Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
No results found
Show changes
Showing
with 0 additions and 2491 deletions
try:
import pycuda.gpuarray as gpuarray
except ImportError:
gpuarray = None
import numpy as np
import pystencils
class PyCudaArrayHandler:
def __init__(self):
import pycuda.autoinit # NOQA
def zeros(self, shape, dtype=np.float64, order='C'):
cpu_array = np.zeros(shape=shape, dtype=dtype, order=order)
return self.to_gpu(cpu_array)
def ones(self, shape, dtype=np.float64, order='C'):
cpu_array = np.ones(shape=shape, dtype=dtype, order=order)
return self.to_gpu(cpu_array)
def empty(self, shape, dtype=np.float64, layout=None):
if layout:
cpu_array = pystencils.field.create_numpy_array_with_layout(shape=shape, dtype=dtype, layout=layout)
return self.to_gpu(cpu_array)
else:
return gpuarray.empty(shape, dtype)
@staticmethod
def to_gpu(array):
return gpuarray.to_gpu(array)
@staticmethod
def upload(array, numpy_array):
array.set(numpy_array)
@staticmethod
def download(array, numpy_array):
array.get(numpy_array)
def randn(self, shape, dtype=np.float64):
cpu_array = np.random.randn(*shape).astype(dtype)
return self.to_gpu(cpu_array)
from_numpy = to_gpu
class PyCudaNotAvailableHandler:
def __getattribute__(self, name):
raise NotImplementedError("Unable to initiaize PyCuda! "
"Try to run `import pycuda.autoinit` to check whether PyCuda is working correctly!")
#pragma once
extern "C++" {
#ifdef __CUDA_ARCH__
template <typename DTYPE_T, std::size_t DIMENSION> struct PyStencilsField {
DTYPE_T *data;
DTYPE_T shape[DIMENSION];
DTYPE_T stride[DIMENSION];
};
#else
#include <array>
template <typename DTYPE_T, std::size_t DIMENSION> struct PyStencilsField {
DTYPE_T *data;
std::array<DTYPE_T, DIMENSION> shape;
std::array<DTYPE_T, DIMENSION> stride;
};
#endif
}
// An implementation of C++ std::complex for use on CUDA devices.
// Written by John C. Travers <jtravs@gmail.com> (2012)
//
// Missing:
// - long double support (not supported on CUDA)
// - some integral pow functions (due to lack of C++11 support on CUDA)
//
// Heavily derived from the LLVM libcpp project (svn revision 147853).
// Based on libcxx/include/complex.
// The git history contains the complete change history from the original.
// The modifications are licensed as per the original LLVM license below.
//
// -*- C++ -*-
//===--------------------------- complex ----------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
extern "C++" {
#ifndef CUDA_COMPLEX_HPP
#define CUDA_COMPLEX_HPP
#ifdef __CUDACC__
#define CUDA_CALLABLE_MEMBER __host__ __device__
#else
#define CUDA_CALLABLE_MEMBER
#endif
/*
complex synopsis
template<class T>
class complex
{
public:
typedef T value_type;
complex(const T& re = T(), const T& im = T());
complex(const complex&);
template<class X> complex(const complex<X>&);
T real() const;
T imag() const;
void real(T);
void imag(T);
complex<T>& operator= (const T&);
complex<T>& operator+=(const T&);
complex<T>& operator-=(const T&);
complex<T>& operator*=(const T&);
complex<T>& operator/=(const T&);
complex& operator=(const complex&);
template<class X> complex<T>& operator= (const complex<X>&);
template<class X> complex<T>& operator+=(const complex<X>&);
template<class X> complex<T>& operator-=(const complex<X>&);
template<class X> complex<T>& operator*=(const complex<X>&);
template<class X> complex<T>& operator/=(const complex<X>&);
};
template<>
class complex<float>
{
public:
typedef float value_type;
constexpr complex(float re = 0.0f, float im = 0.0f);
explicit constexpr complex(const complex<double>&);
constexpr float real() const;
void real(float);
constexpr float imag() const;
void imag(float);
complex<float>& operator= (float);
complex<float>& operator+=(float);
complex<float>& operator-=(float);
complex<float>& operator*=(float);
complex<float>& operator/=(float);
complex<float>& operator=(const complex<float>&);
template<class X> complex<float>& operator= (const complex<X>&);
template<class X> complex<float>& operator+=(const complex<X>&);
template<class X> complex<float>& operator-=(const complex<X>&);
template<class X> complex<float>& operator*=(const complex<X>&);
template<class X> complex<float>& operator/=(const complex<X>&);
};
template<>
class complex<double>
{
public:
typedef double value_type;
constexpr complex(double re = 0.0, double im = 0.0);
constexpr complex(const complex<float>&);
constexpr double real() const;
void real(double);
constexpr double imag() const;
void imag(double);
complex<double>& operator= (double);
complex<double>& operator+=(double);
complex<double>& operator-=(double);
complex<double>& operator*=(double);
complex<double>& operator/=(double);
complex<double>& operator=(const complex<double>&);
template<class X> complex<double>& operator= (const complex<X>&);
template<class X> complex<double>& operator+=(const complex<X>&);
template<class X> complex<double>& operator-=(const complex<X>&);
template<class X> complex<double>& operator*=(const complex<X>&);
template<class X> complex<double>& operator/=(const complex<X>&);
};
// 26.3.6 operators:
template<class T> complex<T> operator+(const complex<T>&, const complex<T>&);
template<class T> complex<T> operator+(const complex<T>&, const T&);
template<class T> complex<T> operator+(const T&, const complex<T>&);
template<class T> complex<T> operator-(const complex<T>&, const complex<T>&);
template<class T> complex<T> operator-(const complex<T>&, const T&);
template<class T> complex<T> operator-(const T&, const complex<T>&);
template<class T> complex<T> operator*(const complex<T>&, const complex<T>&);
template<class T> complex<T> operator*(const complex<T>&, const T&);
template<class T> complex<T> operator*(const T&, const complex<T>&);
template<class T> complex<T> operator/(const complex<T>&, const complex<T>&);
template<class T> complex<T> operator/(const complex<T>&, const T&);
template<class T> complex<T> operator/(const T&, const complex<T>&);
template<class T> complex<T> operator+(const complex<T>&);
template<class T> complex<T> operator-(const complex<T>&);
template<class T> bool operator==(const complex<T>&, const complex<T>&);
template<class T> bool operator==(const complex<T>&, const T&);
template<class T> bool operator==(const T&, const complex<T>&);
template<class T> bool operator!=(const complex<T>&, const complex<T>&);
template<class T> bool operator!=(const complex<T>&, const T&);
template<class T> bool operator!=(const T&, const complex<T>&);
template<class T, class charT, class traits>
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>&, complex<T>&);
template<class T, class charT, class traits>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>&, const complex<T>&);
// 26.3.7 values:
template<class T> T real(const complex<T>&);
double real(double);
template<Integral T> double real(T);
float real(float);
template<class T> T imag(const complex<T>&);
double imag(double);
template<Integral T> double imag(T);
float imag(float);
template<class T> T abs(const complex<T>&);
template<class T> T arg(const complex<T>&);
double arg(double);
template<Integral T> double arg(T);
float arg(float);
template<class T> T norm(const complex<T>&);
double norm(double);
template<Integral T> double norm(T);
float norm(float);
template<class T> complex<T> conj(const complex<T>&);
complex<double> conj(double);
template<Integral T> complex<double> conj(T);
complex<float> conj(float);
template<class T> complex<T> proj(const complex<T>&);
complex<double> proj(double);
template<Integral T> complex<double> proj(T);
complex<float> proj(float);
template<class T> complex<T> polar(const T&, const T& = 0);
// 26.3.8 transcendentals:
template<class T> complex<T> acos(const complex<T>&);
template<class T> complex<T> asin(const complex<T>&);
template<class T> complex<T> atan(const complex<T>&);
template<class T> complex<T> acosh(const complex<T>&);
template<class T> complex<T> asinh(const complex<T>&);
template<class T> complex<T> atanh(const complex<T>&);
template<class T> complex<T> cos (const complex<T>&);
template<class T> complex<T> cosh (const complex<T>&);
template<class T> complex<T> exp (const complex<T>&);
template<class T> complex<T> log (const complex<T>&);
template<class T> complex<T> log10(const complex<T>&);
template<class T> complex<T> pow(const complex<T>&, const T&);
template<class T> complex<T> pow(const complex<T>&, const complex<T>&);
template<class T> complex<T> pow(const T&, const complex<T>&);
template<class T> complex<T> sin (const complex<T>&);
template<class T> complex<T> sinh (const complex<T>&);
template<class T> complex<T> sqrt (const complex<T>&);
template<class T> complex<T> tan (const complex<T>&);
template<class T> complex<T> tanh (const complex<T>&);
template<class T, class charT, class traits>
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is, complex<T>& x);
template<class T, class charT, class traits>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& o, const complex<T>& x);
*/
#include <math.h>
#include <sstream>
template <class _Tp> class complex;
template <class _Tp>
complex<_Tp> operator*(const complex<_Tp> &__z, const complex<_Tp> &__w);
template <class _Tp>
complex<_Tp> operator/(const complex<_Tp> &__x, const complex<_Tp> &__y);
template <class _Tp> class complex {
public:
typedef _Tp value_type;
private:
value_type __re_;
value_type __im_;
public:
CUDA_CALLABLE_MEMBER
complex(const value_type &__re = value_type(),
const value_type &__im = value_type())
: __re_(__re), __im_(__im) {}
template <class _Xp>
CUDA_CALLABLE_MEMBER complex(const complex<_Xp> &__c)
: __re_(__c.real()), __im_(__c.imag()) {}
CUDA_CALLABLE_MEMBER value_type real() const { return __re_; }
CUDA_CALLABLE_MEMBER value_type imag() const { return __im_; }
CUDA_CALLABLE_MEMBER void real(value_type __re) { __re_ = __re; }
CUDA_CALLABLE_MEMBER void imag(value_type __im) { __im_ = __im; }
CUDA_CALLABLE_MEMBER complex &operator=(const value_type &__re) {
__re_ = __re;
__im_ = value_type();
return *this;
}
CUDA_CALLABLE_MEMBER complex &operator+=(const value_type &__re) {
__re_ += __re;
return *this;
}
CUDA_CALLABLE_MEMBER complex &operator-=(const value_type &__re) {
__re_ -= __re;
return *this;
}
CUDA_CALLABLE_MEMBER complex &operator*=(const value_type &__re) {
__re_ *= __re;
__im_ *= __re;
return *this;
}
CUDA_CALLABLE_MEMBER complex &operator/=(const value_type &__re) {
__re_ /= __re;
__im_ /= __re;
return *this;
}
template <class _Xp>
CUDA_CALLABLE_MEMBER complex &operator=(const complex<_Xp> &__c) {
__re_ = __c.real();
__im_ = __c.imag();
return *this;
}
template <class _Xp>
CUDA_CALLABLE_MEMBER complex &operator+=(const complex<_Xp> &__c) {
__re_ += __c.real();
__im_ += __c.imag();
return *this;
}
template <class _Xp>
CUDA_CALLABLE_MEMBER complex &operator-=(const complex<_Xp> &__c) {
__re_ -= __c.real();
__im_ -= __c.imag();
return *this;
}
template <class _Xp>
CUDA_CALLABLE_MEMBER complex &operator*=(const complex<_Xp> &__c) {
*this = *this * __c;
return *this;
}
template <class _Xp>
CUDA_CALLABLE_MEMBER complex &operator/=(const complex<_Xp> &__c) {
*this = *this / __c;
return *this;
}
};
template <> class complex<double>;
template <> class complex<float> {
float __re_;
float __im_;
public:
typedef float value_type;
/*constexpr*/ CUDA_CALLABLE_MEMBER complex(float __re = 0.0f,
float __im = 0.0f)
: __re_(__re), __im_(__im) {}
explicit /*constexpr*/ complex(const complex<double> &__c);
/*constexpr*/ CUDA_CALLABLE_MEMBER float real() const { return __re_; }
/*constexpr*/ CUDA_CALLABLE_MEMBER float imag() const { return __im_; }
CUDA_CALLABLE_MEMBER void real(value_type __re) { __re_ = __re; }
CUDA_CALLABLE_MEMBER void imag(value_type __im) { __im_ = __im; }
CUDA_CALLABLE_MEMBER complex &operator=(float __re) {
__re_ = __re;
__im_ = value_type();
return *this;
}
CUDA_CALLABLE_MEMBER complex &operator+=(float __re) {
__re_ += __re;
return *this;
}
CUDA_CALLABLE_MEMBER complex &operator-=(float __re) {
__re_ -= __re;
return *this;
}
CUDA_CALLABLE_MEMBER complex &operator*=(float __re) {
__re_ *= __re;
__im_ *= __re;
return *this;
}
CUDA_CALLABLE_MEMBER complex &operator/=(float __re) {
__re_ /= __re;
__im_ /= __re;
return *this;
}
template <class _Xp>
CUDA_CALLABLE_MEMBER complex &operator=(const complex<_Xp> &__c) {
__re_ = __c.real();
__im_ = __c.imag();
return *this;
}
template <class _Xp>
CUDA_CALLABLE_MEMBER complex &operator+=(const complex<_Xp> &__c) {
__re_ += __c.real();
__im_ += __c.imag();
return *this;
}
template <class _Xp>
CUDA_CALLABLE_MEMBER complex &operator-=(const complex<_Xp> &__c) {
__re_ -= __c.real();
__im_ -= __c.imag();
return *this;
}
template <class _Xp>
CUDA_CALLABLE_MEMBER complex &operator*=(const complex<_Xp> &__c) {
*this = *this * __c;
return *this;
}
template <class _Xp>
CUDA_CALLABLE_MEMBER complex &operator/=(const complex<_Xp> &__c) {
*this = *this / __c;
return *this;
}
};
template <> class complex<double> {
double __re_;
double __im_;
public:
typedef double value_type;
/*constexpr*/ CUDA_CALLABLE_MEMBER complex(double __re = 0.0,
double __im = 0.0)
: __re_(__re), __im_(__im) {}
/*constexpr*/ complex(const complex<float> &__c);
/*constexpr*/ CUDA_CALLABLE_MEMBER double real() const { return __re_; }
/*constexpr*/ CUDA_CALLABLE_MEMBER double imag() const { return __im_; }
CUDA_CALLABLE_MEMBER void real(value_type __re) { __re_ = __re; }
CUDA_CALLABLE_MEMBER void imag(value_type __im) { __im_ = __im; }
CUDA_CALLABLE_MEMBER complex &operator=(double __re) {
__re_ = __re;
__im_ = value_type();
return *this;
}
CUDA_CALLABLE_MEMBER complex &operator+=(double __re) {
__re_ += __re;
return *this;
}
CUDA_CALLABLE_MEMBER complex &operator-=(double __re) {
__re_ -= __re;
return *this;
}
CUDA_CALLABLE_MEMBER complex &operator*=(double __re) {
__re_ *= __re;
__im_ *= __re;
return *this;
}
CUDA_CALLABLE_MEMBER complex &operator/=(double __re) {
__re_ /= __re;
__im_ /= __re;
return *this;
}
template <class _Xp>
CUDA_CALLABLE_MEMBER complex &operator=(const complex<_Xp> &__c) {
__re_ = __c.real();
__im_ = __c.imag();
return *this;
}
template <class _Xp>
CUDA_CALLABLE_MEMBER complex &operator+=(const complex<_Xp> &__c) {
__re_ += __c.real();
__im_ += __c.imag();
return *this;
}
template <class _Xp>
CUDA_CALLABLE_MEMBER complex &operator-=(const complex<_Xp> &__c) {
__re_ -= __c.real();
__im_ -= __c.imag();
return *this;
}
template <class _Xp>
CUDA_CALLABLE_MEMBER complex &operator*=(const complex<_Xp> &__c) {
*this = *this * __c;
return *this;
}
template <class _Xp>
CUDA_CALLABLE_MEMBER complex &operator/=(const complex<_Xp> &__c) {
*this = *this / __c;
return *this;
}
};
// constexpr
inline CUDA_CALLABLE_MEMBER complex<float>::complex(const complex<double> &__c)
: __re_(__c.real()), __im_(__c.imag()) {}
// constexpr
inline CUDA_CALLABLE_MEMBER complex<double>::complex(const complex<float> &__c)
: __re_(__c.real()), __im_(__c.imag()) {}
// 26.3.6 operators:
template <class _Tp>
inline CUDA_CALLABLE_MEMBER complex<_Tp> operator+(const complex<_Tp> &__x,
const complex<_Tp> &__y) {
complex<_Tp> __t(__x);
__t += __y;
return __t;
}
template <class _Tp>
inline CUDA_CALLABLE_MEMBER complex<_Tp> operator+(const complex<_Tp> &__x,
const _Tp &__y) {
complex<_Tp> __t(__x);
__t += __y;
return __t;
}
template <class _Tp>
inline CUDA_CALLABLE_MEMBER complex<_Tp> operator+(const _Tp &__x,
const complex<_Tp> &__y) {
complex<_Tp> __t(__y);
__t += __x;
return __t;
}
template <class _Tp>
inline CUDA_CALLABLE_MEMBER complex<_Tp> operator-(const complex<_Tp> &__x,
const complex<_Tp> &__y) {
complex<_Tp> __t(__x);
__t -= __y;
return __t;
}
template <class _Tp>
inline CUDA_CALLABLE_MEMBER complex<_Tp> operator-(const complex<_Tp> &__x,
const _Tp &__y) {
complex<_Tp> __t(__x);
__t -= __y;
return __t;
}
template <class _Tp>
inline CUDA_CALLABLE_MEMBER complex<_Tp> operator-(const _Tp &__x,
const complex<_Tp> &__y) {
complex<_Tp> __t(-__y);
__t += __x;
return __t;
}
template <class _Tp>
CUDA_CALLABLE_MEMBER complex<_Tp> operator*(const complex<_Tp> &__z,
const complex<_Tp> &__w) {
_Tp __a = __z.real();
_Tp __b = __z.imag();
_Tp __c = __w.real();
_Tp __d = __w.imag();
_Tp __ac = __a * __c;
_Tp __bd = __b * __d;
_Tp __ad = __a * __d;
_Tp __bc = __b * __c;
_Tp __x = __ac - __bd;
_Tp __y = __ad + __bc;
if (isnan(__x) && isnan(__y)) {
bool __recalc = false;
if (isinf(__a) || isinf(__b)) {
__a = copysign(isinf(__a) ? _Tp(1) : _Tp(0), __a);
__b = copysign(isinf(__b) ? _Tp(1) : _Tp(0), __b);
if (isnan(__c))
__c = copysign(_Tp(0), __c);
if (isnan(__d))
__d = copysign(_Tp(0), __d);
__recalc = true;
}
if (isinf(__c) || isinf(__d)) {
__c = copysign(isinf(__c) ? _Tp(1) : _Tp(0), __c);
__d = copysign(isinf(__d) ? _Tp(1) : _Tp(0), __d);
if (isnan(__a))
__a = copysign(_Tp(0), __a);
if (isnan(__b))
__b = copysign(_Tp(0), __b);
__recalc = true;
}
if (!__recalc &&
(isinf(__ac) || isinf(__bd) || isinf(__ad) || isinf(__bc))) {
if (isnan(__a))
__a = copysign(_Tp(0), __a);
if (isnan(__b))
__b = copysign(_Tp(0), __b);
if (isnan(__c))
__c = copysign(_Tp(0), __c);
if (isnan(__d))
__d = copysign(_Tp(0), __d);
__recalc = true;
}
if (__recalc) {
__x = _Tp(INFINITY) * (__a * __c - __b * __d);
__y = _Tp(INFINITY) * (__a * __d + __b * __c);
}
}
return complex<_Tp>(__x, __y);
}
template <class _Tp>
inline CUDA_CALLABLE_MEMBER complex<_Tp> operator*(const complex<_Tp> &__x,
const _Tp &__y) {
complex<_Tp> __t(__x);
__t *= __y;
return __t;
}
template <class _Tp>
inline CUDA_CALLABLE_MEMBER complex<_Tp> operator*(const _Tp &__x,
const complex<_Tp> &__y) {
complex<_Tp> __t(__y);
__t *= __x;
return __t;
}
template <class _Tp>
CUDA_CALLABLE_MEMBER complex<_Tp> operator/(const complex<_Tp> &__z,
const complex<_Tp> &__w) {
int __ilogbw = 0;
_Tp __a = __z.real();
_Tp __b = __z.imag();
_Tp __c = __w.real();
_Tp __d = __w.imag();
_Tp __logbw = logb(fmax(fabs(__c), fabs(__d)));
if (isfinite(__logbw)) {
__ilogbw = static_cast<int>(__logbw);
__c = scalbn(__c, -__ilogbw);
__d = scalbn(__d, -__ilogbw);
}
_Tp __denom = __c * __c + __d * __d;
_Tp __x = scalbn((__a * __c + __b * __d) / __denom, -__ilogbw);
_Tp __y = scalbn((__b * __c - __a * __d) / __denom, -__ilogbw);
if (isnan(__x) && isnan(__y)) {
if ((__denom == _Tp(0)) && (!isnan(__a) || !isnan(__b))) {
__x = copysign(_Tp(INFINITY), __c) * __a;
__y = copysign(_Tp(INFINITY), __c) * __b;
} else if ((isinf(__a) || isinf(__b)) && isfinite(__c) && isfinite(__d)) {
__a = copysign(isinf(__a) ? _Tp(1) : _Tp(0), __a);
__b = copysign(isinf(__b) ? _Tp(1) : _Tp(0), __b);
__x = _Tp(INFINITY) * (__a * __c + __b * __d);
__y = _Tp(INFINITY) * (__b * __c - __a * __d);
} else if (isinf(__logbw) && __logbw > _Tp(0) && isfinite(__a) &&
isfinite(__b)) {
__c = copysign(isinf(__c) ? _Tp(1) : _Tp(0), __c);
__d = copysign(isinf(__d) ? _Tp(1) : _Tp(0), __d);
__x = _Tp(0) * (__a * __c + __b * __d);
__y = _Tp(0) * (__b * __c - __a * __d);
}
}
return complex<_Tp>(__x, __y);
}
template <>
CUDA_CALLABLE_MEMBER complex<float> operator/(const complex<float> &__z,
const complex<float> &__w) {
int __ilogbw = 0;
float __a = __z.real();
float __b = __z.imag();
float __c = __w.real();
float __d = __w.imag();
float __logbw = logbf(fmaxf(fabsf(__c), fabsf(__d)));
if (isfinite(__logbw)) {
__ilogbw = static_cast<int>(__logbw);
__c = scalbnf(__c, -__ilogbw);
__d = scalbnf(__d, -__ilogbw);
}
float __denom = __c * __c + __d * __d;
float __x = scalbnf((__a * __c + __b * __d) / __denom, -__ilogbw);
float __y = scalbnf((__b * __c - __a * __d) / __denom, -__ilogbw);
if (isnan(__x) && isnan(__y)) {
if ((__denom == float(0)) && (!isnan(__a) || !isnan(__b))) {
#pragma warning(suppress : 4756) // Ignore INFINITY related warning
__x = copysignf(INFINITY, __c) * __a;
#pragma warning(suppress : 4756) // Ignore INFINITY related warning
__y = copysignf(INFINITY, __c) * __b;
} else if ((isinf(__a) || isinf(__b)) && isfinite(__c) && isfinite(__d)) {
__a = copysignf(isinf(__a) ? float(1) : float(0), __a);
__b = copysignf(isinf(__b) ? float(1) : float(0), __b);
#pragma warning(suppress : 4756) // Ignore INFINITY related warning
__x = INFINITY * (__a * __c + __b * __d);
#pragma warning(suppress : 4756) // Ignore INFINITY related warning
__y = INFINITY * (__b * __c - __a * __d);
} else if (isinf(__logbw) && __logbw > float(0) && isfinite(__a) &&
isfinite(__b)) {
__c = copysignf(isinf(__c) ? float(1) : float(0), __c);
__d = copysignf(isinf(__d) ? float(1) : float(0), __d);
__x = float(0) * (__a * __c + __b * __d);
__y = float(0) * (__b * __c - __a * __d);
}
}
return complex<float>(__x, __y);
}
template <class _Tp>
inline CUDA_CALLABLE_MEMBER complex<_Tp> operator/(const complex<_Tp> &__x,
const _Tp &__y) {
return complex<_Tp>(__x.real() / __y, __x.imag() / __y);
}
template <class _Tp>
inline CUDA_CALLABLE_MEMBER complex<_Tp> operator/(const _Tp &__x,
const complex<_Tp> &__y) {
complex<_Tp> __t(__x);
__t /= __y;
return __t;
}
template <class _Tp>
inline CUDA_CALLABLE_MEMBER complex<_Tp> operator+(const complex<_Tp> &__x) {
return __x;
}
template <class _Tp>
inline CUDA_CALLABLE_MEMBER complex<_Tp> operator-(const complex<_Tp> &__x) {
return complex<_Tp>(-__x.real(), -__x.imag());
}
template <class _Tp>
inline CUDA_CALLABLE_MEMBER bool operator==(const complex<_Tp> &__x,
const complex<_Tp> &__y) {
return __x.real() == __y.real() && __x.imag() == __y.imag();
}
template <class _Tp>
inline CUDA_CALLABLE_MEMBER bool operator==(const complex<_Tp> &__x,
const _Tp &__y) {
return __x.real() == __y && __x.imag() == 0;
}
template <class _Tp>
inline CUDA_CALLABLE_MEMBER bool operator==(const _Tp &__x,
const complex<_Tp> &__y) {
return __x == __y.real() && 0 == __y.imag();
}
template <class _Tp>
inline CUDA_CALLABLE_MEMBER bool operator!=(const complex<_Tp> &__x,
const complex<_Tp> &__y) {
return !(__x == __y);
}
template <class _Tp>
inline CUDA_CALLABLE_MEMBER bool operator!=(const complex<_Tp> &__x,
const _Tp &__y) {
return !(__x == __y);
}
template <class _Tp>
inline CUDA_CALLABLE_MEMBER bool operator!=(const _Tp &__x,
const complex<_Tp> &__y) {
return !(__x == __y);
}
// 26.3.7 values:
// real
template <class _Tp>
inline CUDA_CALLABLE_MEMBER _Tp real(const complex<_Tp> &__c) {
return __c.real();
}
inline CUDA_CALLABLE_MEMBER double real(double __re) { return __re; }
inline CUDA_CALLABLE_MEMBER float real(float __re) { return __re; }
// imag
template <class _Tp>
inline CUDA_CALLABLE_MEMBER _Tp imag(const complex<_Tp> &__c) {
return __c.imag();
}
inline CUDA_CALLABLE_MEMBER double imag(double __re) { return 0; }
inline CUDA_CALLABLE_MEMBER float imag(float __re) { return 0; }
// abs
template <class _Tp>
inline CUDA_CALLABLE_MEMBER _Tp abs(const complex<_Tp> &__c) {
return hypot(__c.real(), __c.imag());
}
// arg
template <class _Tp>
inline CUDA_CALLABLE_MEMBER _Tp arg(const complex<_Tp> &__c) {
return atan2(__c.imag(), __c.real());
}
inline CUDA_CALLABLE_MEMBER double arg(double __re) { return atan2(0., __re); }
inline CUDA_CALLABLE_MEMBER float arg(float __re) { return atan2f(0.F, __re); }
// norm
template <class _Tp>
inline CUDA_CALLABLE_MEMBER _Tp norm(const complex<_Tp> &__c) {
if (isinf(__c.real()))
return fabs(__c.real());
if (isinf(__c.imag()))
return fabs(__c.imag());
return __c.real() * __c.real() + __c.imag() * __c.imag();
}
inline CUDA_CALLABLE_MEMBER double norm(double __re) { return __re * __re; }
inline CUDA_CALLABLE_MEMBER float norm(float __re) { return __re * __re; }
// conj
template <class _Tp>
inline CUDA_CALLABLE_MEMBER complex<_Tp> conj(const complex<_Tp> &__c) {
return complex<_Tp>(__c.real(), -__c.imag());
}
inline CUDA_CALLABLE_MEMBER complex<double> conj(double __re) {
return complex<double>(__re);
}
inline CUDA_CALLABLE_MEMBER complex<float> conj(float __re) {
return complex<float>(__re);
}
// proj
template <class _Tp>
inline CUDA_CALLABLE_MEMBER complex<_Tp> proj(const complex<_Tp> &__c) {
complex<_Tp> __r = __c;
if (isinf(__c.real()) || isinf(__c.imag()))
__r = complex<_Tp>(INFINITY, copysign(_Tp(0), __c.imag()));
return __r;
}
inline CUDA_CALLABLE_MEMBER complex<double> proj(double __re) {
if (isinf(__re))
__re = fabs(__re);
return complex<double>(__re);
}
inline CUDA_CALLABLE_MEMBER complex<float> proj(float __re) {
if (isinf(__re))
__re = fabs(__re);
return complex<float>(__re);
}
// polar
template <class _Tp>
CUDA_CALLABLE_MEMBER complex<_Tp> polar(const _Tp &__rho,
const _Tp &__theta = _Tp(0)) {
if (isnan(__rho) || signbit(__rho))
return complex<_Tp>(_Tp(NAN), _Tp(NAN));
if (isnan(__theta)) {
if (isinf(__rho))
return complex<_Tp>(__rho, __theta);
return complex<_Tp>(__theta, __theta);
}
if (isinf(__theta)) {
if (isinf(__rho))
return complex<_Tp>(__rho, _Tp(NAN));
return complex<_Tp>(_Tp(NAN), _Tp(NAN));
}
_Tp __x = __rho * cos(__theta);
if (isnan(__x))
__x = 0;
_Tp __y = __rho * sin(__theta);
if (isnan(__y))
__y = 0;
return complex<_Tp>(__x, __y);
}
// log
template <class _Tp>
inline CUDA_CALLABLE_MEMBER complex<_Tp> log(const complex<_Tp> &__x) {
return complex<_Tp>(log(abs(__x)), arg(__x));
}
// log10
template <class _Tp>
inline CUDA_CALLABLE_MEMBER complex<_Tp> log10(const complex<_Tp> &__x) {
return log(__x) / log(_Tp(10));
}
// sqrt
template <class _Tp>
CUDA_CALLABLE_MEMBER complex<_Tp> sqrt(const complex<_Tp> &__x) {
if (isinf(__x.imag()))
return complex<_Tp>(_Tp(INFINITY), __x.imag());
if (isinf(__x.real())) {
if (__x.real() > _Tp(0))
return complex<_Tp>(__x.real(), isnan(__x.imag())
? __x.imag()
: copysign(_Tp(0), __x.imag()));
return complex<_Tp>(isnan(__x.imag()) ? __x.imag() : _Tp(0),
copysign(__x.real(), __x.imag()));
}
return polar(sqrt(abs(__x)), arg(__x) / _Tp(2));
}
// exp
template <class _Tp>
CUDA_CALLABLE_MEMBER complex<_Tp> exp(const complex<_Tp> &__x) {
_Tp __i = __x.imag();
if (isinf(__x.real())) {
if (__x.real() < _Tp(0)) {
if (!isfinite(__i))
__i = _Tp(1);
} else if (__i == 0 || !isfinite(__i)) {
if (isinf(__i))
__i = _Tp(NAN);
return complex<_Tp>(__x.real(), __i);
}
} else if (isnan(__x.real()) && __x.imag() == 0)
return __x;
_Tp __e = exp(__x.real());
return complex<_Tp>(__e * cos(__i), __e * sin(__i));
}
// pow
template <class _Tp>
inline CUDA_CALLABLE_MEMBER complex<_Tp> pow(const complex<_Tp> &__x,
const complex<_Tp> &__y) {
return exp(__y * log(__x));
}
template <class _Tp>
inline CUDA_CALLABLE_MEMBER complex<_Tp> pow(const complex<_Tp> &__x,
const _Tp &__y) {
return pow(__x, complex<_Tp>(__y));
}
template <class _Tp>
inline CUDA_CALLABLE_MEMBER complex<_Tp> pow(const _Tp &__x,
const complex<_Tp> &__y) {
return pow(complex<_Tp>(__x), __y);
}
// asinh
template <class _Tp>
CUDA_CALLABLE_MEMBER complex<_Tp> asinh(const complex<_Tp> &__x) {
const _Tp __pi(atan2(+0., -0.));
if (isinf(__x.real())) {
if (isnan(__x.imag()))
return __x;
if (isinf(__x.imag()))
return complex<_Tp>(__x.real(), copysign(__pi * _Tp(0.25), __x.imag()));
return complex<_Tp>(__x.real(), copysign(_Tp(0), __x.imag()));
}
if (isnan(__x.real())) {
if (isinf(__x.imag()))
return complex<_Tp>(__x.imag(), __x.real());
if (__x.imag() == 0)
return __x;
return complex<_Tp>(__x.real(), __x.real());
}
if (isinf(__x.imag()))
return complex<_Tp>(copysign(__x.imag(), __x.real()),
copysign(__pi / _Tp(2), __x.imag()));
complex<_Tp> __z = log(__x + sqrt(pow(__x, _Tp(2)) + _Tp(1)));
return complex<_Tp>(copysign(__z.real(), __x.real()),
copysign(__z.imag(), __x.imag()));
}
// acosh
template <class _Tp>
CUDA_CALLABLE_MEMBER complex<_Tp> acosh(const complex<_Tp> &__x) {
const _Tp __pi(atan2(+0., -0.));
if (isinf(__x.real())) {
if (isnan(__x.imag()))
return complex<_Tp>(fabs(__x.real()), __x.imag());
if (isinf(__x.imag()))
if (__x.real() > 0)
return complex<_Tp>(__x.real(), copysign(__pi * _Tp(0.25), __x.imag()));
else
return complex<_Tp>(-__x.real(),
copysign(__pi * _Tp(0.75), __x.imag()));
if (__x.real() < 0)
return complex<_Tp>(-__x.real(), copysign(__pi, __x.imag()));
return complex<_Tp>(__x.real(), copysign(_Tp(0), __x.imag()));
}
if (isnan(__x.real())) {
if (isinf(__x.imag()))
return complex<_Tp>(fabs(__x.imag()), __x.real());
return complex<_Tp>(__x.real(), __x.real());
}
if (isinf(__x.imag()))
return complex<_Tp>(fabs(__x.imag()), copysign(__pi / _Tp(2), __x.imag()));
complex<_Tp> __z = log(__x + sqrt(pow(__x, _Tp(2)) - _Tp(1)));
return complex<_Tp>(copysign(__z.real(), _Tp(0)),
copysign(__z.imag(), __x.imag()));
}
// atanh
template <class _Tp>
CUDA_CALLABLE_MEMBER complex<_Tp> atanh(const complex<_Tp> &__x) {
const _Tp __pi(atan2(+0., -0.));
if (isinf(__x.imag())) {
return complex<_Tp>(copysign(_Tp(0), __x.real()),
copysign(__pi / _Tp(2), __x.imag()));
}
if (isnan(__x.imag())) {
if (isinf(__x.real()) || __x.real() == 0)
return complex<_Tp>(copysign(_Tp(0), __x.real()), __x.imag());
return complex<_Tp>(__x.imag(), __x.imag());
}
if (isnan(__x.real())) {
return complex<_Tp>(__x.real(), __x.real());
}
if (isinf(__x.real())) {
return complex<_Tp>(copysign(_Tp(0), __x.real()),
copysign(__pi / _Tp(2), __x.imag()));
}
if (fabs(__x.real()) == _Tp(1) && __x.imag() == _Tp(0)) {
return complex<_Tp>(copysign(_Tp(INFINITY), __x.real()),
copysign(_Tp(0), __x.imag()));
}
complex<_Tp> __z = log((_Tp(1) + __x) / (_Tp(1) - __x)) / _Tp(2);
return complex<_Tp>(copysign(__z.real(), __x.real()),
copysign(__z.imag(), __x.imag()));
}
// sinh
template <class _Tp>
CUDA_CALLABLE_MEMBER complex<_Tp> sinh(const complex<_Tp> &__x) {
if (isinf(__x.real()) && !isfinite(__x.imag()))
return complex<_Tp>(__x.real(), _Tp(NAN));
if (__x.real() == 0 && !isfinite(__x.imag()))
return complex<_Tp>(__x.real(), _Tp(NAN));
if (__x.imag() == 0 && !isfinite(__x.real()))
return __x;
return complex<_Tp>(sinh(__x.real()) * cos(__x.imag()),
cosh(__x.real()) * sin(__x.imag()));
}
// cosh
template <class _Tp>
CUDA_CALLABLE_MEMBER complex<_Tp> cosh(const complex<_Tp> &__x) {
if (isinf(__x.real()) && !isfinite(__x.imag()))
return complex<_Tp>(fabs(__x.real()), _Tp(NAN));
if (__x.real() == 0 && !isfinite(__x.imag()))
return complex<_Tp>(_Tp(NAN), __x.real());
if (__x.real() == 0 && __x.imag() == 0)
return complex<_Tp>(_Tp(1), __x.imag());
if (__x.imag() == 0 && !isfinite(__x.real()))
return complex<_Tp>(fabs(__x.real()), __x.imag());
return complex<_Tp>(cosh(__x.real()) * cos(__x.imag()),
sinh(__x.real()) * sin(__x.imag()));
}
// tanh
template <class _Tp>
CUDA_CALLABLE_MEMBER complex<_Tp> tanh(const complex<_Tp> &__x) {
if (isinf(__x.real())) {
if (!isfinite(__x.imag()))
return complex<_Tp>(_Tp(1), _Tp(0));
return complex<_Tp>(_Tp(1), copysign(_Tp(0), sin(_Tp(2) * __x.imag())));
}
if (isnan(__x.real()) && __x.imag() == 0)
return __x;
_Tp __2r(_Tp(2) * __x.real());
_Tp __2i(_Tp(2) * __x.imag());
_Tp __d(cosh(__2r) + cos(__2i));
return complex<_Tp>(sinh(__2r) / __d, sin(__2i) / __d);
}
// asin
template <class _Tp>
CUDA_CALLABLE_MEMBER complex<_Tp> asin(const complex<_Tp> &__x) {
complex<_Tp> __z = asinh(complex<_Tp>(-__x.imag(), __x.real()));
return complex<_Tp>(__z.imag(), -__z.real());
}
// acos
template <class _Tp>
CUDA_CALLABLE_MEMBER complex<_Tp> acos(const complex<_Tp> &__x) {
const _Tp __pi(atan2(+0., -0.));
if (isinf(__x.real())) {
if (isnan(__x.imag()))
return complex<_Tp>(__x.imag(), __x.real());
if (isinf(__x.imag())) {
if (__x.real() < _Tp(0))
return complex<_Tp>(_Tp(0.75) * __pi, -__x.imag());
return complex<_Tp>(_Tp(0.25) * __pi, -__x.imag());
}
if (__x.real() < _Tp(0))
return complex<_Tp>(__pi, signbit(__x.imag()) ? -__x.real() : __x.real());
return complex<_Tp>(_Tp(0), signbit(__x.imag()) ? __x.real() : -__x.real());
}
if (isnan(__x.real())) {
if (isinf(__x.imag()))
return complex<_Tp>(__x.real(), -__x.imag());
return complex<_Tp>(__x.real(), __x.real());
}
if (isinf(__x.imag()))
return complex<_Tp>(__pi / _Tp(2), -__x.imag());
if (__x.real() == 0)
return complex<_Tp>(__pi / _Tp(2), -__x.imag());
complex<_Tp> __z = log(__x + sqrt(pow(__x, _Tp(2)) - _Tp(1)));
if (signbit(__x.imag()))
return complex<_Tp>(fabs(__z.imag()), fabs(__z.real()));
return complex<_Tp>(fabs(__z.imag()), -fabs(__z.real()));
}
// atan
template <class _Tp>
CUDA_CALLABLE_MEMBER complex<_Tp> atan(const complex<_Tp> &__x) {
complex<_Tp> __z = atanh(complex<_Tp>(-__x.imag(), __x.real()));
return complex<_Tp>(__z.imag(), -__z.real());
}
// sin
template <class _Tp>
CUDA_CALLABLE_MEMBER complex<_Tp> sin(const complex<_Tp> &__x) {
complex<_Tp> __z = sinh(complex<_Tp>(-__x.imag(), __x.real()));
return complex<_Tp>(__z.imag(), -__z.real());
}
// cos
template <class _Tp>
inline CUDA_CALLABLE_MEMBER complex<_Tp> cos(const complex<_Tp> &__x) {
return cosh(complex<_Tp>(-__x.imag(), __x.real()));
}
// tan
template <class _Tp>
CUDA_CALLABLE_MEMBER complex<_Tp> tan(const complex<_Tp> &__x) {
complex<_Tp> __z = tanh(complex<_Tp>(-__x.imag(), __x.real()));
return complex<_Tp>(__z.imag(), -__z.real());
}
template <class _Tp, class _CharT, class _Traits>
std::basic_istream<_CharT, _Traits> &
operator>>(std::basic_istream<_CharT, _Traits> &__is, complex<_Tp> &__x) {
if (__is.good()) {
ws(__is);
if (__is.peek() == _CharT('(')) {
__is.get();
_Tp __r;
__is >> __r;
if (!__is.fail()) {
ws(__is);
_CharT __c = __is.peek();
if (__c == _CharT(',')) {
__is.get();
_Tp __i;
__is >> __i;
if (!__is.fail()) {
ws(__is);
__c = __is.peek();
if (__c == _CharT(')')) {
__is.get();
__x = complex<_Tp>(__r, __i);
} else
__is.setstate(std::ios_base::failbit);
} else
__is.setstate(std::ios_base::failbit);
} else if (__c == _CharT(')')) {
__is.get();
__x = complex<_Tp>(__r, _Tp(0));
} else
__is.setstate(std::ios_base::failbit);
} else
__is.setstate(std::ios_base::failbit);
} else {
_Tp __r;
__is >> __r;
if (!__is.fail())
__x = complex<_Tp>(__r, _Tp(0));
else
__is.setstate(std::ios_base::failbit);
}
} else
__is.setstate(std::ios_base::failbit);
return __is;
}
template <class _Tp, class _CharT, class _Traits>
std::basic_ostream<_CharT, _Traits> &
operator<<(std::basic_ostream<_CharT, _Traits> &__os, const complex<_Tp> &__x) {
std::basic_ostringstream<_CharT, _Traits> __s;
__s.flags(__os.flags());
__s.imbue(__os.getloc());
__s.precision(__os.precision());
__s << '(' << __x.real() << ',' << __x.imag() << ')';
return __os << __s.str();
}
//} // close namespace cuda_complex
template <class U, class V>
CUDA_CALLABLE_MEMBER auto operator*(const complex<U> &complexNumber,
const V &scalar) -> complex<U> {
return complex<U>(real(complexNumber) * scalar, imag(complexNumber) * scalar);
}
template <class U, class V>
CUDA_CALLABLE_MEMBER auto operator*(const V &scalar,
const complex<U> &complexNumber)
-> complex<U> {
return complex<U>(real(complexNumber) * scalar, imag(complexNumber) * scalar);
}
template <class U, class V>
CUDA_CALLABLE_MEMBER auto operator+(const complex<U> &complexNumber,
const V &scalar) -> complex<U> {
return complex<U>(real(complexNumber) + scalar, imag(complexNumber));
}
template <class U, class V>
CUDA_CALLABLE_MEMBER auto operator+(const V &scalar,
const complex<U> &complexNumber)
-> complex<U> {
return complex<U>(real(complexNumber) + scalar, imag(complexNumber));
}
template <class U, class V>
CUDA_CALLABLE_MEMBER auto operator-(const complex<U> &complexNumber,
const V &scalar) -> complex<U> {
return complex<U>(real(complexNumber) - scalar, imag(complexNumber));
}
template <class U, class V>
CUDA_CALLABLE_MEMBER auto operator-(const V &scalar,
const complex<U> &complexNumber)
-> complex<U> {
return complex<U>(scalar - real(complexNumber), imag(complexNumber));
}
template <class U, class V>
CUDA_CALLABLE_MEMBER auto operator/(const complex<U> &complexNumber,
const V scalar) -> complex<U> {
return complex<U>(real(complexNumber) / scalar, imag(complexNumber) / scalar);
}
template <class U, class V>
CUDA_CALLABLE_MEMBER auto operator/(const V scalar,
const complex<U> &complexNumber)
-> complex<U> {
return complex<U>(scalar, 0) / complexNumber;
}
using ComplexDouble = complex<double>;
using ComplexFloat = complex<float>;
#endif // CUDA_COMPLEX_HPP
}
#ifndef OPENCL_STDINT
#define OPENCL_STDINT
typedef unsigned int uint_t;
typedef signed char int8_t;
typedef signed short int16_t;
typedef signed int int32_t;
typedef signed long int int64_t;
typedef unsigned char uint8_t;
typedef unsigned short uint16_t;
typedef unsigned int uint32_t;
typedef unsigned long int uint64_t;
#endif
"""
Test of pystencils.data_types.address_of
"""
import sympy as sp
import pystencils
from pystencils.data_types import PointerType, address_of, cast_func, create_type
from pystencils.simp.simplifications import sympy_cse
def test_address_of():
x, y = pystencils.fields('x,y: int64[2d]')
s = pystencils.TypedSymbol('s', PointerType(create_type('int64')))
assert address_of(x[0, 0]).canonical() == x[0, 0]
assert address_of(x[0, 0]).dtype == PointerType(x[0, 0].dtype, restrict=True)
assert address_of(sp.Symbol("a")).dtype == PointerType('void', restrict=True)
assignments = pystencils.AssignmentCollection({
s: address_of(x[0, 0]),
y[0, 0]: cast_func(s, create_type('int64'))
}, {})
ast = pystencils.create_kernel(assignments)
pystencils.show_code(ast)
assignments = pystencils.AssignmentCollection({
y[0, 0]: cast_func(address_of(x[0, 0]), create_type('int64'))
}, {})
ast = pystencils.create_kernel(assignments)
pystencils.show_code(ast)
def test_address_of_with_cse():
x, y = pystencils.fields('x,y: int64[2d]')
s = pystencils.TypedSymbol('s', PointerType(create_type('int64')))
assignments = pystencils.AssignmentCollection({
y[0, 0]: cast_func(address_of(x[0, 0]), create_type('int64')) + s,
x[0, 0]: cast_func(address_of(x[0, 0]), create_type('int64')) + 1
}, {})
ast = pystencils.create_kernel(assignments)
pystencils.show_code(ast)
assignments_cse = sympy_cse(assignments)
ast = pystencils.create_kernel(assignments_cse)
pystencils.show_code(ast)
# -*- coding: utf-8 -*-
#
# Copyright © 2019 Stephan Seitz <stephan.seitz@fau.de>
#
# Distributed under terms of the GPLv3 license.
"""
"""
import itertools
import numpy as np
import pytest
import sympy
from sympy.functions import im, re
import pystencils
from pystencils import AssignmentCollection
from pystencils.data_types import TypedSymbol, create_type
X, Y = pystencils.fields('x, y: complex64[2d]')
A, B = pystencils.fields('a, b: float32[2d]')
S1, S2, T = sympy.symbols('S1, S2, T')
TEST_ASSIGNMENTS = [
AssignmentCollection({X[0, 0]: 1j}),
AssignmentCollection({
S1: re(Y.center),
S2: im(Y.center),
X[0, 0]: 2j * S1 + S2
}),
AssignmentCollection({
A.center: re(Y.center),
B.center: im(Y.center),
}),
AssignmentCollection({
Y.center: re(Y.center) + X.center + 2j,
}),
AssignmentCollection({
T: 2 + 4j,
Y.center: X.center / T,
})
]
SCALAR_DTYPES = ['float32', 'float64']
@pytest.mark.parametrize("assignment, scalar_dtypes",
itertools.product(TEST_ASSIGNMENTS, (np.float32,)))
@pytest.mark.parametrize('target', (pystencils.Target.CPU, pystencils.Target.GPU))
def test_complex_numbers(assignment, scalar_dtypes, target):
ast = pystencils.create_kernel(assignment,
target=target,
data_type=scalar_dtypes)
code = pystencils.get_code_str(ast)
print(code)
assert "Not supported" not in code
if target == pystencils.Target.GPU:
pytest.importorskip('pycuda')
kernel = ast.compile()
assert kernel is not None
X, Y = pystencils.fields('x, y: complex128[2d]')
A, B = pystencils.fields('a, b: float64[2d]')
S1, S2 = sympy.symbols('S1, S2')
T128 = TypedSymbol('ts', create_type('complex128'))
TEST_ASSIGNMENTS = [
AssignmentCollection({X[0, 0]: 1j}),
AssignmentCollection({
S1: re(Y.center),
S2: im(Y.center),
X[0, 0]: 2j * S1 + S2
}),
AssignmentCollection({
A.center: re(Y.center),
B.center: im(Y.center),
}),
AssignmentCollection({
Y.center: re(Y.center) + X.center + 2j,
}),
AssignmentCollection({
T128: 2 + 4j,
Y.center: X.center / T128,
})
]
SCALAR_DTYPES = ['float64']
@pytest.mark.parametrize("assignment", TEST_ASSIGNMENTS)
@pytest.mark.parametrize('target', (pystencils.Target.CPU, pystencils.Target.GPU))
def test_complex_numbers_64(assignment, target):
ast = pystencils.create_kernel(assignment,
target=target,
data_type='double')
code = pystencils.get_code_str(ast)
print(code)
assert "Not supported" not in code
if target == pystencils.Target.GPU:
pytest.importorskip('pycuda')
kernel = ast.compile()
assert kernel is not None
@pytest.mark.parametrize('dtype', (np.float32, np.float64))
@pytest.mark.parametrize('target', (pystencils.Target.CPU, pystencils.Target.GPU))
@pytest.mark.parametrize('with_complex_argument', ('with_complex_argument', False))
def test_complex_execution(dtype, target, with_complex_argument):
complex_dtype = f'complex{64 if dtype ==np.float32 else 128}'
x, y = pystencils.fields(f'x, y: {complex_dtype}[2d]')
x_arr = np.zeros((20, 30), complex_dtype)
y_arr = np.zeros((20, 30), complex_dtype)
if with_complex_argument:
a = pystencils.TypedSymbol('a', create_type(complex_dtype))
else:
a = (2j+1)
assignments = AssignmentCollection({
y.center: x.center + a
})
if target == pystencils.Target.GPU:
pytest.importorskip('pycuda')
from pycuda.gpuarray import zeros
x_arr = zeros((20, 30), complex_dtype)
y_arr = zeros((20, 30), complex_dtype)
kernel = pystencils.create_kernel(assignments, target=target, data_type=dtype).compile()
if with_complex_argument:
kernel(x=x_arr, y=y_arr, a=2j+1)
else:
kernel(x=x_arr, y=y_arr)
if target == pystencils.Target.GPU:
y_arr = y_arr.get()
assert np.allclose(y_arr, 2j+1)
import pytest
import pystencils as ps
import numpy as np
# This test aims to trigger deprication warnings. Thus the warnings should not be displayed in the warning summary.
def test_create_kernel_backwards_compatibility():
size = (30, 20)
src_field_string = np.random.rand(*size)
src_field_enum = np.copy(src_field_string)
src_field_config = np.copy(src_field_string)
dst_field_string = np.zeros(size)
dst_field_enum = np.zeros(size)
dst_field_config = np.zeros(size)
f = ps.Field.create_from_numpy_array("f", src_field_enum)
d = ps.Field.create_from_numpy_array("d", dst_field_enum)
jacobi = ps.Assignment(d[0, 0], (f[1, 0] + f[-1, 0] + f[0, 1] + f[0, -1]) / 4)
ast_enum = ps.create_kernel(jacobi, target=ps.Target.CPU).compile()
with pytest.warns(DeprecationWarning):
ast_string = ps.create_kernel(jacobi, target='cpu').compile()
# noinspection PyTypeChecker
with pytest.warns(DeprecationWarning):
ast_config = ps.create_kernel(jacobi, config=ps.CreateKernelConfig(target='cpu')).compile()
ast_enum(f=src_field_enum, d=dst_field_enum)
ast_string(f=src_field_string, d=dst_field_string)
ast_config(f=src_field_config, d=dst_field_config)
error = np.sum(np.abs(dst_field_enum - dst_field_string))
np.testing.assert_almost_equal(error, 0.0)
error = np.sum(np.abs(dst_field_enum - dst_field_config))
np.testing.assert_almost_equal(error, 0.0)
import sympy
import pytest
import pystencils
from pystencils.astnodes import get_dummy_symbol
from pystencils.backends.cuda_backend import CudaSympyPrinter
from pystencils.data_types import address_of
from pystencils.enums import Target
def test_cuda_known_functions():
printer = CudaSympyPrinter()
print(printer.known_functions)
x, y = pystencils.fields('x,y: float32 [2d]')
assignments = pystencils.AssignmentCollection({
get_dummy_symbol(): sympy.Function('atomicAdd')(address_of(y.center()), 2),
y.center(): sympy.Function('rsqrtf')(x[0, 0])
})
ast = pystencils.create_kernel(assignments, target=Target.GPU)
pytest.importorskip('pycuda')
pystencils.show_code(ast)
kernel = ast.compile()
assert(kernel is not None)
def test_cuda_but_not_c():
x, y = pystencils.fields('x,y: float32 [2d]')
assignments = pystencils.AssignmentCollection({
get_dummy_symbol(): sympy.Function('atomicAdd')(address_of(y.center()), 2),
y.center(): sympy.Function('rsqrtf')(x[0, 0])
})
ast = pystencils.create_kernel(assignments, target=Target.CPU)
pystencils.show_code(ast)
def test_cuda_unknown():
x, y = pystencils.fields('x,y: float32 [2d]')
assignments = pystencils.AssignmentCollection({
get_dummy_symbol(): sympy.Function('wtf')(address_of(y.center()), 2),
})
ast = pystencils.create_kernel(assignments, target=Target.GPU)
pystencils.show_code(ast)
%% Cell type:code id: tags:
``` python
import pytest
pytest.importorskip('graphviz')
```
%% Cell type:code id: tags:
``` python
from pystencils.session import *
from pystencils.astnodes import Block, Conditional
```
%% Cell type:code id: tags:
``` python
src, dst = ps.fields("src, dst: double[2D]", layout='c')
true_block = Block([ps.Assignment(dst[0, 0], src[-1, 0])])
false_block = Block([ps.Assignment(dst[0, 0], src[1, 0])])
ur = [true_block, Conditional(dst.center() > 0.0, true_block, false_block)]
ast = ps.create_kernel(ur)
```
%% Cell type:code id: tags:
``` python
ps.to_dot(ast, graph_style={'size': "9.5,12.5"})
```
%% Output
<graphviz.files.Source at 0x7f62452c4110>
import numpy as np
from pystencils import Assignment, Field
from pystencils.cpu import create_indexed_kernel, make_python_function
def test_indexed_kernel():
arr = np.zeros((3, 4))
dtype = np.dtype([('x', int), ('y', int), ('value', arr.dtype)])
index_arr = np.zeros((3,), dtype=dtype)
index_arr[0] = (0, 2, 3.0)
index_arr[1] = (1, 3, 42.0)
index_arr[2] = (2, 1, 5.0)
indexed_field = Field.create_from_numpy_array('index', index_arr)
normal_field = Field.create_from_numpy_array('f', arr)
update_rule = Assignment(normal_field[0, 0], indexed_field('value'))
ast = create_indexed_kernel([update_rule], [indexed_field])
kernel = make_python_function(ast)
kernel(f=arr, index=index_arr)
for i in range(index_arr.shape[0]):
np.testing.assert_allclose(arr[index_arr[i]['x'], index_arr[i]['y']], index_arr[i]['value'], atol=1e-13)
def test_indexed_cuda_kernel():
try:
import pycuda
except ImportError:
pycuda = None
if pycuda:
from pystencils.gpucuda import make_python_function
import pycuda.gpuarray as gpuarray
from pystencils.gpucuda.kernelcreation import created_indexed_cuda_kernel
arr = np.zeros((3, 4))
dtype = np.dtype([('x', int), ('y', int), ('value', arr.dtype)])
index_arr = np.zeros((3,), dtype=dtype)
index_arr[0] = (0, 2, 3.0)
index_arr[1] = (1, 3, 42.0)
index_arr[2] = (2, 1, 5.0)
indexed_field = Field.create_from_numpy_array('index', index_arr)
normal_field = Field.create_from_numpy_array('f', arr)
update_rule = Assignment(normal_field[0, 0], indexed_field('value'))
ast = created_indexed_cuda_kernel([update_rule], [indexed_field])
kernel = make_python_function(ast)
gpu_arr = gpuarray.to_gpu(arr)
gpu_index_arr = gpuarray.to_gpu(index_arr)
kernel(f=gpu_arr, index=gpu_index_arr)
gpu_arr.get(arr)
for i in range(index_arr.shape[0]):
np.testing.assert_allclose(arr[index_arr[i]['x'], index_arr[i]['y']], index_arr[i]['value'], atol=1e-13)
else:
print("Did not run test on GPU since no pycuda is available")
%% Cell type:code id: tags:
``` python
from pystencils.session import *
```
%% Cell type:code id: tags:
``` python
dh = ps.create_data_handling(domain_size=(256, 256), periodicity=True)
c_field = dh.add_array('c')
dh.fill("c", 0.0, ghost_layers=True)
```
%% Cell type:code id: tags:
``` python
for x in range(129):
for y in range(258):
dh.cpu_arrays['c'][x, y] = 1.0
```
%% Cell type:code id: tags:
``` python
plt.scalar_field(dh.cpu_arrays["c"])
```
%% Output
<matplotlib.image.AxesImage at 0x7fcb7d253710>
%% Cell type:code id: tags:
``` python
ur = ps.Assignment(c_field[0, 0], c_field[1, 0])
ast = ps.create_kernel(ur, target=dh.default_target, cpu_openmp=True)
kernel = ast.compile()
```
%% Cell type:code id: tags:
``` python
c_sync = dh.synchronization_function_cpu(['c'])
```
%% Cell type:code id: tags:
``` python
def timeloop(steps=10):
for i in range(steps):
c_sync()
dh.run_kernel(kernel)
return dh.gather_array('c')
```
%% Cell type:code id: tags:
``` python
ps.jupyter.set_display_mode('video')
```
%% Cell type:code id: tags:
``` python
ani = ps.plot.scalar_field_animation(timeloop, rescale=True, frames=12)
ps.jupyter.display_animation(ani)
```
%% Output
<IPython.core.display.HTML object>
%% Cell type:code id: tags:
``` python
ps.jupyter.set_display_mode('image_update')
```
%% Cell type:code id: tags:
``` python
ani = ps.plot.scalar_field_animation(timeloop, rescale=True, frames=12)
ps.jupyter.display_animation(ani)
```
%% Output
%% Cell type:code id: tags:
``` python
def grid_update_function(image):
for i in range(40):
c_sync()
dh.run_kernel(kernel)
return dh.gather_array('c')
```
%% Cell type:code id: tags:
``` python
animation = ps.jupyter.make_imshow_animation(dh.cpu_arrays["c"], grid_update_function, frames=300)
```
%% Output
%% Cell type:code id: tags:
``` python
ps.jupyter.set_display_mode("video")
ps.jupyter.set_display_mode("window")
ps.jupyter.set_display_mode("image_update")
ps.jupyter.activate_ipython()
```
from collections import defaultdict
import numpy as np
import pytest
from sympy.abc import x, y
from pystencils import Assignment, create_kernel, fields, CreateKernelConfig
from pystencils.transformations import adjust_c_single_precision_type
@pytest.mark.parametrize("data_type", ("float", "double"))
def test_single_precision(data_type):
dtype = f"float{64 if data_type == 'double' else 32}"
s = fields(f"s: {dtype}[1D]")
assignments = [Assignment(x, y), Assignment(s[0], x)]
ast = create_kernel(assignments, config=CreateKernelConfig(data_type=data_type))
assert ast.body.args[0].lhs.dtype.numpy_dtype == np.dtype(dtype)
assert ast.body.args[0].rhs.dtype.numpy_dtype == np.dtype(dtype)
assert ast.body.args[1].body.args[0].rhs.dtype.numpy_dtype == np.dtype(dtype)
def test_adjustment_dict():
d = dict({"x": "float", "y": "double"})
adjust_c_single_precision_type(d)
assert np.dtype(d["x"]) == np.dtype("float32")
assert np.dtype(d["y"]) == np.dtype("float64")
def test_adjustement_default_dict():
dd = defaultdict(lambda: "float")
dd["x"]
adjust_c_single_precision_type(dd)
dd["y"]
assert np.dtype(dd["x"]) == np.dtype("float32")
assert np.dtype(dd["y"]) == np.dtype("float32")
assert np.dtype(dd["z"]) == np.dtype("float32")
%% Cell type:code id: tags:
``` python
import pytest
pytest.importorskip('pycuda')
```
%% Cell type:code id: tags:
``` python
from pystencils.session import *
sp.init_printing()
frac = sp.Rational
```
%% Cell type:markdown id: tags:
# Phase-field simulation of dentritic solidification in 3D
This notebook tests the model presented in the dentritic growth tutorial in 3D.
%% Cell type:code id: tags:
``` python
target = ps.Target.GPU
gpu = target == ps.Target.GPU
domain_size = (25, 25, 25) if 'is_test_run' in globals() else (300, 300, 300)
dh = ps.create_data_handling(domain_size=domain_size, periodicity=True, default_target=target)
φ_field = dh.add_array('phi', latex_name='φ')
φ_delta_field = dh.add_array('phidelta', latex_name='φ_D')
t_field = dh.add_array('T')
```
%% Cell type:code id: tags:
``` python
ε, m, δ, j, θzero, α, γ, Teq, κ, τ = sp.symbols("ε m δ j θ_0 α γ T_eq κ τ")
εb = sp.Symbol("\\bar{\\epsilon}")
discretize = ps.fd.Discretization2ndOrder(dx=0.03, dt=1e-5)
φ = φ_field.center
T = t_field.center
d = ps.fd.Diff
def f(φ, m):
return φ**4 / 4 - (frac(1, 2) - m/3) * φ**3 + (frac(1,4)-m/2)*φ**2
bulk_free_energy_density = f(φ, m)
interface_free_energy_density = ε ** 2 / 2 * (d(φ, 0) ** 2 + d(φ, 1) ** 2 + d(φ, 2) ** 2)
```
%% Cell type:markdown id: tags:
Here comes the major change, that has to be made for the 3D model: $\epsilon$ depends on the interface normal, which can not be computed simply as atan() as in the 2D case
%% Cell type:code id: tags:
``` python
n = sp.Matrix([d(φ, i) for i in range(3)])
nLen = sp.sqrt(sum(n_i**2 for n_i in n))
n = n / nLen
nVal = sum(n_i**4 for n_i in n)
σ = δ * nVal
εVal = εb * (1 + σ)
εVal
```
%% Output
$\displaystyle \bar{\epsilon} \left(δ \left(\frac{{\partial_{0} {{φ}_{(0,0,0)}}}^{4}}{\left({\partial_{0} {{φ}_{(0,0,0)}}}^{2} + {\partial_{1} {{φ}_{(0,0,0)}}}^{2} + {\partial_{2} {{φ}_{(0,0,0)}}}^{2}\right)^{2}} + \frac{{\partial_{1} {{φ}_{(0,0,0)}}}^{4}}{\left({\partial_{0} {{φ}_{(0,0,0)}}}^{2} + {\partial_{1} {{φ}_{(0,0,0)}}}^{2} + {\partial_{2} {{φ}_{(0,0,0)}}}^{2}\right)^{2}} + \frac{{\partial_{2} {{φ}_{(0,0,0)}}}^{4}}{\left({\partial_{0} {{φ}_{(0,0,0)}}}^{2} + {\partial_{1} {{φ}_{(0,0,0)}}}^{2} + {\partial_{2} {{φ}_{(0,0,0)}}}^{2}\right)^{2}}\right) + 1\right)$
⎛ ⎛ 4
⎜ ⎜ D(φ[0,0,0])
\bar{\epsilon}⋅⎜δ⋅⎜───────────────────────────────────────────── + ───────────
⎜ ⎜ 2
⎜ ⎜⎛ 2 2 2⎞ ⎛
⎝ ⎝⎝D(φ[0,0,0]) + D(φ[0,0,0]) + D(φ[0,0,0]) ⎠ ⎝D(φ[0,0,0]
4 4
D(φ[0,0,0]) D(φ[0,0,0])
────────────────────────────────── + ─────────────────────────────────────────
2
2 2 2⎞ ⎛ 2 2
) + D(φ[0,0,0]) + D(φ[0,0,0]) ⎠ ⎝D(φ[0,0,0]) + D(φ[0,0,0]) + D(φ[0,0,0]
⎞ ⎞
⎟ ⎟
────⎟ + 1⎟
2⎟ ⎟
2⎞ ⎟ ⎟
) ⎠ ⎠ ⎠
%% Cell type:code id: tags:
``` python
def m_func(temperature):
return (α / sp.pi) * sp.atan(γ * (Teq - temperature))
```
%% Cell type:code id: tags:
``` python
substitutions = {m: m_func(T),
ε: εVal}
fe_i = interface_free_energy_density.subs(substitutions)
fe_b = bulk_free_energy_density.subs(substitutions)
μ_if = ps.fd.expand_diff_full(ps.fd.functional_derivative(fe_i, φ), functions=[φ])
μ_b = ps.fd.expand_diff_full(ps.fd.functional_derivative(fe_b, φ), functions=[φ])
```
%% Cell type:code id: tags:
``` python
dF_dφ = μ_b + sp.Piecewise((μ_if, nLen**2 > 1e-10), (0, True))
```
%% Cell type:code id: tags:
``` python
parameters = {
τ: 0.0003,
κ: 1.8,
εb: 0.01,
δ: 0.3,
γ: 10,
j: 6,
α: 0.9,
Teq: 1.0,
θzero: 0.2,
sp.pi: sp.pi.evalf()
}
parameters
```
%% Output
$\displaystyle \left\{ \pi : 3.14159265358979, \ T_{eq} : 1.0, \ \bar{\epsilon} : 0.01, \ j : 6, \ α : 0.9, \ γ : 10, \ δ : 0.3, \ θ_{0} : 0.2, \ κ : 1.8, \ τ : 0.0003\right\}$
{π: 3.14159265358979, T_eq: 1.0, \bar{\epsilon}: 0.01, j: 6, α: 0.9, γ: 10, δ:
0.3, θ₀: 0.2, κ: 1.8, τ: 0.0003}
%% Cell type:code id: tags:
``` python
dφ_dt = - dF_dφ / τ
assignments = [
ps.Assignment(φ_delta_field.center, discretize(dφ_dt.subs(parameters))),
]
φEqs = ps.simp.sympy_cse_on_assignment_list(assignments)
φEqs.append(ps.Assignment(φ, discretize(ps.fd.transient(φ) - φ_delta_field.center)))
temperatureEvolution = -ps.fd.transient(T) + ps.fd.diffusion(T, 1) + κ * φ_delta_field.center
temperatureEqs = [
ps.Assignment(T, discretize(temperatureEvolution.subs(parameters)))
]
```
%% Cell type:code id: tags:
``` python
temperatureEqs
```
%% Output
$\displaystyle \left[ {{T}_{(0,0,0)}} \leftarrow 0.0111111111111111 {{T}_{(-1,0,0)}} + 0.0111111111111111 {{T}_{(0,-1,0)}} + 0.0111111111111111 {{T}_{(0,0,-1)}} + 0.933333333333333 {{T}_{(0,0,0)}} + 0.0111111111111111 {{T}_{(0,0,1)}} + 0.0111111111111111 {{T}_{(0,1,0)}} + 0.0111111111111111 {{T}_{(1,0,0)}} + 1.8 \cdot 10^{-5} {{φ_D}_{(0,0,0)}}\right]$
[T_C := 0.0111111111111111⋅T_W + 0.0111111111111111⋅T_S + 0.0111111111111111⋅T
_B + 0.933333333333333⋅T_C + 0.0111111111111111⋅T_T + 0.0111111111111111⋅T_N +
0.0111111111111111⋅T_E + 1.8e-5⋅phidelta_C]
%% Cell type:code id: tags:
``` python
φ_kernel = ps.create_kernel(φEqs, cpu_openmp=4, target=target).compile()
temperatureKernel = ps.create_kernel(temperatureEqs, cpu_openmp=4, target=target).compile()
```
%% Cell type:code id: tags:
``` python
def time_loop(steps):
φ_sync = dh.synchronization_function(['phi'], target=target)
temperature_sync = dh.synchronization_function(['T'], target=target)
dh.all_to_gpu()
for t in range(steps):
φ_sync()
dh.run_kernel(φ_kernel)
temperature_sync()
dh.run_kernel(temperatureKernel)
dh.all_to_cpu()
def init(nucleus_size=np.sqrt(5)):
for b in dh.iterate():
x, y, z = b.cell_index_arrays
x, y, z = x - b.shape[0] // 2, y - b.shape[1] // 2, z - b.shape[2] // 2
b['phi'].fill(0)
b['phi'][(x ** 2 + y ** 2 + z ** 2) < nucleus_size ** 2] = 1.0
b['T'].fill(0.0)
def plot(slice_obj=ps.make_slice[:, :, 0.5]):
plt.subplot(1, 3, 1)
plt.scalar_field(dh.gather_array('phi', slice_obj).squeeze())
plt.title("φ")
plt.colorbar()
plt.subplot(1, 3, 2)
plt.title("T")
plt.scalar_field(dh.gather_array('T', slice_obj).squeeze())
plt.colorbar()
plt.subplot(1, 3, 3)
plt.title("∂φ")
plt.scalar_field(dh.gather_array('phidelta', slice_obj).squeeze())
plt.colorbar()
```
%% Cell type:code id: tags:
``` python
init()
plot()
print(dh)
```
%% Output
Name| Inner (min/max)| WithGl (min/max)
----------------------------------------------------
T| ( 0, 0)| ( 0, 0)
phi| ( 0, 1)| ( 0, 1)
phidelta| ( 0, 0)| ( 0, 0)
%% Cell type:code id: tags:
``` python
if 'is_test_run' in globals():
time_loop(2)
assert np.isfinite(dh.max('phi'))
assert np.isfinite(dh.max('T'))
assert np.isfinite(dh.max('phidelta'))
else:
from time import perf_counter
vtk_writer = dh.create_vtk_writer('dentritic_growth_large', ['phi'])
last = perf_counter()
for i in range(300):
time_loop(100)
vtk_writer(i)
print("Step ", i, perf_counter() - last, dh.max('phi'))
last = perf_counter()
```
import pytest
import pystencils
from sympy import oo
@pytest.mark.parametrize('type', ('float32', 'float64', 'int64'))
@pytest.mark.parametrize('negative', (False, 'Negative'))
@pytest.mark.parametrize('target', (pystencils.Target.CPU, pystencils.Target.GPU))
def test_print_infinity(type, negative, target):
x = pystencils.fields(f'x: {type}[1d]')
if negative:
assignment = pystencils.Assignment(x.center, -oo)
else:
assignment = pystencils.Assignment(x.center, oo)
ast = pystencils.create_kernel(assignment, data_type=type, target=target)
if target == pystencils.Target.GPU:
pytest.importorskip('pycuda')
ast.compile()
print(ast.compile().code)
# -*- coding: utf-8 -*-
#
# Copyright © 2019 Stephan Seitz <stephan.seitz@fau.de>
#
# Distributed under terms of the GPLv3 license.
"""
"""
import pytest
import pystencils
from pystencils.backends.cbackend import CBackend
class UnsupportedNode(pystencils.astnodes.Node):
def __init__(self):
super().__init__()
def test_print_unsupported_node():
with pytest.raises(NotImplementedError, match='CBackend does not support node of type UnsupportedNode'):
CBackend()(UnsupportedNode())
import numpy as np
import sympy as sp
from pystencils import Assignment, Field, TypedSymbol, create_kernel, make_slice
from pystencils.simp import sympy_cse_on_assignment_list
def test_sliced_iteration():
size = (4, 4)
src_arr = np.ones(size)
dst_arr = np.zeros_like(src_arr)
src_field = Field.create_from_numpy_array('src', src_arr)
dst_field = Field.create_from_numpy_array('dst', dst_arr)
a, b = sp.symbols("a b")
update_rule = Assignment(dst_field[0, 0],
(a * src_field[0, 1] + a * src_field[0, -1] +
b * src_field[1, 0] + b * src_field[-1, 0]) / 4)
x_end = TypedSymbol("x_end", "int")
s = make_slice[1:x_end, 1]
x_end_value = size[1] - 1
kernel = create_kernel(sympy_cse_on_assignment_list([update_rule]), iteration_slice=s).compile()
kernel(src=src_arr, dst=dst_arr, a=1.0, b=1.0, x_end=x_end_value)
expected_result = np.zeros(size)
expected_result[1:x_end_value, 1] = 1
np.testing.assert_almost_equal(expected_result, dst_arr)
%% Cell type:code id: tags:
``` python
import pytest
pytest.importorskip('waLBerla')
```
%% Cell type:code id: tags:
``` python
from pystencils.session import *
from time import perf_counter
from statistics import median
from functools import partial
```
%% Cell type:markdown id: tags:
## Benchmark for Python call overhead
%% Cell type:code id: tags:
``` python
inner_repeats = 100
outer_repeats = 5
sizes = [2**i for i in range(1, 8)]
sizes
```
%% Output
$\displaystyle \left[ 2, \ 4, \ 8, \ 16, \ 32, \ 64, \ 128\right]$
[2, 4, 8, 16, 32, 64, 128]
%% Cell type:code id: tags:
``` python
def benchmark_pure(domain_size, extract_first=False):
src = np.zeros(domain_size)
dst = np.zeros_like(src)
f_src, f_dst = ps.fields("src, dst", src=src, dst=dst)
kernel = ps.create_kernel(ps.Assignment(f_dst.center, f_src.center)).compile()
if extract_first:
kernel = kernel.kernel
start = perf_counter()
for i in range(inner_repeats):
kernel(src=src, dst=dst)
src, dst = dst, src
end = perf_counter()
else:
start = perf_counter()
for i in range(inner_repeats):
kernel(src=src, dst=dst)
src, dst = dst, src
end = perf_counter()
return (end - start) / inner_repeats
def benchmark_datahandling(domain_size, parallel=False):
dh = ps.create_data_handling(domain_size, parallel=parallel)
f_src = dh.add_array('src')
f_dst = dh.add_array('dst')
kernel = ps.create_kernel(ps.Assignment(f_dst.center, f_src.center)).compile()
start = perf_counter()
for i in range(inner_repeats):
dh.run_kernel(kernel)
dh.swap('src', 'dst')
end = perf_counter()
return (end - start) / inner_repeats
name_to_func = {
'pure_extract': partial(benchmark_pure, extract_first=True),
'pure_no_extract': partial(benchmark_pure, extract_first=False),
'dh_serial': partial(benchmark_datahandling, parallel=False),
'dh_parallel': partial(benchmark_datahandling, parallel=True),
}
```
%% Cell type:code id: tags:
``` python
result = {'block_size': [],
'name': [],
'time': []}
for bs in sizes:
print("Computing size ", bs)
for name, func in name_to_func.items():
for i in range(outer_repeats):
time = func((bs, bs))
result['block_size'].append(bs)
result['name'].append(name)
result['time'].append(time)
```
%% Output
Computing size 2
Computing size 4
Computing size 8
Computing size 16
Computing size 32
Computing size 64
Computing size 128
%% Cell type:code id: tags:
``` python
if 'is_test_run' not in globals():
import pandas as pd
import seaborn as sns
data = pd.DataFrame.from_dict(result)
plt.subplot(1,2,1)
sns.barplot(x='block_size', y='time', hue='name', data=data, alpha=0.6)
plt.yscale('log')
plt.subplot(1,2,2)
data = pd.DataFrame.from_dict(result)
sns.barplot(x='block_size', y='time', hue='name', data=data, alpha=0.6)
```
%% Output
# -*- coding: utf-8 -*-
#
# Copyright © 2019 Stephan Seitz <stephan.seitz@fau.de>
#
# Distributed under terms of the GPLv3 license.
"""
"""
import pytest
import numpy as np
import sympy as sp
import sympy.abc
import pystencils as ps
from pystencils.data_types import create_type
@pytest.mark.parametrize('default_assignment_simplifications', [False, True])
def test_sum(default_assignment_simplifications):
sum = sp.Sum(sp.abc.k, (sp.abc.k, 1, 100))
expanded_sum = sum.doit()
print(sum)
print(expanded_sum)
x = ps.fields('x: float32[1d]')
assignments = ps.AssignmentCollection({x.center(): sum})
config = ps.CreateKernelConfig(default_assignment_simplifications=default_assignment_simplifications)
ast = ps.create_kernel(assignments, config=config)
code = ps.get_code_str(ast)
kernel = ast.compile()
print(code)
if default_assignment_simplifications is False:
assert 'double sum' in code
array = np.zeros((10,), np.float32)
kernel(x=array)
assert np.allclose(array, int(expanded_sum) * np.ones_like(array))
@pytest.mark.parametrize('default_assignment_simplifications', [False, True])
def test_sum_use_float(default_assignment_simplifications):
sum = sympy.Sum(sp.abc.k, (sp.abc.k, 1, 100))
expanded_sum = sum.doit()
print(sum)
print(expanded_sum)
x = ps.fields('x: float32[1d]')
assignments = ps.AssignmentCollection({x.center(): sum})
config = ps.CreateKernelConfig(default_assignment_simplifications=default_assignment_simplifications,
data_type=create_type('float32'))
ast = ps.create_kernel(assignments, config=config)
code = ps.get_code_str(ast)
kernel = ast.compile()
print(code)
if default_assignment_simplifications is False:
assert 'float sum' in code
array = np.zeros((10,), np.float32)
kernel(x=array)
assert np.allclose(array, int(expanded_sum) * np.ones_like(array))
@pytest.mark.parametrize('default_assignment_simplifications', [False, True])
def test_product(default_assignment_simplifications):
k = ps.TypedSymbol('k', create_type('int64'))
sum = sympy.Product(k, (k, 1, 10))
expanded_sum = sum.doit()
print(sum)
print(expanded_sum)
x = ps.fields('x: int64[1d]')
assignments = ps.AssignmentCollection({x.center(): sum})
config = ps.CreateKernelConfig(default_assignment_simplifications=default_assignment_simplifications)
ast = ps.create_kernel(assignments, config=config)
code = ps.get_code_str(ast)
kernel = ast.compile()
print(code)
if default_assignment_simplifications is False:
assert 'int64_t product' in code
array = np.zeros((10,), np.int64)
kernel(x=array)
assert np.allclose(array, int(expanded_sum) * np.ones_like(array))
def test_prod_var_limit():
k = ps.TypedSymbol('k', create_type('int64'))
limit = ps.TypedSymbol('limit', create_type('int64'))
sum = sympy.Sum(k, (k, 1, limit))
expanded_sum = sum.replace(limit, 100).doit()
print(sum)
print(expanded_sum)
x = ps.fields('x: int64[1d]')
assignments = ps.AssignmentCollection({x.center(): sum})
ast = ps.create_kernel(assignments)
ps.show_code(ast)
kernel = ast.compile()
array = np.zeros((10,), np.int64)
kernel(x=array, limit=100)
assert np.allclose(array, int(expanded_sum) * np.ones_like(array))
import pystencils as ps
from pystencils import TypedSymbol
from pystencils.astnodes import LoopOverCoordinate, SympyAssignment
from pystencils.data_types import create_type
from pystencils.transformations import filtered_tree_iteration, get_loop_hierarchy, get_loop_counter_symbol_hierarchy
def test_loop_information():
f, g = ps.fields("f, g: double[2D]")
update_rule = ps.Assignment(g[0, 0], f[0, 0])
ast = ps.create_kernel(update_rule)
inner_loops = [l for l in filtered_tree_iteration(ast, LoopOverCoordinate, stop_type=SympyAssignment)
if l.is_innermost_loop]
loop_order = []
for i in get_loop_hierarchy(inner_loops[0].args[0]):
loop_order.append(i)
assert loop_order == [0, 1]
loop_symbols = get_loop_counter_symbol_hierarchy(inner_loops[0].args[0])
assert loop_symbols == [TypedSymbol("ctr_1", create_type("int"), nonnegative=True),
TypedSymbol("ctr_0", create_type("int"), nonnegative=True)]
from sympy.abc import a, b, c, d, e, f
import pystencils
from pystencils.data_types import cast_func, create_type
def test_type_interference():
x = pystencils.fields('x: float32[3d]')
assignments = pystencils.AssignmentCollection({
a: cast_func(10, create_type('float64')),
b: cast_func(10, create_type('uint16')),
e: 11,
c: b,
f: c + b,
d: c + b + x.center + e,
x.center: c + b + x.center
})
ast = pystencils.create_kernel(assignments)
code = str(pystencils.get_code_str(ast))
assert 'double a' in code
assert 'uint16_t b' in code
assert 'uint16_t f' in code
assert 'int64_t e' in code