Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
No results found
Show changes
Showing
with 1647 additions and 0 deletions
import pytest
import pystencils as ps
@pytest.mark.parametrize('target', [ps.Target.CPU, ps.Target.GPU])
def test_add_augmented_assignment(target):
if target == ps.Target.GPU:
pytest.importorskip("cupy")
domain_size = (5, 5)
dh = ps.create_data_handling(domain_size=domain_size, periodicity=True, default_target=target)
f = dh.add_array("f", values_per_cell=1)
dh.fill(f.name, 0.0)
g = dh.add_array("g", values_per_cell=1)
dh.fill(g.name, 1.0)
up = ps.AddAugmentedAssignment(f.center, g.center)
config = ps.CreateKernelConfig(target=dh.default_target)
ast = ps.create_kernel(up, config=config)
kernel = ast.compile()
for i in range(10):
dh.run_kernel(kernel)
if target == ps.Target.GPU:
dh.all_to_cpu()
result = dh.gather_array(f.name)
for x in range(domain_size[0]):
for y in range(domain_size[1]):
assert result[x, y] == 10
import pytest
from pystencils import Assignment, CreateKernelConfig, Target, fields, create_kernel, get_code_str
@pytest.mark.parametrize('target', (Target.CPU, Target.GPU))
def test_intermediate_base_pointer(target):
x = fields(f'x: double[3d]')
y = fields(f'y: double[3d]')
update = Assignment(x.center, y.center)
config = CreateKernelConfig(base_pointer_specification=[], target=target)
ast = create_kernel(update, config=config)
code = get_code_str(ast)
# no intermediate base pointers are created
assert "_data_x[_stride_x_0*ctr_0 + _stride_x_1*ctr_1 + _stride_x_2*ctr_2] = " \
"_data_y[_stride_y_0*ctr_0 + _stride_y_1*ctr_1 + _stride_y_2*ctr_2];" in code
config = CreateKernelConfig(base_pointer_specification=[[0]], target=target)
ast = create_kernel(update, config=config)
code = get_code_str(ast)
# intermediate base pointers for y and z
assert "double * RESTRICT _data_x_10_20 = _data_x + _stride_x_1*ctr_1 + _stride_x_2*ctr_2;" in code
assert " double * RESTRICT _data_y_10_20 = _data_y + _stride_y_1*ctr_1 + _stride_y_2*ctr_2;" in code
assert "_data_x_10_20[_stride_x_0*ctr_0] = _data_y_10_20[_stride_y_0*ctr_0];" in code
config = CreateKernelConfig(base_pointer_specification=[[1]], target=target)
ast = create_kernel(update, config=config)
code = get_code_str(ast)
# intermediate base pointers for x and z
assert "double * RESTRICT _data_x_00_20 = _data_x + _stride_x_0*ctr_0 + _stride_x_2*ctr_2;" in code
assert "double * RESTRICT _data_y_00_20 = _data_y + _stride_y_0*ctr_0 + _stride_y_2*ctr_2;" in code
assert "_data_x_00_20[_stride_x_1*ctr_1] = _data_y_00_20[_stride_y_1*ctr_1];" in code
config = CreateKernelConfig(base_pointer_specification=[[2]], target=target)
ast = create_kernel(update, config=config)
code = get_code_str(ast)
# intermediate base pointers for x and y
assert "double * RESTRICT _data_x_00_10 = _data_x + _stride_x_0*ctr_0 + _stride_x_1*ctr_1;" in code
assert "double * RESTRICT _data_y_00_10 = _data_y + _stride_y_0*ctr_0 + _stride_y_1*ctr_1;" in code
assert "_data_x_00_10[_stride_x_2*ctr_2] = _data_y_00_10[_stride_y_2*ctr_2];" in code
config = CreateKernelConfig(target=target)
ast = create_kernel(update, config=config)
code = get_code_str(ast)
# by default no intermediate base pointers are created
assert "_data_x[_stride_x_0*ctr_0 + _stride_x_1*ctr_1 + _stride_x_2*ctr_2] = " \
"_data_y[_stride_y_0*ctr_0 + _stride_y_1*ctr_1 + _stride_y_2*ctr_2];" in code
import pytest
import numpy as np
import pystencils as ps
from pystencils import Field, Assignment, create_kernel
from pystencils.bit_masks import flag_cond
@pytest.mark.parametrize('mask_type', [np.uint8, np.uint16, np.uint32, np.uint64])
def test_flag_condition(mask_type):
f_arr = np.zeros((2, 2, 2), dtype=np.float64)
mask_arr = np.zeros((2, 2), dtype=mask_type)
mask_arr[0, 1] = (1 << 3)
mask_arr[1, 0] = (1 << 5)
mask_arr[1, 1] = (1 << 3) + (1 << 5)
f = Field.create_from_numpy_array('f', f_arr, index_dimensions=1)
mask = Field.create_from_numpy_array('mask', mask_arr)
v1 = 42.3
v2 = 39.7
v3 = 119
assignments = [
Assignment(f(0), flag_cond(3, mask(0), v1)),
Assignment(f(1), flag_cond(5, mask(0), v2, v3))
]
kernel = create_kernel(assignments).compile()
kernel(f=f_arr, mask=mask_arr)
code = ps.get_code_str(kernel)
assert '119.0' in code
reference = np.zeros((2, 2, 2), dtype=np.float64)
reference[0, 1, 0] = v1
reference[1, 1, 0] = v1
reference[0, 0, 1] = v3
reference[0, 1, 1] = v3
reference[1, 0, 1] = v2
reference[1, 1, 1] = v2
np.testing.assert_array_equal(f_arr, reference)
import numpy as np
import sympy as sp
import pystencils as ps
def jacobi(dst, src):
assert dst.spatial_dimensions == src.spatial_dimensions
assert src.index_dimensions == 0 and dst.index_dimensions == 0
neighbors = []
for d in range(src.spatial_dimensions):
neighbors += [src.neighbor(d, offset) for offset in (1, -1)]
return ps.Assignment(dst.center, sp.Add(*neighbors) / len(neighbors))
def check_equivalence(assignments, src_arr):
for openmp in (False, True):
for vectorization in [False, {'assume_inner_stride_one': True}]:
with_blocking = ps.create_kernel(assignments, cpu_blocking=(8, 16, 4), cpu_openmp=openmp,
cpu_vectorize_info=vectorization).compile()
with_blocking_only_over_y = ps.create_kernel(assignments, cpu_blocking=(0, 16, 0), cpu_openmp=openmp,
cpu_vectorize_info=vectorization).compile()
without_blocking = ps.create_kernel(assignments).compile()
only_omp = ps.create_kernel(assignments, cpu_openmp=2).compile()
print(f" openmp {openmp}, vectorization {vectorization}")
dst_arr = np.zeros_like(src_arr)
dst2_arr = np.zeros_like(src_arr)
dst3_arr = np.zeros_like(src_arr)
ref_arr = np.zeros_like(src_arr)
np.copyto(src_arr, np.random.rand(*src_arr.shape))
with_blocking(src=src_arr, dst=dst_arr)
with_blocking_only_over_y(src=src_arr, dst=dst2_arr)
without_blocking(src=src_arr, dst=ref_arr)
only_omp(src=src_arr, dst=dst3_arr)
np.testing.assert_almost_equal(ref_arr, dst_arr)
np.testing.assert_almost_equal(ref_arr, dst2_arr)
np.testing.assert_almost_equal(ref_arr, dst3_arr)
def test_jacobi3d_var_size():
src, dst = ps.fields("src, dst: double[3D]", layout='c')
print("Var Size: Smaller than block sizes")
arr = np.empty([4, 5, 6])
check_equivalence(jacobi(dst, src), arr)
print("Var Size: Large non divisible sizes")
arr = np.empty([100, 80, 9])
check_equivalence(jacobi(dst, src), arr)
print("Var Size: Multiples of block sizes")
arr = np.empty([8*4, 16*2, 4*3])
check_equivalence(jacobi(dst, src), arr)
def test_jacobi3d_fixed_size():
print("Fixed Size: Large non divisible sizes")
arr = np.empty([10, 10, 9])
src, dst = ps.fields("src, dst: double[3D]", src=arr, dst=arr)
check_equivalence(jacobi(dst, src), arr)
print("Fixed Size: Smaller than block sizes")
arr = np.empty([4, 5, 6])
src, dst = ps.fields("src, dst: double[3D]", src=arr, dst=arr)
check_equivalence(jacobi(dst, src), arr)
print("Fixed Size: Multiples of block sizes")
arr = np.empty([8*4, 16*2, 4*3])
src, dst = ps.fields("src, dst: double[3D]", src=arr, dst=arr)
check_equivalence(jacobi(dst, src), arr)
def test_jacobi3d_fixed_field_size():
src, dst = ps.fields("src, dst: double[3, 5, 6]", layout='c')
print("Fixed Field Size: Smaller than block sizes")
arr = np.empty([3, 5, 6])
check_equivalence(jacobi(dst, src), arr)
import numpy as np
import pystencils as ps
def test_blocking_staggered():
f = ps.fields("f: double[3D]")
stag = ps.fields("stag(3): double[3D]", field_type=ps.FieldType.STAGGERED)
terms = [
f[0, 0, 0] - f[-1, 0, 0],
f[0, 0, 0] - f[0, -1, 0],
f[0, 0, 0] - f[0, 0, -1],
]
assignments = [ps.Assignment(stag.staggered_access(d), terms[i]) for i, d in enumerate(stag.staggered_stencil)]
reference_kernel = ps.create_staggered_kernel(assignments)
print(ps.show_code(reference_kernel))
reference_kernel = reference_kernel.compile()
kernel = ps.create_staggered_kernel(assignments, cpu_blocking=(3, 16, 8)).compile()
print(ps.show_code(kernel.ast))
f_arr = np.random.rand(80, 33, 19)
stag_arr = np.zeros((80, 33, 19, 3))
stag_ref = np.zeros((80, 33, 19, 3))
kernel(f=f_arr, stag=stag_arr)
reference_kernel(f=f_arr, stag=stag_ref)
np.testing.assert_almost_equal(stag_arr, stag_ref)
import os
from tempfile import TemporaryDirectory
import numpy as np
import pytest
import pystencils
from pystencils import Assignment, create_kernel
from pystencils.boundaries import BoundaryHandling, Dirichlet, Neumann, add_neumann_boundary
from pystencils.datahandling import SerialDataHandling
from pystencils.enums import Target
from pystencils.slicing import slice_from_direction
from pystencils.timeloop import TimeLoop
def test_kernel_vs_copy_boundary():
dh = SerialDataHandling(domain_size=(7, 7))
src = dh.add_array('src')
dst_builtin = dh.add_array_like('dst_builtin', 'src')
dst_python_copy = dh.add_array_like('dst_python_copy', 'src')
dst_handling = dh.add_array_like('dst_handling', 'src')
src_arr = np.arange(dh.shape[0] * dh.shape[1]).reshape(dh.shape)
def reset_src():
for block in dh.iterate(ghost_layers=True, inner_ghost_layers=True):
np.copyto(block['src'], np.random.rand(*block.shape))
for block in dh.iterate(ghost_layers=False, inner_ghost_layers=True):
np.copyto(block['src'], src_arr)
for b in dh.iterate(ghost_layers=False, inner_ghost_layers=True):
np.copyto(b['dst_builtin'], 42)
np.copyto(b['dst_python_copy'], 43)
np.copyto(b['dst_handling'], 44)
flags = dh.add_array('flags', dtype=np.uint8)
dh.fill(flags.name, 0)
borders = ['N', 'S', 'E', 'W']
for d in borders:
dh.fill(flags.name, 1, slice_obj=slice_from_direction(d, dim=2), ghost_layers=True, inner_ghost_layers=True)
rhs = sum(src.neighbors([(1, 0), (-1, 0), (0, 1), (0, -1)]))
simple_kernel = create_kernel([Assignment(dst_python_copy.center, rhs)]).compile()
kernel_handling = create_kernel([Assignment(dst_handling.center, rhs)]).compile()
assignments_with_boundary = add_neumann_boundary([Assignment(dst_builtin.center, rhs)],
fields=[src], flag_field=flags, boundary_flag=1)
kernel_with_boundary = create_kernel(assignments_with_boundary).compile()
# ------ Method 1: Built-in boundary
reset_src()
dh.run_kernel(kernel_with_boundary)
# ------ Method 2: Using python to copy out the values (reference)
reset_src()
for b in dh.iterate():
arr = b['src']
arr[:, 0] = arr[:, 1]
arr[:, -1] = arr[:, -2]
arr[0, :] = arr[1, :]
arr[-1, :] = arr[-2, :]
dh.run_kernel(simple_kernel)
# ------ Method 3: Using boundary handling to copy out the values
reset_src()
boundary_stencil = [(1, 0), (-1, 0), (0, 1), (0, -1)]
boundary_handling = BoundaryHandling(dh, src.name, boundary_stencil)
neumann = Neumann()
assert neumann.name == 'Neumann'
neumann.name = "wall"
assert neumann.name == 'wall'
assert neumann.additional_data_init_callback is None
assert len(neumann.additional_data) == 0
for d in ('N', 'S', 'W', 'E'):
boundary_handling.set_boundary(neumann, slice_from_direction(d, dim=2))
boundary_handling()
dh.run_kernel(kernel_handling)
python_copy_result = dh.gather_array('dst_python_copy')
builtin_result = dh.gather_array('dst_builtin')
handling_result = dh.gather_array('dst_handling')
np.testing.assert_almost_equal(python_copy_result, builtin_result)
np.testing.assert_almost_equal(python_copy_result, handling_result)
with TemporaryDirectory() as tmp_dir:
pytest.importorskip('pyevtk')
boundary_handling.geometry_to_vtk(file_name=os.path.join(tmp_dir, 'test_output1'), ghost_layers=False)
boundary_handling.geometry_to_vtk(file_name=os.path.join(tmp_dir, 'test_output2'), ghost_layers=True)
boundaries = list(boundary_handling._boundary_object_to_boundary_info.keys()) + ['domain']
boundary_handling.geometry_to_vtk(file_name=os.path.join(tmp_dir, 'test_output3'),
boundaries=boundaries[0], ghost_layers=False)
def test_boundary_gpu():
pytest.importorskip('cupy')
dh = SerialDataHandling(domain_size=(7, 7), default_target=Target.GPU)
src = dh.add_array('src')
dh.fill("src", 0.0, ghost_layers=True)
dh.fill("src", 1.0, ghost_layers=False)
src_cpu = dh.add_array('src_cpu', gpu=False)
dh.fill("src_cpu", 0.0, ghost_layers=True)
dh.fill("src_cpu", 1.0, ghost_layers=False)
boundary_stencil = [(1, 0), (-1, 0), (0, 1), (0, -1)]
boundary_handling_cpu = BoundaryHandling(dh, src_cpu.name, boundary_stencil,
name="boundary_handling_cpu", target=Target.CPU)
boundary_handling = BoundaryHandling(dh, src.name, boundary_stencil,
name="boundary_handling_gpu", target=Target.GPU)
neumann = Neumann()
for d in ('N', 'S', 'W', 'E'):
boundary_handling.set_boundary(neumann, slice_from_direction(d, dim=2))
boundary_handling_cpu.set_boundary(neumann, slice_from_direction(d, dim=2))
boundary_handling.prepare()
boundary_handling_cpu.prepare()
boundary_handling_cpu()
dh.all_to_gpu()
boundary_handling()
dh.all_to_cpu()
np.testing.assert_almost_equal(dh.cpu_arrays["src_cpu"], dh.cpu_arrays["src"])
def test_boundary_utility():
dh = SerialDataHandling(domain_size=(7, 7))
src = dh.add_array('src')
dh.fill("src", 0.0, ghost_layers=True)
boundary_stencil = [(1, 0), (-1, 0), (0, 1), (0, -1)]
boundary_handling = BoundaryHandling(dh, src.name, boundary_stencil,
name="boundary_handling", target=Target.CPU)
neumann = Neumann()
dirichlet = Dirichlet(2)
for d in ('N', 'S', 'W', 'E'):
boundary_handling.set_boundary(neumann, slice_from_direction(d, dim=2))
boundary_handling.set_boundary(neumann, (slice(2, 4, None), slice(2, 4, None)))
boundary_handling.prepare()
assert boundary_handling.get_flag(boundary_handling.boundary_objects[0]) == 2
assert boundary_handling.shape == dh.shape
assert boundary_handling.flag_array_name == 'boundary_handlingFlags'
mask_neumann = boundary_handling.get_mask((slice(0, 7), slice(0, 7)), boundary_handling.boundary_objects[0])
np.testing.assert_almost_equal(mask_neumann[1:3, 1:3], 2)
mask_domain = boundary_handling.get_mask((slice(0, 7), slice(0, 7)), "domain")
assert np.sum(mask_domain) == 7 ** 2 - 4
def set_sphere(x, y):
mid = (4, 4)
radius = 2
return (x - mid[0]) ** 2 + (y - mid[1]) ** 2 < radius ** 2
boundary_handling.set_boundary(dirichlet, mask_callback=set_sphere, force_flag_value=4)
mask_dirichlet = boundary_handling.get_mask((slice(0, 7), slice(0, 7)), boundary_handling.boundary_objects[1])
assert np.sum(mask_dirichlet) == 48
assert boundary_handling.set_boundary("domain") == 1
assert boundary_handling.set_boundary(dirichlet, mask_callback=set_sphere, force_flag_value=8, replace=False) == 4
assert boundary_handling.set_boundary(dirichlet, force_flag_value=16, replace=False) == 4
assert boundary_handling.set_boundary_where_flag_is_set(boundary_handling.boundary_objects[0], 16) == 16
def test_add_fix_steps():
dh = SerialDataHandling(domain_size=(7, 7))
src = dh.add_array('src')
dh.fill("src", 0.0, ghost_layers=True)
dh.fill("src", 1.0, ghost_layers=False)
boundary_stencil = [(1, 0), (-1, 0), (0, 1), (0, -1)]
boundary_handling = BoundaryHandling(dh, src.name, boundary_stencil,
name="boundary_handling", target=pystencils.Target.CPU)
neumann = Neumann()
for d in ('N', 'S', 'W', 'E'):
boundary_handling.set_boundary(neumann, slice_from_direction(d, dim=2))
timeloop = TimeLoop(steps=1)
boundary_handling.add_fixed_steps(timeloop)
timeloop.run()
assert np.sum(dh.cpu_arrays['src']) == 7 * 7 + 7 * 4
def test_boundary_data_setter():
dh = SerialDataHandling(domain_size=(7, 7))
src = dh.add_array('src')
dh.fill("src", 0.0, ghost_layers=True)
dh.fill("src", 1.0, ghost_layers=False)
boundary_stencil = [(1, 0), (-1, 0), (0, 1), (0, -1)]
boundary_handling = BoundaryHandling(dh, src.name, boundary_stencil,
name="boundary_handling", target=Target.CPU)
neumann = Neumann()
for d in 'N':
boundary_handling.set_boundary(neumann, slice_from_direction(d, dim=2))
boundary_handling.prepare()
for b in dh.iterate(ghost_layers=True):
index_array_bd = b[boundary_handling._index_array_name]
data_setter = index_array_bd.boundary_object_to_data_setter[boundary_handling.boundary_objects[0]]
y_pos = data_setter.boundary_cell_positions(1)
assert all(y_pos == 5.5)
assert np.all(data_setter.link_offsets() == [0, -1])
assert np.all(data_setter.link_positions(1) == 6.)
@pytest.mark.parametrize('with_indices', ('with_indices', False))
def test_dirichlet(with_indices):
value = (1, 20, 3) if with_indices else 1
dh = SerialDataHandling(domain_size=(7, 7))
src = dh.add_array('src', values_per_cell=3 if with_indices else 1)
dh.cpu_arrays.src[...] = np.random.rand(*src.shape)
boundary_stencil = [(1, 0), (-1, 0), (0, 1), (0, -1)]
boundary_handling = BoundaryHandling(dh, src.name, boundary_stencil)
dirichlet = Dirichlet(value)
assert dirichlet.name == 'Dirichlet'
dirichlet.name = "wall"
assert dirichlet.name == 'wall'
for d in ('N', 'S', 'W', 'E'):
boundary_handling.set_boundary(dirichlet, slice_from_direction(d, dim=2))
boundary_handling()
assert all([np.allclose(a, np.array(value)) for a in dh.cpu_arrays.src[1:-2, 0]])
assert all([np.allclose(a, np.array(value)) for a in dh.cpu_arrays.src[1:-2, -1]])
assert all([np.allclose(a, np.array(value)) for a in dh.cpu_arrays.src[0, 1:-2]])
assert all([np.allclose(a, np.array(value)) for a in dh.cpu_arrays.src[-1, 1:-2]])
import numpy as np
from itertools import product
import pystencils.boundaries.createindexlist as cil
import pytest
@pytest.mark.parametrize('single_link', [False, True])
@pytest.mark.skipif(not cil.cython_funcs_available, reason='Cython functions are not available')
def test_equivalence_cython_python_version(single_link):
# D2Q9
stencil_2d = tuple((x, y) for x, y in product([-1, 0, 1], [-1, 0, 1]))
# D3Q19
stencil_3d = tuple(
(x, y, z) for x, y, z in product([-1, 0, 1], [-1, 0, 1], [-1, 0, 1]) if abs(x) + abs(y) + abs(z) < 3)
for dtype in [int, np.int16, np.uint32]:
fluid_mask = dtype(1)
mask = dtype(2)
flag_field_2d = np.ones([15, 16], dtype=dtype) * fluid_mask
flag_field_3d = np.ones([15, 16, 17], dtype=dtype) * fluid_mask
flag_field_2d[0, :] = mask
flag_field_2d[-1, :] = mask
flag_field_2d[7, 7] = mask
flag_field_3d[0, :, :] = mask
flag_field_3d[-1, :, :] = mask
flag_field_3d[7, 7, 7] = mask
result_python_2d = cil._create_index_list_python(flag_field_2d, mask, fluid_mask,
stencil_2d, single_link, True, 1)
result_python_3d = cil._create_index_list_python(flag_field_3d, mask, fluid_mask,
stencil_3d, single_link, True, 1)
result_cython_2d = cil.create_boundary_index_list(flag_field_2d, stencil_2d, mask,
fluid_mask, 1, True, single_link)
result_cython_3d = cil.create_boundary_index_list(flag_field_3d, stencil_3d, mask,
fluid_mask, 1, True, single_link)
np.testing.assert_equal(result_python_2d, result_cython_2d)
np.testing.assert_equal(result_python_3d, result_cython_3d)
@pytest.mark.parametrize('single_link', [False, True])
@pytest.mark.skipif(not cil.cython_funcs_available, reason='Cython functions are not available')
def test_equivalence_cell_idx_list_cython_python_version(single_link):
# D2Q9
stencil_2d = tuple((x, y) for x, y in product([-1, 0, 1], [-1, 0, 1]))
# D3Q19
stencil_3d = tuple(
(x, y, z) for x, y, z in product([-1, 0, 1], [-1, 0, 1], [-1, 0, 1]) if abs(x) + abs(y) + abs(z) < 3)
for dtype in [int, np.int16, np.uint32]:
fluid_mask = dtype(1)
mask = dtype(2)
flag_field_2d = np.ones([15, 16], dtype=dtype) * fluid_mask
flag_field_3d = np.ones([15, 16, 17], dtype=dtype) * fluid_mask
flag_field_2d[0, :] = mask
flag_field_2d[-1, :] = mask
flag_field_2d[7, 7] = mask
flag_field_3d[0, :, :] = mask
flag_field_3d[-1, :, :] = mask
flag_field_3d[7, 7, 7] = mask
result_python_2d = cil._create_index_list_python(flag_field_2d, mask, fluid_mask,
stencil_2d, single_link, False)
result_python_3d = cil._create_index_list_python(flag_field_3d, mask, fluid_mask,
stencil_3d, single_link, False)
result_cython_2d = cil.create_boundary_index_list(flag_field_2d, stencil_2d, mask, fluid_mask, None,
False, single_link)
result_cython_3d = cil.create_boundary_index_list(flag_field_3d, stencil_3d, mask, fluid_mask, None,
False, single_link)
np.testing.assert_equal(result_python_2d, result_cython_2d)
np.testing.assert_equal(result_python_3d, result_cython_3d)
@pytest.mark.parametrize('inner_or_boundary', [False, True])
def test_normal_calculation(inner_or_boundary):
stencil = tuple((x, y) for x, y in product([-1, 0, 1], [-1, 0, 1]))
domain_size = (32, 32)
dtype = np.uint32
fluid_mask = dtype(1)
mask = dtype(2)
flag_field = np.ones([domain_size[0], domain_size[1]], dtype=dtype) * fluid_mask
radius_inner = domain_size[0] // 4
radius_outer = domain_size[0] // 2
y_mid = domain_size[1] / 2
x_mid = domain_size[0] / 2
for x in range(0, domain_size[0]):
for y in range(0, domain_size[1]):
if (y - y_mid) ** 2 + (x - x_mid) ** 2 < radius_inner ** 2:
flag_field[x, y] = mask
if (x - x_mid) ** 2 + (y - y_mid) ** 2 > radius_outer ** 2:
flag_field[x, y] = mask
args_no_gl = (flag_field, mask, fluid_mask, np.array(stencil, dtype=np.int32), True)
index_list = cil._create_index_list_python(*args_no_gl, inner_or_boundary=inner_or_boundary, nr_of_ghost_layers=1)
checkmask = mask if inner_or_boundary else fluid_mask
for cell in index_list:
idx = cell[2]
cell = tuple((cell[0], cell[1]))
sum_cells = np.zeros(len(cell))
for dir_idx, direction in enumerate(stencil):
neighbor_cell = tuple([cell_i + dir_i for cell_i, dir_i in zip(cell, direction)])
if any(not 0 <= e < upper for e, upper in zip(neighbor_cell, flag_field.shape)):
continue
if flag_field[neighbor_cell] & checkmask:
sum_cells += np.array(direction)
assert np.argmax(np.inner(sum_cells, stencil)) == idx
"""Tests (un)packing (from)to buffers."""
import numpy as np
import pystencils as ps
from pystencils import Assignment, Field, FieldType, create_kernel
from pystencils.field import create_numpy_array_with_layout, layout_string_to_tuple
from pystencils.slicing import (
add_ghost_layers, get_ghost_region_slice, get_slice_before_ghost_layer)
from pystencils.stencil import direction_string_to_offset
FIELD_SIZES = [(32, 10), (10, 8, 6)]
def _generate_fields(dt=np.uint64, num_directions=1, layout='numpy'):
field_sizes = FIELD_SIZES
if num_directions > 1:
field_sizes = [s + (num_directions,) for s in field_sizes]
fields = []
for size in field_sizes:
field_layout = layout_string_to_tuple(layout, len(size))
src_arr = create_numpy_array_with_layout(size, field_layout, dtype=dt)
array_data = np.reshape(np.arange(1, int(np.prod(size) + 1)), size)
# Use flat iterator to input data into the array
src_arr.flat = add_ghost_layers(array_data, index_dimensions=1 if num_directions > 1 else 0).astype(dt).flat
dst_arr = np.zeros(src_arr.shape, dtype=dt)
buffer_arr = np.zeros(np.prod(src_arr.shape), dtype=dt)
fields.append((src_arr, dst_arr, buffer_arr))
return fields
def test_full_scalar_field():
"""Tests fully (un)packing a scalar field (from)to a buffer."""
fields = _generate_fields()
for (src_arr, dst_arr, buffer_arr) in fields:
src_field = Field.create_from_numpy_array("src_field", src_arr)
dst_field = Field.create_from_numpy_array("dst_field", dst_arr)
buffer = Field.create_generic("buffer", spatial_dimensions=1,
field_type=FieldType.BUFFER, dtype=src_arr.dtype)
pack_eqs = [Assignment(buffer.center(), src_field.center())]
config = ps.CreateKernelConfig(data_type={'src_field': src_arr.dtype, 'buffer': buffer.dtype})
pack_code = create_kernel(pack_eqs, config=config)
code = ps.get_code_str(pack_code)
ps.show_code(pack_code)
pack_kernel = pack_code.compile()
pack_kernel(buffer=buffer_arr, src_field=src_arr)
unpack_eqs = [Assignment(dst_field.center(), buffer.center())]
config = ps.CreateKernelConfig(data_type={'dst_field': dst_arr.dtype, 'buffer': buffer.dtype})
unpack_code = create_kernel(unpack_eqs, config=config)
unpack_kernel = unpack_code.compile()
unpack_kernel(dst_field=dst_arr, buffer=buffer_arr)
np.testing.assert_equal(src_arr, dst_arr)
def test_field_slice():
"""Tests (un)packing slices of a scalar field (from)to a buffer."""
fields = _generate_fields()
for d in ['N', 'S', 'NW', 'SW', 'TNW', 'B']:
for (src_arr, dst_arr, bufferArr) in fields:
# Extract slice from N direction of the field
slice_dir = direction_string_to_offset(d, dim=len(src_arr.shape))
pack_slice = get_slice_before_ghost_layer(slice_dir)
unpack_slice = get_ghost_region_slice(slice_dir)
src_field = Field.create_from_numpy_array("src_field", src_arr[pack_slice])
dst_field = Field.create_from_numpy_array("dst_field", dst_arr[unpack_slice])
buffer = Field.create_generic("buffer", spatial_dimensions=1,
field_type=FieldType.BUFFER, dtype=src_arr.dtype)
pack_eqs = [Assignment(buffer.center(), src_field.center())]
config = ps.CreateKernelConfig(data_type={'src_field': src_arr.dtype, 'buffer': buffer.dtype})
pack_code = create_kernel(pack_eqs, config=config)
pack_kernel = pack_code.compile()
pack_kernel(buffer=bufferArr, src_field=src_arr[pack_slice])
# Unpack into ghost layer of dst_field in N direction
unpack_eqs = [Assignment(dst_field.center(), buffer.center())]
config = ps.CreateKernelConfig(data_type={'dst_field': dst_arr.dtype, 'buffer': buffer.dtype})
unpack_code = create_kernel(unpack_eqs, config=config)
unpack_kernel = unpack_code.compile()
unpack_kernel(buffer=bufferArr, dst_field=dst_arr[unpack_slice])
np.testing.assert_equal(src_arr[pack_slice], dst_arr[unpack_slice])
def test_all_cell_values():
"""Tests (un)packing all cell values of the a field (from)to a buffer."""
num_cell_values = 19
fields = _generate_fields(num_directions=num_cell_values)
for (src_arr, dst_arr, bufferArr) in fields:
src_field = Field.create_from_numpy_array("src_field", src_arr, index_dimensions=1)
dst_field = Field.create_from_numpy_array("dst_field", dst_arr, index_dimensions=1)
buffer = Field.create_generic("buffer", spatial_dimensions=1, index_dimensions=1,
field_type=FieldType.BUFFER, dtype=src_arr.dtype)
pack_eqs = []
# Since we are packing all cell values for all cells, then
# the buffer index is equivalent to the field index
for idx in range(num_cell_values):
eq = Assignment(buffer(idx), src_field(idx))
pack_eqs.append(eq)
config = ps.CreateKernelConfig(data_type={'src_field': src_arr.dtype, 'buffer': buffer.dtype})
pack_code = create_kernel(pack_eqs, config=config)
pack_kernel = pack_code.compile()
pack_kernel(buffer=bufferArr, src_field=src_arr)
unpack_eqs = []
for idx in range(num_cell_values):
eq = Assignment(dst_field(idx), buffer(idx))
unpack_eqs.append(eq)
config = ps.CreateKernelConfig(data_type={'dst_field': dst_arr.dtype, 'buffer': buffer.dtype})
unpack_code = create_kernel(unpack_eqs, config=config)
unpack_kernel = unpack_code.compile()
unpack_kernel(buffer=bufferArr, dst_field=dst_arr)
np.testing.assert_equal(src_arr, dst_arr)
def test_subset_cell_values():
"""Tests (un)packing a subset of cell values of the a field (from)to a buffer."""
num_cell_values = 19
# Cell indices of the field to be (un)packed (from)to the buffer
cell_indices = [1, 5, 7, 8, 10, 12, 13]
fields = _generate_fields(num_directions=num_cell_values)
for (src_arr, dst_arr, bufferArr) in fields:
src_field = Field.create_from_numpy_array("src_field", src_arr, index_dimensions=1)
dst_field = Field.create_from_numpy_array("dst_field", dst_arr, index_dimensions=1)
buffer = Field.create_generic("buffer", spatial_dimensions=1, index_dimensions=1,
field_type=FieldType.BUFFER, dtype=src_arr.dtype)
pack_eqs = []
# Since we are packing all cell values for all cells, then
# the buffer index is equivalent to the field index
for buffer_idx, cell_idx in enumerate(cell_indices):
eq = Assignment(buffer(buffer_idx), src_field(cell_idx))
pack_eqs.append(eq)
config = ps.CreateKernelConfig(data_type={'src_field': src_arr.dtype, 'buffer': buffer.dtype})
pack_code = create_kernel(pack_eqs, config=config)
pack_kernel = pack_code.compile()
pack_kernel(buffer=bufferArr, src_field=src_arr)
unpack_eqs = []
for buffer_idx, cell_idx in enumerate(cell_indices):
eq = Assignment(dst_field(cell_idx), buffer(buffer_idx))
unpack_eqs.append(eq)
config = ps.CreateKernelConfig(data_type={'dst_field': dst_arr.dtype, 'buffer': buffer.dtype})
unpack_code = create_kernel(unpack_eqs, config=config)
unpack_kernel = unpack_code.compile()
unpack_kernel(buffer=bufferArr, dst_field=dst_arr)
mask_arr = np.ma.masked_where((src_arr - dst_arr) != 0, src_arr)
np.testing.assert_equal(dst_arr, mask_arr.filled(int(0)))
def test_field_layouts():
num_cell_values = 27
for layout_str in ['numpy', 'fzyx', 'zyxf', 'reverse_numpy']:
fields = _generate_fields(num_directions=num_cell_values, layout=layout_str)
for (src_arr, dst_arr, bufferArr) in fields:
src_field = Field.create_from_numpy_array("src_field", src_arr, index_dimensions=1)
dst_field = Field.create_from_numpy_array("dst_field", dst_arr, index_dimensions=1)
buffer = Field.create_generic("buffer", spatial_dimensions=1, index_dimensions=1,
field_type=FieldType.BUFFER, dtype=src_arr.dtype)
pack_eqs = []
# Since we are packing all cell values for all cells, then
# the buffer index is equivalent to the field index
for idx in range(num_cell_values):
eq = Assignment(buffer(idx), src_field(idx))
pack_eqs.append(eq)
config = ps.CreateKernelConfig(data_type={'src_field': src_arr.dtype, 'buffer': buffer.dtype})
pack_code = create_kernel(pack_eqs, config=config)
pack_kernel = pack_code.compile()
pack_kernel(buffer=bufferArr, src_field=src_arr)
unpack_eqs = []
for idx in range(num_cell_values):
eq = Assignment(dst_field(idx), buffer(idx))
unpack_eqs.append(eq)
config = ps.CreateKernelConfig(data_type={'dst_field': dst_arr.dtype, 'buffer': buffer.dtype})
unpack_code = create_kernel(unpack_eqs, config=config)
unpack_kernel = unpack_code.compile()
unpack_kernel(buffer=bufferArr, dst_field=dst_arr)
def test_iteration_slices():
num_cell_values = 19
dt = np.uint64
fields = _generate_fields(dt=dt, num_directions=num_cell_values)
for (src_arr, dst_arr, bufferArr) in fields:
spatial_dimensions = len(src_arr.shape) - 1
# src_field = Field.create_from_numpy_array("src_field", src_arr, index_dimensions=1)
# dst_field = Field.create_from_numpy_array("dst_field", dst_arr, index_dimensions=1)
src_field = Field.create_generic("src_field", spatial_dimensions, index_shape=(num_cell_values,), dtype=dt)
dst_field = Field.create_generic("dst_field", spatial_dimensions, index_shape=(num_cell_values,), dtype=dt)
buffer = Field.create_generic("buffer", spatial_dimensions=1, index_dimensions=1,
field_type=FieldType.BUFFER, dtype=src_arr.dtype)
pack_eqs = []
# Since we are packing all cell values for all cells, then
# the buffer index is equivalent to the field index
for idx in range(num_cell_values):
eq = Assignment(buffer(idx), src_field(idx))
pack_eqs.append(eq)
dim = src_field.spatial_dimensions
# Pack only the leftmost slice, only every second cell
pack_slice = (slice(None, None, 2),) * (dim - 1) + (0,)
# Fill the entire array with data
src_arr[(slice(None, None, 1),) * dim] = np.arange(num_cell_values)
dst_arr.fill(0)
config = ps.CreateKernelConfig(iteration_slice=pack_slice,
data_type={'src_field': src_arr.dtype, 'buffer': buffer.dtype})
pack_code = create_kernel(pack_eqs, config=config)
pack_kernel = pack_code.compile()
pack_kernel(buffer=bufferArr, src_field=src_arr)
unpack_eqs = []
for idx in range(num_cell_values):
eq = Assignment(dst_field(idx), buffer(idx))
unpack_eqs.append(eq)
config = ps.CreateKernelConfig(iteration_slice=pack_slice,
data_type={'dst_field': dst_arr.dtype, 'buffer': buffer.dtype})
unpack_code = create_kernel(unpack_eqs, config=config)
unpack_kernel = unpack_code.compile()
unpack_kernel(buffer=bufferArr, dst_field=dst_arr)
# Check if only every second entry of the leftmost slice has been copied
np.testing.assert_equal(dst_arr[pack_slice], src_arr[pack_slice])
np.testing.assert_equal(dst_arr[(slice(1, None, 2),) * (dim - 1) + (0,)], 0)
np.testing.assert_equal(dst_arr[(slice(None, None, 1),) * (dim - 1) + (slice(1, None),)], 0)
"""Tests for the (un)packing (from)to buffers on a CUDA GPU."""
from dataclasses import replace
import numpy as np
import pytest
import pystencils
from pystencils import Assignment, Field, FieldType, Target, CreateKernelConfig, create_kernel, fields
from pystencils.bit_masks import flag_cond
from pystencils.field import create_numpy_array_with_layout, layout_string_to_tuple
from pystencils.slicing import (
add_ghost_layers, get_ghost_region_slice, get_slice_before_ghost_layer)
from pystencils.stencil import direction_string_to_offset
try:
# noinspection PyUnresolvedReferences
import cupy as cp
except ImportError:
pass
FIELD_SIZES = [(4, 3), (9, 3, 7)]
def _generate_fields(dt=np.uint8, stencil_directions=1, layout='numpy'):
pytest.importorskip('cupy')
field_sizes = FIELD_SIZES
if stencil_directions > 1:
field_sizes = [s + (stencil_directions,) for s in field_sizes]
fields = []
for size in field_sizes:
field_layout = layout_string_to_tuple(layout, len(size))
src_arr = create_numpy_array_with_layout(size, field_layout).astype(dt)
array_data = np.reshape(np.arange(1, int(np.prod(size)+1)), size)
# Use flat iterator to input data into the array
src_arr.flat = add_ghost_layers(array_data,
index_dimensions=1 if stencil_directions > 1 else 0).astype(dt).flat
gpu_src_arr = cp.asarray(src_arr)
gpu_dst_arr = cp.zeros_like(gpu_src_arr)
size = int(np.prod(src_arr.shape))
gpu_buffer_arr = cp.zeros(size, dtype=dt)
fields.append((src_arr, gpu_src_arr, gpu_dst_arr, gpu_buffer_arr))
return fields
def test_full_scalar_field():
"""Tests fully (un)packing a scalar field (from)to a GPU buffer."""
fields = _generate_fields()
for (src_arr, gpu_src_arr, gpu_dst_arr, gpu_buffer_arr) in fields:
src_field = Field.create_from_numpy_array("src_field", src_arr)
dst_field = Field.create_from_numpy_array("dst_field", src_arr)
buffer = Field.create_generic("buffer", spatial_dimensions=1,
field_type=FieldType.BUFFER, dtype=src_arr.dtype)
pack_eqs = [Assignment(buffer.center(), src_field.center())]
pack_types = {'src_field': gpu_src_arr.dtype, 'buffer': gpu_buffer_arr.dtype}
config = CreateKernelConfig(target=pystencils.Target.GPU, data_type=pack_types)
pack_ast = create_kernel(pack_eqs, config=config)
pack_kernel = pack_ast.compile()
pack_kernel(buffer=gpu_buffer_arr, src_field=gpu_src_arr)
unpack_eqs = [Assignment(dst_field.center(), buffer.center())]
unpack_types = {'dst_field': gpu_dst_arr.dtype, 'buffer': gpu_buffer_arr.dtype}
config = CreateKernelConfig(target=pystencils.Target.GPU, data_type=unpack_types)
unpack_ast = create_kernel(unpack_eqs, config=config)
unpack_kernel = unpack_ast.compile()
unpack_kernel(dst_field=gpu_dst_arr, buffer=gpu_buffer_arr)
dst_arr = gpu_dst_arr.get()
np.testing.assert_equal(src_arr, dst_arr)
def test_field_slice():
"""Tests (un)packing slices of a scalar field (from)to a buffer."""
fields = _generate_fields()
for d in ['N', 'S', 'NW', 'SW', 'TNW', 'B']:
for (src_arr, gpu_src_arr, gpu_dst_arr, gpu_buffer_arr) in fields:
# Extract slice from N direction of the field
slice_dir = direction_string_to_offset(d, dim=len(src_arr.shape))
pack_slice = get_slice_before_ghost_layer(slice_dir)
unpack_slice = get_ghost_region_slice(slice_dir)
src_field = Field.create_from_numpy_array("src_field", src_arr[pack_slice])
dst_field = Field.create_from_numpy_array("dst_field", src_arr[unpack_slice])
buffer = Field.create_generic("buffer", spatial_dimensions=1,
field_type=FieldType.BUFFER, dtype=src_arr.dtype)
pack_eqs = [Assignment(buffer.center(), src_field.center())]
pack_types = {'src_field': gpu_src_arr.dtype, 'buffer': gpu_buffer_arr.dtype}
config = CreateKernelConfig(target=pystencils.Target.GPU, data_type=pack_types)
pack_ast = create_kernel(pack_eqs, config=config)
pack_kernel = pack_ast.compile()
pack_kernel(buffer=gpu_buffer_arr, src_field=gpu_src_arr[pack_slice])
# Unpack into ghost layer of dst_field in N direction
unpack_eqs = [Assignment(dst_field.center(), buffer.center())]
unpack_types = {'dst_field': gpu_dst_arr.dtype, 'buffer': gpu_buffer_arr.dtype}
config = CreateKernelConfig(target=pystencils.Target.GPU, data_type=unpack_types)
unpack_ast = create_kernel(unpack_eqs, config=config)
unpack_kernel = unpack_ast.compile()
unpack_kernel(buffer=gpu_buffer_arr, dst_field=gpu_dst_arr[unpack_slice])
dst_arr = gpu_dst_arr.get()
np.testing.assert_equal(src_arr[pack_slice], dst_arr[unpack_slice])
def test_all_cell_values():
"""Tests (un)packing all cell values of the a field (from)to a buffer."""
num_cell_values = 7
fields = _generate_fields(stencil_directions=num_cell_values)
for (src_arr, gpu_src_arr, gpu_dst_arr, gpu_buffer_arr) in fields:
src_field = Field.create_from_numpy_array("src_field", gpu_src_arr, index_dimensions=1)
dst_field = Field.create_from_numpy_array("dst_field", gpu_src_arr, index_dimensions=1)
buffer = Field.create_generic("buffer", spatial_dimensions=1, index_dimensions=1,
field_type=FieldType.BUFFER, dtype=gpu_src_arr.dtype)
pack_eqs = []
# Since we are packing all cell values for all cells, then
# the buffer index is equivalent to the field index
for idx in range(num_cell_values):
eq = Assignment(buffer(idx), src_field(idx))
pack_eqs.append(eq)
pack_types = {'src_field': gpu_src_arr.dtype, 'buffer': gpu_buffer_arr.dtype}
config = CreateKernelConfig(target=pystencils.Target.GPU, data_type=pack_types)
pack_code = create_kernel(pack_eqs, config=config)
pack_kernel = pack_code.compile()
pack_kernel(buffer=gpu_buffer_arr, src_field=gpu_src_arr)
unpack_eqs = []
for idx in range(num_cell_values):
eq = Assignment(dst_field(idx), buffer(idx))
unpack_eqs.append(eq)
unpack_types = {'dst_field': gpu_dst_arr.dtype, 'buffer': gpu_buffer_arr.dtype}
config = CreateKernelConfig(target=pystencils.Target.GPU, data_type=unpack_types)
unpack_ast = create_kernel(unpack_eqs, config=config)
unpack_kernel = unpack_ast.compile()
unpack_kernel(buffer=gpu_buffer_arr, dst_field=gpu_dst_arr)
dst_arr = gpu_dst_arr.get()
np.testing.assert_equal(src_arr, dst_arr)
def test_subset_cell_values():
"""Tests (un)packing a subset of cell values of a field (from)to a buffer."""
num_cell_values = 7
# Cell indices of the field to be (un)packed (from)to the buffer
cell_indices = [1, 3, 5, 6]
fields = _generate_fields(stencil_directions=num_cell_values)
for (src_arr, gpu_src_arr, gpu_dst_arr, gpu_buffer_arr) in fields:
src_field = Field.create_from_numpy_array("src_field", gpu_src_arr, index_dimensions=1)
dst_field = Field.create_from_numpy_array("dst_field", gpu_src_arr, index_dimensions=1)
buffer = Field.create_generic("buffer", spatial_dimensions=1, index_dimensions=1,
field_type=FieldType.BUFFER, dtype=gpu_src_arr.dtype)
pack_eqs = []
# Since we are packing all cell values for all cells, then
# the buffer index is equivalent to the field index
for buffer_idx, cell_idx in enumerate(cell_indices):
eq = Assignment(buffer(buffer_idx), src_field(cell_idx))
pack_eqs.append(eq)
pack_types = {'src_field': gpu_src_arr.dtype, 'buffer': gpu_buffer_arr.dtype}
config = CreateKernelConfig(target=pystencils.Target.GPU, data_type=pack_types)
pack_ast = create_kernel(pack_eqs, config=config)
pack_kernel = pack_ast.compile()
pack_kernel(buffer=gpu_buffer_arr, src_field=gpu_src_arr)
unpack_eqs = []
for buffer_idx, cell_idx in enumerate(cell_indices):
eq = Assignment(dst_field(cell_idx), buffer(buffer_idx))
unpack_eqs.append(eq)
unpack_types = {'dst_field': gpu_dst_arr.dtype, 'buffer': gpu_buffer_arr.dtype}
config = CreateKernelConfig(target=pystencils.Target.GPU, data_type=unpack_types)
unpack_ast = create_kernel(unpack_eqs, config=config)
unpack_kernel = unpack_ast.compile()
unpack_kernel(buffer=gpu_buffer_arr, dst_field=gpu_dst_arr)
dst_arr = gpu_dst_arr.get()
mask_arr = np.ma.masked_where((src_arr - dst_arr) != 0, src_arr)
np.testing.assert_equal(dst_arr, mask_arr.filled(int(0)))
def test_field_layouts():
num_cell_values = 7
for layout_str in ['numpy', 'fzyx', 'zyxf', 'reverse_numpy']:
fields = _generate_fields(stencil_directions=num_cell_values, layout=layout_str)
for (src_arr, gpu_src_arr, gpu_dst_arr, gpu_buffer_arr) in fields:
src_field = Field.create_from_numpy_array("src_field", gpu_src_arr, index_dimensions=1)
dst_field = Field.create_from_numpy_array("dst_field", gpu_src_arr, index_dimensions=1)
buffer = Field.create_generic("buffer", spatial_dimensions=1, index_dimensions=1,
field_type=FieldType.BUFFER, dtype=src_arr.dtype)
pack_eqs = []
# Since we are packing all cell values for all cells, then
# the buffer index is equivalent to the field index
for idx in range(num_cell_values):
eq = Assignment(buffer(idx), src_field(idx))
pack_eqs.append(eq)
pack_types = {'src_field': gpu_src_arr.dtype, 'buffer': gpu_buffer_arr.dtype}
config = CreateKernelConfig(target=pystencils.Target.GPU, data_type=pack_types)
pack_ast = create_kernel(pack_eqs, config=config)
pack_kernel = pack_ast.compile()
pack_kernel(buffer=gpu_buffer_arr, src_field=gpu_src_arr)
unpack_eqs = []
for idx in range(num_cell_values):
eq = Assignment(dst_field(idx), buffer(idx))
unpack_eqs.append(eq)
unpack_types = {'dst_field': gpu_dst_arr.dtype, 'buffer': gpu_buffer_arr.dtype}
config = CreateKernelConfig(target=pystencils.Target.GPU, data_type=unpack_types)
unpack_ast = create_kernel(unpack_eqs, config=config)
unpack_kernel = unpack_ast.compile()
unpack_kernel(buffer=gpu_buffer_arr, dst_field=gpu_dst_arr)
def test_buffer_indexing():
src_field, dst_field = fields(f'pdfs_src(19), pdfs_dst(19) :double[3D]')
mask_field = fields(f'mask : uint32 [3D]')
buffer = Field.create_generic('buffer', spatial_dimensions=1, field_type=FieldType.BUFFER,
dtype="float64",
index_shape=(19,))
src_field_size = src_field.spatial_shape
mask_field_size = mask_field.spatial_shape
up = Assignment(buffer(0), flag_cond(1, mask_field.center, src_field[0, 1, 0](1)))
iteration_slice = tuple(slice(None, None, 2) for _ in range(3))
config = CreateKernelConfig(target=Target.GPU)
config = replace(config, iteration_slice=iteration_slice, ghost_layers=0)
ast = create_kernel(up, config=config)
parameters = ast.get_parameters()
spatial_shape_symbols = [p.symbol for p in parameters if p.is_field_shape]
# The loop counters as well as the resolved field access should depend on one common spatial shape
if spatial_shape_symbols[0] in mask_field_size:
for s in spatial_shape_symbols:
assert s in mask_field_size
if spatial_shape_symbols[0] in src_field_size:
for s in spatial_shape_symbols:
assert s in src_field_size
assert len(spatial_shape_symbols) <= 3
@pytest.mark.parametrize('gpu_indexing', ("block", "line"))
def test_iteration_slices(gpu_indexing):
num_cell_values = 19
dt = np.uint64
fields = _generate_fields(dt=dt, stencil_directions=num_cell_values)
for (src_arr, gpu_src_arr, gpu_dst_arr, gpu_buffer_arr) in fields:
src_field = Field.create_from_numpy_array("src_field", gpu_src_arr, index_dimensions=1)
dst_field = Field.create_from_numpy_array("dst_field", gpu_src_arr, index_dimensions=1)
buffer = Field.create_generic("buffer", spatial_dimensions=1, index_dimensions=1,
field_type=FieldType.BUFFER, dtype=src_arr.dtype)
pack_eqs = []
# Since we are packing all cell values for all cells, then
# the buffer index is equivalent to the field index
for idx in range(num_cell_values):
eq = Assignment(buffer(idx), src_field(idx))
pack_eqs.append(eq)
dim = src_field.spatial_dimensions
# Pack only the leftmost slice, only every second cell
pack_slice = (slice(None, None, 2),) * (dim - 1) + (0,)
# Fill the entire array with data
src_arr[(slice(None, None, 1),) * dim] = np.arange(num_cell_values)
gpu_src_arr.set(src_arr)
gpu_dst_arr.fill(0)
config = CreateKernelConfig(target=Target.GPU, iteration_slice=pack_slice,
data_type={'src_field': gpu_src_arr.dtype, 'buffer': gpu_buffer_arr.dtype},
gpu_indexing=gpu_indexing)
pack_code = create_kernel(pack_eqs, config=config)
pack_kernel = pack_code.compile()
pack_kernel(buffer=gpu_buffer_arr, src_field=gpu_src_arr)
unpack_eqs = []
for idx in range(num_cell_values):
eq = Assignment(dst_field(idx), buffer(idx))
unpack_eqs.append(eq)
config = CreateKernelConfig(target=Target.GPU, iteration_slice=pack_slice,
data_type={'dst_field': gpu_dst_arr.dtype, 'buffer': gpu_buffer_arr.dtype},
gpu_indexing=gpu_indexing)
unpack_code = create_kernel(unpack_eqs, config=config)
unpack_kernel = unpack_code.compile()
unpack_kernel(buffer=gpu_buffer_arr, dst_field=gpu_dst_arr)
dst_arr = gpu_dst_arr.get()
src_arr = gpu_src_arr.get()
# Check if only every second entry of the leftmost slice has been copied
np.testing.assert_equal(dst_arr[pack_slice], src_arr[pack_slice])
np.testing.assert_equal(dst_arr[(slice(1, None, 2),) * (dim - 1) + (0,)], 0)
np.testing.assert_equal(dst_arr[(slice(None, None, 1),) * (dim - 1) + (slice(1, None),)], 0)
# -*- coding: utf-8 -*-
#
# Copyright © 2019 Stephan Seitz <stephan.seitz@fau.de>
#
# Distributed under terms of the GPLv3 license.
"""
"""
import itertools
import numpy as np
import pytest
import sympy as sp
import pystencils as ps
from pystencils import Field, x_vector
from pystencils.astnodes import ConditionalFieldAccess
from pystencils.simp import sympy_cse
def add_fixed_constant_boundary_handling(assignments, with_cse):
common_shape = next(iter(set().union(itertools.chain.from_iterable(
[a.atoms(Field.Access) for a in assignments]
)))).field.spatial_shape
ndim = len(common_shape)
def is_out_of_bound(access, shape):
return sp.Or(*[sp.Or(a < 0, a >= s) for a, s in zip(access, shape)])
safe_assignments = [ps.Assignment(
assignment.lhs, assignment.rhs.subs({
a: ConditionalFieldAccess(a, is_out_of_bound(sp.Matrix(a.offsets) + x_vector(ndim), common_shape))
for a in assignment.rhs.atoms(Field.Access) if not a.is_absolute_access
})) for assignment in assignments.all_assignments]
# subs = [{a: ConditionalFieldAccess(a, is_out_of_bound(
# sp.Matrix(a.offsets) + x_vector(ndim), common_shape))
# for a in assignment.rhs.atoms(Field.Access) if not a.is_absolute_access
# } for assignment in assignments.all_assignments]
# print(subs)
if with_cse:
safe_assignments = sympy_cse(ps.AssignmentCollection(safe_assignments))
return safe_assignments
else:
return ps.AssignmentCollection(safe_assignments)
@pytest.mark.parametrize('dtype', ('float64', 'float32'))
@pytest.mark.parametrize('with_cse', (False, 'with_cse'))
def test_boundary_check(dtype, with_cse):
f, g = ps.fields(f"f, g : {dtype}[2D]")
stencil = ps.Assignment(g[0, 0], (f[1, 0] + f[-1, 0] + f[0, 1] + f[0, -1]) / 4)
f_arr = np.random.rand(10, 10).astype(dtype=dtype)
g_arr = np.zeros_like(f_arr)
assignments = add_fixed_constant_boundary_handling(ps.AssignmentCollection([stencil]), with_cse)
config = ps.CreateKernelConfig(data_type=dtype, default_number_float=dtype, ghost_layers=0)
kernel_checked = ps.create_kernel(assignments, config=config).compile()
# ps.show_code(kernel_checked)
# No SEGFAULT, please!!
kernel_checked(f=f_arr, g=g_arr)
import numpy as np
import sympy as sp
import pytest
import pystencils as ps
from pystencils.alignedarray import aligned_zeros
from pystencils.astnodes import Block, Conditional, SympyAssignment
from pystencils.backends.simd_instruction_sets import get_supported_instruction_sets, get_vector_instruction_set
from pystencils.enums import Target
from pystencils.cpu.vectorization import vec_all, vec_any
from pystencils.node_collection import NodeCollection
supported_instruction_sets = get_supported_instruction_sets() if get_supported_instruction_sets() else []
@pytest.mark.parametrize('instruction_set', supported_instruction_sets)
@pytest.mark.parametrize('dtype', ('float32', 'float64'))
def test_vec_any(instruction_set, dtype):
if instruction_set in ['sve', 'sve2', 'sme', 'rvv']:
width = 4 # we don't know the actual value
else:
width = get_vector_instruction_set(dtype, instruction_set)['width']
data_arr = np.zeros((4 * width, 4 * width), dtype=dtype)
data_arr[3:9, 1:3 * width - 1] = 1.0
data = ps.fields(f"data: {dtype}[2D]", data=data_arr)
c = [
SympyAssignment(sp.Symbol("t1"), vec_any(data.center() > 0.0)),
Conditional(vec_any(data.center() > 0.0), Block([SympyAssignment(data.center(), 2.0)]))
]
assignmets = NodeCollection(c)
ast = ps.create_kernel(assignments=assignmets, target=ps.Target.CPU,
cpu_vectorize_info={'instruction_set': instruction_set})
kernel = ast.compile()
kernel(data=data_arr)
if instruction_set in ['sve', 'sve2', 'sme', 'rvv']:
# we only know that the first value has changed
np.testing.assert_equal(data_arr[3:9, :3 * width - 1], 2.0)
else:
np.testing.assert_equal(data_arr[3:9, :3 * width], 2.0)
@pytest.mark.parametrize('instruction_set', supported_instruction_sets)
@pytest.mark.parametrize('dtype', ('float32', 'float64'))
def test_vec_all(instruction_set, dtype):
if instruction_set in ['sve', 'sve2', 'sme', 'rvv']:
width = 1000 # we don't know the actual value, need something guaranteed larger than vector
else:
width = get_vector_instruction_set(dtype, instruction_set)['width']
data_arr = np.zeros((4 * width, 4 * width), dtype=dtype)
data_arr[3:9, 1:3 * width - 1] = 1.0
data = ps.fields(f"data: {dtype}[2D]", data=data_arr)
c = [Conditional(vec_all(data.center() > 0.0), Block([SympyAssignment(data.center(), 2.0)]))]
assignmets = NodeCollection(c)
ast = ps.create_kernel(assignmets, target=Target.CPU,
cpu_vectorize_info={'instruction_set': instruction_set})
kernel = ast.compile()
kernel(data=data_arr)
if instruction_set in ['sve', 'sve2', 'sme', 'rvv']:
# we only know that some values in the middle have been replaced
assert np.all(data_arr[3:9, :2] <= 1.0)
assert np.any(data_arr[3:9, 2:] == 2.0)
else:
np.testing.assert_equal(data_arr[3:9, :1], 0.0)
np.testing.assert_equal(data_arr[3:9, 1:width], 1.0)
np.testing.assert_equal(data_arr[3:9, width:2 * width], 2.0)
np.testing.assert_equal(data_arr[3:9, 2 * width:3 * width - 1], 1.0)
np.testing.assert_equal(data_arr[3:9, 3 * width - 1:], 0.0)
@pytest.mark.skipif(not supported_instruction_sets, reason='cannot detect CPU instruction set')
def test_boolean_before_loop():
t1, t2 = sp.symbols('t1, t2')
f_arr = np.ones((10, 10))
g_arr = np.zeros_like(f_arr)
f, g = ps.fields("f, g : double[2D]", f=f_arr, g=g_arr)
a = [
ps.Assignment(t1, t2 > 0),
ps.Assignment(g[0, 0],
sp.Piecewise((f[0, 0], t1), (42, True)))
]
ast = ps.create_kernel(a, cpu_vectorize_info={'instruction_set': supported_instruction_sets[-1]})
kernel = ast.compile()
kernel(f=f_arr, g=g_arr, t2=1.0)
# print(g)
np.testing.assert_array_equal(g_arr, 1.0)
kernel(f=f_arr, g=g_arr, t2=-1.0)
np.testing.assert_array_equal(g_arr, 42.0)
@pytest.mark.parametrize('instruction_set', supported_instruction_sets)
@pytest.mark.parametrize('dtype', ('float32', 'float64'))
@pytest.mark.parametrize('nontemporal', [False, True])
@pytest.mark.parametrize('aligned', [False, True])
def test_vec_maskstore(instruction_set, dtype, nontemporal, aligned):
data_arr = (aligned_zeros if aligned else np.zeros)((16, 16), dtype=dtype)
data_arr[3:-3, 3:-3] = 1.0
data = ps.fields(f"data: {dtype}[2D]", data=data_arr)
c = [Conditional(data.center() < 1.0, Block([SympyAssignment(data.center(), 2.0)]))]
assignmets = NodeCollection(c)
config = ps.CreateKernelConfig(cpu_vectorize_info={'instruction_set': instruction_set,
'nontemporal': nontemporal,
'assume_aligned': aligned},
default_number_float=dtype)
ast = ps.create_kernel(assignmets, config=config)
if 'maskStore' in ast.instruction_set:
instruction = 'maskStream' if nontemporal and 'maskStream' in ast.instruction_set else (
'maskStoreA' if aligned and 'maskStoreA' in ast.instruction_set else 'maskStore')
assert ast.instruction_set[instruction].split('{')[0] in ps.get_code_str(ast)
print(ps.get_code_str(ast))
kernel = ast.compile()
kernel(data=data_arr)
np.testing.assert_equal(data_arr[:3, :], 2.0)
np.testing.assert_equal(data_arr[-3:, :], 2.0)
np.testing.assert_equal(data_arr[:, :3], 2.0)
np.testing.assert_equal(data_arr[:, -3:], 2.0)
np.testing.assert_equal(data_arr[3:-3, 3:-3], 1.0)
@pytest.mark.parametrize('instruction_set', supported_instruction_sets)
@pytest.mark.parametrize('dtype', ('float32', 'float64'))
@pytest.mark.parametrize('nontemporal', [False, True])
def test_vec_maskscatter(instruction_set, dtype, nontemporal):
data_arr = np.zeros((16, 16), dtype=dtype)
data_arr[3:-3, 3:-3] = 1.0
data = ps.fields(f"data: {dtype}[2D]")
c = [Conditional(data.center() < 1.0, Block([SympyAssignment(data.center(), 2.0)]))]
assignmets = NodeCollection(c)
config = ps.CreateKernelConfig(cpu_vectorize_info={'instruction_set': instruction_set,
'nontemporal': nontemporal},
default_number_float=dtype)
if 'maskStoreS' not in get_vector_instruction_set(dtype, instruction_set) \
and not instruction_set.startswith('sve'):
with pytest.warns(UserWarning) as warn:
ast = ps.create_kernel(assignmets, config=config)
assert 'Could not vectorize loop' in warn[0].message.args[0]
else:
with pytest.warns(None) as warn:
ast = ps.create_kernel(assignmets, config=config)
assert len(warn) == 0
instruction = 'maskStreamS' if nontemporal and 'maskStreamS' in ast.instruction_set else 'maskStoreS'
assert ast.instruction_set[instruction].split('{')[0] in ps.get_code_str(ast)
print(ps.get_code_str(ast))
kernel = ast.compile()
kernel(data=data_arr)
np.testing.assert_equal(data_arr[:3, :], 2.0)
np.testing.assert_equal(data_arr[-3:, :], 2.0)
np.testing.assert_equal(data_arr[:, :3], 2.0)
np.testing.assert_equal(data_arr[:, -3:], 2.0)
np.testing.assert_equal(data_arr[3:-3, 3:-3], 1.0)
from collections import defaultdict
import numpy as np
import pytest
from pystencils import CreateKernelConfig, Target, Backend
from pystencils.typing import BasicType
def test_config():
# targets
config = CreateKernelConfig(target=Target.CPU)
assert config.target == Target.CPU
assert config.backend == Backend.C
config = CreateKernelConfig(target=Target.GPU)
assert config.target == Target.GPU
assert config.backend == Backend.CUDA
# typing
config = CreateKernelConfig(data_type=np.float64)
assert isinstance(config.data_type, defaultdict)
assert config.data_type.default_factory() == BasicType('float64')
assert config.default_number_float == BasicType('float64')
assert config.default_number_int == BasicType('int64')
config = CreateKernelConfig(data_type=np.float32)
assert isinstance(config.data_type, defaultdict)
assert config.data_type.default_factory() == BasicType('float32')
assert config.default_number_float == BasicType('float32')
assert config.default_number_int == BasicType('int64')
config = CreateKernelConfig(data_type=np.float32, default_number_float=np.float64)
assert isinstance(config.data_type, defaultdict)
assert config.data_type.default_factory() == BasicType('float32')
assert config.default_number_float == BasicType('float64')
assert config.default_number_int == BasicType('int64')
config = CreateKernelConfig(data_type=np.float32, default_number_float=np.float64, default_number_int=np.int16)
assert isinstance(config.data_type, defaultdict)
assert config.data_type.default_factory() == BasicType('float32')
assert config.default_number_float == BasicType('float64')
assert config.default_number_int == BasicType('int16')
config = CreateKernelConfig(data_type='float64')
assert isinstance(config.data_type, defaultdict)
assert config.data_type.default_factory() == BasicType('float64')
assert config.default_number_float == BasicType('float64')
assert config.default_number_int == BasicType('int64')
config = CreateKernelConfig(data_type={'a': np.float64, 'b': np.float32})
assert isinstance(config.data_type, defaultdict)
assert config.data_type.default_factory() == BasicType('float64')
assert config.default_number_float == BasicType('float64')
assert config.default_number_int == BasicType('int64')
config = CreateKernelConfig(data_type={'a': np.float32, 'b': np.int32})
assert isinstance(config.data_type, defaultdict)
assert config.data_type.default_factory() == BasicType('float32')
assert config.default_number_float == BasicType('float32')
assert config.default_number_int == BasicType('int64')
def test_config_target_as_string():
with pytest.raises(ValueError):
CreateKernelConfig(target='cpu')
def test_config_backend_as_string():
with pytest.raises(ValueError):
CreateKernelConfig(backend='C')
def test_config_python_types():
with pytest.raises(ValueError):
CreateKernelConfig(data_type=float)
def test_config_python_types2():
with pytest.raises(ValueError):
CreateKernelConfig(data_type={'a': float})
def test_config_python_types3():
with pytest.raises(ValueError):
CreateKernelConfig(default_number_float=float)
def test_config_python_types4():
with pytest.raises(ValueError):
CreateKernelConfig(default_number_int=int)
def test_config_python_types5():
with pytest.raises(ValueError):
CreateKernelConfig(data_type="float")
def test_config_python_types6():
with pytest.raises(ValueError):
CreateKernelConfig(default_number_float="float")
def test_config_python_types7():
dtype = defaultdict(lambda: 'float', {'a': np.float64, 'b': np.int64})
with pytest.raises(ValueError):
CreateKernelConfig(data_type=dtype)
def test_config_python_types8():
dtype = defaultdict(lambda: float, {'a': np.float64, 'b': np.int64})
with pytest.raises(ValueError):
CreateKernelConfig(data_type=dtype)
def test_config_python_types9():
dtype = defaultdict(lambda: 'float32', {'a': 'float', 'b': np.int64})
with pytest.raises(ValueError):
CreateKernelConfig(data_type=dtype)
def test_config_python_types10():
dtype = defaultdict(lambda: 'float32', {'a': float, 'b': np.int64})
with pytest.raises(ValueError):
CreateKernelConfig(data_type=dtype)
import numpy as np
import sympy as sp
import pystencils as ps
import pystencils.config
def test_create_kernel_config():
c = pystencils.config.CreateKernelConfig()
assert c.backend == ps.Backend.C
assert c.target == ps.Target.CPU
c = pystencils.config.CreateKernelConfig(target=ps.Target.GPU)
assert c.backend == ps.Backend.CUDA
c = pystencils.config.CreateKernelConfig(backend=ps.Backend.CUDA)
assert c.target == ps.Target.CPU
assert c.backend == ps.Backend.CUDA
def test_kernel_decorator_config():
config = pystencils.config.CreateKernelConfig()
a, b, c = ps.fields(a=np.ones(100), b=np.ones(100), c=np.ones(100))
@ps.kernel_config(config)
def test():
a[0] @= b[0] + c[0]
ps.create_kernel(**test)
def test_kernel_decorator2():
h = sp.symbols("h")
dtype = "float64"
src, dst = ps.fields(f"src, src_tmp: {dtype}[3D]")
@ps.kernel
def kernel_func():
dst[0, 0, 0] @= (src[1, 0, 0] + src[-1, 0, 0]
+ src[0, 1, 0] + src[0, -1, 0]
+ src[0, 0, 1] + src[0, 0, -1]) / (6 * h ** 2)
# assignments = ps.assignment_from_stencil(stencil, src, dst, normalization_factor=2)
ast = ps.create_kernel(kernel_func)
code = ps.get_code_str(ast)
from subprocess import CalledProcessError
import pytest
import pystencils
import pystencils.cpu.cpujit
from pystencils.backends.cbackend import CBackend
from pystencils.backends.cuda_backend import CudaBackend
from pystencils.enums import Target
class ScreamingBackend(CBackend):
def _print(self, node):
normal_code = super()._print(node)
return normal_code.upper()
class ScreamingGpuBackend(CudaBackend):
def _print(self, node):
normal_code = super()._print(node)
return normal_code.upper()
def test_custom_backends_cpu():
z, y, x = pystencils.fields("z, y, x: [2d]")
normal_assignments = pystencils.AssignmentCollection([pystencils.Assignment(
z[0, 0], x[0, 0] * x[0, 0] * y[0, 0])], [])
ast = pystencils.create_kernel(normal_assignments, target=Target.CPU)
pystencils.show_code(ast, ScreamingBackend())
with pytest.raises(CalledProcessError):
pystencils.cpu.cpujit.make_python_function(ast, custom_backend=ScreamingBackend())
def test_custom_backends_gpu():
pytest.importorskip('cupy')
import cupy
import pystencils.gpu.gpujit
z, x, y = pystencils.fields("z, y, x: [2d]")
normal_assignments = pystencils.AssignmentCollection([pystencils.Assignment(
z[0, 0], x[0, 0] * x[0, 0] * y[0, 0])], [])
ast = pystencils.create_kernel(normal_assignments, target=Target.GPU)
pystencils.show_code(ast, ScreamingGpuBackend())
with pytest.raises((cupy.cuda.compiler.JitifyException, cupy.cuda.compiler.CompileException)):
pystencils.gpu.gpujit.make_python_function(ast, custom_backend=ScreamingGpuBackend())
File added
File added
File added
File added
File added
File added