diff --git a/gpucuda/cudajit.py b/gpucuda/cudajit.py index a2a7c960e89134df3e24033683764c0841c86fdd..47c8272c70b8bba7fc8259d61db228b40904332c 100644 --- a/gpucuda/cudajit.py +++ b/gpucuda/cudajit.py @@ -30,7 +30,7 @@ def make_python_function(kernel_function_node, argument_dict=None): code += "#define RESTRICT __restrict__\n\n" code += str(generate_c(kernel_function_node)) - mod = SourceModule(code, options=["-w", "-std=c++11"]) + mod = SourceModule(code, options=["-w", "-std=c++11", "-Wno-deprecated-gpu-targets"]) func = mod.get_function(kernel_function_node.function_name) parameters = kernel_function_node.parameters diff --git a/gpucuda/indexing.py b/gpucuda/indexing.py index 705c9fe6771f118b698b5037d5acfb5614861a89..738977c0bf077155c9dc0def03953f7c09d05a67 100644 --- a/gpucuda/indexing.py +++ b/gpucuda/indexing.py @@ -69,7 +69,7 @@ class BlockIndexing(AbstractIndexing): """ def __init__(self, field, iteration_slice=None, - block_size=(256, 8, 1), permute_block_size_dependent_on_layout=True): + block_size=(16, 16, 1), permute_block_size_dependent_on_layout=True): if field.spatial_dimensions > 3: raise NotImplementedError("This indexing scheme supports at most 3 spatial dimensions") diff --git a/plot2d.py b/plot2d.py index 6fc0729dc3829a4f95827cbb0d4512f5ffeac2f1..8f7faa2ed9d63983e8c6cdda073a78a1b79241da 100644 --- a/plot2d.py +++ b/plot2d.py @@ -1,66 +1,106 @@ +""" +This module extends the pyplot module with functions to show scalar and vector fields in the usual +simulation coordinate system (y-axis goes up), instead of the "image coordinate system" (y axis goes down) that +matplotlib normally uses. +""" from matplotlib.pyplot import * -def vector_field(field, step=2, **kwargs): - """ - Plot given vector field as quiver (arrow) plot. +def vector_field(array, step=2, **kwargs): + """Plots given vector field as quiver (arrow) plot. + + Args: + array: numpy array with 3 dimensions, first two are spatial x,y coordinate, the last + coordinate should have shape 2 and stores the 2 velocity components + step: plots only every steps's cell, increase the step for high resolution arrays + kwargs: keyword arguments passed to :func:`matplotlib.pyplot.quiver` - :param field: numpy array with 3 dimensions, first two are spatial x,y coordinate, the last - coordinate should have shape 2 and stores the 2 velocity components - :param step: plots only every steps's cell - :param kwargs: keyword arguments passed to :func:`matplotlib.pyplot.quiver` + Returns: + quiver plot object """ - vel_n = field.swapaxes(0, 1) + assert len(array.shape) == 3, "Wrong shape of array - did you forget to slice your 3D domain first?" + assert array.shape[2] == 2, "Last array dimension is expected to store 2D vectors" + vel_n = array.swapaxes(0, 1) res = quiver(vel_n[::step, ::step, 0], vel_n[::step, ::step, 1], **kwargs) axis('equal') return res -def vector_field_magnitude(field, **kwargs): - """ - Plots the magnitude of a vector field as colormap - :param field: numpy array with 3 dimensions, first two are spatial x,y coordinate, the last - coordinate should have shape 2 and stores the 2 velocity components - :param kwargs: keyword arguments passed to :func:`matplotlib.pyplot.imshow` +def vector_field_magnitude(array, **kwargs): + """Plots the magnitude of a vector field as colormap. + + Args: + array: numpy array with 3 dimensions, first two are spatial x,y coordinate, the last + coordinate should have shape 2 and stores the 2 velocity components + kwargs: keyword arguments passed to :func:`matplotlib.pyplot.imshow` + + Returns: + imshow object """ + assert len(array.shape) == 3, "Wrong shape of array - did you forget to slice your 3D domain first?" + assert array.shape[2] in (2, 3), "Wrong size of the last coordinate. Has to be a 2D or 3D vector field." from numpy.linalg import norm - norm = norm(field, axis=2, ord=2) - if hasattr(field, 'mask'): - norm = np.ma.masked_array(norm, mask=field.mask[:, :, 0]) + norm = norm(array, axis=2, ord=2) + if hasattr(array, 'mask'): + norm = np.ma.masked_array(norm, mask=array.mask[:, :, 0]) return scalar_field(norm, **kwargs) -def scalar_field(field, **kwargs): - """ - Plots field values as colormap +def scalar_field(array, **kwargs): + """Plots field values as colormap. + + Works just as imshow, but uses coordinate system where second coordinate (y) points upwards. + + Args: + array: two dimensional numpy array + kwargs: keyword arguments passed to :func:`matplotlib.pyplot.imshow` - :param field: two dimensional numpy array - :param kwargs: keyword arguments passed to :func:`matplotlib.pyplot.imshow` + Returns: + imshow object """ import numpy - field = numpy.swapaxes(field, 0, 1) - res = imshow(field, origin='lower', **kwargs) + array = numpy.swapaxes(array, 0, 1) + res = imshow(array, origin='lower', **kwargs) axis('equal') return res -def scalar_field_alpha_value(field, color, clip=False, **kwargs): +def scalar_field_alpha_value(array, color, clip=False, **kwargs): + """Plots an image with same color everywhere, using the array values as transparency. + + Array is supposed to have values between 0 and 1 (if this is not the case it is normalized). + An image is plotted that has the same color everywhere, the passed array determines the transparency. + Regions where the array is 1 are fully opaque, areas with 0 are fully transparent. + + Args: + array: 2D array with alpha values + color: fill color + clip: if True, all values in the array larger than 1 are set to 1, all values smaller than 0 are set to zero + if False, the array is linearly scaled to the [0, 1] interval + **kwargs: arguments passed to imshow + + Returns: + imshow object + """ import numpy import matplotlib - field = numpy.swapaxes(field, 0, 1) - color = matplotlib.colors.to_rgba(color) - - field_to_plot = numpy.empty(field.shape + (4,)) - for i in range(3): - field_to_plot[:, :, i] = color[i] + assert len(array.shape) == 2, "Wrong shape of array - did you forget to slice your 3D domain first?" + array = numpy.swapaxes(array, 0, 1) if clip: - normalized_field = field.copy() + normalized_field = array.copy() normalized_field[normalized_field < 0] = 0 normalized_field[normalized_field > 1] = 1 else: - minimum, maximum = numpy.min(field), numpy.max(field) - normalized_field = (field - minimum) / (maximum - minimum) + minimum, maximum = numpy.min(array), numpy.max(array) + normalized_field = (array - minimum) / (maximum - minimum) + + color = matplotlib.colors.to_rgba(color) + field_to_plot = numpy.empty(array.shape + (4,)) + # set the complete array to the color + for i in range(3): + field_to_plot[:, :, i] = color[i] + # only the alpha channel varies using the array values field_to_plot[:, :, 3] = normalized_field res = imshow(field_to_plot, origin='lower', **kwargs) @@ -68,33 +108,85 @@ def scalar_field_alpha_value(field, color, clip=False, **kwargs): return res -def scalar_field_contour(field, **kwargs): - field = np.swapaxes(field, 0, 1) - res = contour(field, **kwargs) +def scalar_field_contour(array, **kwargs): + """Small wrapper around contour to transform the coordinate system. + + For details see :func:`matplotlib.pyplot.imshow` + """ + array = np.swapaxes(array, 0, 1) + res = contour(array, **kwargs) axis('equal') return res -def multiple_scalar_fields(field, **_): - sub_plots = field.shape[-1] +def multiple_scalar_fields(array, **kwargs): + """Plots a 3D array by slicing the last dimension and creates on plot for each entry of the last dimension. + + Args: + array: 3D array to plot. + **kwargs: passed along to imshow + """ + assert len(array.shape) == 3 + sub_plots = array.shape[-1] for i in range(sub_plots): subplot(1, sub_plots, i + 1) title(str(i)) - scalar_field(field[..., i]) + scalar_field(array[..., i], **kwargs) colorbar() -def sympy_function(f, var, bounds, **kwargs): +def sympy_function(expr, x_values=None, **kwargs): + """Plots the graph of a sympy term that depends on one symbol only. + + Args: + expr: sympy term that depends on one symbol only, which is plotted on the x axis + x_values: describes sampling of x axis. Possible values are: + * tuple of (start, stop) or (start, stop, nr_of_steps) + * None, then start=0, stop=1, nr_of_steps=100 + * 1D numpy array with x values + **kwargs: passed on to :func:`matplotlib.pyplot.plot` + + Returns: + plot object + """ import sympy as sp - x_arr = np.linspace(bounds[0], bounds[1], 101) - y_arr = sp.lambdify(var, f)(x_arr) - plot(x_arr, y_arr, **kwargs) + if x_values is None: + x_arr = np.linspace(0, 1, 100) + elif type(x_values) is tuple: + x_arr = np.linspace(*x_values) + elif isinstance(x_values, np.ndarray): + assert len(x_values.shape) == 1 + x_arr = x_values + else: + raise ValueError("Invalid value for parameter x_values") + symbols = expr.atoms(sp.Symbol) + assert len(symbols) == 1, "Sympy expression may only depend on one variable only. Depends on " + str(symbols) + y_arr = sp.lambdify(symbols.pop(), expr)(x_arr) + return plot(x_arr, y_arr, **kwargs) + # ------------------------------------------- Animations --------------------------------------------------------------- -def vector_field_animation(run_function, step=2, rescale=True, plot_setup_function=lambda: None, - plot_update_function=lambda: None, interval=30, frames=180, **kwargs): +def vector_field_animation(run_function, step=2, rescale=True, plot_setup_function=lambda *_: None, + plot_update_function=lambda *_: None, interval=200, frames=180, **kwargs): + """Creates a matplotlib animation of a vector field using a quiver plot. + + Args: + run_function: callable without arguments, returning a 2D vector field i.e. numpy array with len(shape)==3 + step: see documentation of vector_field function + rescale: if True, the length of the arrows is rescaled in every time step + plot_setup_function: optional callable with the quiver object as argument, + that can be used to set up the plot (title, legend,..) + plot_update_function: optional callable with the quiver object as argument + that is called of the quiver object was updated + interval: delay between frames in milliseconds (see matplotlib.FuncAnimation) + frames: how many frames should be generated, see matplotlib.FuncAnimation + **kwargs: passed to quiver plot + + Returns: + matplotlib animation object + """ import matplotlib.animation as animation from numpy.linalg import norm @@ -108,7 +200,7 @@ def vector_field_animation(run_function, step=2, rescale=True, plot_setup_functi kwargs['scale'] = 1.0 quiver_plot = vector_field(field, step=step, **kwargs) - plot_setup_function() + plot_setup_function(quiver_plot) def update_figure(*_): f = run_function() @@ -117,14 +209,18 @@ def vector_field_animation(run_function, step=2, rescale=True, plot_setup_functi f = f / np.max(norm(f, axis=2, ord=2)) u, v = f[::step, ::step, 0], f[::step, ::step, 1] quiver_plot.set_UVC(u, v) - plot_update_function() + plot_update_function(quiver_plot) return im, return animation.FuncAnimation(fig, update_figure, interval=interval, frames=frames) -def vector_field_magnitude_animation(run_function, plot_setup_function=lambda: None, - plot_update_function=lambda: None, interval=30, frames=180, **kwargs): +def vector_field_magnitude_animation(run_function, plot_setup_function=lambda *_: None, + plot_update_function=lambda *_: None, interval=30, frames=180, **kwargs): + """Animation of a vector field, showing the magnitude as colormap. + + For arguments, see vector_field_animation + """ import matplotlib.animation as animation from numpy.linalg import norm @@ -132,7 +228,7 @@ def vector_field_magnitude_animation(run_function, plot_setup_function=lambda: N im = None field = run_function() im = vector_field_magnitude(field, **kwargs) - plot_setup_function() + plot_setup_function(im) def update_figure(*_): f = run_function() @@ -141,7 +237,7 @@ def vector_field_magnitude_animation(run_function, plot_setup_function=lambda: N normed = np.ma.masked_array(normed, mask=f.mask[:, :, 0]) normed = np.swapaxes(normed, 0, 1) im.set_array(normed) - plot_update_function() + plot_update_function(im) return im, return animation.FuncAnimation(fig, update_figure, interval=interval, frames=frames)