNb5GT23CF/jELeUWUbwIp7hdH7fUO5auNbjb147tKGL7PtqEL4pVrvjDy0sLQLw47iGQmPffkPDnEvxOsrgo+AP8ixo954XzTQAAAABJRU5ErkJggg==\n", "text/latex": [ - "$$\\left ( 40, \\quad 10, \\quad 40\\right )$$" + "$\\displaystyle \\left( 40, \\ 10, \\ 40\\right)$" ], "text/plain": [ "(40, 10, 40)" @@ -924,7 +922,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6IAAAFpCAYAAACGSJXZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFDxJREFUeJzt3W+sZXdd7/HP15kCRjRt7YFM/3AHTFWqkameO8FgDLeArUhsTSShUdIoyWgiCST4p+ADvYkmGpV6H3hJRluZB2gvt0BoiFjHWoMkWj2FsbQOSq0o44ydg9gA3qSk5XsfnEU4wZmeM3PO/u2ZvV+v5OTsvdbas7/prOzMu2uvtaq7AwAAAKN83bwHAAAAYLkIUQAAAIYSogAAAAwlRAEAABhKiAIAADCUEAUAAGAoIQoAAMBQQhQAAIChhCgAAABDCVEAAACG2jvyza644orev3//yLcEltA/PPT4vEcAuOB86/e8ZN4jAEvgoYce+mx3r2y13dAQ3b9/f9bW1ka+JbCEXvN1r5/3CAAXnKNr/3feIwBLoKr+eTvb+WouAAAAQwlRAAAAhhKiAAAADCVEAQAAGEqIAgAAMJQQBQAAYCghCgAAwFBCFAAAgKGEKAAAAEMJUQAAAIYSogAAAAwlRAEAABhKiAIAADCUEAUAAGAoIQoAAMBQQhQAAIChhCgAAABDCVEAAACGEqIAAAAMJUQBAAAYSogCAAAwlBAFAABgKCEKAADAUEIUAACAoYQoAAAAQwlRAAAAhhKiAAAADCVEAQAAGEqIAgAAMJQQBQAAYKgtQ7SqnldVf11Vf1tVj1bV/5yWv7uq/qmqjk0/B2Y/LgAAABe7vdvY5qkkN3T3F6vqkiQfraoPT+t+rrvvmd14AAAALJotQ7S7O8kXp6eXTD89y6EAAABYXNs6R7Sq9lTVsSSnkxzt7genVb9aVQ9X1R1V9dyZTQkAAMDC2FaIdvcz3X0gydVJDlbVdyZ5e5JvT/Lfk1ye5BfO9NqqOlRVa1W1tr6+vktjAwAAcLE6p6vmdveTSf48yU3dfao3PJXk95McPMtrDnf3anevrqys7HhgAAAALm7buWruSlVdOj3++iSvTvLJqto3LasktyR5ZJaDAgAAsBi2c9XcfUmOVNWebITre7v7Q1X1Z1W1kqSSHEvy0zOcEwAAgAWxnavmPpzk+jMsv2EmEwEAALDQzukcUQAAANgpIQoAAMBQQhQAAIChhCgAAABDCVEAAACGEqIAAAAMJUQBAAAYSogCAAAwlBAFAABgKCEKAADAUEIUAACAoYQoAAAAQwlRAAAAhhKiAAAADCVEAQAAGGrvvAcAgHm57+SxeY+wYzdeeWDeIwDAOXNEFAAAgKGEKAAAAEMJUQAAAIYSogAAAAwlRAEAABhKiAIAADCUEAUAAGAo9xEF4KK1CPcB3amd/jdwH1IA5sERUQAAAIYSogAAAAwlRAEAABhKiAIAADCUEAUAAGAoIQoAAMBQQhQAAIChhCgAAABD7d1qg6p6XpKPJHnutP093f1LVfXiJHcnuTzJx5K8sbu/NMthAVge9508Nu8RlsJ2/jvfeOWBAZMAsEy2c0T0qSQ3dPfLkhxIclNVvTzJrye5o7uvTfIfSd40uzEBAABYFFuGaG/44vT0kumnk9yQ5J5p+ZEkt8xkQgAAABbKts4Rrao9VXUsyekkR5P8Y5Inu/vpaZMTSa6azYgAAAAskm2FaHc/090Hklyd5GCSl55pszO9tqoOVdVaVa2tr6+f/6QAAAAshHO6am53P5nkz5O8PMmlVfWVix1dneTkWV5zuLtXu3t1ZWVlJ7MCAACwALYM0apaqapLp8dfn+TVSY4neSDJj06b3Zbkg7MaEgAAgMWx5e1bkuxLcqSq9mQjXN/b3R+qqr9LcndV/UqSjye5c4ZzAgAAsCC2DNHufjjJ9WdY/ng2zhcFgHPmPqEXj63+rtxnFIBzdU7niAIAAMBOCVEAAACGEqIAAAAMJUQBAAAYSogCAAAwlBAFAABgKCEKAADAUEIUAACAoYQoAAAAQwlRAAAAhhKiAAAADCVEAQAAGEqIAgAAMJQQBQAAYCghCgAAwFB75z0AAIvpvpPH5j0Cg2z1d33jlQcGTQLAxcIRUQAAAIYSogAAAAwlRAEAABhKiAIAADCUEAUAAGAoIQoAAMBQQhQAAIChhCgAAABDCVEAAACGEqIAAAAMJUQBAAAYSogCAAAwlBAFAABgKCEKAADAUEIUAACAoYQoAAAAQ20ZolV1TVU9UFXHq+rRqnrLtPyXq+pfq+rY9PPa2Y8LAADAxW7vNrZ5OsnbuvtjVfWNSR6qqqPTuju6+zdnNx4AAACLZssQ7e5TSU5Nj79QVceTXDXrwQAAAFhM53SOaFXtT3J9kgenRW+uqoer6q6qumyXZwMAAGABbTtEq+r5Sd6X5K3d/fkk70ryLUkOZOOI6W+d5XWHqmqtqtbW19d3YWQAAAAuZtsK0aq6JBsR+p7ufn+SdPcT3f1Md385ye8mOXim13b34e5e7e7VlZWV3ZobAACAi9R2rppbSe5Mcry737lp+b5Nm/1Ikkd2fzwAAAAWzXaumvuKJG9M8omqOjYte0eSW6vqQJJO8ukkPzWTCQEAAFgo27lq7keT1BlW/dHujwMAAMCiO6er5gIAAMBOCVEAAACGEqIAAAAMJUQBAAAYSogCAAAwlBAFAABgKCEKAADAUEIUAACAoYQoAAAAQwlRAAAAhhKiAAAADCVEAQAAGEqIAgAAMJQQBQAAYCghCgAAwFBCFAAAgKGEKAAAAEMJUQAAAIYSogAAAAwlRAEAABhKiAIAADCUEAUAAGAoIQoAAMBQe+c9AACL6cYrDzzr+vtOHhs0CbO21d81AHwtR0QBAAAYSogCAAAwlBAFAABgKCEKAADAUEIUAACAoYQoAAAAQwlRAAAAhhKiAAAADLVliFbVNVX1QFUdr6pHq+ot0/LLq+poVX1q+n3Z7McFAADgYredI6JPJ3lbd780ycuT/ExVXZfk9iT3d/e1Se6fngMAAMCz2jJEu/tUd39sevyFJMeTXJXk5iRHps2OJLllVkMCAACwOM7pHNGq2p/k+iQPJnlhd59KNmI1yQt2ezgAAAAWz7ZDtKqen+R9Sd7a3Z8/h9cdqqq1qlpbX18/nxkBAABYINsK0aq6JBsR+p7ufv+0+Imq2jet35fk9Jle292Hu3u1u1dXVlZ2Y2YAAAAuYtu5am4luTPJ8e5+56ZV9ya5bXp8W5IP7v54AAAALJq929jmFUnemOQTVXVsWvaOJL+W5L1V9aYk/5Lk9bMZEQAAgEWyZYh290eT1FlWv2p3xwFgWdx45YFnXX/fyWPPup5xtvq7AoBzdU5XzQUAAICdEqIAAAAMJUQBAAAYSogCAAAwlBAFAABgKCEKAADAUEIUAACAoba8jygAzMN27l3pXqM75x6hAMyDI6IAAAAMJUQBAAAYSogCAAAwlBAFAABgKCEKAADAUEIUAACAoYQoAAAAQ7mPKAAXrZ3eA3MR7kPqPqAAXIwcEQUAAGAoIQoAAMBQQhQAAIChhCgAAABDCVEAAACGEqIAAAAMJUQBAAAYyn1EAVha7sEJAPPhiCgAAABDCVEAAACGEqIAAAAMJUQBAAAYSogCAAAwlBAFAABgKCEKAADAUFuGaFXdVVWnq+qRTct+uar+taqOTT+vne2YAAAALIrtHBF9d5KbzrD8ju4+MP380e6OBQAAwKLaMkS7+yNJPjdgFgAAAJbATs4RfXNVPTx9dfeyXZsIAACAhXa+IfquJN+S5ECSU0l+62wbVtWhqlqrqrX19fXzfDsAAAAWxXmFaHc/0d3PdPeXk/xukoPPsu3h7l7t7tWVlZXznRMAAIAFcV4hWlX7Nj39kSSPnG1bAAAA2GzvVhtU1R8meWWSK6rqRJJfSvLKqjqQpJN8OslPzXBGAAAAFsiWIdrdt55h8Z0zmAUAAIAlsJOr5gIAAMA5E6IAAAAMJUQBAAAYSogCAAAwlBAFAABgKCEKAADAUEIUAACAoYQoAAAAQwlRAAAAhhKiAAAADCVEAQAAGEqIAgAAMJQQBQAAYCghCgAAwFBCFAAAgKGEKAAAAEMJUQAAAIYSogAAAAwlRAEAABhKiAIAADCUEAUAAGAoIQoAAMBQQhQAAIChhCgAAABDCVEAAACGEqIAAAAMJUQBAAAYSogCAAAwlBAFAABgKCEKAADAUEIUAACAoYQoAAAAQ20ZolV1V1WdrqpHNi27vKqOVtWnpt+XzXZMAAAAFsV2joi+O8lNX7Ps9iT3d/e1Se6fngMAAMCWtgzR7v5Iks99zeKbkxyZHh9JcssuzwUAAMCCOt9zRF/Y3aeSZPr9gt0bCQAAgEU284sVVdWhqlqrqrX19fVZvx0AAAAXuPMN0Seqal+STL9Pn23D7j7c3avdvbqysnKebwcAAMCiON8QvTfJbdPj25J8cHfGAQAAYNFt5/Ytf5jkL5N8W1WdqKo3Jfm1JK+pqk8lec30HAAAALa0d6sNuvvWs6x61S7PAgAAwBKY+cWKAAAAYDMhCgAAwFBCFAAAgKGEKAAAAEMJUQAAAIYSogAAAAwlRAEAABhKiAIAADCUEAUAAGAoIQoAAMBQQhQAAIChhCgAAABDCVEAAACGEqIAAAAMJUQBAAAYSogCAAAwlBAFAABgKCEKAADAUEIUAACAoYQoAAAAQwlRAAAAhhKiAAAADCVEAQAAGEqIAgAAMJQQBQAAYCghCgAAwFBCFAAAgKGEKAAAAEMJUQAAAIYSogAAAAwlRAEAABhKiAIAADDU3p28uKo+neQLSZ5J8nR3r+7GUAAAACyuHYXo5H9092d34c8BAABgCfhqLgAAAEPtNEQ7yZ9U1UNVdWg3BgIAAGCx7fSrua/o7pNV9YIkR6vqk939kc0bTIF6KEle9KIX7fDtAAAAuNjt6Ihod5+cfp9O8oEkB8+wzeHuXu3u1ZWVlZ28HQAAAAvgvEO0qr6hqr7xK4+T/ECSR3ZrMAAAABbTTr6a+8IkH6iqr/w5f9Ddf7wrUwEAALCwzjtEu/vxJC/bxVkAAABYAm7fAgAAwFBCFAAAgKGEKAAAAEMJUQAAAIYSogAAAAwlRAEAABhKiAIAADCUEAUAAGAoIQoAAMBQQhQAAIChhCgAAABDCVEAAACGEqIAAAAMJUQBAAAYSogCAAAwlBAFAABgKCEKAADAUEIUAACAoYQoAAAAQwlRAAAAhhKiAAAADCVEAQAAGEqIAgAAMJQQBQAAYCghCgAAwFBCFAAAgKGEKAAAAEMJUQAAAIYSogAAAAwlRAEAABhKiAIAADCUEAUAAGCoHYVoVd1UVX9fVY9V1e27NRQAAACL67xDtKr2JPmdJD+Y5Lokt1bVdbs1GAAAAItpJ0dEDyZ5rLsf7+4vJbk7yc27MxYAAACLaichelWSz2x6fmJaBgAAAGe1kxCtMyzr/7JR1aGqWquqtfX19R28HQAAAItgJyF6Isk1m55fneTk127U3Ye7e7W7V1dWVnbwdgAAACyCnYTo3yS5tqpeXFXPSfKGJPfuzlgAAAAsqr3n+8Lufrqq3pzkviR7ktzV3Y/u2mQAAAAspOr+L6d1zu7NqtaT/POwN2Terkjy2XkPAbEvcuGwL3IhsT9yobAvLpb/1t1bnpM5NERZLlW11t2r854D7ItcKOyLXEjsj1wo7IvLaSfniAIAAMA5E6IAAAAMJUSZpcPzHgAm9kUuFPZFLiT2Ry4U9sUl5BxRAAAAhnJEFAAAgKGEKLuuqn6jqj5ZVQ9X1Qeq6tJN695eVY9V1d9X1Y3znJPlUFU3TfvbY1V1+7znYXlU1TVV9UBVHa+qR6vqLdPyy6vqaFV9avp92bxnZTlU1Z6q+nhVfWh6/uKqenDaF/9PVT1n3jOy+Krq0qq6Z/q34vGq+l6fi8tJiDILR5N8Z3d/V5J/SPL2JKmq65K8Icl3JLkpyf+uqj1zm5KFN+1fv5PkB5Ncl+TWaT+EEZ5O8rbufmmSlyf5mWn/uz3J/d19bZL7p+cwwluSHN/0/NeT3DHti/+R5E1zmYpl87+S/HF3f3uSl2Vjn/S5uISEKLuuu/+ku5+env5Vkqunxzcnubu7n+ruf0ryWJKD85iRpXEwyWPd/Xh3fynJ3dnYD2HmuvtUd39sevyFbPxj66ps7INHps2OJLllPhOyTKrq6iQ/lOT3pueV5IYk90yb2BeZuar6piTfn+TOJOnuL3X3k/G5uJSEKLP2k0k+PD2+KslnNq07MS2DWbHPcUGoqv1Jrk/yYJIXdvepZCNWk7xgfpOxRH47yc8n+fL0/JuTPLnpfxz7fGSElyRZT/L709fEf6+qviE+F5eSEOW8VNWfVtUjZ/i5edM2v5iNr6a95yuLzvBHuWwzs2SfY+6q6vlJ3pfkrd39+XnPw/KpqtclOd3dD21efIZNfT4ya3uTfHeSd3X39Un+M76Gu7T2znsALk7d/epnW19VtyV5XZJX9VfvEXQiyTWbNrs6ycnZTAhJ7HPMWVVdko0IfU93v39a/ERV7evuU1W1L8np+U3IknhFkh+uqtcmeV6Sb8rGEdJLq2rvdFTU5yMjnEhyorsfnJ7fk40Q9bm4hBwRZddV1U1JfiHJD3f3/9u06t4kb6iq51bVi5Ncm+Sv5zEjS+Nvklw7XRnyOdm4WNa9c56JJTGdg3dnkuPd/c5Nq+5Nctv0+LYkHxw9G8ulu9/e3Vd39/5sfA7+WXf/WJIHkvzotJl9kZnr7n9L8pmq+rZp0auS/F18Li6l+urBKtgdVfVYkucm+fdp0V91909P634xG+eNPp2Nr6l9+Mx/CuyO6QjAbyfZk+Su7v7VOY/Ekqiq70vyF0k+ka+el/eObJwn+t4kL0ryL0le392fm8uQLJ2qemWSn+3u11XVS7JxEbfLk3w8yY9391PznI/FV1UHsnHRrOckeTzJT2Tj4JjPxSUjRAEAABjKV3MBAAAYSogCAAAwlBAFAABgKCEKAADAUEIUAACAoYQoAAAAQwlRAAAAhhKiAAAADPX/AfV12Rb/LLOGAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA54AAAFlCAYAAACDRTcUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAATzklEQVR4nO3dX4yld33f8c83XhOikAhTD9b6T7sEuWlcVNbpyqKiimgMtSEohgskLBVZLZKpBBJIVK0hFyUXlSI1QHqRIpngZtXSIDeAsFCI47pEKVJiMqYbY3dJbLkEjLfeIQgBrQSy+fZiDmVj7zKzO/Ods2fm9ZJG55znec6cr3Z/svbtc87zVHcHAAAApvzYsgcAAABgfxOeAAAAjBKeAAAAjBKeAAAAjBKeAAAAjBKeAAAAjDq0ly92+eWX95EjR/byJYED6C8efHzZIwBcdP723/+ZZY8AHAAPPvjg17t77dnb9zQ8jxw5kvX19b18SeAAes2PvWnZIwBcdO5b/y/LHgE4AKrqL8+23UdtAQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGLVleFbV86vq81X1Z1X1SFX96mL7+6rqa1V1YvHzuvlxAQAAWDWHtnHMd5P8Ynd/p6ouTfK5qvrMYt8Hu/vX58YDAABg1W0Znt3dSb6zeHjp4qcnhwIAAGD/2NZ3PKvqkqo6keR0kvu6+4HFrndU1UNVdVdVXXaO595eVetVtb6xsbFLYwMAALAqthWe3f1Mdx9NcnWSG6rqZUk+lOSlSY4mOZXk/ed47p3dfay7j62tre3S2AAAAKyK8zqrbXd/M8kfJrm5u59aBOn3k3w4yQ0D8wEAALDitnNW27WqeuHi/k8keXWSL1XV4TMOe2OSh2dGBAAAYJVt56y2h5Mcr6pLshmqd3f3p6vqP1bV0WyeaOjLSd42NyYAAACrajtntX0oyfVn2f6WkYkAAADYV87rO54AAABwvoQnAAAAo4QnAAAAo4QnAAAAo4QnAAAAo4QnAAAAo4QnAAAAo4QnAAAAo4QnAAAAo4QnAAAAo4QnAAAAo4QnAAAAo4QnAAAAo4QnAAAAow4tewAAWJZ7nzyx7BF27KYrjy57BADYknc8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGOU6ngCsrP1wHc6d2umfgeuAArAXvOMJAADAKOEJAADAKOEJAADAKOEJAADAKOEJAADAKOEJAADAKOEJAADAKOEJAADAqEPLHgAAzubeJ08se4QDYTt/zjddeXQPJgFgP9vyHc+qen5Vfb6q/qyqHqmqX11sf1FV3VdVjy5uL5sfFwAAgFWznY/afjfJL3b3y5McTXJzVb0iyR1J7u/ua5Pcv3gMAAAAf82W4dmbvrN4eOnip5PckuT4YvvxJG8YmRAAAICVtq2TC1XVJVV1IsnpJPd19wNJrujuU0myuH3xOZ57e1WtV9X6xsbGbs0NAADAithWeHb3M919NMnVSW6oqpdt9wW6+87uPtbdx9bW1i50TgAAAFbUeV1Opbu/meQPk9yc5KmqOpwki9vTuz4dAAAAK287Z7Vdq6oXLu7/RJJXJ/lSknuS3LY47LYkn5oaEgAAgNW1net4Hk5yvKouyWao3t3dn66qP05yd1W9NclXkrxpcE4A9hnX6VwdW/1duc4nAFvZMjy7+6Ek159l+18luXFiKAAAAPaP8/qOJwAAAJwv4QkAAMAo4QkAAMAo4QkAAMAo4QkAAMAo4QkAAMAo4QkAAMAo4QkAAMAo4QkAAMAo4QkAAMAo4QkAAMAo4QkAAMAo4QkAAMAo4QkAAMCoQ8seAID96d4nTyx7BPbIVn/XN115dI8mAeBi5R1PAAAARglPAAAARglPAAAARglPAAAARglPAAAARglPAAAARglPAAAARglPAAAARglPAAAARglPAAAARglPAAAARglPAAAARglPAAAARglPAAAARglPAAAARglPAAAARm0ZnlV1TVV9tqpOVtUjVfXOxfb3VdXXqurE4ud18+MCAACwag5t45ink7y7u79QVT+V5MGqum+x74Pd/etz4wEAALDqtgzP7j6V5NTi/rer6mSSq6YHAwAAYH84r+94VtWRJNcneWCx6R1V9VBV3VVVl+3ybAAAAOwD2w7PqnpBko8neVd3fyvJh5K8NMnRbL4j+v5zPO/2qlqvqvWNjY1dGBkAAIBVsq3wrKpLsxmdH+3uTyRJdz/V3c909/eTfDjJDWd7bnff2d3HuvvY2trabs0NAADAitjOWW0ryUeSnOzuD5yx/fAZh70xycO7Px4AAACrbjtntX1lkrck+WJVnVhse2+SW6vqaJJO8uUkbxuZEAAAgJW2nbPafi5JnWXX7+3+OAAAAOw353VWWwAAADhfwhMAAIBRwhMAAIBRwhMAAIBRwhMAAIBRwhMAAIBRwhMAAIBRwhMAAIBRwhMAAIBRwhMAAIBRwhMAAIBRwhMAAIBRwhMAAIBRwhMAAIBRwhMAAIBRwhMAAIBRwhMAAIBRwhMAAIBRwhMAAIBRwhMAAIBRwhMAAIBRwhMAAIBRwhMAAIBRh5Y9AAD7001XHv2R++998sQeTcK0rf6uAcA7ngAAAIwSngAAAIwSngAAAIwSngAAAIwSngAAAIwSngAAAIwSngAAAIwSngAAAIzaMjyr6pqq+mxVnayqR6rqnYvtL6qq+6rq0cXtZfPjAgAAsGq2847n00ne3d0/l+QVSd5eVdcluSPJ/d19bZL7F48BAADgr9kyPLv7VHd/YXH/20lOJrkqyS1Jji8OO57kDVNDAgAAsLrO6zueVXUkyfVJHkhyRXefSjbjNMmLd3s4AAAAVt+2w7OqXpDk40ne1d3fOo/n3V5V61W1vrGxcSEzAgAAsMK2FZ5VdWk2o/Oj3f2JxeanqurwYv/hJKfP9tzuvrO7j3X3sbW1td2YGQAAgBWynbPaVpKPJDnZ3R84Y9c9SW5b3L8tyad2fzwAAABW3aFtHPPKJG9J8sWqOrHY9t4kv5bk7qp6a5KvJHnTzIgAAACssi3Ds7s/l6TOsfvG3R0HgIPipiuP/sj99z554kfuZ+9s9XcFAFs5r7PaAgAAwPkSngAAAIwSngAAAIwSngAAAIwSngAAAIwSngAAAIwSngAAAIza8jqeALAM27l2pGt97pxrdAKwF7zjCQAAwCjhCQAAwCjhCQAAwCjhCQAAwCjhCQAAwCjhCQAAwCjhCQAAwCjX8QRgZe30GpT74TqgrsMJwCrwjicAAACjhCcAAACjhCcAAACjhCcAAACjhCcAAACjhCcAAACjhCcAAACjXMcTgAPLNTABYG94xxMAAIBRwhMAAIBRwhMAAIBRwhMAAIBRwhMAAIBRwhMAAIBRwhMAAIBRwhMAAIBRW4ZnVd1VVaer6uEztr2vqr5WVScWP6+bHRMAAIBVtZ13PH87yc1n2f7B7j66+Pm93R0LAACA/WLL8OzuP0ryjT2YBQAAgH1oJ9/xfEdVPbT4KO5l5zqoqm6vqvWqWt/Y2NjBywEAALCKLjQ8P5TkpUmOJjmV5P3nOrC77+zuY919bG1t7QJfDgAAgFV1QeHZ3U919zPd/f0kH05yw+6OBQAAwH5xQeFZVYfPePjGJA+f61gAAAAOtkNbHVBVv5PkVUkur6onkvzrJK+qqqNJOsmXk7xtcEYAAABW2Jbh2d23nmXzRwZmAQAAYB/ayVltAQAAYEvCEwAAgFHCEwAAgFHCEwAAgFHCEwAAgFHCEwAAgFHCEwAAgFHCEwAAgFHCEwAAgFHCEwAAgFHCEwAAgFHCEwAAgFHCEwAAgFHCEwAAgFHCEwAAgFHCEwAAgFHCEwAAgFHCEwAAgFHCEwAAgFHCEwAAgFHCEwAAgFHCEwAAgFHCEwAAgFHCEwAAgFHCEwAAgFHCEwAAgFHCEwAAgFHCEwAAgFHCEwAAgFHCEwAAgFHCEwAAgFHCEwAAgFFbhmdV3VVVp6vq4TO2vaiq7quqRxe3l82OCQAAwKrazjuev53k5mdtuyPJ/d19bZL7F48BAADgObYMz+7+oyTfeNbmW5IcX9w/nuQNuzwXAAAA+8SFfsfziu4+lSSL2xef68Cqur2q1qtqfWNj4wJfDgAAgFU1fnKh7r6zu49197G1tbXplwMAAOAic6Hh+VRVHU6Sxe3p3RsJAACA/eRCw/OeJLct7t+W5FO7Mw4AAAD7zXYup/I7Sf44yc9W1RNV9dYkv5bkNVX1aJLXLB4DAADAcxza6oDuvvUcu27c5VkAAADYh8ZPLgQAAMDBJjwBAAAYJTwBAAAYJTwBAAAYJTwBAAAYJTwBAAAYJTwBAAAYJTwBAAAYJTwBAAAYJTwBAAAYJTwBAAAYJTwBAAAYJTwBAAAYJTwBAAAYJTwBAAAYJTwBAAAYJTwBAAAYJTwBAAAYJTwBAAAYJTwBAAAYJTwBAAAYJTwBAAAYJTwBAAAYJTwBAAAYJTwBAAAYJTwBAAAYJTwBAAAYJTwBAAAYJTwBAAAYJTwBAAAYJTwBAAAYJTwBAAAYdWgnT66qLyf5dpJnkjzd3cd2YygAAAD2jx2F58I/6u6v78LvAQAAYB/yUVsAAABG7TQ8O8kfVNWDVXX72Q6oqturar2q1jc2Nnb4cgAAAKyanYbnK7v755O8Nsnbq+oXnn1Ad9/Z3ce6+9ja2toOXw4AAIBVs6Pw7O4nF7enk3wyyQ27MRQAAAD7xwWHZ1X9ZFX91A/uJ/nHSR7ercEAAADYH3ZyVtsrknyyqn7we/5zd//+rkwFAADAvnHB4dndjyd5+S7OAgAAwD7kcioAAACMEp4AAACMEp4AAACMEp4AAACMEp4AAACMEp4AAACMEp4AAACMEp4AAACMEp4AAACMEp4AAACMEp4AAACMEp4AAACMEp4AAACMEp4AAACMEp4AAACMEp4AAACMEp4AAACMEp4AAACMEp4AAACMEp4AAACMEp4AAACMEp4AAACMEp4AAACMEp4AAACMEp4AAACMEp4AAACMEp4AAACMEp4AAACMEp4AAACMEp4AAACMEp4AAACM2lF4VtXNVfXnVfVYVd2xW0MBAACwf1xweFbVJUl+M8lrk1yX5Naqum63BgMAAGB/2Mk7njckeay7H+/u7yX5WJJbdmcsAAAA9oudhOdVSb56xuMnFtsAAADg/9tJeNZZtvVzDqq6varWq2p9Y2NjBy8HAADAKtpJeD6R5JozHl+d5MlnH9Tdd3b3se4+tra2toOXAwAAYBXtJDz/NMm1VfWSqnpekjcnuWd3xgIAAGC/OHShT+zup6vqHUnuTXJJkru6+5FdmwwAAIB9obqf87XMuRer2kjyl3v2gizb5Um+vuwhINYiFw9rkYuJ9cjFwlrcX/5Wdz/nO5Z7Gp4cLFW13t3Hlj0HWItcLKxFLibWIxcLa/Fg2Ml3PAEAAGBLwhMAAIBRwpNJdy57AFiwFrlYWItcTKxHLhbW4gHgO54AAACM8o4nAAAAo4Qnu66q/m1VfamqHqqqT1bVC8/Y956qeqyq/ryqblrmnBwMVXXzYr09VlV3LHseDo6quqaqPltVJ6vqkap652L7i6rqvqp6dHF72bJn5WCoqkuq6n9U1acXj61F9lxVvbCqfnfxb8WTVfUPrMWDQXgy4b4kL+vuv5fkL5K8J0mq6rokb07yd5PcnOTfV9UlS5uSfW+xvn4zyWuTXJfk1sU6hL3wdJJ3d/fPJXlFkrcv1t8dSe7v7muT3L94DHvhnUlOnvHYWmQZ/l2S3+/uv5Pk5dlck9biASA82XXd/Qfd/fTi4Z8kuXpx/5YkH+vu73b3/0ryWJIbljEjB8YNSR7r7se7+3tJPpbNdQjjuvtUd39hcf/b2fzH1VXZXIPHF4cdT/KG5UzIQVJVVyf5pSS/dcZma5E9VVU/neQXknwkSbr7e939zViLB4LwZNo/S/KZxf2rknz1jH1PLLbBFGuOi0JVHUlyfZIHklzR3aeSzThN8uLlTcYB8htJ/mWS75+xzVpkr/1Mko0k/2Hxse/fqqqfjLV4IAhPLkhV/deqevgsP7ecccyvZPOjZh/9waaz/CqnVWaSNcfSVdULknw8ybu6+1vLnoeDp6pen+R0dz+47Fk48A4l+fkkH+ru65P8n/hY7YFxaNkDsJq6+9U/an9V3Zbk9Ulu7B9es+eJJNeccdjVSZ6cmRCSWHMsWVVdms3o/Gh3f2Kx+amqOtzdp6rqcJLTy5uQA+KVSX65ql6X5PlJfrqq/lOsRfbeE0me6O4HFo9/N5vhaS0eAN7xZNdV1c1J/lWSX+7u/3vGrnuSvLmqfryqXpLk2iSfX8aMHBh/muTaqnpJVT0vmye3umfJM3FAVFVl83tMJ7v7A2fsuifJbYv7tyX51F7PxsHS3e/p7qu7+0g2/zv437r7n8RaZI919/9O8tWq+tnFphuT/M9YiwdC/fDNKNgdVfVYkh9P8leLTX/S3f98se9Xsvm9z6ez+bGzz5z9t8DuWPwf/t9IckmSu7r73yx5JA6IqvqHSf57ki/mh9+re282v+d5d5K/meQrSd7U3d9YypAcOFX1qiT/ortfX1V/I9Yie6yqjmbzJFfPS/J4kn+azTfDrMV9TngCAAAwykdtAQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGCU8AQAAGPX/AI412szl+/OBAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 1152x432 with 1 Axes>" ] @@ -971,7 +969,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6IAAAFpCAYAAACGSJXZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3W2srelZH/b/tV/Oy7wxfjk4E9t0IHIDLirjdmpRUbXUQOukVuxIocJqkduiTiIFCSTaBsgH8qGRiNrg5EOK5GAHf6BxqAFhoZDGdRy5SI2bY7CMydDguiR2PfEcbI9nznjOPvvl7oe9EAOdua81Z+397DN7/37S0ey9ruflXs9zP2vNtdba619jjAAAAMBSts56AAAAAFwsGlEAAAAWpREFAABgURpRAAAAFqURBQAAYFEaUQAAABalEQUAAGBRGlEAAAAWpREFAABgURpRAAAAFrWz5M5e/epXj4cffnjJXQIX0D//xGfPegjnQ222QL96s0S7gTUWWmsbp7qBEzBOefU1tt8tMuYL9HtoltjwEHDsX/+3v+mshwBcAJ/4xCd+b4xxrVtu0Ub04YcfzvXr15fcJXABfc/W9571EE5f18SttY35h2Jqq9nH9vZ8/W6M3fpNfZ1tpLsPbTPcfHCo2/46jrom7KipN+t32z88nNeTjG6Zpj66MXbrb3qM1tGN8Rz48PX/5ayHAFwAVfUv1lnOR3MBAABYlEYUAACARWlEAQAAWJRGFAAAgEVpRAEAAFjUot+aC8CaNvxW3LW+cbb71tzt7htjm/V3mqeYboyXduf1JNWMod3HhvdxEUfNN8IedvXuG2n7b5yt2/sb7SMHB80Omvne3cfRXy/tN/92Y7gA36oLsKS74BkWAACAi0QjCgAAwKI0ogAAACxKIwoAAMCiNKIAAAAsSiMKAADAojSiAAAALEqOKMBZOO2c0CYjNElqt3kKaMZYly7N129yROtyt36fhTq6+9BsY7Q5o8152vA8Hg+iyac8nNerzfCc12u/yfhMkt15puvYuz3fR3Ocx+1m/SbPdaxxH6o51XJGAZblHVEAAAAWpREFAABgURpRAAAAFqURBQAAYFEaUQAAABalEQUAAGBRGlEAAAAWpREFAABgUU0SOAB3pGqz1be3mwXmryPW7hoP780+6vKleX2n2ceVy9PyaMY4mv0fLzO/D0eXmn1sz8/T2Gler93sNK920uzi4GheP5xvYOv2wXz9vcP5AJLU3u15faeZr7f25vXt+XEe3f7nWz/exn5zHJq7MA6b49Rd86M50QAXjHdEAQAAWJRGFAAAgEVpRAEAAFiURhQAAIBFaUQBAABYlEYUAACARWlEAQAAWFQbNFdVV5J8LMnl1fIfHGP8RFX9bJL/IMlXV4v+F2OMT57WQAHuKhvmhHY5oBvnhHY5pFkjJ3R3d76Bq1em5XF5vv7RvfOc0aNL/X04uGd+HI4uzY/j4eUmv7I5TV0O6Tq6HNCax4hme2++wNbt+THa+do8X3OdbWw9O88Jra1mPj93qx3DTJczmvRZo13OaKrJAR3NiZIzCvCHrJF4nr0kbxlj3Kyq3SS/VlW/uqr9t2OMD57e8AAAADhv2kZ0jDGS3Fz9urv652U7AAAA7shafyNaVdtV9ckkTyb58Bjj46vSX62qT1XVu6tq/hkrAAAAyJqN6BjjcIzxSJLXJXlzVX1rkh9L8s1J/p0kr0zyl15o3ap6rKquV9X1GzdunNCwAQAAeLl6Sd+aO8Z4Ksk/TvLWMcYT49hekr+T5M0vss57xhiPjjEevXbt2sYDBgAA4OWtbUSr6lpVPbj6+WqS707y21X10Oq2SvKOJJ8+zYECAABwPqzzrbkPJXl/VW3nuHH9+THGr1TVP6qqazn+RvRPJvkLpzhOAAAAzol1vjX3U0ne9AK3v+VURgRwHnQ5oFvzTMHa7nJGm/WbjNCkzwkd916db6DZx8ED85zRoyvznND9+/rXSg+uzI/DwdUmR7SJSj1q6qM5j+uoo/kX0W/tz9ff3p/fx53n5vmWh1f7vNbdm/OMza3d+TZ2nm5yQrvr4dn56usYTVZpe801OaHjaLP1AS6al/Q3ogAAALApjSgAAACL0ogCAACwKI0oAAAAi9KIAgAAsCiNKAAAAIvSiAIAALCoPqQN4KJpMjrX2kSXL7ndZDduNTmkl+YZnrWzxsP71XnOZ5sT+nXz9Q+vzsew9+C8fnC1Pw+3758vc9jljDaHYDSH8egEnkW3DpoMzXmEZ3aaiM7tW/O5dOmZeY5pkhxemgeqXn6qOVc1P9A7X20G0GSt1ujvQ5prZuztzddvrtnK4Xz78/J6jzvr3E+AlwnviAIAALAojSgAAACL0ogCAACwKI0oAAAAi9KIAgAAsCiNKAAAAIvSiAIAALAoOaIAd6Ka1/GaejWZgW0OaFe/cnleTzIuz7MhDx7YLCf01ivn9f1758do7xV9ruLB1Xl9//557uLh5Xl9dPXtzXMd67CZC3vz+nZT331ms6zVJLn8leY4bM3P9ZUvNzsYTc7o0dG0Xk09SXLYbOOwCfps9jHax4Rmrow17gPAOeIdUQAAABalEQUAAGBRGlEAAAAWpREFAABgURpRAAAAFqURBQAAYFEaUQAAABYlRxS4eJoMz7U2sdVso6tvb29Ur8uXpvWx2z+8H907zxo9ujIfw96Dm+WE3nrV/Bjt3z8tJ0luPzjPXjy6Z54NuX3f/rR+aXe+/s5Okz25hoOD+XHe32/qN+d5sIdX5+tfeqp/TXp087l5XbuOmpzRo3nGZjdXtw7689BeMwcH8w101+yY34ca82M41plK3WNXMwaAu4l3RAEAAFiURhQAAIBFaUQBAABYlEYUAACARWlEAQAAWJRGFAAAgEVpRAEAAFiURhQAAIBFtYnnVXUlyceSXF4t/8Exxk9U1Tcm+UCSVyb59STfP8a4fZqDBVhEbf4aXTXB87W9Pd/Apd15fWe+/rh8ab5+kqNL823s3zd/iji4Or+Pe6+Y1/fvn5az96rD+QJJ8sD+tHz/1z03X/3K3rT+4JX5+le25/tfx63D+bl+6tbVaf3pey5P6ze/Ol9/b7uZa0mS+Vypo/m53jpo5kIz17b25nOh1pjvtX8wX6C55uqwmY9NfczXXu9xZxz1ywC8TKzzf1t7Sd4yxvi2JI8keWtVfXuSv5bk3WOMNyT5SpIfOL1hAgAAcF60jeg4dnP16+7q30jyliQfXN3+/iTvOJURAgAAcK6s9fmzqtquqk8meTLJh5P830meGmP8/udcPp/ktaczRAAAAM6TtRrRMcbhGOORJK9L8uYk3/JCi73QulX1WFVdr6rrN27cuPORAgAAcC68pG/kGGM8leQfJ/n2JA9W1e9/u8DrknzhRdZ5zxjj0THGo9euXdtkrAAAAJwDbSNaVdeq6sHVz1eTfHeSx5N8NMmfWy32riS/fFqDBAAA4Pxo41uSPJTk/VW1nePG9efHGL9SVf8syQeq6r9P8htJ3nuK4wQAAOCcaBvRMcankrzpBW7/bI7/XhTg7tJkeJ7MPpoPlGw19SZHtJr1x+784XtcbnJKkxzc0+SEXpkfx9v3z+sH8/jK3H6wyURsMkKT5BWvvDmtv+a+ef31935lWn/V7rPT+n3b8xzSddw8nOeAfumee6f1zz37imn9i9vzfMuv5L5pPUluHzY5obfn87WbK9t7Tb2Zq1t7TUZokrE330btNddcl/3bXfNtTugaubmdJR77AE7I5qntAAAA8BJoRAEAAFiURhQAAIBFaUQBAABYlEYUAACARWlEAQAAWJRGFAAAgEW1OaIAF01trZHF1y3T5fl163eZhTvz+tGl/uH96NL8tciDq/P6YZMzun//mO//nnlu4v1f99y0nvQ5od/ywL+a1l9/5cvT+h/fneeM3ru1eY7os0fzHNEv7M9zQvss0z82re4f9pmzz+zNl9lvckJ3nusyZ+dzbffZeX2d+b7VXDPtNXfK13yN/nFnnEDUKMDdwjuiAAAALEojCgAAwKI0ogAAACxKIwoAAMCiNKIAAAAsSiMKAADAojSiAAAALEqOKMBp2Gpe5+syB7fn648m83Bs95mEh5ebnNDd+foHV7rtz3NEt+/bn9YfuNJndL7+3nnOZ5cT+s2Xn5jWr20/M60/uHV7Wl/HU0eXpvUHtm5ttP2bh/Oc0qf3mhOZ5Gv3zbdxeHM+Hw+azNlurnVzdZ353l0z1VxzfU6o1/YBXgqPmgAAACxKIwoAAMCiNKIAAAAsSiMKAADAojSiAAAALEojCgAAwKI0ogAAACxKjihw8dTmr8FVlym46Ri6TMImN3Hs9PdxNIscNdmOo3kGGU2O6KXdw2n9wSvPzXeQ5FW7z07rf3x3njPa5YS+fmeedXpPbf40ev/WfB/JfIxP785zQJ/cfWBaX+c4f2n33ml9rznX3Vxp51ozV9eZ790102f/bva40T1mzI/gmmMYR2uPB+CseUcUAACARWlEAQAAWJRGFAAAgEVpRAEAAFiURhQAAIBFaUQBAABYlEYUAACARckRBTgFbc7o1qY5pM36a2x+dFmkzRiPuhzR7Xky4s7OPEf0ynaXr5nct703rd+7Na8/uHV7Wu9yQu/bmmd4ruXo1rTcjbG7j90xWuc4d+fqVnOu27nSzLVurq4z39trptOM8URyQgEukPYd0ap6fVV9tKoer6rfqqofWt3+V6rq/62qT67+/enTHy4AAAAvd+u8I3qQ5EfGGL9eVfcn+URVfXhVe/cY4388veEBAABw3rSN6BjjiSRPrH5+pqoeT/La0x4YAAAA59NL+rKiqno4yZuSfHx10w9W1aeq6n1V9YoTHhsAAADn0NqNaFXdl+QXkvzwGOPpJD+d5E8keSTH75j+9RdZ77Gqul5V12/cuHECQwYAAODlbK1GtKp2c9yE/twY4xeTZIzxxTHG4RjjKMnfTvLmF1p3jPGeMcajY4xHr127dlLjBgAA4GVqnW/NrSTvTfL4GOOnnnf7Q89b7M8m+fTJDw8AAIDzZp1vzf2OJN+f5Der6pOr2348yTur6pEcR2P9bpI/fyojBAAA4FxZ51tzfy0vHBX9909+OAAAAJx3L+lbcwEAAGBTGlEAAAAWpREFAABgURpRAAAAFqURBQAAYFEaUQAAABalEQUAAGBRbY4oAC/dGGNar6N5fY0dNPV+E3W42Ri3Dl4oYvr525/XDw62p/Vbh7vTepLcPLw8rT97NK8/dXRpWr9/a38+gKNb8/oavjYOp/VujN197I7ROse5O1fdud46mG+/m2vdXF1nvrfXTKcZY3fNA/CHeUcUAACARWlEAQAAWJRGFAAAgEVpRAEAAFiURhQAAIBFaUQBAABYlEYUAACARckRBS6ecdQsMM9MTNbICd10DEdNvcsAPejuY1LNIl2EZnXZkHvzo7C/Pz/OT926Ot9Bki/dc++0/oX9V0zrD2x1OaDPTKsPbt1u1u91OaE3Du+f1rv7+KX9+TFa5zh356o7191caedaM1fXme/dNdNec+3jRrP6SeSMbjgGgLuJd0QBAABYlEYUAACARWlEAQAAWJRGFAAAgEVpRAEAAFiURhQAAIBFaUQBAABYlBxRgNPQZhI2mYKH8/Xr8LCp95mF23vzfWzvz1+r3GkiOLe7HNGbu9P60/dcnu8gyeeenWdo3re9125jOobdK9P6vVubbT9Jnj2a388uJ/Rzt145rzfH6Olb/XE+bM7VbnOu27nS5Ih2c3Wd+d5dM901116z3TUPwB/iHVEAAAAWpREFAABgURpRAAAAFqURBQAAYFEaUQAAABalEQUAAGBRGlEAAAAWJUcU4I8YR2tkElazTJs52OWINpmHB/P61u2D+fpJtm7PnwJ2nmtyRm/NX8vcfWaeLXl4dXtav/nVq9N6knxxuzlO+WPzfRzOMzSf3H1gWt80p3SdMXxp/95pvcsJ/eLN++b7X+M4b31tfq66c719az7fu7m2dbur9/O9u2baa667Zje85td53AE4T9p3RKvq9VX10ap6vKp+q6p+aHX7K6vqw1X1O6v/zp8JAQAAIOt9NPcgyY+MMb4lybcn+YtV9cYkP5rkI2OMNyT5yOp3AAAAmGob0THGE2OMX1/9/EySx5O8Nsnbk7x/tdj7k7zjtAYJAADA+fGSvqyoqh5O8qYkH0/ymjHGE8lxs5rk6096cAAAAJw/azeiVXVfkl9I8sNjjKdfwnqPVdX1qrp+48aNOxkjAAAA58hajWhV7ea4Cf25McYvrm7+YlU9tKo/lOTJF1p3jPGeMcajY4xHr127dhJjBgAA4GVsnW/NrSTvTfL4GOOnnlf6UJJ3rX5+V5JfPvnhAQAAcN6skyP6HUm+P8lvVtUnV7f9eJKfTPLzVfUDSf5lku89nSECAABwnrSN6Bjj15K8WFL1d53scABOQBcsXy/2kPZS9nE0rx819cPDZvPz9Wv/YF7fm28/SXa+Nt/G4dXtaf3SM/PjfHhlfpwvPTX/UM7e9u60niRfyX3T+v7h/D48vXdlWn/wynPT+pXt/Wl9HbcO5/fzqVtXp/Wnb12e1m9+db5+nu6Pc3euduaHqZ0rO7eaejNX15nv3TXTXXPdNdte891jxknoHvsA7iIv6VtzAQAAYFMaUQAAABalEQUAAGBRGlEAAAAWpREFAABgURpRAAAAFqURBQAAYFFtjijAhbNW3t88n3J0eX5NJmHdbvIpd+fZj7V3e75+kq3b86eA3ZtNzuil+Rguf2V+DMZWl+c6P8ZJcvtwvo1n9ubb+Np98wzOL+3eO63v7PT5lZ2Dg/kY9/fn9cOb8/Ow9bUmD7bJCE2S3Wfm9e5c7zw3r3dzbet2c72sMd9z0Jyr5pobXfbvphmeS+SMAtxFvCMKAADAojSiAAAALEojCgAAwKI0ogAAACxKIwoAAMCiNKIAAAAsSiMKAADAouSIAhdPl/dXXb5lMo7m26jaLEe0q48mN7F2+gzOrWf35vXd+TYuPzU/TmOre4qZvxZaR/152Lo938b+/fNtHN6c38e9y/PzeGt7w+zIJNVkodbevL7b1Z+Z13eem5aT9Dmhu8/OMzAvP9XkhN6az/durtb+fPtJf81sek2meUzoHjPWsmlWKcBdxDuiAAAALEojCgAAwKI0ogAAACxKIwoAAMCiNKIAAAAsSiMKAADAojSiAAAALEqOKMCdGPPcxIwmY7Op52Cei1jbTU7orXnuYpLU1vy1yJ2nbzUbuDItX/lys/rR/Clo66DPEb3d5ITuPDevH1xpzlPzLNnchbVsNRGY1dR3mtO0fWuePXnpmT6bcue5+TJdTuj2c/N6N9dqb39aX2e+d9fU6Opdhmf7mNDUAS4Y74gCAACwKI0oAAAAi9KIAgAAsCiNKAAAAIvSiAIAALAojSgAAACL0ogCAACwqDYBrarel+RtSZ4cY3zr6ra/kuS/TnJjtdiPjzH+/mkNEmBRXV5gklSTP3k030blcLPt3749X3+7f52xnmsCKLeajM6vNjsYTc5oc4z27+tDOrf3mpzQq/PjcLg73/5RUx/NMVpHNcdhq4nQ3G7qO8/N8yt3mpzRJNm9Oc/Y3Lo1n89tJu1eM5+budplgCZrXDNHTc7n4fw+dtd8a53HHYBzZJ13RH82yVtf4PZ3jzEeWf3ThAIAALCWthEdY3wsyZcXGAsAAAAXwCZ/I/qDVfWpqnpfVb3ixEYEAADAuXanjehPJ/kTSR5J8kSSv/5iC1bVY1V1vaqu37hx48UWAwAA4IK4o0Z0jPHFMcbhGOMoyd9O8ubJsu8ZYzw6xnj02rVrdzpOAAAAzok7akSr6qHn/fpnk3z6ZIYDAADAebdOfMvfTfKdSV5dVZ9P8hNJvrOqHkkykvxukj9/imMEAADgHGkb0THGO1/g5veewlgAzo8xzyQcR80HUg7n69fWfP3R5TKuoZ5tFmhyE3eaXMajey9P61t7TdZqku175k9ju882OaKXm+PYnKaxfQI5oodN5mwTb7m9N19g63aTI/q1PoNz6/b8XGw9uzet114TdtrlhO7P119rvjc5naO55tqc0OaaB+AP2+RbcwEAAOAl04gCAACwKI0oAAAAi9KIAgAAsCiNKAAAAIvSiAIAALAojSgAAACL0ogCAACwqHkSOAAvbDTh9lXN+kdNfb7+2D+Y736+9eNt7N1eY6nJPppjUEfz+7h1cDhf//Kldgxbe/PjcHRp/jQ3tpvjvNO8XrvOge50U+lgfhzrcL6BrdvNXNmbn4fjZeZzpZr5mFt70/I4mK/fztXD/j5010x/TTb1dgDNiQa4YLwjCgAAwKI0ogAAACxKIwoAAMCiNKIAAAAsSiMKAADAojSiAAAALEojCgAAwKLkiAKchg1zRkeTi1jbze67zMT0EZjjuVvzBS41OZ+HTf5lkxPaZlMmGXvzp7GtnfmBGtvNgWxyRtu82HV0c6XJCa0uQ7PLa13jOHfbaHM+u5zQ2836zTFaZ753OaDdNddvX04owEvhHVEAAAAWpREFAABgURpRAAAAFqURBQAAYFEaUQAAABalEQUAAGBRGlEAAAAWJUcU4Cyccc5o0mcv1vb8tcqxtzdfvxnjaLIlc2l3Xk9Se83rqU1OaHcfs3UXvF57NM+/7PJa052HbvtJcnt/s31057oZw+juY5MRerwNOaEAd5O74BkWAACAi0QjCgAAwKI0ogAAACxKIwoAAMCiNKIAAAAsSiMKAADAojSiAAAALKrNEa2q9yV5W5InxxjfurrtlUn+XpKHk/xukv90jPGV0xsmwAVzyjmjx9to9tFlMzYZnW3+ZZfxucZ9GN0YtubHqTuOqS5ntFl/HUcbnodurnTbX+c4d8t0OaLdGNus0w2P0TrkhAIsap13RH82yVv/yG0/muQjY4w3JPnI6ncAAABotY3oGONjSb78R25+e5L3r35+f5J3nPC4AAAAOKfu9G9EXzPGeCJJVv/9+pMbEgAAAOfZqX9ZUVU9VlXXq+r6jRs3Tnt3AAAA3OXutBH9YlU9lCSr/z75YguOMd4zxnh0jPHotWvX7nB3AAAAnBd32oh+KMm7Vj+/K8kvn8xwAAAAOO/aRrSq/m6S/yPJn6yqz1fVDyT5ySTfU1W/k+R7Vr8DAABAq80RHWO880VK33XCYwFgXRvmjB5vY569OI7mr1VWmuzHLoNzw2zJJMlWs4/uOHTrN2qd49xoMzY7XV5rmzPaZ3C2Y9ww51NOKMDFc+pfVgQAAADPpxEFAABgURpRAAAAFqURBQAAYFEaUQAAABalEQUAAGBRGlEAAAAW1eaIAvAytE5mYpeB2WU/djGfNR9Djfn+10p97LJKtzbL+exyQpdIptw8Z/T0MzoXyQGdbl9GKMDLjXdEAQAAWJRGFAAAgEVpRAEAAFiURhQAAIBFaUQBAABYlEYUAACARWlEAQAAWJRGFAAAgEXtnPUAADgjY2y2flWz/aN5+bDb/jqvlc43UqMZY2PDI3RXGEcncC+ac7n59s/DkQbgpfCOKAAAAIvSiAIAALAojSgAAACL0ogCAACwKI0oAAAAi9KIAgAAsCiNKAAAAIuSIwrAnTnjHNJ1tFmlnbWyTE/ZaWd4ngQ5oAC8RHfBMywAAAAXiUYUAACARWlEAQAAWJRGFAAAgEVpRAEAAFiURhQAAIBFaUQBAABY1EY5olX1u0meSXKY5GCM8ehJDAqAC+Aksie7LNJNvRwyPDclAxSAM7BRI7ryH44xfu8EtgMAAMAF4KO5AAAALGrTRnQk+YdV9YmqeuwkBgQAAMD5tulHc79jjPGFqvr6JB+uqt8eY3zs+QusGtTHkuQbvuEbNtwdAAAAL3cbvSM6xvjC6r9PJvmlJG9+gWXeM8Z4dIzx6LVr1zbZHQAAAOfAHTeiVXVvVd3/+z8n+Y+SfPqkBgYAAMD5tMlHc1+T5Jfq+Kvzd5L8z2OMf3AiowIAAODcuuNGdIzx2STfdoJjAQAA4AIQ3wIAAMCiNKIAAAAsSiMKAADAojSiAAAALEojCgAAwKI0ogAAACxKIwoAAMCi7jhHFAA2UnXWI+jVXfB67Tg63e2fxHkYY/NtAHCh3AXPsAAAAFwkGlEAAAAWpREFAABgURpRAAAAFqURBQAAYFEaUQAAABalEQUAAGBRckQBuDOnnQN6AhmetfUyyCptbW+09jg6gYzPLst007kghxTgwvGOKAAAAIvSiAIAALAojSgAAACL0ogCAACwKI0oAAAAi9KIAgAAsCiNKAAAAIvSiAIAALConbMeAABnpOqUtz9/rbO2TmD/zT6y4T7qtI/RGsYYG61f1aw/jtbYynaziQ33selx3vAYAbA874gCAACwKI0oAAAAi9KIAgAAsCiNKAAAAIvSiAIAALAojSgAAACL0ogCAACwqI1yRKvqrUn+Zo4Dxn5mjPGTJzIqADZzEvmXm+aAbpjxuVaG51azj24b3fqNk8gZ7XJC2z0cNRmdXcZmt37WGGObVTq/F4vkkMoaBbir3PEzcFVtJ/lbSf5UkjcmeWdVvfGkBgYAAMD5tMlLwW9O8pkxxmfHGLeTfCDJ209mWAAAAJxXmzSir03yuef9/vnVbQAAAPCiNmlEX+gPMv5/f4BRVY9V1fWqun7jxo0NdgcAAMB5sEkj+vkkr3/e769L8oU/utAY4z1jjEfHGI9eu3Ztg90BAABwHmzSiP7TJG+oqm+sqktJvi/Jh05mWAAAAJxXdxzfMsY4qKofTPK/5ji+5X1jjN86sZEBAABwLlWXDXaiO6u6keRfLLZDztqrk/zeWQ8CYi5y9zAXuZuYj9wtzMXz5V8bY7R/k7loI8rFUlXXxxiPnvU4wFzkbmEucjcxH7lbmIsX0yZ/IwoAAAAvmUYUAACARWlEOU3vOesBwIq5yN3CXORuYj5ytzAXLyB/IwoAAMCivCMKAADAojSinLiq+h+q6rer6lNV9UtV9eDzaj9WVZ+pqv+rqv7jsxwnF0NVvXU13z5TVT961uPh4qiq11fVR6vq8ar6rar6odXtr6yqD1fV76z++4qzHisXQ1VtV9VvVNWvrH7/xqr6+Gou/r2qunTWY+TcW1dBAAADiklEQVT8q6oHq+qDq/9XfLyq/l2PixeTRpTT8OEk3zrG+DeT/PMkP5YkVfXGJN+X5N9I8tYk/1NVbZ/ZKDn3VvPrbyX5U0nemOSdq3kISzhI8iNjjG9J8u1J/uJq/v1oko+MMd6Q5COr32EJP5Tk8ef9/teSvHs1F7+S5AfOZFRcNH8zyT8YY3xzkm/L8Zz0uHgBaUQ5cWOMfzjGOFj9+k+SvG7189uTfGCMsTfG+H+SfCbJm89ijFwYb07ymTHGZ8cYt5N8IMfzEE7dGOOJMcavr35+Jsf/s/XaHM/B968We3+Sd5zNCLlIqup1Sf6TJD+z+r2SvCXJB1eLmIucuqp6IMm/n+S9STLGuD3GeCoeFy8kjSin7b9K8qurn1+b5HPPq31+dRucFnOOu0JVPZzkTUk+nuQ1Y4wnkuNmNcnXn93IuED+RpL/LsnR6vdXJXnqeS8ce3xkCd+U5EaSv7P6mPjPVNW98bh4IWlEuSNV9b9V1adf4N/bn7fMX87xR9N+7vdveoFN+dpmTpM5x5mrqvuS/EKSHx5jPH3W4+Hiqaq3JXlyjPGJ59/8Aot6fOS07ST5t5L89BjjTUmejY/hXlg7Zz0AXp7GGN89q1fVu5K8Lcl3jT/ICPp8ktc/b7HXJfnC6YwQkphznLGq2s1xE/pzY4xfXN38xap6aIzxRFU9lOTJsxshF8R3JPkzVfWnk1xJ8kCO3yF9sKp2Vu+KenxkCZ9P8vkxxsdXv38wx42ox8ULyDuinLiqemuSv5Tkz4wxvva80oeSfF9VXa6qb0zyhiT/51mMkQvjnyZ5w+qbIS/l+MuyPnTGY+KCWP0N3nuTPD7G+KnnlT6U5F2rn9+V5JeXHhsXyxjjx8YYrxtjPJzjx8F/NMb4z5J8NMmfWy1mLnLqxhj/KsnnqupPrm76riT/LB4XL6T6gzer4GRU1WeSXE7ypdVN/2SM8RdWtb+c478bPcjxx9R+9YW3Aidj9Q7A30iyneR9Y4y/esZD4oKoqn8vyf+e5DfzB3+X9+M5/jvRn0/yDUn+ZZLvHWN8+UwGyYVTVd+Z5L8ZY7ytqr4px1/i9sokv5HkPx9j7J3l+Dj/quqRHH9p1qUkn03yX+b4zTGPixeMRhQAAIBF+WguAAAAi9KIAgAAsCiNKAAAAIvSiAIAALAojSgAAACL0ogCAACwKI0oAAAAi9KIAgAAsKj/D8GVActA3mZAAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA54AAAFlCAYAAACDRTcUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dbYyl51kf8Os6Z2Z217s2tpNNMIlbA0oLKSoOXVlUqVBKaGtSRMKHSEQqslokU4lIQaJqA3wAPlRCKq8faCRDUqw2BaW8KBYCiuuCKFIJbKgJSU1JlIbExNiLE8e76523c+5+mENZzPq+jvfMvbMz8/tJq5k51/Nyn+e5n3P2Omfm/LO1FgAAADDK5KAHAAAAwNGm8QQAAGAojScAAABDaTwBAAAYSuMJAADAUBpPAAAAhlq7kTt75Stf2e65554buUvgGPrjD3/yoIdwNORqC9SrF0uUG1hioaW2MXQD+2DF2LNy9SW2Xy1SRLPVeyiWkPy2L/7W3/uygx4CcAx8+MMf/vPW2tkX335DG8977rknzp8/fyN3CRxD/2jy9oMewnhV07bUNvq/9JKTYh/TaX/9aozV+kV9mW1EdR/K5rf4xaBq+8uYV03XvKgX61fbn8369Yho1TJFvcwMr9Zf9Rgt4xjkmj96/r8c9BCAYyAz/+Rat/tVWwAAAIbSeAIAADCUxhMAAIChNJ4AAAAMpfEEAABgqBv6qbYALGnFT61d6hNhq0+1nVaf6Fqsv1Y8xVRj3Fjv1yMiizGU+1jxPt4Q8+ITW2dVvfrE2PoTYXN7Z6V9xO5usYNivlf3sdXXS/nJvNUYjsGn3gKMdBM8owIAAHCUaTwBAAAYSuMJAADAUBpPAAAAhtJ4AgAAMJTGEwAAgKE0ngAAAAwlxxPgIIzO6SwyOiMicr14CijGmBsb/fWLHM88Ua1fZ5G26j4U22hlzmdxnlY8j3uDKPIhZ/16lhma/XruFBmbERHr/UzVtrXd30dxnNt2sX6Rp9qWuA9ZnGo5nwBjeccTAACAoTSeAAAADKXxBAAAYCiNJwAAAENpPAEAABhK4wkAAMBQGk8AAACG0ngCAAAwVJG8DcB1qcLmq9WnRdp99l83zPUlHt6LfeSJjX59rdjHyRPdcivG2Ir97y3Tvw/zjWIf0/55amvF67OrnebFTopd7M779Vl/A5Pt3f76W7P+ACIit7b79bVivm5u9evT/nFu1f77W9/bxk5xHIq70GbFcaqu+VacaIAjzjueAAAADKXxBAAAYCiNJwAAAENpPAEAABhK4wkAAMBQGk8AAACG0ngCAAAwlBxPgOuxYk5nlcO5ck5nlQMaS+R0rq/3N3DqZLfcTvTXn5/u53zON+r7sHtL/zjMN/rHcXaiyI8sTlOVA7qMKocz+zGeMd3qLzDZ7h+jtRf6+ZbLbGNyuZ/TmZNiPl/ZLMfQU+V8RtRZn1XOZ2SRw9mKEyXnEzjmync8M/NkZv5uZv5BZn4sM39wcfsPZOafZubji39vGT9cAAAADptl3vHcioivb61dysz1iPjtzPzVRe3HWms/PG54AAAAHHZl49laaxFxafHj+uKf3wcBAABgKUt9uFBmTjPz8Yh4JiIeba19aFF6Z2Z+JDPfl5l3vMS6D2bm+cw8f+HChX0aNgAAAIfFUo1na23WWrs3Il4bEfdl5ldFxHsi4ssj4t6IeCoifuQl1n2otXautXbu7Nmz+zRsAAAADouXFafSWnsuIn4zIu5vrT29aEjnEfFTEXHfgPEBAABwyC3zqbZnM/P2xfenIuIbIuKPMvOuqxb7loj46JghAgAAcJgt86m2d0XEw5k5jb1G9QOttV/OzP+YmffG3gcNfSoivmPcMAEOmSqHc9LP9MtplfNZrF9kdEbUOZ3t9Kn+Bop97N7Wz/mcn+zndO6cqZ+idk/2j8PuqSLHs4gqnRf1VpzHZeS8/3l9k53++tOd/n1cu9LPl5ydqvNS1y/1My4n6/1trD1f5HRW18Pl/urLaEVWaHnNFTmdbb7a+gBH3TKfavuRiHjDNW7/tiEjAgAA4Eh5WX/jCQAAAC+XxhMAAIChNJ4AAAAMpfEEAABgKI0nAAAAQ2k8AQAAGGqZHE+A46XIyFxqE1W+47TITpwUOaAb/QzNXFvi4f1UP2ezzOn8ov76s1P9MWzd3q/vnqrPw/at/WVmVc5ncQhacRjn+/AsOtktMiz7EZqxVkRkTjf7c2njYj9HNCJittEPND3xXHGusn+g175QDKDIOs1W34corpm2tdVfv7hmM2b97ffLyz3uLHM/AW5S3vEEAABgKI0nAAAAQ2k8AQAAGErjCQAAwFAaTwAAAIbSeAIAADCUxhMAAICh5HgCXI8sXrcr6llk9pU5nFX95Il+PSLaiX424+5tq+V0bt7Zr++c7h+jrTvqXMPdU/36zq393MPZiX69VfXp6rmKOSvmwla/Pi3q6xdXyzqNiDjx+eI4TPrn+uTnih20IudzPu/Ws6hHRMSs2MasCNos9tHKx4RirrQl7gPAIeYdTwAAAIbSeAIAADCUxhMAAIChNJ4AAAAMpfEEAABgKI0nAAAAQ2k8AQAAGEqOJ3D8FBmaS21iUmyjqk+nK9XzxEa33tbrh/f56X7W5/xkfwxbt6+W07n5iv4x2rm1W46IiO3b+9mH81v62YzTMzvd+sZ6f/21tSL7cQm7u/3jvLNT1C/181hnp/rrbzxXvwbdqvlcvI6d8yLnc97PuKzm6mS3Pg/lNbO7299Adc22/n3I1j+GbZmpVD12FWMAOEje8QQAAGAojScAAABDaTwBAAAYSuMJAADAUBpPAAAAhtJ4AgAAMJTGEwAAgKE0ngAAAAxVJ4wDHDe5+mtyWQS9ZxVGv7Her6/1128nNvrrR8R8o7+NnTP9p4jdU/37uHVHv75za7ccW6+Y9ReIiLhtp1u+9Yuu9Fc/udWt336yv/7JaX//y9ic9c/1c5unuvXnbznRrV/6Qn/9rWkx1yIioj9Xct4/15PdYi4Uc22y1Z8LucR8z53d/gLFNZezYj4W9dZfe7nHnTavlwG4SZWPcpl5MjN/NzP/IDM/lpk/uLj9zsx8NDM/vvh6x/jhAgAAcNgs87L+VkR8fWvtqyPi3oi4PzO/NiLeHRGPtdZeFxGPLX4GAACAv6JsPNueS4sf1xf/WkS8NSIeXtz+cES8bcgIAQAAONSW+kOmzJxm5uMR8UxEPNpa+1BEvLq19lRExOLrq15i3Qcz83xmnr9w4cJ+jRsAAIBDYqnGs7U2a63dGxGvjYj7MvOrlt1Ba+2h1tq51tq5s2fPXu84AQAAOKRe1kc3ttaei4jfjIj7I+LpzLwrImLx9Zl9Hx0AAACH3jKfans2M29ffH8qIr4hIv4oIh6JiAcWiz0QER8cNUgAAAAOr2VyPO+KiIczcxp7jeoHWmu/nJn/MyI+kJnfHhGfjoi3DxwnwPKKDM392Ufxut2kqBc5nlms39b7D9/tRJETGhG7txQ5nSf7x3H71n59tx8fGdu3F5mERUZnRMQdd17q1l99pl+/+/Tnu/VXrF/u1s9M+zmgy7g06+dwPnvL6W79M5f7aWZPT/v5kp+PM916RMT2rMjp3O7P12quTLeKejFXJ1tFRmdEtK3+NnKruOaq7N3qmi9zOpfIra3ciMc+gOtUNp6ttY9ExBuucfuzEfHmEYMCAADg6HhZf+MJAAAAL5fGEwAAgKE0ngAAAAyl8QQAAGAojScAAABDaTwBAAAYapkcT4BjJSdLZOFVy1R5etX6VWbgWr8+36gf3ucb/dced0/167Mi53Pn1tbf/y393MJbv+hKtx5R53R+5W1/1q3fffJz3fqXrPdzPk9PVs/xvDzv53h+dqef01lniX5xt7ozqzNfL271l9kpcjrXrlSZr/25tn65X19mvk+Ka6a85gZf89nqx522D1GfAAfFO54AAAAMpfEEAABgKI0nAAAAQ2k8AQAAGErjCQAAwFAaTwAAAIbSeAIAADCUHE+AESbF63pV5t+0v34rMgfbtM4EnJ0ocjrX++vvnqy238/xnJ7Z6dZvO1lnZN59up+zWeV0fsWJp7r1s9OL3frtk+1ufRnPzTe69dsmmytt/9KsnxP6/FZxIiPihTP9bcwu9efjbpH5Ws21aq4uM9+rayaLa67O6fRaPkCPR0kAAACG0ngCAAAwlMYTAACAoTSeAAAADKXxBAAAYCiNJwAAAENpPAEAABhKjidw/OTqr7lllem36hiqTMAit7Ct1fexFYvMi2zFVjyDtCLHc2N91q3ffvJKfwcR8Yr1y936l6z3cz6rnM671/pZo7fk6k+jt076+4joj/H59X4O5zPrt3XryxznZ9dPd+tbxbmu5ko514q5usx8r66ZOnt3tceN6jGjfwSXHEObLz0egBvNO54AAAAMpfEEAABgKI0nAAAAQ2k8AQAAGErjCQAAwFAaTwAAAIbSeAIAADCUHE+AAcqcz8mqOaDF+ktsvlVZoMUY51WO57SfTLi21s/xPDmt8i0jzky3uvXTk3799sl2t17ldJ6Z9DM0lzLf7JarMVb3sTpGyxzn6lxtFue6nCvFXKvm6jLzvbxmKsUY9yWnE+AIK9/xzMy7M/M3MvOJzPxYZr5rcfsPZOafZubji39vGT9cAAAADptl3vHcjYjvbq39fmbeGhEfzsxHF7Ufa6398LjhAQAAcNiVjWdr7amIeGrx/cXMfCIiXjN6YAAAABwNL+vDhTLznoh4Q0R8aHHTOzPzI5n5vsy8Y5/HBgAAwBGwdOOZmWci4hci4rtaa89HxHsi4ssj4t7Ye0f0R15ivQcz83xmnr9w4cI+DBkAAIDDZKnGMzPXY6/pfH9r7RcjIlprT7fWZq21eUT8VETcd611W2sPtdbOtdbOnT17dr/GDQAAwCGxzKfaZkS8NyKeaK396FW333XVYt8SER/d/+EBAABw2C3zqbZvjIhvi4g/zMzHF7d9b0S8IzPvjb1oqk9FxHcMGSEAAACH2jKfavvbce1o5l/Z/+EAAABw1LysT7UFAACAl0vjCQAAwFAaTwAAAIbSeAIAADCUxhMAAIChNJ4AAAAMpfEEAABgqDLHE4CXr7XWree8X19iB0W93kTOVhvjZPdaEc9Xb79f392dduubs/VuPSLi0uxEt3553q8/N9/o1m+d7PQHMN/s15fwQpt169UYq/tYHaNljnN1rqpzPdntb7+aa9VcXWa+l9dMpRhjdc0DHHfe8QQAAGAojScAAABDaTwBAAAYSuMJAADAUBpPAAAAhtJ4AgAAMJTGEwAAgKHkeALHT5sXC/QzCyOWyOlcdQzzol5lcO5W9zEii0WqCMusshm3+kdhZ6d/nJ/bPNXfQUQ8e8vpbv2zO3d067dNqhzOi93q7ZPtYv1aldN5YXZrt17dx2d3+sdomeNcnavqXFdzpZxrxVxdZr5X10x5zZWPG8Xq+5HzueIYAA6SdzwBAAAYSuMJAADAUBpPAAAAhtJ4AgAAMJTGEwAAgKE0ngAAAAyl8QQAAGAoOZ4AI5SZgEWm36y/fs5mRb3ODJxu9fcx3em/NrlWRGBOqxzPS+vd+vO3nOjvICI+c7mfYXlmulVuozuG9ZPd+unJatuPiLg879/PKqfzM5t39uvFMXp+sz7Os+JcrRfnupwrRY5nNVeXme/VNVNdc+U1W13zAMecdzwBAAAYSuMJAADAUBpPAAAAhtJ4AgAAMJTGEwAAgKE0ngAAAAyl8QQAAGAoOZ4AL9LmS2QCZrFMmflX5XgWmYO7/fpke7e/fkRMtvtPAWtXipzPzf5rl+sX+9mOs1PTbv3SF0516xERT0+L4xRf3N/HrJ9h+cz6bd36qjmhy4zh2Z3T3XqV0/n0pTP9/S9xnCcv9M9Vda6nm/35Xs21yXZVr+d7dc2U11x1za54zS/zuANwmJXveGbm3Zn5G5n5RGZ+LDPftbj9zsx8NDM/vvjaf+YDAADgWFrmV213I+K7W2tfGRFfGxHfmZmvj4h3R8RjrbXXRcRji58BAADgrygbz9baU6213198fzEinoiI10TEWyPi4cViD0fE20YNEgAAgMPrZX24UGbeExFviIgPRcSrW2tPRew1pxHxqv0eHAAAAIff0o1nZp6JiF+IiO9qrT3/MtZ7MDPPZ+b5CxcuXM8YAQAAOMSWajwzcz32ms73t9Z+cXHz05l516J+V0Q8c611W2sPtdbOtdbOnT17dj/GDAAAwCGyzKfaZkS8NyKeaK396FWlRyLigcX3D0TEB/d/eAAAABx2y+R4vjEivi0i/jAzH1/c9r0R8UMR8YHM/PaI+HREvH3MEAEAADjMysaztfbbEfFSydBv3t/hAOyDKsg9+2H3y+2jH2gf86JehNW3Yv3c2e3Xt/rbj4hYe6G/jdmpabe+cbF/nGcn+8d547n+L91sTde79YiIz8eZbn1n1r8Pz2+d7NZvP3mlWz853enWl7E569/P5zZPdevPb57o1i99ob9+PF8f5+pcrfUPUzlX1jaLejFXl5nv1TVTXXPVNVte89Vjxn6oHvsADtDL+lRbAAAAeLk0ngAAAAyl8QQAAGAojScAAABDaTwBAAAYSuMJAADAUBpPAAAAhipzPAGOnaXy9vr5kK3K0ysyAXO7yIdc72cv5tZ2f/2ImGz3nwLWLxU5nxv9MZz4fP8YtEmVp9o/xhER27P+Ni5u9bfxwpl+Buaz66e79bW1Oj+ysrvbH+POTr8+u9Q/D5MXijzWIqMzImL9Yr9eneu1K/16Ndcm28X1ssR8j93iXBXXXKuyd1fN0LwROZ8AB8g7ngAAAAyl8QQAAGAojScAAABDaTwBAAAYSuMJAADAUBpPAAAAhtJ4AgAAMJQcT+D4qfL2ssqXjGjz/jYyV8vxrOqtyC3MtToDc3J5q19f72/jxHP949Qm1VNM/7XPnNfnYbLd38bOrf1tzC717+PWif553JyumN0YEVlkkeZWv75e1S/262tXuuWIqHM61y/3MyhPPFfkdG7253s1V3Onv/2I+ppZ9ZqM4jGhesxYyqpZoQAHyDueAAAADKXxBAAAYCiNJwAAAENpPAEAABhK4wkAAMBQGk8AAACG0ngCAAAwlBxPgOvR+rmF0YqMy6Ieu/1cwpwWOZ2b/dzDiIic9F97XHt+s9jAyW755OeK1ef9p6DJbp3juV3kdK5d6dd3TxbnqXiWLO7CUiZFBGUW9bXiNE03+9mPGxfrbMi1K/1lqpzO6ZV+vZprubXTrS8z36trqlX1KkOzfEwo6gBHnHc8AQAAGErjCQAAwFAaTwAAAIbSeAIAADCUxhMAAIChNJ4AAAAMpfEEAABgKDmeAC9W5fVFRGSR/zjvbyNjttr2t7f760/r1xXzShEAOSkyMr9Q7KAVOZ/FMdo5Uz9FTbeKnM5T/eMwW+9vf17UW3GMlpHFcZgUEZbTor52pZ8fuVbkfEZErF/qZ1xONvvzucyE3SrmczFXqwzOiCWumXmRsznr38fqmi8t87gDcIiV/zPJzPdl5jOZ+dGrbvuBzPzTzHx88e8tY4cJAADAYbXMr9r+TETcf43bf6y1du/i36/s77AAAAA4KsrGs7X2WxHxuRswFgAAAI6gVT5c6J2Z+ZHFr+Le8VILZeaDmXk+M89fuHBhhd0BAABwGF1v4/meiPjyiLg3Ip6KiB95qQVbaw+11s611s6dPXv2OncHAADAYXVdjWdr7enW2qy1No+In4qI+/Z3WAAAABwV19V4ZuZdV/34LRHx0ZdaFgAAgOOtDEnLzJ+NiDdFxCsz88mI+P6IeFNm3hsRLSI+FRHfMXCMAIdP62cCtnnxut+sv35O+uu3KhdxCXm5WKDILVwrchHnp09065OtIus0Iqa39J/G1i8XOZ4niuNYnKY23Yccz1mR+VrES063+gtMtosczxfqDMzJdv9cTC5vdeu5VYSNVjmdO/31l5rvRU5mK665MqezuOYBjruy8WytveMaN793wFgAAAA4glb5VFsAAAAoaTwBAAAYSuMJAADAUBpPAAAAhtJ4AgAAMJTGEwAAgKE0ngAAAAxV5ngCcA1FGH1kFusXYfOtv37b2e3vvr/1vW1sbS+xVGcfxTHIef8+TnZn/fVPbJRjmGz1j8N8o/8016bFcV4rXp9d5kBXqqm02z+OOetvYLJdzJWt/nnYW6Y/V7KYj7G51S233f765Vyd1fehumbqa7KolwMoTjTAEecdTwAAAIbSeAIAADCUxhMAAIChNJ4AAAAMpfEEAABgKI0nAAAAQ2k8AQAAGEqOJ8AIK+Z8tiKXMKfF7qvMwqgjKNuVzf4CG0XO5qzInyxyOstsyIhoW/2nscla/0C1aXEgi5zPMq91GdVcKXI6s8qwrPJSlzjO1TbKnM0qp3O7WL84RsvM9yqHs7rm6u3L6QTo8Y4nAAAAQ2k8AQAAGErjCQAAwFAaTwAAAIbSeAIAADCUxhMAAIChNJ4AAAAMJccT4CAccM5nRJ19mNP+a5Nta6u/fjHGVmQ7xsZ6vx4RuVW8flrkdFb3MSY3weuz837+ZJWXGtV5qLYfEbG9s9o+qnNdjKFV97HI6NzbhpxOgIN0EzyjAgAAcJRpPAEAABhK4wkAAMBQGk8AAACG0ngCAAAwlMYTAACAoTSeAAAADCXHE+BmNDjnc28bxT6qbMQiI7PMn6wyNpe4D60aw6R/nKrjGFnlfBbrL2O+4nmo5kq1/WWOc7VMleNZjbHMGl3xGC1DTifAUOU7npn5vsx8JjM/etVtd2bmo5n58cXXO8YOEwAAgMNqmV+1/ZmIuP9Ft707Ih5rrb0uIh5b/AwAAAB/Tdl4ttZ+KyI+96Kb3xoRDy++fzgi3rbP4wIAAOCIuN4PF3p1a+2piIjF11e91IKZ+WBmns/M8xcuXLjO3QEAAHBYDf9U29baQ621c621c2fPnh29OwAAAG4y19t4Pp2Zd0VELL4+s39DAgAA4Ci53sbzkYh4YPH9AxHxwf0ZDgAAAEdNmeOZmT8bEW+KiFdm5pMR8f0R8UMR8YHM/PaI+HREvH3kIAF4kRVzPve20c8+bPP+a5MZRfZilYG5YrZjRERMin1Ux6Fav5DLHOdCmXFZqfJSy5zPOgOzHOOKOZtyOgGOvrLxbK294yVKb97nsQAAAHAEDf9wIQAAAI43jScAAABDaTwBAAAYSuMJAADAUBpPAAAAhtJ4AgAAMFQZpwLAIbRMZmGVQVllL1Yxm9kfQ7b+/pdKXayyQier5WxWOZ03Ihly9ZzP8RmZNySHs7t9GZ0ANzvveAIAADCUxhMAAIChNJ4AAAAMpfEEAABgKI0nAAAAQ2k8AQAAGErjCQAAwFAaTwAAAIZaO+gBAHBAWltt/cxi+/N+eVZtf5nXRvsbyVaMsbDiEboptPk+3IviXK6+/aNwpAHo8Y4nAAAAQ2k8AQAAGErjCQAAwFAaTwAAAIbSeAIAADCUxhMAAIChNJ4AAAAMJccTgOtzwDmgyyizQitLZYkONjpDcz/I4QSgcBM8owIAAHCUaTwBAAAYSuMJAADAUBpPAAAAhtJ4AgAAMJTGEwAAgKE0ngAAAAwlxxOAg7Ef2Y9VFuiqDkOG5qpkcAJwA6zUeGbmpyLiYkTMImK3tXZuPwYFAADA0bEf73j+w9ban+/DdgAAADiC/I0nAAAAQ63aeLaI+PXM/HBmPnitBTLzwcw8n5nnL1y4sOLuAAAAOGxWbTzf2Fr7moj4xoj4zsz8uhcv0Fp7qLV2rrV27uzZsyvuDgAAgMNmpcaztfbZxddnIuKXIuK+/RgUAAAAR8d1N56ZeTozb/2L7yPiH0fER/drYAAAABwNq3yq7asj4pdyL0NtLSL+c2vt1/ZlVAAAABwZ1914ttY+GRFfvY9jAQAA4AgSpwIAAMBQGk8AAACG0ngCAAAwlMYTAACAoTSeAAAADKXxBAAAYKhVcjwB4Prt5UDf3PImeH22zcdufz/OQ2urbwOAI+0meEYFAADgKNN4AgAAMJTGEwAAgKE0ngAAAAyl8QQAAGAojScAAABDaTwBAAAYSo4nANdndA7nPmRo5uQQZIWWpiut3eb7kLFZZYmuOhfkgAIced7xBAAAYCiNJwAAAENpPAEAABhK4wkAAMBQGk8AAACG0ngCAAAwlMYTAACAoTSeAAAADLV20AMA4IBkDt5+/7XNnOzD/ot9xIr7yNHHaAmttZXWzyzWb/MltjItNrHiPlY9ziseIwDG844nAAAAQ2k8AQAAGErjCQAAwFAaTwAAAIbSeAIAADCUxhMAAIChNJ4AAAAMtVKOZ2beHxE/EXsBXz/dWvuhfRkVAKvZj/zJVXM4V8zYXCpDc1Lso9pGtX5hP3I+q5zOcg/zIiOzyris1o8lxlhmhfbvxQ3JAZX1CXCgrvsZNzOnEfGTEfGNEfH6iHhHZr5+vwYGAADA0bDKS733RcQnWmufbK1tR8TPRcRb92dYAAAAHBWrNJ6viYjPXPXzk4vbAAAA4P9bpfG81h9U/LU/oMjMBzPzfGaev3Dhwgq7AwAA4DBapfF8MiLuvurn10bEZ1+8UGvtodbaudbaubNnz66wOwAAAA6jVRrP34uI12Xml2bmRkR8a0Q8sj/DAgAA4Ki47jiV1tpuZr4zIv5r7MWpvK+19rF9GxkAAABHQlbZXPu6s8wLEfEnN2yHHLRXRsSfH/QgIMxFbh7mIjcT85Gbhbl4tPzN1tpf+xvLG9p4crxk5vnW2rmDHgeYi9wszEVuJuYjNwtz8XhY5W88AQAAoKTxBAAAYCiNJyM9dNADgAVzkZuFucjNxHzkZmEuHgP+xhMAAIChvOMJAADAUBpP9l1m/rvM/KPM/Ehm/lJm3n5V7Xsy8xOZ+X8y858c5Dg5HjLz/sV8+0Rmvvugx8PxkZl3Z+ZvZOYTmfmxzHzX4vY7M/PRzPz44usdBz1WjofMnGbm/8rMX178bC5yw2Xm7Zn584v/Kz6RmX/fXDweNJ6M8GhEfFVr7e9GxB9HxPdERGTm6yPiWyPi70TE/RHx7zNzemCj5MhbzK+fjIhvjIjXR8Q7FvMQboTdiPju1tpXRsTXRsR3LubfuyPisbdxMIYAAAMASURBVNba6yLiscXPcCO8KyKeuOpnc5GD8BMR8Wutta+IiK+OvTlpLh4DGk/2XWvt11tru4sffyciXrv4/q0R8XOtta3W2v+NiE9ExH0HMUaOjfsi4hOttU+21rYj4udibx7CcK21p1prv7/4/mLs/efqNbE3Bx9eLPZwRLztYEbIcZKZr42IfxoRP33VzeYiN1Rm3hYRXxcR742IaK1tt9aeC3PxWNB4Mtq/iIhfXXz/moj4zFW1Jxe3wSjmHDeFzLwnIt4QER+KiFe31p6K2GtOI+JVBzcyjpEfj4h/HRHzq24zF7nRviwiLkTEf1j82vdPZ+bpMBePBY0n1yUz/1tmfvQa/9561TLfF3u/avb+v7jpGpvyscqMZM5x4DLzTET8QkR8V2vt+YMeD8dPZn5TRDzTWvvwQY+FY28tIr4mIt7TWntDRFwOv1Z7bKwd9AA4nFpr39CrZ+YDEfFNEfHm9peZPU9GxN1XLfbaiPjsmBFCRJhzHLDMXI+9pvP9rbVfXNz8dGbe1Vp7KjPviohnDm6EHBNvjIhvzsy3RMTJiLgtM/9TmIvceE9GxJOttQ8tfv752Gs8zcVjwDue7LvMvD8i/k1EfHNr7YWrSo9ExLdm5onM/NKIeF1E/O5BjJFj4/ci4nWZ+aWZuRF7H271yAGPiWMiMzP2/o7pidbaj15VeiQiHlh8/0BEfPBGj43jpbX2Pa2117bW7om9x8H/3lr7Z2EucoO11v4sIj6TmX97cdObI+J/h7l4LORfvhkF+yMzPxERJyLi2cVNv9Na+5eL2vfF3t997sber5396rW3Avtj8Qr/j0fENCLe11r7twc8JI6JzPwHEfE/IuIP4y//ru57Y+/vPD8QEX8jIj4dEW9vrX3uQAbJsZOZb4qIf9Va+6bMfEWYi9xgmXlv7H3I1UZEfDIi/nnsvRlmLh5xGk8AAACG8qu2AAAADKXxBAAAYCiNJwAAAENpPAEAABhK4wkAAMBQGk8AAACG0ngCAAAwlMYTAACAof4faL3zXSdFjyIAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 1152x432 with 1 Axes>" ] @@ -1003,7 +1001,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.2" + "version": "3.8.2" } }, "nbformat": 4, diff --git a/pystencils/datahandling/blockiteration.py b/pystencils/datahandling/blockiteration.py index fdf2b97e8..bd981dc31 100644 --- a/pystencils/datahandling/blockiteration.py +++ b/pystencils/datahandling/blockiteration.py @@ -111,15 +111,15 @@ class ParallelBlock(Block): def __getitem__(self, data_name): result = self._block[self._name_prefix + data_name] type_name = type(result).__name__ - if type_name == 'GhostLayerField': - result = wlb.field.toArray(result, withGhostLayers=self._gls) + if 'GhostLayerField' in type_name: + result = wlb.field.toArray(result, with_ghost_layers=self._gls) result = self._normalize_array_shape(result) - elif type_name == 'GpuField': - result = wlb.cuda.toGpuArray(result, withGhostLayers=self._gls) + elif 'GpuField' in type_name: + result = wlb.cuda.toGpuArray(result, with_ghost_layers=self._gls) result = self._normalize_array_shape(result) return result def _normalize_array_shape(self, arr): - if arr.shape[-1] == 1: + if arr.shape[-1] == 1 and len(arr.shape) == 4: arr = arr[..., 0] return arr[self._localSlice] diff --git a/pystencils/datahandling/parallel_datahandling.py b/pystencils/datahandling/parallel_datahandling.py index 4d3fcdf7a..82d5b4cb6 100644 --- a/pystencils/datahandling/parallel_datahandling.py +++ b/pystencils/datahandling/parallel_datahandling.py @@ -101,7 +101,7 @@ class ParallelDataHandling(DataHandling): raise ValueError("Data handling expects that each process has at least one block") if hasattr(dtype, 'type'): dtype = dtype.type - if name in self.blocks[0] or self.GPU_DATA_PREFIX + name in self.blocks[0]: + if name in self.blocks[0].fieldNames or self.GPU_DATA_PREFIX + name in self.blocks[0].fieldNames: raise ValueError("Data with this name has already been added") if alignment is False or alignment is None: @@ -215,15 +215,13 @@ class ParallelDataHandling(DataHandling): array = array[:, :, 0] if last_element and self.fields[name].index_dimensions > 0: array = array[..., last_element[0]] - if self.fields[name].index_dimensions == 0: - array = array[..., 0] return array def _normalize_arr_shape(self, arr, index_dimensions): - if index_dimensions == 0: + if index_dimensions == 0 and len(arr.shape) > 3: arr = arr[..., 0] - if self.dim == 2: + if self.dim == 2 and len(arr.shape) > 2: arr = arr[:, :, 0] return arr @@ -246,7 +244,7 @@ class ParallelDataHandling(DataHandling): for block in self.blocks: field_args = {} for data_name, f in data_used_in_kernel: - arr = to_array(block[data_name], withGhostLayers=[True, True, self.dim == 3]) + arr = to_array(block[data_name], with_ghost_layers=[True, True, self.dim == 3]) arr = self._normalize_arr_shape(arr, f.index_dimensions) field_args[f.name] = arr field_args.update(kwargs) diff --git a/pystencils_tests/test_small_block_benchmark.ipynb b/pystencils_tests/test_small_block_benchmark.ipynb index b18c4bbaf..45ab56bbe 100644 --- a/pystencils_tests/test_small_block_benchmark.ipynb +++ b/pystencils_tests/test_small_block_benchmark.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 11, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -21,20 +21,20 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 2, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAATcAAAAUBAMAAAAaQ2ctAAAAMFBMVEX///8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAdt3NMolEIpm7EKvvVGZvmWXoAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADSElEQVRIDc2VTUhUURiG39G583Pv3NEEyZ2DFfSzUEKCXORsgqCFIzShG73UNnAoImkRA5GM2MJFUEbQ1WhlMBYVkaZDCyNRmF2BENOiVdCPU4Zi3r57zjgz95yjzLKzuHPO+33vc9859w9Nnfg/R/S4hfPA8OgdRb4zkjbZPCJpXNB6z4mVYLI/j2BmIi4WgGSzK8p81sks+r4+C5obTp/BoMUKnsMRz8pdpGHkJdFcAvQTuCkWhmFuYxrauljAIyvUQaLMh8tilhDwhoczbERyEsL3XpTMAoIu1TOmxzaBcBoTHpUWrXms4TWwLBZwD+FxQOaDsZjlE3CFh4vEYPySEDdOipI2Dj0mivBRuKGUJOOSpRfxFliIC7XAHybIfApMLGbpB6Z4uPpNVbiEFC6wYWsF4Uwc+EBSXYEua7cthwvnWLfM5yxmGbqPAR6OeusosndEU1I4LGwPeJvclftvi6dbLLkylXC1dluoNHT20nOl4jMWsxjOl0I53BDjVFMmIYfTnK7qFj6ncHqxgBWpcvWwTVrgt1jInkIkDxW/FM61DBbtcrhjIgEJRbjVC1uW1OiGc2zctqWKtkhS3YyoZzcRWlLyS+HIYr5sX9wJF0qLBDMuh4vOoJWedWG4l3UN+G4JOi2XbSAjyQ0xRNdVfH6LMMtX+LZs9p4DWiTCY8jhIin4/0qdbrgDFK4gVK4BD/PwpQWZ9rID0W0VvxTOtbwDevI8nJkGoTxjdXZ266lHAbK0nhc0DpxT7Bxdagr3EUHxNWPkaOdU/FI4slz/ARgFHo4+JPulk0J6CdPO4a7U5+5cD91zYoHs7Sl/Gj4xnJ/uuRx1S3wejllo58IpFi54KDkWozemMDboKfRIgS5EGwWNA42EvoJsh6f7G8yfuJzseyYW8AJP8tQq8TmLWS7a+MwfiHrHcWJosz1s9Dvzonb21ghELTRXpEvdNxZH3VEPIJAZtdDtOGtiAVrmOXUq+IzFLP5XOx9+zjTF7Se5Vo0TPvAf+bhrQcWv2Pk9x9ZaRS3PatW4IVH2CZNdCyp+xVsVbrKilme1asygN5Z93smuBfpM7DWqwhUUfbVqzBpVAPYuQMWvUChc08HK8r+a+dqsf+S+/F/QsHg/AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOQAAAAVCAYAAABWmUIxAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAGhElEQVR4Ae2b7ZHVNhSGLzsUcEM6gA5g00HSAQsVsHSQDL92/2WgA0IFG+hg6YCPDqCDwC0h7+PV8cjXki3ZksY/rma0kuWj855PSfb13ru6uvpzt9u9VKVcXF9ff73rnv6eLHCyQG0LKN8G+XdPCflaoLe68bE2+In/yQInC4QtoPzr8vB++PZuJ4KHuveXu3+u9gfXGq+6g4r/Y+G8VGu7thNhfSOee3F55XHi+r3GqyxGTpf3wnii/sHDHXR1D2f45UZjRe0sfvjTbIreXL/W+EB3R9fU78LM0l/01WLEnOAwor5LtZPosmIumJAO7K3aPzwBMdoXxlQHTjSaQi1GKBqMnlwEoAVlN6xrEnKv+sGjW9yFlya/U2UBYyEj8INFtNxDXxa6zqZquaY+Ui1SnExg9Lqr/1TMORnxmNLprhZ5mvnd4S3RnznFY0TyJPku005ZMXcW8TjJ1zsPGgnBqnlQxRhVijA4T1cp4n0pxl8CzF9ozN81AyTpQ8I5qBLk2O9mZia2ZDf0FziC4vvMvNzb6H4pHJLQimH6urf2e7b+0qFmjKT6LslOkjU75mIJ+bu89k0MCQ6/4ER2E1bSokU8OYaQ8NQahR2n3/FrAOTwlL4kBzr/48/TOCeQ0nKymwxsK4yQnZv5fYn+mlM7RnxXTPVT7ZQdc7GEJPG+R5yGoPspaRfeey68QXAu5BOb9kk3ngqDY5ovP6vd29ikiuPsoKzIocQoCiuMj6q/0Bpj9W239HVv6fcl+teOETPPXJtqp+yYiz1DXkQkYoXayZlFz+/ixzHED4wI/PJhYXygigOB+FN9juCsYCRokedH8cop5yJm0cOmz1X/U0Weai+ZxLsrwmSF745d6veLoPot/Z6lv2SrHiPOPLNNqp1Elx1zsR1yJJSYEzgcVe0N3IhmyYD4wpOdovRz00gcYRBwFoAEJIFZdHEZgcYHbJc+l1y8cHmjyq5BQtruFZ+94I74PlYlsMFB789zbJgjmuJ+F89k/SVDsxiZs0fsfsxOGs+KubMYQGCcB3Ay/k3g3pohfuKwJFnDZ3aucAh0jojsRBw7cDTPylUSQLyDRXgWjCTIse7/atI7jybIY8mgeH5VJfEJkhtV3prP6V7c78LM1b9ZjCyxq5sTtJOzb3LMJSWkmHKc5HgVO9Is0kP8eAtV9ahqgjksXpiwG6ELL05MnyoJYNgTbehUwJtgAvZ8Yt7qW9KfYzqB0v3sE2Iomip+97Bm9ZcMzWLEkyurG7OTkz0r5mYT0jF9oLbomz/xY3fijW3IKVkGSSTmiDo4bguboGS3JAE4vjYpwiURKNbeXQ3/Yp8iRXjsxN3z/xFDO7KOdBc9iVDc7+CLt+lt7ZFY3eVD0bWOkZAck2MzdsqOuftTaALjOPNIre0kO/W7QFG7NpHg85v4sNX7pXtmcePsZIMk8glT++KxFy3JPwoAjYFBYj5I5VeIzo7MMXZr7evz7X5/lZ68aR3ZwCekL5qafje4FP2bxYgJldNO2Ul8fqhmx1w0IQVGYpAwxwmBs/rnHt0PgopmsmgeDqEOisZ/aoDX9P0iAIGuF+G4uQfNp7LqhgKdhO1lWYMFXmLhOHi8GDH1iSqylpSHJMSmx8lox2Ifq6rfUdCVVP172Wyi9CgeI8Y7tZUMk3bC1q4mxZzhnlnHb8WIlYlg2avPp1R91RgP2J1j1RLI/IQQ+gJGtxYVeFL7UgiHBB89L4k3RzN++ugStRCWyf6r64x2X+GwK5MkHGu64rCf6eKFG9q5sbU2ZlG9NZ604svCip19fzbzu/CT9EfWQKkVIz7UlO+S7CRmSTHngwb/20PG+iYiQEOFN3Ws4l1xtPQnP6C+o47/FR9WTDDteQaHfdJ491a3BI54sKq9UuU4YYUkHazCa7E033Y+dCF4+ImBhCfx+9OFrne6JiFtASJx/9YY9H3RNf6gLLaxeCCLf+rA1oOPyx1Oa7/P6o/iFMnXIkZmfZdpp9SYww63wYTstM/4IwFZbUNHogwu86StcJCkJda85tuTZ4s22qpMif7tEvIshTiBhmfNQwLdWpJWOMjZEivFLluTZ4s22qpMKf7taFYnpBKR4xaffVUtrXBQoiVWitG2Js8WbbRVmVL869OsTkgxu1TAlP56x5fR+q1wwGuJZfpNtVuTZ4s22qpMU34d3bNnSJ4BKRdKrsELhbvh09+TBU4WqGEB5Zt9W8wLvYv/AcBw4lVSnsZHAAAAAElFTkSuQmCC\n", "text/latex": [ - "$$\\left [ 2, \\quad 4, \\quad 8, \\quad 16, \\quad 32, \\quad 64, \\quad 128\\right ]$$" + "$\\displaystyle \\left[ 2, \\ 4, \\ 8, \\ 16, \\ 32, \\ 64, \\ 128\\right]$" ], "text/plain": [ "[2, 4, 8, 16, 32, 64, 128]" ] }, - "execution_count": 12, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -48,7 +48,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -95,7 +95,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -129,17 +129,19 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 5, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7wAAAF3CAYAAACG80dpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XtYVlX+///nEg9AmiZoOmlBeQxBRBANM6yEmgkdD30sTWXKcMyy7GOkox+zwqbIb/WzKctJo7OZpamdLA9pRgqM5jEP2V1B0aQYIyLKrev3h3iPyEFI4Iab1+O6uu59r73We783XVzbN2vvtY21FhERERERERFP08DdCYiIiIiIiIhUBxW8IiIiIiIi4pFU8IqIiIiIiIhHUsErIiIiIiIiHkkFr4iIiIiIiHgkFbwiIiIiIiLikVTwioiIiIiIiEdSwSsiIiIiIiIeSQWviIiIiIiIeKSG7k6gOvj7+9uAgAB3pyEiIh4iIyPjgLW2lbvzqMt0bRYRkapU0WuzRxa8AQEBpKenuzsNERHxEMaY792dQ12na7OIiFSlil6bdUuziIiIiIiIeCQVvCIiIiIiIuKRPKrgNcbEGWPm5ebmujsVERERERERcTOPeobXWrscWB4eHn6nu3MRERGR8hUWFpKZmUlBQYG7U5Eq4O3tTbt27WjUqJG7UxERcfGogldERETqjszMTJo1a0ZAQADGGHenI+fBWsvBgwfJzMwkMDDQ3emIiLh41C3NIiIiUncUFBTg5+enYtcDGGPw8/PTbL2I1DoqeEVERMRtVOx6Dv2/FJHaSAWviIiIiIiIeCQVvCIiIiIiIuKRVPCKiIiIiIiIR1LBKyIiIlJBDoeDrl27cueddxIUFERMTAxHjx7ln//8JxEREXTv3p2hQ4eSn58PQHx8POPHj6d///5cfvnlfP7559x+++107dqV+Ph4V9yVK1fSp08fwsLCuPnmm8nLy3PTGYqIeBYVvCIiIiKVsHfvXiZMmMCOHTto0aIF7777LkOGDCEtLY2vv/6arl27Mn/+fFf/Q4cOsXr1ap5++mni4uKYNGkSO3bsYNu2bWzZsoUDBw6QlJTEZ599xr/+9S/Cw8N56qmn3HiGIiKeQ+/hFRGReiUxMZHs7GzatGlDcnKyu9OROigwMJDQ0FAAevbsicPhYPv27UyfPp3ffvuNvLw8YmNjXf3j4uIwxhAcHMzFF19McHAwAEFBQTgcDjIzM9m5cydRUVEAHD9+nD59+tT8iYmIuEl1XptV8IqISL2SnZ1NVlaWu9OQOqxJkyaubS8vL44ePUp8fDxLly6le/fupKSksHbt2hL9GzRoUGxsgwYNcDqdeHl5MWDAAN56660aOwcRkdqkOq/NuqVZRERE5DwdPnyYtm3bUlhYyBtvvFGpsb1792bDhg3s27cPgPz8fPbs2VMdaYqI1DsqeEVERETO06OPPkpkZCQDBgygS5culRrbqlUrUlJSuPXWWwkJCaF3795888031ZSpiEj9oluaRURERCooICCA7du3u75PnjzZtT1+/PgS/VNSUsoce+a+a6+9lrS0tKpNVkRENMMrIiIiIiIinkkFr4iIiIiIiHgkjyp4jTFxxph5ubm57k5FRERERERE3MyjCl5r7XJrbULz5s3dnYqIiIiIiIi4mUcVvCIiIiIiIiKnqeAVERERERERj6TXEomIiEitMGtxapXGmzasT5XGq2kOh4Mvv/ySESNGVEm8pUuX0qlTJ6688soqiSciUhdohldERETkd3A6ndUa3+Fw8Oabb1bZsZcuXcrOnTvPNy0RkTpFM7wiIuKx9jw5u0Rb4aFDrs+z93d6YHKN5CW1h8Ph4IYbbiAyMpLNmzfTqVMnXn31Va688krS09Px9/cnPT2dyZMns3btWmbOnMlPP/2Ew+HA39+f1157jSlTprB27VqOHTvGhAkTGDduXJnHe/LJJ1m0aBHHjh1j8ODBPPzww6SlpXHHHXewadMmTpw4Qa9evXj77beZMmUKu3btIjQ0lDFjxnDRRRfxwQcfUFBQwJEjR1i2bBmDBg3i0KFDFBYWkpSUxKBBgwB49dVXmT17NsYYQkJCGD9+PMuWLePzzz8nKSmJd999lyuuuKKmfswiIm6jgldERETqtd27dzN//nyioqK4/fbbef7558vtn5GRwRdffIGPjw/z5s2jefPmpKWlcezYMaKiooiJiSEwMLDEuJUrV7J37142bdqEtZaBAweybt06+vXrx8CBA5k+fTpHjx7ltttuo1u3bjz++OPMnj2bFStWAJCSkkJqaipbt26lZcuWOJ1OlixZwoUXXsiBAwfo3bs3AwcOZOfOncyaNYsNGzbg7+9PTk4OLVu2ZODAgdx0000MGzasWn6OIiK1kQpeERERqdfat29PVFQUALfddhtz5swpt//AgQPx8fEBThWxW7duZfHixQDk5uayd+/eMgvelStX0qNHDwDy8vLYu3cv/fr1Y8aMGURERODt7V3u8QcMGEDLli0BsNbyt7/9jXXr1tGgQQOysrL45ZdfWL16NcOGDcPf3x/A1V9EpD5SwSsiIiL1mjGmxPeGDRty8uRJAAoKCortv+CCC1zb1lqeffZZYmNjz3kcay1Tp04t9ZbnnJwc8vLyKCwspKCgoNgxyjr2G2+8wa+//kpGRgaNGjUiICCAgoICrLUlzklEpL7SolUiIiJSr/3www+kpp5aIfqtt96ib9++BAQEkJGRAcC7775b5tjY2Fjmzp1LYWEhAHv27OHIkSNl9l2wYAF5eXkAZGVl8e9//xuAhIQEHn30UUaOHMmDDz4IQLNmzTh8+HCZx87NzaV169Y0atSINWvW8P333wNw3XXXsWjRIg4ePAicKqYrEk9ExBNphldERERqBXe9Rqhr16688sorjBs3jo4dOzJ+/Hh69erFHXfcwWOPPUZkZGSZY8eOHYvD4SAsLAxrLa1atWLp0qWl9o2JiWHXrl306XPqPJs2bcrrr7/Oxx9/TMOGDRkxYgQnTpzgqquuYvXq1Vx99dU0bNiQ7t27Ex8fz0UXXVQs3siRI4mLiyM8PJzQ0FC6dOkCQFBQENOmTeOaa67By8uLHj16kJKSwi233MKdd97JnDlzWLx4sRatEpF6wVhr3Z1DlQsPD7fp6enuTkNERNystFWaH1r3Of/Oz6e1ry8P97um2L6yVmk2xmRYa8OrJcl6orRr865du+jataubMjrF4XBw0003sX37drfm4Slqw/9TEal7Ro8eTVZWFpdccgmvvvpqhcZU9NqsW5pFRERERETEI+mWZhEREam3AgICqnx2d9u2bYwaNapYW5MmTdi4cWOVHkdERM5NBa+IiNQrfkWvkzn9KVLVgoOD2bJli7vTEBERVPCKiEg9MzGil7tTEBERkRqiZ3hFRETqEGPMDcaY3caYfcaYKaXsb2KMebto/0ZjTMAZ+6YWte82xsSeK6YxJrAoxt6imI3POtYwY4w1xmhBLxERqZVU8IqIiNQRxhgv4DngRuBK4FZjzJVndbsDOGSt7QA8DTxRNPZK4BYgCLgBeN4Y43WOmE8AT1trOwKHimKfzqUZMBHQg6kiIlJrqeAVERGpO3oB+6y1+621x4GFwKCz+gwCXinaXgxcZ4wxRe0LrbXHrLXfAfuK4pUas2jMtUUxKIr55zOO8yiQDBRU9UmKiIhUFT3DKyIiUndcAvx4xvdMILKsPtZapzEmF/Arav/qrLGXFG2XFtMP+M1a6zy7vzGmB9DeWrvCGFP6y4tP9UsAEgAuvfTSc55czoqHz9mnMlre9FCVxqurnnnmGRISEvD19T3vWA6Hgy+//JIRI0ZUQWYiItVPM7wiIiJ1hymlzVawT5W0G2MacOpW6f8tJ89Tna2dZ60Nt9aGt2rV6lzd6xyn03nuTrXAM888Q35+fqn7Tpw4UalYDoeDN998syrSEhGpER5V8Bpj4owx83Jzc92dSqUlJiYyevRoEhMT3Z2KiJxFv59Si2QC7c/43g74qaw+xpiGQHMgp5yxZbUfAFoUxTizvRnQDVhrjHEAvYFldXXhKofDQZcuXRgzZgwhISEMGzaM/Px8AgICOHDgAADp6elER0cDMHPmTBISEoiJiWH06NGcOHGCBx54gIiICEJCQnjxxRfLPNbatWuJjo5m2LBhdOnShZEjR2Ltqb9XrFq1ih49ehAcHMztt9/OsWPHyoyTkZHBNddcQ8+ePYmNjeXnn3/G6XQSERHB2rVrAZg6dSrTpk1jzpw5/PTTT/Tv35/+/fsD0LRpU2bMmEFkZCSpqak88sgjRERE0K1bNxISElw57du3j+uvv57u3bsTFhbGt99+y5QpU1i/fj2hoaE8/fTT5/vjFxGpdh5V8Fprl1trE5o3b+7uVCotOzubrKwssrOz3Z2KiJxFv59Si6QBHYtWT27MqUWolp3VZxkwpmh7GLDanqpglgG3FK3iHAh0BDaVFbNozJqiGBTFfN9am2ut9bfWBlhrAzh1m/RAa216dZ10ddu9ezcJCQls3bqVCy+8kOeff77c/hkZGbz//vu8+eabzJ8/n+bNm5OWlkZaWhr//Oc/+e6778ocu3nzZp555hl27tzJ/v372bBhAwUFBcTHx/P222+zbds2nE4nc+fOLXV8YWEh99xzD4sXLyYjI4Pbb7+dadOm0bBhQ1JSUhg/fjyffvopH3/8MQ899BATJ07kD3/4A2vWrGHNmjUAHDlyhG7durFx40b69u3L3XffTVpaGtu3b+fo0aOsWLECgJEjRzJhwgS+/vprvvzyS9q2bcvjjz/O1VdfzZYtW5g0adLv/ImLiNQcPcMrIiJSRxQ9k3s38AngBSyw1u4wxjwCpFtrlwHzgdeMMfs4NbN7S9HYHcaYRcBOwAlMsNaeACgtZtEhHwQWGmOSgM1FsT1O+/btiYqKAuC2225jzpw55fYfOHAgPj4+AKxcuZKtW7eyePGptb1yc3PZu3cvgYGBpY7t1asX7dq1AyA0NBSHw0GzZs0IDAykU6dOAIwZM4bnnnuO++67r8T43bt3s337dgYMGACcuiW5bdu2AAQFBTFq1Cji4uJITU2lcePGJcYDeHl5MXToUNf3NWvWkJycTH5+Pjk5OQQFBREdHU1WVhaDBw8GwNvbu9yfiYhIbaWCV0REpA6x1n4IfHhW24wztguAm8sYOwuYVZGYRe37ObWKc3n5RFck79rs1ILUxb83bNiQkydPAlBQUHwh6gsuuMC1ba3l2WefJTY2lopo0qSJa9vLywun0+m6hbgirLUEBQWRmppa6v5t27bRokULfvnllzJjeHt74+XlBZw6t7vuuov09HTat2/PzJkzKSgoqFROIiK1mUfd0iwiIiJSWT/88IOrgHzrrbfo27cvAQEBZGRkAPDuu++WOTY2Npa5c+dSWFgIwJ49ezhy5Eiljt+lSxccDgf79u0D4LXXXuOaa64ptW/nzp359ddfXfkWFhayY8epCfn33nuPgwcPsm7dOiZOnMhvv/0GQLNmzTh8+HCp8U4X8/7+/uTl5blmqi+88ELatWvH0qVLATh27Bj5+fnlxhIRqY00wysiIiK1grteI9S1a1deeeUVxo0bR8eOHRk/fjy9evXijjvu4LHHHiMy8uw3P/3X2LFjcTgchIWFYa2lVatWriKxory9vXn55Ze5+eabXYtP/fWvfy21b+PGjVm8eDETJ04kNzcXp9PJfffdx8UXX8yUKVNYtWoV7du35+677+bee+/llVdeISEhgRtvvJG2bdu6nuM9rUWLFtx5550EBwcTEBBARESEa99rr73GuHHjmDFjBo0aNeKdd94hJCSEhg0b0r17d+Lj4/Ucr4jUesYTb1kJDw+36el1a+2M0aNHk5WVxSWXXMKrr77q7nRE5Az6/ay79jw5u1L9Oz1Q+itljTEZ1to6uQpxbVHatXnXrl107drVTRmd4nA4uOmmm9i+fbtb8/AUteH/qYjUPb/n31oVvTbrlmYRERERERHxSLqlWUREROqtgICAKp/d3bZtG6NGjSrW1qRJEzZu3FipOIMHDy7xiqMnnniiwgtkiYiICl4RERGRKhUcHMyWLVvOO86SJUuqIBsRkfpNtzSLiIiIiIiIR1LBKyIiIiIiIh5JBa+IiIiIiIh4JBW8IiIiIiIi4pG0aJWIiIjUCsmrk6s0XuK1iZXqP3PmTJo2bcqKFSuYPXs24eHV/+rlsWPHcv/993PllVeW2Sc6OrrG8hER8TQqeEVERETc4MSJE7z00kvuTkNExKOp4HWDPU/OLtFWeOiQ6/Ps/Z0emFwjeYlI/f79TExMJDs7mzZt2pCcXLUzbSK11axZs3j11Vdp3749rVq1omfPngC888473HXXXfz222/Mnz+fq6++utTxO3bs4C9/+QvHjx/n5MmTvPvuu3Ts2JHXX3+dOXPmcPz4cSIjI3n++efx8vKiadOm3H///XzyySf8v//3/5g+fbpr9nb8+PGkpaVx9OhRhg0bxsMPP1yTPwoREY+kZ3hFRASA7OxssrKyyM7OdncqIjUiIyODhQsXsnnzZt577z3S0tJc+5xOJ5s2beKZZ54pt/B84YUXuPfee9myZQvp6em0a9eOXbt28fbbb7Nhwwa2bNmCl5cXb7zxBgBHjhyhW7dubNy4kb59+xaLNWvWLNLT09m6dSuff/45W7durZ4TFxGpRzTDKyJSD9XnmWyR09avX8/gwYPx9fUFYODAga59Q4YMAaBnz544HI4yY/Tp04dZs2aRmZnJkCFD6NixI6tWrSIjI4OIiAgAjh49SuvWrQHw8vJi6NChpcZatGgR8+bNw+l08vPPP7Nz505CQkKq4lRFROotFbwiIiJSbxljSm1v0qQJcKpAdTqdZY4fMWIEkZGRfPDBB8TGxvLSSy9hrWXMmDH8/e9/L9Hf29sbLy+vEu3fffcds2fPJi0tjYsuuoj4+HgKCgp+51mJiMhpKnhFRAQAPx+fYp8inq5fv37Ex8czZcoUnE4ny5cvZ9y4cZWKsX//fi6//HImTpzI/v372bp1KzExMQwaNIhJkybRunVrcnJyOHz4MJdddlmZcf7zn/9wwQUX0Lx5c3755Rc++ugjoqOjz/MMRURqn5q+y0wFr4iIADAxope7U5B6rrKvETpfYWFhDB8+nNDQUC677LIyF6Yqz9tvv83rr79Oo0aNaNOmDTNmzKBly5YkJSURExPDyZMnadSoEc8991y5BW/37t3p0aMHQUFBXH755URFRZ3PqYmISBEVvCIiIlJvTZs2jWnTphVrmzz5v7MJ/v7+5T7DO3XqVKZOnVqiffjw4QwfPrxEe15eXrHva9eudW2npKSUeowz+4iISOVolWYRERERERHxSJrhlRql93yKiEhd9Mknn/Dggw8WawsMDGTJkiVuykhERCpCBa/UqNPv+RQREalLYmNjiY2NdXcaIiJSSbqlWURERERERDySCl4RERERERHxSCp4RURERERExCPpGV4RkXPw8/Ep9iki1WPPk7OrNF6nByafu5OIiHg0FbxSbUr7h0vhoUOuz7P36x8mdU99WXV7YkQvd6cgIjVg5syZNG3alBUrVjB79mzCw8Pdmk98fDw33XQTw4YNIzo6+pw5VaSPiEh941EFrzEmDojr0KGDu1MR8Til/QHjx127+Hd+vv6AISLyO504cQIvLy93pyEi4rE86hlea+1ya21C8+bN3Z1Kpfn5+NDa11e3THqIxMRERo8eTWJiortTERGRcsyaNYvOnTtz/fXXs3v3blf7O++8Q69evejUqRPr168vc3xKSgqDBg3ihhtuoHPnzjz88MOufX/+85/p2bMnQUFBzJs3z9XetGlTZsyYQWRkJKmpqTzyyCNERETQrVs3EhISsNaWm/PKlSvp06cPYWFh3HzzzeTl5Z3HT0BExLN51AxvXaZbJuuu+jzzqWdbRaQuy8jIYOHChWzevBmn00lYWBg9e/YEwOl0smnTJj788EMefvhhPvvsszLjbNq0ie3bt+Pr60tERAR/+tOfCA8PZ8GCBbRs2ZKjR48SERHB0KFD8fPz48iRI3Tr1o1HHnkEgCuvvJIZM2YAMGrUKFasWEFcXFypxzpw4ABJSUl89tlnXHDBBTzxxBM89dRTrvEiIlKcCl6pUSqQPIv+UCMiddn69esZPHgwvr6+AAwcONC1b8iQIQD07NkTh8NRbpwBAwbg5+fnGvfFF18QHh7OnDlzWLJkCQA//vgje/fuxc/PDy8vL4YOHeoav2bNGpKTk8nPzycnJ4egoKAyC96vvvqKnTt3EhUVBcDx48fp06fP7/sBiIjUAyp4pUbVlwJJhb2ISN1gjCm1vUmTJgB4eXnhdDorFcMYw9q1a/nss89ITU3F19eX6OhoCgoKAPD29nY9t1tQUMBdd91Feno67du3Z+bMma5+pbHWMmDAAN56660Kn6OISH2mglekGtSXwl5EpCrV9CMf/fr1Iz4+nilTpuB0Olm+fDnjxo2rdJxPP/2UnJwcfHx8WLp0KQsWLCArK4uLLroIX19fvvnmG7766qtSx54ubv39/cnLy2Px4sUMGzaszGP17t2bCRMmsG/fPjp06EB+fj6ZmZl06tSp0nmLiNQHKnhFRESkXgoLC2P48OGEhoZy2WWXcfXVV/+uOH379mXUqFHs27ePESNGEB4eTnBwMC+88AIhISF07tyZ3r17lzq2RYsW3HnnnQQHBxMQEEBERES5x2rVqhUpKSnceuutHDt2DICkpCQVvCIiZVDBKyIiIvXWtGnTmDZtWrG2yZP/O9Ps7+9/zmd4W7duzT/+8Y9ibU2aNOGjjz4qtf/ZqyonJSWRlJRUol9KSopre+3ata7ta6+9lrS0tBL9z+wjIiKneNRriURERERERERO0wyviIiIyDl88sknPPjgg8XaAgMDWbJkCfHx8e5JSkREzkkFr4iIiLiNtbbMlZJrk9jYWGJjY92dRq1mrXV3CiIiJeiWZhEREXELb29vDh48qELJA1hrOXjwIN7e3u5ORUSkGM3wioiIiFu0a9eOzMxMfv31V3enIlXA29ubdu3auTsNEZFiVPCKiIiIWzRq1IjAwEB3pyEiIh5MtzSLiIiIiIiIR9IMr4iIiIiIiLiNn49Psc+qpIJXRERERERE3GZiRK9qi61bmkVERERERMQjqeAVERERERERj6SCV0RERERERDySCl4RERERERHxSCp4RURERERExCOp4BURERERERGPpIJXREREREREPJIKXhEREREREfFIKnhFRERERETEI6ngFREREREREY+kgldEREREREQ8kgpeERERERER8UgqeEVERERERMQjqeAVERERERERj6SCV0RERERERDySCl4RERERERHxSCp4RURERERExCOp4BURERERERGPpIJXRESkDjHG3GCM2W2M2WeMmVLK/ibGmLeL9m80xgScsW9qUftuY0zsuWIaYwKLYuwtitm4qP2vxphtxpgtxpgvjDFXVu9Zi4iI/D4qeEVEROoIY4wX8BxwI3AlcGspxeYdwCFrbQfgaeCJorFXArcAQcANwPPGGK9zxHwCeNpa2xE4VBQb4E1rbbC1NhRIBp6qlhMWERE5Typ4RUSkzktMTGT06NEkJia6O5Xq1gvYZ63db609DiwEBp3VZxDwStH2YuA6Y4wpal9orT1mrf0O2FcUr9SYRWOuLYpBUcw/A1hr/3PG8S4AbBWfp4iISJVo6O4EREREzld2djZZWVnuTqMmXAL8eMb3TCCyrD7WWqcxJhfwK2r/6qyxlxRtlxbTD/jNWusspT/GmAnA/UBjThXGJRhjEoAEgEsvvbRCJygiIlKVNMMrIiJSd5hS2s6eXS2rT1W1n9qw9jlr7RXAg8D00pK11s6z1oZba8NbtWpVWhcREZFqpRleERGpU5JXJ5doO3T0kOvzzP1/9ry/62YC7c/43g74qYw+mcaYhkBzIOccY0trPwC0MMY0LJrlLe1YcOoW6Lm/62xERESqmcf9S0BERMSDpQEdi1ZPbsypRaiWndVnGTCmaHsYsNpaa4vabylaxTkQ6AhsKitm0Zg1RTEoivk+gDGm4xnH+xOwt4rPU0REpEpohldERKSOKHom927gE8ALWGCt3WGMeQRIt9YuA+YDrxlj9nFqZveWorE7jDGLgJ2AE5hgrT0BUFrMokM+CCw0xiQBm4tiA9xtjLkeKOTU6s2nC2wRkRqRmJhIdnY2bdq0ITm55J0/Iqep4BUREalDrLUfAh+e1TbjjO0C4OYyxs4CZlUkZlH7fk6t4nx2+72VTrwO0j+oRWqverRYoZwnFbwiIlLn+TT3KfYpUhX0D2oRkbpPBa+IiNR54SPC3Z2CiIiI1EIqeEVEpNrp1lARERFxBxW8IiJS7XRrqIiIiLhDvSl4CwsLyczMpKCgwN2pUHj11ZXqv2vXrmrKpHpV53l6e3vTrl07GjVqVNm0RERERESknqg3BW9mZibNmjUjICAAY4xbcynIzq5Uf+82baopk+pVXedpreXgwYNkZmYSGBj4e1ITkVpOt0CLiIhIVWjg7gTOxRgTbYxZb4x5wRgT/XvjFBQU4Ofn5/ZiV86fMQY/P79aMVsvItXj9C3Q2ZX8w5mIiIjImaq14DXGLDDG/NsYs/2s9huMMbuNMfuMMVPOEcYCeYA3kHme+ZzPcKlF9P9SRERERETOpbpvaU4B/gG8errBGOMFPAcM4FQBm2aMWQZ4AX8/a/ztwHpr7efGmIuBp4CR1ZyziIjUoJwVD5doO3kkx/VZYr+v3rUrIiIiFVOtBa+1dp0xJuCs5l7APmvtfgBjzEJgkLX278BN5YQ7BDQpa6cxJgFIALj00kvPI2sRERERERHxBO54hvcS4MczvmcWtZXKGDPEGPMi8BqnZotLZa2dZ60Nt9aGt2rVqsqSFRERERERkbrJHas0l/bwpS2rs7X2PeC96kun9vr+xx8ZNGIEV0dH8+WXX3LJJZfw/vvv8/rrrzNv3jyOHz9Ohw4deO211/D19SU+Ph4fHx+++eYbvv/+e15++WVeeeUVUlNTiYyMJCUlBYCVK1fy0EMPceznz7XMAAAgAElEQVTYMa644gpefvllmjZt6t6TFRGPMmtxarHvOXkFrs+z9433rrG0REREpJ5xxwxvJtD+jO/tgJ/ckEedsO+775gwYQI7duygRYsWvPvuuwwZMoS0tDS+/vprunbtyvz58139Dx06xOrVq3n66aeJi4tj0qRJ7Nixg23btrFlyxYOHDhAUlISn332Gf/6178IDw/nqaeecuMZioiU1OrCJrRt4UOrC8t8kkVERETknNwxw5sGdDTGBAJZwC3ACDfkUScEXHopoaGhAPTs2ROHw8H27duZPn06v/32G3l5ecTGxrr6x8XFYYwhODiYiy++mODgYACCgoJwOBxkZmayc+dOoqKiADh+/Dh9+vSp+RMTESnH/w0NcXcKIiIi4gGqteA1xrwFRAP+xphM4CFr7XxjzN3AJ5xamXmBtXZHdeZRlzVp3Ni17eXlxdGjR4mPj2fp0qV0796dlJQU1q5d+9/+TU7NhjRo0MC1ffq70+nEy8uLAQMG8NZbb9XYOYiIiIiIiLhDtd7SbK291Vrb1lrbyFrbzlo7v6j9Q2ttJ2vtFdbaWdWZgyc6fPgwbdu2pbCwkDfeeKNSY3v37s2GDRvYt28fAPn5+ezZs6c60hQREREREXErdzzDK+fp0UcfJTIykgEDBtClS5dKjW3VqhUpKSnceuuthISE0Lt3b7755ptqylRERERERMR93PEMb7UxxsQBcR06dHB3KlXisvbtyTjjduXJkye7tsePH1+i/+lVmAECAgLYvn17qfuuvfZa0tLSqjRXERERERGR2sajZnittcuttQnNmzd3dyoiInIG72Yt8Gnuh3ezFu5ORUREROoRj5rhFRGR2qlH3F/cnYKIiIjUQx41wysiIiIiIiJymgpeERERERER8UgqeEVERERERMQjqeAVERERERERj1RvF62atTi1SuNNG9anSuPVNIfDwZdffsmIESOqJN7SpUu57KKL6Nq5c5XEExERERERqSzN8NYRTqezWuM7HA7efPPNKjv20qVL2bV37/mmJSIiIiIi8rt5VMFrjIkzxszLzc11dyqlcjgcdOnShbETJxJx7bXcOnYs+fn5dI6I4MDBgwBkbNlCzJAhACTNns2EyZOJiYlh9OjRnDhxggceeICIiAhCQkJ48cUXyz3ek08+6er70EMPAZCWlkZISAgFBQUcOXKEoKAgtm/fzpQpU1i/fj2hoaE8/fTTpKSkcPPNNxMXF0dMTAx5eXlcd911hIWFERwczPvvv+86zquvvkpISAjdu3dn1KhRfPnllyxbtoy/PfIIkddfz36Ho3p+oCIiIiIiIuXwqFuarbXLgeXh4eF3ujuXsuzevZvnk5O5qlcvxk2axIuvvFJu/81bt7Jh40Z8fHyYN28ezZs3Jy0tjWPHjhEVFUVMTAyBgYElxq1cuZK9e/eyadMmrLUMHDiQdevW0a9fPwYOHMj06dM5evQot912G926dePxxx9n9uzZrFixAoCUlBRSU1PZunUrLVu2xOl0smTJEi688EIOHDhA7969GThwIDt37mTWrFls2LABf39/cnJyaNmyJQMHDiSmb1+G3HRTtfwcRUREREREzsWjCt66oH379lzVqxcAtw4dynMvvVRu/z/FxuLj4wOcKmK3bt3K4sWLAcjNzWXv3r1lFrwrV66kR48eAOTl5bF371769evHjBkziIiIwNvbmzlz5pR57AEDBtCyZUsArLX87W9/Y926dTRo0ICsrCx++eUXVq9ezbBhw/D39wdw9RcREREREXE3Fbw1zBhT4nvDhg05aS0ABceOFdvv6+vr2rbW8uyzzxIbG3vO41hrmTp1KuPGjSuxLycnh7y8PAoLCykoKOCCCy4oNcaZ7W+88Qa//vorGRkZNGrUiICAAAoKCrDWljgnERERERGR2sCjnuGtC3744Qe+Sk8HYNGSJVwVGcll7duz+euvAVj6wQdljo2NjWXu3LkUFhYCsGfPHo4cOVJm3wULFpCXlwdAVlYW//73vwFISEjg0UcfZeTIkTz44IMANGvWjMOHD5d57NzcXFq3bk2jRo1Ys2YN33//PQDXXXcdixYt4mDRM8g5OTmueKePLSIiIiIi4g71dobXXa8R6tq1K28sWsQ9iYlcERhIwujRhIeGMv5//5fkOXOICAsrc+zYsWNxOByEhYVhraVVq1YsXbq01L4xMTHs2rWLPn1OnWfTpk15/fXX+fjjj2nYsCEjRozgxIkTXHXVVaxevZqrr76ahg0b0r17d+Lj47nooouKxRs5ciRxcXGEh4cTGhpKly5dAAgKCmLatGlcc801eHl50aNHD1JSUrjlllsY+5e/8Pz8+bz5z39yeUBA1fwARUREREREKqjeFrzu0qBBA55NTi7W1rd3b7Zt2FCi7/TJk0uMfeyxx3jssccqdKx7772Xe++9t1jbFVdcwejRowHw8vJi48aNrn2rVq0q1jc+Pt617e/vT2pq6e8uHjNmDGPGjCnWFhUVxeZ16yqUp4iIiIiISHVQwSsiIiIiIrXWnidnl2grPHTI9Xn2/k4PTC7RX+ovFbw1KCAggO3bt1OQnV1lMbdt28aoUaOKtTVp0qTYzK2IiIiIiEh9pIK3jgsODmbLli3uTkNERKRO0wySiNRGiYmJZGdn06ZNG5LPeixSKkYFr4iIiIiISC2UnZ1NVlaWu9Oo0875WiJjTCdjzCpjzPai7yHGmOnVn1rlGWPijDHzcnNz3Z2KiIhImerStVVERKQuq8gM7z+BB4AXAay1W40xbwJJ1ZnY72GtXQ4sDw8Pv9PduYiIiJSjzlxbRUSkZujRiupxzhlewNdau+msNmd1JCMiIlJP6NoqIiJSAyoyw3vAGHMFYAGMMcOAn6s1qxqQs+LhKo3X8qaHqjReXfXMM8+QkJCAr6/vecdyOBx8+eWXjBgxogoyExGpVTzy2ioiIlLbVGSGdwKnbrnqYozJAu4DxldrVlKC01k3/vD/zDPPkJ+fX+q+EydOVCqWw+HgzTffrIq0RERqG11bRUTknPx8fGjt64ufj4+7U6mzzlnwWmv3W2uvB1oBXay1fa21jmrPzAM5HA66dOnC2IkTibj2Wm4dO5b8/Hw6R0Rw4OBBADK2bCFmyBAAkmbPZsLkycTExDB69GhOnDjBAw88QEREBCEhIbz44otlHmvt2rVER0czbNgwunTpwsiRI7HWArBq1Sp69OhBcHAwt99+O8eOHSszTkZGBtdccw09e/YkNjaWn3/+GafTSUREBGvXrgVg6tSpTJs2jTlz5vDTTz/Rv39/+vfvD4D/FVfwSHIyV//xj3yVns5jTz1F1A030DM6mgmTJ7ty+va777j++uvp3r07YWFhfPvtt0yZMoX169cTGhrK008/fd4/fxGR2kLXVhERqYiJEb14uN81TIzo5e5U6qxz3tJsjGkBjAYCgIbGGACstROrNTMPtXv3bp5PTuaqXr0YN2kSL77ySrn9N2/dyoaNG/Hx8WHevHk0b96ctLQ0jh07RlRUFDExMQQGBpY+dvNmduzYwR/+8AeioqLYsGED4eHhxMfHs2rVKjp16sTo0aOZO3cu9913X4nxhYWF3HPPPbz//vu0atWKt99+m2nTprFgwQJSUlIYNmwYc+bM4eOPP2bjxo00btyYp556ijVr1uDv709BdjZH8vO5sksXZiQmAtC1Uyf+dv/9ANx+9918+Omn/CkmhvgJE/jb//0fgwcPpqCggJMnT/L4448ze/ZsVqxYcZ4/dRGR2kXXVhERkZpRkWd4PwS+ArYBJ6s3Hc/Xvn17rup16i80tw4dynMvvVRu/z/FxuJTdAvDypUr2bp1K4sXLwYgNzeXvXv3llnw9urVi3bt2gEQGhqKw+GgWbNmBAYG0qlTJwDGjBnDc889V2rBu3v3brZv386AAQOAU7ckt23bFoCgoCBGjRpFXFwcqampNG7cuNQcvLy8GPynP7m+f75hA089/zxHjx4l57ff6Nq5M/2uuoqfsrMZPHgwAN7e3uX+TEREPICurSIiIjWgIgWvt7X2/mrPpJ44/Vf8M783bNiQk0W39hacdXvxmYs/WWt59tlniY2NrdCxmjRp4tr28vLC6XS6biGuCGstQUFBpKamlrp/27ZttGjRgl9++aXMGN5NmuDl5QVAQUEB902dyhcff0z7Sy4hafZsjh07VqmcREQ8hK6tIiIiNaAii1a9Zoy50xjT1hjT8vR/1Z6Zh/rhhx/4Kj0dgEVLlnBVZCSXtW/P5q+/BmDpBx+UOTY2Npa5c+dSWFgIwJ49ezhy5Eiljt+lSxccDgf79u0D4LXXXuOaa64ptW/nzp359ddfXQVvYWEhO3bsAOC9997j4MGDrFu3jokTJ/Lbb78B0KxZMw4fPlxqvNPFvH/LluQdOcKSoluVL2zWjEvatmXp0qUAHDt2jPz8/HJjiYjUcbq2ioiI1ICKzPAeB54EplH0+oSiz8urK6ma4K7XCHXt2pU3Fi3insRErggMJGH0aMJDQxn/v/9L8pw5RISFlTl27NixOBwOwsLCsNbSqlUrV5FYUd7e3rz88svcfPPNrsWn/vrXv5bat3HjxixevJiJEyeSm5uL0+nkvvvu4+KLL2bKlCmsWrWK9u3bc/fdd3PvvffyyiuvkJCQwI033kjbtm356K23isVr0bw5fxk5kvBrr+Wy9u3pGRrq2rfg2WeZOH06M2bMoFGjRrzzzjuEhITQsGFDunfvTnx8PJMmTarUuYqI1GIeeW0VERGpbSpS8N4PdLDWHqjuZM6XMSYOiOvQoYO7UylTgwYNeDY5uVhb39692bZhQ4m+0ydPLjH2scce47HHHjvncaKjo4mOjnZ9/8c//uHavu6669i8eXOF8g0NDWXdunUl2vfs2ePanjjxv2us3HPPPdxzzz0AFGRnc+Dbb4uNmzllCjOnTCkRr8Pll7N69eoS7atWrapQniIidUydubaKiIjUZRW5pXkHUPqLVWsZa+1ya21C8+bN3Z2KiIhIeerMtVVERKQuq8gM7wlgizFmDeBaUUmvTqi8gIAAtm/fTkF2dpXF3LZtG6NGjSrW1qRJEzZu3FipOIMHD+a7774r1vbEE09UeIEsERGpFF1bRUREakBFCt6lRf9JLRQcHMyWLVvOO86SJUuqIBsREakgXVtFRERqwDkLXmvtKzWRiIiISH2ha6vUJomJiWRnZ9OmTRuSz1pnRESkriuz4DXGLLLW/o8xZhv/XUHyNGut7V69qYmIiHgWXVulNsrOziYrK8vdaYiIVIvyZnjvLfrcBTxwRrsB9Oc/ERGRytO1VUREpAaVWfBaa38u2uxgrf3+zH3GmC7VmpWIiIgH0rVVRESkZpV3S/N44C7gcmPM1jN2NQNKvjS2jkleXbV/SE+8NrFK44mIiOfx9GuriIhIbVPee3jfBOKAZUWfp//raa29rQZy82hJs2fz9Ny5xAwZQkYVrLJcEWPHjmXnzp3l9omOjiY9Pb1G8hERqYd0bRURqQJ+Pj609vXFz8fH3alILVfeLc25QC5wa82lI9XlxIkTvPTSS+5OQ0SkXtO1VUSkakyM6OXuFKSOKG+GV6rYrFmz6Ny5M3/8n/9hz7ffutrfW7GCvjfeSHBUFF989VWZ43fs2EGvXr0IDQ0lJCSEvXv3AvD666+72seNG8eJEycAaNq0KTNmzCAyMpLU1NRis7fjx48nPDycoKAgHnrooWo8axEREREREfdQwVtDMjIyWLhwIZs3b2bh/PnFbmN2Op188dFHPPnIIzz21FNlxnjhhRe499572bJlC+np6bRr145du3bx9ttvs2HDBrZs2YKXlxdvvPEGAEeOHKFbt25s3LiRvn37Fos1a9Ys0tPT2bp1K59//jlbt24t7ZAiIiIiIiJ1VnmvJZIqtH79egYPHoyvry8NmjXjTzExrn2D/vhHAHqEhPD9jz+WGaNPnz7MmjWLzMxMhgwZQseOHVm1ahUZGRlEREQAcPToUVq3bg2Al5cXQ4cOLTXWokWLmDdvHk6nk59//pmdO3cSEhJSVacrIiIiIiLidh5V8Bpj4oC4Dh06uDuVUhljSm1v0rgxAF4NGuB0OsscP2LECCIjI/nggw+IjY3lpZdewlrLmDFj+Pvf/16iv7e3N15eXiXav/vuO2bPnk1aWhoXXXQR8fHxFBQU/M6zEhGRmmSMuQH4/wAv4CVr7eNn7W8CvAr0BA4Cw621jqJ9U4E7gBPARGvtJ+XFNMYEAguBlsC/gFHW2uPGmPuBsYAT+BW4/ezXLEnttOfJ2SXaCg8dcn2evb/TA5NrJC8RkeriUQWvtXY5sDw8PPzOc/Wt6dcI9evXj/j4eKZMmUJeXh4ffvopd4waVakY+/fv5/LLL2fixIns37+frVu3EhMTw6BBg5g0aRKtW7cmJyeHw4cPc9lll5UZ5z//+Q8XXHABzZs355dffuGjjz4iOjr6PM9QRESqmzHGC3gOGABkAmnGmGXW2jOX4L8DOGSt7WCMuQV4AhhujLkSuAUIAv4AfGaM6VQ0pqyYTwBPW2sXGmNeKIo9F9gMhFtr84tetZQMDK/esxeRikhMTCQ7O5s2bdqQnFy1r+EUqYs8quCtzcLCwhg+fDihoaG0b9OGqMjISsd4++23ef3112nUqBFt2rRhxowZtGzZkqSkJGJiYjh58iSNGjXiueeeK7fg7d69Oz169CAoKIjLL7+cqKio8zk1ERGpOb2Afdba/QDGmIXAIODMgncQMLNoezHwD3PqFqNBwEJr7THgO2PMvqJ4lBbTGLMLuBYYUdTnlaK4c621a8443leAR75S6fTrTvTaE6lLsrOzycrKcncaIrWGCt4aNG3aNKZNm0ZBdrarbdL48a5tfz8/dqellTl+6tSpTJ06tUT78OHDGT685B/W8/Lyin1fu3atazslJaXUY5zZR0REap1LgDMXe8gEzv4LqquPtdZpjMkF/Iravzpr7CVF26XF9AN+s9Y6S+l/pjuAj0pL1hiTACQAXHrppeWdV62k156IiNR9KnhFRETqjtIWg7AV7FNWe2lvbCiv/38PZMxtQDhwTSl9sdbOA+YBhIeHn52niJwnPZMtcm4qeGuhT9esYfqsWa7vpmFDAgMDWbJkiRuzEhGRWiATaH/G93bAT2X0yTTGNASaAznnGFta+wGghTGmYdEsb7FjGWOuB6YB1xTdJi1Sq+nZVpH6SQVvLTSgf38G9O/v+u7dpo0bsxERkVokDehYtHpyFqcWoRpxVp9lwBggFRgGrLbWWmPMMuBNY8xTnFq0qiOwiVMzuSViFo1ZUxRjYVHM9wGMMT2AF4EbrLX/rs4TFqkq9eXZVj17LlKcCl4REZE6ouiZ3LuBTzj1CqEF1todxphHgHRr7TJgPvBa0aJUOZwqYCnqt4hTC1w5gQnW2hMApcUsOuSDwEJjTBKnVmaeX9T+JNAUeKfolXs/WGsHVvPpSzXxxAKpPt/qq2fPRYpTwSsiIlKHWGs/BD48q23GGdsFwM1ljJ0FzCqlvUTMovb9/Hcl5zPbr6904lJrqUASEU+mgldEREREPJ4nzmSLyLnV24K3tFtdzocn3QojIiIi4mk0ky1SP5X2KgKpAUmzZ/P03LnEDBlCxpYt7k6H+Ph4Fi9eDEB0dDTp6enl9q9IHxEREREREXdSwVuPnDhxwt0piIiIiIiI1BgVvDVo1qxZdO7cmT/+z/+w59tvXe3vrVhB3xtvJDgqii+++qrM8SkpKQwaNIgbbriBzp078/DDD7v2/fnPf6Znz54EBQUxb948V3vTpk2ZMWMGkZGRpKam8sgjjxAREUG3bt1ISEjAWltuzitXrqRPnz6EhYVx8803k5eXdx4/ARERERERkZqjgreGZGRksHDhQjZv3szC+fOL3cbsdDr54qOPePKRR3jsqafKjbNp0ybeeOMNtmzZwjvvvOO6rXjBggVkZGSQnp7OnDlzOHjwIABHjhyhW7dubNy4kb59+3L33XeTlpbG9u3bOXr0KCtWrCjzWAcOHCApKYnPPvuMf/3rX4SHh/PUOfITqSsSExMZPXo0iYmJ7k5FRERERKpJvV20qqatX7+ewYMH4+vrS4NmzfhTTIxr36A//hGAHiEhfP/jj+XGGTBgAH5+fgAMGTKEL774gvDwcObMmcOSJUsA+PHHH9m7dy9+fn54eXkxdOhQ1/g1a9aQnJxMfn4+OTk5BAUFERcXV+qxvvrqK3bu3ElUVBQAx48fp0+fPr//hyBSi2RnZ5OVleXuNERERESkGqngrUHGmFLbmzRuDIBXgwY4nc5KxTDGsHbtWj777DNSU1Px9fUlOjqagoICALy9vfHy8gKgoKCAu+66i/T0dNq3b8/MmTNd/UpjrWXAgAG89dZbFT5HERERERGR2qLeFrw1/Rqhfv36ER8fz5QpU8jLy+PDTz/ljlGjKh3n008/JScnBx8fH5YuXcqCBQvIysrioosuwtfXl2+++YavyngO+HRx6+/vT15eHosXL2bYsGFlHqt3795MmDCBffv20aFDB/Lz88nMzKRTp06VzltERERERKSmeVTBa4yJA+I6dOjg7lRKCAsLY/jw4YSGhtK+TRuiIiN/V5y+ffsyatQo9u3bx4gRIwgPDyc4OJgXXniBkJAQOnfuTO/evUsd26JFC+68806Cg4MJCAggIiKi3GO1atWKlJQUbr31Vo4dOwZAUlKSCl4REREREakTPKrgtdYuB5aHh4ff6e5cSjNt2jSmTZtGQXa2q23S+PGubX8/P3anpZUbo3Xr1vzjH/8o1takSRM++uijUvufvapyUlISSUlJJfqlpKS4tteuXevavvbaa0krJacz+4iIiIiIiNRGWqVZREREREREPJJHzfB6ik/XrGH6rFmu76ZhQwIDA1myZAnx8fHuS0xERERERKQOqVcFr7W2zJWSa5MB/fszoH9/13fvNm3cmE3tZK11dwoiIiIiIlLL1Ztbmr29vTl48KAKJQ9greXgwYN4e3u7OxUREREREanF6s0Mb7t27cjMzOTXX391dyoU5v6nUv0bHTpUTZlUr+o8T29vb9q1a1fZlETqncTERLKzs2nTpg3JycnuTkdERESkRtWbgrdRo0YEBga6Ow0A9jw5u1L9a/qdwVWlvpynSG2WnZ1NVlaWu9MQERERcYt6U/CKiHi65NUlZ3APHT3k+jxz/5/rzxMtIiIiUo/pXzwiIiIiIiLikTTDKyLiwXya+xT7FBEREalPVPCKiHiw8BHh7k5BRERExG10S7OIiIiIiIh4JBW8IiIiIiIi4pFU8IqIiIiIiIhHUsErIiIiIiIiHkkFr4iIiIiIiHgkFbwiIiIiIiLikVTwioiIiIiIiEfSe3hFxOMlr04u0Xbo6CHX55n7/6y/A4qIiIh4DP3LTkRERERERDySCl4RERERERHxSB5V8Bpj4owx83Jzc92dioiIiIiIiLiZRz3Da61dDiwPDw+/09251CeJiYlkZ2fTpk0bkpNLPispImWr7O+Pft9EREREKs6jCl5xj+zsbLKystydhkidVNnfH/2+iYiIiFScR93SLCIiIiIiInKaCl4RERERERHxSCp4RURERERExCPpGV4RkVoqZ8XDJdpOHslxfZbY7+tTE2mJiIiI1Bma4RURERERERGPpIJXREREREREPJJuaRYRqUNaXdik2KeIiIiIlE0Fr4hIHfJ/Q0PcnYKIiIhInaGCV0SkBs1anFrse05egevz7H3jvWssLRERERGPpIJXROoln+Y+xT7l/2/v/oMvq+v7jj9fLj92IbAbhc5WYMNmlpiiIZJ8Ra2jSbGJm4kLzEhmgFYJ/iClommNXaGOUbRMyiYTmqnohAaQViIyG6orxV8NGBKLgIGAINJQSHBXv4POrmlB+f3uH/fs+v25u1++3/s95577fMzs3HvPj895f7733v3c9/l8zudIkiT1jwmvpLE0cdZE2yFIkiRpyJylWZIkSZLUSya8kiRJkqReMuGVJEmSJPWS1/BqQbbctGXWsl0/2rXncer60zyfIkmSJI2lzZs3Mzk5ydq1a9myZXYOsVxMeCVJkiRJS2pycpIdO3a0HYYJr6TpunI2blysPGzNtEdJkiQtHRNeSdN05WzcuDhx0zlthyBJktRbJrxDZE9Zv/h+SpIkSbN1eZ4fE94hsqesX3w/JUmSpNFiwiuNsS6fjZMkSZIWy1+wkiRJkqResodX0jSrVq+a9ihJkiQtVFd+U5rwLhGHhvbLOL+fE2dNtB2CJEmSRlxXflP265e6JEmSJEkNe3i1aF0ZriBJkiRp/4zLLTdNeLVoXRmuIEmSJGn/jMstN014JUmSJEl7Nao9wr1KeJNsAjZt2LCh7VAAh/r2je+nJEmSxtWo9gj3atKqqvpcVZ27evXqtkMBBkN9X3veax3y2xO+n5K6IMnGJA8keTDJBXOsPzjJp5v1tyU5dsq6C5vlDyR5w77KTLK+KeNvmzIPapa/LsmdSZ5JcvpwayxJ0vPXq4RXGgebN2/mLW95C5s3b247lE7x76JxkGQFcBnwa8DxwJlJjp+x2duAXVW1AbgUuKTZ93jgDOClwEbgY0lW7KPMS4BLq+o4YFdTNsAjwG8CfzqMekqStFR6NaRZGgejOpxk2Py7aEycBDxYVQ8BJLkWOBX45pRtTgU+1DzfCnw0SZrl11bVk8DDSR5symOuMpPcD5wMnNVsc3VT7ser6u+abZ8bQh0lSS3becNFs5Y99/jOPY+z1h/S3Uv+THgXYFQv1NZ483Mr9cpRwLenvN4OvHK+barqmST/ALyoWf61Gfse1Tyfq8wXAT+oqmfm2H6/JDkXOBdg3bp1C9lVkqQlYcK7APYgaRT5uZV6JXMsq/3cZr7lc13etLft91tVXQ5cDjAxMbGgfSVJS+virbdOe73zsSf2PG23veYAABEhSURBVM5cd97KZQtr6MY64bXnS5I0YrYDx0x5fTTwnXm22Z7kAGA1sHMf+861/PvAmiQHNL28cx1LkjQmjjz84GmPo2KsE157vqTR1KfrSqQFugM4Lsl6YAeDSajOmrHNNuBs4FbgdOCmqqok24A/TfKHwIuB44DbGfTkziqz2efmpoxrmzI/O+wKSpK66QNvOqHtEJ4XZ2mWJGlEND2t5wNfBO4Hrquq+5J8OMkpzWZXAC9qJqV6D3BBs+99wHUMJrj6AvDOqnp2vjKbst4HvKcp60VN2SR5RZLtwG8Af5xk9/aSJHXKWPfwSpI0aqrqRuDGGct+d8rzJxgkonPtezFw8f6U2Sx/iB/P5Dx1+R0MhjhLktRp9vBKkiRJknrJHl5JvTCqEylIkiRpeEx4JfXCqE6kIEmS1IaVh62Z9thXJrySJEmSNGZO3HRO2yEsC6/hlSRJkiT1kgmvJEmSJKmXTHglSZIkSb3kNbxSj+y84aJZy557fOeex1nrD1m1HGFJkiRJrbCHV5IkSZLUSya8kiRJkqReGqshzRdvvXXa652PPbHncea695/+6mWLS5IkSZK09MYq4ZWm2rx5M5OTk6xdu5YtW7a0HY4kSZKkJWbCq7E1OTnJjh072g5DkiRJ0pCY8M7D2W4lSZIkabSZ8Ko3HKLcL76fkiRJWiwTXvXG3oYo22M/ehxyLkmSpMXytkSSJEmSpF4y4ZUkSZIk9ZJDmjWL105KkiRJ6gMTXs3itZPdcvHWW6e93vnYE3seZ647b+WyhSVJkiR1ngmvxtaRhx887VGSJElSv5jwamx94E0ntB2CJEmSpCEy4ZV6zp5sSZIkjSsT3jHn/Wn7z55sSZIkjStvSyRJkiRJ6iUTXkmSJElSL5nwSpIkSZJ6aayv4V152Jppj/syLpP/jEs91S3eb1iSJElLbawT3hM3nbOg7cdl8p9xqackSZKkfnNIsyRJkiSpl0x4JUmSJEm9ZMIrSZIkSeolE15JkiRJUi+Z8EqSJEmSesmEV5IkSZLUS2N9WyJJkiRJ3bB582YmJydZu3YtW7ZsaTsc9YQJ7xjwPw+NopWHrZn2KEmS+m1ycpIdO3a0HYZ6xoR3DPT1P4+Lt9467fXOx57Y8zhz3Xkrly0sLZETN53TdgiSJEkacSa8kiRJkrRMHH25vEx4JUmSJGkIttw0O6G9/+H7+eHOH7LrR7umrT/N+YSHovMJb5IXAB8BDge+XlVXtxySJEmSJGkEDPU0QpIrkzya5N4ZyzcmeSDJg0ku2EcxpwJHAU8D24cVqyRJkiQN26rVqzjkhYewavWqtkMZC8Pu4f0E8FHgv+5ekGQFcBnwKwwS2DuSbANWAL83Y/+3Ai8Bbq2qP06yFfjzIccsSZIkSUMxcdZE2yGMlaEmvFV1S5JjZyw+CXiwqh4CSHItcGpV/R7wxpllJNkOPNW8fHa+YyU5FzgXYN26dYuOfZQ5e7EkSePNSXHUdXNd27rrR7v2PLZ5betCvz9+37qtjWt4jwK+PeX1duCVe9n+euA/J3ktcMt8G1XV5cDlABMTE7UEcUqSJI2kvt6SUFoOC/3++H3rtjYS3syxbN4Etap+CLxteOFIkiRJ0r7tvOGiWcuee3znnsdZ6w/xOt22tTH39XbgmCmvjwa+00IckiRJkqQea6OH9w7guCTrgR3AGcBZLcQhSZIkqSN2z1q83LMXL3b+myMPP3jao7plqAlvkk8Bvwwc0Uw+9cGquiLJ+cAXGczMfGVV3TfMOCRJkqCfk8t0efKfYevj+znORnX24g+86YS2Q9BeDHuW5jPnWX4jcOMwjy311crD1kx7lCTtPyeX6Zc+vp9zncCYT99OYHSFv7X6pY0hzZIW4cRN57QdgiSNhHHu+eyjLr+f9jTPbVT/Lv7W6pdeJbxJNgGbNmzY0HYonTIuZ6nGpZ6S1Gfe/3JptHUt5HLrSj0X2tM8Lp/bPvbAa/T0KuGtqs8Bn5uYmHhH27F0ybicpRqXekpSnw37/pddSZCGbVSvhVyoUa1nHxNBb9ejrupVwitJkrQ3o5ogjYtx6fkcF85erC4w4ZUkSa1Z2O1AvjRr/3HpQRrVRHChcdvzSac/twt9P529WF1gwitJktRxo5oI7i3uUU4EF3vf1lE1qp9DjTcTXkmSpGW2t56yUU4EF2tchsCOSj3HNbFXv5jwSpKkzljojPujkjjMtNCeslGp52ITpHEZAjsu9ZS6wIRXkiR1xkJn3B+VxMFEUH3gLSA1ikx4JUmSltm4JA7Ws1+8BaRGUa8S3iSbgE0bNmxoOxRJkqR5jUviYD0lte0FbQewlKrqc1V17urVq9sORZIkSZLUsl4lvJIk9V2SjUkeSPJgkgvmWH9wkk83629LcuyUdRc2yx9I8oZ9lZlkfVPG3zZlHrSvY0iS1CUmvJIkjYgkK4DLgF8DjgfOTHL8jM3eBuyqqg3ApcAlzb7HA2cALwU2Ah9LsmIfZV4CXFpVxwG7mrLnPYYkSV1jwitJ0ug4CXiwqh6qqqeAa4FTZ2xzKnB183wr8PokaZZfW1VPVtXDwINNeXOW2exzclMGTZmn7eMYkiR1Sqqq7RiWXJLvAX+/zIc9Avj+Mh+zDdazX6xnv1jP4fmpqjpymY85S5LTgY1V9fbm9ZuBV1bV+VO2ubfZZnvz+v8ArwQ+BHytqj7ZLL8C+Hyz26wyp2y/oVl+DPD5qnrZfMeoqmnvS5JzgXObly8BHljCP8f+8DvRL9azX6xnv3S2be7VLM27tfGjJMnXq2piuY+73Kxnv1jPfrGeY2GuXtSZZ67n22a+5XON9trb9vsbB1V1OXD5HNsui3H5rFjPfrGe/WI92+eQZkmSRsd24Jgpr48GvjPfNkkOAFYDO/ey73zLvw+sacqYeaz5jiFJUqeY8EqSNDruAI5rZk8+iMEkVNtmbLMNOLt5fjpwUw2uX9oGnNHMsLweOA64fb4ym31ubsqgKfOz+ziGJEmd0sshzS1pbcjWMrOe/WI9+8V69lxVPZPkfOCLwArgyqq6L8mHga9X1TbgCuC/JXmQQa/rGc2+9yW5Dvgm8Azwzqp6FmCuMptDvg+4Nsl/AO5qyma+Y3TQuHxWrGe/WM9+sZ4t6+WkVZIkSZIkOaRZkiRJktRLJrySJEmSpF4y4V2EJMckuTnJ/UnuS/Lbbcc0TElWJLkryQ1txzIsSf5t817em+RTSVa2HdNSSXJlkkeb+2dOXf6uJA809d7SVnxLIcnKJLcnubupz0XN8muaOt7b/B0ObDvWxUqyJsnWJN9q/g969ZR1701SSY5oM8bnY67PaZLfb+p5T5L/nmRNs/zAJFcn+UbzN7iwvcjVFbbN/WPbbNs8Kmybu9k2m/AuzjPA71TVPwFeBbwzyfEtxzRMvw3c33YQw5LkKODdwERVvYzB5C1dnYjl+fgEsHHqgiT/DDgVOKGqXgr8QQtxLaUngZOr6ueBlwMbk7wKuAb4WeDngFXA29sLccn8EfCFqvpZ4OdpvptJjgF+BXikxdgW4xPM+JwCXwZeVlUnAP8b2N14/gZwcFX9HPCLwG8lOXZ5wlSH2Tb3iG2zbfOIsW3uYNtswrsIVfXdqrqzef7/GHyoj2o3quFIcjTw68CftB3LkB0ArMrgvpKHMPv+liOrqm5h9n0yzwP+Y1U92Wzz6LIHtoRq4LHm5YHNv6qqG5t1xeA2LEe3FuQSSHI48DqaGXOr6qmq+kGz+lJgMzCSMxLO9Tmtqi9V1TPNy6/x4/evgEOb7+sq4Cng/y5XrOom2+Zesm0eYbbNgG1zq22zCe8Sac5cnAjc1m4kQ/OfGHxRn2s7kGGpqh0MzqI+AnwX+Ieq+lK7UQ3dzwCvTXJbkr9I8oq2A1qsZnjf3wCPAl+uqtumrDsQeDPwhbbiWyI/DXwPuKoZyvgnSQ5Ncgqwo6rubjm+YXor8Pnm+VbgcQbf10eAP6iqmT8cNcZsm0efbbNt8wixbR7oXNtswrsEkvwE8GfAv6mq3vUuJHkj8GhV/XXbsQxTkp9kMIRoPfBiBmen/mW7UQ3dAcBPMhj29++A65Kk3ZAWp6qeraqXMzjTeFKSl01Z/THglqr6y3aiWzIHAL8AfLyqTmTQsHwIeD/wuy3GNVRJ3s9guOo1zaKTgGcZfF/XA7+T5KdbCk8dY9vcD7bNts0jxLZ5oHNtswnvIjVnpf4MuKaqrm87niF5DXBKkr8DrgVOTvLJdkMain8OPFxV36uqp4HrgX/ackzDth24vhlRdDuDXoKRm0xhLs0woq/QXHOS5IPAkcB7WgxrqWwHtk85Q76VQSO7Hri7+a4eDdyZZG07IS6tJGcDbwT+Rf34BvJnMbhW6ulmyN9XgYm2YlR32Db3im2zbfOosG0e6FzbbMK7CM3ZtiuA+6vqD9uOZ1iq6sKqOrqqjmUwUcRNVdXHs6uPAK9Kckjz3r6eHk8E0vgMcDJAkp8BDgK+32pEi5DkyCmzBK5i8EPpW0neDrwBOLOqRn7oX1VNAt9O8pJm0euBO6vqH1XVsc13dTvwC822Iy3JRuB9wClV9cMpqx5h8CM/SQ5l0BvyrTZiVHfYNveObbNt80iwbd6jc23zAW0evAdew+Cag2801yUA/PuqurHFmPQ8VdVtSbYCdzIYmnEXcHm7US2dJJ8Cfhk4Isl24IPAlcCVzTTzTwFnTzlDN4r+MXB1khUMTuhdV1U3JHkG+Hvg1mZU2PVV9eEW41wK7wKuSXIQ8BBwTsvxLIl5PqcXAgcDX27ev69V1b8CLgOuAu4FAlxVVfe0Ebc6xba5R2ybbZtHjG1zB9vmjPb3R5IkSZKkuTmkWZIkSZLUSya8kiRJkqReMuGVJEmSJPWSCa8kSZIkqZdMeCVJkiRJvWTCK0mSJEnqJRNeqaOSHNvcg2/m8q8kmXge5X0oyXsXEc8pSS54vvtLkjTqbJul0XNA2wFIGg1VtQ3Y1nYckiRpwLZZ2jd7eKVuOyDJ1UnuSbI1ySFTVyY5M8k3ktyb5JIpyzcmuTPJ3Un+fGahSd6R5PNJVs110CTvTvLN5rjXNst+M8lHm+d/M+Xfj5L8UpJDk1yZ5I4kdyU5dWn/FJIkdYJtszRC7OGVuu0lwNuq6qtJrgT+9e4VSV4MXAL8IrAL+FKS04CvAv8FeF1VPZzkhVMLTHI+8KvAaVX15DzHvQBYX1VPJlkzc2VVvbwpaxOwGfhfwEXATVX11maf25P8z6p6fDF/AEmSOsa2WRohJrxSt327qr7aPP8k8O4p614BfKWqvgeQ5BrgdcCzwC1V9TBAVe2css+bge0MGtSn93Lce4BrknwG+MxcGyQ5Dvh94OSqejrJrwKnTLkWaSWwDrh/v2srSVL32TZLI8QhzVK31V5eZ559Msd+u90LHAscvY/j/jpwGYMz1H+dZNrJsSSHAtcB76iq70w57puq6uXNv3VVZYMqSeob22ZphJjwSt22Lsmrm+dnAn81Zd1twC8lOSLJimb9XwC3NsvXA8wYNnUX8FvAtmbY1SxJXgAcU1U3MxgStQb4iRmbXQVcVVV/OWXZF4F3JUlTzokLrq0kSd1n2yyNEBNeqdvuB85Ocg/wQuDju1dU1XeBC4GbgbuBO6vqs80wqnOB65PcDXx6aoFV9VfAe4H/keSIOY65Avhkkm8waIQvraof7F6Z5KeA04G3TpkcYwL4CHAgcE8Gt2z4yNL8CSRJ6hTbZmmEpGq+0RWSJEmSJI0ue3glSZIkSb3kLM3SGEtyGfCaGYv/qKquaiMeSZLGnW2ztLQc0ixJkiRJ6iWHNEuSJEmSesmEV5IkSZLUSya8kiRJkqReMuGVJEmSJPXS/wcUgiEQ1eSf+AAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7gAAAF0CAYAAAAJjJW9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXhV1bn48e8yIKBSlEFpBQWrIoMRNAEtYBEE1DJYkDK0BZxoUYtXfw5UW7UVqhdx4mrrpQ7orRWpIzjUCuKEoARFRBCLihg0yiSCgIqu3x85pCETCSSc5Jzv53nynLPXXmvtd58T2OvNXnvvEGNEkiRJkqSabq9kByBJkiRJUmUwwZUkSZIkpQQTXEmSJElSSjDBlSRJkiSlBBNcSZIkSVJKMMGVJEmSJKWEWskOoCo0btw4tmjRItlhSJJSxIIFC9bEGJskO46azGOzJKkylXZsTskEt0WLFuTk5CQ7DElSigghfJjsGGo6j82SpMpU2rHZKcqSJEmSpJRggitJkiRJSgkmuJIkSZKklGCCK0mSJElKCSa4kiRJkqSUYIIrSZIkSUoJJriSJEmSpJRggitJkiRJSgkmuJIkSZKklGCCK0mSJElKCSa4kiRJkqSUYIIrSZIkSUoJtZIdgCRJe9Jll11GXl4eTZs2ZcKECckOR5KktFeZx2YTXElSynr3honFyj5aupTPNm/mm/Xri60/8tJL9lRokiQpIS8vj1WrVlVKXya41YRnFFKL36ckSZK055ngVhOV+VeL6ixdEj+/T6n6alSv3g6vkiQpdZjgJkFJU+a+Wb++4DVVpsyly9RAv8/U/z7L4n7WPGOyOyY7BEmSVEVMcKsJzyikFr9PSZIkqbiqPjlkgltNpMsZhXRJ/Pw+JUmSpD3PBFd7VLokfunC71OSJEnVyV7JDkCSJEmSpMpggitJkiRJSglOUZYkSZIkJU1l3tfFBFeSJEmSlDSVeV8XpyhLkiRJklJCjUhwQwj7hhAWhBD6JDsWSZIkSVL1VKUJbgjh7hDCZyGExUXKTwkhLAshLA8hjC1HV5cD06omSkmSJElSKqjqa3CnALcB920vCCFkALcDPYFcYH4IYTqQAVxXpP1ZQCawBKhbxbFKkiQVuOyyy8jLy6Np06ZMmDAh2eFIksqhShPcGOOLIYQWRYo7AstjjO8DhBCmAv1jjNcBxaYghxBOAvYF2gBbQghPxRi/K6HeKGAUwCGHHFKZuyFJktJQXl4eq1atSnYYqiT+wUI1kb+3FZeMuygfDHxUaDkX6FRa5RjjlQAhhJHAmpKS20S9ycBkgKysrFhZwUqSJKnmS5c/WKRLQpQu+5kuv7eVKRkJbiihbKcJaYxxSuWHIkmSBO/eMLFY2Tfr1xe8Fl1/5KWX7JG4pIpKl4QoFffT/4cqRzIS3FygeaHlZsDHSYhDkiRJKchEIbX4faoikpHgzgeOCCG0BFYBQ4BhSYhDkiQp7aXLVM9UZOKX+hrVq7fDq3auShPcEMIDQDegcQghF7g6xnhXCOEC4Bny75x8d4zx7aqMQ5IkqaLSZWCZilM9lfrS5d/nmOyOyQ6hxqnquygPLaX8KeCpyt5eCKEv0Pfwww+v7K4lSVKaScWBZTqf8UuXhChdpOK/T1WOZExRrjIxxhnAjKysrHOTHYskSVJNkC6JX7okROnyfUqlSakEV5IkSRWTLolfuvD7VLrbK9kBSJIkSZJUGUxwJUmqIUIIp4QQloUQlocQxpawPoQQJiXWLwohHLuztiGEhiGEZ0MI/068HpAobxRCmB1C2BRCuK1Q/X1CCE+GEN4JIbwdQri+qvdbkqTyMsGVJKkGCCFkALcDpwJtgKEhhDZFqp0KHJH4GQX8pRxtxwKzYoxHALMSywBbgd8DJd1laGKM8SigA9A5hHBqpeykJEm7yQRXkqSaoSOwPMb4fozxa2Aq0L9Inf7AfTHfPGD/EML3d9K2P3Bv4v29wOkAMcYvY4wvk5/oFogxbo4xzk68/xp4HWhWyfsqSdIuSakEN4TQN4QwecOGDckORZKkynYw8FGh5dxEWXnqlNX2oBjjJwCJ1wPLG1AIYX+gL/lnfiVJSrqUSnBjjDNijKMaNGiQ7FAkSapsoYSyWM465WlbsWBCqAU8AEyKMb5fSp1RIYScEELO6tWrd2dzkiSVS0oluJIkpbBcoHmh5WbAx+WsU1bbTxPTmEm8flbOeCYD/44x3lJahRjj5BhjVowxq0mTJuXsVpKkXWeCK0lSzTAfOCKE0DKEsDcwBJhepM50YHjibsrHAxsS047LajsdGJF4PwJ4fGeBhBDGAQ2A/9rdnZIkqTLVSnYAkiRp52KM20IIFwDPABnA3THGt0MIv06svwN4CjgNWA5sBs4sq22i6+uBaSGEs4GVwKDt2wwhrAC+B+wdQjgd6AV8AVwJvAO8HkIAuC3GeGcV7r4kSeVigitJUg0RY3yK/CS2cNkdhd5H4Pzytk2UrwV6lNKmRSmhlHRNryRJSecUZUmSJElSSjDBlSRJkiSlhJRKcH0OriRJkiSlr5RKcH0OriRJkiSlr5RKcCVJkiRJ6csEV5IkSZKUEkxwJUmSJEkpwQRXkiRJkpQSTHAlSZIkSSnBBFeSJEmSlBJMcCVJkiRJKSGlEtwQQt8QwuQNGzYkOxRJkiRJ0h6WUglujHFGjHFUgwYNkh2KJEmSJGkPS6kEV5IkSZKUvkxwJUmSJEkpwQRXkiRJkpQSTHAlSZIkSSnBBFeSJEmSlBJMcCVJkiRJKcEEV5IkSZKUEkxwJUmSJEkpIaUS3BBC3xDC5A0bNiQ7FEmSJEnSHpZSCW6McUaMcVSDBg2SHYokSZIkaQ9LqQRXkiRJkpS+THAlSZIkSSnBBFeSJEmSlBJMcCVJkiRJKcEEV5IkSZKUEkxwJUmSJEkpwQRXkiRJkpQSTHAlSZIkSSnBBFeSJEmSlBJMcCVJkiRJKcEEV5IkSZKUElIqwQ0h9A0hTN6wYUOyQ5EkSZIk7WEpleDGGGfEGEc1aNAg2aFIkiRJkvawlEpwJUmSJEnpywRXkiRJkpQSTHAlSaohQginhBCWhRCWhxDGlrA+hBAmJdYvCiEcu7O2IYSGIYRnQwj/TrwekChvFEKYHULYFEK4rch2jgshvJXoa1IIIVTlfkuSVF4muJIk1QAhhAzgduBUoA0wNITQpki1U4EjEj+jgL+Uo+1YYFaM8QhgVmIZYCvwe+CSEsL5S6L/7ds6pRJ2UZKk3WaCK0lSzdARWB5jfD/G+DUwFehfpE5/4L6Ybx6wfwjh+ztp2x+4N/H+XuB0gBjjlzHGl8lPdAsk+vtejHFujDEC921vI0lSspngSpJUMxwMfFRoOTdRVp46ZbU9KMb4CUDi9cByxJG7kzgkSUoKE1xJkmqGkq5zjeWsU562lRlHfsUQRoUQckIIOatXr97FzUmSVH4muJIk1Qy5QPNCy82Aj8tZp6y2nyamHW+ffvxZOeJotpM4AIgxTo4xZsUYs5o0abKTbiVJ2n0muJIk1QzzgSNCCC1DCHsDQ4DpRepMB4Yn7qZ8PLAhMe24rLbTgRGJ9yOAx8sKItHfxhDC8Ym7Jw/fWRtJkvaUWskOQJIk7VyMcVsI4QLgGSADuDvG+HYI4deJ9XcATwGnAcuBzcCZZbVNdH09MC2EcDawEhi0fZshhBXA94C9QwinA71ijEuA0cAUoB7wdOJHkqSkM8GVJKmGiDE+RX4SW7jsjkLvI3B+edsmytcCPUpp06KU8hygXXnjliRpT3GKsiRJkiQpJZjgSpIkSZJSggmuJEmSJCklpFSCG0LoG0KYvGHDhmSHIkmSJEnaw1IqwY0xzogxjmrQoEGyQ5EkSZIk7WEpleBKkiRJktKXCa4kSZIkKSWY4EqSJEmSUoIJriRJkiQpJZjgSpIkSZJSggmuJEmSJCklmOBKkiRJklKCCa4kSZIkKSWY4EqSJEmSUoIJriRJkiQpJZjgSpIkSZJSggmuJEmSJCklmOBKkiRJklKCCa4kSZIkKSWY4EqSJEmSUoIJriRJkiQpJZjgSpIkSZJSggmuJEmSJCklmOBKkiRJklKCCa4kSZIkKSWY4EqSJEmSUkKtZAdQmUIIfYG+hx9+eLF133zzDbm5uWzdunXPB1Y0lq5dK1R/6dKlVRRJ1aqq/axbty7NmjWjdu3auxKWJEmSUlh1GvdXhDlCSSIffPBBhcb+KZXgxhhnADOysrLOLbouNzeX+vXr06JFC0IISYjuP7bm5VWoft2mTasokqpVFfsZY2Tt2rXk5ubSsmXLXQ1NkiRJKao6jfsrwhyhuBgjX9auXaGxf9pMUd66dSuNGjWqUb/kKi6EQKNGjWrcX+QkSZK0ZzjuTx27MvZPmwQX8Jc8Rfg9SpIkqSyOF1NHRb/LtEpwJUmSJEmpywRXkiRJkpQSTHCrsQ8/+oj2Xbty7rnn0rZtW3r16sWWLVv461//SnZ2NscccwwDBw5k8+bNAIwcOZLRo0dz0kkncdhhh/HCCy9w1lln0bp1a0aOHFnQ77/+9S9OOOEEjj32WAYNGsSmTZuStIeSJEmSVqxYQfuuXTnv//0/jv3xj+kzeDBbtmzh7r/9jc6nnELHHj0YcvbZBeP+cy+80HF/KUxwq7nlH3zA+eefz9tvv83+++/Pww8/zIABA5g/fz5vvvkmrVu35q677iqov379ep577jluvvlm+vbty0UXXcTbb7/NW2+9xcKFC1mzZg3jxo1j5syZvP7662RlZXHTTTclcQ8lSZIkLf/gA3515pm8/sILNGjQgMeefJL+p53GnH/+k9dmzeKoI45gygMPFNR33F+ylHpMUCpqccghtG/fHoDjjjuOFStWsHjxYn73u9/x+eefs2nTJnr37l1Qv2/fvoQQOProoznooIM4+uijAWjbti0rVqwgNzeXJUuW0LlzZwC+/vprTjjhhD2/Y5IkSZIKtDjkEI5p1w6ADpmZfPjRRyx55x2u+e//ZsMXX7Dpyy/p2a1bQX3H/SUzwa3m6uy9d8H7jIwMtmzZwsiRI3nsscc45phjmDJlCs8///x/6tepA8Bee+1V8H778rZt28jIyKBnz548UOivP5IkSZKSq+i4f+vWrZz7X//FtHvuIbNtW/7vwQd58ZVX/lPfcX+JnKJcA23cuJHvf//7fPPNN9x///0Vanv88cczZ84cli9fDsDmzZt59913qyJMSZIkSbth06ZNND3oIL755humPvJIhdqm67jfM7g10LXXXkunTp049NBDOfroo9m4cWO52zZp0oQpU6YwdOhQvvrqKwDGjRvHkUceWVXhSpIkSdoFV11+OSeedhqHNGtG29atK3STqHQd95vgVmOHNm/OgkLTjy+55JKC96NHjy5Wf8qUKQXvW7RoweLFi0tc1717d+bPn1+psUqSql4I4RTgViADuDPGeH2R9SGx/jRgMzAyxvh6WW1DCA2BB4EWwArgZzHG9Yl1vwXOBr4FxsQYn0mUDwWuACLwMfCLGOOaKttxSUpxLVq02GHcf1Ghsf6oESOK1f/rrbdSt2nTgraO+//DKcqSJNUAIYQM4HbgVKANMDSE0KZItVOBIxI/o4C/lKPtWGBWjPEIYFZimcT6IUBb4BTgzyGEjBBCLfIT5ZNijJnAIuCCKtlpSZIqyARXkqSaoSOwPMb4fozxa2Aq0L9Inf7AfTHfPGD/EML3d9K2P3Bv4v29wOmFyqfGGL+KMX4ALE/0ExI/+ybOGH+P/LO4kiQlnQmuJEk1w8HAR4WWcxNl5alTVtuDYoyfACReDyyrrxjjN8Bo4C3yE9s2wF1IklQNmOBKklQzhBLKYjnrlKdtubYXQqhNfoLbAfgB+VOUf1tiByGMCiHkhBByVq9evZPNSZK0+0xwJUmqGXKB5oWWm1F8anBpdcpq+2liGjOJ18920ld7gBjjezHGCEwDflRSwDHGyTHGrBhjVpMmTcqzj5Ik7RYTXEmSaob5wBEhhJYhhL3JvwHU9CJ1pgPDQ77jgQ2JacdltZ0ObL9F5wjg8ULlQ0IIdUIILcm/cdVrwCqgTQhhe8baE1ha2TsrSdKuMMEVAI899hhLliyptP7+9Kc/VVpfkiSIMW4j/27Fz5CfUE6LMb4dQvh1COHXiWpPAe+Tf0OovwLnldU20eZ6oGcI4d/kJ6vXJ9q8Tf7Z2SXAP4HzY4zfxhg/Bv4AvBhCWET+GV3/05ekGiLVx/1p+xzc8Q/NrdT+rjzjhErtr6ht27ZRq1bVfV2PPfYYffr0oU2bok+c2LVt/+lPf+Lis86qrPAkSUCM8Snyk9jCZXcUeh+B88vbNlG+FuhRSpvxwPgSyu8A7ijeQpKqH8f9O6qKcf8VV1xRWeHtNs/g7kErVqzgqKOO4pwxY8ju3p2h55zD5s2baZWdzZq1awFYsHAhvQYMAGDcxImcf8kl9OrVi+HDh7N69WoGDhxIdnY22dnZzJkzp9Rtffnll5x11llkZ2fToUMHHn88f8bZmDFj+OMf/wjAM888w4knnsgrr7zC9OnTufTSS2nfvj3vvfce3bp144orruDHP/4xt956KzNmzKBTp0506NCBk08+mU8//RSATZs2ceaZZ3L00UeTmZnJww8/zNixY9myZQudTj6ZkeedV5UfqSRJklTtbB/3jxgxgszMTM444ww2b95MixYtWLNmDQA5OTl069YNgGuuuYbzL7mEPoMHc/aYMaxes4YhZ59N51NOofMpp/DKa6+Vuq3qMO5v3749P//5z6vwEy2/tD2DmyzLli3jzxMm8KOOHfnVRRfxv/feW2b9NxYtYs6rr1KvXj2GDRvGRRddRJcuXVi5ciW9e/dm6dKSL3saP3483bt35+677+bzzz+nY8eOnHzyyVx//fVkZ2fTtWtXxowZw1NPPcUPf/hD+vXrR58+fTjjjDMK+vj888954YUXAFi/fj3z5s0jhMCdd97JhAkTuPHGG7n22mtp0KABb731VkG9gQMHctttt/HqzJmV9KlJkiRJNcuyZcu466676Ny5M2eddRZ//vOfy6z/xqJFzHr8cerVq8eI887jN6NG0blTJ1bm5tJv6FAWvvRSie2qw7h/4cKFlfSp7T4T3D2sefPm/KhjRwCGDhzI7XfeWWb9n/TuTb169QCYOXPmDvPlv/jiCzZu3Ej9+vWLtfvXv/7F9OnTmThxIgBbt25l5cqVtG7dmr/+9a+ceOKJ3Hzzzfzwhz8sdduDBw8ueJ+bm8vgwYP55JNP+Prrr2nZsmVBTFOnTi2od8ABB+zsI5AkSZJSXvPmzencuTMAv/jFL5g0aVKZ9QuP+2e/+CLvvPtuwbovNm1i46ZN1N9vv2LtHPfvyAR3DwshFFuuVasW38X8xxFu/eqrHdbvs88+Be+/++475s6dW/CLX5YYIw8//DCtWrUqtu6tt96iUaNGfPxx0adL7GjfffcteP+b3/yGiy++mH79+vH8889zzTXXFGyn6D5JkiRJ6a7Ucf933wH5iWhhRcf9z8+Y4bh/F3gN7h62cuVK5uXkADDt0Uf5UadOHNq8OW+8+SYAjz35ZKlte/XqxW233VawXNZUgN69e/M///M/xETi/MYbbwDw4YcfcuONN/LGG2/w9NNP8+qrrwJQv359Nm7cWGp/GzZs4OCDDwbg3kLTqovGtH79egBq167NN998U2p/kiRJUipbuXIlc+fm3+DqgQceoEuXLrRo0YIFCxYA8PDDD5fatke3bvzlnnsKlt9cvLjUuo77d2SCu4e1bt2a+6dNI7t7d9Z9/jmjhg/niosv5pKrrqJH//5kZGSU2nbSpEnk5OSQmZlJmzZtuOOO0m9g+fvf/55vvvmGzMxM2rVrx+9//3tijJx99tlMnDiRH/zgB9x1112cc845bN26lSFDhnDDDTfQoUMH3nvvvWL9XXPNNQwaNIiuXbvSuHHjgvLf/e53rF+/nnbt2nHMMccwe/ZsAEaNGkV29+7eZEqSJElpqXXr1tx7771kZmaybt06Ro8ezdVXX82FF15I165dyxz333jttbz+5ptkd+9OhxNP5M777iu1bnUY92dmZlabm0yF7Zl+KsnKyoo5ibOk2y1dupTWrVsnKaJ8K1asoE+fPuRU8OZLdZs2raKIqtbWvLwK1a/IflaH73O7d2+YWKH6R156SRVFUrXcz5K5n9VbZe1nCGFBjDGrMmJKVyUdm6sT/02UzP2s3tzPkn3b5ydJHyduH/cvLuPMa1FVOXauTnZlP0sa+5d2bPYMriRJkiQpJXiTqT2oRYsWLF68uMJ/tSjLPffcw6233rpDWefOnbn99tsrbRuSJEmSym/7uL8y3Td16g5PYAm1ajnuL4EJbg135plncuaZZyY7DEmSJElVaPiQIQwfMqRguaZOUa5qTlGWJEmSJKUEE1xJkiRJUkrYaYIbQjgyhDArhLA4sZwZQvhd1YcmSVJq8tgqSVLVKM8Z3L8CvwW+AYgxLgKGlNlCkiSVxWOrJElVoDwJ7j4xxteKlG2rimBUs61YsYK///3vldbfY489xpIlSyqtP0mqRjy2SpJqrMoe909/+mmWLltWKX2V5y7Ka0IIPwQiQAjhDOCTStl6OYQQugHXAm8DU2OMz1dGv+ue+ENldFOgYZ+rK7W/orZt20atWtX7ptfbf9GHDRtWbN2uxP/YY4/Rp08f2rRpU1khSlJ1kdRjqySlE8f9la+yx/0z/vlPTu3Zk9atWu12bOU5g3s+8L/AUSGEVcB/AaPL03kI4e4QwmfbrzEqVH5KCGFZCGF5CGHsTrqJwCagLpBbnu1WVytWrOCoo47inDFjyO7enaHnnMPmzZtplZ3NmrVrAViwcCG9BgwAYNzEiZx/ySX06tWL4cOHs3r1agYOHEh2djbZ2dnMmTOn1G1dc801nHXWWXTr1o3DDjuMSZMmFay76aabaNeuHe3ateOWW24pM+a//e1vdOzYkfbt2/OrX/2Kb7/9lvnz55OZmcnWrVv58ssvadu2LYsXL2bs2LG89NJLtG/fnptvvpn/e/BBhp17LgOHD6fPkCFs+vJLTh00iBN69iTrpJOY8c9/Fmzn/mnTyMzM5JhjjuGXv/wlr7zyCtOnT+fSSy+lffv2vPfee7vz0UtSdbPLx1ZJUvW3fdw/YsQIMjMzOeOMM9i8eTMtWrRgzZo1AOTk5NCtWzcgf+x+/iWX0GfwYM4eM4bVa9Yw5Oyz6XzKKXQ+5RReea3opJ//qA7j/ilTpjBo0CD69u1Lr1692LRpEz169ODYY4/l6KOP5vHHHy/Yzv3TppHdvTsde/TgrAsuYO78+Tz5r39xxR//SKeTT+b9FSt2/YOnHGdwY4zvAyeHEPYF9ooxbqxA/1OA24D7theEEDKA24Ge5Ces80MI04EM4Loi7c8CXooxvhBCOAi4Cfh5BbZf7Sxbtow/T5jAjzp25FcXXcT/3ntvmfXfWLSIOa++Sr169Rg2bBgXXXQRXbp0YeXKlfTu3ZulS5eW2vadd95h9uzZbNy4kVatWjF69GgWLVrEPffcw6uvvkqMkU6dOvHjH/+YDh06FGu/dOlSHnzwQebMmUPt2rU577zzuP/++xk+fDj9+vXjd7/7HVu2bOEXv/gF7dq14/rrr2fixIk88cQTAPz11lt5dcEC5s+aRcMDDmDbtm08ePfdfK9+fdasXcuP+/ShT+/eLH33Xf570iRemTePxo0bs27dOho2bEi/fv3o06cPZ5xxxu596JJUzezmsVWSVAMsW7aMu+66i86dO3PWWWfx5z//ucz6byxaxKzHH6devXqMOO88fjNqFJ07dWJlbi79hg5l4Usvldo22eP+KVOmMHfuXBYtWkTDhg3Ztm0bjz76KN/73vdYs2YNxx9/PP369WPJkiX896RJPPf44zRu1Ih169fT8IAD+EmvXpzasycD+vTZvQ+dciS4IYT9geFAC6BWCAGAGOOYnbWNMb4YQmhRpLgjsDxxcCeEMBXoH2O8Dihrj9YDdXa2zequefPm/KhjRwCGDhzI7XfeWWb9n/TuTb169QCYOXPmDtekfvHFF2zcuJH69euX3PYnP6FOnTrUqVOHAw88kE8//ZSXX36Zn/70p+y7774ADBgwgJdeeqnEX/RZs2axYMECsrOzAdiyZQsHHnggAFdddRXZ2dnUrVt3h78SFdXjxBNpeMABAMQYueq665gzbx577bUXH+fl8enq1Tz/8sv89Cc/oXHjxgA0bNiwzM9Ekmq63Tm2SpJqhubNm9O5c2cAfvGLX5Q5ZoYdx/2zX3yRd959t2DdF5s2sXHTJurvt1/JbavBuL9nz54F4/gYI1dccQUvvvgie+21F6tWreLTTz/lueeeyx/3N2oEUJAnVKbyTI5+CpgHvAV8VwnbPBj4qNByLtCptMohhAFAb2B/8s8Gl1ZvFDAK4JBDDqmEMKvG9kFM4eVatWrxXYwAbP3qqx3W77PPPgXvv/vuO+bOnVvwi78zder85+8BGRkZbNu2jZjYTnnEGBkxYgTXXVf0xDqsW7eOTZs28c0337B169aCfzhFFY5/6iOPsGbtWl555hlq165Nq+xsvvrqK2KMxT4XSUpxlX1slSRVM6WO+7/L/29/69atO6wvOu5/fsaMGjXuL1x+//33s3r1ahYsWEDt2rVp0aIFW7du3SPj/vJcg1s3xnhxjPGeGOO92392Y5sl7VGpn36M8ZEY469ijIPLusFUjHFyjDErxpjVpEmT3Qivaq1cuZJ5OTkATHv0UX7UqROHNm/OG2++CcBjTz5ZattevXpx223/yfEXLlxY4e2feOKJPPbYY2zevJkvv/ySRx99lK5du5ZYt0ePHjz00EN89tlnQP4v94cffgjAqFGjuPbaa/n5z3/O5ZdfDkD9+vXZuLH0WXYbvviCJo0bU7t2bV6YM4eVufmXVJ/UtSsPz5jB2sR1yOvWrStXf5JUg1X2sVWSVM2sXLmSuXPnAvDAAw/QpUsXWrRowYIFCwB4+OGHS23bo1s3/nLPPQXLby5eXGrd0iR13L9hAwceeCC1a9dm9uzZBX316NEjf9yfGO+vW78egP32249NmzZVeB9LUp4E9/9CCKpu5ooAACAASURBVOeGEL4fQmi4/Wc3tpkLNC+03Az4eDf6q1Fat25dcGH1us8/Z9Tw4Vxx8cVcctVV9Ojfn4yMjFLbTpo0iZycHDIzM2nTpg133HFHhbd/7LHHMnLkSDp27EinTp0455xzSpymANCmTRvGjRtHr169yMzMpGfPnnzyySfcd9991KpVi2HDhjF27Fjmz5/Pc889R2ZmJrVq1eKYY47h5ptvLtbfkAEDeP3NN+ncuzdTH3mEVocfnr+dVq24/MIL+fGPf8wxxxzDxRdfnF9/yBBuuOEGOnTo4E2mJKWayj62SpKqmdatW3PvvfeSmZnJunXrGD16NFdffTUXXnghXbt2LXPcf+O11/L6m2+S3b07HU48kTvvu6/UuqVJ5rj/5z//OTk5OWRlZXH//fdz1FFHAdC2bVsuv/BCeg0YQMcePbj8mmsAGNS/Pzf/+c8c37Pnbt9kKuzs1HUI4XxgPPA5/znTGmOMh5VrA/nX4D4RY2yXWK4FvAv0AFYB84FhMca3dyH+EmVlZcWcxFnS7ZYuXUrr1q0raxO7ZMWKFfTp04ecmTMr1K5u06ZVFFHV2pqXV6H6FdnP6vB9bvfuDRMrVP/ISy+pokiqlvtZMvezequs/QwhLIgxZlVGTIn+duvYWhOVdGyuTvw3UTL3s3pzP0v2bZ+fJH2cuH3cv7gCZ16rcuxcnezKfpY09i/t2Fyea3AvBg6PMa6pUCT5G30A6AY0DiHkAlfHGO8KIVwAPEP+nZPvrszkVpKkGmCXj62SJKl05Ulw3wY270rnMcahpZQ/Rf4NNtJKixYtWLx4cYX/alGWe+65h1tvvXWHss6dO3P77beXu4+1a9fSo0ePYuWzZs2iUeIOZ5KkSrXLx1ZJUvW3fdxfme6bOnWHJ7CEWrUc95egPAnut8DCEMJsoOAWv9XxUQYhhL5A38MT13amgzPPPJMzzzxzt/po1KjRLt2wSpK0y2rMsVWSVD0MHzKE4UOGFCzvyhTldBj3lyfBfSzxU+3FGGcAM7Kyss5NdiySJJWhxhxbJUmqSXaa4PrYAkmSKpfHVkmSqkapCW4IYVqM8WchhLco/pzaGGM8pmpDkyQptXhslSSpapV1BvfCxOtS4NJC5QGYUGURSZKUujy2SpJUhUpNcGOMnyTeHh5j/LDwuhDCUVUalSRJKchjqyRJVausKcqjgfOAw0IIiwqtqg/MqerAdkVF7qI84bnK/UP5Zd0vq1D9cRMnsu+++/L0s89y3VVXcVz79pUaT0nOOeccLr74Ytq0aVNqnW7dujFx4kSysoo9M1mStJtq4rFVkmq6ZI/7Aa655hr2228/nnjiiT021k7XsX9ZU5T/DjwNXAeMLVS+Mca4rkqj2kXeRbl03377LXcWem6WJCkpatyxVZJU86Tz2H+v0lbEGDfEGFfEGIfGGD8s9OMBeBeNHz+eVq1acdrPfsa7771XUP7IE0/Q5dRTObpzZ16eN6/U9m+//TYdO3akffv2ZGZm8u9//xuAv/3tbwXlv/rVr/j2228B2G+//bjqqqvo1KkTc+fOpVu3buTk5AAwevRosrKyaNu2LVdffXUV7rUkaTuPrZKUPraP/U8++WSWLVtWUP6Pf/yDjh07cuSRR/LSSy+V2n7JsmV0OfVUOp18Mtndu7P8/fcBeOChh+hy6qmO/UtRaoKryrVgwQKmTp3KG2+8wdS77mJBoQcsb9u2jZeffpob/vhH/nTTTaX2cccdd3DhhReycOFCcnJyaNasGUuXLuXBBx9kzpw5LFy4kIyMDO6//34AvvzyS9q1a8err75Kly5dduhr/Pjx5OTksGjRIl544QUWLVpU0iYlSZIkVVDhsf8jjzzC/PnzC9Zt27aN1157jVtuuYU//OEPpfbx1/vu4/xzzuHVmTOZ889/cvD3v887777LQ9OnM3v6dMf+pdjpc3BVOV566SV++tOfss8++7BX/fr8pFevgnX9TzsNgA6ZmXz40Uel9nHCCScwfvx4cnNzGTBgAEcccQSzZs1iwYIFZGdnA7BlyxYOPPBAADIyMhg4cGCJfU2bNo3Jkyezbds2PvnkE5YsWUJmZmZl7a4kSZKUtgqP/QH69etXsG7AgAEAHHfccaxYsaLUPjoddxwTbr2VVZ98wumnncbhhx3G7Jdf5vVFi+hy6qmEWrUc+5fABHcPCiGUWF5n770ByNhrL7Zt21Zq+2HDhtGpUyeefPJJevfuzZ133kmMkREjRnDdddcVq1+3bl0yMjKKlX/wwQdMnDiR+fPnc8ABBzBy5Ei2bt26i3slSZIkqahSx/516gD5CWlZY/8hAwbQ8dhjeXrmTPoOHcpfbryRGCO/GDSIa6+8krpNm+5Q37F/Pqco7yEnnngijz76KFu2bGHjpk089eyzFe7j/fff57DDDmPMmDH069ePRYsW0aNHDx566CE+++wzANatW8eHH35YZj9ffPEF++67Lw0aNODTTz/l6aef3qV9kiRJklTcDmP/jRuZMWNGhfv44MMPaXnooZx/zjn8pFcv3lqyhJO6dOHRJ5/kszVrAMf+JUnbM7i7cnvv3XHssccyePBg2rdvT/OmTencqVOF+3jwwQf529/+Ru3atWnatClXXXUVDRs2ZNy4cfTq1YvvvvuO2rVrc/vtt3PooYeW2s8xxxxDhw4daNu2LYcddhidO3fenV2TJO0hIYRTgFuBDODOGOP1RdaHxPrTgM3AyBjj62W1DSE0BB4EWgArgJ/FGNcn1v0WOBv4FhgTY3wmUb43cBvQDfgOuDLG+HBV7bck7Y49Pe6HHcf+hx56KF27dq1wHw89/jgPPPwwtWvX5qAmTbji4otpeMABXH355fQdMoS4116O/UuQUgluRZ6DmwxXXnklV155JVvz8grKLho9uuB940aNWFboAvSifvvb3/Lb3/62WPngwYMZPHhwsfJNmzbtsPz8888XvJ8yZUqJ2yhcR5JUfYQQMoDbgZ5ALjA/hDA9xrikULVTgSMSP52AvwCddtJ2LDArxnh9CGFsYvnyEEIbYAjQFvgBMDOEcGSM8VvgSuCzGOORIYS9gIZV/gFIUg2zfexf2CWXXFLwvnHjxmVeg3vpmDFcOmZMsfJB/fszqH//YlOUHfvnS6kpyjHGGTHGUQ0aNEh2KJIkVbaOwPIY4/sxxq+BqUD/InX6A/fFfPOA/UMI399J2/7AvYn39wKnFyqfGmP8Ksb4AbA80Q/AWeQ/y5cY43cxxjWVvbOSJO2KlDqDmyqenT2b340fX7AcatWiZcuWPProo0mMSpKUZAcDhW+1n0v+Wdqd1Tl4J20PijF+AhBj/CSEcGChvuYVaXNwCGH/xPK1IYRuwHvABTHGT3dlpyQp3T3zzDNcfvnlxEI3nDq0eXOm3XNPEqOquUxwq6GeJ51Ez5NOKlguOv1AkpSWSrodZyxnnfK0Le/2agHNgDkxxotDCBcDE4FfFusghFHAKIBDDjlkJ5uTpPTUu3dvevfuvcNljNp1KTVFWZKkFJYLNC+03Az4uJx1ymr7aWIaM4nXz3bS11ryb2C1fVrRP4BjSwo4xjg5xpgVY8xq0qTJzvZPkqTdZoIrSVLNMB84IoTQMnEX4yHA9CJ1pgPDQ77jgQ2J6cdltZ0OjEi8HwE8Xqh8SAihTgihJfk3rnotxhiBGeTfQRmgB1D4RleSJCWNU5QlSaoBYozbQggXAM+Q/6ifu2OMb4cQfp1YfwfwFPmPCFpO/lnWM8tqm+j6emBaCOFsYCUwKNHm7RDCNPKT123A+Yk7KANcDvxfCOEWYPX27UiSlGwmuJIk1RAxxqfIT2ILl91R6H0Ezi9v20T5WvLPwpbUZjwwvoTyD4ETKxK7JEl7QtomuO/eMLFS+zvy0kt2XqmQcRMnsu+++/L0s89y3VVXcVz79pUaT0WNHDmSPn36cMYZZ9CtWzcmTpxIVlZWqfXLU0eSJElKtmSP+wGuueYa9ttvP5544olqMYZO5bF/Sl2DG0LoG0KYvGHDhmSHUi19++23O68kSZIkqcZL17F/SiW4McYZMcZRDRo0SHYoJRo/fjytWrXitJ/9jHffe6+g/JEnnqDLqadydOfOvDxvXqntp0yZQv/+/TnllFNo1aoVf/jDHwrWnX766Rx33HG0bduWyZMnF5Tvt99+XHXVVXTq1Im5c+fyxz/+kezsbNq1a8eoUaPIn81Wun/961+ccMIJHHvssQwaNIhNmzbtxicgSZIkpYftY/+TTz6ZZcuWFZT/4x//oGPHjhx55JG89NJLpbb/vwcfZNDIkfQbOpTMLl0Yf+ONBesGjRzp2L8UKZXgVmcLFixg6tSpvPHGG0y96y4WLFxYsG7btm28/PTT3PDHP/Knm24qs5/XXnuN+++/n4ULF/KPf/yDnJwcAO6++24WLFhATk4OkyZNYu3atQB8+eWXtGvXjldffZUuXbpwwQUXMH/+fBYvXsyWLVt44oknSt3WmjVrGDduHDNnzuT1118nKyuLm3YSnyRJkpTuCo/9H3nkEebPn1+wbtu2bbz22mvccsstO5ywKknOG29wz+238+qzz/LIjBkFOcT/3nyzY/9SpO01uHvaSy+9xE9/+lP22Wcf9qpfn5/06lWwrv9ppwHQITOTDz/6qMx+evbsSaNGjQAYMGAAL7/8MllZWUyaNIlHH81/JOFHH33Ev//9bxo1akRGRgYDBw4saD979mwmTJjA5s2bWbduHW3btqVv374lbmvevHksWbKEzp07A/D1119zwgkn7PqHIEmSJKWBwmN/gH79+hWsGzBgAADHHXccK1asKLOf7ieeSKOGDYH8nOGV117juPbt+fNddzHj2WcBx/5FmeDuQSGEEsvr7L03ABl77cW2bdsq1EcIgeeff56ZM2cyd+5c9tlnH7p168bWrVsBqFu3LhkZGQBs3bqV8847j5ycHJo3b84111xTUK8kMUZ69uzJAw88UO59lCRJklTG2L9OHQAyMjJ2aez/4iuv8NyLLzr2L4VTlPeQE088kUcffZQtW7awcdMmnkr8xaWinn32WdatW8eWLVt47LHH6Ny5Mxs2bOCAAw5gn3324Z133mFeKdfxbv+Fbty4MZs2beKhhx4qc1vHH388c+bMYfny5QBs3ryZd999d5filiRJktLFDmP/jRuZMWPGLvUz68UXWbd+PVu2bGHGP//JCdnZbPjiCw7Yf3/H/qVI2zO4u3J7791x7LHHMnjwYNq3b0/zpk3p3KnTLvXTpUsXfvnLX7J8+XKGDRtGVlYWRx99NHfccQeZmZm0atWK448/vsS2+++/P+eeey5HH300LVq0IDs7u8xtNWnShClTpjB06FC++uorAMaNG8eRRx65S7FLkiRJe9qeHvfDjmP/Qw89lK5du+5SPz/q2JGzf/Mb3luxgsE//SnHtW9Pu6++4s777nPsX4q0TXCT4corr+TKK69ka15eQdlFo0cXvG/cqBHLCl2AXpIDDzyQ2267bYeyOnXq8PTTT5dYv+idz8aNG8e4ceOK1ZsyZUrB++eff77gfffu3Xe4KL6kOpIkSZJ2tH3sX9gll/wn2W7cuPFOr8Ft0rgxt/zpTzuU1alTh8f//nfqNm1arL5jf6coS5IkSZJShGdwq6FnZ8/md+PHFyyHWrVo2bIljz76KCNHjkxeYJIkSZIq1TPPPMPll19OLHTDqUObN2faPffwy8GDkxhZzZRSCW4IoS/Q9/DDD092KLul50kn0fOkkwqWS5p+IEn6j8suu4y8vDyaNm3KhAkTkh2OJEnl1rt3b3r37r3DZYzadSk1RTnGOCPGOKpBgwalrd/DEakq+D1KKiovL49Vq1aR5+BAkoTjxVRS0e8ypc7glqVu3bqsXbuWRo0alfpMKlV/MUbWrl1L3bp1kx2KpCSZ8FzxM7Trt6wveC28/vTU+juuJKkcHPenjl0Z+6dNgtusWTNyc3NZvXp1skPhmw1fVKh+7fXrqyiSqlVV+1m3bl2aNWu2KyFJSlH1GtTb4VWSlL6q07i/IswRShKpf9BBFRr7p02CW7t2bVq2bJnsMAB494aJFaqfjGd3VYZ02U9JyZc1LCvZIUiSqonqNO6viHQZO1d0P1tWcD+duyVJkiRJSgkmuJIkSZKklGCCK0mSJElKCSa4kiRJkqSUYIIrSZIkSUoJJriSJEmSpJRggitJkiRJSgkmuJIkSZKklJBSCW4IoW8IYfKGDRuSHYokSZIkaQ9LqQQ3xjgjxjiqQYMGyQ5FkiRJkrSHpVSCK0mSJElKX7WSHYAkSUVddtll5OXl0bRpUyZMmJDscCRJUg1hgitJqnby8vJYtWpVssOQJEk1jAmuJCmp1j3xh2Jl3325ruC12Pp96u2JsCRJUg1kgitJqnaafK/ODq+SJEnlYYIrSap2fj8wM9khSJKkGsi7KEuSJEmSUoJncCVJVc67IkuSpD3BBFeSVOW8K7IkSdoTnKIsSZIkSUoJnsGVJFW68Q/N3WF53aatBa9F142uu8fCkiRJKc4zuJIkSZKklGCCK0mqcnXr70+9Bo2oW3//ZIdSo4UQTgkhLAshLA8hjC1hfQghTEqsXxRCOHZnbUMIDUMIz4YQ/p14PaDQut8m6i8LIfQuYXvTQwiLq2JfJUnaFU5RliRVuQ59z0x2CDVeCCEDuB3oCeQC80MI02OMSwpVOxU4IvHTCfgL0GknbccCs2KM1ycS37HA5SGENsAQoC3wA2BmCOHIGOO3iXgGAJuqfMclSaqAlDqDG0LoG0KYvGHDhmSHIklSZesILI8xvh9j/BqYCvQvUqc/cF/MNw/YP4Tw/Z207Q/cm3h/L3B6ofKpMcavYowfAMsT/RBC2A+4GBhXFTsqSdKuSqkEN8Y4I8Y4qkGDBskORZKkynYw8FGh5dxEWXnqlNX2oBjjJwCJ1wPLsb1rgRuBzbuyI5IkVRWnKEtSCrvsssvIy8ujadOmTJgwIdnhaPeEEspiOeuUp225thdCaA8cHmO8KITQoswOQhgFjAI45JBDdrI5SZJ2X0qdwZUk7SgvL49Vq1aRl5eX7FC0+3KB5oWWmwEfl7NOWW0/TUxjJvH62U76OgE4LoSwAngZODKE8HxJAccYJ8cYs2KMWU2aNCnHLkqStHs8gytJKWLCc8XP0K7fsr7gtfD60/37Zk00HzgihNASWEX+DaCGFakzHbgghDCV/JtMbYgxfhJCWF1G2+nACOD6xOvjhcr/HkK4ifybTB0BvBZjnEv+zatInMF9IsbYrdL3VpKkXWCCK0kprF6Deju8quaKMW4LIVwAPANkAHfHGN8OIfw6sf4O4CngNPJvCLUZOLOstomurwemhRDOBlYCgxJt3g4hTAOWANuA87ffQVmSpOrKBFeSUljWsKxkh6BKFGN8ivwktnDZHYXeR+D88rZNlK8FepTSZjwwvox4VgDtyhG6JEl7hHPUJEmSJEkpwQRXkiRJkpQSTHAlSZIkSSnBBFeSJEmSlBJMcCVJkiRJKcG7KEtKS5dddhl5eXk0bdqUCROKPz9WkiRJNY8JrqS0lJeXx6pVq5IdhiRJkiqRCa6klDfhueJnaNdvWV/wWnj96V65IUmSVGOZ4EpKS/Ua1NvhVZIkSTWfCa6kHaTLtalZw7KSHYIkSZIqmQmulMZKmrq79IOlbF632am7kiRJqnFMcLXb0uWMX7rspyRJklRTmeBWQFkJTklnwkqTamfC0uVutOmyn16bKkmSpJrKBLcC0iXBKUu63I02XfazJF6bKkmSpJrKBFe7zTN+kiRJkqoDE1zttnQ542ciL0mSJFVvKZXghhD6An0PP/zwZIeiFJQuibwkSZJUU6XUxYMxxhkxxlENGjRIdiiSJEmSpD0spRJcSZIkSVL6MsGVJEmSJKUEE1xJkiRJUkowwZUkSZIkpYSUuouyJKW6yy67jLy8PJo2bcqECROSHY4kSVK1YoJbinVP/KFY2Xdfrit4LbZ+H5+NKqlylfT/0MfvLeGTz7f4/5AkSVIJnKIsSZIkSUoJnsGVpBqkyffq7PAqSZKk/zDBlaQa5PcDM5MdgiRJUrXlFGVJkiRJUkpI+zO43pFUkiRJklJD2ie4eXl5rFq1KtlhSJIkSZJ2k1OUJUmSJEkpwQRXkiRJkpQSTHAlSZIkSSnBBFeSJEmSlBJMcCVJkiRJKSGt7qI8/qG5xcrWbdpa8Fp4/ei6eywsSZIkSVIlSKsEV5KqG5/FLUmSVHlMcCUpiXwWtyRJUuUxwa2AJt+rs8OrpOqjppwJLXqpRGmXSYCXSqi4EMIpwK1ABnBnjPH6IutDYv1pwGZgZIzx9bLahhAaAg8CLYAVwM9ijOsT634LnA18C4yJMT4TQtgH+Afww0T5jBjj2CrcbUmSys0EtwJ+PzAz2SFIKkVNPRNat/7+O7xKpQkhZAC3Az2BXGB+CGF6jHFJoWqnAkckfjoBfwE67aTtWGBWjPH6EMLYxPLlIYQ2wBCgLfADYGYI4cjEdibGGGeHEPYGZoUQTo0xPl21n4AkSTtngiupxln3xB+KlX335bqC12Lr96m3J8LaJR36npnsEFRzdASWxxjfBwghTAX6A4UT3P7AfTHGCMwLIewfQvg++WdnS2vbH+iWaH8v8DxweaJ8aozxK+CDEMJyoGOMcS4wGyDG+HUI4XWgWVXttCRJFZH2Ca5nT4qrKVM9pcK8hEBp4GDgo0LLueSfpd1ZnYN30vagGOMnADHGT0IIBxbqa14JfRUIIewP9CV/6rMkSUmX9gmuZ0+Kq6lTPSvKRD61eAmB0kAooSyWs0552lZoeyGEWsADwKTtZ4aLdRDCKGAUwCGHHLKTzUmStPv2SnYAUrJsT+Tz8vKSHYoklUcu0LzQcjPg43LWKavtp4lpzCRePyvn9iYD/44x3lJawDHGyTHGrBhjVpMmTcrYNUmSKocJriRJNcN84IgQQsvEzZ2GANOL1JkODA/5jgc2JKYfl9V2OjAi8X4E8Hih8iEhhDohhJbk37jqNYAQwjigAfBfVbGjkiTtqrSfopzuUulmPSqZU7Gl1BBj3BZCuAB4hvxH/dwdY3w7hPDrxPo7gKfIf0TQcvIfE3RmWW0TXV8PTAshnA2sBAYl2rwdQphG/o2otgHnxxi/DSE0A64E3gFez38yEbfFGO+s8g9BkqSdMMFVWkiXRL6k/fz4vSV88vmWlNpPKV3FGJ8iP4ktXHZHofcROL+8bRPla4EepbQZD4wvUpZLydfnSpKUdE5RliRJkiSlBM/gqhgft5Ja/D4lSZKULkxwVUy6PG4lXRK/dPk+JUmSJBNcpS0TP0mSJCm1eA2uJEmSJCklVPszuCGEvYBrge8BOTHGe5MckiRJkiSpGqrSM7ghhLtDCJ+FEBYXKT8lhLAshLA8hDB2J930Bw4GvgFyqypWSZIkSVLNVtVncKcAtwH3bS8IIWQAtwM9yU9Y54cQppP/4PnrirQ/C2gFzI0x/m8I4SFgVhXHLEmSJEmqgao0wY0xvvj/27v3WEnr+o7j709ZYBdUVosW5OKuAWnVKugRsUZt8VKqLpBYG7RVRApKFWyjXaGmrcYQcTW1piUaqiAGIpIt1UWx4A2tdLnoItfVZiMUzsop6CIVueO3f8wDnT17zi7LOXOemWfer+TkzPye2/c3l3znO89vfk+SZdOaDwY2VNVPAJKcBxxRVR8BXj99H0kmgQeauw8PLlpJkiRJ0ihr4ze4ewG39t2fBF68lfUvAP4pycuA7862UpLjgeMB9t1333kIU1KbVq5cydTUFHvssQerVq1qOxxJkiSNgDYK3MzQVrOtXFX3AMdua6dVdQZwBsDExMSs+5M0Gqampti4cWPbYUiSJGmEtHGZoElgn777ewM/bSEOSZIkSVKHtHEG9ypg/yTLgY3AUcCbW4hD0hA5dfXaze5vuvu+R/9PX3bC4gULS5IkSSNk0JcJ+gKwFjggyWSSY6vqIeDdwMXAeuD8qrphkHFIkiRJkrpv0LMov2mW9ouAiwZ5bEmSJEnSeGnjN7gDk2RFkjPuuuuutkORJEmSJC2wThW4VXVhVR2/2267tR2KpDla/MSlLNntN1n8xKVthyJJkqQR0cYkU5K0TQetOKbtECRJkjRiOnUGV5IkSZI0vixwJUmSJEmdYIErSZIkSeoEf4Orzli5ciVTU1PssccerFq1qu1wBmZc+ilJkiRtr04VuElWACv222+/tkMZKuNSEE1NTbFx48a2w5h3p65eu9n9GzfczL13/ZxNd9+3xbITFi9kZJIkSdJw6dQQZS8TNLNHCr+pqam2Q5EkSZKkgenUGVyNl+lnLzfdfd+j/7t8ZvOR68J6fVhJkiRpcxa4HTSuhd+48PqwkiRJ0sw6NURZkiRJkjS+PIOrznDoriRJkjTeLHDHwLgUfg7dlSRJksZbpwpcLxM0Mws/SZIkSQuprUuVdqrAraoLgQsnJiaOazsWSZIkSRoHq761ZQG7/qb13LPpHu68987Nlh854GmgnGRKkiRJktQJnTqDK0mSJElq35Ldlmz2f6FY4EqSJEmSHrXpKx/avg122bKInXjzxDxFs30scCVJkiSp405dvfYxr3vC4gEGMmAWuJIkSZI0ADNNvjSbQU++NC4scCVJ0shq6zIUkubGwk+DYoErSZKGxvYWrFNTU2zcuHHGZePyAdp+bsl+SuOrUwVukhXAiv3226/tUCRJmndJDgM+CewAfKaqTpu2PM3y1wL3AG+rqnVb2zbJU4AvAsuAm4E/qao7m2WnAMcCDwMnVdXFTfsLgc8BS4CLgPdUVT2ePk3/TdiNG27m3rt+zqa779ti2QmLL9li+1//atOj/7eYFGWGSU8kaS7mY/IlDVanCtyquhC4cGJi4ri2Y5EkaT4l2QE4HXg1MAlclWRNVd3Yt9ofAfs3fy8GPgW8eBvbngx8s6pOk5HHcAAACkBJREFUS3Jyc//9SZ4NHAU8B3g68I0kz6qqh5v9Hg9cTq/APQz42mAfgfExLh+g7ecs7OeCG5fJl8ZFpwpcSZI67GBgQ1X9BCDJecARQH+BewTw+eZs6uVJlibZk97Z2dm2PQL4/Wb7s4FLgfc37edV1f3ATUk2AAcnuRl4UlWtbfb1eeBI5qnAXfzEpZv935anPmnnzf4Pq3H5AG0/t2Q/pYVlgStJ0mjYC7i17/4kvbO021pnr21s+1tVdRtAVd2W5Gl9+7p8hn092Nye3j4vDlpxzHat/7dveN58HVqS1AF5nD+ZGWpJ7gD+e4EPuzvwswU+ZhvsZ7fYz26xn4PzjKp66gIfczNJ3gj8YVX9eXP/LcDBVXVi3zpfBT5SVd9r7n8TWAk8c7Ztk/yiqpb27ePOqnpyktOBtVV1TtP+WXrDkW9pjvGqpv1lwMqqWjFDzMfTG8oMcADw43l8SB4L3xPdYj+7xX52y9Dk5k6ewW3jQ0iS71fVxEIfd6HZz26xn91iPztvEtin7/7ewE8f4zo7bWXb/0myZ3P2dk/g9m3sa7K5vbU4AKiqM4Aztt6twRmX14r97Bb72S32c+E5t7gkSaPhKmD/JMuT7ERvAqg109ZZA7w1PYcAdzXDj7e27Rrg6Ob20cCX+9qPSrJzkuX0Jq66stnfL5Mc0sza/Na+bSRJalUnz+BKktQ1VfVQkncDF9O71M+ZVXVDknc2yz9Nbwjxa4EN9C4TdMzWtm12fRpwfpJj6Q0/fmOzzQ1Jzqc3EdVDwLuaGZQBTuD/LxP0NZxBWZI0JCxw509rQ7AWmP3sFvvZLfaz46rqInpFbH/bp/tuF/Cux7pt0/5z4JWzbHMqcOoM7d8Hnrs9sbdkXF4r9rNb7Ge32M8F1slJpiRJkiRJ48ff4EqSJEmSOsECdw6S7JPk20nWJ7khyXvajmmQkuyQ5OokX2k7lkFJ8lfNc3l9ki8k6cxly5OcmeT2JNdPaz8xyY+bfq9qK775kGRxkiuTXNP050NN+8eS/CjJtUn+LcnSbe1r2CVZmmR106/1SV7St+x9SSrJ7m3G+HjM9Dqd7flLsmOSs5Nc1zwGp7QXuYaFubl7zM3m5lFhbh6O3GyBOzcPAe+tqt8BDgHeleTZLcc0SO8B1rcdxKAk2Qs4CZioqufSm4jlqHajmlefAw7rb0jyB8ARwPOq6jnAx1uIaz7dDxxaVc8HDgQOa2aS/Trw3Kp6HvBfQBcKoU8C/15Vvw08n+a9mWQf4NX0JgsaRZ9j2uuU2Z+/NwI7V9XvAi8E3pFk2cKEqSFmbu4Qc7O5ecSYm4cgN1vgzkFV3VZV65rbv6T3It6r3agGI8newOuAz7Qdy4AtApYkWQTswizXdhxFVfVdYNO05hOA06rq/mad27fYcIRUz93N3R2bv6qqS6rqoab9cja/hufISfIk4OXAZwGq6oGq+kWz+BPASmAkJ1iY6XW6leevgF2b9+sS4AHgfxcqVg0nc3MnmZtHmLkZMDcvaG62wJ0nzTcTBwFXtBvJwPwjvTfmr9sOZFCqaiO9b0lvAW6jd/3IS9qNauCeBbwsyRVJvpPkRW0HNFfNcL0fArcDX6+q6e/JtzP6lzR5JnAHcFYzNPEzSXZNcjiwsaquaTm+Qep//lYDv6L3fr0F+HhVTf+gqDFmbh595mZz8wgxN/e0npstcOdBkicA/wr8ZVV17uxBktcDt1fVD9qOZZCSPJnekKDlwNPpffv0Z+1GNXCLgCfTG8b31/SuhZl2Q5qbqnq4qg6k903iwUkevZRJkg/QG754blvxzZNFwAuAT1XVQfQSyQeBDwB/12JcAzXD83cw8DC99+ty4L1JntlSeBoy5uZuMDebm0eIubmn9dxsgTtHSXakl0DPraoL2o5nQF4KHJ7kZuA84NAk57Qb0kC8Cripqu6oqgeBC4DfazmmQZsELmiGD11J7yzAyE1+MJNmWNClNL8ZSXI08HrgT2v0r482CUz2fQO+ml5SXQ5c07xX9wbWJdmjnRDn1yzP35vp/dbpwWYI32XARFsxaniYmzvF3GxuHhXm5p7Wc7MF7hw036Z9FlhfVf/QdjyDUlWnVNXeVbWM3sQO36qqLn57egtwSJJdmuf2lXR44o7Gl4BDAZI8C9gJ+FmrEc1Bkqf2zeK3hN4Hox8lOQx4P3B4Vd3TZozzoaqmgFuTHNA0vRJYV1VPq6plzXt1EnhBs+5I28rzdwu9D/VJsiu9sx0/aiNGDQ9zc+eYm83NI8Hc/KjWc/OihTxYB70UeAtwXfO7AoC/qaqLWoxJj1NVXZFkNbCO3lCLq4Ez2o1q/iT5AvD7wO5JJoG/B84EzmymfX8AOHrEv0HdEzg7yQ70vsA7v6q+kmQDsDPw9WaU1+VV9c4W45wPJwLnJtkJ+AlwTMvxzItZXqenMPPzdzpwFnA9EOCsqrq2jbg1VMzNHWJuNjePGHPzEOTmjPb7RZIkSZKkHocoS5IkSZI6wQJXkiRJktQJFriSJEmSpE6wwJUkSZIkdYIFriRJkiSpEyxwJUmSJEmdYIErDakky5pr4E1vvzTJxOPY3weTvG8O8Rye5OTHu70kSaPO3CwNv0VtByBpNFTVGmBN23FIkqQec7O0Jc/gSsNtUZKzk1ybZHWSXfoXJnlTkuuSXJ/ko33thyVZl+SaJN+cvtMkxyX5WpIlMx00yUlJbmyOe17T9rYk/9zc/mHf371JXpFk1yRnJrkqydVJjpjfh0KSpKFgbpaGmGdwpeF2AHBsVV2W5EzgLx5ZkOTpwEeBFwJ3ApckORK4DPgX4OVVdVOSp/TvMMm7gdcAR1bV/bMc92RgeVXdn2Tp9IVVdWCzrxXASuA/gQ8B36qqtzfbXJnkG1X1q7k8AJIkDRlzszTELHCl4XZrVV3W3D4HOKlv2YuAS6vqDoAk5wIvBx4GvltVNwFU1aa+bd4CTNJLoA9u5bjXAucm+RLwpZlWSLI/8DHg0Kp6MMlrgMP7fku0GNgXWP+YeytJ0vAzN0tDzCHK0nCrrdzPLNtkhu0ecT2wDNh7G8d9HXA6vW+gf5Bksy/DkuwKnA8cV1U/7TvuG6rqwOZv36oygUqSusbcLA0xC1xpuO2b5CXN7TcB3+tbdgXwiiS7J9mhWf4dYG3Tvhxg2jCoq4F3AGuaYVRbSPIbwD5V9W16Q5yWAk+YttpZwFlV9R99bRcDJyZJs5+Dtru3kiQNP3OzNMQscKXhth44Osm1wFOATz2yoKpuA04Bvg1cA6yrqi83w6KOBy5Icg3wxf4dVtX3gPcBX02y+wzH3AE4J8l19JLuJ6rqF48sTPIM4I+Bt/dNZjEBfBjYEbg2vUsofHh+HgJJkoaKuVkaYqmabbSEJEmSJEmjwzO4kiRJkqROcBZlaYwlOR146bTmT1bVWW3EI0nSuDM3S3PjEGVJkiRJUic4RFmSJEmS1AkWuJIkSZKkTrDAlSRJkiR1ggWuJEmSJKkTLHAlSZIkSZ3wf/eLRgfTdWOCAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 1152x432 with 2 Axes>" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -176,7 +178,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.5" + "version": "3.8.2" } }, "nbformat": 4, -- GitLab