Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
No results found
Show changes
Showing
with 925 additions and 66 deletions
import functools
import itertools
from types import MappingProxyType
import warnings
from typing import Union, List
import sympy as sp
from pystencils.config import CreateKernelConfig
from pystencils.assignment import Assignment
from pystencils.astnodes import Block, Conditional, LoopOverCoordinate, SympyAssignment
from pystencils.assignment import Assignment, AddAugmentedAssignment
from pystencils.astnodes import Node, Block, Conditional, LoopOverCoordinate, SympyAssignment
from pystencils.cpu.vectorization import vectorize
from pystencils.enums import Target, Backend
from pystencils.field import Field, FieldType
from pystencils.gpucuda.indexing import indexing_creator_from_params
from pystencils.node_collection import NodeCollection
from pystencils.simp.assignment_collection import AssignmentCollection
from pystencils.kernel_contrains_check import KernelConstraintsCheck
from pystencils.simplificationfactory import create_simplification_strategy
from pystencils.stencil import direction_string_to_offset, inverse_direction_string
from pystencils.transformations import (
loop_blocking, move_constants_before_loop, remove_conditionals_in_staggered_kernel)
def create_kernel(assignments,
target='cpu',
data_type="double",
iteration_slice=None,
ghost_layers=None,
skip_independence_check=False,
cpu_openmp=False,
cpu_vectorize_info=None,
cpu_blocking=None,
omp_single_loop=True,
gpu_indexing='block',
gpu_indexing_params=MappingProxyType({}),
use_textures_for_interpolation=True,
cpu_prepend_optimizations=[],
use_auto_for_assignments=False,
opencl_queue=None,
opencl_ctx=None):
def create_kernel(assignments: Union[Assignment, List[Assignment],
AddAugmentedAssignment, List[AddAugmentedAssignment],
AssignmentCollection, List[Node], NodeCollection],
*,
config: CreateKernelConfig = None, **kwargs):
"""
Creates abstract syntax tree (AST) of kernel, using a list of update equations.
This function forms the general API and delegates the kernel creation to others depending on the CreateKernelConfig.
Args:
assignments: can be a single assignment, sequence of assignments or an `AssignmentCollection`
target: 'cpu', 'llvm', 'gpu' or 'opencl'
data_type: data type used for all untyped symbols (i.e. non-fields), can also be a dict from symbol name
to type
iteration_slice: rectangular subset to iterate over, if not specified the complete non-ghost layer \
part of the field is iterated over
ghost_layers: a single integer specifies the ghost layer count at all borders, can also be a sequence of
pairs ``[(x_lower_gl, x_upper_gl), .... ]``. These layers are excluded from the iteration.
If left to default, the number of ghost layers is determined automatically.
skip_independence_check: don't check that loop iterations are independent. This is needed e.g. for
periodicity kernel, that access the field outside the iteration bounds. Use with care!
cpu_openmp: True or number of threads for OpenMP parallelization, False for no OpenMP
omp_single_loop: if OpenMP is active: whether multiple outer loops are permitted
cpu_vectorize_info: a dictionary with keys, 'vector_instruction_set', 'assume_aligned' and 'nontemporal'
for documentation of these parameters see vectorize function. Example:
'{'instruction_set': 'avx512', 'assume_aligned': True, 'nontemporal':True}'
cpu_blocking: a tuple of block sizes or None if no blocking should be applied
gpu_indexing: either 'block' or 'line' , or custom indexing class, see `AbstractIndexing`
gpu_indexing_params: dict with indexing parameters (constructor parameters of indexing class)
e.g. for 'block' one can specify '{'block_size': (20, 20, 10) }'
cpu_prepend_optimizations: list of extra optimizations to perform first on the AST
config: CreateKernelConfig which includes the needed configuration
kwargs: Arguments for updating the config
Returns:
abstract syntax tree (AST) object, that can either be printed as source code with `show_code` or
......@@ -67,8 +41,8 @@ def create_kernel(assignments,
>>> import numpy as np
>>> s, d = ps.fields('s, d: [2D]')
>>> assignment = ps.Assignment(d[0,0], s[0, 1] + s[0, -1] + s[1, 0] + s[-1, 0])
>>> ast = ps.create_kernel(assignment, target='cpu', cpu_openmp=True)
>>> kernel = ast.compile()
>>> kernel_ast = ps.create_kernel(assignment, config=ps.CreateKernelConfig(cpu_openmp=True))
>>> kernel = kernel_ast.compile()
>>> d_arr = np.zeros([5, 5])
>>> kernel(d=d_arr, s=np.ones([5, 5]))
>>> d_arr
......@@ -78,82 +52,132 @@ def create_kernel(assignments,
[0., 4., 4., 4., 0.],
[0., 0., 0., 0., 0.]])
"""
# ---- Updating configuration from kwargs
if not config:
config = CreateKernelConfig(**kwargs)
else:
for k, v in kwargs.items():
if not hasattr(config, k):
raise KeyError(f'{v} is not a valid kwarg. Please look in CreateKernelConfig for valid settings')
setattr(config, k, v)
# ---- Normalizing parameters
if isinstance(assignments, Assignment):
if isinstance(assignments, (Assignment, AddAugmentedAssignment)):
assignments = [assignments]
assert assignments, "Assignments must not be empty!"
split_groups = ()
if isinstance(assignments, AssignmentCollection):
if 'split_groups' in assignments.simplification_hints:
split_groups = assignments.simplification_hints['split_groups']
assignments = assignments.all_assignments
# ---- Creating ast
if target == 'cpu':
from pystencils.cpu import create_kernel
from pystencils.cpu import add_openmp
ast = create_kernel(assignments, type_info=data_type, split_groups=split_groups,
iteration_slice=iteration_slice, ghost_layers=ghost_layers,
skip_independence_check=skip_independence_check)
for optimization in cpu_prepend_optimizations:
optimization(ast)
omp_collapse = None
if cpu_blocking:
omp_collapse = loop_blocking(ast, cpu_blocking)
if cpu_openmp:
add_openmp(ast, num_threads=cpu_openmp, collapse=omp_collapse, assume_single_outer_loop=omp_single_loop)
if cpu_vectorize_info:
if cpu_vectorize_info is True:
vectorize(ast)
elif isinstance(cpu_vectorize_info, dict):
vectorize(ast, **cpu_vectorize_info)
if cpu_openmp and cpu_blocking and 'nontemporal' in cpu_vectorize_info and \
cpu_vectorize_info['nontemporal'] and 'cachelineZero' in ast.instruction_set:
# This condition is stricter than it needs to be: if blocks along the fastest axis start on a
# cache line boundary, it's okay. But we cannot determine that here.
# We don't need to disallow OpenMP collapsing because it is never applied to the inner loop.
raise ValueError("Blocking cannot be combined with cacheline-zeroing")
else:
raise ValueError("Invalid value for cpu_vectorize_info")
elif target == 'llvm':
from pystencils.llvm import create_kernel
ast = create_kernel(assignments, type_info=data_type, split_groups=split_groups,
iteration_slice=iteration_slice, ghost_layers=ghost_layers)
elif target == 'gpu' or target == 'opencl':
from pystencils.gpucuda import create_cuda_kernel
ast = create_cuda_kernel(assignments, type_info=data_type,
indexing_creator=indexing_creator_from_params(gpu_indexing, gpu_indexing_params),
iteration_slice=iteration_slice, ghost_layers=ghost_layers,
skip_independence_check=skip_independence_check,
use_textures_for_interpolation=use_textures_for_interpolation)
if target == 'opencl':
from pystencils.opencl.opencljit import make_python_function
ast._backend = 'opencl'
ast.compile = functools.partial(make_python_function, ast, opencl_queue, opencl_ctx)
ast._target = 'opencl'
ast._backend = 'opencl'
return ast
if isinstance(assignments, list):
assignments = NodeCollection(assignments)
elif isinstance(assignments, AssignmentCollection):
# TODO Markus check and doku
# --- applying first default simplifications
try:
if config.default_assignment_simplifications:
simplification = create_simplification_strategy()
assignments = simplification(assignments)
except Exception as e:
warnings.warn(f"It was not possible to apply the default pystencils optimisations to the "
f"AssignmentCollection due to the following problem :{e}")
simplification_hints = assignments.simplification_hints
assignments = NodeCollection.from_assignment_collection(assignments)
assignments.simplification_hints = simplification_hints
if config.index_fields:
return create_indexed_kernel(assignments, config=config)
else:
raise ValueError(f"Unknown target {target}. Has to be one of 'cpu', 'gpu' or 'llvm' ")
return create_domain_kernel(assignments, config=config)
def create_domain_kernel(assignments: NodeCollection, *, config: CreateKernelConfig):
"""
Creates abstract syntax tree (AST) of kernel, using a NodeCollection.
Note that `create_domain_kernel` is a lower level function which shoul be accessed by not providing `index_fields`
to create_kernel
Args:
assignments: `pystencils.node_collection.NodeCollection` containing all assignements and nodes to be processed
config: CreateKernelConfig which includes the needed configuration
if use_auto_for_assignments:
Returns:
abstract syntax tree (AST) object, that can either be printed as source code with `show_code` or
can be compiled with through its 'compile()' member
Example:
>>> import pystencils as ps
>>> import numpy as np
>>> from pystencils.kernelcreation import create_domain_kernel
>>> from pystencils.node_collection import NodeCollection
>>> s, d = ps.fields('s, d: [2D]')
>>> assignment = ps.Assignment(d[0,0], s[0, 1] + s[0, -1] + s[1, 0] + s[-1, 0])
>>> kernel_config = ps.CreateKernelConfig(cpu_openmp=True)
>>> kernel_ast = create_domain_kernel(NodeCollection([assignment]), config=kernel_config)
>>> kernel = kernel_ast.compile()
>>> d_arr = np.zeros([5, 5])
>>> kernel(d=d_arr, s=np.ones([5, 5]))
>>> d_arr
array([[0., 0., 0., 0., 0.],
[0., 4., 4., 4., 0.],
[0., 4., 4., 4., 0.],
[0., 4., 4., 4., 0.],
[0., 0., 0., 0., 0.]])
"""
# --- eval
assignments.evaluate_terms()
# FUTURE WORK from here we shouldn't NEED sympy
# --- check constrains
check = KernelConstraintsCheck(check_independence_condition=not config.skip_independence_check,
check_double_write_condition=not config.allow_double_writes)
check.visit(assignments)
assignments.bound_fields = check.fields_written
assignments.rhs_fields = check.fields_read
# ---- Creating ast
ast = None
if config.target == Target.CPU:
if config.backend == Backend.C:
from pystencils.cpu import add_openmp, create_kernel
ast = create_kernel(assignments, config=config)
for optimization in config.cpu_prepend_optimizations:
optimization(ast)
omp_collapse = None
if config.cpu_blocking:
omp_collapse = loop_blocking(ast, config.cpu_blocking)
if config.cpu_openmp:
add_openmp(ast, num_threads=config.cpu_openmp, collapse=omp_collapse,
assume_single_outer_loop=config.omp_single_loop)
if config.cpu_vectorize_info:
if config.cpu_vectorize_info is True:
vectorize(ast)
elif isinstance(config.cpu_vectorize_info, dict):
vectorize(ast, **config.cpu_vectorize_info)
if config.cpu_openmp and config.cpu_blocking and 'nontemporal' in config.cpu_vectorize_info and \
config.cpu_vectorize_info['nontemporal'] and 'cachelineZero' in ast.instruction_set:
# This condition is stricter than it needs to be: if blocks along the fastest axis start on a
# cache line boundary, it's okay. But we cannot determine that here.
# We don't need to disallow OpenMP collapsing because it is never applied to the inner loop.
raise ValueError("Blocking cannot be combined with cacheline-zeroing")
else:
raise ValueError("Invalid value for cpu_vectorize_info")
elif config.target == Target.GPU:
if config.backend == Backend.CUDA:
from pystencils.gpu import create_cuda_kernel
ast = create_cuda_kernel(assignments, config=config)
if not ast:
raise NotImplementedError(
f'{config.target} together with {config.backend} is not supported by `create_domain_kernel`')
if config.use_auto_for_assignments:
for a in ast.atoms(SympyAssignment):
a.use_auto = True
return ast
def create_indexed_kernel(assignments,
index_fields,
target='cpu',
data_type="double",
coordinate_names=('x', 'y', 'z'),
cpu_openmp=True,
gpu_indexing='block',
gpu_indexing_params=MappingProxyType({}),
use_textures_for_interpolation=True,
opencl_queue=None,
opencl_ctx=None):
def create_indexed_kernel(assignments: NodeCollection, *, config: CreateKernelConfig):
"""
Similar to :func:`create_kernel`, but here not all cells of a field are updated but only cells with
coordinates which are stored in an index field. This traversal method can e.g. be used for boundary handling.
......@@ -163,12 +187,22 @@ def create_indexed_kernel(assignments,
'coordinate_names' parameter. The struct can have also other fields that can be read and written in the kernel, for
example boundary parameters.
index_fields: list of index fields, i.e. 1D fields with struct data type
coordinate_names: name of the coordinate fields in the struct data type
Note that `create_indexed_kernel` is a lower level function which shoul be accessed by providing `index_fields`
to create_kernel
Args:
assignments: `pystencils.node_collection.NodeCollection` containing all assignements and nodes to be processed
config: CreateKernelConfig which includes the needed configuration
Returns:
abstract syntax tree (AST) object, that can either be printed as source code with `show_code` or
can be compiled with through its 'compile()' member
Example:
>>> import pystencils as ps
>>> from pystencils.node_collection import NodeCollection
>>> import numpy as np
>>> from pystencils.kernelcreation import create_indexed_kernel
>>>
>>> # Index field stores the indices of the cell to visit together with optional values
>>> index_arr_dtype = np.dtype([('x', np.int32), ('y', np.int32), ('val', np.double)])
......@@ -177,9 +211,10 @@ def create_indexed_kernel(assignments,
>>>
>>> # Additional values stored in index field can be accessed in the kernel as well
>>> s, d = ps.fields('s, d: [2D]')
>>> assignment = ps.Assignment(d[0,0], 2 * s[0, 1] + 2 * s[1, 0] + idx_field('val'))
>>> ast = create_indexed_kernel(assignment, [idx_field], coordinate_names=('x', 'y'))
>>> kernel = ast.compile()
>>> assignment = ps.Assignment(d[0, 0], 2 * s[0, 1] + 2 * s[1, 0] + idx_field('val'))
>>> kernel_config = ps.CreateKernelConfig(index_fields=[idx_field], coordinate_names=('x', 'y'))
>>> kernel_ast = create_indexed_kernel(NodeCollection([assignment]), config=kernel_config)
>>> kernel = kernel_ast.compile()
>>> d_arr = np.zeros([5, 5])
>>> kernel(s=np.ones([5, 5]), d=d_arr, idx=index_arr)
>>> d_arr
......@@ -188,42 +223,37 @@ def create_indexed_kernel(assignments,
[0. , 0. , 4.2, 0. , 0. ],
[0. , 0. , 0. , 4.3, 0. ],
[0. , 0. , 0. , 0. , 0. ]])
"""
if isinstance(assignments, Assignment):
assignments = [assignments]
elif isinstance(assignments, AssignmentCollection):
assignments = assignments.all_assignments
if target == 'cpu':
from pystencils.cpu import create_indexed_kernel
from pystencils.cpu import add_openmp
ast = create_indexed_kernel(assignments, index_fields=index_fields, type_info=data_type,
coordinate_names=coordinate_names)
if cpu_openmp:
add_openmp(ast, num_threads=cpu_openmp)
return ast
elif target == 'llvm':
raise NotImplementedError("Indexed kernels are not yet supported in LLVM backend")
elif target == 'gpu' or target == 'opencl':
from pystencils.gpucuda import created_indexed_cuda_kernel
idx_creator = indexing_creator_from_params(gpu_indexing, gpu_indexing_params)
ast = created_indexed_cuda_kernel(assignments,
index_fields,
type_info=data_type,
coordinate_names=coordinate_names,
indexing_creator=idx_creator,
use_textures_for_interpolation=use_textures_for_interpolation)
if target == 'opencl':
from pystencils.opencl.opencljit import make_python_function
ast._backend = 'opencl'
ast.compile = functools.partial(make_python_function, ast, opencl_queue, opencl_ctx)
ast._target = 'opencl'
ast._backend = 'opencl'
return ast
else:
raise ValueError(f"Unknown target {target}. Has to be either 'cpu' or 'gpu'")
# --- eval
assignments.evaluate_terms()
# FUTURE WORK from here we shouldn't NEED sympy
# --- check constrains
check = KernelConstraintsCheck(check_independence_condition=not config.skip_independence_check,
check_double_write_condition=not config.allow_double_writes)
check.visit(assignments)
assignments.bound_fields = check.fields_written
assignments.rhs_fields = check.fields_read
ast = None
if config.target == Target.CPU and config.backend == Backend.C:
from pystencils.cpu import add_openmp, create_indexed_kernel
ast = create_indexed_kernel(assignments, config=config)
if config.cpu_openmp:
add_openmp(ast, num_threads=config.cpu_openmp)
elif config.target == Target.GPU:
if config.backend == Backend.CUDA:
from pystencils.gpu import created_indexed_cuda_kernel
ast = created_indexed_cuda_kernel(assignments, config=config)
if not ast:
raise NotImplementedError(f'Indexed kernels are not yet supported for {config.target} with {config.backend}')
return ast
def create_staggered_kernel(assignments, target='cpu', gpu_exclusive_conditions=False, **kwargs):
def create_staggered_kernel(assignments, target: Target = Target.CPU, gpu_exclusive_conditions=False, **kwargs):
"""Kernel that updates a staggered field.
.. image:: /img/staggered_grid.svg
......@@ -237,7 +267,7 @@ def create_staggered_kernel(assignments, target='cpu', gpu_exclusive_conditions=
regular fields are passed through to `create_kernel`. Multiple different staggered fields can be
used, but they all need to use the same stencil (i.e. the same number of staggered points) and
shape.
target: 'cpu', 'llvm' or 'gpu'
target: 'CPU' or 'GPU'
gpu_exclusive_conditions: disable the use of multiple conditionals inside the loop. The outer layers are then
handled in an else branch.
kwargs: passed directly to create_kernel, iteration_slice and ghost_layers parameters are not allowed
......@@ -245,7 +275,16 @@ def create_staggered_kernel(assignments, target='cpu', gpu_exclusive_conditions=
Returns:
AST, see `create_kernel`
"""
assert 'iteration_slice' not in kwargs and 'ghost_layers' not in kwargs and 'omp_single_loop' not in kwargs
# TODO: Add doku like in the other kernels
if 'ghost_layers' in kwargs:
assert kwargs['ghost_layers'] is None
del kwargs['ghost_layers']
if 'iteration_slice' in kwargs:
assert kwargs['iteration_slice'] is None
del kwargs['iteration_slice']
if 'omp_single_loop' in kwargs:
assert kwargs['omp_single_loop'] is False
del kwargs['omp_single_loop']
if isinstance(assignments, AssignmentCollection):
subexpressions = assignments.subexpressions + [a for a in assignments.main_assignments
......@@ -323,7 +362,6 @@ def create_staggered_kernel(assignments, target='cpu', gpu_exclusive_conditions=
inner_assignment = []
for assignment in assignments:
direction = stencil[assignment.lhs.index[0]]
inner_assignment.append(SympyAssignment(assignment.lhs, assignment.rhs))
last_conditional = Conditional(sp.And(*[condition(d) for d in stencil]),
Block(inner_assignment), outer_assignment)
......@@ -331,11 +369,8 @@ def create_staggered_kernel(assignments, target='cpu', gpu_exclusive_conditions=
[SympyAssignment(s.lhs, s.rhs) for s in subexpressions if hasattr(s, 'lhs')] + \
[last_conditional]
if target == 'cpu':
from pystencils.cpu import create_kernel as create_kernel_cpu
ast = create_kernel_cpu(final_assignments, ghost_layers=ghost_layers, omp_single_loop=False, **kwargs)
else:
ast = create_kernel(final_assignments, ghost_layers=ghost_layers, target=target, **kwargs)
config = CreateKernelConfig(target=target, ghost_layers=ghost_layers, omp_single_loop=False, **kwargs)
ast = create_kernel(final_assignments, config=config)
return ast
for assignment in assignments:
......@@ -349,6 +384,11 @@ def create_staggered_kernel(assignments, target='cpu', gpu_exclusive_conditions=
remove_start_conditional = any([gl[0] == 0 for gl in ghost_layers])
prepend_optimizations = [lambda ast: remove_conditionals_in_staggered_kernel(ast, remove_start_conditional),
move_constants_before_loop]
ast = create_kernel(final_assignments, ghost_layers=ghost_layers, target=target, omp_single_loop=False,
cpu_prepend_optimizations=prepend_optimizations, **kwargs)
if 'cpu_prepend_optimizations' in kwargs:
prepend_optimizations += kwargs['cpu_prepend_optimizations']
del kwargs['cpu_prepend_optimizations']
config = CreateKernelConfig(ghost_layers=ghost_layers, target=target, omp_single_loop=False,
cpu_prepend_optimizations=prepend_optimizations, **kwargs)
ast = create_kernel(final_assignments, config=config)
return ast
from typing import Any, Dict, List, Union, Optional, Set
import sympy
import sympy as sp
from sympy.codegen.rewriting import ReplaceOptim, optimize
from pystencils.assignment import Assignment, AddAugmentedAssignment
import pystencils.astnodes as ast
from pystencils.backends.cbackend import CustomCodeNode
from pystencils.functions import DivFunc
from pystencils.simp import AssignmentCollection
from pystencils.typing import FieldPointerSymbol
class NodeCollection:
def __init__(self, assignments: List[Union[ast.Node, Assignment]],
simplification_hints: Optional[Dict[str, Any]] = None,
bound_fields: Set[sp.Symbol] = None, rhs_fields: Set[sp.Symbol] = None):
def visit(obj):
if isinstance(obj, (list, tuple)):
return [visit(e) for e in obj]
if isinstance(obj, Assignment):
if isinstance(obj.lhs, FieldPointerSymbol):
return ast.SympyAssignment(obj.lhs, obj.rhs, is_const=obj.lhs.dtype.const)
return ast.SympyAssignment(obj.lhs, obj.rhs)
elif isinstance(obj, AddAugmentedAssignment):
return ast.SympyAssignment(obj.lhs, obj.lhs + obj.rhs)
elif isinstance(obj, ast.SympyAssignment):
return obj
elif isinstance(obj, ast.Conditional):
true_block = visit(obj.true_block)
false_block = None if obj.false_block is None else visit(obj.false_block)
return ast.Conditional(obj.condition_expr, true_block=true_block, false_block=false_block)
elif isinstance(obj, ast.Block):
return ast.Block([visit(e) for e in obj.args])
elif isinstance(obj, ast.Node) and not isinstance(obj, ast.LoopOverCoordinate):
return obj
else:
raise ValueError("Invalid object in the List of Assignments " + str(type(obj)))
self.all_assignments = visit(assignments)
self.simplification_hints = simplification_hints if simplification_hints else {}
self.bound_fields = bound_fields if bound_fields else {}
self.rhs_fields = rhs_fields if rhs_fields else {}
@staticmethod
def from_assignment_collection(assignment_collection: AssignmentCollection):
return NodeCollection(assignments=assignment_collection.all_assignments,
simplification_hints=assignment_collection.simplification_hints,
bound_fields=assignment_collection.bound_fields,
rhs_fields=assignment_collection.rhs_fields)
def evaluate_terms(self):
evaluate_constant_terms = ReplaceOptim(
lambda e: hasattr(e, 'is_constant') and e.is_constant and not e.is_integer,
lambda p: p.evalf()
)
evaluate_pow = ReplaceOptim(
lambda e: e.is_Pow and e.exp.is_Integer and abs(e.exp) <= 8,
lambda p: sp.UnevaluatedExpr(sp.Mul(*([p.base] * +p.exp), evaluate=False)) if p.exp > 0 else
(DivFunc(sp.Integer(1), p.base) if p.exp == -1 else
DivFunc(sp.Integer(1), sp.UnevaluatedExpr(sp.Mul(*([p.base] * -p.exp), evaluate=False))))
)
sympy_optimisations = [evaluate_constant_terms, evaluate_pow]
def visitor(node):
if isinstance(node, CustomCodeNode):
return node
elif isinstance(node, ast.Block):
return node.func([visitor(child) for child in node.args])
elif isinstance(node, ast.SympyAssignment):
new_lhs = visitor(node.lhs)
new_rhs = visitor(node.rhs)
return node.func(new_lhs, new_rhs, node.is_const, node.use_auto)
elif isinstance(node, ast.Node):
return node.func(*[visitor(child) for child in node.args])
elif isinstance(node, sympy.Basic):
return optimize(node, sympy_optimisations)
else:
raise NotImplementedError(f'{node} {type(node)} has no valid visitor')
self.all_assignments = [visitor(assignment) for assignment in self.all_assignments]
File moved
......@@ -2,7 +2,7 @@ import copy
import numpy as np
import sympy as sp
from pystencils.data_types import TypedSymbol, cast_func
from pystencils.typing import TypedSymbol, CastFunc
from pystencils.astnodes import LoopOverCoordinate
from pystencils.backends.cbackend import CustomCodeNode
from pystencils.sympyextensions import fast_subs
......@@ -47,14 +47,13 @@ class RNGBase(CustomCodeNode):
def get_code(self, dialect, vector_instruction_set, print_arg):
code = "\n"
for r in self.result_symbols:
if vector_instruction_set and not self.args[1].atoms(cast_func):
if vector_instruction_set and not self.args[1].atoms(CastFunc):
# this vector RNG has become scalar through substitution
code += f"{r.dtype} {r.name};\n"
else:
code += f"{vector_instruction_set[r.dtype.base_name] if vector_instruction_set else r.dtype} " + \
code += f"{vector_instruction_set[r.dtype.c_name] if vector_instruction_set else r.dtype} " + \
f"{r.name};\n"
args = [print_arg(a) for a in self.args] + \
[('&' if dialect == 'opencl' else '') + r.name for r in self.result_symbols]
args = [print_arg(a) for a in self.args] + ['' + r.name for r in self.result_symbols]
code += (self._name + "(" + ", ".join(args) + ");\n")
return code
......@@ -62,6 +61,15 @@ class RNGBase(CustomCodeNode):
return ", ".join([str(s) for s in self.result_symbols]) + " \\leftarrow " + \
self._name.capitalize() + "_RNG(" + ", ".join([str(a) for a in self.args]) + ")"
def _hashable_content(self):
return (self._name, *self.result_symbols, *self.args)
def __eq__(self, other):
return type(self) is type(other) and self._hashable_content() == other._hashable_content()
def __hash__(self):
return hash(self._hashable_content())
class PhiloxTwoDoubles(RNGBase):
_name = "philox_double2"
......
import socket
import time
from types import MappingProxyType
from typing import Dict, Iterator, Sequence
import blitzdb
import six
from blitzdb.backends.file.backend import serializer_classes
from blitzdb.backends.file.utils import JsonEncoder
from pystencils.cpu.cpujit import get_compiler_config
from pystencils import CreateKernelConfig, Target, Backend, Field
import json
import sympy as sp
from pystencils.typing import BasicType
class PystencilsJsonEncoder(JsonEncoder):
def default(self, obj):
if isinstance(obj, CreateKernelConfig):
return obj.__dict__
if isinstance(obj, (sp.Float, sp.Rational)):
return float(obj)
if isinstance(obj, sp.Integer):
return int(obj)
if isinstance(obj, (BasicType, MappingProxyType)):
return str(obj)
if isinstance(obj, (Target, Backend, sp.Symbol)):
return obj.name
if isinstance(obj, Field):
return f"pystencils.Field(name = {obj.name}, field_type = {obj.field_type.name}, " \
f"dtype = {str(obj.dtype)}, layout = {obj.layout}, shape = {obj.shape}, " \
f"strides = {obj.strides})"
return JsonEncoder.default(self, obj)
class PystencilsJsonSerializer(object):
@classmethod
def serialize(cls, data):
if six.PY3:
if isinstance(data, bytes):
return json.dumps(data.decode('utf-8'), cls=PystencilsJsonEncoder, ensure_ascii=False).encode('utf-8')
else:
return json.dumps(data, cls=PystencilsJsonEncoder, ensure_ascii=False).encode('utf-8')
else:
return json.dumps(data, cls=PystencilsJsonEncoder, ensure_ascii=False).encode('utf-8')
@classmethod
def deserialize(cls, data):
if six.PY3:
return json.loads(data.decode('utf-8'))
else:
return json.loads(data.decode('utf-8'))
class Database:
......@@ -46,7 +96,7 @@ class Database:
class SimulationResult(blitzdb.Document):
pass
def __init__(self, file: str) -> None:
def __init__(self, file: str, serializer_info: tuple = None) -> None:
if file.startswith("mongo://"):
from pymongo import MongoClient
db_name = file[len("mongo://"):]
......@@ -57,6 +107,10 @@ class Database:
self.backend.autocommit = True
if serializer_info:
serializer_classes.update({serializer_info[0]: serializer_info[1]})
self.backend.load_config({'serializer_class': serializer_info[0]}, True)
def save(self, params: Dict, result: Dict, env: Dict = None, **kwargs) -> None:
"""Stores a simulation result in the database.
......@@ -146,10 +200,15 @@ class Database:
'cpuCompilerConfig': get_compiler_config(),
}
try:
from git import Repo, InvalidGitRepositoryError
from git import Repo
except ImportError:
return result
try:
from git import InvalidGitRepositoryError
repo = Repo(search_parent_directories=True)
result['git_hash'] = str(repo.head.commit)
except (ImportError, InvalidGitRepositoryError):
except InvalidGitRepositoryError:
pass
return result
......
......@@ -9,6 +9,7 @@ from time import sleep
from typing import Any, Callable, Dict, Optional, Sequence, Tuple
from pystencils.runhelper import Database
from pystencils.runhelper.db import PystencilsJsonSerializer
from pystencils.utils import DotDict
ParameterDict = Dict[str, Any]
......@@ -54,10 +55,11 @@ class ParameterStudy:
Run = namedtuple("Run", ['parameter_dict', 'weight'])
def __init__(self, run_function: Callable[..., Dict], runs: Sequence = (),
database_connector: str = './db') -> None:
database_connector: str = './db',
serializer_info: tuple = ('pystencils_serializer', PystencilsJsonSerializer)) -> None:
self.runs = list(runs)
self.run_function = run_function
self.db = Database(database_connector)
self.db = Database(database_connector, serializer_info)
def add_run(self, parameter_dict: ParameterDict, weight: int = 1) -> None:
"""Schedule a dictionary of parameters to run in this parameter study.
......
......@@ -2,7 +2,7 @@ import numpy as np
import sympy as sp
import pystencils as ps
import pystencils.jupyter
from pystencils.jupyter import make_imshow_animation, display_animation, set_display_mode
import pystencils.plot as plt
__all__ = ['sp', 'np', 'ps', 'plt']
__all__ = ['sp', 'np', 'ps', 'plt', 'make_imshow_animation', 'display_animation', 'set_display_mode']
......@@ -5,10 +5,17 @@ from .simplifications import (
add_subexpressions_for_sums, apply_on_all_subexpressions, apply_to_all_assignments,
subexpression_substitution_in_existing_subexpressions,
subexpression_substitution_in_main_assignments, sympy_cse, sympy_cse_on_assignment_list)
from .subexpression_insertion import (
insert_aliases, insert_zeros, insert_constants,
insert_constant_additions, insert_constant_multiples,
insert_squares, insert_symbol_times_minus_one)
from .simplificationstrategy import SimplificationStrategy
__all__ = ['AssignmentCollection', 'SimplificationStrategy',
'sympy_cse', 'sympy_cse_on_assignment_list', 'apply_to_all_assignments',
'apply_on_all_subexpressions', 'subexpression_substitution_in_existing_subexpressions',
'subexpression_substitution_in_main_assignments', 'add_subexpressions_for_constants',
'add_subexpressions_for_divisions', 'add_subexpressions_for_sums', 'add_subexpressions_for_field_reads']
'add_subexpressions_for_divisions', 'add_subexpressions_for_sums', 'add_subexpressions_for_field_reads',
'insert_aliases', 'insert_zeros', 'insert_constants',
'insert_constant_additions', 'insert_constant_multiples',
'insert_squares', 'insert_symbol_times_minus_one']
......@@ -19,13 +19,14 @@ class AssignmentCollection:
Additionally a dictionary of simplification hints is stored, which are set by the functions that create
assignment collections to transport information to the simplification system.
Attributes:
main_assignments: list of assignments
subexpressions: list of assignments defining subexpressions used in main equations
simplification_hints: dict that is used to annotate the assignment collection with hints that are
Args:
main_assignments: List of assignments. Main assignments are characterised, that the right hand side of each
assignment is a field access. Thus the generated equations write on arrays.
subexpressions: List of assignments defining subexpressions used in main equations
simplification_hints: Dict that is used to annotate the assignment collection with hints that are
used by the simplification system. See documentation of the simplification rules for
potentially required hints and their meaning.
subexpression_symbol_generator: generator for new symbols that are used when new subexpressions are added
subexpression_symbol_generator: Generator for new symbols that are used when new subexpressions are added
used to get new symbols that are unique for this AssignmentCollection
"""
......@@ -33,9 +34,13 @@ class AssignmentCollection:
# ------------------------------- Creation & Inplace Manipulation --------------------------------------------------
def __init__(self, main_assignments: Union[List[Assignment], Dict[sp.Expr, sp.Expr]],
subexpressions: Union[List[Assignment], Dict[sp.Expr, sp.Expr]] = {},
subexpressions: Union[List[Assignment], Dict[sp.Expr, sp.Expr]] = None,
simplification_hints: Optional[Dict[str, Any]] = None,
subexpression_symbol_generator: Iterator[sp.Symbol] = None) -> None:
if subexpressions is None:
subexpressions = {}
if isinstance(main_assignments, Dict):
main_assignments = [Assignment(k, v)
for k, v in main_assignments.items()]
......@@ -56,8 +61,11 @@ class AssignmentCollection:
self.simplification_hints = simplification_hints
ctrs = [int(n.name[3:])for n in self.rhs_symbols if "xi_" in n.name]
max_ctr = max(ctrs) + 1 if len(ctrs) > 0 else 0
if subexpression_symbol_generator is None:
self.subexpression_symbol_generator = SymbolGen()
self.subexpression_symbol_generator = SymbolGen(ctr=max_ctr)
else:
self.subexpression_symbol_generator = subexpression_symbol_generator
......@@ -102,16 +110,21 @@ class AssignmentCollection:
return self.subexpressions + self.main_assignments
@property
def free_symbols(self) -> Set[sp.Symbol]:
"""All symbols used in the assignment collection, which do not occur as left hand sides in any assignment."""
free_symbols = set()
def rhs_symbols(self) -> Set[sp.Symbol]:
"""All symbols used in the assignment collection, which occur on the rhs of any assignment."""
rhs_symbols = set()
for eq in self.all_assignments:
if isinstance(eq, Assignment):
free_symbols.update(eq.rhs.atoms(sp.Symbol))
rhs_symbols.update(eq.rhs.atoms(sp.Symbol))
elif isinstance(eq, pystencils.astnodes.Node):
free_symbols.update(eq.undefined_symbols)
rhs_symbols.update(eq.undefined_symbols)
return free_symbols - self.bound_symbols
return rhs_symbols
@property
def free_symbols(self) -> Set[sp.Symbol]:
"""All symbols used in the assignment collection, which do not occur as left hand sides in any assignment."""
return self.rhs_symbols - self.bound_symbols
@property
def bound_symbols(self) -> Set[sp.Symbol]:
......@@ -126,11 +139,15 @@ class AssignmentCollection:
bound_symbols_set = bound_symbols_set.union(*[
assignment.symbols_defined for assignment in self.all_assignments
if isinstance(assignment, pystencils.astnodes.Node)
]
)
])
return bound_symbols_set
@property
def rhs_fields(self):
"""All fields accessed in the assignment collection, which do not occur as left hand sides in any assignment."""
return {s.field for s in self.rhs_symbols if hasattr(s, 'field')}
@property
def free_fields(self):
"""All fields accessed in the assignment collection, which do not occur as left hand sides in any assignment."""
......@@ -144,11 +161,9 @@ class AssignmentCollection:
@property
def defined_symbols(self) -> Set[sp.Symbol]:
"""All symbols which occur as left-hand-sides of one of the main equations"""
return (set(
[assignment.lhs for assignment in self.main_assignments if isinstance(assignment, Assignment)]
).union(*[assignment.symbols_defined for assignment in self.main_assignments if isinstance(
assignment, pystencils.astnodes.Node)]
))
lhs_set = set([assignment.lhs for assignment in self.main_assignments if isinstance(assignment, Assignment)])
return (lhs_set.union(*[assignment.symbols_defined for assignment in self.main_assignments
if isinstance(assignment, pystencils.astnodes.Node)]))
@property
def operation_count(self):
......@@ -209,6 +224,7 @@ class AssignmentCollection:
return {s: func(*args, **kwargs) for s, func in lambdas.items()}
return f
# ---------------------------- Creating new modified collections ---------------------------------------------------
def copy(self,
......@@ -270,12 +286,13 @@ class AssignmentCollection:
processed_other_subexpression_equations = []
for other_subexpression_eq in other.subexpressions:
if other_subexpression_eq.lhs in own_subexpression_symbols:
if other_subexpression_eq.rhs == own_subexpression_symbols[other_subexpression_eq.lhs]:
new_rhs = fast_subs(other_subexpression_eq.rhs, substitution_dict)
if new_rhs == own_subexpression_symbols[other_subexpression_eq.lhs]:
continue # exact the same subexpression equation exists already
else:
# different definition - a new name has to be introduced
new_lhs = next(self.subexpression_symbol_generator)
new_eq = Assignment(new_lhs, fast_subs(other_subexpression_eq.rhs, substitution_dict))
new_eq = Assignment(new_lhs, new_rhs)
processed_other_subexpression_equations.append(new_eq)
substitution_dict[other_subexpression_eq.lhs] = new_lhs
else:
......@@ -298,7 +315,7 @@ class AssignmentCollection:
if eq.lhs in symbols_to_extract:
new_assignments.append(eq)
new_sub_expr = [eq for eq in self.subexpressions
new_sub_expr = [eq for eq in self.all_assignments
if eq.lhs in dependent_symbols and eq.lhs not in symbols_to_extract]
return self.copy(new_assignments, new_sub_expr)
......@@ -323,8 +340,10 @@ class AssignmentCollection:
new_eqs = [Assignment(eq.lhs, fast_subs(eq.rhs, subs_dict)) for eq in self.main_assignments]
return self.copy(new_eqs, new_subexpressions)
def new_without_subexpressions(self, subexpressions_to_keep: Set[sp.Symbol] = set()) -> 'AssignmentCollection':
def new_without_subexpressions(self, subexpressions_to_keep=None) -> 'AssignmentCollection':
"""Returns a new collection where all subexpressions have been inserted."""
if subexpressions_to_keep is None:
subexpressions_to_keep = set()
if len(self.subexpressions) == 0:
return self.copy()
......@@ -352,6 +371,7 @@ class AssignmentCollection:
def _repr_html_(self):
"""Interface to Jupyter notebook, to display as a nicely formatted HTML table"""
def make_html_equation_table(equations):
no_border = 'style="border:none"'
html_table = '<table style="border:none; width: 100%; ">'
......@@ -437,8 +457,8 @@ class AssignmentCollection:
class SymbolGen:
"""Default symbol generator producing number symbols ζ_0, ζ_1, ..."""
def __init__(self, symbol="xi", dtype=None):
self._ctr = 0
def __init__(self, symbol="xi", dtype=None, ctr=0):
self._ctr = ctr
self._symbol = symbol
self._dtype = dtype
......
......@@ -6,8 +6,9 @@ import sympy as sp
from pystencils.assignment import Assignment
from pystencils.astnodes import Node
from pystencils.field import AbstractField, Field
from pystencils.field import Field
from pystencils.sympyextensions import subs_additive, is_constant, recursive_collect
from pystencils.typing import TypedSymbol
def sort_assignments_topologically(assignments: Sequence[Union[Assignment, Node]]) -> List[Union[Assignment, Node]]:
......@@ -162,18 +163,20 @@ def add_subexpressions_for_sums(ac):
for eq in ac.all_assignments:
search_addends(eq.rhs)
addends = [a for a in addends if not isinstance(a, sp.Symbol) or isinstance(a, AbstractField.AbstractAccess)]
addends = [a for a in addends if not isinstance(a, sp.Symbol) or isinstance(a, Field.Access)]
new_symbol_gen = ac.subexpression_symbol_generator
substitutions = {addend: new_symbol for new_symbol, addend in zip(new_symbol_gen, addends)}
return ac.new_with_substitutions(substitutions, True, substitute_on_lhs=False)
def add_subexpressions_for_field_reads(ac, subexpressions=True, main_assignments=True):
def add_subexpressions_for_field_reads(ac, subexpressions=True, main_assignments=True, data_type=None):
r"""Substitutes field accesses on rhs of assignments with subexpressions
Can change semantics of the update rule (which is the goal of this transformation)
This is useful if a field should be update in place - all values are loaded before into subexpression variables,
then the new values are computed and written to the same field in-place.
Additionally, if a datatype is given to the function the rhs symbol of the new isolated field read will have
this data type. This is useful for mixed precision kernels
"""
field_reads = set()
to_iterate = []
......@@ -185,7 +188,17 @@ def add_subexpressions_for_field_reads(ac, subexpressions=True, main_assignments
for assignment in to_iterate:
if hasattr(assignment, 'lhs') and hasattr(assignment, 'rhs'):
field_reads.update(assignment.rhs.atoms(Field.Access))
substitutions = {fa: next(ac.subexpression_symbol_generator) for fa in field_reads}
if not field_reads:
return ac
substitutions = dict()
for fa in field_reads:
lhs = next(ac.subexpression_symbol_generator)
if data_type is not None:
substitutions.update({fa: TypedSymbol(lhs.name, data_type)})
else:
substitutions.update({fa: lhs})
return ac.new_with_substitutions(substitutions, add_substitutions_as_subexpressions=True,
substitute_on_lhs=False, sort_topologically=False)
......@@ -223,3 +236,31 @@ def apply_on_all_subexpressions(operation: Callable[[sp.Expr], sp.Expr]):
f.__name__ = operation.__name__
return f
# TODO Markus
# make this really work for Assignmentcollections
# this function should ONLY evaluate
# do the optims_c99 elsewhere optionally
# def apply_sympy_optimisations(ac: AssignmentCollection):
# """ Evaluates constant expressions (e.g. :math:`\\sqrt{3}` will be replaced by its floating point representation)
# and applies the default sympy optimisations. See sympy.codegen.rewriting
# """
#
# # Evaluates all constant terms
#
# assignments = ac.all_assignments
#
# evaluate_constant_terms = ReplaceOptim(lambda e: hasattr(e, 'is_constant') and e.is_constant and not e.is_integer,
# lambda p: p.evalf())
#
# sympy_optimisations = [evaluate_constant_terms] + list(optims_c99)
#
# assignments = [Assignment(a.lhs, optimize(a.rhs, sympy_optimisations))
# if hasattr(a, 'lhs')
# else a for a in assignments]
# assignments_nodes = [a.atoms(SympyAssignment) for a in assignments]
# for a in chain.from_iterable(assignments_nodes):
# a.optimize(sympy_optimisations)
#
# return AssignmentCollection(assignments)
import sympy as sp
from pystencils.sympyextensions import is_constant
# Subexpression Insertion
def insert_subexpressions(ac, selection_callback, skip=None):
"""
Removes a number of subexpressions from an assignment collection by
inserting their right-hand side wherever they occur.
Args:
- selection_callback: Function that is called to qualify subexpressions
for insertion. Should return `True` for any subexpression that is to be
inserted, and `False` otherwise.
- skip: Set of symbols (left-hand sides of subexpressions) that should be
ignored even if qualified by the callback.
"""
if skip is None:
skip = set()
i = 0
while i < len(ac.subexpressions):
exp = ac.subexpressions[i]
if exp.lhs not in skip and selection_callback(exp):
ac = ac.new_with_inserted_subexpression(exp.lhs)
else:
i += 1
return ac
def insert_aliases(ac, **kwargs):
"""Inserts subexpressions that are aliases of other symbols,
i.e. their right-hand side is only another symbol."""
return insert_subexpressions(ac, lambda x: isinstance(x.rhs, sp.Symbol), **kwargs)
def insert_zeros(ac, **kwargs):
"""Inserts subexpressions whose right-hand side is zero."""
zero = sp.Integer(0)
return insert_subexpressions(ac, lambda x: x.rhs == zero, **kwargs)
def insert_constants(ac, **kwargs):
"""Inserts subexpressions whose right-hand side is constant,
i.e. contains no symbols."""
return insert_subexpressions(ac, lambda x: is_constant(x.rhs), **kwargs)
def insert_symbol_times_minus_one(ac, **kwargs):
"""Inserts subexpressions whose right-hand side is just a
negation of another symbol."""
def callback(exp):
rhs = exp.rhs
minus_one = sp.Integer(-1)
atoms = rhs.atoms(sp.Symbol)
return len(atoms) == 1 and rhs == minus_one * atoms.pop()
return insert_subexpressions(ac, callback, **kwargs)
def insert_constant_multiples(ac, **kwargs):
"""Inserts subexpressions whose right-hand side is a constant
multiplied with another symbol."""
def callback(exp):
rhs = exp.rhs
symbols = rhs.atoms(sp.Symbol)
numbers = rhs.atoms(sp.Number)
return len(symbols) == 1 and len(numbers) == 1 and \
rhs == numbers.pop() * symbols.pop()
return insert_subexpressions(ac, callback, **kwargs)
def insert_constant_additions(ac, **kwargs):
"""Inserts subexpressions whose right-hand side is a sum of a
constant and another symbol."""
def callback(exp):
rhs = exp.rhs
symbols = rhs.atoms(sp.Symbol)
numbers = rhs.atoms(sp.Number)
return len(symbols) == 1 and len(numbers) == 1 and \
rhs == numbers.pop() + symbols.pop()
return insert_subexpressions(ac, callback, **kwargs)
def insert_squares(ac, **kwargs):
"""Inserts subexpressions whose right-hand side is another symbol squared."""
def callback(exp):
rhs = exp.rhs
symbols = rhs.atoms(sp.Symbol)
return len(symbols) == 1 and rhs == symbols.pop() ** 2
return insert_subexpressions(ac, callback, **kwargs)
def bind_symbols_to_skip(insertion_function, skip):
return lambda ac: insertion_function(ac, skip=skip)
from pystencils.simp import (SimplificationStrategy, insert_constants, insert_symbol_times_minus_one,
insert_constant_multiples, insert_constant_additions, insert_squares, insert_zeros)
def create_simplification_strategy():
"""
Creates a default simplification `ps.simp.SimplificationStrategy`. The idea behind the default simplification
strategy is to reduce the number of subexpressions by inserting single constants and to evaluate constant
terms beforehand.
"""
s = SimplificationStrategy()
s.add(insert_symbol_times_minus_one)
s.add(insert_constant_multiples)
s.add(insert_constant_additions)
s.add(insert_squares)
s.add(insert_zeros)
s.add(insert_constants)
s.add(lambda ac: ac.new_without_unused_subexpressions())
File moved
......@@ -5,6 +5,8 @@ from typing import Sequence
import numpy as np
import sympy as sp
from pystencils.utils import binary_numbers
def inverse_direction(direction):
"""Returns inverse i.e. negative of given direction tuple
......@@ -293,6 +295,38 @@ def direction_string_to_offset(direction: str, dim: int = 3):
return offset[:dim]
def adjacent_directions(direction):
"""
Returns all adjacent directions for a direction as tuple of tuples. This is useful for exmple to find all directions
relevant for neighbour communication.
Args:
direction: tuple representing a direction. For example (0, 1, 0) for the northern side
Examples:
>>> adjacent_directions((0, 0, 0))
((0, 0, 0),)
>>> adjacent_directions((0, 1, 0))
((0, 1, 0),)
>>> adjacent_directions((0, 1, 1))
((0, 0, 1), (0, 1, 0), (0, 1, 1))
>>> adjacent_directions((-1, -1))
((-1, -1), (-1, 0), (0, -1))
"""
result = set()
if all(e == 0 for e in direction):
result.add(direction)
return tuple(result)
binary_numbers_list = binary_numbers(len(direction))
for adjacent_direction in binary_numbers_list:
for i, entry in enumerate(direction):
if entry == 0:
adjacent_direction[i] = 0
if entry == -1 and adjacent_direction[i] == 1:
adjacent_direction[i] = -1
if not all(e == 0 for e in adjacent_direction):
result.add(tuple(adjacent_direction))
return tuple(sorted(result))
# -------------------------------------- Visualization -----------------------------------------------------------------
......@@ -341,7 +375,7 @@ def plot_2d(stencil, axes=None, figure=None, data=None, textsize='12', **kwargs)
for direction, annotation in zip(stencil, data):
assert len(direction) == 2, "Works only for 2D stencils"
direction = tuple(int(i) for i in direction)
if not(direction[0] == 0 and direction[1] == 0):
if not (direction[0] == 0 and direction[1] == 0):
axes.arrow(0, 0, direction[0], direction[1], head_width=0.08, head_length=head_length, color='k')
if isinstance(annotation, sp.Basic):
......@@ -421,16 +455,17 @@ def plot_3d(stencil, figure=None, axes=None, data=None, textsize='8'):
FancyArrowPatch.__init__(self, (0, 0), (0, 0), *args, **kwargs)
self._verts3d = xs, ys, zs
def draw(self, renderer):
def do_3d_projection(self, *_):
xs3d, ys3d, zs3d = self._verts3d
xs, ys, zs = proj3d.proj_transform(xs3d, ys3d, zs3d, renderer.M)
xs, ys, zs = proj3d.proj_transform(xs3d, ys3d, zs3d, self.axes.M)
self.set_positions((xs[0], ys[0]), (xs[1], ys[1]))
FancyArrowPatch.draw(self, renderer)
return np.min(zs)
if axes is None:
if figure is None:
figure = plt.figure()
axes = figure.gca(projection='3d')
axes = figure.add_subplot(projection='3d')
try:
axes.set_aspect("equal")
except NotImplementedError:
......@@ -446,7 +481,7 @@ def plot_3d(stencil, figure=None, axes=None, data=None, textsize='8'):
r = [-1, 1]
for s, e in combinations(np.array(list(product(r, r, r))), 2):
if np.sum(np.abs(s - e)) == r[1] - r[0]:
axes.plot3D(*zip(s, e), color="k", alpha=0.5)
axes.plot(*zip(s, e), color="k", alpha=0.5)
for d, annotation in zip(stencil, data):
assert len(d) == 3, "Works only for 3D stencils"
......
......@@ -6,12 +6,14 @@ from functools import partial, reduce
from typing import Callable, Dict, Iterable, List, Optional, Sequence, Tuple, TypeVar, Union
import sympy as sp
from sympy import PolynomialError
from sympy.functions import Abs
from sympy.core.numbers import Zero
from pystencils.assignment import Assignment
from pystencils.data_types import cast_func, get_type_of_expression, PointerType, VectorType
from pystencils.kernelparameters import FieldPointerSymbol
from pystencils.functions import DivFunc
from pystencils.typing import CastFunc, get_type_of_expression, PointerType, VectorType
from pystencils.typing.typed_sympy import FieldPointerSymbol
T = TypeVar('T')
......@@ -158,17 +160,23 @@ def fast_subs(expression: T, substitutions: Dict,
if type(expression) is sp.Matrix:
return expression.copy().applyfunc(partial(fast_subs, substitutions=substitutions))
def visit(expr):
def visit(expr, evaluate=True):
if skip and skip(expr):
return expr
if hasattr(expr, "fast_subs"):
elif hasattr(expr, "fast_subs"):
return expr.fast_subs(substitutions, skip)
if expr in substitutions:
elif expr in substitutions:
return substitutions[expr]
if not hasattr(expr, 'args'):
elif not hasattr(expr, 'args'):
return expr
param_list = [visit(a) for a in expr.args]
return expr if not param_list else expr.func(*param_list)
elif isinstance(expr, (sp.UnevaluatedExpr, DivFunc)):
args = [visit(a, False) for a in expr.args]
return expr.func(*args)
else:
param_list = [visit(a, evaluate) for a in expr.args]
if isinstance(expr, (sp.Mul, sp.Add)):
return expr if not param_list else expr.func(*param_list, evaluate=evaluate)
return expr if not param_list else expr.func(*param_list)
if len(substitutions) == 0:
return expression
......@@ -235,6 +243,9 @@ def subs_additive(expr: sp.Expr, replacement: sp.Expr, subexpression: sp.Expr,
normalized_replacement_match = normalize_match_parameter(required_match_replacement, len(subexpression.args))
if isinstance(subexpression, sp.Number):
return expr.subs({replacement: subexpression})
def visit(current_expr):
if current_expr.is_Add:
expr_max_length = max(len(current_expr.args), len(subexpression.args))
......@@ -263,7 +274,7 @@ def subs_additive(expr: sp.Expr, replacement: sp.Expr, subexpression: sp.Expr,
return current_expr
else:
if current_expr.func == sp.Mul and Zero() in param_list:
return Zero()
return sp.simplify(current_expr)
else:
return current_expr.func(*param_list, evaluate=False)
......@@ -345,7 +356,7 @@ def remove_higher_order_terms(expr: sp.Expr, symbols: Sequence[sp.Symbol], order
factor_count = 0
if type(product) is Mul:
for factor in product.args:
if type(factor) == Pow:
if type(factor) is Pow:
if factor.args[0] in symbols:
factor_count += factor.args[1]
if factor in symbols:
......@@ -355,13 +366,13 @@ def remove_higher_order_terms(expr: sp.Expr, symbols: Sequence[sp.Symbol], order
factor_count += product.args[1]
return factor_count
if type(expr) == Mul or type(expr) == Pow:
if type(expr) is Mul or type(expr) is Pow:
if velocity_factors_in_product(expr) <= order:
return expr
else:
return sp.Rational(0, 1)
return Zero()
if type(expr) != Add:
if type(expr) is not Add:
return expr
for sum_term in expr.args:
......@@ -432,11 +443,14 @@ def extract_most_common_factor(term):
def recursive_collect(expr, symbols, order_by_occurences=False):
"""Applies sympy.collect recursively for a list of symbols, collecting symbol 2 in the coefficients of symbol 1,
"""Applies sympy.collect recursively for a list of symbols, collecting symbol 2 in the coefficients of symbol 1,
and so on.
``expr`` must be rewritable as a polynomial in the given ``symbols``.
It it is not, ``recursive_collect`` will fail quietly, returning the original expression.
Args:
expr: A sympy expression
expr: A sympy expression.
symbols: A sequence of symbols
order_by_occurences: If True, during recursive descent, always collect the symbol occuring
most often in the expression.
......@@ -447,13 +461,85 @@ def recursive_collect(expr, symbols, order_by_occurences=False):
if len(symbols) == 0:
return expr
symbol = symbols[0]
collected_poly = sp.Poly(expr.collect(symbol), symbol)
collected = expr.collect(symbol)
try:
collected_poly = sp.Poly(collected, symbol)
except PolynomialError:
return expr
coeffs = collected_poly.all_coeffs()[::-1]
rec_sum = sum(symbol**i * recursive_collect(c, symbols[1:], order_by_occurences) for i, c in enumerate(coeffs))
return rec_sum
def count_operations(term: Union[sp.Expr, List[sp.Expr]],
def summands(expr):
return set(expr.args) if isinstance(expr, sp.Add) else {expr}
def simplify_by_equality(expr, a, b, c):
"""
Uses the equality a = b + c, where a and b must be symbols, to simplify expr
by attempting to express additive combinations of two quantities by the third.
This works on expressions that are reducible to the form
:math:`a * (...) + b * (...) + c * (...)`,
without any mixed terms of a, b and c.
"""
if not isinstance(a, sp.Symbol) or not isinstance(b, sp.Symbol):
raise ValueError("a and b must be symbols.")
c = sp.sympify(c)
if not (isinstance(c, sp.Symbol) or is_constant(c)):
raise ValueError("c must be either a symbol or a constant!")
expr = sp.sympify(expr)
expr_expanded = sp.expand(expr)
a_coeff = expr_expanded.coeff(a, 1)
expr_expanded -= (a * a_coeff).expand()
b_coeff = expr_expanded.coeff(b, 1)
expr_expanded -= (b * b_coeff).expand()
if isinstance(c, sp.Symbol):
c_coeff = expr_expanded.coeff(c, 1)
rest = expr_expanded - (c * c_coeff).expand()
else:
c_coeff = expr_expanded / c
rest = 0
a_summands = summands(a_coeff)
b_summands = summands(b_coeff)
c_summands = summands(c_coeff)
# replace b + c by a
b_plus_c_coeffs = b_summands & c_summands
for coeff in b_plus_c_coeffs:
rest += a * coeff
b_summands -= b_plus_c_coeffs
c_summands -= b_plus_c_coeffs
# replace a - b by c
neg_b_summands = {-x for x in b_summands}
a_minus_b_coeffs = a_summands & neg_b_summands
for coeff in a_minus_b_coeffs:
rest += c * coeff
a_summands -= a_minus_b_coeffs
b_summands -= {-x for x in a_minus_b_coeffs}
# replace a - c by b
neg_c_summands = {-x for x in c_summands}
a_minus_c_coeffs = a_summands & neg_c_summands
for coeff in a_minus_c_coeffs:
rest += b * coeff
a_summands -= a_minus_c_coeffs
c_summands -= {-x for x in a_minus_c_coeffs}
# put it back together
return (rest + a * sum(a_summands) + b * sum(b_summands) + c * sum(c_summands)).expand()
def count_operations(term: Union[sp.Expr, List[sp.Expr], List[Assignment]],
only_type: Optional[str] = 'real') -> Dict[str, int]:
"""Counts the number of additions, multiplications and division.
......@@ -519,7 +605,7 @@ def count_operations(term: Union[sp.Expr, List[sp.Expr]],
visit_children = False
elif t.is_integer:
pass
elif isinstance(t, cast_func):
elif isinstance(t, CastFunc):
visit_children = False
visit(t.args[0])
elif t.func is fast_sqrt:
......@@ -553,8 +639,10 @@ def count_operations(term: Union[sp.Expr, List[sp.Expr]],
for child_term, condition in t.args:
visit(child_term)
visit_children = False
elif isinstance(t, sp.Rel):
elif isinstance(t, (sp.Rel, sp.UnevaluatedExpr)):
pass
elif isinstance(t, DivFunc):
result["divs"] += 1
else:
warnings.warn(f"Unknown sympy node of type {str(t.func)} counting will be inaccurate")
......
File moved