Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
No results found
Show changes
Showing
with 3221 additions and 0 deletions
from .cbackend import generate_c
__all__ = ['generate_c']
try:
from .dot import print_dot # NOQA
__all__.append('print_dot')
except ImportError:
pass
from pystencils.typing import CFunction
def get_argument_string(function_shortcut, first=''):
args = function_shortcut[function_shortcut.index('[') + 1: -1]
arg_string = "("
if first:
arg_string += first + ', '
for arg in args.split(","):
arg = arg.strip()
if not arg:
continue
if arg in ('0', '1', '2', '3', '4', '5'):
arg_string += "{" + arg + "},"
else:
arg_string += arg + ","
arg_string = arg_string[:-1] + ")"
return arg_string
def get_vector_instruction_set_arm(data_type='double', instruction_set='neon'):
if instruction_set not in ['neon', 'sme'] and not instruction_set.startswith('sve'):
raise NotImplementedError(instruction_set)
if instruction_set in ['sve', 'sve2', 'sme']:
cmp = 'cmp'
elif instruction_set.startswith('sve2') and instruction_set not in ('sve256', 'sve2048'):
cmp = 'cmp'
bitwidth = int(instruction_set[4:])
elif instruction_set.startswith('sve'):
cmp = 'cmp'
bitwidth = int(instruction_set[3:])
elif instruction_set == 'neon':
cmp = 'c'
bitwidth = 128
base_names = {
'+': 'add[0, 1]',
'-': 'sub[0, 1]',
'*': 'mul[0, 1]',
'/': 'div[0, 1]',
'sqrt': 'sqrt[0]',
'loadU': 'ld1[0]',
'storeU': 'st1[0, 1]',
'abs': 'abs[0]',
'==': f'{cmp}eq[0, 1]',
'!=': f'{cmp}eq[0, 1]',
'<=': f'{cmp}le[0, 1]',
'<': f'{cmp}lt[0, 1]',
'>=': f'{cmp}ge[0, 1]',
'>': f'{cmp}gt[0, 1]',
}
bits = {'double': 64,
'float': 32,
'int': 32}
result = dict()
if instruction_set in ['sve', 'sve2', 'sme']:
width = 'svcntd()' if data_type == 'double' else 'svcntw()'
intwidth = 'svcntw()'
result['bytes'] = 'svcntb()'
else:
width = bitwidth // bits[data_type]
intwidth = bitwidth // bits['int']
result['bytes'] = bitwidth // 8
if instruction_set.startswith('sve') or instruction_set == 'sme':
base_names['stream'] = 'stnt1[0, 1]'
prefix = 'sv'
suffix = f'_f{bits[data_type]}'
elif instruction_set == 'neon':
prefix = 'v'
suffix = f'q_f{bits[data_type]}'
if instruction_set in ['sve', 'sve2', 'sme']:
predicate = f'{prefix}whilelt_b{bits[data_type]}_u64({{loop_counter}}, {{loop_stop}})'
int_predicate = f'{prefix}whilelt_b{bits["int"]}_u64({{loop_counter}}, {{loop_stop}})'
else:
predicate = f'{prefix}whilelt_b{bits[data_type]}(0, {width})'
int_predicate = f'{prefix}whilelt_b{bits["int"]}(0, {intwidth})'
for intrinsic_id, function_shortcut in base_names.items():
function_shortcut = function_shortcut.strip()
name = function_shortcut[:function_shortcut.index('[')]
arg_string = get_argument_string(function_shortcut, first=predicate if prefix == 'sv' else '')
if prefix == 'sv' and not name.startswith('ld') and not name.startswith('st') and not name.startswith(cmp):
undef = '_x'
else:
undef = ''
result[intrinsic_id] = prefix + name + suffix + undef + arg_string
if instruction_set in ['sve', 'sve2', 'sme']:
result['width'] = CFunction(width, "int")
result['intwidth'] = CFunction(intwidth, "int")
else:
result['width'] = width
result['intwidth'] = intwidth
if instruction_set.startswith('sve') or instruction_set == 'sme':
result['makeVecConst'] = f'svdup_f{bits[data_type]}' + '({0})'
result['makeVecConstInt'] = f'svdup_s{bits["int"]}' + '({0})'
result['makeVecIndex'] = f'svindex_s{bits["int"]}' + '({0}, {1})'
if instruction_set != 'sme':
vindex = f'svindex_u{bits[data_type]}(0, {{0}})'
result['storeS'] = f'svst1_scatter_u{bits[data_type]}index_f{bits[data_type]}({predicate}, {{0}}, ' + \
vindex.format("{2}") + ', {1})'
result['loadS'] = f'svld1_gather_u{bits[data_type]}index_f{bits[data_type]}({predicate}, {{0}}, ' + \
vindex.format("{1}") + ')'
if instruction_set.startswith('sve2') and instruction_set not in ('sve256', 'sve2048'):
result['streamS'] = f'svstnt1_scatter_u{bits[data_type]}offset_f{bits[data_type]}({predicate}, {{0}}, ' + \
vindex.format(f"{{2}}*{bits[data_type]//8}") + ', {1})'
result['+int'] = f"svadd_s{bits['int']}_x({int_predicate}, " + "{0}, {1})"
result['float'] = f'svfloat{bits["float"]}_{"s" if instruction_set not in ["sve", "sve2", "sme"] else ""}t'
result['double'] = f'svfloat{bits["double"]}_{"s" if instruction_set not in ["sve", "sve2", "sme"] else ""}t'
result['int'] = f'svint{bits["int"]}_{"s" if instruction_set not in ["sve", "sve2", "sme"] else ""}t'
result['bool'] = f'svbool_{"s" if instruction_set not in ["sve", "sve2", "sme"] else ""}t'
result['headers'] = ['<arm_sve.h>', '<arm_acle.h>', '"arm_neon_helpers.h"']
result['&'] = f'svand_b_z({predicate},' + ' {0}, {1})'
result['|'] = f'svorr_b_z({predicate},' + ' {0}, {1})'
result['blendv'] = f'svsel_f{bits[data_type]}' + '({2}, {1}, {0})'
result['any'] = f'svptest_any({predicate}, {{0}})'
result['all'] = f'svcntp_b{bits[data_type]}({predicate}, {{0}}) == {width}'
result['maskStoreU'] = result['storeU'].replace(predicate, '{2}')
result['maskStream'] = result['stream'].replace(predicate, '{2}')
if instruction_set != 'sme':
result['maskStoreS'] = result['storeS'].replace(predicate, '{3}')
if instruction_set.startswith('sve2') and instruction_set not in ('sve256', 'sve2048'):
result['maskStreamS'] = result['streamS'].replace(predicate, '{3}')
result['streamFence'] = '__dmb(15)'
if instruction_set == 'sme':
result['function_prefix'] = '__attribute__((arm_locally_streaming))'
elif instruction_set not in ['sve', 'sve2', 'sme']:
result['compile_flags'] = [f'-msve-vector-bits={bitwidth}']
else:
result['makeVecConst'] = f'vdupq_n_f{bits[data_type]}' + '({0})'
result['makeVec'] = f'makeVec_f{bits[data_type]}' + '(' + ", ".join(['{' + str(i) + '}' for i in
range(width)]) + ')'
result['makeVecConstInt'] = f'vdupq_n_s{bits["int"]}' + '({0})'
result['makeVecInt'] = f'makeVec_s{bits["int"]}' + '({0}, {1}, {2}, {3})'
result['+int'] = f"vaddq_s{bits['int']}" + "({0}, {1})"
result[data_type] = f'float{bits[data_type]}x{width}_t'
result['int'] = f'int{bits["int"]}x{intwidth}_t'
result['bool'] = f'uint{bits[data_type]}x{width}_t'
result['headers'] = ['<arm_neon.h>', '"arm_neon_helpers.h"']
result['!='] = f'vmvnq_u{bits[data_type]}({result["=="]})'
result['&'] = f'vandq_u{bits[data_type]}' + '({0}, {1})'
result['|'] = f'vorrq_u{bits[data_type]}' + '({0}, {1})'
result['blendv'] = f'vbslq_f{bits[data_type]}' + '({2}, {1}, {0})'
result['any'] = f'vaddlvq_u8(vreinterpretq_u8_u{bits[data_type]}({{0}})) > 0'
result['all'] = f'vaddlvq_u8(vreinterpretq_u8_u{bits[data_type]}({{0}})) == 16*0xff'
# SVE has real nontemporal stores, so we only need to zero cachlines on Neon
result['cachelineZero'] = 'cachelineZero((void*) {0})'
result['cachelineSize'] = 'cachelineSize()'
return result
import re
from collections import namedtuple
import hashlib
from typing import Set
import numpy as np
import sympy as sp
from sympy.core import S
from sympy.logic.boolalg import BooleanFalse, BooleanTrue
from sympy.functions.elementary.trigonometric import TrigonometricFunction, InverseTrigonometricFunction
from sympy.functions.elementary.hyperbolic import HyperbolicFunction
from pystencils.astnodes import KernelFunction, LoopOverCoordinate, Node
from pystencils.cpu.vectorization import vec_all, vec_any, CachelineSize
from pystencils.typing import (
PointerType, VectorType, CastFunc, create_type, get_type_of_expression,
ReinterpretCastFunc, VectorMemoryAccess, BasicType, TypedSymbol, CFunction)
from pystencils.enums import Backend
from pystencils.fast_approximation import fast_division, fast_inv_sqrt, fast_sqrt
from pystencils.functions import DivFunc, AddressOf
from pystencils.integer_functions import (
bit_shift_left, bit_shift_right, bitwise_and, bitwise_or, bitwise_xor,
int_div, int_power_of_2, modulo_ceil)
try:
from sympy.printing.c import C99CodePrinter as CCodePrinter # for sympy versions > 1.6
except ImportError:
from sympy.printing.ccode import C99CodePrinter as CCodePrinter
__all__ = ['generate_c', 'CustomCodeNode', 'PrintNode', 'get_headers', 'CustomSympyPrinter']
HEADER_REGEX = re.compile(r'^[<"].*[">]$')
def generate_c(ast_node: Node,
signature_only: bool = False,
dialect: Backend = Backend.C,
custom_backend=None,
with_globals=True) -> str:
"""Prints an abstract syntax tree node as C or CUDA code.
This function does not need to distinguish for most AST nodes between C, C++ or CUDA code, it just prints 'C-like'
code as encoded in the abstract syntax tree (AST). The AST is built differently for C or CUDA by calling different
create_kernel functions.
Args:
ast_node: ast representation of kernel
signature_only: generate signature without function body
dialect: `Backend`: 'C' or 'CUDA'
custom_backend: use own custom printer for code generation
with_globals: enable usage of global variables
Returns:
C-like code for the ast node and its descendants
"""
global_declarations = get_global_declarations(ast_node)
for d in global_declarations:
if hasattr(ast_node, "global_variables"):
ast_node.global_variables.update(d.symbols_defined)
else:
ast_node.global_variables = d.symbols_defined
if custom_backend:
printer = custom_backend
elif dialect == Backend.C:
try:
# TODO Vectorization Revamp: instruction_set should not be just slapped on ast
instruction_set = ast_node.instruction_set
except Exception:
instruction_set = None
printer = CBackend(signature_only=signature_only,
vector_instruction_set=instruction_set)
elif dialect == Backend.CUDA:
from pystencils.backends.cuda_backend import CudaBackend
printer = CudaBackend(signature_only=signature_only)
else:
raise ValueError(f'Unknown {dialect=}')
code = printer(ast_node)
if not signature_only and isinstance(ast_node, KernelFunction):
if with_globals and global_declarations:
code = "\n" + code
for declaration in global_declarations:
code = printer(declaration) + "\n" + code
return code
def get_global_declarations(ast):
global_declarations = []
def visit_node(sub_ast):
nonlocal global_declarations
if hasattr(sub_ast, "required_global_declarations"):
global_declarations += sub_ast.required_global_declarations
if hasattr(sub_ast, "args"):
for node in sub_ast.args:
visit_node(node)
visit_node(ast)
return sorted(set(global_declarations), key=str)
def get_headers(ast_node: Node) -> Set[str]:
"""Return a set of header files, necessary to compile the printed C-like code."""
headers = set()
if isinstance(ast_node, KernelFunction) and ast_node.instruction_set:
headers.update(ast_node.instruction_set['headers'])
if hasattr(ast_node, 'headers'):
headers.update(ast_node.headers)
for a in ast_node.args:
if isinstance(a, (sp.Expr, Node)):
headers.update(get_headers(a))
for g in get_global_declarations(ast_node):
if isinstance(g, Node):
headers.update(get_headers(g))
for h in headers:
assert HEADER_REGEX.match(h), f'header /{h}/ does not follow the pattern /"..."/ or /<...>/'
return headers
# --------------------------------------- Backend Specific Nodes -------------------------------------------------------
# TODO future CustomCodeNode should not be backend specific move it elsewhere
class CustomCodeNode(Node):
def __init__(self, code, symbols_read, symbols_defined, parent=None):
super(CustomCodeNode, self).__init__(parent=parent)
self._code = "\n" + code
self._symbols_read = set(symbols_read)
self._symbols_defined = set(symbols_defined)
self.headers = []
def get_code(self, dialect, vector_instruction_set, print_arg):
return self._code
@property
def args(self):
return []
@property
def symbols_defined(self):
return self._symbols_defined
@property
def undefined_symbols(self):
return self._symbols_read - self._symbols_defined
def __eq__(self, other):
return type(self) is type(other) and self._code == other._code
def __hash__(self):
return hash(self._code)
class PrintNode(CustomCodeNode):
# noinspection SpellCheckingInspection
def __init__(self, symbol_to_print):
code = f'\nstd::cout << "{symbol_to_print.name} = " << {symbol_to_print.name} << std::endl; \n'
super(PrintNode, self).__init__(code, symbols_read=[symbol_to_print], symbols_defined=set())
self.headers.append("<iostream>")
# ------------------------------------------- Printer ------------------------------------------------------------------
# noinspection PyPep8Naming
class CBackend:
def __init__(self, sympy_printer=None, signature_only=False, vector_instruction_set=None, dialect=Backend.C):
if sympy_printer is None:
if vector_instruction_set is not None:
self.sympy_printer = VectorizedCustomSympyPrinter(vector_instruction_set)
else:
self.sympy_printer = CustomSympyPrinter()
else:
self.sympy_printer = sympy_printer
self._vector_instruction_set = vector_instruction_set
self._indent = " "
self._dialect = dialect
self._signatureOnly = signature_only
self._kwargs = {}
self.sympy_printer._kwargs = self._kwargs
def __call__(self, node):
prev_is = VectorType.instruction_set
VectorType.instruction_set = self._vector_instruction_set
result = str(self._print(node))
VectorType.instruction_set = prev_is
return result
def _print(self, node):
if isinstance(node, str):
return node
for cls in type(node).__mro__:
method_name = f"_print_{cls.__name__}"
if hasattr(self, method_name):
return getattr(self, method_name)(node)
raise NotImplementedError(f"{self.__class__.__name__} does not support node of type {node.__class__.__name__}")
def _print_AbstractType(self, node):
return str(node)
def _print_KernelFunction(self, node):
function_arguments = [f"{self._print(s.symbol.dtype)} {s.symbol.name}" for s in node.get_parameters()
if not type(s.symbol) is CFunction]
launch_bounds = ""
if self._dialect == Backend.CUDA:
max_threads = node.indexing.max_threads_per_block()
if max_threads:
launch_bounds = f"__launch_bounds__({max_threads}) "
func_declaration = "FUNC_PREFIX %svoid %s(%s)" % (launch_bounds, node.function_name,
", ".join(function_arguments))
if self._signatureOnly:
return func_declaration
body = self._print(node.body)
return func_declaration + "\n" + body
def _print_Block(self, node):
block_contents = "\n".join([self._print(child) for child in node.args])
return "{\n%s\n}" % (self._indent + self._indent.join(block_contents.splitlines(True)))
def _print_PragmaBlock(self, node):
return f"{node.pragma_line}\n{self._print_Block(node)}"
def _print_LoopOverCoordinate(self, node):
counter_name = node.loop_counter_name
counter_dtype = node.loop_counter_symbol.dtype.c_name
start = f"{counter_dtype} {counter_name} = {self.sympy_printer.doprint(node.start)}"
condition = f"{counter_name} < {self.sympy_printer.doprint(node.stop)}"
update = f"{counter_name} += {self.sympy_printer.doprint(node.step)}"
loop_str = f"for ({start}; {condition}; {update})"
self._kwargs['loop_counter'] = counter_name
self._kwargs['loop_stop'] = node.stop
prefix = "\n".join(node.prefix_lines)
if prefix:
prefix += "\n"
return f"{prefix}{loop_str}\n{self._print(node.body)}"
def _print_SympyAssignment(self, node):
printed_lhs = self.sympy_printer.doprint(node.lhs)
printed_rhs = self.sympy_printer.doprint(node.rhs)
if node.is_declaration:
if node.use_auto:
data_type = 'auto'
else:
data_type = self._print(node.lhs.dtype).replace(' const', '')
if node.is_const:
data_type = f'const {data_type}'
return f"{data_type} {printed_lhs} = {printed_rhs};"
else:
lhs_type = get_type_of_expression(node.lhs) # TOOD: this should have been typed
printed_mask = ""
if type(lhs_type) is VectorType and isinstance(node.lhs, CastFunc):
arg, data_type, aligned, nontemporal, mask, stride = node.lhs.args
instr = 'storeU'
if nontemporal and 'storeA' not in self._vector_instruction_set and \
'stream' in self._vector_instruction_set:
instr = 'stream'
elif aligned:
instr = 'stream' if nontemporal and 'stream' in self._vector_instruction_set else 'storeA'
if mask != True: # NOQA
instr = 'maskStream' if nontemporal and 'maskStream' in self._vector_instruction_set else \
'maskStoreA' if aligned else 'maskStoreU'
if instr not in self._vector_instruction_set:
if instr == 'maskStream' and 'stream' in self._vector_instruction_set:
store, load = 'stream', 'loadA'
elif (instr in ('maskStream', 'maskStoreA')) and 'storeA' in self._vector_instruction_set:
store, load = 'storeA', 'loadA'
else:
store, load = 'storeU', 'loadU'
load = load if load in self._vector_instruction_set else 'loadU'
self._vector_instruction_set[instr] = self._vector_instruction_set[store].format(
'{0}', self._vector_instruction_set['blendv'].format(
self._vector_instruction_set[load].format('{0}', **self._kwargs),
'{1}', '{2}', **self._kwargs), **self._kwargs)
printed_mask = self.sympy_printer.doprint(mask)
if data_type.base_type.c_name == 'double':
if self._vector_instruction_set['double'] == '__m256d':
printed_mask = f"_mm256_castpd_si256({printed_mask})"
elif self._vector_instruction_set['double'] == '__m128d':
printed_mask = f"_mm_castpd_si128({printed_mask})"
elif data_type.base_type.c_name == 'float':
if self._vector_instruction_set['float'] == '__m256':
printed_mask = f"_mm256_castps_si256({printed_mask})"
elif self._vector_instruction_set['float'] == '__m128':
printed_mask = f"_mm_castps_si128({printed_mask})"
rhs_type = get_type_of_expression(node.rhs)
if type(rhs_type) is not VectorType:
raise ValueError(f'Cannot vectorize {node.rhs} of type {rhs_type} inside of the pretty printer! '
f'This should have happen earlier!')
# rhs = CastFunc(node.rhs, VectorType(rhs_type)) # Unknown width
else:
rhs = node.rhs
ptr = "&" + self.sympy_printer.doprint(node.lhs.args[0])
if stride != 1:
instr = ('maskStreamS' if nontemporal and 'maskStreamS' in self._vector_instruction_set else
'maskStoreS') if mask != True else \
('streamS' if nontemporal and 'streamS' in self._vector_instruction_set else 'storeS') # NOQA
return self._vector_instruction_set[instr].format(ptr, self.sympy_printer.doprint(rhs),
stride, printed_mask, **self._kwargs) + ';'
pre_code = ''
if nontemporal and 'cachelineZero' in self._vector_instruction_set and mask == True: # NOQA
first_cond = f"((uintptr_t) {ptr} & {CachelineSize.mask_symbol}) == 0"
offset = sp.Add(*[sp.Symbol(LoopOverCoordinate.get_loop_counter_name(i))
* node.lhs.args[0].field.spatial_strides[i] for i in
range(len(node.lhs.args[0].field.spatial_strides))])
if stride == 1:
offset = offset.subs({node.lhs.args[0].field.spatial_strides[0]: 1})
size = sp.Mul(*node.lhs.args[0].field.spatial_shape)
element_size = 8 if data_type.base_type.c_name == 'double' else 4
size_cond = f"({offset} + {CachelineSize.symbol/element_size}) < {size}"
pre_code = f"if ({first_cond} && {size_cond}) " + "{\n\t" + \
self._vector_instruction_set['cachelineZero'].format(ptr, **self._kwargs) + ';\n}\n'
code = self._vector_instruction_set[instr].format(ptr, self.sympy_printer.doprint(rhs),
printed_mask, **self._kwargs) + ';'
flushcond = f"((uintptr_t) {ptr} & {CachelineSize.mask_symbol}) == {CachelineSize.last_symbol}"
if nontemporal and 'flushCacheline' in self._vector_instruction_set:
code2 = self._vector_instruction_set['flushCacheline'].format(
ptr, self.sympy_printer.doprint(rhs), **self._kwargs) + ';'
code = f"{code}\nif ({flushcond}) {{\n\t{code2}\n}}"
elif aligned and nontemporal and 'storeAAndFlushCacheline' in self._vector_instruction_set:
lhs_hash = hashlib.sha1(self.sympy_printer.doprint(node.lhs).encode('ascii')).hexdigest()[:8]
rhs_hash = hashlib.sha1(self.sympy_printer.doprint(rhs).encode('ascii')).hexdigest()[:8]
tmpvar = f'_tmp_{lhs_hash}_{rhs_hash}'
code = 'const ' + self._print(node.lhs.dtype).replace(' const', '') + ' ' + tmpvar + ' = ' \
+ self.sympy_printer.doprint(rhs) + ';'
code1 = self._vector_instruction_set[instr].format(ptr, tmpvar, printed_mask, **self._kwargs) + ';'
maskStore, store, load = 'maskStoreAAndFlushCacheline', 'storeAAndFlushCacheline', 'loadA'
instr2 = maskStore if mask != True else store # NOQA
if instr2 not in self._vector_instruction_set:
self._vector_instruction_set[maskStore] = self._vector_instruction_set[store].format(
'{0}', self._vector_instruction_set['blendv'].format(
self._vector_instruction_set[load].format('{0}', **self._kwargs),
'{1}', '{2}', **self._kwargs),
**self._kwargs)
code2 = self._vector_instruction_set[instr2].format(ptr, tmpvar, printed_mask, **self._kwargs) + ';'
code += f"\nif ({flushcond}) {{\n\t{code2}\n}} else {{\n\t{code1}\n}}"
return pre_code + code
else:
return f"{printed_lhs} = {printed_rhs};"
def _print_NontemporalFence(self, _):
if 'streamFence' in self._vector_instruction_set:
return self._vector_instruction_set['streamFence'] + ';'
else:
return ''
def _print_CachelineSize(self, node):
if 'cachelineSize' in self._vector_instruction_set:
code = f'const size_t {node.symbol} = {self._vector_instruction_set["cachelineSize"]};\n'
code += f'const size_t {node.mask_symbol} = {node.symbol} - 1;\n'
vectorsize = self._vector_instruction_set['bytes']
code += f'const size_t {node.last_symbol} = {node.symbol} - {vectorsize};\n'
return code
else:
return ''
def _print_TemporaryMemoryAllocation(self, node):
if self._vector_instruction_set:
align = self._vector_instruction_set['bytes']
else:
align = node.symbol.dtype.base_type.numpy_dtype.itemsize
np_dtype = node.symbol.dtype.base_type.numpy_dtype
required_size = np_dtype.itemsize * node.size + align
size = modulo_ceil(required_size, align)
code = "#if defined(_MSC_VER)\n"
code += "{dtype} {name}=({dtype})_aligned_malloc({size}, {align}) + {offset};\n"
code += "#elif __cplusplus >= 201703L || __STDC_VERSION__ >= 201112L\n"
code += "{dtype} {name}=({dtype})aligned_alloc({align}, {size}) + {offset};\n"
code += "#else\n"
code += "{dtype} {name};\n"
code += "posix_memalign((void**) &{name}, {align}, {size});\n"
code += "{name} += {offset};\n"
code += "#endif"
return code.format(dtype=node.symbol.dtype,
name=self.sympy_printer.doprint(node.symbol.name),
size=self.sympy_printer.doprint(size),
offset=int(node.offset(align)),
align=align)
def _print_TemporaryMemoryFree(self, node):
if self._vector_instruction_set:
align = self._vector_instruction_set['bytes']
else:
align = node.symbol.dtype.base_type.numpy_dtype.itemsize
code = "#if defined(_MSC_VER)\n"
code += "_aligned_free(%s - %d);\n" % (self.sympy_printer.doprint(node.symbol.name), node.offset(align))
code += "#else\n"
code += "free(%s - %d);\n" % (self.sympy_printer.doprint(node.symbol.name), node.offset(align))
code += "#endif"
return code
def _print_SkipIteration(self, _):
return "continue;"
def _print_CustomCodeNode(self, node):
return node.get_code(self._dialect, self._vector_instruction_set, print_arg=self.sympy_printer._print)
def _print_SourceCodeComment(self, node):
return f"/* {node.text } */"
def _print_EmptyLine(self, node):
return ""
def _print_Conditional(self, node):
if type(node.condition_expr) is BooleanTrue:
return self._print_Block(node.true_block)
elif type(node.condition_expr) is BooleanFalse:
return self._print_Block(node.false_block)
cond_type = get_type_of_expression(node.condition_expr)
if isinstance(cond_type, VectorType):
raise ValueError("Problem with Conditional inside vectorized loop - use vec_any or vec_all")
condition_expr = self.sympy_printer.doprint(node.condition_expr)
true_block = self._print_Block(node.true_block)
result = f"if ({condition_expr})\n{true_block} "
if node.false_block:
false_block = self._print_Block(node.false_block)
result += f"else {false_block}"
return result
# ------------------------------------------ Helper function & classes -------------------------------------------------
# noinspection PyPep8Naming
class CustomSympyPrinter(CCodePrinter):
def __init__(self):
super(CustomSympyPrinter, self).__init__()
def _print_Pow(self, expr):
"""Don't use std::pow function, for small integer exponents, write as multiplication"""
# Ideally the printer has as little logic as possible. Therefore,
# powers should be rewritten as `DivFunc`s / unevaluated `Mul`s before
# printing. `NodeCollection` offers a convenience function to do just
# that. However, `cut_loops` rewrites unevaluated multiplications as
# `Pow`s again. Neither `deepcopy` nor `func(*args)` are suited to
# rebuild unevaluated expressions. Therefore, as long as we stick with
# SymPy, this is the only way to avoid printing `pow`s.
exp = expr.exp.expr if isinstance(expr.exp, CastFunc) else expr.exp
one_type = expr.base.dtype if hasattr(expr.base, "dtype") else get_type_of_expression(expr.base)
if exp.is_integer and exp.is_number and (0 < exp <= 8):
return f"({self._print(sp.Mul(*[expr.base] * exp, evaluate=False))})"
elif exp.is_integer and exp.is_number and (-8 <= exp < 0):
return f"{self._typed_number(1, one_type)} / ({self._print(sp.Mul(*([expr.base] * -exp), evaluate=False))})"
else:
return super(CustomSympyPrinter, self)._print_Pow(expr)
# TODO don't print ones in sp.Mul
def _print_Rational(self, expr):
"""Evaluate all rationals i.e. print 0.25 instead of 1.0/4.0"""
res = str(expr.evalf(17))
return res
def _print_Equality(self, expr):
"""Equality operator is not printable in default printer"""
return '((' + self._print(expr.lhs) + ") == (" + self._print(expr.rhs) + '))'
def _print_Piecewise(self, expr):
"""Print piecewise in one line (remove newlines)"""
result = super(CustomSympyPrinter, self)._print_Piecewise(expr)
return result.replace("\n", "")
def _print_Abs(self, expr):
if expr.args[0].is_integer:
return f'abs({self._print(expr.args[0])})'
else:
return f'fabs({self._print(expr.args[0])})'
def _print_AbstractType(self, node):
return str(node)
def _print_Function(self, expr):
infix_functions = {
bitwise_xor: '^',
bit_shift_right: '>>',
bit_shift_left: '<<',
bitwise_or: '|',
bitwise_and: '&',
}
if hasattr(expr, 'to_c'):
return expr.to_c(self._print)
if isinstance(expr, ReinterpretCastFunc):
arg, data_type = expr.args
if isinstance(data_type, PointerType):
const_str = "const" if data_type.const else ""
return f"(({const_str} {self._print(data_type.base_type)} *)(& {self._print(arg)}))"
else:
return f"*(({self._print(PointerType(data_type, restrict=False))})(& {self._print(arg)}))"
elif isinstance(expr, AddressOf):
assert len(expr.args) == 1, "address_of must only have one argument"
return f"&({self._print(expr.args[0])})"
elif isinstance(expr, CastFunc):
cast = "(({data_type})({code}))"
arg, data_type = expr.args
if arg.is_Number and not isinstance(arg, (sp.core.numbers.Infinity, sp.core.numbers.NegativeInfinity)):
return self._typed_number(arg, data_type)
elif isinstance(arg, (InverseTrigonometricFunction, TrigonometricFunction, HyperbolicFunction)) \
and data_type == BasicType('float32'):
known = self.known_functions[arg.__class__.__name__.lower()]
code = self._print(arg)
return code.replace(known, f"{known}f")
elif isinstance(arg, (sp.Pow, sp.exp)) and data_type == BasicType('float32'):
known = ['sqrt', 'cbrt', 'pow', 'exp']
code = self._print(arg)
for k in known:
if k in code:
return code.replace(k, f'{k}f')
# Powers of small integers are printed as divisions/multiplications.
if '/' in code or '*' in code:
return cast.format(data_type=data_type, code=code)
raise ValueError(f"{code} doesn't give {known=} function back.")
else:
return cast.format(data_type=data_type, code=self._print(arg))
elif isinstance(expr, fast_division):
raise ValueError("fast_division is only supported for Taget.GPU")
elif isinstance(expr, fast_sqrt):
raise ValueError("fast_sqrt is only supported for Taget.GPU")
elif isinstance(expr, fast_inv_sqrt):
raise ValueError("fast_inv_sqrt is only supported for Taget.GPU")
elif isinstance(expr, vec_any) or isinstance(expr, vec_all):
return self._print(expr.args[0])
elif isinstance(expr, sp.Abs):
return f"abs({self._print(expr.args[0])})"
elif isinstance(expr, sp.Mod):
if expr.args[0].is_integer and expr.args[1].is_integer:
return f"({self._print(expr.args[0])} % {self._print(expr.args[1])})"
else:
return f"fmod({self._print(expr.args[0])}, {self._print(expr.args[1])})"
elif expr.func in infix_functions:
return f"({self._print(expr.args[0])} {infix_functions[expr.func]} {self._print(expr.args[1])})"
elif expr.func == int_power_of_2:
return f"(1 << ({self._print(expr.args[0])}))"
elif expr.func == int_div:
return f"(({self._print(expr.args[0])}) / ({self._print(expr.args[1])}))"
elif expr.func == DivFunc:
return f'(({self._print(expr.divisor)}) / ({self._print(expr.dividend)}))'
else:
name = expr.name if hasattr(expr, 'name') else expr.__class__.__name__
arg_str = ', '.join(self._print(a) for a in expr.args)
return f'{name}({arg_str})'
def _typed_number(self, number, dtype):
res = self._print(number)
if dtype.numpy_dtype == np.float32:
return res + '.0f' if '.' not in res else res + 'f'
elif dtype.numpy_dtype == np.float64:
return res + '.0' if '.' not in res else res
elif dtype.is_int():
tokens = res.split('.')
if len(tokens) == 1:
return res
elif int(tokens[1]) != 0:
raise ValueError(f"Cannot print non-integer number {res} as an integer.")
else:
return tokens[0]
else:
return res
def _print_ConditionalFieldAccess(self, node):
return self._print(sp.Piecewise((node.outofbounds_value, node.outofbounds_condition), (node.access, True)))
def _print_Max(self, expr):
def inner_print_max(args):
if len(args) == 1:
return self._print(args[0])
half = len(args) // 2
a = inner_print_max(args[:half])
b = inner_print_max(args[half:])
return f"(({a} > {b}) ? {a} : {b})"
return inner_print_max(expr.args)
def _print_Min(self, expr):
def inner_print_min(args):
if len(args) == 1:
return self._print(args[0])
half = len(args) // 2
a = inner_print_min(args[:half])
b = inner_print_min(args[half:])
return f"(({a} < {b}) ? {a} : {b})"
return inner_print_min(expr.args)
# noinspection PyPep8Naming
class VectorizedCustomSympyPrinter(CustomSympyPrinter):
SummandInfo = namedtuple("SummandInfo", ['sign', 'term'])
def __init__(self, instruction_set):
super(VectorizedCustomSympyPrinter, self).__init__()
self.instruction_set = instruction_set
def _scalarFallback(self, func_name, expr, *args, **kwargs):
expr_type = get_type_of_expression(expr)
if type(expr_type) is not VectorType:
return getattr(super(VectorizedCustomSympyPrinter, self), func_name)(expr, *args, **kwargs)
else:
assert self.instruction_set['width'] == expr_type.width
return None
def _print_Abs(self, expr):
if isinstance(get_type_of_expression(expr), (VectorType, VectorMemoryAccess)):
return self.instruction_set['abs'].format(self._print(expr.args[0]), **self._kwargs)
return super()._print_Abs(expr)
def _typed_vectorized_number(self, expr, data_type):
basic_data_type = data_type.base_type
number = self._typed_number(expr, basic_data_type)
instruction = 'makeVecConst'
if basic_data_type.is_bool():
instruction = 'makeVecConstBool'
# TODO Vectorization Revamp: is int, or sint, or uint (my guess is sint)
elif basic_data_type.is_int():
instruction = 'makeVecConstInt'
return self.instruction_set[instruction].format(number, **self._kwargs)
def _typed_vectorized_symbol(self, expr, data_type):
if not isinstance(expr, TypedSymbol):
raise ValueError(f'{expr} is not a TypeSymbol. It is {expr.type=}')
basic_data_type = data_type.base_type
symbol = self._print(expr)
if basic_data_type != expr.dtype:
symbol = f'(({basic_data_type})({symbol}))'
instruction = 'makeVecConst'
if basic_data_type.is_bool():
instruction = 'makeVecConstBool'
# TODO Vectorization Revamp: is int, or sint, or uint (my guess is sint)
elif basic_data_type.is_int():
instruction = 'makeVecConstInt'
return self.instruction_set[instruction].format(symbol, **self._kwargs)
def _print_CastFunc(self, expr):
arg, data_type = expr.args
if type(data_type) is VectorType:
base_type = data_type.base_type
# vector_memory_access is a cast_func itself so it should't be directly inside a cast_func
assert not isinstance(arg, VectorMemoryAccess)
if isinstance(arg, sp.Tuple):
is_boolean = get_type_of_expression(arg[0]) == create_type("bool")
is_integer = get_type_of_expression(arg[0]) == create_type("int")
printed_args = [self._print(a) for a in arg]
instruction = 'makeVecBool' if is_boolean else 'makeVecInt' if is_integer else 'makeVec'
if instruction == 'makeVecInt' and 'makeVecIndex' in self.instruction_set:
increments = np.array(arg)[1:] - np.array(arg)[:-1]
if len(set(increments)) == 1:
return self.instruction_set['makeVecIndex'].format(printed_args[0], increments[0],
**self._kwargs)
return self.instruction_set[instruction].format(*printed_args, **self._kwargs)
else:
if arg.is_Number and not isinstance(arg, (sp.core.numbers.Infinity, sp.core.numbers.NegativeInfinity)):
return self._typed_vectorized_number(arg, data_type)
elif isinstance(arg, TypedSymbol):
return self._typed_vectorized_symbol(arg, data_type)
elif isinstance(arg, (InverseTrigonometricFunction, TrigonometricFunction, HyperbolicFunction)) \
and base_type == BasicType('float32'):
raise NotImplementedError('Vectorizer is not tested for trigonometric functions yet')
# known = self.known_functions[arg.__class__.__name__.lower()]
# code = self._print(arg)
# return code.replace(known, f"{known}f")
elif isinstance(arg, sp.Pow):
if base_type == BasicType('float32') or base_type == BasicType('float64'):
return self._print_Pow(arg)
else:
raise NotImplementedError('Integer Pow is not implemented')
elif isinstance(arg, sp.UnevaluatedExpr):
return self._print(arg.args[0])
else:
raise NotImplementedError('Vectorizer cannot cast between different datatypes')
# to_type = self.instruction_set['suffix'][data_type.base_type.c_name]
# from_type = self.instruction_set['suffix'][get_type_of_expression(arg).base_type.c_name]
# return self.instruction_set['cast'].format(from_type, to_type, self._print(arg))
else:
return self._scalarFallback('_print_Function', expr)
# raise ValueError(f'Non VectorType cast "{data_type}" in vectorized code.')
def _print_Function(self, expr):
if isinstance(expr, VectorMemoryAccess):
arg, data_type, aligned, _, mask, stride = expr.args
if stride != 1:
return self.instruction_set['loadS'].format(f"& {self._print(arg)}", stride, **self._kwargs)
instruction = self.instruction_set['loadA'] if aligned else self.instruction_set['loadU']
return instruction.format(f"& {self._print(arg)}", **self._kwargs)
elif expr.func == DivFunc:
result = self._scalarFallback('_print_Function', expr)
if not result:
result = self.instruction_set['/'].format(self._print(expr.divisor), self._print(expr.dividend),
**self._kwargs)
return result
elif isinstance(expr, fast_division):
raise ValueError("fast_division is only supported for Taget.GPU")
elif isinstance(expr, fast_sqrt):
raise ValueError("fast_sqrt is only supported for Taget.GPU")
elif isinstance(expr, fast_inv_sqrt):
raise ValueError("fast_inv_sqrt is only supported for Taget.GPU")
elif isinstance(expr, vec_any) or isinstance(expr, vec_all):
instr = 'any' if isinstance(expr, vec_any) else 'all'
expr_type = get_type_of_expression(expr.args[0])
if type(expr_type) is not VectorType:
return self._print(expr.args[0])
else:
if isinstance(expr.args[0], sp.Rel):
op = expr.args[0].rel_op
if (instr, op) in self.instruction_set:
return self.instruction_set[(instr, op)].format(*[self._print(a) for a in expr.args[0].args],
**self._kwargs)
return self.instruction_set[instr].format(self._print(expr.args[0]), **self._kwargs)
return super(VectorizedCustomSympyPrinter, self)._print_Function(expr)
def _print_And(self, expr):
result = self._scalarFallback('_print_And', expr)
if result:
return result
arg_strings = [self._print(a) for a in expr.args]
assert len(arg_strings) > 0
result = arg_strings[0]
for item in arg_strings[1:]:
result = self.instruction_set['&'].format(result, item, **self._kwargs)
return result
def _print_Or(self, expr):
result = self._scalarFallback('_print_Or', expr)
if result:
return result
arg_strings = [self._print(a) for a in expr.args]
assert len(arg_strings) > 0
result = arg_strings[0]
for item in arg_strings[1:]:
result = self.instruction_set['|'].format(result, item, **self._kwargs)
return result
def _print_Add(self, expr, order=None):
try:
result = self._scalarFallback('_print_Add', expr)
except Exception:
result = None
if result:
return result
args = expr.args
# special treatment for all-integer args, for loop index arithmetic until we have proper int vectorization
suffix = ""
if all([(type(e) is CastFunc and str(e.dtype) == self.instruction_set['int']) or isinstance(e, sp.Integer)
or (type(e) is TypedSymbol and isinstance(e.dtype, BasicType) and e.dtype.is_int()) for e in args]):
dtype = set([e.dtype for e in args if type(e) is CastFunc])
assert len(dtype) == 1
dtype = dtype.pop()
args = [CastFunc(e, dtype) if (isinstance(e, sp.Integer) or isinstance(e, TypedSymbol)) else e
for e in args]
suffix = "int"
summands = []
for term in args:
if term.func == sp.Mul:
sign, t = self._print_Mul(term, inside_add=True)
else:
t = self._print(term)
sign = 1
summands.append(self.SummandInfo(sign, t))
# Use positive terms first
summands.sort(key=lambda e: e.sign, reverse=True)
# if no positive term exists, prepend a zero
if summands[0].sign == -1:
summands.insert(0, self.SummandInfo(1, "0"))
assert len(summands) >= 2
processed = summands[0].term
for summand in summands[1:]:
func = self.instruction_set['-' + suffix] if summand.sign == -1 else self.instruction_set['+' + suffix]
processed = func.format(processed, summand.term, **self._kwargs)
return processed
def _print_Pow(self, expr):
# Due to loop cutting sp.Mul is evaluated again.
try:
result = self._scalarFallback('_print_Pow', expr)
except ValueError:
result = None
if result:
return result
one = self.instruction_set['makeVecConst'].format(1.0, **self._kwargs)
root = self.instruction_set['sqrt'].format(self._print(expr.base), **self._kwargs)
if isinstance(expr.exp, CastFunc) and expr.exp.args[0].is_number:
exp = expr.exp.args[0]
else:
exp = expr.exp
# TODO the printer should not have any intelligence like this.
# TODO To remove all of these cases the vectoriser needs to be reworked. See loop cutting
if exp.is_integer and exp.is_number and 0 < exp < 8:
return self._print(sp.Mul(*[expr.base] * exp, evaluate=False))
elif exp == 0.5:
return root
elif exp == -0.5:
return self.instruction_set['/'].format(one, root, **self._kwargs)
else:
raise ValueError("Generic exponential not supported: " + str(expr))
def _print_Mul(self, expr, inside_add=False):
# noinspection PyProtectedMember
from sympy.core.mul import _keep_coeff
if not inside_add:
result = self._scalarFallback('_print_Mul', expr)
else:
result = None
if result:
return result
c, e = expr.as_coeff_Mul()
if c < 0:
expr = _keep_coeff(-c, e)
sign = -1
else:
sign = 1
a = [] # items in the numerator
b = [] # items that are in the denominator (if any)
# Gather args for numerator/denominator
for item in expr.as_ordered_factors():
if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative:
if item.exp != -1:
b.append(sp.Pow(item.base, -item.exp, evaluate=False))
else:
b.append(sp.Pow(item.base, -item.exp))
else:
a.append(item)
a = a or [S.One]
a_str = [self._print(x) for x in a]
b_str = [self._print(x) for x in b]
result = a_str[0]
for item in a_str[1:]:
result = self.instruction_set['*'].format(result, item, **self._kwargs)
if len(b) > 0:
denominator_str = b_str[0]
for item in b_str[1:]:
denominator_str = self.instruction_set['*'].format(denominator_str, item, **self._kwargs)
result = self.instruction_set['/'].format(result, denominator_str, **self._kwargs)
if inside_add:
return sign, result
else:
if sign < 0:
return self.instruction_set['*'].format(self._print(S.NegativeOne), result, **self._kwargs)
else:
return result
def _print_Relational(self, expr):
result = self._scalarFallback('_print_Relational', expr)
if result:
return result
return self.instruction_set[expr.rel_op].format(self._print(expr.lhs), self._print(expr.rhs), **self._kwargs)
def _print_Equality(self, expr):
result = self._scalarFallback('_print_Equality', expr)
if result:
return result
return self.instruction_set['=='].format(self._print(expr.lhs), self._print(expr.rhs), **self._kwargs)
def _print_Piecewise(self, expr):
result = self._scalarFallback('_print_Piecewise', expr)
if result:
return result
if expr.args[-1].cond.args[0] is not sp.sympify(True):
# We need the last conditional to be a True, otherwise the resulting
# function may not return a result.
raise ValueError("All Piecewise expressions must contain an "
"(expr, True) statement to be used as a default "
"condition. Without one, the generated "
"expression may not evaluate to anything under "
"some condition.")
result = self._print(expr.args[-1][0])
for true_expr, condition in reversed(expr.args[:-1]):
if isinstance(condition, CastFunc) and get_type_of_expression(condition.args[0]) == create_type("bool"):
result = "(({}) ? ({}) : ({}))".format(self._print(condition.args[0]), self._print(true_expr),
result, **self._kwargs)
else:
# noinspection SpellCheckingInspection
result = self.instruction_set['blendv'].format(result, self._print(true_expr), self._print(condition),
**self._kwargs)
return result
from pystencils.astnodes import Node
from pystencils.backends.cbackend import CBackend, CustomSympyPrinter, generate_c
from pystencils.enums import Backend
from pystencils.fast_approximation import fast_division, fast_inv_sqrt, fast_sqrt
def generate_cuda(ast_node: Node, signature_only: bool = False, custom_backend=None, with_globals=True) -> str:
"""Prints an abstract syntax tree node as CUDA code.
Args:
ast_node: ast representation of kernel
signature_only: generate signature without function body
custom_backend: use own custom printer for code generation
with_globals: enable usage of global variables
Returns:
CUDA code for the ast node and its descendants
"""
return generate_c(ast_node, signature_only, dialect=Backend.CUDA,
custom_backend=custom_backend, with_globals=with_globals)
class CudaBackend(CBackend):
def __init__(self, sympy_printer=None,
signature_only=False):
if not sympy_printer:
sympy_printer = CudaSympyPrinter()
super().__init__(sympy_printer, signature_only, dialect=Backend.CUDA)
def _print_SharedMemoryAllocation(self, node):
dtype = node.symbol.dtype
name = self.sympy_printer.doprint(node.symbol.name)
num_elements = '*'.join([str(s) for s in node.shared_mem.shape])
code = f"__shared__ {dtype} {name}[{num_elements}];"
return code
@staticmethod
def _print_ThreadBlockSynchronization(_):
return "__synchtreads();"
def _print_TextureDeclaration(self, node):
cond = node.texture.field.dtype.numpy_dtype.itemsize > 4
return f'texture<{"fp_tex_" if cond else ""}{str(node.texture.field.dtype)}, ' \
f'cudaTextureType{node.texture.field.spacial_dimensions}D, cudaReadModeElementType> {node.texture};'
def _print_SkipIteration(self, _):
return "return;"
class CudaSympyPrinter(CustomSympyPrinter):
language = "CUDA"
def __init__(self):
super(CudaSympyPrinter, self).__init__()
def _print_Function(self, expr):
if isinstance(expr, fast_division):
assert len(expr.args) == 2, f"__fdividef has two arguments, but {len(expr.args)} where given"
return f"__fdividef({self._print(expr.args[0])}, {self._print(expr.args[1])})"
elif isinstance(expr, fast_sqrt):
assert len(expr.args) == 1, f"__fsqrt_rn has one argument, but {len(expr.args)} where given"
return f"__fsqrt_rn({self._print(expr.args[0])})"
elif isinstance(expr, fast_inv_sqrt):
assert len(expr.args) == 1, f"__frsqrt_rn has one argument, but {len(expr.args)} where given"
return f"__frsqrt_rn({self._print(expr.args[0])})"
return super()._print_Function(expr)
import graphviz
try:
from graphviz import Digraph
import graphviz.quoting as quote
except ImportError:
from graphviz import Digraph
import graphviz.lang as quote
from sympy.printing.printer import Printer
# noinspection PyPep8Naming
class DotPrinter(Printer):
"""
A printer which converts ast to DOT (graph description language).
"""
def __init__(self, node_to_str_function, **kwargs):
super(DotPrinter, self).__init__()
self._node_to_str_function = node_to_str_function
self.dot = Digraph(**kwargs)
self.dot.quote_edge = quote.quote
def _print_KernelFunction(self, func):
self.dot.node(str(id(func)), style='filled', fillcolor='#a056db', label=self._node_to_str_function(func))
self._print(func.body)
self.dot.edge(str(id(func)), str(id(func.body)))
def _print_LoopOverCoordinate(self, loop):
self.dot.node(str(id(loop)), style='filled', fillcolor='#3498db', label=self._node_to_str_function(loop))
self._print(loop.body)
self.dot.edge(str(id(loop)), str(id(loop.body)))
def _print_Block(self, block):
for node in block.args:
self._print(node)
self.dot.node(str(id(block)), style='filled', fillcolor='#dbc256', label=repr(block))
for node in block.args:
self.dot.edge(str(id(block)), str(id(node)))
def _print_SympyAssignment(self, assignment):
self.dot.node(str(id(assignment)), style='filled', fillcolor='#56db7f',
label=self._node_to_str_function(assignment))
def _print_Conditional(self, expr):
self.dot.node(str(id(expr)), style='filled', fillcolor='#56bd7f', label=self._node_to_str_function(expr))
self._print(expr.true_block)
self.dot.edge(str(id(expr)), str(id(expr.true_block)))
if expr.false_block:
self._print(expr.false_block)
self.dot.edge(str(id(expr)), str(id(expr.false_block)))
def doprint(self, expr):
self._print(expr)
return self.dot.source
def __shortened(node):
from pystencils.astnodes import LoopOverCoordinate, KernelFunction, SympyAssignment, Conditional
if isinstance(node, LoopOverCoordinate):
return "Loop over dim %d" % (node.coordinate_to_loop_over,)
elif isinstance(node, KernelFunction):
params = node.get_parameters()
param_names = [p.field_name for p in params if p.is_field_pointer]
param_names += [p.symbol.name for p in params if not p.is_field_parameter]
return f"Func: {node.function_name} ({','.join(param_names)})"
elif isinstance(node, SympyAssignment):
return repr(node.lhs)
elif isinstance(node, Conditional):
return repr(node)
else:
raise NotImplementedError(f"Cannot handle node type {type(node)}")
def print_dot(node, view=False, short=False, **kwargs):
"""
Returns a string which can be used to generate a DOT-graph
:param node: The ast which should be generated
:param view: Boolean, if rendering of the image directly should occur.
:param short: Uses the __shortened output
:param kwargs: is directly passed to the DotPrinter class: http://graphviz.readthedocs.io/en/latest/api.html#digraph
:return: string in DOT format
"""
node_to_str_function = repr
if short:
node_to_str_function = __shortened
printer = DotPrinter(node_to_str_function, **kwargs)
dot = printer.doprint(node)
if view:
return graphviz.Source(dot)
return dot
# -*- coding: utf-8 -*-
#
# Copyright © 2019 Stephan Seitz <stephan.seitz@fau.de>
#
# Distributed under terms of the GPLv3 license.
"""
"""
import json
from pystencils.astnodes import NodeOrExpr
from pystencils.backends.cbackend import CustomSympyPrinter, generate_c
try:
import yaml
except ImportError:
raise ImportError('yaml not installed')
def expr_to_dict(expr_or_node: NodeOrExpr, with_c_code=True, full_class_names=False):
"""Converts a SymPy expression to a serializable dict (mainly for debugging purposes)
The dict recursively contains all args of the expression as ``dict``s
See :func:`.write_json`
Args:
expr_or_node (NodeOrExpr): a SymPy expression or a :class:`pystencils.astnodes.Node`
with_c_code (bool, optional): include C representation of the nodes
full_class_names (bool, optional): use full class names (type(object) instead of ``type(object).__name__``
"""
self = {'str': str(expr_or_node)}
if with_c_code:
try:
self.update({'c': generate_c(expr_or_node)})
except Exception:
try:
self.update({'c': CustomSympyPrinter().doprint(expr_or_node)})
except Exception:
pass
for a in expr_or_node.args:
self.update({str(a.__class__ if full_class_names else a.__class__.__name__): expr_to_dict(a)})
return self
def print_json(expr_or_node: NodeOrExpr):
"""Print debug JSON of an AST to string
Args:
expr_or_node (NodeOrExpr): a SymPy expression or a :class:`pystencils.astnodes.Node`
Returns:
str: JSON representation of AST
"""
expr_or_node_dict = expr_to_dict(expr_or_node)
return json.dumps(expr_or_node_dict, indent=4)
def write_json(filename: str, expr_or_node: NodeOrExpr):
"""Writes debug JSON represenation of AST to file
Args:
filename (str): Path for the file to write
expr_or_node (NodeOrExpr): a SymPy expression or a :class:`pystencils.astnodes.Node`
"""
expr_or_node_dict = expr_to_dict(expr_or_node)
with open(filename, 'w') as f:
json.dump(expr_or_node_dict, f, indent=4)
def print_yaml(expr_or_node):
expr_or_node_dict = expr_to_dict(expr_or_node, full_class_names=False)
return yaml.dump(expr_or_node_dict)
def write_yaml(filename, expr_or_node):
expr_or_node_dict = expr_to_dict(expr_or_node)
with open(filename, 'w') as f:
yaml.dump(expr_or_node_dict, f)
def get_argument_string(function_shortcut):
args = function_shortcut[function_shortcut.index('[') + 1: -1]
arg_string = "("
for arg in args.split(","):
arg = arg.strip()
if not arg:
continue
if arg in ('0', '1', '2', '3', '4', '5'):
arg_string += "{" + arg + "},"
else:
arg_string += arg + ","
arg_string = arg_string[:-1] + ")"
return arg_string
def get_vector_instruction_set_ppc(data_type='double', instruction_set='vsx'):
if instruction_set != 'vsx':
raise NotImplementedError(instruction_set)
base_names = {
'+': 'add[0, 1]',
'-': 'sub[0, 1]',
'*': 'mul[0, 1]',
'/': 'div[0, 1]',
'sqrt': 'sqrt[0]',
'rsqrt': 'rsqrte[0]', # rsqrt is available too, but not on Clang
'loadU': 'xl[0x0, 0]',
'loadA': 'ld[0x0, 0]',
'storeU': 'xst[1, 0x0, 0]',
'storeA': 'st[1, 0x0, 0]',
'storeAAndFlushCacheline': 'stl[1, 0x0, 0]',
'abs': 'abs[0]',
'==': 'cmpeq[0, 1]',
'!=': 'cmpne[0, 1]',
'<=': 'cmple[0, 1]',
'<': 'cmplt[0, 1]',
'>=': 'cmpge[0, 1]',
'>': 'cmpgt[0, 1]',
'&': 'and[0, 1]',
'|': 'or[0, 1]',
'blendv': 'sel[0, 1, 2]',
('any', '=='): 'any_eq[0, 1]',
('any', '!='): 'any_ne[0, 1]',
('any', '<='): 'any_le[0, 1]',
('any', '<'): 'any_lt[0, 1]',
('any', '>='): 'any_ge[0, 1]',
('any', '>'): 'any_gt[0, 1]',
('all', '=='): 'all_eq[0, 1]',
('all', '!='): 'all_ne[0, 1]',
('all', '<='): 'all_le[0, 1]',
('all', '<'): 'all_lt[0, 1]',
('all', '>='): 'all_ge[0, 1]',
('all', '>'): 'all_gt[0, 1]',
}
bits = {'double': 64,
'float': 32,
'int': 32}
width = 128 // bits[data_type]
intwidth = 128 // bits['int']
result = dict()
result['bytes'] = 16
for intrinsic_id, function_shortcut in base_names.items():
function_shortcut = function_shortcut.strip()
name = function_shortcut[:function_shortcut.index('[')]
arg_string = get_argument_string(function_shortcut)
result[intrinsic_id] = 'vec_' + name + arg_string
if data_type == 'double':
# Clang and XL C++ are missing these for doubles
result['loadA'] = '(__vector double)' + result['loadA'].format('(float*) {0}')
result['storeA'] = result['storeA'].format('(float*) {0}', '(__vector float) {1}')
result['storeAAndFlushCacheline'] = result['storeAAndFlushCacheline'].format('(float*) {0}',
'(__vector float) {1}')
result['+int'] = "vec_add({0}, {1})"
result['width'] = width
result['intwidth'] = intwidth
result[data_type] = f'__vector {data_type}'
result['int'] = '__vector int'
result['bool'] = f'__vector __bool {"long long" if data_type == "double" else "int"}'
result['headers'] = ['<altivec.h>', '"ppc_altivec_helpers.h"']
result['makeVecConst'] = '((' + result[data_type] + '){{' + \
", ".join(['(' + data_type + ') {0}' for _ in range(width)]) + '}})'
result['makeVec'] = '((' + result[data_type] + '){{' + \
", ".join(['{' + data_type + '} {' + str(i) + '}' for i in range(width)]) + '}})'
result['makeVecConstInt'] = '((' + result['int'] + '){{' + ", ".join(['(int) {0}' for _ in range(intwidth)]) + '}})'
result['makeVecInt'] = '((' + result['int'] + '){{(int) {0}, (int) {1}, (int) {2}, (int) {3}}})'
result['any'] = 'vec_any_ne({0}, ((' + result['bool'] + ') {{' + ", ".join(['0'] * width) + '}}))'
result['all'] = 'vec_all_ne({0}, ((' + result['bool'] + ') {{' + ", ".join(['0'] * width) + '}}))'
result['cachelineSize'] = 'cachelineSize()'
result['cachelineZero'] = 'cachelineZero((void*) {0})'
return result
from pystencils.typing import CFunction
def get_argument_string(function_shortcut, last=''):
args = function_shortcut[function_shortcut.index('[') + 1: -1]
arg_string = "("
for arg in args.split(","):
arg = arg.strip()
if not arg:
continue
if arg in ('0', '1', '2', '3', '4', '5'):
arg_string += "{" + arg + "},"
else:
arg_string += arg + ","
if last:
arg_string += last + ','
arg_string = arg_string[:-1] + ")"
return arg_string
def get_vector_instruction_set_riscv(data_type='double', instruction_set='rvv'):
assert instruction_set == 'rvv'
bits = {'double': 64,
'float': 32,
'int': 32}
base_names = {
'+': 'fadd_vv[0, 1]',
'-': 'fsub_vv[0, 1]',
'*': 'fmul_vv[0, 1]',
'/': 'fdiv_vv[0, 1]',
'sqrt': 'fsqrt_v[0]',
'loadU': f'le{bits[data_type]}_v[0]',
'storeU': f'se{bits[data_type]}_v[0, 1]',
'maskStoreU': f'se{bits[data_type]}_v[2, 0, 1]',
'loadS': f'lse{bits[data_type]}_v[0, 1]',
'storeS': f'sse{bits[data_type]}_v[0, 2, 1]',
'maskStoreS': f'sse{bits[data_type]}_v[3, 0, 2, 1]',
'abs': 'fabs_v[0]',
'==': 'mfeq_vv[0, 1]',
'!=': 'mfne_vv[0, 1]',
'<=': 'mfle_vv[0, 1]',
'<': 'mflt_vv[0, 1]',
'>=': 'mfge_vv[0, 1]',
'>': 'mfgt_vv[0, 1]',
'&': 'mand_mm[0, 1]',
'|': 'mor_mm[0, 1]',
'blendv': 'merge_vvm[2, 0, 1]',
'any': 'cpop_m[0]',
'all': 'cpop_m[0]',
}
result = dict()
width = f'vsetvlmax_e{bits[data_type]}m1()'
intwidth = 'vsetvlmax_e{bits["int"]}m1()'
result['bytes'] = 'vsetvlmax_e8m1()'
prefix = 'v'
suffix = f'_f{bits[data_type]}m1'
vl = '{loop_stop} - {loop_counter}'
int_vl = f'({vl})*{bits[data_type]//bits["int"]}'
for intrinsic_id, function_shortcut in base_names.items():
function_shortcut = function_shortcut.strip()
name = function_shortcut[:function_shortcut.index('[')]
if name.startswith('mf'):
suffix2 = suffix + f'_b{bits[data_type]}'
elif name.endswith('_mm') or name.endswith('_m'):
suffix2 = f'_b{bits[data_type]}'
elif intrinsic_id.startswith('mask'):
suffix2 = suffix + '_m'
else:
suffix2 = suffix
arg_string = get_argument_string(function_shortcut, last=vl)
result[intrinsic_id] = prefix + name + suffix2 + arg_string
result['width'] = CFunction(width, "int")
result['intwidth'] = CFunction(intwidth, "int")
result['makeVecConst'] = f'vfmv_v_f_f{bits[data_type]}m1({{0}}, {vl})'
result['makeVecConstInt'] = f'vmv_v_x_i{bits["int"]}m1({{0}}, {int_vl})'
result['makeVecIndex'] = f'vmacc_vx_i{bits["int"]}m1({result["makeVecConstInt"]}, {{1}}, ' + \
f'vid_v_i{bits["int"]}m1({int_vl}), {int_vl})'
result['storeS'] = result['storeS'].replace('{2}', f'{{2}}*{bits[data_type]//8}')
result['loadS'] = result['loadS'].replace('{1}', f'{{1}}*{bits[data_type]//8}')
result['maskStoreS'] = result['maskStoreS'].replace('{2}', f'{{2}}*{bits[data_type]//8}')
result['+int'] = f"vadd_vv_i{bits['int']}m1({{0}}, {{1}}, {int_vl})"
result['float'] = f'vfloat{bits["float"]}m1_t'
result['double'] = f'vfloat{bits["double"]}m1_t'
result['int'] = f'vint{bits["int"]}m1_t'
result['bool'] = f'vbool{bits[data_type]}_t'
result['headers'] = ['<riscv_vector.h>', '"riscv_v_helpers.h"']
result['any'] += ' > 0x0'
result['all'] += f' == vsetvl_e{bits[data_type]}m1({vl})'
result['cachelineSize'] = 'cachelineSize()'
result['cachelineZero'] = 'cachelineZero((void*) {0})'
return result
import os
import platform
from ctypes import CDLL, c_int, c_size_t, sizeof, byref
from warnings import warn
import numpy as np
from pystencils.backends.x86_instruction_sets import get_vector_instruction_set_x86
from pystencils.backends.arm_instruction_sets import get_vector_instruction_set_arm
from pystencils.backends.ppc_instruction_sets import get_vector_instruction_set_ppc
from pystencils.backends.riscv_instruction_sets import get_vector_instruction_set_riscv
from pystencils.cache import memorycache
from pystencils.typing import numpy_name_to_c
def get_vector_instruction_set(data_type='double', instruction_set='avx'):
if data_type == 'float':
warn(f"Ambiguous input for data_type: {data_type}. For single precision please use float32. "
f"For more information please take numpy.dtype as a reference. This input will not be supported in future "
f"releases")
data_type = 'float64'
type_name = numpy_name_to_c(np.dtype(data_type).name)
if instruction_set in ['neon', 'sme'] or instruction_set.startswith('sve'):
return get_vector_instruction_set_arm(type_name, instruction_set)
elif instruction_set in ['vsx']:
return get_vector_instruction_set_ppc(type_name, instruction_set)
elif instruction_set in ['rvv']:
return get_vector_instruction_set_riscv(type_name, instruction_set)
else:
return get_vector_instruction_set_x86(type_name, instruction_set)
@memorycache
def get_supported_instruction_sets():
"""List of supported instruction sets on current hardware, or None if query failed."""
if 'PYSTENCILS_SIMD' in os.environ:
return os.environ['PYSTENCILS_SIMD'].split(',')
if platform.system() == 'Darwin' and platform.machine() == 'arm64':
result = ['neon']
libc = CDLL('/usr/lib/libc.dylib')
value = c_int(0)
size = c_size_t(sizeof(value))
status = libc.sysctlbyname(b"hw.optional.arm.FEAT_SME", byref(value), byref(size), None, 0)
if status == 0 and value.value == 1:
result.insert(0, "sme")
return result
elif platform.system() == 'Windows' and platform.machine() == 'ARM64':
return ['neon']
elif platform.system() == 'Linux' and platform.machine() == 'aarch64':
result = ['neon'] # Neon is mandatory on 64-bit ARM
libc = CDLL('libc.so.6')
hwcap = libc.getauxval(16) # AT_HWCAP
hwcap2 = libc.getauxval(26) # AT_HWCAP2
if hwcap & (1 << 22): # HWCAP_SVE
if hwcap2 & (1 << 1): # HWCAP2_SVE2
name = 'sve2'
else:
name = 'sve'
length = 8 * libc.prctl(51, 0, 0, 0, 0) # PR_SVE_GET_VL
if length < 0:
raise OSError("SVE length query failed")
while length >= 128:
result.append(f"{name}{length}")
length //= 2
result.append(name)
if hwcap2 & (1 << 23): # HWCAP2_SME
result.insert(0, "sme") # prepend to list so it is not automatically chosen as best instruction set
return result
elif platform.system() == 'Linux' and platform.machine().startswith('riscv'):
libc = CDLL('libc.so.6')
hwcap = libc.getauxval(16) # AT_HWCAP
hwcap_isa_v = 1 << (ord('V') - ord('A')) # COMPAT_HWCAP_ISA_V
return ['rvv'] if hwcap & hwcap_isa_v else []
elif platform.system() == 'Linux' and platform.machine().startswith('ppc64'):
libc = CDLL('libc.so.6')
hwcap = libc.getauxval(16) # AT_HWCAP
return ['vsx'] if hwcap & 0x00000080 else [] # PPC_FEATURE_HAS_VSX
elif platform.machine() in ['x86_64', 'x86', 'AMD64', 'i386']:
try:
from cpuinfo import get_cpu_info
except ImportError:
return None
result = []
required_sse_flags = {'sse', 'sse2', 'ssse3', 'sse4_1', 'sse4_2'}
required_avx_flags = {'avx', 'avx2'}
required_avx512_flags = {'avx512f'}
possible_avx512vl_flags = {'avx512vl', 'avx10_1'}
flags = set(get_cpu_info()['flags'])
if flags.issuperset(required_sse_flags):
result.append("sse")
if flags.issuperset(required_avx_flags):
result.append("avx")
if flags.issuperset(required_avx512_flags):
result.append("avx512")
if not flags.isdisjoint(possible_avx512vl_flags):
result.append("avx512vl")
return result
else:
raise NotImplementedError('Instruction set detection for %s on %s is not implemented' %
(platform.system(), platform.machine()))
@memorycache
def get_cacheline_size(instruction_set):
"""Get the size (in bytes) of a cache block that can be zeroed without memory access.
Usually, this is identical to the cache line size."""
instruction_sets = get_vector_instruction_set('double', instruction_set)
if 'cachelineSize' not in instruction_sets:
return None
import pystencils as ps
from pystencils.astnodes import SympyAssignment
import numpy as np
from pystencils.cpu.vectorization import CachelineSize
arr = np.zeros((1, 1), dtype=np.float32)
f = ps.Field.create_from_numpy_array('f', arr, index_dimensions=0)
ass = [CachelineSize(), SympyAssignment(f.center, CachelineSize.symbol)]
ast = ps.create_kernel(ass, cpu_vectorize_info={'instruction_set': instruction_set})
kernel = ast.compile()
kernel(**{f.name: arr, CachelineSize.symbol.name: 0})
return int(arr[0, 0])
def get_argument_string(intrinsic_id, width, function_shortcut):
if intrinsic_id == 'makeVecConst' or intrinsic_id == 'makeVecConstInt':
arg_string = f"({','.join(['{0}'] * width)})"
elif intrinsic_id == 'makeVec' or intrinsic_id == 'makeVecInt':
params = ["{" + str(i) + "}" for i in reversed(range(width))]
arg_string = f"({','.join(params)})"
elif intrinsic_id == 'makeVecBool':
params = [f"(({{{i}}} ? -1.0 : 0.0)" for i in reversed(range(width))]
arg_string = f"({','.join(params)})"
elif intrinsic_id == 'makeVecConstBool':
params = ["(({0}) ? -1.0 : 0.0)" for _ in range(width)]
arg_string = f"({','.join(params)})"
else:
args = function_shortcut[function_shortcut.index('[') + 1: -1]
arg_string = "("
for arg in args.split(","):
arg = arg.strip()
if not arg:
continue
if arg in ('0', '1', '2', '3', '4', '5'):
arg_string += "{" + arg + "},"
else:
arg_string += arg + ","
arg_string = arg_string[:-1] + ")"
return arg_string
def get_vector_instruction_set_x86(data_type='double', instruction_set='avx'):
comparisons = {
'==': '_CMP_EQ_UQ',
'!=': '_CMP_NEQ_UQ',
'>=': '_CMP_GE_OQ',
'<=': '_CMP_LE_OQ',
'<': '_CMP_NGE_UQ',
'>': '_CMP_NLE_UQ',
}
base_names = {
'+': 'add[0, 1]',
'-': 'sub[0, 1]',
'*': 'mul[0, 1]',
'/': 'div[0, 1]',
'&': 'and[0, 1]',
'|': 'or[0, 1]',
'blendv': 'blendv[0, 1, 2]',
'sqrt': 'sqrt[0]',
'makeVecConst': 'set[]',
'makeVec': 'set[]',
'makeVecBool': 'set[]',
'makeVecConstBool': 'set[]',
'makeVecInt': 'set[]',
'makeVecConstInt': 'set[]',
'loadU': 'loadu[0]',
'loadA': 'load[0]',
'storeU': 'storeu[0,1]',
'storeA': 'store[0,1]',
'stream': 'stream[0,1]',
'maskStoreA': 'mask_store[0, 2, 1]' if instruction_set.startswith('avx512') else 'maskstore[0, 2, 1]',
'maskStoreU': 'mask_storeu[0, 2, 1]' if instruction_set.startswith('avx512') else 'maskstore[0, 2, 1]',
}
for comparison_op, constant in comparisons.items():
base_names[comparison_op] = f'cmp[0, 1, {constant}]'
headers = {
'avx512': ['<immintrin.h>'],
'avx512vl': ['<immintrin.h>'],
'avx': ['<immintrin.h>'],
'sse': ['<immintrin.h>', '<xmmintrin.h>', '<emmintrin.h>', '<pmmintrin.h>',
'<tmmintrin.h>', '<smmintrin.h>', '<nmmintrin.h>']
}
suffix = {
'double': 'pd',
'float': 'ps',
'int': 'epi32'
}
prefix = {
'sse': '_mm',
'avx': '_mm256',
'avx512vl': '_mm256',
'avx512': '_mm512',
}
width = {
("double", "sse"): 2,
("float", "sse"): 4,
("int", "sse"): 4,
("double", "avx"): 4,
("float", "avx"): 8,
("int", "avx"): 8,
("double", "avx512vl"): 4,
("float", "avx512vl"): 8,
("int", "avx512vl"): 8,
("double", "avx512"): 8,
("float", "avx512"): 16,
("int", "avx512"): 16,
}
result = {
'width': width[(data_type, instruction_set)],
'intwidth': width[('int', instruction_set)],
'bytes': 4 * width[("float", instruction_set)]
}
pre = prefix[instruction_set]
for intrinsic_id, function_shortcut in base_names.items():
function_shortcut = function_shortcut.strip()
name = function_shortcut[:function_shortcut.index('[')]
if 'Int' in intrinsic_id:
suf = suffix['int']
arg_string = get_argument_string(intrinsic_id, result['intwidth'], function_shortcut)
else:
suf = suffix[data_type]
arg_string = get_argument_string(intrinsic_id, result['width'], function_shortcut)
mask_suffix = '_mask' if instruction_set.startswith('avx512') and intrinsic_id in comparisons.keys() else ''
result[intrinsic_id] = pre + "_" + name + "_" + suf + mask_suffix + arg_string
bit_width = result['width'] * (64 if data_type == 'double' else 32)
result['double'] = f"__m{bit_width}d"
result['float'] = f"__m{bit_width}"
result['int'] = f"__m{bit_width}i"
result['bool'] = result[data_type]
result['headers'] = headers[instruction_set]
result['any'] = f"{pre}_movemask_{suf}({{0}}) > 0"
result['all'] = f"{pre}_movemask_{suf}({{0}}) == {hex(2**result['width']-1)}"
setsuf = "x" if bit_width < 512 and bit_width // result['width'] == 64 else ""
if instruction_set.startswith('avx512'):
size = result['width']
masksize = max(size, 8)
result['&'] = f'_kand_mask{masksize}({{0}}, {{1}})'
result['|'] = f'_kor_mask{masksize}({{0}}, {{1}})'
result['any'] = f'!_ktestz_mask{masksize}_u8({{0}}, {{0}})'
result['all'] = f'_kortestc_mask{masksize}_u8({{0}}, {{0}})'
result['blendv'] = f'{pre}_mask_blend_{suf}({{2}}, {{0}}, {{1}})'
result['rsqrt'] = f"{pre}_rsqrt14_{suf}({{0}})"
result['bool'] = f"__mmask{masksize}"
params = " | ".join(["({{{i}}} ? {power} : 0)".format(i=i, power=2 ** i) for i in range(8)])
result['makeVecBool'] = f"__mmask8(({params}) )"
params = " | ".join(["({{0}} ? {power} : 0)".format(power=2 ** i) for i in range(8)])
result['makeVecConstBool'] = f"__mmask8(({params}) )"
vindex = f'{pre}_set_epi{bit_width//size}{setsuf}(' + \
', '.join([str(i) for i in range(result['width'])][::-1]) + ')'
vindex = f'{pre}_mullo_epi{bit_width//size}({vindex}, {pre}_set1_epi{bit_width//size}{setsuf}({{0}}))'
scale = bit_width // size // 8
result['storeS'] = f'{pre}_i{bit_width//size}scatter_{suf}({{0}}, ' + vindex.format("{2}") + \
f', {{1}}, {scale})'
result['maskStoreS'] = f'{pre}_mask_i{bit_width//size}scatter_{suf}({{0}}, {{3}}, ' + vindex.format("{2}") + \
f', {{1}}, {scale})'
if bit_width == 512:
result['loadS'] = f'{pre}_i{bit_width//size}gather_{suf}(' + vindex.format("{1}") + f', {{0}}, {scale})'
else:
result['loadS'] = f'{pre}_i{bit_width//size}gather_{suf}({{0}}, ' + vindex.format("{1}") + f', {scale})'
# abs intrinsic exists in 512 bits, but expands to a sequence. We generate that same sequence for 128 and 256 bits
if instruction_set == 'avx512':
result['abs'] = f"{pre}_abs_{suf}({{0}})"
else:
result['abs'] = f"{pre}_castsi{bit_width}_{suf}({pre}_and_si{bit_width}(" + \
f"{pre}_set1_epi{bit_width // result['width']}{setsuf}(0x7" + \
'f' * (bit_width // result['width'] // 4 - 1) + "), " + \
f"{pre}_cast{suf}_si{bit_width}({{0}})))"
if instruction_set == 'avx' and data_type == 'float':
result['rsqrt'] = f"{pre}_rsqrt_{suf}({{0}})"
result['+int'] = f"{pre}_add_{suffix['int']}({{0}}, {{1}})"
result['streamFence'] = '_mm_mfence()'
return result
import sympy as sp
# from pystencils.typing import get_type_of_expression
# noinspection PyPep8Naming
class flag_cond(sp.Function):
"""Evaluates a flag condition on a bit mask, and returns the value of one of two expressions,
depending on whether the flag is set.
Three argument version:
```
flag_cond(flag_bit, mask, expr) = expr if (flag_bit is set in mask) else 0
```
Four argument version:
```
flag_cond(flag_bit, mask, expr_then, expr_else) = expr_then if (flag_bit is set in mask) else expr_else
```
"""
nargs = (3, 4)
def __new__(cls, flag_bit, mask_expression, *expressions):
# TODO Jan reintroduce checking
# flag_dtype = get_type_of_expression(flag_bit)
# if not flag_dtype.is_int():
# raise ValueError('Argument flag_bit must be of integer type.')
#
# mask_dtype = get_type_of_expression(mask_expression)
# if not mask_dtype.is_int():
# raise ValueError('Argument mask_expression must be of integer type.')
return super().__new__(cls, flag_bit, mask_expression, *expressions)
def to_c(self, print_func):
flag_bit = self.args[0]
mask = self.args[1]
then_expression = self.args[2]
flag_bit_code = print_func(flag_bit)
mask_code = print_func(mask)
then_code = print_func(then_expression)
code = f"(({mask_code}) >> ({flag_bit_code}) & 1) * ({then_code})"
if len(self.args) > 3:
else_expression = self.args[3]
else_code = print_func(else_expression)
code += f" + (({mask_code}) >> ({flag_bit_code}) ^ 1) * ({else_code})"
return code
from pystencils.boundaries.boundaryconditions import Dirichlet, Neumann
from pystencils.boundaries.boundaryhandling import BoundaryHandling
from pystencils.boundaries.inkernel import add_neumann_boundary
__all__ = ['BoundaryHandling', 'Neumann', 'Dirichlet', 'add_neumann_boundary']
from typing import Any, List, Tuple
from pystencils.astnodes import SympyAssignment
from pystencils.boundaries.boundaryhandling import BoundaryOffsetInfo
from pystencils.typing import create_type
class Boundary:
"""Base class all boundaries should derive from"""
inner_or_boundary = True
single_link = False
def __init__(self, name=None):
self._name = name
def __call__(self, field, direction_symbol, index_field) -> List[SympyAssignment]:
"""Defines the boundary behavior and must therefore be implemented by all boundaries.
Here the boundary is defined as a list of sympy assignments, from which a boundary kernel is generated.
Args:
field: pystencils field where boundary condition should be applied.
The current cell is cell next to the boundary, which is influenced by the boundary
cell i.e. has a link from the boundary cell to itself.
direction_symbol: a sympy symbol that can be used as index to the pdf_field. It describes
the direction pointing from the fluid to the boundary cell
index_field: the boundary index field that can be used to retrieve and update boundary data
"""
raise NotImplementedError("Boundary class has to overwrite __call__")
@property
def additional_data(self) -> Tuple[str, Any]:
"""Return a list of (name, type) tuples for additional data items required in this boundary
These data items can either be initialized in separate kernel see additional_data_kernel_init or by
Python callbacks - see additional_data_callback """
return ()
@property
def additional_data_init_callback(self):
"""Return a callback function called with a boundary data setter object and returning a dict of
data-name to data for each element that should be initialized"""
return None
@property
def name(self):
if self._name:
return self._name
else:
return type(self).__name__
@name.setter
def name(self, new_value):
self._name = new_value
class Neumann(Boundary):
inner_or_boundary = False
single_link = True
def __call__(self, field, direction_symbol, **kwargs):
neighbor = BoundaryOffsetInfo.offset_from_dir(direction_symbol, field.spatial_dimensions)
if field.index_dimensions == 0:
return [SympyAssignment(field.center, field[neighbor])]
else:
from itertools import product
if not field.has_fixed_index_shape:
raise NotImplementedError("Neumann boundary works only for fields with fixed index shape")
index_iter = product(*(range(i) for i in field.index_shape))
return [SympyAssignment(field(*idx), field[neighbor](*idx)) for idx in index_iter]
def __hash__(self):
# All boundaries of these class behave equal -> should also be equal
return hash("Neumann")
def __eq__(self, other):
return type(other) is Neumann
class Dirichlet(Boundary):
inner_or_boundary = False
single_link = True
def __init__(self, value, name=None):
super().__init__(name)
self._value = value
@property
def additional_data(self):
if callable(self._value):
return [('value', create_type("double"))]
else:
return []
@property
def additional_data_init_callback(self):
if callable(self._value):
return self._value
def __call__(self, field, direction_symbol, index_field, **kwargs):
if field.index_dimensions == 0:
return [SympyAssignment(field.center, index_field("value") if self.additional_data else self._value)]
elif field.index_dimensions == 1:
assert not self.additional_data
if not field.has_fixed_index_shape:
raise NotImplementedError("Field needs fixed index shape")
assert len(self._value) == field.index_shape[0], "Dirichlet value does not match index shape of field"
return [SympyAssignment(field(i), self._value[i]) for i in range(field.index_shape[0])]
raise NotImplementedError("Dirichlet boundary not implemented for fields with more than one index dimension")
from functools import lru_cache
import numpy as np
import sympy as sp
from pystencils import create_kernel, CreateKernelConfig, Target
from pystencils.astnodes import SympyAssignment
from pystencils.backends.cbackend import CustomCodeNode
from pystencils.boundaries.createindexlist import (
create_boundary_index_array, numpy_data_type_for_boundary_object)
from pystencils.typing import TypedSymbol, create_type
from pystencils.gpu.gpu_array_handler import GPUArrayHandler
from pystencils.field import Field
from pystencils.typing.typed_sympy import FieldPointerSymbol
try:
# noinspection PyPep8Naming
import waLBerla as wlb
if wlb.cpp_available:
from pystencils.datahandling.parallel_datahandling import ParallelDataHandling
import cupy.cuda.runtime
else:
ParallelDataHandling = None
except ImportError:
ParallelDataHandling = None
DEFAULT_FLAG_TYPE = np.uint32
class FlagInterface:
"""Manages the reservation of bits (i.e. flags) in an array of unsigned integers.
Examples:
>>> from pystencils import create_data_handling
>>> dh = create_data_handling((4, 5))
>>> fi = FlagInterface(dh, 'flag_field', np.uint8)
>>> assert dh.has_data('flag_field')
>>> int(fi.reserve_next_flag())
2
>>> int(fi.reserve_flag(4))
4
>>> int(fi.reserve_next_flag())
8
"""
def __init__(self, data_handling, flag_field_name, dtype=DEFAULT_FLAG_TYPE):
self.flag_field_name = flag_field_name
self.domain_flag = dtype(1 << 0)
self._used_flags = {self.domain_flag}
self.data_handling = data_handling
self.dtype = dtype
self.max_bits = self.dtype().itemsize * 8
# Add flag field to data handling if it does not yet exist
if data_handling.has_data(self.flag_field_name):
raise ValueError("There is already a boundary handling registered at the data handling."
"If you want to add multiple handling objects, choose a different name.")
self.flag_field = data_handling.add_array(self.flag_field_name, dtype=self.dtype, cpu=True, gpu=False)
ff_ghost_layers = data_handling.ghost_layers_of_field(self.flag_field_name)
for b in data_handling.iterate(ghost_layers=ff_ghost_layers):
b[self.flag_field_name].fill(self.domain_flag)
def reserve_next_flag(self):
for i in range(1, self.max_bits):
flag = self.dtype(1 << i)
if flag not in self._used_flags:
self._used_flags.add(flag)
assert self._is_power_of_2(flag)
return flag
raise ValueError(f"All available {self.max_bits} flags are reserved")
def reserve_flag(self, flag):
assert self._is_power_of_2(flag)
flag = self.dtype(flag)
if flag in self._used_flags:
raise ValueError(f"The flag {flag} is already reserved")
self._used_flags.add(flag)
return flag
@staticmethod
def _is_power_of_2(num):
return num != 0 and ((num & (num - 1)) == 0)
class BoundaryHandling:
def __init__(self, data_handling, field_name, stencil, name="boundary_handling", flag_interface=None,
target: Target = Target.CPU, openmp=True):
assert data_handling.has_data(field_name)
assert data_handling.dim == len(stencil[0]), "Dimension of stencil and data handling do not match"
self._data_handling = data_handling
self._field_name = field_name
self._index_array_name = name + "IndexArrays"
self._target = target
self._openmp = openmp
self._boundary_object_to_boundary_info = {}
self.stencil = stencil
self._dirty = True
fi = flag_interface
self.flag_interface = fi if fi is not None else FlagInterface(data_handling, name + "Flags")
if ParallelDataHandling and isinstance(self.data_handling, ParallelDataHandling):
array_handler = GPUArrayHandler(cupy.cuda.runtime.getDevice())
else:
array_handler = self.data_handling.array_handler
def to_cpu(gpu_version, cpu_version):
gpu_version = gpu_version.boundary_object_to_index_list
cpu_version = cpu_version.boundary_object_to_index_list
for obj, cpu_arr in cpu_version.items():
array_handler.download(gpu_version[obj], cpu_arr)
def to_gpu(gpu_version, cpu_version):
gpu_version = gpu_version.boundary_object_to_index_list
cpu_version = cpu_version.boundary_object_to_index_list
for obj, cpu_arr in cpu_version.items():
if obj not in gpu_version or gpu_version[obj].shape != cpu_arr.shape:
gpu_version[obj] = array_handler.empty(cpu_arr.shape, cpu_arr.dtype)
array_handler.upload(gpu_version[obj], cpu_arr)
else:
array_handler.upload(gpu_version[obj], cpu_arr)
class_ = self.IndexFieldBlockData
class_.to_cpu = to_cpu
class_.to_gpu = to_gpu
gpu = self._target in data_handling._GPU_LIKE_TARGETS
data_handling.add_custom_class(self._index_array_name, class_, cpu=True, gpu=gpu)
@property
def data_handling(self):
return self._data_handling
def get_flag(self, boundary_obj):
return self._boundary_object_to_boundary_info[boundary_obj].flag
@property
def shape(self):
return self._data_handling.shape
@property
def dim(self):
return self._data_handling.dim
@property
def boundary_objects(self):
return tuple(self._boundary_object_to_boundary_info.keys())
@property
def flag_array_name(self):
return self.flag_interface.flag_field_name
def get_mask(self, slice_obj, boundary_obj, inverse=False):
if isinstance(boundary_obj, str) and boundary_obj.lower() == 'domain':
flag = self.flag_interface.domain_flag
else:
flag = self._boundary_object_to_boundary_info[boundary_obj].flag
arr = self.data_handling.gather_array(self.flag_array_name, slice_obj)
if arr is None:
return None
else:
result = np.bitwise_and(arr, flag)
if inverse:
result = np.logical_not(result)
return result
def set_boundary(self, boundary_obj, slice_obj=None, mask_callback=None,
ghost_layers=True, inner_ghost_layers=True, replace=True, force_flag_value=None):
"""Sets boundary using either a rectangular slice, a boolean mask or a combination of both.
Args:
boundary_obj: instance of a boundary object that should be set
slice_obj: a slice object (can be created with make_slice[]) that selects a part of the domain where
the boundary should be set. If none, the complete domain is selected which makes only sense
if a mask_callback is passed. The slice can have ':' placeholders, which are interpreted
depending on the 'inner_ghost_layers' parameter i.e. if it is True, the slice extends
into the ghost layers
mask_callback: callback function getting x,y (z) parameters of the cell midpoints and returning a
boolean mask with True entries where boundary cells should be set.
The x, y, z arrays have 2D/3D shape such that they can be used directly
to create the boolean return array. i.e return x < 10 sets boundaries in cells with
midpoint x coordinate smaller than 10.
ghost_layers: see DataHandling.iterate()
inner_ghost_layers: see DataHandling.iterate()
replace: by default all other flags are erased in the cells where the boundary is set. To add a
boundary condition, set this replace flag to False
force_flag_value: flag that should be reserved for this boundary. Has to be an integer that is a power of 2
and was not reserved before for another boundary.
"""
if isinstance(boundary_obj, str) and boundary_obj.lower() == 'domain':
flag = self.flag_interface.domain_flag
else:
if force_flag_value:
self.flag_interface.reserve_flag(force_flag_value)
flag = self._add_boundary(boundary_obj, force_flag_value)
for b in self._data_handling.iterate(slice_obj, ghost_layers=ghost_layers,
inner_ghost_layers=inner_ghost_layers):
flag_arr = b[self.flag_interface.flag_field_name]
if mask_callback is not None:
mask = mask_callback(*b.midpoint_arrays)
if replace:
flag_arr[mask] = flag
else:
np.bitwise_or(flag_arr, flag, where=mask, out=flag_arr)
np.bitwise_and(flag_arr, ~self.flag_interface.domain_flag, where=mask, out=flag_arr)
else:
if replace:
flag_arr.fill(flag)
else:
np.bitwise_or(flag_arr, flag, out=flag_arr)
np.bitwise_and(flag_arr, ~self.flag_interface.domain_flag, out=flag_arr)
self._dirty = True
return flag
def set_boundary_where_flag_is_set(self, boundary_obj, flag):
"""Adds an (additional) boundary to all cells that have been previously marked with the passed flag."""
self._add_boundary(boundary_obj, flag)
self._dirty = True
return flag
def prepare(self):
if not self._dirty:
return
self._create_index_fields()
self._dirty = False
def trigger_reinitialization_of_boundary_data(self, **kwargs):
if self._dirty:
self.prepare()
else:
ff_ghost_layers = self._data_handling.ghost_layers_of_field(self.flag_interface.flag_field_name)
for b in self._data_handling.iterate(ghost_layers=ff_ghost_layers):
for b_obj, setter in b[self._index_array_name].boundary_object_to_data_setter.items():
self._boundary_data_initialization(b_obj, setter, **kwargs)
def __call__(self, **kwargs):
if self._dirty:
self.prepare()
for b in self._data_handling.iterate(gpu=self._target in self._data_handling._GPU_LIKE_TARGETS):
for b_obj, idx_arr in b[self._index_array_name].boundary_object_to_index_list.items():
kwargs[self._field_name] = b[self._field_name]
kwargs['indexField'] = idx_arr
data_used_in_kernel = (p.fields[0].name
for p in self._boundary_object_to_boundary_info[b_obj].kernel.parameters
if isinstance(p.symbol, FieldPointerSymbol) and p.fields[0].name not in kwargs)
kwargs.update({name: b[name] for name in data_used_in_kernel})
self._boundary_object_to_boundary_info[b_obj].kernel(**kwargs)
def add_fixed_steps(self, fixed_loop, **kwargs):
if self._dirty:
self.prepare()
for b in self._data_handling.iterate(gpu=self._target in self._data_handling._GPU_LIKE_TARGETS):
for b_obj, idx_arr in b[self._index_array_name].boundary_object_to_index_list.items():
arguments = kwargs.copy()
arguments[self._field_name] = b[self._field_name]
arguments['indexField'] = idx_arr
data_used_in_kernel = (p.fields[0].name
for p in self._boundary_object_to_boundary_info[b_obj].kernel.parameters
if isinstance(p.symbol, FieldPointerSymbol) and p.field_name not in arguments)
arguments.update({name: b[name] for name in data_used_in_kernel if name not in arguments})
kernel = self._boundary_object_to_boundary_info[b_obj].kernel
fixed_loop.add_call(kernel, arguments)
def geometry_to_vtk(self, file_name='geometry', boundaries='all', ghost_layers=False):
"""
Writes a VTK field where each cell with the given boundary is marked with 1, other cells are 0
This can be used to display the simulation geometry in Paraview
Params:
file_name: vtk filename
boundaries: boundary object, or special string 'domain' for domain cells or special string 'all' for all
boundary conditions.
can also be a sequence, to write multiple boundaries to VTK file
ghost_layers: number of ghost layers to write, or True for all, False for none
"""
if boundaries == 'all':
boundaries = list(self._boundary_object_to_boundary_info.keys()) + ['domain']
elif not hasattr(boundaries, "__len__"):
boundaries = [boundaries]
masks_to_name = {}
for b in boundaries:
if b == 'domain':
masks_to_name[self.flag_interface.domain_flag] = 'domain'
else:
flag = self._boundary_object_to_boundary_info[b].flag
masks_to_name[flag] = b.name
writer = self.data_handling.create_vtk_writer_for_flag_array(file_name, self.flag_interface.flag_field_name,
masks_to_name, ghost_layers=ghost_layers)
writer(1)
# ------------------------------ Implementation Details ------------------------------------------------------------
def _add_boundary(self, boundary_obj, flag=None):
if boundary_obj not in self._boundary_object_to_boundary_info:
sym_index_field = Field.create_generic('indexField', spatial_dimensions=1,
dtype=numpy_data_type_for_boundary_object(boundary_obj, self.dim))
ast = self._create_boundary_kernel(self._data_handling.fields[self._field_name],
sym_index_field, boundary_obj)
if flag is None:
flag = self.flag_interface.reserve_next_flag()
boundary_info = self.BoundaryInfo(boundary_obj, flag=flag, kernel=ast.compile())
self._boundary_object_to_boundary_info[boundary_obj] = boundary_info
return self._boundary_object_to_boundary_info[boundary_obj].flag
def _create_boundary_kernel(self, symbolic_field, symbolic_index_field, boundary_obj):
return create_boundary_kernel(symbolic_field, symbolic_index_field, self.stencil, boundary_obj,
target=self._target, cpu_openmp=self._openmp)
def _create_index_fields(self):
dh = self._data_handling
ff_ghost_layers = dh.ghost_layers_of_field(self.flag_interface.flag_field_name)
for b in dh.iterate(ghost_layers=ff_ghost_layers):
flag_arr = b[self.flag_interface.flag_field_name]
pdf_arr = b[self._field_name]
index_array_bd = b[self._index_array_name]
index_array_bd.clear()
for b_info in self._boundary_object_to_boundary_info.values():
boundary_obj = b_info.boundary_object
idx_arr = create_boundary_index_array(flag_arr, self.stencil, b_info.flag,
self.flag_interface.domain_flag, boundary_obj,
ff_ghost_layers, boundary_obj.inner_or_boundary,
boundary_obj.single_link)
if idx_arr.size == 0:
continue
boundary_data_setter = BoundaryDataSetter(idx_arr, b.offset, self.stencil, ff_ghost_layers, pdf_arr)
index_array_bd.boundary_object_to_index_list[b_info.boundary_object] = idx_arr
index_array_bd.boundary_object_to_data_setter[b_info.boundary_object] = boundary_data_setter
self._boundary_data_initialization(b_info.boundary_object, boundary_data_setter)
def _boundary_data_initialization(self, boundary_obj, boundary_data_setter, **kwargs):
if boundary_obj.additional_data_init_callback:
boundary_obj.additional_data_init_callback(boundary_data_setter, **kwargs)
if self._target in self._data_handling._GPU_LIKE_TARGETS:
self._data_handling.to_gpu(self._index_array_name)
class BoundaryInfo(object):
def __init__(self, boundary_obj, flag, kernel):
self.boundary_object = boundary_obj
self.flag = flag
self.kernel = kernel
class IndexFieldBlockData:
def __init__(self, *args, **kwargs):
self.boundary_object_to_index_list = {}
self.boundary_object_to_data_setter = {}
def clear(self):
self.boundary_object_to_index_list.clear()
self.boundary_object_to_data_setter.clear()
class BoundaryDataSetter:
def __init__(self, index_array, offset, stencil, ghost_layers, pdf_array):
self.index_array = index_array
self.offset = offset
self.stencil = np.array(stencil)
self.pdf_array = pdf_array.view()
self.pdf_array.flags.writeable = False
arr_field_names = index_array.dtype.names
self.dim = 3 if 'z' in arr_field_names else 2
assert 'x' in arr_field_names and 'y' in arr_field_names and 'dir' in arr_field_names, str(arr_field_names)
self.boundary_data_names = set(self.index_array.dtype.names) - {'x', 'y', 'z', 'dir'}
self.coord_map = {0: 'x', 1: 'y', 2: 'z'}
self.ghost_layers = ghost_layers
def non_boundary_cell_positions(self, coord):
assert coord < self.dim
return self.index_array[self.coord_map[coord]] + self.offset[coord] - self.ghost_layers + 0.5
@lru_cache()
def link_offsets(self):
return self.stencil[self.index_array['dir']]
@lru_cache()
def link_positions(self, coord):
return self.non_boundary_cell_positions(coord) + 0.5 * self.link_offsets()[:, coord]
@lru_cache()
def boundary_cell_positions(self, coord):
return self.non_boundary_cell_positions(coord) + self.link_offsets()[:, coord]
def __setitem__(self, key, value):
if key not in self.boundary_data_names:
raise KeyError(f"Invalid boundary data name {key}. Allowed are {self.boundary_data_names}")
self.index_array[key] = value
def __getitem__(self, item):
if item not in self.boundary_data_names:
raise KeyError(f"Invalid boundary data name {item}. Allowed are {self.boundary_data_names}")
return self.index_array[item]
class BoundaryOffsetInfo(CustomCodeNode):
# --------------------------- Functions to be used by boundaries --------------------------
@staticmethod
def offset_from_dir(dir_idx, dim):
return tuple([sp.IndexedBase(symbol, shape=(1,))[dir_idx]
for symbol in BoundaryOffsetInfo._offset_symbols(dim)])
@staticmethod
def inv_dir(dir_idx):
return sp.IndexedBase(BoundaryOffsetInfo.INV_DIR_SYMBOL, shape=(1,))[dir_idx]
# ---------------------------------- Internal ---------------------------------------------
def __init__(self, stencil):
dim = len(stencil[0])
offset_sym = BoundaryOffsetInfo._offset_symbols(dim)
code = "\n"
for i in range(dim):
offset_str = ", ".join([str(d[i]) for d in stencil])
code += "const int32_t %s [] = { %s };\n" % (offset_sym[i].name, offset_str)
inv_dirs = []
for direction in stencil:
inverse_dir = tuple([-i for i in direction])
inv_dirs.append(str(stencil.index(inverse_dir)))
code += "const int32_t %s [] = { %s };\n" % (self.INV_DIR_SYMBOL.name, ", ".join(inv_dirs))
offset_symbols = BoundaryOffsetInfo._offset_symbols(dim)
super(BoundaryOffsetInfo, self).__init__(code, symbols_read=set(),
symbols_defined=set(offset_symbols + [self.INV_DIR_SYMBOL]))
@staticmethod
def _offset_symbols(dim):
return [TypedSymbol(f"c{d}", create_type(np.int32)) for d in ['x', 'y', 'z'][:dim]]
INV_DIR_SYMBOL = TypedSymbol("invdir", np.int32)
def create_boundary_kernel(field, index_field, stencil, boundary_functor, target=Target.CPU, **kernel_creation_args):
elements = [BoundaryOffsetInfo(stencil)]
dir_symbol = TypedSymbol("dir", np.int32)
elements += [SympyAssignment(dir_symbol, index_field[0]('dir'))]
elements += boundary_functor(field, direction_symbol=dir_symbol, index_field=index_field)
config = CreateKernelConfig(index_fields=[index_field], target=target, skip_independence_check=True,
**kernel_creation_args)
return create_kernel(elements, config=config)
import warnings
import numpy as np
try:
import pyximport
pyximport.install(language_level=3)
cython_funcs_available = True
except ImportError:
cython_funcs_available = False
if cython_funcs_available:
from pystencils.boundaries.createindexlistcython import (
create_boundary_neighbor_index_list_2d,
create_boundary_neighbor_index_list_3d,
create_boundary_cell_index_list_2d,
create_boundary_cell_index_list_3d,
)
boundary_index_array_coordinate_names = ["x", "y", "z"]
direction_member_name = "dir"
default_index_array_dtype = np.int32
def numpy_data_type_for_boundary_object(boundary_object, dim):
coordinate_names = boundary_index_array_coordinate_names[:dim]
return np.dtype(
[(name, default_index_array_dtype) for name in coordinate_names]
+ [(direction_member_name, default_index_array_dtype)]
+ [(i[0], i[1].numpy_dtype) for i in boundary_object.additional_data],
align=True,
)
def _create_index_list_python(
flag_field_arr,
boundary_mask,
fluid_mask,
stencil,
single_link,
inner_or_boundary=False,
nr_of_ghost_layers=None,
):
if inner_or_boundary and nr_of_ghost_layers is None:
raise ValueError(
"If inner_or_boundary is set True the number of ghost layers "
"around the inner domain has to be specified"
)
if nr_of_ghost_layers is None:
nr_of_ghost_layers = 0
coordinate_names = boundary_index_array_coordinate_names[
: len(flag_field_arr.shape)
]
index_arr_dtype = np.dtype(
[(name, default_index_array_dtype) for name in coordinate_names]
+ [(direction_member_name, default_index_array_dtype)]
)
# boundary cells are extracted via np.where. To ensure continous memory access in the compute kernel these cells
# have to be sorted.
boundary_cells = np.transpose(np.nonzero(flag_field_arr == boundary_mask))
for i in range(len(flag_field_arr.shape)):
boundary_cells = boundary_cells[boundary_cells[:, i].argsort(kind="mergesort")]
# First a set is created to save all fluid cells which are near boundary
fluid_cells = set()
for cell in boundary_cells:
cell = tuple(cell)
for dir_idx, direction in enumerate(stencil):
neighbor_cell = tuple(
[cell_i + dir_i for cell_i, dir_i in zip(cell, direction)]
)
# prevent out ouf bounds access. If boundary cell is at the border, some stencil directions would be out.
if any(
not 0 + nr_of_ghost_layers <= e < upper - nr_of_ghost_layers
for e, upper in zip(neighbor_cell, flag_field_arr.shape)
):
continue
if flag_field_arr[neighbor_cell] & fluid_mask:
fluid_cells.add(neighbor_cell)
# then this is set is transformed to a list to make it sortable. This ensures continoous memory access later.
fluid_cells = list(fluid_cells)
if len(flag_field_arr.shape) == 3:
fluid_cells.sort(key=lambda tup: (tup[-1], tup[-2], tup[0]))
else:
fluid_cells.sort(key=lambda tup: (tup[-1], tup[0]))
cells_to_iterate = fluid_cells if inner_or_boundary else boundary_cells
checkmask = boundary_mask if inner_or_boundary else fluid_mask
result = []
for cell in cells_to_iterate:
cell = tuple(cell)
sum_cells = np.zeros(len(cell))
for dir_idx, direction in enumerate(stencil):
neighbor_cell = tuple(
[cell_i + dir_i for cell_i, dir_i in zip(cell, direction)]
)
# prevent out ouf bounds access. If boundary cell is at the border, some stencil directions would be out.
if any(
not 0 <= e < upper
for e, upper in zip(neighbor_cell, flag_field_arr.shape)
):
continue
if flag_field_arr[neighbor_cell] & checkmask:
if single_link:
sum_cells += np.array(direction)
else:
result.append(tuple(cell) + (dir_idx,))
# the discrete normal direction is the one which gives the maximum inner product to the stencil direction
if single_link and any(sum_cells != 0):
idx = np.argmax(np.inner(sum_cells, stencil))
result.append(tuple(cell) + (idx,))
return np.array(result, dtype=index_arr_dtype)
def create_boundary_index_list(
flag_field,
stencil,
boundary_mask,
fluid_mask,
nr_of_ghost_layers=1,
inner_or_boundary=True,
single_link=False,
):
"""Creates a numpy array storing links (connections) between domain cells and boundary cells.
Args:
flag_field: flag integer array where boundary and domain cells are marked (interpreted as bit vector)
stencil: list of directions, for possible links. When single_link is set to true the order matters, because
then only the first link is added to the list
boundary_mask: cells where (cell & mask) is true are considered boundary cells
fluid_mask: cells where (cell & mask) is true are considered fluid/inner cells cells
nr_of_ghost_layers: only relevant if neighbors is True
inner_or_boundary: if true, the result contains the cell coordinates of the domain cells -
if false the boundary cells are listed
single_link: if true only the link in normal direction to this cell is reported
"""
dim = len(flag_field.shape)
coordinate_names = boundary_index_array_coordinate_names[:dim]
index_arr_dtype = np.dtype(
[(name, default_index_array_dtype) for name in coordinate_names]
+ [(direction_member_name, default_index_array_dtype)]
)
stencil = np.array(stencil, dtype=default_index_array_dtype)
args = (
flag_field,
nr_of_ghost_layers,
boundary_mask,
fluid_mask,
stencil,
single_link,
)
args_no_gl = (flag_field, boundary_mask, fluid_mask, stencil, single_link)
if cython_funcs_available:
if dim == 2:
if inner_or_boundary:
idx_list = create_boundary_neighbor_index_list_2d(*args)
else:
idx_list = create_boundary_cell_index_list_2d(*args_no_gl)
elif dim == 3:
if inner_or_boundary:
idx_list = create_boundary_neighbor_index_list_3d(*args)
else:
idx_list = create_boundary_cell_index_list_3d(*args_no_gl)
else:
raise ValueError("Flag field has to be a 2 or 3 dimensional numpy array")
return np.array(idx_list, dtype=index_arr_dtype)
else:
if flag_field.size > 1e6:
warnings.warn(
"Boundary setup may take very long! Consider installing cython to speed it up"
)
return _create_index_list_python(
*args_no_gl,
inner_or_boundary=inner_or_boundary,
nr_of_ghost_layers=nr_of_ghost_layers,
)
def create_boundary_index_array(
flag_field,
stencil,
boundary_mask,
fluid_mask,
boundary_object,
nr_of_ghost_layers=1,
inner_or_boundary=True,
single_link=False,
):
idx_array = create_boundary_index_list(
flag_field,
stencil,
boundary_mask,
fluid_mask,
nr_of_ghost_layers,
inner_or_boundary,
single_link,
)
dim = len(flag_field.shape)
if boundary_object.additional_data:
coordinate_names = boundary_index_array_coordinate_names[:dim]
index_arr_dtype = numpy_data_type_for_boundary_object(boundary_object, dim)
extended_idx_field = np.empty(len(idx_array), dtype=index_arr_dtype)
for prop in coordinate_names + ["dir"]:
extended_idx_field[prop] = idx_array[prop]
idx_array = extended_idx_field
return idx_array
# cython: language_level=3str
import cython
ctypedef fused IntegerType:
short
int
long
long long
unsigned short
unsigned int
unsigned long
@cython.boundscheck(False) # turn off bounds-checking for entire function
@cython.wraparound(False) # turn off negative index wrapping for entire function
def create_boundary_neighbor_index_list_2d(object[IntegerType, ndim=2] flag_field,
int nr_of_ghost_layers, IntegerType boundary_mask, IntegerType fluid_mask,
object[int, ndim=2] stencil, int single_link):
cdef int xs, ys, x, y
cdef int dirIdx, num_directions, dx, dy
cdef int sum_x, sum_y
cdef float dot, maxn
cdef int calculated_idx
xs, ys = flag_field.shape
boundary_index_list = []
num_directions = stencil.shape[0]
for y in range(nr_of_ghost_layers, ys - nr_of_ghost_layers):
for x in range(nr_of_ghost_layers, xs - nr_of_ghost_layers):
sum_x = 0; sum_y = 0;
if flag_field[x, y] & fluid_mask:
for dirIdx in range(num_directions):
dx = stencil[dirIdx,0]; dy = stencil[dirIdx,1]
if flag_field[x + dx, y + dy] & boundary_mask:
if single_link:
sum_x += dx; sum_y += dy;
else:
boundary_index_list.append((x, y, dirIdx))
dot = 0; maxn = 0; calculated_idx = 0
if single_link and (sum_x != 0 or sum_y != 0):
for dirIdx in range(num_directions):
dx = stencil[dirIdx, 0]; dy = stencil[dirIdx, 1];
dot = dx * sum_x + dy * sum_y
if dot > maxn:
maxn = dot
calculated_idx = dirIdx
boundary_index_list.append((x, y, calculated_idx))
return boundary_index_list
@cython.boundscheck(False) # turn off bounds-checking for entire function
@cython.wraparound(False) # turn off negative index wrapping for entire function
def create_boundary_neighbor_index_list_3d(object[IntegerType, ndim=3] flag_field,
int nr_of_ghost_layers, IntegerType boundary_mask, IntegerType fluid_mask,
object[int, ndim=2] stencil, int single_link):
cdef int xs, ys, zs, x, y, z
cdef int dirIdx, num_directions, dx, dy, dz
cdef int sum_x, sum_y, sum_z
cdef float dot, maxn
cdef int calculated_idx
xs, ys, zs = flag_field.shape
boundary_index_list = []
num_directions = stencil.shape[0]
for z in range(nr_of_ghost_layers, zs - nr_of_ghost_layers):
for y in range(nr_of_ghost_layers, ys - nr_of_ghost_layers):
for x in range(nr_of_ghost_layers, xs - nr_of_ghost_layers):
sum_x = 0; sum_y = 0; sum_z = 0
if flag_field[x, y, z] & fluid_mask:
for dirIdx in range(num_directions):
dx = stencil[dirIdx,0]; dy = stencil[dirIdx,1]; dz = stencil[dirIdx,2]
if flag_field[x + dx, y + dy, z + dz] & boundary_mask:
if single_link:
sum_x += dx; sum_y += dy; sum_z += dz
else:
boundary_index_list.append((x, y, z, dirIdx))
dot = 0; maxn = 0; calculated_idx = 0
if single_link and (sum_x != 0 or sum_y != 0 or sum_z != 0):
for dirIdx in range(num_directions):
dx = stencil[dirIdx, 0]; dy = stencil[dirIdx, 1]; dz = stencil[dirIdx, 2]
dot = dx * sum_x + dy * sum_y + dz * sum_z
if dot > maxn:
maxn = dot
calculated_idx = dirIdx
boundary_index_list.append((x, y, z, calculated_idx))
return boundary_index_list
@cython.boundscheck(False) # turn off bounds-checking for entire function
@cython.wraparound(False) # turn off negative index wrapping for entire function
def create_boundary_cell_index_list_2d(object[IntegerType, ndim=2] flag_field,
IntegerType boundary_mask, IntegerType fluid_mask,
object[int, ndim=2] stencil, int single_link):
cdef int xs, ys, x, y
cdef int dirIdx, num_directions, dx, dy
cdef int sum_x, sum_y
cdef float dot, maxn
cdef int calculated_idx
xs, ys = flag_field.shape
boundary_index_list = []
num_directions = stencil.shape[0]
for y in range(0, ys):
for x in range(0, xs):
sum_x = 0; sum_y = 0;
if flag_field[x, y] & boundary_mask:
for dirIdx in range(num_directions):
dx = stencil[dirIdx,0]; dy = stencil[dirIdx,1]
if 0 <= x + dx < xs and 0 <= y + dy < ys:
if flag_field[x + dx, y + dy] & fluid_mask:
if single_link:
sum_x += dx; sum_y += dy
else:
boundary_index_list.append((x, y, dirIdx))
dot = 0; maxn = 0; calculated_idx = 0
if single_link and (sum_x != 0 or sum_y != 0):
for dirIdx in range(num_directions):
dx = stencil[dirIdx, 0]; dy = stencil[dirIdx, 1]
dot = dx * sum_x + dy * sum_y
if dot > maxn:
maxn = dot
calculated_idx = dirIdx
boundary_index_list.append((x, y, calculated_idx))
return boundary_index_list
@cython.boundscheck(False) # turn off bounds-checking for entire function
@cython.wraparound(False) # turn off negative index wrapping for entire function
def create_boundary_cell_index_list_3d(object[IntegerType, ndim=3] flag_field,
IntegerType boundary_mask, IntegerType fluid_mask,
object[int, ndim=2] stencil, int single_link):
cdef int xs, ys, zs, x, y, z
cdef int dirIdx, num_directions, dx, dy, dz
cdef int sum_x, sum_y, sum_z
cdef float dot, maxn
cdef int calculated_idx
xs, ys, zs = flag_field.shape
boundary_index_list = []
num_directions = stencil.shape[0]
for z in range(0, zs):
for y in range(0, ys):
for x in range(0, xs):
sum_x = 0; sum_y = 0; sum_z = 0
if flag_field[x, y, z] & boundary_mask:
for dirIdx in range(num_directions):
dx = stencil[dirIdx, 0]; dy = stencil[dirIdx, 1]; dz = stencil[dirIdx, 2]
if 0 <= x + dx < xs and 0 <= y + dy < ys and 0 <= z + dz < zs:
if flag_field[x + dx, y + dy, z + dz] & fluid_mask:
if single_link:
sum_x += dx; sum_y += dy; sum_z += dz
else:
boundary_index_list.append((x, y, z, dirIdx))
dot = 0; maxn = 0; calculated_idx=0
if single_link and (sum_x != 0 or sum_y !=0 or sum_z !=0):
for dirIdx in range(num_directions):
dx = stencil[dirIdx, 0]; dy = stencil[dirIdx, 1]; dz = stencil[dirIdx, 2]
dot = dx*sum_x + dy*sum_y + dz*sum_z
if dot > maxn:
maxn = dot
calculated_idx = dirIdx
boundary_index_list.append((x, y, z, calculated_idx))
return boundary_index_list
\ No newline at end of file
import sympy as sp
from pystencils.boundaries.boundaryhandling import DEFAULT_FLAG_TYPE
from pystencils.typing import TypedSymbol, create_type
from pystencils.field import Field
from pystencils.integer_functions import bitwise_and
def add_neumann_boundary(eqs, fields, flag_field, boundary_flag="neumann_flag", inverse_flag=False):
"""
Replaces all neighbor accesses by flag field guarded accesses.
If flag in neighboring cell is set, the center value is used instead
Args:
eqs: list of equations containing field accesses to direct neighbors
fields: fields for which the Neumann boundary should be applied
flag_field: integer field marking boundary cells
boundary_flag: if flag field has value 'boundary_flag' (no bit operations yet)
the cell is assumed to be boundary
inverse_flag: if true, boundary cells are where flag field has not the value of boundary_flag
Returns:
list of equations with guarded field accesses
"""
if not hasattr(fields, "__len__"):
fields = [fields]
fields = set(fields)
if type(boundary_flag) is str:
boundary_flag = TypedSymbol(boundary_flag, dtype=create_type(DEFAULT_FLAG_TYPE))
substitutions = {}
for eq in eqs:
for fa in eq.atoms(Field.Access):
if fa.field not in fields:
continue
if not all(offset in (-1, 0, 1) for offset in fa.offsets):
raise ValueError("Works only for single neighborhood stencils")
if all(offset == 0 for offset in fa.offsets):
continue
if inverse_flag:
condition = sp.Eq(bitwise_and(flag_field[tuple(fa.offsets)], boundary_flag), 0)
else:
condition = sp.Ne(bitwise_and(flag_field[tuple(fa.offsets)], boundary_flag), 0)
center = fa.field(*fa.index)
substitutions[fa] = sp.Piecewise((center, condition), (fa, True))
return [eq.subs(substitutions) for eq in eqs]
import os
from collections.abc import Hashable
from functools import partial, wraps
from itertools import chain
from functools import lru_cache as memorycache
from joblib import Memory
from appdirs import user_cache_dir
if 'PYSTENCILS_CACHE_DIR' in os.environ:
cache_dir = os.environ['PYSTENCILS_CACHE_DIR']
else:
cache_dir = user_cache_dir('pystencils')
disk_cache = Memory(cache_dir, verbose=False).cache
disk_cache_no_fallback = disk_cache
def _wrapper(wrapped_func, cached_func, *args, **kwargs):
if all(isinstance(a, Hashable) for a in chain(args, kwargs.values())):
return cached_func(*args, **kwargs)
else:
return wrapped_func(*args, **kwargs)
def memorycache_if_hashable(maxsize=128, typed=False):
def wrapper(func):
return partial(_wrapper, func, memorycache(maxsize, typed)(func))
return wrapper
def sharedmethodcache(cache_id: str):
"""Decorator for memoization of instance methods, allowing multiple methods to use the same cache.
This decorator caches results of instance methods per instantiated object of the surrounding class.
It allows multiple methods to use the same cache, by passing them the same `cache_id` string.
Cached values are stored in a dictionary, which is added as a member `self.<cache_id>` to the
`self` object instance. Make sure that this doesn't cause any naming conflicts with other members!
Of course, for this to be useful, said methods must have the same signature (up to additional kwargs)
and must return the same result when called with the same arguments."""
def _decorator(user_method):
@wraps(user_method)
def _decorated_func(self, *args, **kwargs):
objdict = self.__dict__
cache = objdict.setdefault(cache_id, dict())
key = args
for item in kwargs.items():
key += item
if key not in cache:
result = user_method(self, *args, **kwargs)
cache[key] = result
return result
else:
return cache[key]
return _decorated_func
return _decorator
def clear_cache():
"""
Clears the pystencils cache created by joblib.
"""
memory = Memory(cache_dir, verbose=0)
memory.clear(warn=False)
# Disable memory cache:
# disk_cache = lambda o: o
# disk_cache_no_fallback = lambda o: o
from copy import copy
from collections import defaultdict
from dataclasses import dataclass, field
from types import MappingProxyType
from typing import Union, Tuple, List, Dict, Callable, Any, DefaultDict, Iterable
from pystencils import Target, Backend, Field
from pystencils.typing.typed_sympy import BasicType
from pystencils.typing.utilities import collate_types
import numpy as np
# TODO: There exists DTypeLike in NumPy which would be better than type for type hinting, to new at the moment
# from numpy.typing import DTypeLike
# TODO: CreateKernelConfig is bloated think of more classes better usage, factory whatever ...
# Proposition: CreateKernelConfigs Classes for different targets?
@dataclass
class CreateKernelConfig:
"""
**Below all parameters for the CreateKernelConfig are explained**
"""
target: Target = Target.CPU
"""
All targets are defined in :class:`pystencils.enums.Target`
"""
backend: Backend = None
"""
All backends are defined in :class:`pystencils.enums.Backend`
"""
function_name: str = 'kernel'
"""
Name of the generated function - only important if generated code is written out
"""
data_type: Union[type, str, DefaultDict[str, BasicType], Dict[str, BasicType]] = np.float64
"""
Data type used for all untyped symbols (i.e. non-fields), can also be a dict from symbol name to type.
If specified as a dict ideally a defaultdict is used to define a default value for symbols not listed in the
dict. If a plain dict is provided it will be transformed into a defaultdict internally. The default value
will then be specified via type collation then.
"""
default_number_float: Union[type, str, BasicType] = None
"""
Data type used for all untyped floating point numbers (i.e. 0.5). By default the value of data_type is used.
If data_type is given as a defaultdict its default_factory is used.
"""
default_number_int: Union[type, str, BasicType] = np.int64
"""
Data type used for all untyped integer numbers (i.e. 1)
"""
iteration_slice: Tuple = None
"""
Rectangular subset to iterate over, if not specified the complete non-ghost layer part of the field is iterated over
"""
ghost_layers: Union[bool, int, List[Tuple[int]]] = None
"""
A single integer specifies the ghost layer count at all borders, can also be a sequence of
pairs ``[(x_lower_gl, x_upper_gl), .... ]``. These layers are excluded from the iteration.
If left to default, the number of ghost layers is determined automatically from the assignments.
"""
cpu_openmp: Union[bool, int] = False
"""
`True` or number of threads for OpenMP parallelization, `False` for no OpenMP. If set to `True`, the maximum number
of available threads will be chosen.
"""
cpu_vectorize_info: Dict = None
"""
A dictionary with keys, 'vector_instruction_set', 'assume_aligned' and 'nontemporal'
for documentation of these parameters see vectorize function. Example:
'{'instruction_set': 'avx512', 'assume_aligned': True, 'nontemporal':True}'
"""
cpu_blocking: Tuple[int] = None
"""
A tuple of block sizes or `None` if no blocking should be applied
"""
omp_single_loop: bool = True
"""
If OpenMP is active: whether multiple outer loops are permitted
"""
base_pointer_specification: Union[List[Iterable[str]], List[Iterable[int]]] = None
"""
Specification of how many and which intermediate pointers are created for a field access.
For example [ (0), (2,3,)] creates on base pointer for coordinates 2 and 3 and writes the offset for coordinate
zero directly in the field access. These specifications are defined dependent on the loop ordering.
This function translates more readable version into the specification above.
For more information see: `pystencils.transformations.create_intermediate_base_pointer`
"""
gpu_indexing: str = 'block'
"""
Either 'block' or 'line' , or custom indexing class, see `pystencils.gpu.AbstractIndexing`
"""
gpu_indexing_params: MappingProxyType = field(default_factory=lambda: MappingProxyType({}))
"""
Dict with indexing parameters (constructor parameters of indexing class)
e.g. for 'block' one can specify '{'block_size': (20, 20, 10) }'.
"""
# TODO Markus rework this docstring
default_assignment_simplifications: bool = False
"""
If `True` default simplifications are first performed on the Assignments. If problems occur during the
simplification a warning will be thrown.
Furthermore, it is essential to know that this is a two-stage process. The first stage of the process acts
on the level of the `pystencils.AssignmentCollection`. In this part,
`pystencil.simp.create_simplification_strategy` from pystencils.simplificationfactory will be used to
apply optimisations like insertion of constants to
remove pressure from the registers. Thus the first part of the optimisations can only be executed if
an `AssignmentCollection` is passed. The second part of the optimisation acts on the level of each Assignment
individually. In this stage, all optimisations from `sympy.codegen.rewriting.optims_c99` are applied
to each Assignment. Thus this stage can also be applied if a list of Assignments is passed.
"""
cpu_prepend_optimizations: List[Callable] = field(default_factory=list)
"""
List of extra optimizations to perform first on the AST.
"""
use_auto_for_assignments: bool = False
"""
If set to `True`, auto can be used in the generated code for data types. This makes the type system more robust.
"""
index_fields: List[Field] = None
"""
List of index fields, i.e. 1D fields with struct data type. If not `None`, `create_index_kernel`
instead of `create_domain_kernel` is used.
"""
coordinate_names: Tuple[str, Any] = ('x', 'y', 'z')
"""
Name of the coordinate fields in the struct data type.
"""
allow_double_writes: bool = False
"""
If True, don't check if every field is only written at a single location. This is required
for example for kernels that are compiled with loop step sizes > 1, that handle multiple
cells at once. Use with care!
"""
skip_independence_check: bool = False
"""
By default the assignment list is checked for read/write independence. This means fields are only written at
locations where they are read. Doing so guarantees thread safety. In some cases e.g. for
periodicity kernel, this can not be assured and does the check needs to be deactivated. Use with care!
"""
class DataTypeFactory:
"""Because of pickle, we need to have a nested class, instead of a lambda in __post_init__"""
def __init__(self, dt):
self.dt = dt
def __call__(self):
return BasicType(self.dt)
def _check_type(self, dtype_to_check):
if isinstance(dtype_to_check, str) and (dtype_to_check == 'float' or dtype_to_check == 'int'):
self._typing_error()
if isinstance(dtype_to_check, type) and not hasattr(dtype_to_check, "dtype"):
# NumPy-types are also of type 'type'. However, they have more properties
self._typing_error()
@staticmethod
def _typing_error():
raise ValueError("It is not possible to use python types (float, int) for datatypes because these "
"types are ambiguous. For example float will map to double. "
"Also the string version like 'float' is not allowed, e.g. use 'float64' instead")
def __post_init__(self):
# ---- Legacy parameters
if not isinstance(self.target, Target):
raise ValueError("target must be provided by the 'Target' enum")
# ---- Auto Backend
if not self.backend:
if self.target == Target.CPU:
self.backend = Backend.C
elif self.target == Target.GPU:
self.backend = Backend.CUDA
else:
raise NotImplementedError(f'Target {self.target} has no default backend')
if not isinstance(self.backend, Backend):
raise ValueError("backend must be provided by the 'Backend' enum")
# Normalise data types
for dtype in [self.data_type, self.default_number_float, self.default_number_int]:
self._check_type(dtype)
if not isinstance(self.data_type, dict):
dt = copy(self.data_type) # The copy is necessary because BasicType has sympy shinanigans
self.data_type = defaultdict(self.DataTypeFactory(dt))
if isinstance(self.data_type, dict) and not isinstance(self.data_type, defaultdict):
for dtype in self.data_type.values():
self._check_type(dtype)
dt = collate_types([BasicType(dtype) for dtype in self.data_type.values()])
dtype_dict = self.data_type
self.data_type = defaultdict(self.DataTypeFactory(dt), dtype_dict)
assert isinstance(self.data_type, defaultdict), "At this point data_type must be a defaultdict!"
for dtype in self.data_type.values():
self._check_type(dtype)
self._check_type(self.data_type.default_factory())
if self.default_number_float is None:
self.default_number_float = self.data_type.default_factory()
if not isinstance(self.default_number_float, BasicType):
self.default_number_float = BasicType(self.default_number_float)
if not isinstance(self.default_number_int, BasicType):
self.default_number_int = BasicType(self.default_number_int)
from pystencils.cpu.cpujit import make_python_function
from pystencils.cpu.kernelcreation import add_openmp, create_indexed_kernel, create_kernel, add_pragmas
__all__ = ['create_kernel', 'create_indexed_kernel', 'add_openmp', 'add_pragmas', 'make_python_function']