Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
No results found
Show changes
Showing
with 1829 additions and 292 deletions
import sympy as sp
from pystencils import Field, TypedSymbol
from pystencils.integer_functions import bitwise_and
from pystencils.boundaries.boundaryhandling import DEFAULT_FLAG_TYPE
from pystencils.data_types import create_type
from pystencils.typing import TypedSymbol, create_type
from pystencils.field import Field
from pystencils.integer_functions import bitwise_and
def add_neumann_boundary(eqs, fields, flag_field, boundary_flag="neumann_flag", inverse_flag=False):
"""
Replaces all neighbor accesses by flag field guarded accesses.
If flag in neighboring cell is set, the center value is used instead
:param eqs: list of equations containing field accesses to direct neighbors
:param fields: fields for which the Neumann boundary should be applied
:param flag_field: integer field marking boundary cells
:param boundary_flag: if flag field has value 'boundary_flag' (no bit operations yet)
the cell is assumed to be boundary
:param inverse_flag: if true, boundary cells are where flag field has not the value of boundary_flag
:return: list of equations with guarded field accesses
Args:
eqs: list of equations containing field accesses to direct neighbors
fields: fields for which the Neumann boundary should be applied
flag_field: integer field marking boundary cells
boundary_flag: if flag field has value 'boundary_flag' (no bit operations yet)
the cell is assumed to be boundary
inverse_flag: if true, boundary cells are where flag field has not the value of boundary_flag
Returns:
list of equations with guarded field accesses
"""
if not hasattr(fields, "__len__"):
fields = [fields]
......
import os
from collections.abc import Hashable
from functools import partial, wraps
from itertools import chain
from functools import lru_cache as memorycache
from joblib import Memory
from appdirs import user_cache_dir
if 'PYSTENCILS_CACHE_DIR' in os.environ:
cache_dir = os.environ['PYSTENCILS_CACHE_DIR']
else:
cache_dir = user_cache_dir('pystencils')
disk_cache = Memory(cache_dir, verbose=False).cache
disk_cache_no_fallback = disk_cache
def _wrapper(wrapped_func, cached_func, *args, **kwargs):
if all(isinstance(a, Hashable) for a in chain(args, kwargs.values())):
return cached_func(*args, **kwargs)
else:
return wrapped_func(*args, **kwargs)
def memorycache_if_hashable(maxsize=128, typed=False):
def wrapper(func):
return partial(_wrapper, func, memorycache(maxsize, typed)(func))
return wrapper
def sharedmethodcache(cache_id: str):
"""Decorator for memoization of instance methods, allowing multiple methods to use the same cache.
This decorator caches results of instance methods per instantiated object of the surrounding class.
It allows multiple methods to use the same cache, by passing them the same `cache_id` string.
Cached values are stored in a dictionary, which is added as a member `self.<cache_id>` to the
`self` object instance. Make sure that this doesn't cause any naming conflicts with other members!
Of course, for this to be useful, said methods must have the same signature (up to additional kwargs)
and must return the same result when called with the same arguments."""
def _decorator(user_method):
@wraps(user_method)
def _decorated_func(self, *args, **kwargs):
objdict = self.__dict__
cache = objdict.setdefault(cache_id, dict())
key = args
for item in kwargs.items():
key += item
if key not in cache:
result = user_method(self, *args, **kwargs)
cache[key] = result
return result
else:
return cache[key]
return _decorated_func
return _decorator
def clear_cache():
"""
Clears the pystencils cache created by joblib.
"""
memory = Memory(cache_dir, verbose=0)
memory.clear(warn=False)
# Disable memory cache:
# disk_cache = lambda o: o
# disk_cache_no_fallback = lambda o: o
from copy import copy
from collections import defaultdict
from dataclasses import dataclass, field
from types import MappingProxyType
from typing import Union, Tuple, List, Dict, Callable, Any, DefaultDict, Iterable
from pystencils import Target, Backend, Field
from pystencils.typing.typed_sympy import BasicType
from pystencils.typing.utilities import collate_types
import numpy as np
# TODO: There exists DTypeLike in NumPy which would be better than type for type hinting, to new at the moment
# from numpy.typing import DTypeLike
# TODO: CreateKernelConfig is bloated think of more classes better usage, factory whatever ...
# Proposition: CreateKernelConfigs Classes for different targets?
@dataclass
class CreateKernelConfig:
"""
**Below all parameters for the CreateKernelConfig are explained**
"""
target: Target = Target.CPU
"""
All targets are defined in :class:`pystencils.enums.Target`
"""
backend: Backend = None
"""
All backends are defined in :class:`pystencils.enums.Backend`
"""
function_name: str = 'kernel'
"""
Name of the generated function - only important if generated code is written out
"""
data_type: Union[type, str, DefaultDict[str, BasicType], Dict[str, BasicType]] = np.float64
"""
Data type used for all untyped symbols (i.e. non-fields), can also be a dict from symbol name to type.
If specified as a dict ideally a defaultdict is used to define a default value for symbols not listed in the
dict. If a plain dict is provided it will be transformed into a defaultdict internally. The default value
will then be specified via type collation then.
"""
default_number_float: Union[type, str, BasicType] = None
"""
Data type used for all untyped floating point numbers (i.e. 0.5). By default the value of data_type is used.
If data_type is given as a defaultdict its default_factory is used.
"""
default_number_int: Union[type, str, BasicType] = np.int64
"""
Data type used for all untyped integer numbers (i.e. 1)
"""
iteration_slice: Tuple = None
"""
Rectangular subset to iterate over, if not specified the complete non-ghost layer part of the field is iterated over
"""
ghost_layers: Union[bool, int, List[Tuple[int]]] = None
"""
A single integer specifies the ghost layer count at all borders, can also be a sequence of
pairs ``[(x_lower_gl, x_upper_gl), .... ]``. These layers are excluded from the iteration.
If left to default, the number of ghost layers is determined automatically from the assignments.
"""
cpu_openmp: Union[bool, int] = False
"""
`True` or number of threads for OpenMP parallelization, `False` for no OpenMP. If set to `True`, the maximum number
of available threads will be chosen.
"""
cpu_vectorize_info: Dict = None
"""
A dictionary with keys, 'vector_instruction_set', 'assume_aligned' and 'nontemporal'
for documentation of these parameters see vectorize function. Example:
'{'instruction_set': 'avx512', 'assume_aligned': True, 'nontemporal':True}'
"""
cpu_blocking: Tuple[int] = None
"""
A tuple of block sizes or `None` if no blocking should be applied
"""
omp_single_loop: bool = True
"""
If OpenMP is active: whether multiple outer loops are permitted
"""
base_pointer_specification: Union[List[Iterable[str]], List[Iterable[int]]] = None
"""
Specification of how many and which intermediate pointers are created for a field access.
For example [ (0), (2,3,)] creates on base pointer for coordinates 2 and 3 and writes the offset for coordinate
zero directly in the field access. These specifications are defined dependent on the loop ordering.
This function translates more readable version into the specification above.
For more information see: `pystencils.transformations.create_intermediate_base_pointer`
"""
gpu_indexing: str = 'block'
"""
Either 'block' or 'line' , or custom indexing class, see `pystencils.gpu.AbstractIndexing`
"""
gpu_indexing_params: MappingProxyType = field(default_factory=lambda: MappingProxyType({}))
"""
Dict with indexing parameters (constructor parameters of indexing class)
e.g. for 'block' one can specify '{'block_size': (20, 20, 10) }'.
"""
# TODO Markus rework this docstring
default_assignment_simplifications: bool = False
"""
If `True` default simplifications are first performed on the Assignments. If problems occur during the
simplification a warning will be thrown.
Furthermore, it is essential to know that this is a two-stage process. The first stage of the process acts
on the level of the `pystencils.AssignmentCollection`. In this part,
`pystencil.simp.create_simplification_strategy` from pystencils.simplificationfactory will be used to
apply optimisations like insertion of constants to
remove pressure from the registers. Thus the first part of the optimisations can only be executed if
an `AssignmentCollection` is passed. The second part of the optimisation acts on the level of each Assignment
individually. In this stage, all optimisations from `sympy.codegen.rewriting.optims_c99` are applied
to each Assignment. Thus this stage can also be applied if a list of Assignments is passed.
"""
cpu_prepend_optimizations: List[Callable] = field(default_factory=list)
"""
List of extra optimizations to perform first on the AST.
"""
use_auto_for_assignments: bool = False
"""
If set to `True`, auto can be used in the generated code for data types. This makes the type system more robust.
"""
index_fields: List[Field] = None
"""
List of index fields, i.e. 1D fields with struct data type. If not `None`, `create_index_kernel`
instead of `create_domain_kernel` is used.
"""
coordinate_names: Tuple[str, Any] = ('x', 'y', 'z')
"""
Name of the coordinate fields in the struct data type.
"""
allow_double_writes: bool = False
"""
If True, don't check if every field is only written at a single location. This is required
for example for kernels that are compiled with loop step sizes > 1, that handle multiple
cells at once. Use with care!
"""
skip_independence_check: bool = False
"""
By default the assignment list is checked for read/write independence. This means fields are only written at
locations where they are read. Doing so guarantees thread safety. In some cases e.g. for
periodicity kernel, this can not be assured and does the check needs to be deactivated. Use with care!
"""
class DataTypeFactory:
"""Because of pickle, we need to have a nested class, instead of a lambda in __post_init__"""
def __init__(self, dt):
self.dt = dt
def __call__(self):
return BasicType(self.dt)
def _check_type(self, dtype_to_check):
if isinstance(dtype_to_check, str) and (dtype_to_check == 'float' or dtype_to_check == 'int'):
self._typing_error()
if isinstance(dtype_to_check, type) and not hasattr(dtype_to_check, "dtype"):
# NumPy-types are also of type 'type'. However, they have more properties
self._typing_error()
@staticmethod
def _typing_error():
raise ValueError("It is not possible to use python types (float, int) for datatypes because these "
"types are ambiguous. For example float will map to double. "
"Also the string version like 'float' is not allowed, e.g. use 'float64' instead")
def __post_init__(self):
# ---- Legacy parameters
if not isinstance(self.target, Target):
raise ValueError("target must be provided by the 'Target' enum")
# ---- Auto Backend
if not self.backend:
if self.target == Target.CPU:
self.backend = Backend.C
elif self.target == Target.GPU:
self.backend = Backend.CUDA
else:
raise NotImplementedError(f'Target {self.target} has no default backend')
if not isinstance(self.backend, Backend):
raise ValueError("backend must be provided by the 'Backend' enum")
# Normalise data types
for dtype in [self.data_type, self.default_number_float, self.default_number_int]:
self._check_type(dtype)
if not isinstance(self.data_type, dict):
dt = copy(self.data_type) # The copy is necessary because BasicType has sympy shinanigans
self.data_type = defaultdict(self.DataTypeFactory(dt))
if isinstance(self.data_type, dict) and not isinstance(self.data_type, defaultdict):
for dtype in self.data_type.values():
self._check_type(dtype)
dt = collate_types([BasicType(dtype) for dtype in self.data_type.values()])
dtype_dict = self.data_type
self.data_type = defaultdict(self.DataTypeFactory(dt), dtype_dict)
assert isinstance(self.data_type, defaultdict), "At this point data_type must be a defaultdict!"
for dtype in self.data_type.values():
self._check_type(dtype)
self._check_type(self.data_type.default_factory())
if self.default_number_float is None:
self.default_number_float = self.data_type.default_factory()
if not isinstance(self.default_number_float, BasicType):
self.default_number_float = BasicType(self.default_number_float)
if not isinstance(self.default_number_int, BasicType):
self.default_number_int = BasicType(self.default_number_int)
from pystencils.cpu.kernelcreation import create_kernel, create_indexed_kernel, add_openmp
from pystencils.cpu.cpujit import make_python_function
from pystencils.cpu.kernelcreation import add_openmp, create_indexed_kernel, create_kernel, add_pragmas
__all__ = ['create_kernel', 'create_indexed_kernel', 'add_openmp', 'make_python_function']
__all__ = ['create_kernel', 'create_indexed_kernel', 'add_openmp', 'add_pragmas', 'make_python_function']
......@@ -13,7 +13,7 @@ in a configuration file.
3. or in your home directory at ``~/.config/pystencils/config.json`` (Linux) or
``%HOMEPATH%\.pystencils\config.json`` (Windows)
If no configuration file is found, a default configuration is created at the above mentioned location in your home.
If no configuration file is found, a default configuration is created at the above-mentioned location in your home.
So run *pystencils* once, then edit the created configuration file.
......@@ -23,7 +23,7 @@ Compiler Config (Linux)
- **'os'**: should be detected automatically as 'linux'
- **'command'**: path to C++ compiler (defaults to 'g++')
- **'flags'**: space separated list of compiler flags. Make sure to activate OpenMP in your compiler
- **'restrict_qualifier'**: the restrict qualifier is not standardized accross compilers.
- **'restrict_qualifier'**: the 'restrict' qualifier is not standardized across compilers.
For most Linux compilers the qualifier is ``__restrict__``
......@@ -39,32 +39,40 @@ Then 'cl.exe' is used to compile.
where Visual Studio is installed. This path has to contain a file called 'vcvarsall.bat'
- **'arch'**: 'x86' or 'x64'
- **'flags'**: flags passed to 'cl.exe', make sure OpenMP is activated
- **'restrict_qualifier'**: the restrict qualifier is not standardized across compilers.
- **'restrict_qualifier'**: the 'restrict' qualifier is not standardized across compilers.
For Windows compilers the qualifier should be ``__restrict``
"""
import os
from appdirs import user_cache_dir, user_config_dir
from collections import OrderedDict
import hashlib
import importlib.util
import json
import os
import platform
import shutil
import subprocess
import sysconfig
import tempfile
import textwrap
from tempfile import TemporaryDirectory
import time
import warnings
import pathlib
import numpy as np
import subprocess
from appdirs import user_config_dir, user_cache_dir
from collections import OrderedDict
from pystencils.utils import recursive_dict_update
from sysconfig import get_paths
from pystencils import FieldType
from pystencils.astnodes import LoopOverCoordinate
from pystencils.backends.cbackend import generate_c, get_headers
from pystencils.utils import file_handle_for_atomic_write, atomic_file_write
from pystencils.backends.simd_instruction_sets import get_supported_instruction_sets
from pystencils.cpu.msvc_detection import get_environment
from pystencils.include import get_pystencils_include_path
from pystencils.kernel_wrapper import KernelWrapper
from pystencils.typing import BasicType, CastFunc, VectorType, VectorMemoryAccess
from pystencils.utils import atomic_file_write, recursive_dict_update
def make_python_function(kernel_function_node):
def make_python_function(kernel_function_node, custom_backend=None):
"""
Creates C code from the abstract syntax tree, compiles it and makes it accessible as Python function
......@@ -73,9 +81,10 @@ def make_python_function(kernel_function_node):
- all symbols which are not defined in the kernel itself are expected as parameters
:param kernel_function_node: the abstract syntax tree
:param custom_backend: use own custom printer for code generation
:return: kernel functor
"""
result = compile_and_load(kernel_function_node)
result = compile_and_load(kernel_function_node, custom_backend)
return result
......@@ -115,15 +124,15 @@ def get_configuration_file_path():
# 1) Read path from environment variable if found
if 'PYSTENCILS_CONFIG' in os.environ:
return os.environ['PYSTENCILS_CONFIG'], True
return os.environ['PYSTENCILS_CONFIG']
# 2) Look in current directory for pystencils.json
elif os.path.exists("pystencils.json"):
return "pystencils.json", True
return "pystencils.json"
# 3) Try ~/.pystencils.json
elif os.path.exists(config_path_in_home):
return config_path_in_home, True
return config_path_in_home
else:
return config_path_in_home, False
return config_path_in_home
def create_folder(path, is_file):
......@@ -143,21 +152,42 @@ def read_config():
('flags', '-Ofast -DNDEBUG -fPIC -march=native -fopenmp -std=c++11'),
('restrict_qualifier', '__restrict__')
])
if platform.machine().startswith('ppc64') or platform.machine() == 'arm64':
default_compiler_config['flags'] = default_compiler_config['flags'].replace('-march=native',
'-mcpu=native')
elif platform.system().lower() == 'windows':
default_compiler_config = OrderedDict([
('os', 'windows'),
('msvc_version', 'latest'),
('arch', 'x64'),
('flags', '/Ox /fp:fast /openmp /arch:avx'),
('flags', '/Ox /fp:fast /OpenMP /arch:avx'),
('restrict_qualifier', '__restrict')
])
if platform.machine() == 'ARM64':
default_compiler_config['arch'] = 'ARM64'
default_compiler_config['flags'] = default_compiler_config['flags'].replace(' /arch:avx', '')
elif platform.system().lower() == 'darwin':
default_compiler_config = OrderedDict([
('os', 'darwin'),
('command', 'clang++'),
('flags', '-Ofast -DNDEBUG -fPIC -march=native -fopenmp -std=c++11'),
('flags', '-Ofast -DNDEBUG -fPIC -march=native -Xclang -fopenmp -std=c++11'),
('restrict_qualifier', '__restrict__')
])
if platform.machine() == 'arm64':
if 'sme' in get_supported_instruction_sets():
flag = '-march=armv8.7-a+sme '
else:
flag = ''
default_compiler_config['flags'] = default_compiler_config['flags'].replace('-march=native ', flag)
for libomp in ['/opt/local/lib/libomp/libomp.dylib', '/usr/local/lib/libomp.dylib',
'/opt/homebrew/lib/libomp.dylib']:
if os.path.exists(libomp):
default_compiler_config['flags'] += ' ' + libomp
break
else:
raise NotImplementedError('Generation of default compiler flags for %s is not implemented' %
(platform.system(),))
default_cache_config = OrderedDict([
('object_cache', os.path.join(user_cache_dir('pystencils'), 'objectcache')),
('clear_cache_on_start', False),
......@@ -166,26 +196,47 @@ def read_config():
default_config = OrderedDict([('compiler', default_compiler_config),
('cache', default_cache_config)])
config_path, config_exists = get_configuration_file_path()
from fasteners import InterProcessLock
config_path = pathlib.Path(get_configuration_file_path())
config_path.parent.mkdir(parents=True, exist_ok=True)
config = default_config.copy()
if config_exists:
with open(config_path, 'r') as json_config_file:
loaded_config = json.load(json_config_file)
config = recursive_dict_update(config, loaded_config)
else:
create_folder(config_path, True)
json.dump(config, open(config_path, 'w'), indent=4)
lockfile = config_path.with_suffix(config_path.suffix + ".lock")
with InterProcessLock(lockfile):
if config_path.exists():
with open(config_path, 'r') as json_config_file:
loaded_config = json.load(json_config_file)
config = recursive_dict_update(config, loaded_config)
else:
with open(config_path, 'w') as f:
json.dump(config, f, indent=4)
if config['cache']['object_cache'] is not False:
config['cache']['object_cache'] = os.path.expanduser(config['cache']['object_cache']).format(pid=os.getpid())
if config['cache']['clear_cache_on_start']:
clear_cache()
clear_cache_on_start = False
cache_status_file = os.path.join(config['cache']['object_cache'], 'last_config.json')
if os.path.exists(cache_status_file):
# check if compiler config has changed
last_config = json.load(open(cache_status_file, 'r'))
if set(last_config.items()) != set(config['compiler'].items()):
clear_cache_on_start = True
else:
for key in last_config.keys():
if last_config[key] != config['compiler'][key]:
clear_cache_on_start = True
if config['cache']['clear_cache_on_start'] or clear_cache_on_start:
shutil.rmtree(config['cache']['object_cache'], ignore_errors=True)
create_folder(config['cache']['object_cache'], False)
with tempfile.NamedTemporaryFile('w', dir=os.path.dirname(cache_status_file), delete=False) as f:
json.dump(config['compiler'], f, indent=4)
os.replace(f.name, cache_status_file)
if config['compiler']['os'] == 'windows':
from pystencils.cpu.msvc_detection import get_environment
msvc_env = get_environment(config['compiler']['msvc_version'], config['compiler']['arch'])
if 'env' not in config['compiler']:
config['compiler']['env'] = {}
......@@ -232,6 +283,7 @@ def clear_cache():
create_folder(cache_config['object_cache'], False)
# TODO don't hardcode C type. [1] of tuple output
type_mapping = {
np.float32: ('PyFloat_AsDouble', 'float'),
np.float64: ('PyFloat_AsDouble', 'double'),
......@@ -243,7 +295,6 @@ type_mapping = {
np.uint64: ('PyLong_AsUnsignedLong', 'uint64_t'),
}
template_extract_scalar = """
PyObject * obj_{name} = PyDict_GetItemString(kwargs, "{name}");
if( obj_{name} == NULL) {{ PyErr_SetString(PyExc_TypeError, "Keyword argument '{name}' missing"); return NULL; }};
......@@ -318,15 +369,14 @@ def equal_size_check(fields):
return ""
ref_field = fields[0]
cond = ["(buffer_{field.name}.shape[{i}] == buffer_{ref_field.name}.shape[{i}])".format(ref_field=ref_field,
field=field_to_test, i=i)
cond = [f"(buffer_{field_to_test.name}.shape[{i}] == buffer_{ref_field.name}.shape[{i}])"
for field_to_test in fields[1:]
for i in range(fields[0].spatial_dimensions)]
cond = " && ".join(cond)
return template_size_check.format(cond=cond)
def create_function_boilerplate_code(parameter_info, name, insert_checks=True):
def create_function_boilerplate_code(parameter_info, name, ast_node, insert_checks=True):
pre_call_code = ""
parameters = []
post_call_code = ""
......@@ -338,24 +388,55 @@ def create_function_boilerplate_code(parameter_info, name, insert_checks=True):
field = param.fields[0]
pre_call_code += template_extract_array.format(name=field.name)
post_call_code += template_release_buffer.format(name=field.name)
parameters.append("({dtype} *)buffer_{name}.buf".format(dtype=str(field.dtype), name=field.name))
parameters.append(f"({str(field.dtype)} *)buffer_{field.name}.buf")
if insert_checks:
np_dtype = field.dtype.numpy_dtype
item_size = np_dtype.itemsize
if np_dtype.isbuiltin and FieldType.is_generic(field):
dtype_cond = "buffer_{name}.format[0] == '{format}'".format(name=field.name,
format=field.dtype.numpy_dtype.char)
aligned = False
if ast_node.assignments:
aligned = any([a.lhs.args[2] for a in ast_node.assignments
if hasattr(a, 'lhs') and isinstance(a.lhs, CastFunc)
and hasattr(a.lhs, 'dtype') and isinstance(a.lhs.dtype, VectorType)])
if ast_node.instruction_set and aligned:
byte_width = ast_node.instruction_set['width'] * item_size
if 'cachelineZero' in ast_node.instruction_set:
has_openmp, has_nontemporal = False, False
for loop in ast_node.atoms(LoopOverCoordinate):
has_openmp = has_openmp or any(['#pragma omp' in p for p in loop.prefix_lines])
has_nontemporal = has_nontemporal or any([a.args[0].field == field and a.args[3] for a in
loop.atoms(VectorMemoryAccess)])
if has_openmp and has_nontemporal:
cl_size = ast_node.instruction_set['cachelineSize']
byte_width = f"({cl_size}) < SIZE_MAX ? ({cl_size}) : ({byte_width})"
offset = max(max(ast_node.ghost_layers)) * item_size
offset_cond = f"(((uintptr_t) buffer_{field.name}.buf) + {offset}) % ({byte_width}) == 0"
message = str(offset) + ". This is probably due to a different number of ghost_layers chosen for " \
"the arrays and the kernel creation. If the number of ghost layers for " \
"the kernel creation is not specified it will choose a suitable value " \
"automatically. This value might not " \
"be compatible with the allocated arrays."
if type(byte_width) is not int:
message += " Note that when both OpenMP and non-temporal stores are enabled, alignment to the "\
"cacheline size is required."
pre_call_code += template_check_array.format(cond=offset_cond, what="offset", name=field.name,
expected=message)
if (np_dtype.isbuiltin and FieldType.is_generic(field)
and not np.issubdtype(field.dtype.numpy_dtype, np.complexfloating)):
dtype_cond = f"buffer_{field.name}.format[0] == '{field.dtype.numpy_dtype.char}'"
pre_call_code += template_check_array.format(cond=dtype_cond, what="data type", name=field.name,
expected=str(field.dtype.numpy_dtype))
item_size_cond = "buffer_{name}.itemsize == {size}".format(name=field.name, size=item_size)
item_size_cond = f"buffer_{field.name}.itemsize == {item_size}"
pre_call_code += template_check_array.format(cond=item_size_cond, what="itemsize", name=field.name,
expected=item_size)
if field.has_fixed_shape:
shape_cond = ["buffer_{name}.shape[{i}] == {s}".format(s=s, name=field.name, i=i)
shape_cond = [f"buffer_{field.name}.shape[{i}] == {s}"
for i, s in enumerate(field.spatial_shape)]
shape_cond = " && ".join(shape_cond)
pre_call_code += template_check_array.format(cond=shape_cond, what="shape", name=field.name,
......@@ -375,14 +456,15 @@ def create_function_boilerplate_code(parameter_info, name, insert_checks=True):
elif param.is_field_stride:
field = param.fields[0]
item_size = field.dtype.numpy_dtype.itemsize
parameters.append("buffer_{name}.strides[{i}] / {bytes}".format(bytes=item_size, i=param.symbol.coordinate,
name=field.name))
parameters.append(f"buffer_{field.name}.strides[{param.symbol.coordinate}] / {item_size}")
elif param.is_field_shape:
parameters.append("buffer_{name}.shape[{i}]".format(i=param.symbol.coordinate, name=param.field_name))
parameters.append(f"buffer_{param.field_name}.shape[{param.symbol.coordinate}]")
else:
extract_function, target_type = type_mapping[param.symbol.dtype.numpy_dtype.type]
pre_call_code += template_extract_scalar.format(extract_function=extract_function, target_type=target_type,
pre_call_code += template_extract_scalar.format(extract_function=extract_function,
target_type=target_type,
name=param.symbol.name)
parameters.append(param.symbol.name)
pre_call_code += equal_size_check(variable_sized_normal_fields)
......@@ -401,10 +483,17 @@ def create_module_boilerplate_code(module_name, names):
def load_kernel_from_file(module_name, function_name, path):
from importlib.util import spec_from_file_location, module_from_spec
spec = spec_from_file_location(name=module_name, location=path)
mod = module_from_spec(spec)
spec.loader.exec_module(mod)
try:
spec = importlib.util.spec_from_file_location(name=module_name, location=path)
mod = importlib.util.module_from_spec(spec)
spec.loader.exec_module(mod)
except ImportError:
warnings.warn(f"Could not load {path}, trying on more time in 5 seconds ...")
time.sleep(5)
spec = importlib.util.spec_from_file_location(name=module_name, location=path)
mod = importlib.util.module_from_spec(spec)
spec.loader.exec_module(mod)
return getattr(mod, function_name)
......@@ -413,7 +502,6 @@ def run_compile_step(command):
config_env = compiler_config['env'] if 'env' in compiler_config else {}
compile_environment = os.environ.copy()
compile_environment.update(config_env)
try:
shell = True if compiler_config['os'].lower() == 'windows' else False
subprocess.check_output(command, env=compile_environment, stderr=subprocess.STDOUT, shell=shell)
......@@ -424,61 +512,74 @@ def run_compile_step(command):
class ExtensionModuleCode:
def __init__(self, module_name='generated'):
def __init__(self, module_name='generated', custom_backend=None):
self.module_name = module_name
self._ast_nodes = []
self._function_names = []
self._custom_backend = custom_backend
self._code_string = str()
self._code_hash = None
def add_function(self, ast, name=None):
self._ast_nodes.append(ast)
self._function_names.append(name if name is not None else ast.function_name)
def write_to_file(self, restrict_qualifier, function_prefix, file):
def create_code_string(self, restrict_qualifier, function_prefix):
self._code_string = str()
headers = {'<math.h>', '<stdint.h>'}
for ast in self._ast_nodes:
for field in ast.fields_accessed:
if isinstance(field.dtype, BasicType) and field.dtype.is_half():
# Add the half precision header only if half precision numbers occur in the AST
headers.add('"half_precision.h"')
headers.update(get_headers(ast))
header_list = list(headers)
header_list.sort()
header_list = sorted(headers)
header_list.insert(0, '"Python.h"')
ps_headers = [os.path.join(os.path.dirname(__file__), '..', 'include', h[1:-1]) for h in header_list
if os.path.exists(os.path.join(os.path.dirname(__file__), '..', 'include', h[1:-1]))]
header_hash = b''.join([hashlib.sha256(open(h, 'rb').read()).digest() for h in ps_headers])
includes = "\n".join(["#include %s" % (include_file,) for include_file in header_list])
print(includes, file=file)
print("\n", file=file)
print("#define RESTRICT %s" % (restrict_qualifier,), file=file)
print("#define FUNC_PREFIX %s" % (function_prefix,), file=file)
print("\n", file=file)
includes = "\n".join([f"#include {include_file}" for include_file in header_list])
self._code_string += includes
self._code_string += "\n"
self._code_string += f"#define RESTRICT {restrict_qualifier} \n"
self._code_string += f"#define FUNC_PREFIX {function_prefix}"
self._code_string += "\n"
for ast, name in zip(self._ast_nodes, self._function_names):
old_name = ast.function_name
ast.function_name = "kernel_" + name
print(generate_c(ast), file=file)
print(create_function_boilerplate_code(ast.get_parameters(), name), file=file)
ast.function_name = f"kernel_{name}"
self._code_string += generate_c(ast, custom_backend=self._custom_backend)
self._code_string += create_function_boilerplate_code(ast.get_parameters(), name, ast)
ast.function_name = old_name
print(create_module_boilerplate_code(self.module_name, self._function_names), file=file)
self._code_hash = "mod_" + hashlib.sha256(self._code_string.encode() + header_hash).hexdigest()
self._code_string += create_module_boilerplate_code(self._code_hash, self._function_names)
class KernelWrapper:
def __init__(self, kernel, parameters, ast_node):
self.kernel = kernel
self.parameters = parameters
self.ast = ast_node
def get_hash_of_code(self):
assert self._code_string, "The code must be generated first"
return self._code_hash
def __call__(self, **kwargs):
return self.kernel(**kwargs)
def write_to_file(self, file):
assert self._code_string, "The code must be generated first"
print(self._code_string, file=file)
def compile_module(code, code_hash, base_dir):
def compile_module(code, code_hash, base_dir, compile_flags=None):
if compile_flags is None:
compile_flags = []
compiler_config = get_compiler_config()
extra_flags = ['-I' + get_paths()['include'], '-I' + get_pystencils_include_path()]
extra_flags = ['-I' + sysconfig.get_paths()['include'], '-I' + get_pystencils_include_path()] + compile_flags
if compiler_config['os'].lower() == 'windows':
function_prefix = '__declspec(dllexport)'
lib_suffix = '.pyd'
object_suffix = '.obj'
windows = True
else:
function_prefix = ''
lib_suffix = '.so'
object_suffix = '.o'
windows = False
......@@ -488,8 +589,11 @@ def compile_module(code, code_hash, base_dir):
object_file = os.path.join(base_dir, code_hash + object_suffix)
if not os.path.exists(object_file):
with file_handle_for_atomic_write(src_file) as f:
code.write_to_file(compiler_config['restrict_qualifier'], function_prefix, f)
try:
with open(src_file, 'x') as f:
code.write_to_file(f)
except FileExistsError:
pass
if windows:
compile_cmd = ['cl.exe', '/c', '/EHsc'] + compiler_config['flags'].split()
......@@ -503,11 +607,15 @@ def compile_module(code, code_hash, base_dir):
# Linking
if windows:
import sysconfig
config_vars = sysconfig.get_config_vars()
py_lib = os.path.join(config_vars["installed_base"], "libs",
"python{}.lib".format(config_vars["py_version_nodot"]))
f"python{config_vars['py_version_nodot']}.lib")
run_compile_step(['link.exe', py_lib, '/DLL', '/out:' + lib_file, object_file])
elif platform.system().lower() == 'darwin':
with atomic_file_write(lib_file) as file_name:
run_compile_step([compiler_config['command'], '-shared', object_file, '-o', file_name, '-undefined',
'dynamic_lookup']
+ compiler_config['flags'].split())
else:
with atomic_file_write(lib_file) as file_name:
run_compile_step([compiler_config['command'], '-shared', object_file, '-o', file_name]
......@@ -515,18 +623,34 @@ def compile_module(code, code_hash, base_dir):
return lib_file
def compile_and_load(ast):
def compile_and_load(ast, custom_backend=None):
cache_config = get_cache_config()
code_hash_str = "mod_" + hashlib.sha256(generate_c(ast, dialect='c').encode()).hexdigest()
code = ExtensionModuleCode(module_name=code_hash_str)
compiler_config = get_compiler_config()
if compiler_config['os'].lower() == 'windows':
function_prefix = '__declspec(dllexport)'
elif ast.instruction_set and 'function_prefix' in ast.instruction_set:
function_prefix = ast.instruction_set['function_prefix']
else:
function_prefix = ''
code = ExtensionModuleCode(custom_backend=custom_backend)
code.add_function(ast, ast.function_name)
code.create_code_string(compiler_config['restrict_qualifier'], function_prefix)
code_hash_str = code.get_hash_of_code()
compile_flags = []
if ast.instruction_set and 'compile_flags' in ast.instruction_set:
compile_flags = ast.instruction_set['compile_flags']
if cache_config['object_cache'] is False:
with TemporaryDirectory() as base_dir:
lib_file = compile_module(code, code_hash_str, base_dir)
with tempfile.TemporaryDirectory() as base_dir:
lib_file = compile_module(code, code_hash_str, base_dir, compile_flags=compile_flags)
result = load_kernel_from_file(code_hash_str, ast.function_name, lib_file)
else:
lib_file = compile_module(code, code_hash_str, base_dir=cache_config['object_cache'])
lib_file = compile_module(code, code_hash_str, base_dir=cache_config['object_cache'],
compile_flags=compile_flags)
result = load_kernel_from_file(code_hash_str, ast.function_name, lib_file)
return KernelWrapper(result, ast.get_parameters(), ast)
import sympy as sp
from functools import partial
from pystencils.astnodes import SympyAssignment, Block, LoopOverCoordinate, KernelFunction
from pystencils.transformations import resolve_buffer_accesses, resolve_field_accesses, make_loop_over_domain, \
add_types, get_optimal_loop_ordering, parse_base_pointer_info, move_constants_before_loop, \
split_inner_loop, get_base_buffer_index, filtered_tree_iteration
from pystencils.data_types import TypedSymbol, BasicType, StructType, create_type
from pystencils.field import Field, FieldType
import pystencils.astnodes as ast
from pystencils.config import CreateKernelConfig
from pystencils.enums import Target, Backend
from pystencils.astnodes import Block, KernelFunction, LoopOverCoordinate, SympyAssignment
from pystencils.cpu.cpujit import make_python_function
from pystencils.assignment import Assignment
from typing import List, Union
AssignmentOrAstNodeList = List[Union[Assignment, ast.Node]]
from pystencils.typing import StructType, TypedSymbol, create_type
from pystencils.typing.transformations import add_types
from pystencils.field import Field, FieldType
from pystencils.node_collection import NodeCollection
from pystencils.transformations import (
filtered_tree_iteration, iterate_loops_by_depth, get_base_buffer_index, get_optimal_loop_ordering,
make_loop_over_domain, add_outer_loop_over_indexed_elements,
move_constants_before_loop, parse_base_pointer_info, resolve_buffer_accesses,
resolve_field_accesses, split_inner_loop)
def create_kernel(assignments: AssignmentOrAstNodeList, function_name: str = "kernel", type_info='double',
split_groups=(), iteration_slice=None, ghost_layers=None,
skip_independence_check=False) -> KernelFunction:
def create_kernel(assignments: NodeCollection,
config: CreateKernelConfig) -> KernelFunction:
"""Creates an abstract syntax tree for a kernel function, by taking a list of update rules.
Loops are created according to the field accesses in the equations.
......@@ -24,35 +25,25 @@ def create_kernel(assignments: AssignmentOrAstNodeList, function_name: str = "ke
Args:
assignments: list of sympy equations, containing accesses to :class:`pystencils.field.Field`.
Defining the update rules of the kernel
function_name: name of the generated function - only important if generated code is written out
type_info: a map from symbol name to a C type specifier. If not specified all symbols are assumed to
be of type 'double' except symbols which occur on the left hand side of equations where the
right hand side is a sympy Boolean which are assumed to be 'bool' .
split_groups: Specification on how to split up inner loop into multiple loops. For details see
transformation :func:`pystencils.transformation.split_inner_loop`
iteration_slice: if not None, iteration is done only over this slice of the field
ghost_layers: a sequence of pairs for each coordinate with lower and upper nr of ghost layers
if None, the number of ghost layers is determined automatically and assumed to be equal for a
all dimensions
skip_independence_check: don't check that loop iterations are independent. This is needed e.g. for
periodicity kernel, that access the field outside the iteration bounds. Use with care!
config: create kernel config
Returns:
AST node representing a function, that can be printed as C or CUDA code
"""
function_name = config.function_name
iteration_slice = config.iteration_slice
ghost_layers = config.ghost_layers
fields_written = assignments.bound_fields
fields_read = assignments.rhs_fields
def type_symbol(term):
if isinstance(term, Field.Access) or isinstance(term, TypedSymbol):
return term
elif isinstance(term, sp.Symbol):
if not hasattr(type_info, '__getitem__'):
return TypedSymbol(term.name, create_type(type_info))
else:
return TypedSymbol(term.name, type_info[term.name])
else:
raise ValueError("Term has to be field access or symbol")
split_groups = ()
if 'split_groups' in assignments.simplification_hints:
split_groups = assignments.simplification_hints['split_groups']
assignments = assignments.all_assignments
# TODO Cleanup: move add_types to create_domain_kernel or create_kernel
assignments = add_types(assignments, config)
fields_read, fields_written, assignments = add_types(assignments, type_info, not skip_independence_check)
all_fields = fields_read.union(fields_written)
read_only_fields = set([f.name for f in fields_read - fields_written])
......@@ -61,15 +52,33 @@ def create_kernel(assignments: AssignmentOrAstNodeList, function_name: str = "ke
body = ast.Block(assignments)
loop_order = get_optimal_loop_ordering(fields_without_buffers)
ast_node = make_loop_over_domain(body, function_name, iteration_slice=iteration_slice,
ghost_layers=ghost_layers, loop_order=loop_order)
ast_node.target = 'cpu'
loop_node, ghost_layer_info = make_loop_over_domain(body, iteration_slice=iteration_slice,
ghost_layers=ghost_layers, loop_order=loop_order)
loop_node = add_outer_loop_over_indexed_elements(loop_node)
ast_node = KernelFunction(loop_node, Target.CPU, Backend.C, compile_function=make_python_function,
ghost_layers=ghost_layer_info, function_name=function_name, assignments=assignments)
if split_groups:
type_info = config.data_type
def type_symbol(term):
if isinstance(term, Field.Access) or isinstance(term, TypedSymbol):
return term
elif isinstance(term, sp.Symbol):
if isinstance(type_info, str) or not hasattr(type_info, '__getitem__'):
return TypedSymbol(term.name, create_type(type_info))
else:
return TypedSymbol(term.name, type_info[term.name])
else:
raise ValueError("Term has to be field access or symbol")
typed_split_groups = [[type_symbol(s) for s in split_group] for split_group in split_groups]
split_inner_loop(ast_node, typed_split_groups)
base_pointer_spec = [['spatialInner0'], ['spatialInner1']] if len(loop_order) >= 2 else [['spatialInner0']]
base_pointer_spec = config.base_pointer_specification
if base_pointer_spec is None:
base_pointer_spec = []
base_pointer_info = {field.name: parse_base_pointer_info(base_pointer_spec, loop_order,
field.spatial_dimensions, field.index_dimensions)
for field in fields_without_buffers}
......@@ -81,14 +90,14 @@ def create_kernel(assignments: AssignmentOrAstNodeList, function_name: str = "ke
if any(FieldType.is_buffer(f) for f in all_fields):
resolve_buffer_accesses(ast_node, get_base_buffer_index(ast_node), read_only_fields)
# TODO think about typing
resolve_field_accesses(ast_node, read_only_fields, field_to_base_pointer_info=base_pointer_info)
move_constants_before_loop(ast_node)
ast_node.compile = partial(make_python_function, ast_node)
return ast_node
def create_indexed_kernel(assignments: AssignmentOrAstNodeList, index_fields, function_name="kernel",
type_info=None, coordinate_names=('x', 'y', 'z')) -> KernelFunction:
def create_indexed_kernel(assignments: NodeCollection,
config: CreateKernelConfig) -> KernelFunction:
"""
Similar to :func:`create_kernel`, but here not all cells of a field are updated but only cells with
coordinates which are stored in an index field. This traversal method can e.g. be used for boundary handling.
......@@ -100,33 +109,41 @@ def create_indexed_kernel(assignments: AssignmentOrAstNodeList, index_fields, fu
Args:
assignments: list of assignments
index_fields: list of index fields, i.e. 1D fields with struct data type
type_info: see documentation of :func:`create_kernel`
function_name: see documentation of :func:`create_kernel`
coordinate_names: name of the coordinate fields in the struct data type
config: Kernel configuration
"""
fields_read, fields_written, assignments = add_types(assignments, type_info, check_independence_condition=False)
function_name = config.function_name
index_fields = config.index_fields
coordinate_names = config.coordinate_names
fields_written = assignments.bound_fields
fields_read = assignments.rhs_fields
all_fields = fields_read.union(fields_written)
# extract the index fields based on the name. The original index field might have been modified
index_fields = [idx_field for idx_field in index_fields if idx_field.name in [f.name for f in all_fields]]
non_index_fields = [f for f in all_fields if f not in index_fields]
spatial_coordinates = {f.spatial_dimensions for f in non_index_fields}
assert len(spatial_coordinates) == 1, f"Non-index fields do not have the same number of spatial coordinates " \
f"Non index fields are {non_index_fields}, spatial coordinates are " \
f"{spatial_coordinates}"
spatial_coordinates = list(spatial_coordinates)[0]
assignments = assignments.all_assignments
assignments = add_types(assignments, config)
for index_field in index_fields:
index_field.field_type = FieldType.INDEXED
assert FieldType.is_indexed(index_field)
assert index_field.spatial_dimensions == 1, "Index fields have to be 1D"
non_index_fields = [f for f in all_fields if f not in index_fields]
spatial_coordinates = {f.spatial_dimensions for f in non_index_fields}
assert len(spatial_coordinates) == 1, "Non-index fields do not have the same number of spatial coordinates"
spatial_coordinates = list(spatial_coordinates)[0]
def get_coordinate_symbol_assignment(name):
for idx_field in index_fields:
assert isinstance(idx_field.dtype, StructType), "Index fields have to have a struct data type"
data_type = idx_field.dtype
if data_type.has_element(name):
rhs = idx_field[0](name)
lhs = TypedSymbol(name, BasicType(data_type.get_element_type(name)))
lhs = TypedSymbol(name, data_type.get_element_type(name))
return SympyAssignment(lhs, rhs)
raise ValueError("Index %s not found in any of the passed index fields" % (name,))
raise ValueError(f"Index {name} not found in any of the passed index fields")
coordinate_symbol_assignments = [get_coordinate_symbol_assignment(n)
for n in coordinate_names[:spatial_coordinates]]
......@@ -141,14 +158,14 @@ def create_indexed_kernel(assignments: AssignmentOrAstNodeList, index_fields, fu
loop_body.append(assignment)
function_body = Block([loop_node])
ast_node = KernelFunction(function_body, backend="cpu", function_name=function_name)
ast_node = KernelFunction(function_body, Target.CPU, Backend.C, make_python_function,
ghost_layers=None, function_name=function_name, assignments=assignments)
fixed_coordinate_mapping = {f.name: coordinate_typed_symbols for f in non_index_fields}
read_only_fields = set([f.name for f in fields_read - fields_written])
resolve_field_accesses(ast_node, read_only_fields, field_to_fixed_coordinates=fixed_coordinate_mapping)
move_constants_before_loop(ast_node)
ast_node.compile = partial(make_python_function, ast_node)
return ast_node
......@@ -168,7 +185,7 @@ def add_openmp(ast_node, schedule="static", num_threads=True, collapse=None, ass
assert type(ast_node) is ast.KernelFunction
body = ast_node.body
threads_clause = "" if num_threads and isinstance(num_threads, bool) else " num_threads(%s)" % (num_threads,)
threads_clause = "" if num_threads and isinstance(num_threads, bool) else f" num_threads({num_threads})"
wrapper_block = ast.PragmaBlock('#pragma omp parallel' + threads_clause, body.take_child_nodes())
body.append(wrapper_block)
......@@ -184,10 +201,6 @@ def add_openmp(ast_node, schedule="static", num_threads=True, collapse=None, ass
except TypeError:
loop_range = None
if num_threads is None:
import multiprocessing
num_threads = multiprocessing.cpu_count()
if loop_range is not None and loop_range < num_threads and not collapse:
contained_loops = [l for l in loop_to_parallelize.body.args if isinstance(l, LoopOverCoordinate)]
if len(contained_loops) == 1:
......@@ -199,7 +212,22 @@ def add_openmp(ast_node, schedule="static", num_threads=True, collapse=None, ass
except TypeError:
pass
prefix = "#pragma omp for schedule(%s)" % (schedule,)
prefix = f"#pragma omp for schedule({schedule})"
if collapse:
prefix += " collapse(%d)" % (collapse, )
prefix += f" collapse({collapse})"
loop_to_parallelize.prefix_lines.append(prefix)
def add_pragmas(ast_node, pragma_lines, nesting_depth=-1):
"""Prepends given pragma lines to all loops of specified nesting depth.
Args:
ast_node: pystencils abstract syntax tree
pragma_lines: Iterable of strings containing the pragma lines
nesting_depth: Nesting depth of the loops the pragmas should be applied to.
Outermost loop has depth 0.
A depth of -1 indicates the innermost loops.
"""
loop_nodes = iterate_loops_by_depth(ast_node, nesting_depth)
for n in loop_nodes:
n.prefix_lines += list(pragma_lines)
import subprocess
import os
import subprocess
def get_environment(version_specifier, arch='x64'):
......@@ -71,7 +71,7 @@ def normalize_msvc_version(version):
def get_environment_from_vc_vars_file(vc_vars_file, arch):
out = subprocess.check_output(
'cmd /u /c "{}" {} && set'.format(vc_vars_file, arch),
f'cmd /u /c "{vc_vars_file}" {arch} && set',
stderr=subprocess.STDOUT,
).decode('utf-16le', errors='replace')
......
import sympy as sp
import warnings
from typing import Union, Container
from pystencils.backends.simd_instruction_sets import get_vector_instruction_set
from pystencils.fast_approximation import fast_division, fast_sqrt, fast_inv_sqrt
from pystencils.integer_functions import modulo_floor, modulo_ceil
from pystencils.sympyextensions import fast_subs
from pystencils.data_types import TypedSymbol, VectorType, get_type_of_expression, vector_memory_access, cast_func, \
collate_types, PointerType
from typing import Container, Union
import numpy as np
import sympy as sp
from sympy.logic.boolalg import BooleanFunction, BooleanAtom
import pystencils.astnodes as ast
from pystencils.transformations import cut_loop, filtered_tree_iteration, replace_inner_stride_with_one
from pystencils.backends.simd_instruction_sets import get_supported_instruction_sets, get_vector_instruction_set
from pystencils.typing import (BasicType, PointerType, TypedSymbol, VectorType, CastFunc, collate_types,
get_type_of_expression, VectorMemoryAccess)
from pystencils.functions import DivFunc
from pystencils.field import Field
from pystencils.integer_functions import modulo_ceil, modulo_floor
from pystencils.sympyextensions import fast_subs
from pystencils.transformations import cut_loop, filtered_tree_iteration, replace_inner_stride_with_one
# noinspection PyPep8Naming
class vec_any(sp.Function):
nargs = (1, )
nargs = (1,)
# noinspection PyPep8Naming
class vec_all(sp.Function):
nargs = (1, )
nargs = (1,)
class NontemporalFence(ast.Node):
def __init__(self):
super(NontemporalFence, self).__init__(parent=None)
@property
def symbols_defined(self):
return set()
@property
def undefined_symbols(self):
return set()
@property
def args(self):
return []
def __eq__(self, other):
return isinstance(other, NontemporalFence)
def vectorize(kernel_ast: ast.KernelFunction, instruction_set: str = 'avx',
class CachelineSize(ast.Node):
symbol = sp.Symbol("_clsize")
mask_symbol = sp.Symbol("_clsize_mask")
last_symbol = sp.Symbol("_cl_lastvec")
def __init__(self):
super(CachelineSize, self).__init__(parent=None)
@property
def symbols_defined(self):
return {self.symbol, self.mask_symbol, self.last_symbol}
@property
def undefined_symbols(self):
return set()
@property
def args(self):
return []
def __eq__(self, other):
return isinstance(other, CachelineSize)
def __hash__(self):
return hash(self.symbol)
def vectorize(kernel_ast: ast.KernelFunction, instruction_set: str = 'best',
assume_aligned: bool = False, nontemporal: Union[bool, Container[Union[str, Field]]] = False,
assume_inner_stride_one: bool = False, assume_sufficient_line_padding: bool = True):
# TODO Vectorization Revamp we first introduce the remainder loop and then check if we can even vectorise.
# Maybe first copy the ast and return the copied version on failure
"""Explicit vectorization using SIMD vectorization via intrinsics.
Args:
......@@ -47,9 +100,14 @@ def vectorize(kernel_ast: ast.KernelFunction, instruction_set: str = 'avx',
depending on the access pattern there might be additional padding
required at the end of the array
"""
if instruction_set == 'best':
if get_supported_instruction_sets():
instruction_set = get_supported_instruction_sets()[-1]
else:
instruction_set = 'avx'
if instruction_set is None:
return
all_fields = kernel_ast.fields_accessed
if nontemporal is None or nontemporal is False:
nontemporal = {}
......@@ -65,39 +123,53 @@ def vectorize(kernel_ast: ast.KernelFunction, instruction_set: str = 'avx',
"to differently typed floating point fields")
float_size = field_float_dtypes.pop().numpy_dtype.itemsize
assert float_size in (8, 4)
vector_is = get_vector_instruction_set('double' if float_size == 8 else 'float',
instruction_set=instruction_set)
vector_width = vector_is['width']
default_float_type = 'float64' if float_size == 8 else 'float32'
vector_is = get_vector_instruction_set(default_float_type, instruction_set=instruction_set)
kernel_ast.instruction_set = vector_is
vectorize_inner_loops_and_adapt_load_stores(kernel_ast, vector_width, assume_aligned,
nontemporal, assume_sufficient_line_padding)
insert_vector_casts(kernel_ast)
if nontemporal and 'cachelineZero' in vector_is:
kernel_ast.use_all_written_field_sizes = True
strided = 'storeS' in vector_is and 'loadS' in vector_is
keep_loop_stop = '{loop_stop}' in vector_is['storeA' if assume_aligned and 'storeA' in vector_is else 'storeU']
vectorize_inner_loops_and_adapt_load_stores(kernel_ast, assume_aligned, nontemporal,
strided, keep_loop_stop, assume_sufficient_line_padding,
default_float_type)
def vectorize_inner_loops_and_adapt_load_stores(ast_node, vector_width, assume_aligned, nontemporal_fields,
assume_sufficient_line_padding):
def vectorize_inner_loops_and_adapt_load_stores(ast_node, assume_aligned, nontemporal_fields,
strided, keep_loop_stop, assume_sufficient_line_padding,
default_float_type):
"""Goes over all innermost loops, changes increment to vector width and replaces field accesses by vector type."""
all_loops = filtered_tree_iteration(ast_node, ast.LoopOverCoordinate, stop_type=ast.SympyAssignment)
inner_loops = [n for n in all_loops if n.is_innermost_loop]
zero_loop_counters = {l.loop_counter_symbol: 0 for l in all_loops}
all_loops = list(filtered_tree_iteration(ast_node, ast.LoopOverCoordinate, stop_type=ast.SympyAssignment))
inner_loops = [loop for loop in all_loops if loop.is_innermost_loop]
zero_loop_counters = {loop.loop_counter_symbol: 0 for loop in all_loops}
vector_is = ast_node.instruction_set
assert vector_is, "The ast needs to hold information about the instruction_set for the vectorisation"
vector_width = vector_is['width']
vector_int_width = vector_is['intwidth']
for loop_node in inner_loops:
loop_range = loop_node.stop - loop_node.start
# cut off loop tail, that is not a multiple of four
if assume_aligned and assume_sufficient_line_padding:
if keep_loop_stop:
pass
elif assume_aligned and assume_sufficient_line_padding:
loop_range = loop_node.stop - loop_node.start
new_stop = loop_node.start + modulo_ceil(loop_range, vector_width)
loop_node.stop = new_stop
else:
cutting_point = modulo_floor(loop_range, vector_width) + loop_node.start
loop_nodes = [l for l in cut_loop(loop_node, [cutting_point]).args if isinstance(l, ast.LoopOverCoordinate)]
# TODO cut_loop calls deepcopy on the loop_node. This is bad as documented in cut_loop
loop_nodes = [loop for loop in cut_loop(loop_node, [cutting_point]).args
if isinstance(loop, ast.LoopOverCoordinate)]
assert len(loop_nodes) in (0, 1, 2) # 2 for main and tail loop, 1 if loop range divisible by vector width
if len(loop_nodes) == 0:
continue
loop_node = loop_nodes[0]
# loop_node is the vectorized one
# Find all array accesses (indexed) that depend on the loop counter as offset
loop_counter_symbol = ast.LoopOverCoordinate.get_loop_counter_symbol(loop_node.coordinate_to_loop_over)
substitutions = {}
......@@ -105,54 +177,184 @@ def vectorize_inner_loops_and_adapt_load_stores(ast_node, vector_width, assume_a
for indexed in loop_node.atoms(sp.Indexed):
base, index = indexed.args
if loop_counter_symbol in index.atoms(sp.Symbol):
if 'loadA' not in vector_is and 'storeA' not in vector_is and 'maskStoreA' not in vector_is:
# don't need to generate the alignment check when there are no aligned load/store instructions
aligned_access = False
else:
if not isinstance(vector_width, int):
raise NotImplementedError('Access alignment cannot be statically determined for sizeless '
'vector ISAs')
aligned_access = (index - loop_counter_symbol).subs(zero_loop_counters) % vector_width == 0
loop_counter_is_offset = loop_counter_symbol not in (index - loop_counter_symbol).atoms()
aligned_access = (index - loop_counter_symbol).subs(zero_loop_counters) == 0
if not loop_counter_is_offset:
stride = sp.simplify(index.subs({loop_counter_symbol: loop_counter_symbol + 1}) - index)
if not loop_counter_is_offset and (not strided or loop_counter_symbol in stride.atoms()):
successful = False
break
typed_symbol = base.label
assert type(typed_symbol.dtype) is PointerType, \
"Type of access is {}, {}".format(typed_symbol.dtype, indexed)
assert type(typed_symbol.dtype) is PointerType, f"Type of access is {typed_symbol.dtype}, {indexed}"
vec_type = VectorType(typed_symbol.dtype.base_type, vector_width)
use_aligned_access = aligned_access and assume_aligned
nontemporal = False
if hasattr(indexed, 'field'):
nontemporal = (indexed.field in nontemporal_fields) or (indexed.field.name in nontemporal_fields)
substitutions[indexed] = vector_memory_access(indexed, vec_type, use_aligned_access, nontemporal)
substitutions[indexed] = VectorMemoryAccess(indexed, vec_type, use_aligned_access, nontemporal, True,
stride if strided else 1)
if nontemporal:
# insert NontemporalFence after the outermost loop
parent = loop_node.parent
while type(parent.parent.parent) is not ast.KernelFunction:
parent = parent.parent
parent.parent.insert_after(NontemporalFence(), parent, if_not_exists=True)
# insert CachelineSize at the beginning of the kernel
parent.parent.insert_front(CachelineSize(), if_not_exists=True)
if not successful:
warnings.warn("Could not vectorize loop because of non-consecutive memory access")
continue
loop_node.step = vector_width
loop_node.subs(substitutions)
arg_1 = CastFunc(loop_counter_symbol, VectorType(loop_counter_symbol.dtype, vector_int_width))
arg_2 = CastFunc(tuple(range(vector_int_width if type(vector_int_width) is int else 2)),
VectorType(loop_counter_symbol.dtype, vector_int_width))
vector_loop_counter = arg_1 + arg_2
fast_subs(loop_node, {loop_counter_symbol: vector_loop_counter},
skip=lambda e: isinstance(e, ast.ResolvedFieldAccess) or isinstance(e, VectorMemoryAccess))
mask_conditionals(loop_node)
from pystencils.rng import RNGBase
substitutions = {}
for rng in loop_node.atoms(RNGBase):
new_result_symbols = [TypedSymbol(s.name, VectorType(s.dtype, width=vector_width))
for s in rng.result_symbols]
substitutions.update({s[0]: s[1] for s in zip(rng.result_symbols, new_result_symbols)})
rng._symbols_defined = set(new_result_symbols)
fast_subs(loop_node, substitutions, skip=lambda e: isinstance(e, RNGBase))
insert_vector_casts(loop_node, vector_is, default_float_type)
def insert_vector_casts(ast_node):
def mask_conditionals(loop_body):
def visit_node(node, mask):
if isinstance(node, ast.Conditional):
cond = node.condition_expr
skip = (loop_body.loop_counter_symbol not in cond.atoms(sp.Symbol)) or cond.func in (vec_all, vec_any)
cond = True if skip else cond
true_mask = sp.And(cond, mask)
visit_node(node.true_block, true_mask)
if node.false_block:
false_mask = sp.And(sp.Not(node.condition_expr), mask)
visit_node(node, false_mask)
if not skip:
node.condition_expr = vec_any(node.condition_expr)
elif isinstance(node, ast.SympyAssignment):
if mask is not True:
s = {ma: VectorMemoryAccess(*ma.args[0:4], sp.And(mask, ma.args[4]), *ma.args[5:])
for ma in node.atoms(VectorMemoryAccess)}
node.subs(s)
else:
for arg in node.args:
visit_node(arg, mask)
visit_node(loop_body, mask=True)
def insert_vector_casts(ast_node, instruction_set, default_float_type='double'):
"""Inserts necessary casts from scalar values to vector values."""
handled_functions = (sp.Add, sp.Mul, fast_division, fast_sqrt, fast_inv_sqrt, vec_any, vec_all)
handled_functions = (sp.Add, sp.Mul, vec_any, vec_all, DivFunc, sp.Abs)
def visit_expr(expr):
def is_scalar(expr) -> bool:
if hasattr(expr, "dtype"):
if type(expr.dtype) is VectorType:
return False
# Else branch: If expr is a CastFunc, then whether the expression
# is scalar is determined by the argument (remember: vector casts
# are not inserted yet). Therefore, we must recurse into the args of
# expr below. Otherwise, this expression is atomic and in that case
# it is assumed to be scalar below.
if isinstance(expr, cast_func) or isinstance(expr, vector_memory_access):
return expr
elif expr.func in handled_functions or isinstance(expr, sp.Rel) or isinstance(expr, sp.boolalg.BooleanFunction):
new_args = [visit_expr(a) for a in expr.args]
arg_types = [get_type_of_expression(a) for a in new_args]
if isinstance(expr, ast.ResolvedFieldAccess):
# expr.field is not in expr.args
return is_scalar(expr.field)
elif isinstance(expr, (vec_any, vec_all)):
return True
if not hasattr(expr, "args"):
return True
return all(is_scalar(arg) for arg in expr.args)
# TODO Vectorization Revamp: get rid of default_type
def visit_expr(expr, default_type='double', force_vectorize=False):
if isinstance(expr, VectorMemoryAccess):
return VectorMemoryAccess(*expr.args[0:4], visit_expr(expr.args[4], default_type, force_vectorize),
*expr.args[5:])
elif isinstance(expr, CastFunc):
cast_type = expr.args[1]
arg = visit_expr(expr.args[0], default_type, force_vectorize)
assert cast_type in [BasicType('float32'), BasicType('float64')], \
f'Vectorization cannot vectorize type {cast_type}'
return expr.func(arg, VectorType(cast_type, instruction_set['width']))
elif expr.func is sp.Abs and 'abs' not in instruction_set:
new_arg = visit_expr(expr.args[0], default_type, force_vectorize)
base_type = get_type_of_expression(expr.args[0]).base_type if type(expr.args[0]) is VectorMemoryAccess \
else get_type_of_expression(expr.args[0])
pw = sp.Piecewise((-new_arg, new_arg < CastFunc(0, base_type.numpy_dtype)),
(new_arg, True))
return visit_expr(pw, default_type, force_vectorize)
elif expr.func in handled_functions or isinstance(expr, sp.Rel) or isinstance(expr, BooleanFunction):
if expr.func is sp.Mul and expr.args[0] == -1:
# special treatment for the unary minus: make sure that the -1 has the same type as the argument
dtype = int
for arg in expr.atoms(VectorMemoryAccess):
if arg.dtype.base_type.is_float():
dtype = arg.dtype.base_type.numpy_dtype.type
for arg in expr.atoms(TypedSymbol):
if type(arg.dtype) is VectorType and arg.dtype.base_type.is_float():
dtype = arg.dtype.base_type.numpy_dtype.type
if dtype is not int:
if dtype is np.float32:
default_type = 'float'
expr = sp.Mul(dtype(expr.args[0]), *expr.args[1:])
new_args = [visit_expr(a, default_type, force_vectorize) for a in expr.args]
arg_types = [get_type_of_expression(a, default_float_type=default_type) for a in new_args]
if not any(type(t) is VectorType for t in arg_types):
return expr
else:
target_type = collate_types(arg_types)
casted_args = [cast_func(a, target_type) if t != target_type else a
for a, t in zip(new_args, arg_types)]
casted_args = [
CastFunc(a, target_type) if t != target_type and not isinstance(a, VectorMemoryAccess) else a
for a, t in zip(new_args, arg_types)]
return expr.func(*casted_args)
elif expr.func is sp.UnevaluatedExpr:
assert expr.args[0].is_Pow or expr.args[0].is_Mul, "UnevaluatedExpr only implemented holding Mul or Pow"
# TODO this is only because cut_loop evaluates the multiplications again due to deepcopy. All this should
# TODO be fixed for real at some point.
if expr.args[0].is_Pow:
base = expr.args[0].base
exp = expr.args[0].exp
expr = sp.UnevaluatedExpr(sp.Mul(*([base] * +exp), evaluate=False))
new_args = [visit_expr(a, default_type, force_vectorize) for a in expr.args[0].args]
arg_types = [get_type_of_expression(a, default_float_type=default_type) for a in new_args]
target_type = collate_types(arg_types)
if not any(type(t) is VectorType for t in arg_types):
target_type = VectorType(target_type, instruction_set['width'])
casted_args = [
CastFunc(a, target_type) if t != target_type and not isinstance(a, VectorMemoryAccess) else a
for a, t in zip(new_args, arg_types)]
return expr.func(expr.args[0].func(*casted_args, evaluate=False))
elif expr.func is sp.Pow:
new_arg = visit_expr(expr.args[0])
new_arg = visit_expr(expr.args[0], default_type, force_vectorize)
return expr.func(new_arg, expr.args[1])
elif expr.func == sp.Piecewise:
new_results = [visit_expr(a[0]) for a in expr.args]
new_conditions = [visit_expr(a[1]) for a in expr.args]
new_results = [visit_expr(a[0], default_type, force_vectorize) for a in expr.args]
new_conditions = [visit_expr(a[1], default_type, force_vectorize) for a in expr.args]
types_of_results = [get_type_of_expression(a) for a in new_results]
types_of_conditions = [get_type_of_expression(a) for a in new_conditions]
......@@ -163,43 +365,61 @@ def insert_vector_casts(ast_node):
if type(condition_target_type) is not VectorType and type(result_target_type) is VectorType:
condition_target_type = VectorType(condition_target_type, width=result_target_type.width)
casted_results = [cast_func(a, result_target_type) if t != result_target_type else a
casted_results = [CastFunc(a, result_target_type) if t != result_target_type else a
for a, t in zip(new_results, types_of_results)]
casted_conditions = [cast_func(a, condition_target_type)
casted_conditions = [CastFunc(a, condition_target_type)
if t != condition_target_type and a is not True else a
for a, t in zip(new_conditions, types_of_conditions)]
return sp.Piecewise(*[(r, c) for r, c in zip(casted_results, casted_conditions)])
else:
elif isinstance(expr, TypedSymbol):
if force_vectorize:
expr_type = get_type_of_expression(expr)
if type(expr_type) is not VectorType:
vector_type = VectorType(expr_type, instruction_set['width'])
return CastFunc(expr, vector_type)
return expr
elif isinstance(expr, (sp.Number, BooleanAtom)):
return expr
else:
raise NotImplementedError(f'Due to defensive programming we handle only specific expressions.\n'
f'The expression {expr} of type {type(expr)} is not known yet.')
def visit_node(node, substitution_dict):
def visit_node(node, substitution_dict, default_type='double'):
substitution_dict = substitution_dict.copy()
for arg in node.args:
if isinstance(arg, ast.SympyAssignment):
assignment = arg
# If there is a remainder loop we do not vectorise it, thus lhs will indicate this
# if isinstance(assignment.lhs, ast.ResolvedFieldAccess):
# continue
subs_expr = fast_subs(assignment.rhs, substitution_dict,
skip=lambda e: isinstance(e, ast.ResolvedFieldAccess))
assignment.rhs = visit_expr(subs_expr)
rhs_type = get_type_of_expression(assignment.rhs)
# If either side contains a vectorized subexpression, both sides
# must be fully vectorized.
lhs_scalar = is_scalar(assignment.lhs)
rhs_scalar = is_scalar(subs_expr)
assignment.rhs = visit_expr(subs_expr, default_type, force_vectorize=not (lhs_scalar and rhs_scalar))
if isinstance(assignment.lhs, TypedSymbol):
lhs_type = assignment.lhs.dtype
if type(rhs_type) is VectorType and type(lhs_type) is not VectorType:
if lhs_scalar and not rhs_scalar:
lhs_type = get_type_of_expression(assignment.lhs)
rhs_type = get_type_of_expression(assignment.rhs)
new_lhs_type = VectorType(lhs_type, rhs_type.width)
new_lhs = TypedSymbol(assignment.lhs.name, new_lhs_type)
substitution_dict[assignment.lhs] = new_lhs
assignment.lhs = new_lhs
elif isinstance(assignment.lhs.func, cast_func):
lhs_type = assignment.lhs.args[1]
if type(lhs_type) is VectorType and type(rhs_type) is not VectorType:
assignment.rhs = cast_func(assignment.rhs, lhs_type)
elif isinstance(assignment.lhs, VectorMemoryAccess):
assignment.lhs = visit_expr(assignment.lhs, default_type)
elif isinstance(arg, ast.Conditional):
arg.condition_expr = fast_subs(arg.condition_expr, substitution_dict,
skip=lambda e: isinstance(e, ast.ResolvedFieldAccess))
arg.condition_expr = visit_expr(arg.condition_expr)
visit_node(arg, substitution_dict)
arg.condition_expr = visit_expr(arg.condition_expr, default_type)
visit_node(arg, substitution_dict, default_type)
else:
visit_node(arg, substitution_dict)
visit_node(arg, substitution_dict, default_type)
visit_node(ast_node, {})
visit_node(ast_node, {}, default_float_type)
import warnings
from typing import Tuple, Union
from .serial_datahandling import SerialDataHandling
from .datahandling_interface import DataHandling
from ..enums import Target
from .serial_datahandling import SerialDataHandling
try:
# noinspection PyPep8Naming
......@@ -17,9 +21,10 @@ except ImportError:
def create_data_handling(domain_size: Tuple[int, ...],
periodicity: Union[bool, Tuple[bool, ...]] = False,
default_layout: str = 'SoA',
default_target: str = 'cpu',
default_target: Target = Target.CPU,
parallel: bool = False,
default_ghost_layers: int = 1) -> DataHandling:
default_ghost_layers: int = 1,
device_number: Union[int, None] = None) -> DataHandling:
"""Creates a data handling instance.
Args:
......@@ -27,10 +32,19 @@ def create_data_handling(domain_size: Tuple[int, ...],
periodicity: either True, False for full or no periodicity or a tuple of booleans indicating periodicity
for each coordinate
default_layout: default array layout, that is used if not explicitly specified in 'add_array'
default_target: either 'cpu' or 'gpu'
default_target: `Target`
parallel: if True a parallel domain is created using walberla - each MPI process gets a part of the domain
default_ghost_layers: default number of ghost layers if not overwritten in 'add_array'
device_number: If `default_target` is set to 'GPU' and `parallel` is False, a device number should be
specified. If none is given, the device with the largest amount of memory is used. If multiple
devices have the same amount of memory, the one with the lower number is used
"""
if isinstance(default_target, str):
new_target = Target[default_target.upper()]
warnings.warn(f'Target "{default_target}" as str is deprecated. Use {new_target} instead',
category=DeprecationWarning)
default_target = new_target
if parallel:
if wlb is None:
raise ValueError("Cannot create parallel data handling because walberla module is not available")
......@@ -55,8 +69,12 @@ def create_data_handling(domain_size: Tuple[int, ...],
return ParallelDataHandling(blocks=block_storage, dim=dim, default_target=default_target,
default_layout=default_layout, default_ghost_layers=default_ghost_layers)
else:
return SerialDataHandling(domain_size, periodicity=periodicity, default_target=default_target,
default_layout=default_layout, default_ghost_layers=default_ghost_layers)
return SerialDataHandling(domain_size,
periodicity=periodicity,
default_target=default_target,
default_layout=default_layout,
default_ghost_layers=default_ghost_layers,
device_number=device_number)
__all__ = ['create_data_handling']
......@@ -7,6 +7,7 @@ import numpy as np
from pystencils.datahandling.datahandling_interface import Block
from pystencils.slicing import normalize_slice
try:
# noinspection PyPep8Naming
import waLBerla as wlb
......@@ -110,15 +111,15 @@ class ParallelBlock(Block):
def __getitem__(self, data_name):
result = self._block[self._name_prefix + data_name]
type_name = type(result).__name__
if type_name == 'GhostLayerField':
result = wlb.field.toArray(result, withGhostLayers=self._gls)
if 'GhostLayerField' in type_name:
result = wlb.field.toArray(result, with_ghost_layers=self._gls)
result = self._normalize_array_shape(result)
elif type_name == 'GpuField':
result = wlb.cuda.toGpuArray(result, withGhostLayers=self._gls)
elif 'GpuField' in type_name:
result = wlb.gpu.toGpuArray(result, with_ghost_layers=self._gls)
result = self._normalize_array_shape(result)
return result
def _normalize_array_shape(self, arr):
if arr.shape[-1] == 1:
if arr.shape[-1] == 1 and len(arr.shape) == 4:
arr = arr[..., 0]
return arr[self._localSlice]
import numpy as np
from abc import ABC, abstractmethod
from typing import Optional, Callable, Sequence, Iterable, Tuple, Dict, Union
from pystencils.field import Field
from typing import Callable, Dict, Iterable, Optional, Sequence, Tuple, Union
import numpy as np
from pystencils.enums import Target, Backend
from pystencils.field import Field, FieldType
class DataHandling(ABC):
......@@ -14,7 +17,14 @@ class DataHandling(ABC):
'gather' function that has collects (parts of the) distributed data on a single process.
"""
_GPU_LIKE_TARGETS = [Target.GPU]
_GPU_LIKE_BACKENDS = [Backend.CUDA]
# ---------------------------- Adding and accessing data -----------------------------------------------------------
@property
@abstractmethod
def default_target(self) -> Target:
"""Target Enum indicating the target of the computation"""
@property
@abstractmethod
......@@ -34,7 +44,7 @@ class DataHandling(ABC):
@abstractmethod
def add_array(self, name: str, values_per_cell, dtype=np.float64,
latex_name: Optional[str] = None, ghost_layers: Optional[int] = None, layout: Optional[str] = None,
cpu: bool = True, gpu: Optional[bool] = None, alignment=False) -> Field:
cpu: bool = True, gpu: Optional[bool] = None, alignment=False, field_type=FieldType.GENERIC) -> Field:
"""Adds a (possibly distributed) array to the handling that can be accessed using the given name.
For each array a symbolic field is available via the 'fields' dictionary
......@@ -51,12 +61,63 @@ class DataHandling(ABC):
layout: memory layout of array, either structure of arrays 'SoA' or array of structures 'AoS'.
this is only important if values_per_cell > 1
cpu: allocate field on the CPU
gpu: allocate field on the GPU, if None, a GPU field is allocated if default_target is 'gpu'
gpu: allocate field on the GPU, if None, a GPU field is allocated if default_target is 'GPU'
alignment: either False for no alignment, or the number of bytes to align to
Returns:
pystencils field, that can be used to formulate symbolic kernels
"""
def add_arrays(self,
description: str,
dtype=np.float64,
ghost_layers: Optional[int] = None,
layout: Optional[str] = None,
cpu: bool = True,
gpu: Optional[bool] = None,
alignment=False,
field_type=FieldType.GENERIC) -> Tuple[Field]:
"""Adds multiple arrays using a string description similar to :func:`pystencils.fields`
>>> from pystencils.datahandling import create_data_handling
>>> dh = create_data_handling((20, 30))
>>> x, y =dh.add_arrays('x, y(9)')
>>> print(dh.fields)
{'x': x: double[22,32], 'y': y(9): double[22,32]}
>>> assert x == dh.fields['x']
>>> assert dh.fields['x'].shape == (22, 32)
>>> assert dh.fields['y'].index_shape == (9,)
Args:
description (str): String description of the fields to add
dtype: data type of the array as numpy data type
ghost_layers: number of ghost layers - if not specified a default value specified in the constructor
is used
layout: memory layout of array, either structure of arrays 'SoA' or array of structures 'AoS'.
this is only important if values_per_cell > 1
cpu: allocate field on the CPU
gpu: allocate field on the GPU, if None, a GPU field is allocated if default_target is 'GPU'
alignment: either False for no alignment, or the number of bytes to align to
Returns:
Fields representing the just created arrays
"""
from pystencils.field import _parse_part1
names = []
for name, indices in _parse_part1(description):
names.append(name)
self.add_array(name,
values_per_cell=indices,
dtype=dtype,
ghost_layers=ghost_layers,
layout=layout,
cpu=cpu,
gpu=gpu,
alignment=alignment,
field_type=field_type)
return (self.fields[n] for n in names)
@abstractmethod
def has_data(self, name):
"""Returns true if a field or custom data element with this name was added."""
......@@ -151,6 +212,10 @@ class DataHandling(ABC):
directly passed to the kernel function and override possible parameters from the DataHandling
"""
@abstractmethod
def get_kernel_kwargs(self, kernel_function, **kwargs):
"""Returns the input arguments of a kernel"""
@abstractmethod
def swap(self, name1, name2, gpu=False):
"""Swaps data of two arrays"""
......@@ -220,7 +285,7 @@ class DataHandling(ABC):
names: what data to synchronize: name of array or sequence of names
stencil: stencil as string defining which neighbors are synchronized e.g. 'D2Q9', 'D3Q19'
if None, a full synchronization (i.e. D2Q9 or D3Q27) is done
target: either 'cpu' or 'gpu
target: `Target` either 'CPU' or 'GPU'
kwargs: implementation specific, optional optimization parameters for communication
Returns:
......@@ -266,6 +331,7 @@ class DataHandling(ABC):
b[array_name][(Ellipsis, *value_idx)].fill(val)
else:
b[array_name].fill(val)
self.to_gpu(array_name)
def min(self, array_name, slice_obj=None, ghost_layers=False, inner_ghost_layers=False, reduce=True):
"""Returns the minimum value inside the domain or slice of the domain.
......
import os
import numpy as np
import warnings
from pystencils import Field
from pystencils.datahandling.datahandling_interface import DataHandling
from pystencils.datahandling.blockiteration import sliced_block_iteration, block_iteration
from pystencils.kernelparameters import FieldPointerSymbol
from pystencils.utils import DotDict
import numpy as np
# noinspection PyPep8Naming
import waLBerla as wlb
from pystencils.datahandling.blockiteration import block_iteration, sliced_block_iteration
from pystencils.datahandling.datahandling_interface import DataHandling
from pystencils.enums import Backend
from pystencils.field import Field, FieldType
from pystencils.typing.typed_sympy import FieldPointerSymbol
from pystencils.utils import DotDict
from pystencils import Target
class ParallelDataHandling(DataHandling):
GPU_DATA_PREFIX = "gpu_"
VTK_COUNTER = 0
def __init__(self, blocks, default_ghost_layers=1, default_layout='SoA', dim=3, default_target='cpu'):
def __init__(self, blocks, default_ghost_layers=1, default_layout='SoA', dim=3, default_target=Target.CPU):
"""
Creates data handling based on walberla block storage
......@@ -25,18 +29,19 @@ class ParallelDataHandling(DataHandling):
dim: dimension of scenario,
walberla always uses three dimensions, so if dim=2 the extend of the
z coordinate of blocks has to be 1
default_target: either 'cpu' or 'gpu' . If set to 'gpu' for each array also a GPU version is allocated
if not overwritten in add_array, and synchronization functions are for the GPU by default
default_target: `Target`, either 'CPU' or 'GPU' . If set to 'GPU' for each array also a GPU version is
allocated if not overwritten in add_array, and synchronization functions are for the GPU by
default
"""
super(ParallelDataHandling, self).__init__()
assert dim in (2, 3)
self.blocks = blocks
self.default_ghost_layers = default_ghost_layers
self.default_layout = default_layout
self._blocks = blocks
self._default_ghost_layers = default_ghost_layers
self._default_layout = default_layout
self._fields = DotDict() # maps name to symbolic pystencils field
self._field_name_to_cpu_data_name = {}
self._field_name_to_gpu_data_name = {}
self.data_names = set()
self._data_names = set()
self._dim = dim
self._fieldInformation = {}
self._cpu_gpu_pairs = []
......@@ -50,7 +55,11 @@ class ParallelDataHandling(DataHandling):
if self._dim == 2:
assert self.blocks.getDomainCellBB().size[2] == 1
self.default_target = default_target
self._default_target = default_target
@property
def default_target(self):
return self._default_target
@property
def dim(self):
......@@ -68,6 +77,22 @@ class ParallelDataHandling(DataHandling):
def fields(self):
return self._fields
@property
def blocks(self):
return self._blocks
@property
def default_ghost_layers(self):
return self._default_ghost_layers
@property
def default_layout(self):
return self._default_layout
@property
def data_names(self):
return self.data_names
def ghost_layers_of_field(self, name):
return self._fieldInformation[name]['ghost_layers']
......@@ -88,18 +113,18 @@ class ParallelDataHandling(DataHandling):
self._custom_data_names.append(name)
def add_array(self, name, values_per_cell=1, dtype=np.float64, latex_name=None, ghost_layers=None,
layout=None, cpu=True, gpu=None, alignment=False):
layout=None, cpu=True, gpu=None, alignment=False, field_type=FieldType.GENERIC):
if ghost_layers is None:
ghost_layers = self.default_ghost_layers
if gpu is None:
gpu = self.default_target == 'gpu'
gpu = self.default_target == Target.GPU
if layout is None:
layout = self.default_layout
if len(self.blocks) == 0:
raise ValueError("Data handling expects that each process has at least one block")
if hasattr(dtype, 'type'):
dtype = dtype.type
if name in self.blocks[0] or self.GPU_DATA_PREFIX + name in self.blocks[0]:
if name in self.blocks[0].fieldNames or self.GPU_DATA_PREFIX + name in self.blocks[0].fieldNames:
raise ValueError("Data with this name has already been added")
if alignment is False or alignment is None:
......@@ -107,11 +132,14 @@ class ParallelDataHandling(DataHandling):
if hasattr(values_per_cell, '__len__'):
raise NotImplementedError("Parallel data handling does not support multiple index dimensions")
self._fieldInformation[name] = {'ghost_layers': ghost_layers,
'values_per_cell': values_per_cell,
'layout': layout,
'dtype': dtype,
'alignment': alignment}
self._fieldInformation[name] = {
'ghost_layers': ghost_layers,
'values_per_cell': values_per_cell,
'layout': layout,
'dtype': dtype,
'alignment': alignment,
'field_type': field_type,
}
layout_map = {'fzyx': wlb.field.Layout.fzyx, 'zyxf': wlb.field.Layout.zyxf,
'f': wlb.field.Layout.fzyx,
......@@ -123,8 +151,8 @@ class ParallelDataHandling(DataHandling):
if gpu:
if alignment != 0:
raise ValueError("Alignment for walberla GPU fields not yet supported")
wlb.cuda.addGpuFieldToStorage(self.blocks, self.GPU_DATA_PREFIX + name, dtype, fSize=values_per_cell,
usePitchedMem=False, ghostLayers=ghost_layers, layout=layout_map[layout])
wlb.gpu.addGpuFieldToStorage(self.blocks, self.GPU_DATA_PREFIX + name, dtype, fSize=values_per_cell,
usePitchedMem=False, ghostLayers=ghost_layers, layout=layout_map[layout])
if cpu and gpu:
self._cpu_gpu_pairs.append((name, self.GPU_DATA_PREFIX + name))
......@@ -138,7 +166,8 @@ class ParallelDataHandling(DataHandling):
assert all(f.name != name for f in self.fields.values()), "Symbolic field with this name already exists"
self.fields[name] = Field.create_generic(name, self.dim, dtype, index_dimensions, layout,
index_shape=(values_per_cell,) if index_dimensions > 0 else None)
index_shape=(values_per_cell,) if index_dimensions > 0 else None,
field_type=field_type)
self.fields[name].latex_name = latex_name
self._field_name_to_cpu_data_name[name] = name
if gpu:
......@@ -209,15 +238,13 @@ class ParallelDataHandling(DataHandling):
array = array[:, :, 0]
if last_element and self.fields[name].index_dimensions > 0:
array = array[..., last_element[0]]
if self.fields[name].index_dimensions == 0:
array = array[..., 0]
return array
def _normalize_arr_shape(self, arr, index_dimensions):
if index_dimensions == 0:
if index_dimensions == 0 and len(arr.shape) > 3:
arr = arr[..., 0]
if self.dim == 2:
if self.dim == 2 and len(arr.shape) > 2:
arr = arr[:, :, 0]
return arr
......@@ -226,9 +253,9 @@ class ParallelDataHandling(DataHandling):
kernel_function(**arg_dict)
def get_kernel_kwargs(self, kernel_function, **kwargs):
if kernel_function.ast.backend == 'gpucuda':
if kernel_function.ast.backend == Backend.CUDA:
name_map = self._field_name_to_gpu_data_name
to_array = wlb.cuda.toGpuArray
to_array = wlb.gpu.toGpuArray
else:
name_map = self._field_name_to_cpu_data_name
to_array = wlb.field.toArray
......@@ -240,7 +267,7 @@ class ParallelDataHandling(DataHandling):
for block in self.blocks:
field_args = {}
for data_name, f in data_used_in_kernel:
arr = to_array(block[data_name], withGhostLayers=[True, True, self.dim == 3])
arr = to_array(block[data_name], with_ghost_layers=[True, True, self.dim == 3])
arr = self._normalize_arr_shape(arr, f.index_dimensions)
field_args[f.name] = arr
field_args.update(kwargs)
......@@ -253,7 +280,8 @@ class ParallelDataHandling(DataHandling):
for block in self.blocks:
transfer_func(block[self.GPU_DATA_PREFIX + name], block[name])
else:
wlb.cuda.copyFieldToCpu(self.blocks, self.GPU_DATA_PREFIX + name, name)
if self.is_on_gpu(name):
wlb.gpu.copyFieldToCpu(self.blocks, self.GPU_DATA_PREFIX + name, name)
def to_gpu(self, name):
if name in self._custom_data_transfer_functions:
......@@ -261,28 +289,29 @@ class ParallelDataHandling(DataHandling):
for block in self.blocks:
transfer_func(block[self.GPU_DATA_PREFIX + name], block[name])
else:
wlb.cuda.copyFieldToGpu(self.blocks, self.GPU_DATA_PREFIX + name, name)
if self.is_on_gpu(name):
wlb.gpu.copyFieldToGpu(self.blocks, self.GPU_DATA_PREFIX + name, name)
def is_on_gpu(self, name):
return (name, self.GPU_DATA_PREFIX + name) in self._cpu_gpu_pairs
def all_to_cpu(self):
for cpu_name, gpu_name in self._cpu_gpu_pairs:
wlb.cuda.copyFieldToCpu(self.blocks, gpu_name, cpu_name)
wlb.gpu.copyFieldToCpu(self.blocks, gpu_name, cpu_name)
for name in self._custom_data_transfer_functions.keys():
self.to_cpu(name)
def all_to_gpu(self):
for cpu_name, gpu_name in self._cpu_gpu_pairs:
wlb.cuda.copyFieldToGpu(self.blocks, gpu_name, cpu_name)
wlb.gpu.copyFieldToGpu(self.blocks, gpu_name, cpu_name)
for name in self._custom_data_transfer_functions.keys():
self.to_gpu(name)
def synchronization_function_cpu(self, names, stencil=None, buffered=True, stencil_restricted=False, **_):
return self.synchronization_function(names, stencil, 'cpu', buffered, stencil_restricted)
return self.synchronization_function(names, stencil, Target.CPU, buffered, stencil_restricted)
def synchronization_function_gpu(self, names, stencil=None, buffered=True, stencil_restricted=False, **_):
return self.synchronization_function(names, stencil, 'gpu', buffered, stencil_restricted)
return self.synchronization_function(names, stencil, Target.GPU, buffered, stencil_restricted)
def synchronization_function(self, names, stencil=None, target=None, buffered=True, stencil_restricted=False):
if target is None:
......@@ -295,13 +324,13 @@ class ParallelDataHandling(DataHandling):
names = [names]
create_scheme = wlb.createUniformBufferedScheme if buffered else wlb.createUniformDirectScheme
if target == 'cpu':
if target == Target.CPU:
create_packing = wlb.field.createPackInfo if buffered else wlb.field.createMPIDatatypeInfo
if not buffered and stencil_restricted:
if buffered and stencil_restricted:
create_packing = wlb.field.createStencilRestrictedPackInfo
else:
assert target == 'gpu'
create_packing = wlb.cuda.createPackInfo if buffered else wlb.cuda.createMPIDatatypeInfo
assert target == Target.GPU
create_packing = wlb.gpu.createPackInfo if buffered else wlb.gpu.createMPIDatatypeInfo
names = [self.GPU_DATA_PREFIX + name for name in names]
sync_function = create_scheme(self.blocks, stencil)
......@@ -377,7 +406,7 @@ class ParallelDataHandling(DataHandling):
if not os.path.exists(directory):
os.mkdir(directory)
if os.path.isfile(directory):
raise RuntimeError("Trying to save to {}, but file exists already".format(directory))
raise RuntimeError(f"Trying to save to {directory}, but file exists already")
for field_name, data_name in self._field_name_to_cpu_data_name.items():
self.blocks.writeBlockData(data_name, os.path.join(directory, field_name + ".dat"))
......
import itertools
import time
from typing import Sequence, Union
import numpy as np
import time
from pystencils import Field
from pystencils.datahandling.datahandling_interface import DataHandling
from pystencils.field import layout_string_to_tuple, spatial_layout_string_to_tuple, create_numpy_array_with_layout
from pystencils.datahandling.blockiteration import SerialBlock
from pystencils.datahandling.datahandling_interface import DataHandling
from pystencils.enums import Target
from pystencils.field import (Field, FieldType, create_numpy_array_with_layout,
layout_string_to_tuple, spatial_layout_string_to_tuple)
from pystencils.gpu.gpu_array_handler import GPUArrayHandler, GPUNotAvailableHandler
from pystencils.slicing import normalize_slice, remove_ghost_layers
from pystencils.utils import DotDict
try:
import pycuda.gpuarray as gpuarray
import pycuda.autoinit # NOQA
except ImportError:
gpuarray = None
class SerialDataHandling(DataHandling):
def __init__(self, domain_size: Sequence[int], default_ghost_layers: int = 1, default_layout: str = 'SoA',
periodicity: Union[bool, Sequence[bool]] = False, default_target: str = 'cpu') -> None:
def __init__(self,
domain_size: Sequence[int],
default_ghost_layers: int = 1,
default_layout: str = 'SoA',
periodicity: Union[bool, Sequence[bool]] = False,
default_target: Target = Target.CPU,
array_handler=None,
device_number=None) -> None:
"""
Creates a data handling for single node simulations.
......@@ -27,8 +31,17 @@ class SerialDataHandling(DataHandling):
domain_size: size of the spatial domain as tuple
default_ghost_layers: default number of ghost layers used, if not overridden in add_array() method
default_layout: default layout used, if not overridden in add_array() method
default_target: either 'cpu' or 'gpu' . If set to 'gpu' for each array also a GPU version is allocated
if not overwritten in add_array, and synchronization functions are for the GPU by default
periodicity: List of booleans that indicate which dimensions have periodic boundary conditions.
Alternatively, a single boolean can be given, which is used for all dimensions. Defaults to
False (non-periodic)
default_target: `Target` either 'CPU' or 'GPU'. If set to 'GPU' for each array also a GPU version is
allocated if not overwritten in add_array, and synchronization functions are for the GPU by
default
array_handler: An object that provides the same interface as `GPUArrayHandler`, which is used for creation
and transferring of GPU arrays. Default is to construct a fresh `GPUArrayHandler`
device_number: If `default_target` is set to 'GPU', a device number should be specified. If none is given,
the device with the largest amount of memory is used. If multiple devices have the same
amount of memory, the one with the lower number is used
"""
super(SerialDataHandling, self).__init__()
self._domainSize = tuple(domain_size)
......@@ -41,6 +54,19 @@ class SerialDataHandling(DataHandling):
self.custom_data_gpu = DotDict()
self._custom_data_transfer_functions = {}
if not array_handler:
try:
if device_number is None:
import cupy.cuda.runtime
if cupy.cuda.runtime.getDeviceCount() > 0:
device_number = sorted(range(cupy.cuda.runtime.getDeviceCount()),
key=lambda i: cupy.cuda.Device(i).mem_info[1], reverse=True)[0]
self.array_handler = GPUArrayHandler(device_number)
except ImportError:
self.array_handler = GPUNotAvailableHandler()
else:
self.array_handler = array_handler
if periodicity is None or periodicity is False:
periodicity = [False] * self.dim
if periodicity is True:
......@@ -48,9 +74,13 @@ class SerialDataHandling(DataHandling):
self._periodicity = periodicity
self._field_information = {}
self.default_target = default_target
self._default_target = default_target
self._start_time = time.perf_counter()
@property
def default_target(self):
return self._default_target
@property
def dim(self):
return len(self._domainSize)
......@@ -74,13 +104,13 @@ class SerialDataHandling(DataHandling):
return self._field_information[name]['values_per_cell']
def add_array(self, name, values_per_cell=1, dtype=np.float64, latex_name=None, ghost_layers=None, layout=None,
cpu=True, gpu=None, alignment=False):
cpu=True, gpu=None, alignment=False, field_type=FieldType.GENERIC):
if ghost_layers is None:
ghost_layers = self.default_ghost_layers
if layout is None:
layout = self.default_layout
if gpu is None:
gpu = self.default_target == 'gpu'
gpu = self.default_target in self._GPU_LIKE_TARGETS
kwargs = {
'shape': tuple(s + 2 * ghost_layers for s in self._domainSize),
......@@ -88,7 +118,7 @@ class SerialDataHandling(DataHandling):
}
if not hasattr(values_per_cell, '__len__'):
values_per_cell = (values_per_cell, )
values_per_cell = (values_per_cell,)
if len(values_per_cell) == 1 and values_per_cell[0] == 1:
values_per_cell = ()
......@@ -98,6 +128,7 @@ class SerialDataHandling(DataHandling):
'layout': layout,
'dtype': dtype,
'alignment': alignment,
'field_type': field_type,
}
index_dimensions = len(values_per_cell)
......@@ -108,10 +139,14 @@ class SerialDataHandling(DataHandling):
else:
layout_tuple = spatial_layout_string_to_tuple(layout, self.dim)
# cpu_arr is always created - since there is no create_pycuda_array_with_layout()
# cpu_arr is always created - since there is no create_gpu_array_with_layout()
byte_offset = ghost_layers * np.dtype(dtype).itemsize
cpu_arr = create_numpy_array_with_layout(layout=layout_tuple, alignment=alignment,
byte_offset=byte_offset, **kwargs)
if gpu:
cpu_arr = self.array_handler.pinned_numpy_array(shape=kwargs['shape'], layout=layout_tuple, dtype=dtype)
else:
cpu_arr = create_numpy_array_with_layout(layout=layout_tuple, alignment=alignment,
byte_offset=byte_offset, **kwargs)
if alignment and gpu:
raise NotImplementedError("Alignment for GPU fields not supported")
......@@ -123,10 +158,11 @@ class SerialDataHandling(DataHandling):
if gpu:
if name in self.gpu_arrays:
raise ValueError("GPU Field with this name already exists")
self.gpu_arrays[name] = gpuarray.to_gpu(cpu_arr)
self.gpu_arrays[name] = self.array_handler.to_gpu(cpu_arr)
assert all(f.name != name for f in self.fields.values()), "Symbolic field with this name already exists"
self.fields[name] = Field.create_from_numpy_array(name, cpu_arr, index_dimensions=index_dimensions)
self.fields[name] = Field.create_from_numpy_array(name, cpu_arr, index_dimensions=index_dimensions,
field_type=field_type)
self.fields[name].latex_name = latex_name
return self.fields[name]
......@@ -205,7 +241,7 @@ class SerialDataHandling(DataHandling):
def swap(self, name1, name2, gpu=None):
if gpu is None:
gpu = self.default_target == "gpu"
gpu = self.default_target in self._GPU_LIKE_TARGETS
arr = self.gpu_arrays if gpu else self.cpu_arrays
arr[name1], arr[name2] = arr[name2], arr[name1]
......@@ -218,12 +254,12 @@ class SerialDataHandling(DataHandling):
self.to_gpu(name)
def run_kernel(self, kernel_function, **kwargs):
arrays = self.gpu_arrays if kernel_function.ast.backend == 'gpucuda' else self.cpu_arrays
kernel_function(**arrays, **kwargs)
arrays = self.gpu_arrays if kernel_function.ast.backend in self._GPU_LIKE_BACKENDS else self.cpu_arrays
kernel_function(**{**arrays, **kwargs})
def get_kernel_kwargs(self, kernel_function, **kwargs):
result = {}
result.update(self.gpu_arrays if kernel_function.ast.backend == 'gpucuda' else self.cpu_arrays)
result.update(self.gpu_arrays if kernel_function.ast.backend in self._GPU_LIKE_BACKENDS else self.cpu_arrays)
result.update(kwargs)
return [result]
......@@ -232,28 +268,30 @@ class SerialDataHandling(DataHandling):
transfer_func = self._custom_data_transfer_functions[name][1]
transfer_func(self.custom_data_gpu[name], self.custom_data_cpu[name])
else:
self.gpu_arrays[name].get(self.cpu_arrays[name])
if name in self.cpu_arrays.keys() & self.gpu_arrays.keys():
self.array_handler.download(self.gpu_arrays[name], self.cpu_arrays[name])
def to_gpu(self, name):
if name in self._custom_data_transfer_functions:
transfer_func = self._custom_data_transfer_functions[name][0]
transfer_func(self.custom_data_gpu[name], self.custom_data_cpu[name])
else:
self.gpu_arrays[name].set(self.cpu_arrays[name])
if name in self.cpu_arrays.keys() & self.gpu_arrays.keys():
self.array_handler.upload(self.gpu_arrays[name], self.cpu_arrays[name])
def is_on_gpu(self, name):
return name in self.gpu_arrays
def synchronization_function_cpu(self, names, stencil_name=None, **_):
return self.synchronization_function(names, stencil_name, 'cpu')
return self.synchronization_function(names, stencil_name, target=Target.CPU)
def synchronization_function_gpu(self, names, stencil_name=None, **_):
return self.synchronization_function(names, stencil_name, 'gpu')
return self.synchronization_function(names, stencil_name, target=Target.GPU)
def synchronization_function(self, names, stencil=None, target=None, **_):
def synchronization_function(self, names, stencil=None, target=None, functor=None, **_):
if target is None:
target = self.default_target
assert target in ('cpu', 'gpu')
assert target in (Target.CPU, Target.GPU)
if not hasattr(names, '__len__') or type(names) is str:
names = [names]
......@@ -282,25 +320,28 @@ class SerialDataHandling(DataHandling):
gls = self._field_information[name]['ghost_layers']
values_per_cell = self._field_information[name]['values_per_cell']
if values_per_cell == ():
values_per_cell = (1, )
values_per_cell = (1,)
if len(values_per_cell) == 1:
values_per_cell = values_per_cell[0]
else:
raise NotImplementedError("Synchronization of this field is not supported: " + name)
if len(filtered_stencil) > 0:
if target == 'cpu':
from pystencils.slicing import get_periodic_boundary_functor
result.append(get_periodic_boundary_functor(filtered_stencil, ghost_layers=gls))
if target == Target.CPU:
if functor is None:
from pystencils.slicing import get_periodic_boundary_functor
functor = get_periodic_boundary_functor
result.append(functor(filtered_stencil, ghost_layers=gls))
else:
from pystencils.gpucuda.periodicity import get_periodic_boundary_functor as boundary_func
result.append(boundary_func(filtered_stencil, self._domainSize,
index_dimensions=self.fields[name].index_dimensions,
index_dim_shape=values_per_cell,
dtype=self.fields[name].dtype.numpy_dtype,
ghost_layers=gls))
if target == 'cpu':
if functor is None:
from pystencils.gpu.periodicity import get_periodic_boundary_functor as functor
target = Target.GPU
result.append(functor(filtered_stencil, self._domainSize,
index_dimensions=self.fields[name].index_dimensions,
index_dim_shape=values_per_cell,
dtype=self.fields[name].dtype.numpy_dtype,
ghost_layers=gls,
target=target))
if target == Target.CPU:
def result_functor():
for arr_name, func in zip(names, result):
func(pdfs=self.cpu_arrays[arr_name])
......@@ -351,6 +392,7 @@ class SerialDataHandling(DataHandling):
raise NotImplementedError("VTK export for fields with more than one index "
"coordinate not implemented")
image_to_vtk(full_file_name, cell_data=cell_data)
return writer
def create_vtk_writer_for_flag_array(self, file_name, data_name, masks_to_name, ghost_layers=False):
......@@ -382,7 +424,7 @@ class SerialDataHandling(DataHandling):
time_running = time.perf_counter() - self._start_time
spacing = 7 - len(str(int(time_running)))
message = "[{: <8}]{}({:.3f} sec) {} ".format(level, spacing * '-', time_running, message)
message = f"[{level: <8}]{spacing * '-'}({time_running:.3f} sec) {message} "
print(message, flush=True)
def log_on_root(self, *args, level='INFO'):
......@@ -396,18 +438,28 @@ class SerialDataHandling(DataHandling):
def world_rank(self):
return 0
def save_all(self, file):
np.savez_compressed(file, **self.cpu_arrays)
def save_all(self, filename, compressed=True, synchronise_data=True):
if synchronise_data:
for name in (self.cpu_arrays.keys() & self.gpu_arrays.keys()):
self.to_cpu(name)
if compressed:
np.savez_compressed(filename, **self.cpu_arrays)
else:
np.savez(filename, **self.cpu_arrays)
def load_all(self, file):
file_contents = np.load(file)
def load_all(self, filename, synchronise_data=True):
if '.npz' not in filename:
filename += '.npz'
file_contents = np.load(filename)
for arr_name, arr_contents in self.cpu_arrays.items():
if arr_name not in file_contents:
print("Skipping read data {} because there is no data with this name in data handling".format(arr_name))
print(f"Skipping read data {arr_name} because there is no data with this name in data handling")
continue
if file_contents[arr_name].shape != arr_contents.shape:
print("Skipping read data {} because shapes don't match. "
"Read array shape {}, existing array shape {}".format(arr_name, file_contents[arr_name].shape,
arr_contents.shape))
print(f"Skipping read data {arr_name} because shapes don't match. "
f"Read array shape {file_contents[arr_name].shape}, existing array shape {arr_contents.shape}")
continue
np.copyto(arr_contents, file_contents[arr_name])
if synchronise_data:
if arr_name in self.gpu_arrays.keys():
self.to_gpu(arr_name)
from pyevtk.vtk import VtkFile, VtkImageData
from pyevtk.hl import _addDataToFile, _appendDataToFile
from pyevtk.vtk import VtkFile, VtkImageData
def image_to_vtk(path, cell_data, origin=(0.0, 0.0, 0.0), spacing=(1.0, 1.0, 1.0)):
......
from typing import Any, Dict, Optional, Union
import sympy as sp
from typing import Any, Dict, Optional
from pystencils.astnodes import KernelFunction
from pystencils.enums import Backend
from pystencils.kernel_wrapper import KernelWrapper
def to_dot(expr: sp.Expr, graph_style: Optional[Dict[str, Any]] = None, short=True):
"""Show a sympy or pystencils AST as dot graph"""
from pystencils.astnodes import Node
import graphviz
try:
import graphviz
except ImportError:
print("graphviz is not installed. Visualizing the AST is not available")
return
graph_style = {} if graph_style is None else graph_style
if isinstance(expr, Node):
......@@ -27,29 +36,69 @@ def highlight_cpp(code: str):
from pygments.lexers import CppLexer
css = HtmlFormatter().get_style_defs('.highlight')
css_tag = "<style>{css}</style>".format(css=css)
css_tag = f"<style>{css}</style>"
display(HTML(css_tag))
return HTML(highlight(code, CppLexer(), HtmlFormatter()))
def show_code(ast: KernelFunction):
def get_code_obj(ast: Union[KernelFunction, KernelWrapper], custom_backend=None):
"""Returns an object to display generated code (C/C++ or CUDA)
Can either be displayed as HTML in Jupyter notebooks or printed as normal string.
Can either be displayed as HTML in Jupyter notebooks or printed as normal string.
"""
from pystencils.backends.cbackend import generate_c
dialect = 'cuda' if ast.backend == 'gpucuda' else 'c'
if isinstance(ast, KernelWrapper):
ast = ast.ast
if ast.backend not in {Backend.C, Backend.CUDA}:
raise NotImplementedError(f'get_code_obj is not implemented for backend {ast.backend}')
dialect = ast.backend
class CodeDisplay:
def __init__(self, ast_input):
self.ast = ast_input
def _repr_html_(self):
return highlight_cpp(generate_c(self.ast, dialect=dialect)).__html__()
return highlight_cpp(generate_c(self.ast, dialect=dialect, custom_backend=custom_backend)).__html__()
def __str__(self):
return generate_c(self.ast, dialect=dialect)
return generate_c(self.ast, dialect=dialect, custom_backend=custom_backend)
def __repr__(self):
return generate_c(self.ast, dialect=dialect)
return generate_c(self.ast, dialect=dialect, custom_backend=custom_backend)
return CodeDisplay(ast)
def get_code_str(ast, custom_backend=None):
return str(get_code_obj(ast, custom_backend))
def _isnotebook():
try:
shell = get_ipython().__class__.__name__
if shell == 'ZMQInteractiveShell':
return True # Jupyter notebook or qtconsole
elif shell == 'TerminalInteractiveShell':
return False # Terminal running IPython
else:
return False # Other type (?)
except NameError:
return False
def show_code(ast: Union[KernelFunction, KernelWrapper], custom_backend=None):
code = get_code_obj(ast, custom_backend)
if _isnotebook():
from IPython.display import display
display(code)
else:
try:
import rich.syntax
import rich.console
syntax = rich.syntax.Syntax(str(code), "c++", theme="monokai", line_numbers=True)
console = rich.console.Console()
console.print(syntax)
except ImportError:
print(code)
from enum import Enum, auto
class Target(Enum):
"""
The Target enumeration represents all possible targets that can be used for the code generation.
"""
CPU = auto()
"""
Target CPU architecture.
"""
GPU = auto()
"""
Target GPU architecture.
"""
class Backend(Enum):
"""
The Backend enumeration represents all possible backends that can be used for the code generation.
Backends and targets must be combined with care. For example CPU as a target and CUDA as a backend makes no sense.
"""
C = auto()
"""
Use the C Backend of pystencils.
"""
CUDA = auto()
"""
Use the CUDA backend to generate code for NVIDIA GPUs.
"""
import sympy as sp
from typing import List, Union
import sympy as sp
from pystencils.astnodes import Node
from pystencils.simp import AssignmentCollection
from pystencils.assignment import Assignment
# noinspection PyPep8Naming
class fast_division(sp.Function):
"""
Produces special float instructions for CUDA kernels
"""
nargs = (2,)
# noinspection PyPep8Naming
class fast_sqrt(sp.Function):
"""
Produces special float instructions for CUDA kernels
"""
nargs = (1, )
# noinspection PyPep8Naming
class fast_inv_sqrt(sp.Function):
"""
Produces special float instructions for CUDA kernels
"""
nargs = (1, )
......@@ -31,7 +42,7 @@ def _run(term, visitor):
return visitor(term)
def insert_fast_sqrts(term: Union[sp.Expr, List[sp.Expr], AssignmentCollection]):
def insert_fast_sqrts(term: Union[sp.Expr, List[sp.Expr], AssignmentCollection, Assignment]):
def visit(expr):
if isinstance(expr, Node):
return expr
......@@ -47,7 +58,7 @@ def insert_fast_sqrts(term: Union[sp.Expr, List[sp.Expr], AssignmentCollection])
return _run(term, visit)
def insert_fast_divisions(term: Union[sp.Expr, List[sp.Expr], AssignmentCollection]):
def insert_fast_divisions(term: Union[sp.Expr, List[sp.Expr], AssignmentCollection, Assignment]):
def visit(expr):
if isinstance(expr, Node):
......
from .derivative import Diff, DiffOperator, \
diff_terms, collect_diffs, zero_diffs, evaluate_diffs, normalize_diff_order, \
expand_diff_full, expand_diff_linear, expand_diff_products, combine_diff_products, \
functional_derivative, diff
from .finitedifferences import advection, diffusion, transient, Discretization2ndOrder
from .derivative import (
Diff, DiffOperator, collect_diffs, combine_diff_products, diff, diff_terms, evaluate_diffs,
expand_diff_full, expand_diff_linear, expand_diff_products, functional_derivative,
normalize_diff_order, zero_diffs)
from .finitedifferences import Discretization2ndOrder, advection, diffusion, transient
from .finitevolumes import FVM1stOrder, VOF
from .spatial import discretize_spatial, discretize_spatial_staggered
__all__ = ['Diff', 'diff', 'DiffOperator', 'diff_terms', 'collect_diffs',
'zero_diffs', 'evaluate_diffs', 'normalize_diff_order', 'expand_diff_full', 'expand_diff_linear',
'expand_diff_products', 'combine_diff_products', 'functional_derivative',
'advection', 'diffusion', 'transient', 'Discretization2ndOrder', 'discretize_spatial',
'discretize_spatial_staggered']
'discretize_spatial_staggered', 'FVM1stOrder', 'VOF']
import sympy as sp
import itertools
from collections import defaultdict
import numpy as np
import sympy as sp
from pystencils.field import Field
from pystencils.sympyextensions import prod, multidimensional_sum
from pystencils.utils import fully_contains, LinearEquationSystem
from pystencils.stencil import direction_string_to_offset
from pystencils.sympyextensions import multidimensional_sum, prod
from pystencils.utils import LinearEquationSystem, fully_contains
class FiniteDifferenceStencilDerivation:
......@@ -102,7 +107,7 @@ class FiniteDifferenceStencilDerivation:
@staticmethod
def symbolic_weight(*args):
str_args = [str(e) for e in args]
return sp.Symbol("w_({})".format(",".join(str_args)))
return sp.Symbol(f"w_({','.join(str_args)})")
def error_term_dict(self, order):
error_terms = defaultdict(lambda: 0)
......@@ -121,7 +126,6 @@ class FiniteDifferenceStencilDerivation:
def isotropy_equations(self, order):
def cycle_int_sequence(sequence, modulus):
import numpy as np
result = []
arr = np.array(sequence, dtype=int)
while True:
......@@ -166,15 +170,168 @@ class FiniteDifferenceStencilDerivation:
f = field_access
return sum(f.get_shifted(*offset) * weight for offset, weight in zip(self.stencil, self.weights))
def as_matrix(self):
def __array__(self):
return np.array(self.as_array().tolist())
def as_array(self):
dim = len(self.stencil[0])
assert dim == 2
assert (dim == 2 or dim == 3), "Only 2D or 3D matrix representations are available"
max_offset = max(max(abs(e) for e in direction) for direction in self.stencil)
result = sp.Matrix(2 * max_offset + 1, 2 * max_offset + 1, lambda i, j: 0)
for direction, weight in zip(self.stencil, self.weights):
result[max_offset - direction[1], max_offset + direction[0]] = weight
shape_list = []
for i in range(dim):
shape_list.append(2 * max_offset + 1)
number_of_elements = np.prod(shape_list)
shape = tuple(shape_list)
result = sp.MutableDenseNDimArray([0] * number_of_elements, shape)
if dim == 2:
for direction, weight in zip(self.stencil, self.weights):
result[max_offset - direction[1], max_offset + direction[0]] = weight
if dim == 3:
for direction, weight in zip(self.stencil, self.weights):
result[max_offset - direction[1], max_offset + direction[0], max_offset + direction[2]] = weight
return result
def rotate_weights_and_apply(self, field_access: Field.Access, axes):
"""derive gradient weights of other direction with already calculated weights of one direction
via rotation and apply them to a field."""
dim = len(self.stencil[0])
assert (dim == 2 or dim == 3), "This function is only for 2D or 3D stencils available"
rotated_weights = np.rot90(np.array(self.__array__()), 1, axes)
result = []
max_offset = max(max(abs(e) for e in direction) for direction in self.stencil)
if dim == 2:
for direction in self.stencil:
result.append(rotated_weights[max_offset - direction[1],
max_offset + direction[0]])
if dim == 3:
for direction in self.stencil:
result.append(rotated_weights[max_offset - direction[1],
max_offset + direction[0],
max_offset + direction[2]])
f = field_access
return sum(f.get_shifted(*offset) * weight for offset, weight in zip(self.stencil, result))
def __repr__(self):
return "Finite difference stencil of accuracy {}, isotropic error: {}".format(self.accuracy,
self.is_isotropic)
class FiniteDifferenceStaggeredStencilDerivation:
"""Derives a finite difference stencil for application at a staggered position
Args:
neighbor: the neighbor direction string or vector at whose staggered position to calculate the derivative
dim: how many dimensions (2 or 3)
derivative: a tuple of directions over which to perform derivatives
free_weights_prefix: a string to prefix to free weight symbols. If None, do not return free weights
"""
def __init__(self, neighbor, dim, derivative=tuple(), free_weights_prefix=None):
if type(neighbor) is str:
neighbor = direction_string_to_offset(neighbor)
if dim == 2:
assert neighbor[dim:] == 0
assert derivative is tuple() or max(derivative) < dim
neighbor = sp.Matrix(neighbor[:dim])
pos = neighbor / 2
def unitvec(i):
"""return the `i`-th unit vector in three dimensions"""
a = np.zeros(dim, dtype=int)
a[i] = 1
return a
def flipped(a, i):
"""return `a` with its `i`-th element's sign flipped"""
a = a.copy()
a[i] *= -1
return a
# determine the points to use, coordinates are relative to position
points = []
if np.linalg.norm(neighbor, 1) == 1:
main_points = [neighbor / 2, neighbor / -2]
elif np.linalg.norm(neighbor, 1) == 2:
nonzero_indices = [i for i, v in enumerate(neighbor) if v != 0 and i < dim]
main_points = [neighbor / 2, neighbor / -2, flipped(neighbor / 2, nonzero_indices[0]),
flipped(neighbor / -2, nonzero_indices[0])]
else:
main_points = [sp.Matrix(np.multiply(neighbor, sp.Matrix(c) / 2))
for c in itertools.product([-1, 1], repeat=3)]
points += main_points
zero_indices = [i for i, v in enumerate(neighbor) if v == 0 and i < dim]
for i in zero_indices:
points += [point + sp.Matrix(unitvec(i)) for point in main_points]
points += [point - sp.Matrix(unitvec(i)) for point in main_points]
points_tuple = tuple([tuple(p) for p in points])
self._stencil = points_tuple
# determine the stencil weights
if len(derivative) == 0:
weights = None
else:
derivation = FiniteDifferenceStencilDerivation(derivative, points_tuple).get_stencil()
if not derivation.accuracy:
raise Exception('the requested derivative cannot be performed with the available neighbors')
weights = derivation.weights
# if the weights are underdefined, we can choose the free symbols to find the sparsest stencil
free_weights = set(itertools.chain(*[w.free_symbols for w in weights]))
if free_weights_prefix is not None:
weights = [w.subs({fw: sp.Symbol(f"{free_weights_prefix}_{i}") for i, fw in enumerate(free_weights)})
for w in weights]
elif len(free_weights) > 0:
zero_counts = defaultdict(list)
for values in itertools.product([-1, -sp.Rational(1, 2), 0, 1, sp.Rational(1, 2)],
repeat=len(free_weights)):
subs = {free_weight: value for free_weight, value in zip(free_weights, values)}
weights = [w.subs(subs) for w in derivation.weights]
if not all(a == 0 for a in weights):
zero_count = sum([1 for w in weights if w == 0])
zero_counts[zero_count].append(weights)
best = zero_counts[max(zero_counts.keys())]
if len(best) > 1: # if there are multiple, pick the one that contains a nonzero center weight
center = [tuple(p + pos) for p in points].index((0, 0, 0)[:dim])
best = [b for b in best if b[center] != 0]
if len(best) > 1: # if there are still multiple, they are equivalent, so we average
weights = [sum([b[i] for b in best]) / len(best) for i in range(len(weights))]
else:
weights = best[0]
assert weights
points_tuple = tuple([tuple(p + pos) for p in points])
self._points = points_tuple
self._weights = weights
@property
def points(self):
"""return the points of the stencil"""
return self._points
@property
def stencil(self):
"""return the points of the stencil relative to the staggered position specified by neighbor"""
return self._stencil
@property
def weights(self):
"""return the weights of the stencil"""
assert self._weights is not None
return self._weights
def visualize(self):
if self._weights is None:
ws = None
else:
ws = np.array([w for w in self.weights if w != 0], dtype=float)
pts = np.array([p for i, p in enumerate(self.points) if self.weights[i] != 0], dtype=int)
from pystencils.stencil import plot
plot(pts, data=ws)
def apply(self, access: Field.Access):
return sum([access.get_shifted(*point) * weight for point, weight in zip(self.points, self.weights)])
from collections import defaultdict, namedtuple
import sympy as sp
from collections import namedtuple, defaultdict
from pystencils import Field
from pystencils.field import Field
from pystencils.sympyextensions import normalize_product, prod
......@@ -107,7 +109,17 @@ class Diff(sp.Expr):
return result
def __str__(self):
return "D(%s)" % self.arg
return f"D({self.arg})"
def interpolated_access(self, offset, **kwargs):
"""Represents an interpolated access on a spatially differentiated field
Args:
offset (Tuple[sympy.Expr]): Absolute position to determine the value of the spatial derivative
"""
from pystencils.interpolation_astnodes import DiffInterpolatorAccess
assert isinstance(self.arg.field, Field), "Must be field to enable interpolated accesses"
return DiffInterpolatorAccess(self.arg.field.interpolated_access(offset, **kwargs).symbol, self.target, *offset)
class DiffOperator(sp.Expr):
......@@ -216,7 +228,9 @@ def diff_terms(expr):
Example:
>>> x, y = sp.symbols("x, y")
>>> diff_terms( diff(x, 0, 0) )
>>> diff_terms( diff(x, 0, 0) )
{Diff(Diff(x, 0, -1), 0, -1)}
>>> diff_terms( diff(x, 0, 0) + y )
{Diff(Diff(x, 0, -1), 0, -1)}
"""
result = set()
......@@ -304,7 +318,8 @@ def expand_diff_full(expr, functions=None, constants=None):
functions.difference_update(constants)
def visit(e):
e = e.expand()
if not isinstance(e, sp.Tuple):
e = e.expand()
if e.func == Diff:
result = 0
......@@ -329,6 +344,9 @@ def expand_diff_full(expr, functions=None, constants=None):
return result
elif isinstance(e, sp.Piecewise):
return sp.Piecewise(*((expand_diff_full(a, functions, constants), b) for a, b in e.args))
elif isinstance(expr, sp.Tuple):
new_args = [visit(arg) for arg in e.args]
return sp.Tuple(*new_args)
else:
new_args = [visit(arg) for arg in e.args]
return e.func(*new_args) if new_args else e
......@@ -368,6 +386,9 @@ def expand_diff_linear(expr, functions=None, constants=None):
return diff.split_linear(functions)
elif isinstance(expr, sp.Piecewise):
return sp.Piecewise(*((expand_diff_linear(a, functions, constants), b) for a, b in expr.args))
elif isinstance(expr, sp.Tuple):
new_args = [expand_diff_linear(e, functions) for e in expr.args]
return sp.Tuple(*new_args)
else:
new_args = [expand_diff_linear(e, functions) for e in expr.args]
result = sp.expand(expr.func(*new_args) if new_args else expr)
......