Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
No results found
Show changes
Showing
with 1736 additions and 8 deletions
import pytest
import sympy as sp
import numpy as np
import pystencils as ps
from pystencils.fast_approximation import fast_division
@pytest.mark.parametrize('dtype', ["float64", "float32"])
@pytest.mark.parametrize('func', [sp.Pow, sp.atan2])
@pytest.mark.parametrize('target', [ps.Target.CPU, ps.Target.GPU])
def test_two_arguments(dtype, func, target):
if target == ps.Target.GPU:
pytest.importorskip("cupy")
dh = ps.create_data_handling(domain_size=(10, 10), periodicity=True, default_target=target)
x = dh.add_array('x', values_per_cell=1, dtype=dtype)
dh.fill("x", 0.0, ghost_layers=True)
y = dh.add_array('y', values_per_cell=1, dtype=dtype)
dh.fill("y", 1.0, ghost_layers=True)
z = dh.add_array('z', values_per_cell=1, dtype=dtype)
dh.fill("z", 2.0, ghost_layers=True)
config = ps.CreateKernelConfig(target=target)
# test sp.Max with one argument
up = ps.Assignment(x.center, func(y.center, z.center))
ast = ps.create_kernel(up, config=config)
code = ps.get_code_str(ast)
if dtype == 'float32':
assert func.__name__.lower() in code
kernel = ast.compile()
dh.all_to_gpu()
dh.run_kernel(kernel)
dh.all_to_cpu()
np.testing.assert_allclose(dh.gather_array("x")[0, 0], float(func(1.0, 2.0).evalf()),
13 if dtype == 'float64' else 5)
@pytest.mark.parametrize('dtype', ["float64", "float32"])
@pytest.mark.parametrize('func', [sp.sin, sp.cos, sp.sinh, sp.cosh, sp.atan, sp.floor, sp.ceiling])
@pytest.mark.parametrize('target', [ps.Target.CPU, ps.Target.GPU])
def test_single_arguments(dtype, func, target):
if target == ps.Target.GPU:
pytest.importorskip("cupy")
dh = ps.create_data_handling(domain_size=(10, 10), periodicity=True, default_target=target)
x = dh.add_array('x', values_per_cell=1, dtype=dtype)
dh.fill("x", 0.0, ghost_layers=True)
y = dh.add_array('y', values_per_cell=1, dtype=dtype)
dh.fill("y", 1.0, ghost_layers=True)
config = ps.CreateKernelConfig(target=target)
# test sp.Max with one argument
up = ps.Assignment(x.center, func(y.center))
ast = ps.create_kernel(up, config=config)
code = ps.get_code_str(ast)
if dtype == 'float32':
func_name = func.__name__.lower() if func is not sp.ceiling else "ceil"
assert func_name in code
kernel = ast.compile()
dh.all_to_gpu()
dh.run_kernel(kernel)
dh.all_to_cpu()
np.testing.assert_allclose(dh.gather_array("x")[0, 0], float(func(1.0).evalf()),
rtol=10**-3 if dtype == 'float32' else 10**-5)
@pytest.mark.parametrize('a', [sp.Symbol('a'), ps.fields('a: float64[2d]').center])
def test_avoid_pow(a):
x = ps.fields('x: float64[2d]')
up = ps.Assignment(x.center_vector[0], 2 * a ** 2 / 3)
ast = ps.create_kernel(up)
code = ps.get_code_str(ast)
assert "pow" not in code
def test_avoid_pow_fast_div():
x = ps.fields('x: float64[2d]')
a = ps.fields('a: float64[2d]').center
up = ps.Assignment(x.center_vector[0], fast_division(1, (a**2)))
ast = ps.create_kernel(up, config=ps.CreateKernelConfig(target=ps.Target.GPU))
# ps.show_code(ast)
code = ps.get_code_str(ast)
assert "pow" not in code
def test_avoid_pow_move_constants():
# At the end of the kernel creation the function move_constants_before_loop will be called
# This function additionally contains substitutions for symbols with the same value
# Thus it simplifies the equations again
x = ps.fields('x: float64[2d]')
a, b, c = sp.symbols("a, b, c")
up = [ps.Assignment(a, 0.0),
ps.Assignment(b, 0.0),
ps.Assignment(c, 0.0),
ps.Assignment(x.center_vector[0], a**2/18 - a*b/6 - a/18 + b**2/18 + b/18 - c**2/36)]
ast = ps.create_kernel(up)
code = ps.get_code_str(ast)
ps.show_code(ast)
assert "pow" not in code
import pytest
import numpy as np
import sympy as sp
import pystencils as ps
from pystencils.astnodes import LoopOverCoordinate, Conditional, Block, SympyAssignment
SLICE_LIST = [False,
ps.make_slice[1:-1:2, 1:-1:2],
ps.make_slice[2:-1:2, 4:-1:7],
ps.make_slice[4:-1:2, 5:-1:2],
ps.make_slice[3:-1:4, 7:-1:3]]
@pytest.mark.parametrize('target', [ps.Target.CPU, ps.Target.GPU])
@pytest.mark.parametrize('iteration_slice', SLICE_LIST)
def test_mod(target, iteration_slice):
if target == ps.Target.GPU:
pytest.importorskip("cupy")
dh = ps.create_data_handling(domain_size=(51, 51), periodicity=True, default_target=target)
loop_ctrs = [LoopOverCoordinate.get_loop_counter_symbol(i) for i in range(dh.dim)]
cond = [sp.Eq(sp.Mod(loop_ctrs[i], 2), 1) for i in range(dh.dim)]
field = dh.add_array("a", values_per_cell=1)
eq_list = [SympyAssignment(field.center, 1.0)]
if iteration_slice:
config = ps.CreateKernelConfig(target=dh.default_target, iteration_slice=iteration_slice)
assign = eq_list
else:
assign = [Conditional(sp.And(*cond), Block(eq_list))]
config = ps.CreateKernelConfig(target=dh.default_target)
kernel = ps.create_kernel(assign, config=config).compile()
dh.fill(field.name, 0, ghost_layers=True)
if config.target == ps.enums.Target.GPU:
dh.to_gpu(field.name)
dh.run_kernel(kernel)
if config.target == ps.enums.Target.GPU:
dh.to_cpu(field.name)
result = dh.gather_array(field.name, ghost_layers=True)
assert np.all(result[iteration_slice] == 1.0)
...@@ -25,7 +25,40 @@ def test_symbol_renaming(): ...@@ -25,7 +25,40 @@ def test_symbol_renaming():
loops = block.atoms(LoopOverCoordinate) loops = block.atoms(LoopOverCoordinate)
assert len(loops) == 2 assert len(loops) == 2
assert len(block.args[1].body.args) == 1
assert len(block.args[3].body.args) == 2
for loop in loops: for loop in loops:
assert len(loop.body.args) == 1
assert len(loop.parent.args) == 4 # 2 loops + 2 subexpressions assert len(loop.parent.args) == 4 # 2 loops + 2 subexpressions
assert loop.parent.args[0].lhs.name != loop.parent.args[1].lhs.name assert loop.parent.args[0].lhs.name != loop.parent.args[2].lhs.name
def test_keep_order_of_accesses():
f = ps.fields("f: [1D]")
x = TypedSymbol("x", np.float64)
n = 5
loop = LoopOverCoordinate(Block([SympyAssignment(x, f[0]),
SympyAssignment(f[1], 2 * x)]),
0, 0, n)
block = Block([loop])
ps.transformations.resolve_field_accesses(block)
new_loops = ps.transformations.cut_loop(loop, [n - 1])
ps.transformations.move_constants_before_loop(new_loops.args[1])
kernel_func = ps.astnodes.KernelFunction(
block, ps.Target.CPU, ps.Backend.C, ps.cpu.cpujit.make_python_function, None
)
kernel = kernel_func.compile()
print(ps.show_code(kernel_func))
f_arr = np.ones(n + 1)
kernel(f=f_arr)
print(f_arr)
assert np.allclose(f_arr, np.array([
1, 2, 4, 8, 16, 32
]))
import sympy as sp
from pystencils import AssignmentCollection, Assignment
from pystencils.node_collection import NodeCollection
from pystencils.astnodes import SympyAssignment
def test_node_collection_from_assignment_collection():
x = sp.symbols('x')
assignment_collection = AssignmentCollection([Assignment(x, 2)])
node_collection = NodeCollection.from_assignment_collection(assignment_collection)
assert node_collection.all_assignments[0] == SympyAssignment(x, 2)
%% Cell type:code id: tags:
``` python
import pytest
pytest.importorskip('cupy')
```
%% Output
<module 'cupy' from '/home/markus/Python311/lib/python3.11/site-packages/cupy/__init__.py'>
%% Cell type:code id: tags:
``` python
from pystencils.session import *
sp.init_printing()
frac = sp.Rational
```
%% Cell type:markdown id: tags:
# Phase-field simulation of dentritic solidification in 3D
This notebook tests the model presented in the dentritic growth tutorial in 3D.
%% Cell type:code id: tags:
``` python
target = ps.Target.GPU
gpu = target == ps.Target.GPU
domain_size = (25, 25, 25) if 'is_test_run' in globals() else (300, 300, 300)
dh = ps.create_data_handling(domain_size=domain_size, periodicity=True, default_target=target)
φ_field = dh.add_array('phi', latex_name='φ')
φ_field_tmp = dh.add_array('phi_tmp', latex_name='φ_tmp')
φ_delta_field = dh.add_array('phidelta', latex_name='φ_D')
t_field = dh.add_array('T')
t_field_tmp = dh.add_array('T_tmp')
```
%% Cell type:code id: tags:
``` python
ε, m, δ, j, θzero, α, γ, Teq, κ, τ = sp.symbols("ε m δ j θ_0 α γ T_eq κ τ")
εb = sp.Symbol("\\bar{\\epsilon}")
discretize = ps.fd.Discretization2ndOrder(dx=0.03, dt=1e-5)
φ = φ_field.center
T = t_field.center
d = ps.fd.Diff
def f(φ, m):
return φ**4 / 4 - (frac(1, 2) - m/3) * φ**3 + (frac(1,4)-m/2)*φ**2
bulk_free_energy_density = f(φ, m)
interface_free_energy_density = ε ** 2 / 2 * (d(φ, 0) ** 2 + d(φ, 1) ** 2 + d(φ, 2) ** 2)
```
%% Cell type:markdown id: tags:
Here comes the major change, that has to be made for the 3D model: $\epsilon$ depends on the interface normal, which can not be computed simply as atan() as in the 2D case
%% Cell type:code id: tags:
``` python
n = sp.Matrix([d(φ, i) for i in range(3)])
nLen = sp.sqrt(sum(n_i**2 for n_i in n))
n = n / nLen
nVal = sum(n_i**4 for n_i in n)
σ = δ * nVal
εVal = εb * (1 + σ)
εVal
```
%% Output
$\displaystyle \bar{\epsilon} \left(δ \left(\frac{{\partial_{0} {φ}_{(0,0,0)}}^{4}}{\left({\partial_{0} {φ}_{(0,0,0)}}^{2} + {\partial_{1} {φ}_{(0,0,0)}}^{2} + {\partial_{2} {φ}_{(0,0,0)}}^{2}\right)^{2}} + \frac{{\partial_{1} {φ}_{(0,0,0)}}^{4}}{\left({\partial_{0} {φ}_{(0,0,0)}}^{2} + {\partial_{1} {φ}_{(0,0,0)}}^{2} + {\partial_{2} {φ}_{(0,0,0)}}^{2}\right)^{2}} + \frac{{\partial_{2} {φ}_{(0,0,0)}}^{4}}{\left({\partial_{0} {φ}_{(0,0,0)}}^{2} + {\partial_{1} {φ}_{(0,0,0)}}^{2} + {\partial_{2} {φ}_{(0,0,0)}}^{2}\right)^{2}}\right) + 1\right)$
⎛ ⎛ 4
⎜ ⎜ D(φ[0,0,0])
\bar{\epsilon}⋅⎜δ⋅⎜───────────────────────────────────────────── + ───────────
⎜ ⎜ 2
⎜ ⎜⎛ 2 2 2⎞ ⎛
⎝ ⎝⎝D(φ[0,0,0]) + D(φ[0,0,0]) + D(φ[0,0,0]) ⎠ ⎝D(φ[0,0,0]
4 4
D(φ[0,0,0]) D(φ[0,0,0])
────────────────────────────────── + ─────────────────────────────────────────
2
2 2 2⎞ ⎛ 2 2
) + D(φ[0,0,0]) + D(φ[0,0,0]) ⎠ ⎝D(φ[0,0,0]) + D(φ[0,0,0]) + D(φ[0,0,0]
⎞ ⎞
⎟ ⎟
────⎟ + 1⎟
2⎟ ⎟
2⎞ ⎟ ⎟
) ⎠ ⎠ ⎠
%% Cell type:code id: tags:
``` python
def m_func(temperature):
return (α / sp.pi) * sp.atan(γ * (Teq - temperature))
```
%% Cell type:code id: tags:
``` python
substitutions = {m: m_func(T),
ε: εVal}
fe_i = interface_free_energy_density.subs(substitutions)
fe_b = bulk_free_energy_density.subs(substitutions)
μ_if = ps.fd.expand_diff_full(ps.fd.functional_derivative(fe_i, φ), functions=[φ])
μ_b = ps.fd.expand_diff_full(ps.fd.functional_derivative(fe_b, φ), functions=[φ])
```
%% Cell type:code id: tags:
``` python
dF_dφ = μ_b + sp.Piecewise((μ_if, nLen**2 > 1e-10), (0, True))
```
%% Cell type:code id: tags:
``` python
parameters = {
τ: 0.0003,
κ: 1.8,
εb: 0.01,
δ: 0.3,
γ: 10,
j: 6,
α: 0.9,
Teq: 1.0,
θzero: 0.2,
sp.pi: sp.pi.evalf()
}
parameters
```
%% Output
$\displaystyle \left\{ \pi : 3.14159265358979, \ T_{eq} : 1.0, \ \bar{\epsilon} : 0.01, \ j : 6, \ α : 0.9, \ γ : 10, \ δ : 0.3, \ θ_{0} : 0.2, \ κ : 1.8, \ τ : 0.0003\right\}$
{π: 3.14159265358979, T_eq: 1.0, \bar{\epsilon}: 0.01, j: 6, α: 0.9, γ: 10, δ:
0.3, θ₀: 0.2, κ: 1.8, τ: 0.0003}
%% Cell type:code id: tags:
``` python
dφ_dt = - dF_dφ / τ
assignments = [
ps.Assignment(φ_delta_field.center, discretize(dφ_dt.subs(parameters))),
]
φEqs = ps.simp.sympy_cse_on_assignment_list(assignments)
φEqs.append(ps.Assignment(φ_field_tmp.center, discretize(ps.fd.transient(φ) - φ_delta_field.center)))
temperatureEvolution = -ps.fd.transient(T) + ps.fd.diffusion(T, 1) + κ * φ_delta_field.center
temperatureEqs = [
ps.Assignment(t_field_tmp.center, discretize(temperatureEvolution.subs(parameters)))
]
```
%% Cell type:code id: tags:
``` python
φ_kernel = ps.create_kernel(φEqs, cpu_openmp=4, target=target).compile()
temperatureKernel = ps.create_kernel(temperatureEqs, cpu_openmp=4, target=target).compile()
```
%% Cell type:code id: tags:
``` python
def time_loop(steps):
φ_sync = dh.synchronization_function(['phi'], target=target)
temperature_sync = dh.synchronization_function(['T'], target=target)
dh.all_to_gpu()
for t in range(steps):
φ_sync()
dh.run_kernel(φ_kernel)
temperature_sync()
dh.run_kernel(temperatureKernel)
dh.swap(φ_field.name, φ_field_tmp.name)
dh.swap(t_field.name, t_field_tmp.name)
dh.all_to_cpu()
def init(nucleus_size=np.sqrt(5)):
for b in dh.iterate():
x, y, z = b.cell_index_arrays
x, y, z = x - b.shape[0] // 2, y - b.shape[1] // 2, z - b.shape[2] // 2
b['phi'].fill(0)
b['phi'][(x ** 2 + y ** 2 + z ** 2) < nucleus_size ** 2] = 1.0
b['T'].fill(0.0)
def plot(slice_obj=ps.make_slice[:, :, 0.5]):
plt.subplot(1, 3, 1)
plt.scalar_field(dh.gather_array('phi', slice_obj).squeeze())
plt.title("φ")
plt.colorbar()
plt.subplot(1, 3, 2)
plt.title("T")
plt.scalar_field(dh.gather_array('T', slice_obj).squeeze())
plt.colorbar()
plt.subplot(1, 3, 3)
plt.title("∂φ")
plt.scalar_field(dh.gather_array('phidelta', slice_obj).squeeze())
plt.colorbar()
```
%% Cell type:code id: tags:
``` python
init()
plot()
print(dh)
```
%% Output
Name| Inner (min/max)| WithGl (min/max)
----------------------------------------------------
T| ( 0, 0)| ( 0, 0)
T_tmp| ( 0, 0)| ( 0, 0)
phi| ( 0, 1)| ( 0, 1)
phi_tmp| ( 0, 0)| ( 0, 0)
phidelta| ( 0, 0)| ( 0, 0)
%% Cell type:code id: tags:
``` python
if 'is_test_run' in globals():
time_loop(2)
assert np.isfinite(dh.max('phi'))
assert np.isfinite(dh.max('T'))
assert np.isfinite(dh.max('phidelta'))
else:
from time import perf_counter
vtk_writer = dh.create_vtk_writer('dentritic_growth_large', ['phi'])
last = perf_counter()
for i in range(4):
time_loop(100)
vtk_writer(i)
print("Step ", i, perf_counter() - last, dh.max('phi'))
last = perf_counter()
```
%% Output
Step 0 19.713090835999992 1.0
Step 1 19.673075279000045 1.0
Step 2 19.696444219 1.0
Step 3 19.752472744999977 1.0
from copy import copy, deepcopy from copy import copy, deepcopy
from pystencils.field import Field from pystencils.field import Field
from pystencils.data_types import TypedSymbol from pystencils.typing import TypedSymbol
def test_field_access(): def test_field_access():
......
import os import os
from tempfile import TemporaryDirectory from tempfile import TemporaryDirectory
import shutil
import pytest
import numpy as np import numpy as np
...@@ -20,6 +23,7 @@ def example_vector_field(t=0, shape=(40, 40)): ...@@ -20,6 +23,7 @@ def example_vector_field(t=0, shape=(40, 40)):
return result return result
@pytest.mark.skipif(shutil.which('ffmpeg') is None, reason="ffmpeg not available")
def test_animation(): def test_animation():
t = 0 t = 0
......
import pytest
import re
import sympy as sp
import pystencils
from pystencils.backends.cbackend import CBackend
class UnsupportedNode(pystencils.astnodes.Node):
def __init__(self):
super().__init__()
@pytest.mark.parametrize('type', ('float32', 'float64', 'int64'))
@pytest.mark.parametrize('negative', (False, 'Negative'))
@pytest.mark.parametrize('target', (pystencils.Target.CPU, pystencils.Target.GPU))
def test_print_infinity(type, negative, target):
x = pystencils.fields(f'x: {type}[1d]')
if negative:
assignment = pystencils.Assignment(x.center, -sp.oo)
else:
assignment = pystencils.Assignment(x.center, sp.oo)
ast = pystencils.create_kernel(assignment, data_type=type, target=target)
if target == pystencils.Target.GPU:
pytest.importorskip('cupy')
ast.compile()
print(ast.compile().code)
def test_print_unsupported_node():
with pytest.raises(NotImplementedError, match='CBackend does not support node of type UnsupportedNode'):
CBackend()(UnsupportedNode())
@pytest.mark.parametrize('dtype', ('float32', 'float64'))
@pytest.mark.parametrize('target', (pystencils.Target.CPU, pystencils.Target.GPU))
def test_print_subtraction(dtype, target):
a, b, c = sp.symbols("a b c")
x = pystencils.fields(f'x: {dtype}[3d]')
y = pystencils.fields(f'y: {dtype}[3d]')
config = pystencils.CreateKernelConfig(target=target, data_type=dtype)
update = pystencils.Assignment(x.center, y.center - a * b ** 8 + b * -1 / 42.0 - 2 * c ** 4)
ast = pystencils.create_kernel(update, config=config)
code = pystencils.get_code_str(ast)
assert "-1.0" not in code
def test_print_small_integer_pow():
printer = pystencils.backends.cbackend.CBackend()
x = sp.Symbol("x")
y = sp.Symbol("y")
n = pystencils.TypedSymbol("n", "int")
t = pystencils.TypedSymbol("t", "float32")
s = pystencils.TypedSymbol("s", "float32")
equs = [
pystencils.astnodes.SympyAssignment(y, 1/x),
pystencils.astnodes.SympyAssignment(y, x*x),
pystencils.astnodes.SympyAssignment(y, 1/(x*x)),
pystencils.astnodes.SympyAssignment(y, x**8),
pystencils.astnodes.SympyAssignment(y, x**(-8)),
pystencils.astnodes.SympyAssignment(y, x**9),
pystencils.astnodes.SympyAssignment(y, x**(-9)),
pystencils.astnodes.SympyAssignment(y, x**n),
pystencils.astnodes.SympyAssignment(y, sp.Pow(4, 4, evaluate=False)),
pystencils.astnodes.SympyAssignment(y, x**0.25),
pystencils.astnodes.SympyAssignment(y, x**y),
pystencils.astnodes.SympyAssignment(y, pystencils.typing.cast_functions.CastFunc(1/x, "float32")),
pystencils.astnodes.SympyAssignment(y, pystencils.typing.cast_functions.CastFunc(x*x, "float32")),
pystencils.astnodes.SympyAssignment(y, (t+s)**(-8)),
pystencils.astnodes.SympyAssignment(y, (t+s)**(-9)),
]
typed = pystencils.typing.transformations.add_types(equs, pystencils.CreateKernelConfig())
regexes = [
r"1\.0\s*/\s*\(?\s*x\s*\)?",
r"x\s*\*\s*x",
r"1\.0\s*/\s*\(\s*x\s*\*x\s*\)",
r"x(\s*\*\s*x){7}",
r"1\.0\s*/\s*\(\s*x(\s*\*\s*x){7}\s*\)",
r"pow\(\s*x\s*,\s*9(\.0)?\s*\)",
r"pow\(\s*x\s*,\s*-9(\.0)?\s*\)",
r"pow\(\s*x\s*,\s*\(?\s*\(\s*double\s*\)\s*\(\s*n\s*\)\s*\)?\s*\)",
r"\(\s*int[a-zA-Z0-9_]*\s*\)\s*\(+\s*4(\s*\*\s*4){3}\s*\)+",
r"pow\(\s*x\s*,\s*0\.25\s*\)",
r"pow\(\s*x\s*,\s*y\s*\)",
r"\(\s*float\s*\)[ ()]*1\.0\s*/\s*\(?\s*x\s*\)?",
r"\(\s*float\s*\)[ ()]*x\s*\*\s*x",
r"\(\s*float\s*\)\s*\(\s*1\.0f\s*/\s*\(\s*\(\s*s\s*\+\s*t\s*\)(\s*\*\s*\(\s*s\s*\+\s*t\s*\)){7}\s*\)",
r"powf\(\s*s\s*\+\s*t\s*,\s*-9\.0f\s*\)",
]
for r, e in zip(regexes, typed):
assert re.search(r, printer(e))
import numpy as np
import pystencils as ps
from pystencils.cpu.vectorization import get_supported_instruction_sets
from pystencils.cpu.vectorization import replace_inner_stride_with_one, vectorize
def test_basic_kernel():
for domain_shape in [(4, 5), (3, 4, 5)]:
dh = ps.create_data_handling(domain_size=domain_shape, periodicity=True)
assert all(dh.periodicity)
f = dh.add_array('f', values_per_cell=1)
tmp = dh.add_array('tmp', values_per_cell=1)
stencil_2d = [(1, 0), (-1, 0), (0, 1), (0, -1)]
stencil_3d = [(1, 0, 0), (-1, 0, 0), (0, 1, 0), (0, -1, 0), (0, 0, 1), (0, 0, -1)]
stencil = stencil_2d if dh.dim == 2 else stencil_3d
jacobi = ps.Assignment(tmp.center, sum(f.neighbors(stencil)) / len(stencil))
kernel = ps.create_kernel(jacobi).compile()
for b in dh.iterate(ghost_layers=1):
b['f'].fill(42)
dh.run_kernel(kernel)
for b in dh.iterate(ghost_layers=0):
np.testing.assert_equal(b['f'], 42)
float_seq = [1.0, 2.0, 3.0, 4.0]
int_seq = [1, 2, 3]
for op in ('min', 'max', 'sum'):
assert (dh.reduce_float_sequence(float_seq, op) == float_seq).all()
assert (dh.reduce_int_sequence(int_seq, op) == int_seq).all()
def test_basic_blocking_staggered():
f = ps.fields("f: double[2D]")
stag = ps.fields("stag(2): double[2D]", field_type=ps.FieldType.STAGGERED)
terms = [
f[0, 0] - f[-1, 0],
f[0, 0] - f[0, -1],
]
assignments = [ps.Assignment(stag.staggered_access(d), terms[i]) for i, d in enumerate(stag.staggered_stencil)]
kernel = ps.create_staggered_kernel(assignments, cpu_blocking=(3, 16)).compile()
reference_kernel = ps.create_staggered_kernel(assignments).compile()
f_arr = np.random.rand(80, 33)
stag_arr = np.zeros((80, 33, 3))
stag_ref = np.zeros((80, 33, 3))
kernel(f=f_arr, stag=stag_arr)
reference_kernel(f=f_arr, stag=stag_ref)
np.testing.assert_almost_equal(stag_arr, stag_ref)
def test_basic_vectorization():
supported_instruction_sets = get_supported_instruction_sets()
if supported_instruction_sets:
instruction_set = supported_instruction_sets[-1]
else:
instruction_set = None
f, g = ps.fields("f, g : double[2D]")
update_rule = [ps.Assignment(g[0, 0], f[0, 0] + f[-1, 0] + f[1, 0] + f[0, 1] + f[0, -1] + 42.0)]
ast = ps.create_kernel(update_rule)
replace_inner_stride_with_one(ast)
vectorize(ast, instruction_set=instruction_set)
func = ast.compile()
arr = np.ones((23 + 2, 17 + 2)) * 5.0
dst = np.zeros_like(arr)
func(g=dst, f=arr)
np.testing.assert_equal(dst[1:-1, 1:-1], 5 * 5.0 + 42.0)
\ No newline at end of file
import numpy as np
import pytest
import pystencils as ps
from pystencils.astnodes import SympyAssignment
from pystencils.node_collection import NodeCollection
from pystencils.rng import PhiloxFourFloats, PhiloxTwoDoubles, AESNIFourFloats, AESNITwoDoubles, random_symbol
from pystencils.backends.simd_instruction_sets import get_supported_instruction_sets
from pystencils.cpu.cpujit import get_compiler_config
from pystencils.typing import TypedSymbol
from pystencils.enums import Target
RNGs = {('philox', 'float'): PhiloxFourFloats, ('philox', 'double'): PhiloxTwoDoubles,
('aesni', 'float'): AESNIFourFloats, ('aesni', 'double'): AESNITwoDoubles}
instruction_sets = get_supported_instruction_sets()
if get_compiler_config()['os'] == 'windows':
# skip instruction sets supported by the CPU but not by the compiler
if 'avx' in instruction_sets and ('/arch:avx2' not in get_compiler_config()['flags'].lower()
and '/arch:avx512' not in get_compiler_config()['flags'].lower()):
instruction_sets.remove('avx')
if 'avx512' in instruction_sets and '/arch:avx512' not in get_compiler_config()['flags'].lower():
instruction_sets.remove('avx512')
if 'avx512vl' in instruction_sets and '/arch:avx512' not in get_compiler_config()['flags'].lower():
instruction_sets.remove('avx512vl')
@pytest.mark.parametrize('target, rng', ((Target.CPU, 'philox'), (Target.CPU, 'aesni'), (Target.GPU, 'philox')))
@pytest.mark.parametrize('precision', ('float', 'double'))
@pytest.mark.parametrize('dtype', ('float', 'double'))
def test_rng(target, rng, precision, dtype, t=124, offsets=(0, 0), keys=(0, 0), offset_values=None):
if target == Target.GPU:
pytest.importorskip('cupy')
if instruction_sets and {'neon', 'sve', 'sve2', 'sme', 'vsx', 'rvv'}.intersection(instruction_sets) and rng == 'aesni':
pytest.xfail('AES not yet implemented for this architecture')
if rng == 'aesni' and len(keys) == 2:
keys *= 2
if offset_values is None:
offset_values = offsets
dh = ps.create_data_handling((2, 2), default_ghost_layers=0, default_target=target)
f = dh.add_array("f", values_per_cell=4 if precision == 'float' else 2,
dtype=np.float32 if dtype == 'float' else np.float64)
dh.fill(f.name, 42.0)
rng_node = RNGs[(rng, precision)](dh.dim, offsets=offsets, keys=keys)
assignments = [rng_node] + [SympyAssignment(f(i), s) for i, s in enumerate(rng_node.result_symbols)]
kernel = ps.create_kernel(assignments, target=dh.default_target).compile()
dh.all_to_gpu()
kwargs = {'time_step': t}
if offset_values != offsets:
kwargs.update({k.name: v for k, v in zip(offsets, offset_values)})
dh.run_kernel(kernel, **kwargs)
dh.all_to_cpu()
arr = dh.gather_array(f.name)
assert np.logical_and(arr <= 1.0, arr >= 0).all()
if rng == 'philox' and t == 124 and offsets == (0, 0) and keys == (0, 0) and dh.shape == (2, 2):
int_reference = np.array([[[3576608082, 1252663339, 1987745383, 348040302],
[1032407765, 970978240, 2217005168, 2424826293]],
[[2958765206, 3725192638, 2623672781, 1373196132],
[850605163, 1694561295, 3285694973, 2799652583]]])
else:
pytest.importorskip('randomgen')
if rng == 'aesni':
from randomgen import AESCounter
int_reference = np.empty(dh.shape + (4,), dtype=int)
for x in range(dh.shape[0]):
for y in range(dh.shape[1]):
r = AESCounter(counter=t + (x + offset_values[0]) * 2 ** 32 + (y + offset_values[1]) * 2 ** 64,
key=keys[0] + keys[1] * 2 ** 32 + keys[2] * 2 ** 64 + keys[3] * 2 ** 96,
mode="sequence")
a, b = r.random_raw(size=2)
int_reference[x, y, :] = [a % 2 ** 32, a // 2 ** 32, b % 2 ** 32, b // 2 ** 32]
else:
from randomgen import Philox
int_reference = np.empty(dh.shape + (4,), dtype=int)
for x in range(dh.shape[0]):
for y in range(dh.shape[1]):
r = Philox(counter=t + (x + offset_values[0]) * 2 ** 32 + (y + offset_values[1]) * 2 ** 64 - 1,
key=keys[0] + keys[1] * 2 ** 32, number=4, width=32, mode="sequence")
int_reference[x, y, :] = r.random_raw(size=4)
if precision == 'float' or dtype == 'float':
eps = np.finfo(np.float32).eps
else:
eps = np.finfo(np.float64).eps
if rng == 'aesni': # precision appears to be slightly worse
eps = max(1e-12, 2 * eps)
if precision == 'float':
reference = int_reference * 2. ** -32 + 2. ** -33
else:
x = int_reference[:, :, 0::2]
y = int_reference[:, :, 1::2]
z = x ^ y << (53 - 32)
reference = z * 2. ** -53 + 2. ** -54
assert np.allclose(arr, reference, rtol=0, atol=eps)
@pytest.mark.parametrize('vectorized', (False, True))
@pytest.mark.parametrize('kind', ('value', 'symbol'))
def test_rng_offsets(kind, vectorized):
if vectorized:
test = test_rng_vectorized
if not instruction_sets:
pytest.skip("cannot detect CPU instruction set")
else:
test = test_rng
if kind == 'value':
test(instruction_sets[-1] if vectorized else Target.CPU, 'philox', 'float', 'float', t=8,
offsets=(6, 7), keys=(5, 309))
elif kind == 'symbol':
offsets = (TypedSymbol("x0", np.uint32), TypedSymbol("y0", np.uint32))
test(instruction_sets[-1] if vectorized else Target.GPU, 'philox', 'float', 'float', t=8,
offsets=offsets, offset_values=(6, 7), keys=(5, 309))
@pytest.mark.parametrize('target', instruction_sets)
@pytest.mark.parametrize('rng', ('philox', 'aesni'))
@pytest.mark.parametrize('precision,dtype', (('float', 'float'), ('double', 'double')))
def test_rng_vectorized(target, rng, precision, dtype, t=130, offsets=(1, 3), keys=(0, 0), offset_values=None):
if (target in ['neon', 'vsx', 'rvv', 'sme'] or target.startswith('sve')) and rng == 'aesni':
pytest.xfail('AES not yet implemented for this architecture')
cpu_vectorize_info = {'assume_inner_stride_one': True, 'assume_aligned': True, 'instruction_set': target}
dh = ps.create_data_handling((131, 131), default_ghost_layers=0, default_target=Target.CPU)
f = dh.add_array("f", values_per_cell=4 if precision == 'float' else 2,
dtype=np.float32 if dtype == 'float' else np.float64, alignment=True)
dh.fill(f.name, 42.0)
ref = dh.add_array("ref", values_per_cell=4 if precision == 'float' else 2)
rng_node = RNGs[(rng, precision)](dh.dim, offsets=offsets)
assignments = [rng_node] + [SympyAssignment(ref(i), s) for i, s in enumerate(rng_node.result_symbols)]
kernel = ps.create_kernel(assignments, target=dh.default_target).compile()
kwargs = {'time_step': t}
if offset_values is not None:
kwargs.update({k.name: v for k, v in zip(offsets, offset_values)})
dh.run_kernel(kernel, **kwargs)
rng_node = RNGs[(rng, precision)](dh.dim, offsets=offsets)
assignments = [rng_node] + [SympyAssignment(f(i), s) for i, s in enumerate(rng_node.result_symbols)]
kernel = ps.create_kernel(assignments, target=dh.default_target, cpu_vectorize_info=cpu_vectorize_info).compile()
dh.run_kernel(kernel, **kwargs)
ref_data = dh.gather_array(ref.name)
data = dh.gather_array(f.name)
assert np.allclose(ref_data, data)
@pytest.mark.parametrize('vectorized', (False, True))
def test_rng_symbol(vectorized):
"""Make sure that the RNG symbol generator generates symbols and that the resulting code compiles"""
cpu_vectorize_info = None
if vectorized:
if not instruction_sets:
pytest.skip("cannot detect CPU instruction set")
else:
cpu_vectorize_info = {'assume_inner_stride_one': True, 'assume_aligned': True,
'instruction_set': instruction_sets[-1]}
dh = ps.create_data_handling((8, 8), default_ghost_layers=0, default_target=Target.CPU)
f = dh.add_array("f", values_per_cell=2 * dh.dim, alignment=True)
nc = NodeCollection([SympyAssignment(f(i), 0) for i in range(f.shape[-1])])
subexpressions = []
rng_symbol_gen = random_symbol(subexpressions, dim=dh.dim)
for i in range(f.shape[-1]):
nc.all_assignments[i] = SympyAssignment(nc.all_assignments[i].lhs, next(rng_symbol_gen))
symbols = [a.rhs for a in nc.all_assignments]
[nc.all_assignments.insert(0, subexpression) for subexpression in subexpressions]
assert len(symbols) == f.shape[-1] and len(set(symbols)) == f.shape[-1]
ps.create_kernel(nc, target=dh.default_target, cpu_vectorize_info=cpu_vectorize_info).compile()
@pytest.mark.parametrize('vectorized', (False, True))
def test_staggered(vectorized):
"""Make sure that the RNG counter can be substituted during loop cutting"""
dh = ps.create_data_handling((8, 8), default_ghost_layers=0, default_target=Target.CPU)
j = dh.add_array("j", values_per_cell=dh.dim, field_type=ps.FieldType.STAGGERED_FLUX)
a = ps.AssignmentCollection([ps.Assignment(j.staggered_access(n), 0) for n in j.staggered_stencil])
rng_symbol_gen = random_symbol(a.subexpressions, dim=dh.dim, rng_node=PhiloxTwoDoubles)
a.main_assignments[0] = ps.Assignment(a.main_assignments[0].lhs, next(rng_symbol_gen))
kernel = ps.create_staggered_kernel(a, target=dh.default_target).compile()
if not vectorized:
return
if not instruction_sets:
pytest.skip("cannot detect CPU instruction set")
pytest.importorskip('islpy')
cpu_vectorize_info = {'assume_inner_stride_one': True, 'assume_aligned': False,
'instruction_set': instruction_sets[-1]}
dh.fill(j.name, 867)
dh.run_kernel(kernel, seed=5, time_step=309)
ref_data = dh.gather_array(j.name)
kernel2 = ps.create_staggered_kernel(a, target=dh.default_target, cpu_vectorize_info=cpu_vectorize_info).compile()
dh.fill(j.name, 867)
dh.run_kernel(kernel2, seed=5, time_step=309)
data = dh.gather_array(j.name)
assert np.allclose(ref_data, data)
from pystencils.cache import sharedmethodcache
class Fib:
def __init__(self):
self.fib_rec_called = 0
self.fib_iter_called = 0
@sharedmethodcache("fib_cache")
def fib_rec(self, n):
self.fib_rec_called += 1
return 1 if n <= 1 else self.fib_rec(n-1) + self.fib_rec(n-2)
@sharedmethodcache("fib_cache")
def fib_iter(self, n):
self.fib_iter_called += 1
f1, f2 = 0, 1
for i in range(n):
f2 = f1 + f2
f1 = f2 - f1
return f2
def test_fib_memoization_1():
fib = Fib()
assert "fib_cache" not in fib.__dict__
f13 = fib.fib_rec(13)
assert fib.fib_rec_called == 14
assert "fib_cache" in fib.__dict__
assert fib.fib_cache[(13,)] == f13
for k in range(14):
# fib_iter should use cached results from fib_rec
fib.fib_iter(k)
assert fib.fib_iter_called == 0
def test_fib_memoization_2():
fib = Fib()
f11 = fib.fib_iter(11)
f12 = fib.fib_iter(12)
assert fib.fib_iter_called == 2
f13 = fib.fib_rec(13)
# recursive calls should be cached
assert fib.fib_rec_called == 1
class Triad:
def __init__(self):
self.triad_called = 0
@sharedmethodcache("triad_cache")
def triad(self, a, b, c=0):
"""Computes the triad a*b+c."""
self.triad_called += 1
return a * b + c
def test_triad_memoization():
triad = Triad()
assert triad.triad.__doc__ == "Computes the triad a*b+c."
t = triad.triad(12, 4, 15)
assert triad.triad_called == 1
assert triad.triad_cache[(12, 4, 15)] == t
t = triad.triad(12, 4, c=15)
assert triad.triad_called == 2
assert triad.triad_cache[(12, 4, 'c', 15)] == t
t = triad.triad(12, 4, 15)
assert triad.triad_called == 2
t = triad.triad(12, 4, c=15)
assert triad.triad_called == 2
import sympy as sp import sympy as sp
import pystencils as ps
from pystencils import Assignment, AssignmentCollection from pystencils import Assignment, AssignmentCollection
from pystencils.simp import ( from pystencils.simp import (
SimplificationStrategy, apply_on_all_subexpressions, SimplificationStrategy, apply_on_all_subexpressions,
...@@ -29,7 +30,7 @@ def test_simplification_strategy(): ...@@ -29,7 +30,7 @@ def test_simplification_strategy():
result = strategy(ac) result = strategy(ac)
assert result.operation_count['adds'] == 7 assert result.operation_count['adds'] == 7
assert result.operation_count['muls'] == 5 assert result.operation_count['muls'] == 4
assert result.operation_count['divs'] == 0 assert result.operation_count['divs'] == 0
# Trigger display routines, such that they are at least executed # Trigger display routines, such that they are at least executed
...@@ -43,3 +44,45 @@ def test_simplification_strategy(): ...@@ -43,3 +44,45 @@ def test_simplification_strategy():
assert 'Adds' in report._repr_html_() assert 'Adds' in report._repr_html_()
assert 'factor' in str(strategy) assert 'factor' in str(strategy)
def test_split_inner_loop():
dst = ps.fields('dst(8): double[2D]')
s = sp.symbols('s_:8')
x = sp.symbols('x')
subexpressions = []
main = [
Assignment(dst[0, 0](0), s[0]),
Assignment(dst[0, 0](1), s[1]),
Assignment(dst[0, 0](2), s[2]),
Assignment(dst[0, 0](3), s[3]),
Assignment(dst[0, 0](4), s[4]),
Assignment(dst[0, 0](5), s[5]),
Assignment(dst[0, 0](6), s[6]),
Assignment(dst[0, 0](7), s[7]),
Assignment(x, sum(s))
]
ac = AssignmentCollection(main, subexpressions)
split_groups = [[dst[0, 0](0), dst[0, 0](1)],
[dst[0, 0](2), dst[0, 0](3)],
[dst[0, 0](4), dst[0, 0](5)],
[dst[0, 0](6), dst[0, 0](7), x]]
ac.simplification_hints['split_groups'] = split_groups
ast = ps.create_kernel(ac)
code = ps.get_code_str(ast)
ps.show_code(ast)
# we have four inner loops as indicated in split groups (4 elements) plus one outer loop
assert code.count('for') == 5
ast = ps.create_kernel(ac, target=ps.Target.GPU)
code = ps.get_code_str(ast)
# on GPUs is wouldn't be good to use loop splitting
assert code.count('for') == 0
ac = AssignmentCollection(main, subexpressions)
ast = ps.create_kernel(ac)
code = ps.get_code_str(ast)
# one inner loop and one outer loop
assert code.count('for') == 2
from sys import version_info as vs
import pytest
import pystencils.config
import sympy as sp
import pystencils as ps
from pystencils import Assignment, AssignmentCollection, fields
from pystencils.simp import subexpression_substitution_in_main_assignments
from pystencils.simp import add_subexpressions_for_divisions
from pystencils.simp import add_subexpressions_for_sums
from pystencils.simp import add_subexpressions_for_field_reads
from pystencils.simp.simplifications import add_subexpressions_for_constants
from pystencils.typing import BasicType, TypedSymbol
a, b, c, d, x, y, z = sp.symbols("a b c d x y z")
s0, s1, s2, s3 = sp.symbols("s_:4")
f = sp.symbols("f_:9")
def test_subexpression_substitution_in_main_assignments():
subexpressions = [
Assignment(s0, 2 * a + 2 * b),
Assignment(s1, 2 * a + 2 * b + 2 * c),
Assignment(s2, 2 * a + 2 * b + 2 * c + 2 * d),
Assignment(s3, 2 * a + 2 * b * c),
Assignment(x, s1 + s2 + s0 + s3)
]
main = [
Assignment(f[0], s1 + s2 + s0 + s3),
Assignment(f[1], s1 + s2 + s0 + s3),
Assignment(f[2], s1 + s2 + s0 + s3),
Assignment(f[3], s1 + s2 + s0 + s3),
Assignment(f[4], s1 + s2 + s0 + s3)
]
ac = AssignmentCollection(main, subexpressions)
ac = subexpression_substitution_in_main_assignments(ac)
for i in range(0, len(ac.main_assignments)):
assert ac.main_assignments[i].rhs == x
def test_add_subexpressions_for_divisions():
subexpressions = [
Assignment(s0, 2 / a + 2 / b),
Assignment(s1, 2 / a + 2 / b + 2 / c),
Assignment(s2, 2 / a + 2 / b + 2 / c + 2 / d),
Assignment(s3, 2 / a + 2 / b / c),
Assignment(x, s1 + s2 + s0 + s3)
]
main = [
Assignment(f[0], s1 + s2 + s0 + s3)
]
ac = AssignmentCollection(main, subexpressions)
divs_before_optimisation = ac.operation_count["divs"]
ac = add_subexpressions_for_divisions(ac)
divs_after_optimisation = ac.operation_count["divs"]
assert divs_before_optimisation - divs_after_optimisation == 8
rhs = []
for i in range(len(ac.subexpressions)):
rhs.append(ac.subexpressions[i].rhs)
assert 1/a in rhs
assert 1/b in rhs
assert 1/c in rhs
assert 1/d in rhs
def test_add_subexpressions_for_constants():
half = sp.Rational(1,2)
sqrt_2 = sp.sqrt(2)
main = [
Assignment(f[0], half * a + half * b + half * c),
Assignment(f[1], - half * a - half * b),
Assignment(f[2], a * sqrt_2 - b * sqrt_2),
Assignment(f[3], a**2 + b**2)
]
ac = AssignmentCollection(main)
ac = add_subexpressions_for_constants(ac)
assert len(ac.subexpressions) == 2
half_subexp = None
sqrt_subexp = None
for asm in ac.subexpressions:
if asm.rhs == half:
half_subexp = asm.lhs
elif asm.rhs == sqrt_2:
sqrt_subexp = asm.lhs
else:
pytest.fail(f"An unexpected subexpression was encountered: {asm}")
assert half_subexp is not None
assert sqrt_subexp is not None
for asm in ac.main_assignments[:3]:
assert isinstance(asm.rhs, sp.Mul)
assert any(arg == half_subexp for arg in ac.main_assignments[0].rhs.args)
assert any(arg == half_subexp for arg in ac.main_assignments[1].rhs.args)
assert any(arg == sqrt_subexp for arg in ac.main_assignments[2].rhs.args)
# Do not replace exponents!
assert ac.main_assignments[3].rhs == a**2 + b**2
def test_add_subexpressions_for_sums():
subexpressions = [
Assignment(s0, a + b + c + d),
Assignment(s1, 3 * a * sp.sqrt(x) + 4 * b + c),
Assignment(s2, 3 * a * sp.sqrt(x) + 4 * b + c),
Assignment(s3, 3 * a * sp.sqrt(x) + 4 * b + c)
]
main = [
Assignment(f[0], s1 + s2 + s0 + s3)
]
ac = AssignmentCollection(main, subexpressions)
ops_before_optimisation = ac.operation_count
ac = add_subexpressions_for_sums(ac)
ops_after_optimisation = ac.operation_count
assert ops_after_optimisation["adds"] == ops_before_optimisation["adds"]
assert ops_after_optimisation["muls"] < ops_before_optimisation["muls"]
assert ops_after_optimisation["sqrts"] < ops_before_optimisation["sqrts"]
rhs = []
for i in range(len(ac.subexpressions)):
rhs.append(ac.subexpressions[i].rhs)
assert a + b + c + d in rhs
assert 3 * a * sp.sqrt(x) in rhs
def test_add_subexpressions_for_field_reads():
s, v = fields("s(5), v(5): double[2D]")
subexpressions = []
main = [Assignment(s[0, 0](0), 3 * v[0, 0](0)),
Assignment(s[0, 0](1), 10 * v[0, 0](1))]
ac = AssignmentCollection(main, subexpressions)
assert len(ac.subexpressions) == 0
ac2 = add_subexpressions_for_field_reads(ac)
assert len(ac2.subexpressions) == 2
ac3 = add_subexpressions_for_field_reads(ac, data_type="float32")
assert len(ac3.subexpressions) == 2
assert isinstance(ac3.subexpressions[0].lhs, TypedSymbol)
assert ac3.subexpressions[0].lhs.dtype == BasicType("float32")
# added check for early out of add_subexpressions_for_field_reads is no fields appear on the rhs (See #92)
main = [Assignment(s[0, 0](0), 3.0),
Assignment(s[0, 0](1), 4.0)]
ac4 = AssignmentCollection(main, subexpressions)
assert len(ac4.subexpressions) == 0
ac5 = add_subexpressions_for_field_reads(ac4)
assert ac5 is not None
assert ac4 is ac5
@pytest.mark.parametrize('target', (ps.Target.CPU, ps.Target.GPU))
@pytest.mark.parametrize('dtype', ('float32', 'float64'))
@pytest.mark.skipif((vs.major, vs.minor, vs.micro) == (3, 8, 2), reason="does not work on python 3.8.2 for some reason")
def test_sympy_optimizations(target, dtype):
if target == ps.Target.GPU:
pytest.importorskip("cupy")
src, dst = ps.fields(f'src, dst: {dtype}[2d]')
assignments = ps.AssignmentCollection({
src[0, 0]: 1.0 * (sp.exp(dst[0, 0]) - 1)
})
config = pystencils.config.CreateKernelConfig(target=target, default_number_float=dtype)
ast = ps.create_kernel(assignments, config=config)
ps.show_code(ast)
code = ps.get_code_str(ast)
if dtype == 'float32':
assert 'expf(' in code
elif dtype == 'float64':
assert 'exp(' in code
@pytest.mark.parametrize('target', (ps.Target.CPU, ps.Target.GPU))
@pytest.mark.parametrize('simplification', (True, False))
@pytest.mark.skipif((vs.major, vs.minor, vs.micro) == (3, 8, 2), reason="does not work on python 3.8.2 for some reason")
def test_evaluate_constant_terms(target, simplification):
if target == ps.Target.GPU:
pytest.importorskip("cupy")
src, dst = ps.fields('src, dst: float32[2d]')
# cos of a number will always be simplified
assignments = ps.AssignmentCollection({
src[0, 0]: -sp.cos(1) + dst[0, 0]
})
config = pystencils.config.CreateKernelConfig(target=target, default_assignment_simplifications=simplification)
ast = ps.create_kernel(assignments, config=config)
code = ps.get_code_str(ast)
assert 'cos(' not in code
import numpy as np import numpy as np
import pytest import pytest
import pystencils
import sympy as sp import sympy as sp
from pystencils import Assignment, Field, create_kernel, fields from pystencils import Assignment, Field, create_kernel, fields
...@@ -104,13 +106,20 @@ def test_loop_independence_checks(): ...@@ -104,13 +106,20 @@ def test_loop_independence_checks():
Assignment(g[0, 0], f[1, 0])]) Assignment(g[0, 0], f[1, 0])])
assert 'Field g is written at two different locations' in str(e.value) assert 'Field g is written at two different locations' in str(e.value)
# This is allowed - because only one element of g is accessed # This is not allowed - because this is not SSA (it can be overwritten with allow_double_writes)
with pytest.raises(ValueError) as e:
create_kernel([Assignment(g[0, 2], f[0, 1]),
Assignment(g[0, 2], 2 * g[0, 2])])
# This is allowed - because allow_double_writes is True now
create_kernel([Assignment(g[0, 2], f[0, 1]), create_kernel([Assignment(g[0, 2], f[0, 1]),
Assignment(g[0, 2], 2 * g[0, 2])]) Assignment(g[0, 2], 2 * g[0, 2])],
config=pystencils.CreateKernelConfig(allow_double_writes=True))
create_kernel([Assignment(v[0, 2](1), f[0, 1]), with pytest.raises(ValueError) as e:
Assignment(v[0, 1](0), 4), create_kernel([Assignment(v[0, 2](1), f[0, 1]),
Assignment(v[0, 2](1), 2 * v[0, 2](1))]) Assignment(v[0, 1](0), 4),
Assignment(v[0, 2](1), 2 * v[0, 2](1))])
with pytest.raises(ValueError) as e: with pytest.raises(ValueError) as e:
create_kernel([Assignment(g[0, 1], 3), create_kernel([Assignment(g[0, 1], 3),
......
import numpy as np
import sympy as sp
import pytest
from pystencils import (
Assignment,
Field,
TypedSymbol,
create_kernel,
make_slice,
Target,
create_data_handling,
)
from pystencils.simp import sympy_cse_on_assignment_list
@pytest.mark.parametrize("target", [Target.CPU, Target.GPU])
def test_sliced_iteration(target):
if target == Target.GPU:
pytest.importorskip("cupy")
size = (4, 4)
dh = create_data_handling(size, default_target=target, default_ghost_layers=0)
src_field = dh.add_array("src", 1)
dst_field = dh.add_array("dst", 1)
dh.fill(src_field.name, 1.0, ghost_layers=True)
dh.fill(dst_field.name, 0.0, ghost_layers=True)
a, b = sp.symbols("a b")
update_rule = Assignment(
dst_field[0, 0],
(
a * src_field[0, 1]
+ a * src_field[0, -1]
+ b * src_field[1, 0]
+ b * src_field[-1, 0]
)
/ 4,
)
s = make_slice[1:3, 1]
kernel = create_kernel(
sympy_cse_on_assignment_list([update_rule]), iteration_slice=s, target=target
).compile()
if target == Target.GPU:
dh.all_to_gpu()
dh.run_kernel(kernel, a=1.0, b=1.0)
if target == Target.GPU:
dh.all_to_cpu()
expected_result = np.zeros(size)
expected_result[1:3, 1] = 1
np.testing.assert_almost_equal(dh.gather_array(dst_field.name), expected_result)
@pytest.mark.parametrize("target", [Target.CPU, Target.GPU])
def test_symbols_in_slice(target):
if target == Target.GPU:
pytest.xfail("Iteration slices including arbitrary symbols are currently broken on GPU")
size = (4, 4)
dh = create_data_handling(size, default_target=target, default_ghost_layers=0)
src_field = dh.add_array("src", 1)
dst_field = dh.add_array("dst", 1)
dh.fill(src_field.name, 1.0, ghost_layers=True)
dh.fill(dst_field.name, 0.0, ghost_layers=True)
a, b = sp.symbols("a b")
update_rule = Assignment(
dst_field[0, 0],
(
a * src_field[0, 1]
+ a * src_field[0, -1]
+ b * src_field[1, 0]
+ b * src_field[-1, 0]
)
/ 4,
)
x_end = TypedSymbol("x_end", "int")
s = make_slice[1:x_end, 1]
x_end_value = size[1] - 1
kernel = create_kernel(
sympy_cse_on_assignment_list([update_rule]), iteration_slice=s, target=target
).compile()
if target == Target.GPU:
dh.all_to_gpu()
dh.run_kernel(kernel, a=1.0, b=1.0, x_end=x_end_value)
if target == Target.GPU:
dh.all_to_cpu()
expected_result = np.zeros(size)
expected_result[1:x_end_value, 1] = 1
np.testing.assert_almost_equal(dh.gather_array(dst_field.name), expected_result)
import numpy as np
from numpy.testing import assert_array_equal
from pystencils import create_data_handling
from pystencils.slicing import SlicedGetter, make_slice, SlicedGetterDataHandling, shift_slice, slice_intersection
def test_sliced_getter():
def get_slice(slice_obj=None):
arr = np.ones((10, 10))
if slice_obj is None:
slice_obj = make_slice[:, :]
return arr[slice_obj]
sli = SlicedGetter(get_slice)
test = make_slice[2:-2, 2:-2]
assert sli[test].shape == (6, 6)
def test_sliced_getter_data_handling():
domain_shape = (10, 10)
dh = create_data_handling(domain_size=domain_shape, default_ghost_layers=1)
dh.add_array("src", values_per_cell=1)
dh.fill("src", 1.0, ghost_layers=True)
dh.add_array("dst", values_per_cell=1)
dh.fill("dst", 0.0, ghost_layers=True)
sli = SlicedGetterDataHandling(dh, 'dst')
slice_obj = make_slice[2:-2, 2:-2]
assert np.sum(sli[slice_obj]) == 0
sli = SlicedGetterDataHandling(dh, 'src')
slice_obj = make_slice[2:-2, 2:-2]
assert np.sum(sli[slice_obj]) == 36
def test_shift_slice():
sh = shift_slice(make_slice[2:-2, 2:-2], [1, 2])
assert sh[0] == slice(3, -1, None)
assert sh[1] == slice(4, 0, None)
sh = shift_slice(make_slice[2:-2, 2:-2], 1)
assert sh[0] == slice(3, -1, None)
assert sh[1] == slice(3, -1, None)
sh = shift_slice([2, 4], 1)
assert sh[0] == 3
assert sh[1] == 5
sh = shift_slice([2, None], 1)
assert sh[0] == 3
assert sh[1] is None
sh = shift_slice([1.5, 1.5], 1)
assert sh[0] == 1.5
assert sh[1] == 1.5
def test_shifted_array_access():
arr = np.array(range(10))
sh = make_slice[2:5]
assert_array_equal(arr[sh], [2,3,4])
sh = shift_slice(sh, 3)
assert_array_equal(arr[sh], [5,6,7])
arr = np.array([
[1, 2, 3],
[4, 5, 6],
[7, 8, 9]
])
sh = make_slice[0:2, 0:2]
assert_array_equal(arr[sh], [[1, 2], [4, 5]])
sh = shift_slice(sh, (1,1))
assert_array_equal(arr[sh], [[5, 6], [8, 9]])
def test_slice_intersection():
sl1 = make_slice[1:10, 1:10]
sl2 = make_slice[5:15, 5:15]
intersection = slice_intersection(sl1, sl2)
assert intersection[0] == slice(5, 10, None)
assert intersection[1] == slice(5, 10, None)
sl2 = make_slice[12:15, 12:15]
intersection = slice_intersection(sl1, sl2)
assert intersection is None
%% Cell type:code id: tags:
``` python
import pytest
pytest.importorskip('waLBerla')
```
%% Output
<module 'waLBerla' from '/Users/holzer/walberla/python/waLBerla/__init__.py'>
%% Cell type:code id: tags:
``` python
from pystencils.session import *
from time import perf_counter
from statistics import median
from functools import partial
```
%% Cell type:markdown id: tags:
## Benchmark for Python call overhead
%% Cell type:code id: tags:
``` python
inner_repeats = 100
outer_repeats = 5
sizes = [2**i for i in range(1, 8)]
sizes
```
%% Output
$\displaystyle \left[ 2, \ 4, \ 8, \ 16, \ 32, \ 64, \ 128\right]$
[2, 4, 8, 16, 32, 64, 128]
%% Cell type:code id: tags:
``` python
def benchmark_pure(domain_size, extract_first=False):
src = np.zeros(domain_size)
dst = np.zeros_like(src)
f_src, f_dst = ps.fields("src, dst", src=src, dst=dst)
kernel = ps.create_kernel(ps.Assignment(f_dst.center, f_src.center)).compile()
if extract_first:
kernel = kernel.kernel
start = perf_counter()
for i in range(inner_repeats):
kernel(src=src, dst=dst)
src, dst = dst, src
end = perf_counter()
else:
start = perf_counter()
for i in range(inner_repeats):
kernel(src=src, dst=dst)
src, dst = dst, src
end = perf_counter()
return (end - start) / inner_repeats
def benchmark_datahandling(domain_size, parallel=False):
dh = ps.create_data_handling(domain_size, parallel=parallel)
f_src = dh.add_array('src')
f_dst = dh.add_array('dst')
kernel = ps.create_kernel(ps.Assignment(f_dst.center, f_src.center)).compile()
start = perf_counter()
for i in range(inner_repeats):
dh.run_kernel(kernel)
dh.swap('src', 'dst')
end = perf_counter()
return (end - start) / inner_repeats
name_to_func = {
'pure_extract': partial(benchmark_pure, extract_first=True),
'pure_no_extract': partial(benchmark_pure, extract_first=False),
'dh_serial': partial(benchmark_datahandling, parallel=False),
'dh_parallel': partial(benchmark_datahandling, parallel=True),
}
```
%% Cell type:code id: tags:
``` python
result = {'block_size': [],
'name': [],
'time': []}
for bs in sizes:
print("Computing size ", bs)
for name, func in name_to_func.items():
for i in range(outer_repeats):
time = func((bs, bs))
result['block_size'].append(bs)
result['name'].append(name)
result['time'].append(time)
```
%% Output
Computing size 2
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
/var/folders/07/0d7kq8fd0sx24cs53zz90_qc0000gp/T/ipykernel_12649/2009975470.py in <module>
7 for name, func in name_to_func.items():
8 for i in range(outer_repeats):
----> 9 time = func((bs, bs))
10 result['block_size'].append(bs)
11 result['name'].append(name)
/var/folders/07/0d7kq8fd0sx24cs53zz90_qc0000gp/T/ipykernel_12649/3509370390.py in benchmark_datahandling(domain_size, parallel)
20
21 def benchmark_datahandling(domain_size, parallel=False):
---> 22 dh = ps.create_data_handling(domain_size, parallel=parallel)
23 f_src = dh.add_array('src')
24 f_dst = dh.add_array('dst')
~/pystencils/pystencils/pystencils/datahandling/__init__.py in create_data_handling(domain_size, periodicity, default_layout, default_target, parallel, default_ghost_layers)
44 if parallel:
45 if wlb is None:
---> 46 raise ValueError("Cannot create parallel data handling because walberla module is not available")
47
48 if periodicity is False or periodicity is None:
ValueError: Cannot create parallel data handling because walberla module is not available
%% Cell type:code id: tags:
``` python
if 'is_test_run' not in globals():
import pandas as pd
import seaborn as sns
data = pd.DataFrame.from_dict(result)
plt.subplot(1,2,1)
sns.barplot(x='block_size', y='time', hue='name', data=data, alpha=0.6)
plt.yscale('log')
plt.subplot(1,2,2)
data = pd.DataFrame.from_dict(result)
sns.barplot(x='block_size', y='time', hue='name', data=data, alpha=0.6)
```
# -*- coding: utf-8 -*-
#
# Copyright © 2019 Stephan Seitz <stephan.seitz@fau.de>
#
# Distributed under terms of the GPLv3 license.
"""
"""
import pystencils
import pystencils.astnodes
import pystencils.config
def test_source_code_comment():
a, b = pystencils.fields('a,b: float[2D]')
assignments = pystencils.AssignmentCollection(
{a.center(): b[0, 2] + b[0, 0]}, {}
)
config = pystencils.config.CreateKernelConfig(target=pystencils.Target.CPU)
ast = pystencils.create_kernel(assignments, config=config)
ast.body.append(pystencils.astnodes.SourceCodeComment("Hallo"))
ast.body.append(pystencils.astnodes.EmptyLine())
ast.body.append(pystencils.astnodes.SourceCodeComment("World!"))
print(ast)
compiled = ast.compile()
assert compiled is not None
pystencils.show_code(ast)
import numpy as np
import sympy as sp
import pytest
import pystencils as ps
from pystencils import x_staggered_vector, TypedSymbol
from pystencils.enums import Target
class TestStaggeredDiffusion:
def _run(self, num_neighbors, target=ps.Target.CPU, openmp=False):
L = (40, 40)
D = 0.066
dt = 1
T = 100
dh = ps.create_data_handling(L, periodicity=True, default_target=target)
c = dh.add_array('c', values_per_cell=1)
j = dh.add_array('j', values_per_cell=num_neighbors, field_type=ps.FieldType.STAGGERED_FLUX)
x_staggered = - c[-1, 0] + c[0, 0]
y_staggered = - c[0, -1] + c[0, 0]
xy_staggered = - c[-1, -1] + c[0, 0]
xY_staggered = - c[-1, 1] + c[0, 0]
jj = j.staggered_access
divergence = -1 * D / (1 + sp.sqrt(2) if j.index_shape[0] == 4 else 1) * \
sum([jj(d) / sp.Matrix(ps.stencil.direction_string_to_offset(d)).norm() for d in j.staggered_stencil
+ [ps.stencil.inverse_direction_string(d) for d in j.staggered_stencil]])
update = [ps.Assignment(c.center, c.center + dt * divergence)]
flux = [ps.Assignment(j.staggered_access("W"), x_staggered),
ps.Assignment(j.staggered_access("S"), y_staggered)]
if j.index_shape[0] == 4:
flux += [ps.Assignment(j.staggered_access("SW"), xy_staggered),
ps.Assignment(j.staggered_access("NW"), xY_staggered)]
staggered_kernel = ps.create_staggered_kernel(flux, target=dh.default_target, cpu_openmp=openmp).compile()
div_kernel = ps.create_kernel(update, target=dh.default_target, cpu_openmp=openmp).compile()
def time_loop(steps):
sync = dh.synchronization_function([c.name])
dh.all_to_gpu()
for i in range(steps):
sync()
dh.run_kernel(staggered_kernel)
dh.run_kernel(div_kernel)
dh.all_to_cpu()
def init():
dh.fill(c.name, np.nan, ghost_layers=True, inner_ghost_layers=True)
dh.fill(c.name, 0)
dh.fill(j.name, np.nan, ghost_layers=True, inner_ghost_layers=True)
dh.cpu_arrays[c.name][L[0] // 2:L[0] // 2 + 2, L[1] // 2:L[1] // 2 + 2] = 1.0
init()
time_loop(T)
reference = np.empty(L)
for x in range(L[0]):
for y in range(L[1]):
r = np.array([x, y]) - L[0] / 2 + 0.5
reference[x, y] = (4 * np.pi * D * T)**(-dh.dim / 2) * np.exp(-np.dot(r, r) / (4 * D * T)) * (2**dh.dim)
assert np.abs(dh.gather_array(c.name) - reference).max() < 5e-4
def test_diffusion_2(self):
self._run(2)
def test_diffusion_4(self):
self._run(4)
def test_diffusion_openmp(self):
self._run(4, openmp=True)
def test_staggered_subexpressions():
dh = ps.create_data_handling((10, 10), periodicity=True, default_target=Target.CPU)
j = dh.add_array('j', values_per_cell=2, field_type=ps.FieldType.STAGGERED)
c = sp.symbols("c")
assignments = [ps.Assignment(j.staggered_access("W"), c),
ps.Assignment(c, 1)]
ps.create_staggered_kernel(assignments, target=dh.default_target).compile()
def test_staggered_loop_cutting():
pytest.importorskip('islpy')
dh = ps.create_data_handling((4, 4), periodicity=True, default_target=Target.CPU)
j = dh.add_array('j', values_per_cell=4, field_type=ps.FieldType.STAGGERED)
assignments = [ps.Assignment(j.staggered_access("SW"), 1)]
ast = ps.create_staggered_kernel(assignments, target=dh.default_target)
assert not ast.atoms(ps.astnodes.Conditional)
def test_staggered_vector():
dim = 2
v = x_staggered_vector(dim)
ctr0 = TypedSymbol('ctr_0', 'int', nonnegative=True)
ctr1 = TypedSymbol('ctr_1', 'int', nonnegative=True)
expected_result = sp.Matrix(tuple((ctr0 + 0.5, ctr1 + 0.5)))
assert v == expected_result
\ No newline at end of file