Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
No results found
Show changes
Showing
with 0 additions and 2066 deletions
# Disable gmpy backend until this bug is resolved if joblib serialize
# See https://github.com/sympy/sympy/pull/13530
import os
import warnings
os.environ['MPMATH_NOGMPY'] = '1'
try:
import mpmath.libmp
# In case the user has imported sympy first, then pystencils
if mpmath.libmp.BACKEND == 'gmpy':
warnings.warn("You are using the gmpy backend. You might encounter an error 'argument is not an mpz sympy'. "
"This is due to a known bug in sympy/gmpy library. "
"To prevent this, import pystencils first then sympy or set the environment variable "
"MPMATH_NOGMPY=1")
except ImportError:
pass
__all__ = []
from sympy.abc import a, b, c, d, e, f
import pystencils
from pystencils.data_types import cast_func, create_type
def test_type_interference():
x = pystencils.fields('x: float32[3d]')
assignments = pystencils.AssignmentCollection({
a: cast_func(10, create_type('float64')),
b: cast_func(10, create_type('uint16')),
e: 11,
c: b,
f: c + b,
d: c + b + x.center + e,
x.center: c + b + x.center
})
ast = pystencils.create_kernel(assignments)
code = str(pystencils.show_code(ast))
print(code)
assert 'double a' in code
assert 'uint16_t b' in code
assert 'uint16_t f' in code
assert 'int64_t e' in code
# FIXME
# FIXME performance counters might be wrong. This will only affect the Benchmark model
# FIXME bandwidth measurements need validation
# FIXME
kerncraft version: 0.7.2
model name: Intel(R) Xeon(R) Gold 5122 CPU @ 3.60GHz
model type: Intel Core Skylake SP
sockets: 2
cores per socket: 4
threads per core: 2
NUMA domains per socket: 1
cores per NUMA domain: 4
clock: 3.6 GHz
FLOPs per cycle:
SP:
total: 64
FMA: 64
ADD: 32
MUL: 32
DP:
total: 32
FMA: 32
ADD: 16
MUL: 16
micro-architecture: SKX
compiler:
!!omap
- icc: -O3 -fno-alias -xCORE-AVX512
- clang: -O3 -march=skylake-avx512 -D_POSIX_C_SOURCE=200112L
- gcc: -O3 -march=skylake-avx512
cacheline size: 64 B
overlapping model:
ports: ["0", "0DV", "1", "2", "3", "4", "5", "6", "7"]
performance counter metric:
Max(UOPS_DISPATCHED_PORT_PORT_0:PMC[0-3],
UOPS_DISPATCHED_PORT_PORT_1:PMC[0-3],
UOPS_DISPATCHED_PORT_PORT_4:PMC[0-3],
UOPS_DISPATCHED_PORT_PORT_5:PMC[0-3],
UOPS_DISPATCHED_PORT_PORT_6:PMC[0-3],
UOPS_DISPATCHED_PORT_PORT_7:PMC[0-3])
non-overlapping model:
ports: ["2D", "3D"]
performance counter metric: T_OL + T_L1L2 + T_L2L3 + T_L3MEM
memory hierarchy:
- level: L1
performance counter metrics:
accesses: MEM_INST_RETIRED_ALL_LOADS:PMC[0-3]
misses: L1D_REPLACEMENT:PMC[0-3]
evicts: L2_TRANS_L1D_WB:PMC[0-3]
cache per group:
sets: 64
ways: 8
cl_size: 64
replacement_policy: 'LRU'
write_allocate: True
write_back: True
load_from: L2
store_to: L2
size per group: 32.00 kB
groups: 8
cores per group: 1
threads per group: 2
- level: L2
non-overlap upstream throughput: [64 B/cy, 'half-duplex']
performance counter metrics:
accesses: L1D_REPLACEMENT:PMC[0-3]
misses: L2_LINES_IN_ALL:PMC[0-3]
evicts: L2_TRANS_L2_WB:PMC[0-3]
cache per group:
sets: 1024
ways: 16
cl_size: 64
replacement_policy: 'LRU'
write_allocate: True
write_back: True
load_from: null # L3 is a victim cache, thus unless a hit in L3, misses get forwarded to MEM
victims_to: L3 # all victims, modified or not are passed onto L3
store_to: L3
size per group: 1.00 MB
groups: 8
cores per group: 1
threads per group: 2
- level: L3
non-overlap upstream throughput: [16 B/cy, 'full-duplex']
performance counter metrics:
accesses: L2_LINES_IN_ALL:PMC[0-3]
# FIXME not all misses in L2 lead to loads from L3, only the hits do
misses: (CAS_COUNT_RD:MBOX0C[01] + CAS_COUNT_WR:MBOX0C[01] +
CAS_COUNT_RD:MBOX1C[01] + CAS_COUNT_WR:MBOX1C[01] +
CAS_COUNT_RD:MBOX2C[01] + CAS_COUNT_WR:MBOX2C[01] +
CAS_COUNT_RD:MBOX3C[01] + CAS_COUNT_WR:MBOX3C[01] +
CAS_COUNT_RD:MBOX4C[01] + CAS_COUNT_WR:MBOX4C[01] +
CAS_COUNT_RD:MBOX5C[01] + CAS_COUNT_WR:MBOX5C[01])
evicts: L2_TRANS_L2_WB:PMC[0-3]
cache per group:
sets: 16896
# TODO is actuall something else, but necessary to get to 16.5 MB
ways: 16
# TODO is actually 11, but pycachesim only supports powers of two
cl_size: 64
replacement_policy: 'LRU'
write_allocate: False
write_back: True
size per group: 16.50 MB
groups: 2
cores per group: 4
threads per group: 8
- level: MEM
cores per group: 4
threads per group: 8
non-overlap upstream throughput: ['full socket memory bandwidth', 'half-duplex']
penalty cycles per read stream: 0
size per group:
benchmarks:
kernels:
load:
read streams:
streams: 1
bytes: 8.00 B
read+write streams:
streams: 0
bytes: 0.00 B
write streams:
streams: 0
bytes: 0.00 B
FLOPs per iteration: 0
copy:
read streams:
streams: 1
bytes: 8.00 B
read+write streams:
streams: 0
bytes: 0.00 B
write streams:
streams: 1
bytes: 8.00 B
FLOPs per iteration: 0
update:
read streams:
streams: 1
bytes: 8.00 B
read+write streams:
streams: 1
bytes: 8.00 B
write streams:
streams: 1
bytes: 8.00 B
FLOPs per iteration: 0
triad:
read streams:
streams: 3
bytes: 24.00 B
read+write streams:
streams: 0
bytes: 0.00 B
write streams:
streams: 1
bytes: 8.00 B
FLOPs per iteration: 2
daxpy:
read streams:
streams: 2
bytes: 16.00 B
read+write streams:
streams: 1
bytes: 8.00 B
write streams:
streams: 1
bytes: 8.00 B
FLOPs per iteration: 2
measurements:
L1:
1:
threads per core: 1
cores:
- 1
- 2
- 3
- 4
threads:
- 1
- 2
- 3
- 4
size per core:
- 21.12 kB
- 21.12 kB
- 21.12 kB
- 21.12 kB
size per thread:
- 21.12 kB
- 21.12 kB
- 21.12 kB
- 21.12 kB
total size:
- 21.12 kB
- 42.24 kB
- 63.36 kB
- 84.48 kB
results:
load:
- 42.98 GB/s
- 85.08 GB/s
- 127.45 GB/s
- 169.92 GB/s
copy:
- 56.07 GB/s
- 111.50 GB/s
- 164.90 GB/s
- 221.50 GB/s
update:
- 56.54 GB/s
- 112.25 GB/s
- 168.50 GB/s
- 224.75 GB/s
triad:
- 45.90 GB/s
- 89.81 GB/s
- 127.29 GB/s
- 169.57 GB/s
daxpy:
- 36.62 GB/s
- 71.30 GB/s
- 103.52 GB/s
- 135.26 GB/s
2:
threads per core: 2
cores:
- 1
- 2
- 3
- 4
threads:
- 2
- 4
- 6
- 8
size per core:
- 21.12 kB
- 21.12 kB
- 21.12 kB
- 21.12 kB
size per thread:
- 10.56 kB
- 10.56 kB
- 10.56 kB
- 10.56 kB
total size:
- 21.12 kB
- 42.24 kB
- 63.36 kB
- 84.48 kB
results:
load:
- 49.61 GB/s
- 98.80 GB/s
- 147.98 GB/s
- 198.22 GB/s
copy:
- 55.98 GB/s
- 111.56 GB/s
- 167.08 GB/s
- 220.42 GB/s
update:
- 56.53 GB/s
- 112.72 GB/s
- 168.95 GB/s
- 225.31 GB/s
triad:
- 54.01 GB/s
- 104.58 GB/s
- 153.02 GB/s
- 200.93 GB/s
daxpy:
- 41.11 GB/s
- 80.28 GB/s
- 115.71 GB/s
- 152.81 GB/s
L2:
1:
threads per core: 1
cores:
- 1
- 2
- 3
- 4
threads:
- 1
- 2
- 3
- 4
size per core:
- 660.00 kB
- 660.00 kB
- 660.00 kB
- 660.00 kB
size per thread:
- 660.00 kB
- 660.00 kB
- 660.00 kB
- 660.00 kB
total size:
- 660.00 kB
- 1.32 MB
- 1.98 MB
- 2.64 MB
results:
load:
- 27.15 GB/s
- 54.09 GB/s
- 80.61 GB/s
- 106.41 GB/s
copy:
- 43.53 GB/s
- 90.07 GB/s
- 127.73 GB/s
- 171.81 GB/s
update:
- 50.38 GB/s
- 98.47 GB/s
- 147.91 GB/s
- 197.20 GB/s
triad:
- 43.38 GB/s
- 83.72 GB/s
- 124.83 GB/s
- 166.04 GB/s
daxpy:
- 36.29 GB/s
- 71.29 GB/s
- 103.33 GB/s
- 136.48 GB/s
2:
threads per core: 2
cores:
- 1
- 2
- 3
- 4
threads:
- 2
- 4
- 6
- 8
size per core:
- 660.00 kB
- 660.00 kB
- 660.00 kB
- 660.00 kB
size per thread:
- 330.00 kB
- 330.00 kB
- 330.00 kB
- 330.00 kB
total size:
- 660.00 kB
- 1.32 MB
- 1.98 MB
- 2.64 MB
results:
load:
- 35.29 GB/s
- 70.28 GB/s
- 104.67 GB/s
- 139.63 GB/s
copy:
- 42.23 GB/s
- 83.70 GB/s
- 124.33 GB/s
- 167.50 GB/s
update:
- 50.09 GB/s
- 99.77 GB/s
- 149.87 GB/s
- 198.82 GB/s
triad:
- 52.38 GB/s
- 100.00 GB/s
- 147.40 GB/s
- 193.31 GB/s
daxpy:
- 41.14 GB/s
- 80.22 GB/s
- 116.23 GB/s
- 155.08 GB/s
L3:
1:
threads per core: 1
cores:
- 1
- 2
- 3
- 4
threads:
- 1
- 2
- 3
- 4
size per core:
- 10.56 MB
- 5.28 MB
- 3.52 MB
- 2.64 MB
size per thread:
- 10.56 MB
- 5.28 MB
- 3.52 MB
- 2.64 MB
total size:
- 10.56 MB
- 10.56 MB
- 10.56 MB
- 10.56 MB
results:
load:
- 22.40 GB/s
- 44.77 GB/s
- 65.71 GB/s
- 89.26 GB/s
copy:
- 25.32 GB/s
- 49.70 GB/s
- 72.89 GB/s
- 98.62 GB/s
update:
- 41.24 GB/s
- 81.14 GB/s
- 122.22 GB/s
- 166.44 GB/s
triad:
- 25.61 GB/s
- 50.02 GB/s
- 73.23 GB/s
- 98.95 GB/s
daxpy:
- 32.07 GB/s
- 62.65 GB/s
- 89.91 GB/s
- 120.65 GB/s
2:
threads per core: 2
cores:
- 1
- 2
- 3
- 4
threads:
- 2
- 4
- 6
- 8
size per core:
- 10.56 MB
- 5.28 MB
- 3.52 MB
- 2.64 MB
size per thread:
- 5.28 MB
- 2.64 MB
- 1.76 MB
- 1.32 MB
total size:
- 10.56 MB
- 10.56 MB
- 10.56 MB
- 10.56 MB
results:
load:
- 26.18 GB/s
- 51.85 GB/s
- 75.82 GB/s
- 101.39 GB/s
copy:
- 26.22 GB/s
- 51.83 GB/s
- 76.40 GB/s
- 102.84 GB/s
update:
- 43.51 GB/s
- 86.75 GB/s
- 129.86 GB/s
- 174.54 GB/s
triad:
- 26.39 GB/s
- 51.80 GB/s
- 76.27 GB/s
- 102.66 GB/s
daxpy:
- 37.43 GB/s
- 73.16 GB/s
- 106.53 GB/s
- 142.76 GB/s
MEM:
1:
threads per core: 1
cores:
- 1
- 2
- 3
- 4
threads:
- 1
- 2
- 3
- 4
size per core:
- 240.00 MB
- 120.00 MB
- 80.00 MB
- 60.00 MB
size per thread:
- 240.00 MB
- 120.00 MB
- 80.00 MB
- 60.00 MB
total size:
- 240.00 MB
- 240.00 MB
- 240.00 MB
- 240.00 MB
results:
load:
- 12.03 GB/s
- 24.38 GB/s
- 34.83 GB/s
- 45.05 GB/s
copy:
- 12.32 GB/s
- 24.40 GB/s
- 32.82 GB/s
- 37.00 GB/s
update:
- 20.83 GB/s
- 40.25 GB/s
- 48.81 GB/s
- 54.84 GB/s
triad:
- 11.64 GB/s
- 23.17 GB/s
- 34.78 GB/s
- 42.97 GB/s
daxpy:
- 17.69 GB/s
- 34.02 GB/s
- 48.12 GB/s
- 55.73 GB/s
2:
threads per core: 2
cores:
- 1
- 2
- 3
- 4
threads:
- 2
- 4
- 6
- 8
size per core:
- 240.00 MB
- 120.00 MB
- 80.00 MB
- 60.00 MB
size per thread:
- 120.00 MB
- 60.00 MB
- 40.00 MB
- 30.00 MB
total size:
- 240.00 MB
- 240.00 MB
- 240.00 MB
- 240.00 MB
results:
load:
- 15.33 GB/s
- 28.32 GB/s
- 41.34 GB/s
- 53.02 GB/s
copy:
- 13.96 GB/s
- 26.61 GB/s
- 34.39 GB/s
- 38.96 GB/s
update:
- 26.47 GB/s
- 47.82 GB/s
- 56.70 GB/s
- 62.78 GB/s
triad:
- 14.42 GB/s
- 26.66 GB/s
- 36.94 GB/s
- 44.01 GB/s
daxpy:
- 20.96 GB/s
- 39.12 GB/s
- 51.55 GB/s
- 58.37 GB/s
import math
import os
import time
import numpy as np
import sympy as sp
from git import Repo
from influxdb import InfluxDBClient
from kerncraft.machinemodel import MachineModel
from kerncraft.models import ECM, Benchmark, Roofline, RooflineIACA
from kerncraft.prefixedunit import PrefixedUnit
from pystencils import Assignment, Field, create_kernel
from pystencils.kerncraft_coupling import KerncraftParameters, PyStencilsKerncraftKernel
def output_benchmark(analysis):
output = {}
keys = ['Runtime (per repetition) [s]', 'Iterations per repetition',
'Runtime (per cacheline update) [cy/CL]', 'MEM volume (per repetition) [B]',
'Performance [MFLOP/s]', 'Performance [MLUP/s]', 'Performance [MIt/s]', 'MEM BW [MByte/s]']
copies = {key: analysis[key] for key in keys}
output.update(copies)
for cache, metrics in analysis['data transfers'].items():
for metric_name, metric_value in metrics.items():
fixed = metric_value.with_prefix('')
output[cache + ' ' + metric_name + ' ' + fixed.prefix + fixed.unit] = fixed.value
for level, value in analysis['ECM'].items():
output['Phenomenological ECM ' + level + ' cy/CL'] = value
return output
def output_ecm(analysis):
output = {}
keys = ['T_nOL', 'T_OL', 'cl throughput', 'uops']
copies = {key: analysis[key] for key in keys}
output.update(copies)
if 'memory bandwidth kernel' in analysis:
output['memory bandwidth kernel' + analysis['memory bandwidth kernel'] + analysis['memory bandwidth'].prefix +
analysis['memory bandwidth'].unit] = analysis['memory bandwidth'].value
output['scaling cores'] = int(analysis['scaling cores']) if not math.isinf(analysis['scaling cores']) else -1
for key, value in analysis['cycles']:
output[key] = value
return output
def output_roofline(analysis):
output = {}
keys = ['min performance'] # 'bottleneck level'
copies = {key: analysis[key] for key in keys}
output.update(copies)
# TODO save bottleneck information (compute it here)
# fixed = analysis['max_flops'].with_prefix('G')
# output['max GFlop/s'] = fixed.value
# if analysis['min performance'] > max_flops:
# # CPU bound
# print('CPU bound with {} cores(s)'.format(self._args.cores), file=output_file)
# print('{!s} due to CPU max. FLOP/s'.format(max_flops), file=output_file)
# else:
# Memory bound
bottleneck = analysis['mem bottlenecks'][analysis['bottleneck level']]
output['bottleneck GFlop/s'] = bottleneck['performance'].with_prefix('G').value
output['bottleneck level'] = bottleneck['level']
output['bottleneck bw kernel'] = bottleneck['bw kernel']
output['bottleneck arithmetic intensity'] = bottleneck['arithmetic intensity']
for i, level in enumerate(analysis['mem bottlenecks']):
if level is None:
continue
for key, value in level.items():
if isinstance(value, PrefixedUnit):
fixed = value.with_prefix('G')
output['level ' + str(i) + ' ' + key + ' [' + fixed.prefix + fixed.unit + ']'] = 'inf' if isinstance(
fixed.value, float) and math.isinf(fixed.value) else fixed.value
else:
output['level ' + str(i) + ' ' + key] = 'inf' if isinstance(value, float) and math.isinf(
value) else value
return output
def output_roofline_iaca(analysis):
output = {}
keys = ['min performance'] # 'bottleneck level'
copies = {key: analysis[key] for key in keys}
# output.update(copies)
# TODO save bottleneck information (compute it here)
# fixed = analysis['max_flops'].with_prefix('G')
# output['max GFlop/s'] = fixed.value
# if analysis['min performance'] > max_flops:
# # CPU bound
# print('CPU bound with {} cores(s)'.format(self._args.cores), file=output_file)
# print('{!s} due to CPU max. FLOP/s'.format(max_flops), file=output_file)
# else:
# Memory bound
bottleneck = analysis['mem bottlenecks'][analysis['bottleneck level']]
output['bottleneck GFlop/s'] = bottleneck['performance'].with_prefix('G').value
output['bottleneck level'] = bottleneck['level']
output['bottleneck bw kernel'] = bottleneck['bw kernel']
output['bottleneck arithmetic intensity'] = bottleneck['arithmetic intensity']
for i, level in enumerate(analysis['mem bottlenecks']):
if level is None:
continue
for key, value in level.items():
if isinstance(value, PrefixedUnit):
fixed = value.with_prefix('G')
output['level ' + str(i) + ' ' + key + ' [' + fixed.prefix + fixed.unit + ']'] = 'inf' if isinstance(
fixed.value, float) and math.isinf(fixed.value) else fixed.value
else:
output['level ' + str(i) + ' ' + key] = 'inf' if isinstance(value, float) and math.isinf(
value) else value
return output
def report_analysis(ast, models, machine, tags, fields=None):
kernel = PyStencilsKerncraftKernel(ast, machine)
client = InfluxDBClient('i10grafana.informatik.uni-erlangen.de', 8086, 'pystencils',
'roggan', 'pystencils')
repo = Repo(search_parent_directories=True)
commit = repo.head.commit
point_time = int(time.time())
for model in models:
benchmark = model(kernel, machine, KerncraftParameters())
benchmark.analyze()
analysis = benchmark.results
if model is Benchmark:
output = output_benchmark(analysis)
elif model is ECM:
output = output_ecm(analysis)
elif model is Roofline:
output = output_roofline(analysis)
elif model is RooflineIACA:
output = output_roofline_iaca(analysis)
else:
raise ValueError('No valid model for analysis given!')
if fields is not None:
output.update(fields)
output['commit'] = commit.hexsha
json_body = [
{
'measurement': model.__name__,
'tags': tags,
'time': point_time,
'fields': output
}
]
client.write_points(json_body, time_precision='s')
def main():
size = [20, 200, 200]
arr = np.zeros(size)
a = Field.create_from_numpy_array('a', arr, index_dimensions=0)
b = Field.create_from_numpy_array('b', arr, index_dimensions=0)
s = sp.Symbol("s")
rhs = a[0, -1, 0] + a[0, 1, 0] + \
a[-1, 0, 0] + a[1, 0, 0] + \
a[0, 0, -1] + a[0, 0, 1]
update_rule = Assignment(b[0, 0, 0], s * rhs)
ast = create_kernel([update_rule])
input_folder = "./"
machine_file_path = os.path.join(input_folder, "SkylakeSP_Gold-5122_allinclusive.yaml")
machine = MachineModel(path_to_yaml=machine_file_path)
tags = {
'host': os.uname()[1],
'project': 'pystencils',
'kernel': 'jacobi_3D ' + str(size)
}
report_analysis(ast, [ECM, Roofline, RooflineIACA, Benchmark], machine, tags)
if __name__ == '__main__':
main()
import numpy as np
import sympy as sp
from pystencils import Assignment, Field, create_kernel
def meassure():
size = [30, 50, 3]
arr = np.zeros(size)
a = Field.create_from_numpy_array('a', arr, index_dimensions=1)
b = Field.create_from_numpy_array('b', arr, index_dimensions=1)
s = sp.Symbol("s")
rhs = a[0, -1](0) + a[0, 1] + a[-1, 0] + a[1, 0]
updateRule = Assignment(b[0, 0], s * rhs)
print(updateRule)
ast = create_kernel([updateRule])
# benchmark = generate_benchmark(ast)
# main = benchmark[0]
# kernel = benchmark[1]
# with open('src/main.cpp', 'w') as file:
# file.write(main)
# with open('src/kernel.cpp', 'w') as file:
# file.write(kernel)
func = ast.compile({'omega': 2/3})
from pystencils.kerncraft_coupling.generate_benchmark import generate_benchmark
from pystencils.kerncraft_coupling import BenchmarkAnalysis
from pystencils.kerncraft_coupling.kerncraft_interface import PyStencilsKerncraftKernel, KerncraftParameters
from kerncraft.machinemodel import MachineModel
from kerncraft.models import ECMData
machineFilePath = "../pystencils_tests/kerncraft_inputs/default_machine_file.yaml"
machine = MachineModel(path_to_yaml=machineFilePath)
benchmark = BenchmarkAnalysis(ast, machine)
#TODO what do i want to do with benchmark?
kernel = PyStencilsKerncraftKernel(ast)
model = ECMData(kernel, machine, KerncraftParameters())
model.analyze()
model.report()
if __name__ == "__main__":
meassure()
/*
* Copyright (2008-2009) Intel Corporation All Rights Reserved.
* The source code contained or described herein and all documents
* related to the source code ("Material") are owned by Intel Corporation
* or its suppliers or licensors. Title to the Material remains with
* Intel Corporation or its suppliers and licensors. The Material
* contains trade secrets and proprietary and confidential information
* of Intel or its suppliers and licensors. The Material is protected
* by worldwide copyright and trade secret laws and treaty provisions.
* No part of the Material may be used, copied, reproduced, modified,
* published, uploaded, posted, transmitted, distributed, or disclosed
* in any way without Intel(R)s prior express written permission.
*
* No license under any patent, copyright, trade secret or other
* intellectual property right is granted to or conferred upon you by
* disclosure or delivery of the Materials, either expressly, by implication,
* inducement, estoppel or otherwise. Any license under such intellectual
* property rights must be express and approved by Intel in writing.
*/
#if defined (__GNUC__)
#define IACA_SSC_MARK( MARK_ID ) \
__asm__ __volatile__ ( \
"\n\t movl $"#MARK_ID", %%ebx" \
"\n\t .byte 0x64, 0x67, 0x90" \
: : : "memory" );
#else
#define IACA_SSC_MARK(x) {__asm mov ebx, x\
__asm _emit 0x64 \
__asm _emit 0x67 \
__asm _emit 0x90 }
#endif
#define IACA_START {IACA_SSC_MARK(111)}
#define IACA_END {IACA_SSC_MARK(222)}
#ifdef _WIN64
#include <intrin.h>
#define IACA_VC64_START __writegsbyte(111, 111);
#define IACA_VC64_END __writegsbyte(222, 222);
#endif
/**************** asm *****************
;START_MARKER
mov ebx, 111
db 0x64, 0x67, 0x90
;END_MARKER
mov ebx, 222
db 0x64, 0x67, 0x90
**************************************/
#include "iacaMarks.h"
int main(int argc, char * argv[]){
int a = 0;
for(int i = 0; i < argc+100000; i++){
IACA_START
a += i;
}
IACA_END
return a;
}
double a[30][50][3];
double b[30][50][3];
double s;
for(int j=1; j<30-1; ++j)
for(int i=1; i<50-1; ++i)
b[j][i] = ( a[j][i-1] + a[j][i+1]
+ a[j-1][i] + a[j+1][i]) * s;
double a[M][N][N];
double b[M][N][N];
double s;
for(int k=1; k<M-1; ++k)
for(int j=1; j<N-1; ++j)
for(int i=1; i<N-1; ++i)
b[k][j][i] = ( a[k][j][i-1] + a[k][j][i+1]
+ a[k][j-1][i] + a[k][j+1][i]
+ a[k-1][j][i] + a[k+1][j][i]) * s;
kerncraft version: 0.7.3
clock: 2.7 GHz
cores per socket: 8
cores per NUMA domain: 8
NUMA domains per socket: 1
model type: Intel Core SandyBridge EP processor
model name: Intel(R) Xeon(R) CPU E5-2680 0 @ 2.70GHz
sockets: 2
threads per core: 2
cacheline size: 64 B
compiler:
!!omap
- icc: -O3 -xAVX -fno-alias -qopenmp
- clang: -O3 -march=corei7-avx -mtune=corei7-avx -D_POSIX_C_SOURCE=200112L -fopenmp
- gcc: -O3 -march=corei7-avx -D_POSIX_C_SOURCE=200112L -fopenmp
micro-architecture: SNB
FLOPs per cycle:
SP: {total: 16, ADD: 8, MUL: 8}
DP: {total: 8, ADD: 4, MUL: 4}
overlapping model:
ports: ["0", "0DV", "1", "2", "3", "4", "5"]
performance counter metric:
Max(UOPS_DISPATCHED_PORT_PORT_0:PMC[0-3],
UOPS_DISPATCHED_PORT_PORT_1:PMC[0-3],
UOPS_DISPATCHED_PORT_PORT_4:PMC[0-3],
UOPS_DISPATCHED_PORT_PORT_5:PMC[0-3])
non-overlapping model:
ports: ["2D", "3D"]
performance counter metric: T_OL + T_L1L2 + T_L2L3 + T_L3MEM
write-allocate: True
memory hierarchy:
- level: L1
cache per group: {
'sets': 64, 'ways': 8, 'cl_size': 64, # 32 kB
'replacement_policy': 'LRU',
'write_allocate': True, 'write_back': True,
'load_from': 'L2', 'store_to': 'L2'}
cores per group: 1
threads per group: 2
groups: 16
performance counter metrics:
accesses: MEM_UOPS_RETIRED_LOADS:PMC[0-3]
misses: L1D_REPLACEMENT:PMC[0-3]
evicts: L1D_M_EVICT:PMC[0-3]
- level: L2
cache per group: {
'sets': 512, 'ways': 8, 'cl_size': 64, # 256 kB
'replacement_policy': 'LRU',
'write_allocate': True, 'write_back': True,
'load_from': 'L3', 'store_to': 'L3'}
cores per group: 1
threads per group: 2
groups: 16
non-overlap upstream throughput: [32 B/cy, 'half-duplex']
performance counter metrics:
accesses: L1D_REPLACEMENT:PMC[0-3]
misses: L2_LINES_IN_ALL:PMC[0-3]
evicts: L2_TRANS_L2_WB:PMC[0-3]
- level: L3
cache per group: {
'sets': 20480, 'ways': 16, 'cl_size': 64, # 20 MB
'replacement_policy': 'LRU',
'write_allocate': True, 'write_back': True}
cores per group: 8
threads per group: 16
groups: 2
non-overlap upstream throughput: [32 B/cy, 'half-duplex']
performance counter metrics:
accesses: L2_LINES_IN_ALL:PMC[0-3]
misses: (CAS_COUNT_RD:MBOX0C[01] + CAS_COUNT_RD:MBOX1C[01] +
CAS_COUNT_RD:MBOX2C[01] + CAS_COUNT_RD:MBOX3C[01])
evicts: (CAS_COUNT_WR:MBOX0C[01] + CAS_COUNT_WR:MBOX1C[01] +
CAS_COUNT_WR:MBOX2C[01] + CAS_COUNT_WR:MBOX3C[01])
- level: MEM
cores per group: 8
non-overlap upstream throughput: ['full socket memory bandwidth', 'half-duplex']
size per group: null
threads per group: 16
benchmarks:
kernels:
copy:
FLOPs per iteration: 0
read streams: {bytes: 8.00 B, streams: 1}
read+write streams: {bytes: 0.00 B, streams: 0}
write streams: {bytes: 8.00 B, streams: 1}
daxpy:
FLOPs per iteration: 2
read streams: {bytes: 16.00 B, streams: 2}
read+write streams: {bytes: 8.00 B, streams: 1}
write streams: {bytes: 8.00 B, streams: 1}
load:
FLOPs per iteration: 0
read streams: {bytes: 8.00 B, streams: 1}
read+write streams: {bytes: 0.00 B, streams: 0}
write streams: {bytes: 0.00 B, streams: 0}
triad:
FLOPs per iteration: 2
read streams: {bytes: 24.00 B, streams: 3}
read+write streams: {bytes: 0.00 B, streams: 0}
write streams: {bytes: 8.00 B, streams: 1}
update:
FLOPs per iteration: 0
read streams: {bytes: 8.00 B, streams: 1}
read+write streams: {bytes: 8.00 B, streams: 1}
write streams: {bytes: 8.00 B, streams: 1}
measurements:
L1:
1:
cores: [1, 2, 3, 4, 5, 6, 7, 8]
results:
copy: [81.98 GB/s, 163.75 GB/s, 245.62 GB/s, 327.69 GB/s, 409.41 GB/s, 489.83
GB/s, 571.67 GB/s, 653.50 GB/s]
daxpy: [71.55 GB/s, 143.01 GB/s, 214.86 GB/s, 286.26 GB/s, 355.60 GB/s,
426.71 GB/s, 497.45 GB/s, 568.97 GB/s]
load: [61.92 GB/s, 122.79 GB/s, 183.01 GB/s, 244.30 GB/s, 306.76 GB/s, 368.46
GB/s, 427.41 GB/s, 490.88 GB/s]
triad: [81.61 GB/s, 163.25 GB/s, 244.92 GB/s, 326.65 GB/s, 406.69 GB/s,
487.76 GB/s, 569.10 GB/s, 650.39 GB/s]
update: [84.03 GB/s, 168.02 GB/s, 252.10 GB/s, 335.94 GB/s, 419.90 GB/s,
503.88 GB/s, 587.86 GB/s, 671.88 GB/s]
size per core: [16.00 kB, 16.00 kB, 16.00 kB, 16.00 kB, 16.00 kB, 16.00 kB,
16.00 kB, 16.00 kB]
size per thread: [16.00 kB, 16.00 kB, 16.00 kB, 16.00 kB, 16.00 kB, 16.00
kB, 16.00 kB, 16.00 kB]
threads: [1, 2, 3, 4, 5, 6, 7, 8]
threads per core: 1
total size: [16.00 kB, 32.00 kB, 48.00 kB, 64.00 kB, 80.00 kB, 96.00 kB, 112.00
kB, 128.00 kB]
2:
cores: [1, 2, 3, 4, 5, 6, 7, 8]
results:
copy: [79.53 GB/s, 158.70 GB/s, 238.20 GB/s, 317.62 GB/s, 397.09 GB/s, 476.33
GB/s, 555.69 GB/s, 634.96 GB/s]
daxpy: [70.94 GB/s, 141.90 GB/s, 212.97 GB/s, 283.91 GB/s, 354.93 GB/s,
425.85 GB/s, 496.74 GB/s, 567.40 GB/s]
load: [57.01 GB/s, 114.11 GB/s, 171.11 GB/s, 228.13 GB/s, 285.15 GB/s, 342.11
GB/s, 399.11 GB/s, 456.11 GB/s]
triad: [79.48 GB/s, 159.03 GB/s, 238.53 GB/s, 318.04 GB/s, 392.11 GB/s,
477.10 GB/s, 538.36 GB/s, 636.02 GB/s]
update: [82.75 GB/s, 165.55 GB/s, 248.50 GB/s, 331.32 GB/s, 414.06 GB/s,
496.82 GB/s, 579.83 GB/s, 662.36 GB/s]
size per core: [16.00 kB, 16.00 kB, 16.00 kB, 16.00 kB, 16.00 kB, 16.00 kB,
16.00 kB, 16.00 kB]
size per thread: [8.00 kB, 8.00 kB, 8.00 kB, 8.00 kB, 8.00 kB, 8.00 kB, 8.00
kB, 8.00 kB]
threads: [2, 4, 6, 8, 10, 12, 14, 16]
threads per core: 2
total size: [16.00 kB, 32.00 kB, 48.00 kB, 64.00 kB, 80.00 kB, 96.00 kB, 112.00
kB, 128.00 kB]
L2:
1:
cores: [1, 2, 3, 4, 5, 6, 7, 8]
results:
copy: [41.28 GB/s, 81.96 GB/s, 120.28 GB/s, 160.70 GB/s, 203.22 GB/s, 239.97
GB/s, 271.13 GB/s, 307.01 GB/s]
daxpy: [48.85 GB/s, 98.62 GB/s, 143.29 GB/s, 197.76 GB/s, 230.58 GB/s, 284.98
GB/s, 334.22 GB/s, 385.72 GB/s]
load: [38.51 GB/s, 76.67 GB/s, 114.73 GB/s, 152.90 GB/s, 188.69 GB/s, 223.64
GB/s, 265.21 GB/s, 289.41 GB/s]
triad: [40.92 GB/s, 83.49 GB/s, 124.48 GB/s, 165.24 GB/s, 206.74 GB/s, 237.90
GB/s, 274.96 GB/s, 329.09 GB/s]
update: [50.37 GB/s, 100.05 GB/s, 145.43 GB/s, 196.82 GB/s, 244.07 GB/s,
301.62 GB/s, 336.88 GB/s, 403.78 GB/s]
size per core: [128.00 kB, 128.00 kB, 128.00 kB, 128.00 kB, 128.00 kB, 128.00
kB, 128.00 kB, 128.00 kB]
size per thread: [128.00 kB, 128.00 kB, 128.00 kB, 128.00 kB, 128.00 kB, 128.00
kB, 128.00 kB, 128.00 kB]
threads: [1, 2, 3, 4, 5, 6, 7, 8]
threads per core: 1
total size: [128.00 kB, 256.00 kB, 384.00 kB, 512.00 kB, 640.00 kB, 768.00
kB, 0.90 MB, 1.02 MB]
2:
cores: [1, 2, 3, 4, 5, 6, 7, 8]
results:
copy: [42.17 GB/s, 83.47 GB/s, 124.57 GB/s, 163.78 GB/s, 202.56 GB/s, 242.80
GB/s, 276.95 GB/s, 311.36 GB/s]
daxpy: [50.87 GB/s, 98.72 GB/s, 152.12 GB/s, 193.48 GB/s, 251.36 GB/s, 301.72
GB/s, 352.55 GB/s, 365.28 GB/s]
load: [39.62 GB/s, 79.03 GB/s, 118.03 GB/s, 157.85 GB/s, 196.48 GB/s, 237.44
GB/s, 276.81 GB/s, 309.71 GB/s]
triad: [44.80 GB/s, 88.35 GB/s, 125.13 GB/s, 169.94 GB/s, 209.60 GB/s, 260.15
GB/s, 300.75 GB/s, 333.08 GB/s]
update: [49.80 GB/s, 100.70 GB/s, 150.56 GB/s, 196.44 GB/s, 251.90 GB/s,
280.93 GB/s, 352.74 GB/s, 399.27 GB/s]
size per core: [128.00 kB, 128.00 kB, 128.00 kB, 128.00 kB, 128.00 kB, 128.00
kB, 128.00 kB, 128.00 kB]
size per thread: [64.00 kB, 64.00 kB, 64.00 kB, 64.00 kB, 64.00 kB, 64.00
kB, 64.00 kB, 64.00 kB]
threads: [2, 4, 6, 8, 10, 12, 14, 16]
threads per core: 2
total size: [128.00 kB, 256.00 kB, 384.00 kB, 512.00 kB, 640.00 kB, 768.00
kB, 0.90 MB, 1.02 MB]
L3:
1:
cores: [1, 2, 3, 4, 5, 6, 7, 8]
results:
copy: [23.21 GB/s, 46.01 GB/s, 67.96 GB/s, 90.17 GB/s, 111.47 GB/s, 133.14
GB/s, 153.84 GB/s, 174.92 GB/s]
daxpy: [30.35 GB/s, 60.32 GB/s, 90.00 GB/s, 119.71 GB/s, 148.87 GB/s, 178.39
GB/s, 207.10 GB/s, 236.25 GB/s]
load: [23.35 GB/s, 46.52 GB/s, 69.57 GB/s, 92.60 GB/s, 115.77 GB/s, 138.89
GB/s, 161.82 GB/s, 184.11 GB/s]
triad: [25.18 GB/s, 50.08 GB/s, 74.33 GB/s, 98.78 GB/s, 122.66 GB/s, 146.78
GB/s, 170.52 GB/s, 194.47 GB/s]
update: [32.67 GB/s, 64.65 GB/s, 95.98 GB/s, 127.29 GB/s, 157.67 GB/s, 188.22
GB/s, 217.41 GB/s, 246.99 GB/s]
size per core: [1.25 MB, 1.25 MB, 1.25 MB, 1.25 MB, 1.25 MB, 1.25 MB, 1.25
MB, 1.25 MB]
size per thread: [1.25 MB, 1.25 MB, 1.25 MB, 1.25 MB, 1.25 MB, 1.25 MB, 1.25
MB, 1.25 MB]
threads: [1, 2, 3, 4, 5, 6, 7, 8]
threads per core: 1
total size: [1.25 MB, 2.50 MB, 3.75 MB, 5.00 MB, 6.25 MB, 7.50 MB, 8.75 MB,
10.00 MB]
2:
cores: [1, 2, 3, 4, 5, 6, 7, 8]
results:
copy: [23.83 GB/s, 47.25 GB/s, 69.84 GB/s, 92.61 GB/s, 114.31 GB/s, 136.48
GB/s, 157.55 GB/s, 178.99 GB/s]
daxpy: [31.52 GB/s, 62.72 GB/s, 93.43 GB/s, 124.29 GB/s, 154.55 GB/s, 185.18
GB/s, 215.10 GB/s, 245.24 GB/s]
load: [27.63 GB/s, 54.93 GB/s, 81.57 GB/s, 108.63 GB/s, 134.91 GB/s, 161.72
GB/s, 188.15 GB/s, 214.94 GB/s]
triad: [25.90 GB/s, 51.76 GB/s, 76.73 GB/s, 102.29 GB/s, 126.17 GB/s, 152.10
GB/s, 176.71 GB/s, 200.64 GB/s]
update: [34.10 GB/s, 67.67 GB/s, 100.62 GB/s, 133.50 GB/s, 165.61 GB/s,
197.74 GB/s, 228.73 GB/s, 259.05 GB/s]
size per core: [1.25 MB, 1.25 MB, 1.25 MB, 1.25 MB, 1.25 MB, 1.25 MB, 1.25
MB, 1.25 MB]
size per thread: [625.00 kB, 625.00 kB, 625.00 kB, 625.00 kB, 625.00 kB, 625.00
kB, 625.00 kB, 625.00 kB]
threads: [2, 4, 6, 8, 10, 12, 14, 16]
threads per core: 2
total size: [1.25 MB, 2.50 MB, 3.75 MB, 5.00 MB, 6.25 MB, 7.50 MB, 8.75 MB,
10.00 MB]
MEM:
1:
cores: [1, 2, 3, 4, 5, 6, 7, 8]
results:
copy: [11.60 GB/s, 21.29 GB/s, 25.94 GB/s, 27.28 GB/s, 27.47 GB/s, 27.36
GB/s, 27.21 GB/s, 27.12 GB/s]
daxpy: [17.33 GB/s, 31.89 GB/s, 38.65 GB/s, 40.50 GB/s, 40.81 GB/s, 40.62
GB/s, 40.59 GB/s, 40.26 GB/s]
load: [12.01 GB/s, 23.04 GB/s, 32.79 GB/s, 40.21 GB/s, 43.39 GB/s, 44.14
GB/s, 44.42 GB/s, 44.40 GB/s]
triad: [12.73 GB/s, 24.27 GB/s, 30.43 GB/s, 31.46 GB/s, 31.77 GB/s, 31.74
GB/s, 31.65 GB/s, 31.52 GB/s]
update: [18.91 GB/s, 32.43 GB/s, 37.28 GB/s, 39.98 GB/s, 40.99 GB/s, 40.92
GB/s, 40.61 GB/s, 40.34 GB/s]
size per core: [40.00 MB, 20.00 MB, 13.33 MB, 10.00 MB, 8.00 MB, 6.67 MB,
5.71 MB, 5.00 MB]
size per thread: [40.00 MB, 20.00 MB, 13.33 MB, 10.00 MB, 8.00 MB, 6.67 MB,
5.71 MB, 5.00 MB]
threads: [1, 2, 3, 4, 5, 6, 7, 8]
threads per core: 1
total size: [40.00 MB, 40.00 MB, 40.00 MB, 40.00 MB, 40.00 MB, 40.00 MB, 40.00 MB, 40.00 MB, 40.00 MB, 40.00 MB]
2:
cores: [1, 2, 3, 4, 5, 6, 7, 8]
results:
copy: [10.92 GB/s, 20.62 GB/s, 25.34 GB/s, 26.22 GB/s, 26.32 GB/s, 26.31
GB/s, 26.22 GB/s, 26.16 GB/s]
daxpy: [17.15 GB/s, 31.96 GB/s, 38.12 GB/s, 39.19 GB/s, 39.38 GB/s, 39.16
GB/s, 39.06 GB/s, 38.87 GB/s]
load: [13.49 GB/s, 25.92 GB/s, 36.16 GB/s, 41.56 GB/s, 43.34 GB/s, 43.40
GB/s, 43.01 GB/s, 42.66 GB/s]
triad: [12.38 GB/s, 23.17 GB/s, 28.69 GB/s, 29.98 GB/s, 30.50 GB/s, 30.59
GB/s, 30.75 GB/s, 30.70 GB/s]
update: [19.67 GB/s, 34.93 GB/s, 39.93 GB/s, 40.79 GB/s, 40.43 GB/s, 40.03
GB/s, 39.62 GB/s, 39.33 GB/s]
size per core: [40.00 MB, 20.00 MB, 13.33 MB, 10.00 MB, 8.00 MB, 6.67 MB,
5.71 MB, 5.00 MB]
size per thread: [20.00 MB, 10.00 MB, 6.67 MB, 5.00 MB, 4.00 MB, 3.33 MB,
2.86 MB, 2.50 MB]
threads: [2, 4, 6, 8, 10, 12, 14, 16]
threads per core: 2
total size: [40.00 MB, 40.00 MB, 40.00 MB, 40.00 MB, 40.00 MB, 40.00 MB, 40.00 MB, 40.00 MB, 40.00 MB, 40.00 MB]
"""
Test of pystencils.data_types.address_of
"""
import pystencils
from pystencils.data_types import PointerType, address_of, cast_func, create_type
from pystencils.simp.simplifications import sympy_cse
def test_address_of():
x, y = pystencils.fields('x,y: int64[2d]')
s = pystencils.TypedSymbol('s', PointerType(create_type('int64')))
assignments = pystencils.AssignmentCollection({
s: address_of(x[0, 0]),
y[0, 0]: cast_func(s, create_type('int64'))
}, {})
ast = pystencils.create_kernel(assignments)
code = pystencils.show_code(ast)
print(code)
assignments = pystencils.AssignmentCollection({
y[0, 0]: cast_func(address_of(x[0, 0]), create_type('int64'))
}, {})
ast = pystencils.create_kernel(assignments)
code = pystencils.show_code(ast)
print(code)
def test_address_of_with_cse():
x, y = pystencils.fields('x,y: int64[2d]')
s = pystencils.TypedSymbol('s', PointerType(create_type('int64')))
assignments = pystencils.AssignmentCollection({
y[0, 0]: cast_func(address_of(x[0, 0]), create_type('int64')) + s,
x[0, 0]: cast_func(address_of(x[0, 0]), create_type('int64')) + 1
}, {})
ast = pystencils.create_kernel(assignments)
code = pystencils.show_code(ast)
assignments_cse = sympy_cse(assignments)
ast = pystencils.create_kernel(assignments_cse)
code = pystencils.show_code(ast)
print(code)
import sympy as sp
from pystencils import Assignment, AssignmentCollection
from pystencils.simp.assignment_collection import SymbolGen
def test_assignment_collection():
x, y, z, t = sp.symbols("x y z t")
symbol_gen = SymbolGen("a")
ac = AssignmentCollection([Assignment(z, x + y)],
[], subexpression_symbol_generator=symbol_gen)
lhs = ac.add_subexpression(t)
assert lhs == sp.Symbol("a_0")
ac.subexpressions.append(Assignment(t, 3))
ac.topological_sort(sort_main_assignments=False, sort_subexpressions=True)
assert ac.subexpressions[0].lhs == t
assert ac.new_with_inserted_subexpression(sp.Symbol("not_defined")) == ac
ac_inserted = ac.new_with_inserted_subexpression(t)
ac_inserted2 = ac.new_without_subexpressions({lhs})
assert all(a == b for a, b in zip(ac_inserted.all_assignments, ac_inserted2.all_assignments))
print(ac_inserted)
assert ac_inserted.subexpressions[0] == Assignment(lhs, 3)
assert 'a_0' in str(ac_inserted)
assert '<table' in ac_inserted._repr_html_()
%% Cell type:markdown id: tags:
# pystencils - LLVM generation
The generation of LLVM code is simliar but not identical as seen with the C++ version. For the generation itself a python module ``llvmlite`` is used. This module provides the necessary support and bindings for LLVM. In order to generate from the AST to llvm, the AST needs to be transformed to support type conversions. This is the biggest difference to the C++ version. C++ doesn't need that since the language itself handles the casts.
In this example a simple weighted Jacobi kernel is generated, so the focus remains on the part of LLVM generation.
%% Cell type:code id: tags:
``` python
import sympy as sp
import numpy as np
import ctypes
from pystencils import Field, Assignment
from pystencils import create_kernel
from pystencils.display_utils import to_dot
sp.init_printing()
```
%% Cell type:markdown id: tags:
The numpy arrays (with inital values) create *Field*s for the update Rule. Later those arrays are used for the computation itself.
%% Cell type:code id: tags:
``` python
src_arr = np.zeros((30, 20))
src_arr[0,:] = 1.0
src_arr[:,0] = 1.0
dst_arr = src_arr.copy()
src_field = Field.create_from_numpy_array('src', src_arr)
dst_field = Field.create_from_numpy_array('dst', dst_arr)
```
%% Cell type:markdown id: tags:
Using the *Field* objects and the additional *Symbol* $\omega$ for the weight the update rule is specified as a *sympy* equation.
%% Cell type:code id: tags:
``` python
omega = sp.symbols("omega")
update_rule = Assignment(dst_field[0,0], omega * (src_field[0,1] + src_field[0,-1] + src_field[1,0] + src_field[-1,0]) / 4
+ (1.-omega)*src_field[0,0])
update_rule
```
%% Output
ω⋅(src_E + src_N + src_S + src_W)
dst_C := src_C⋅(-ω + 1.0) + ─────────────────────────────────
4
%% Cell type:markdown id: tags:
With this update rule an abstract syntax tree (AST) can be created. This AST can be used to print the LLVM code. The creation follows the same routines as the C++ version does. However at the end there are two more steps. In order to generate LLVM, type casting and pointer arithmetic had to be introduced (which C++ does for you).
%% Cell type:code id: tags:
``` python
ast = create_kernel([update_rule], target='llvm')
print(str(ast))
```
%% Output
KernelFunction kernel([<double * RESTRICT fd_dst>, <double * RESTRICT const fd_src>, <double omega>])
Block for(ctr_0=1; ctr_0<29; ctr_0+=1)
Block fd_dst_C ← pointer_arithmetic_func(fd_dst, 20*ctr_0)
fd_src_C ← pointer_arithmetic_func(fd_src, 20*ctr_0)
fd_src_E ← pointer_arithmetic_func(fd_src, 20*ctr_0 + 20)
fd_src_W ← pointer_arithmetic_func(fd_src, 20*ctr_0 - 20)
for(ctr_1=1; ctr_1<19; ctr_1+=1)
Block fd_dst_C[ctr_1] ← omega*(fd_src_C[ctr_1 + 1] + fd_src_C[ctr_1 - 1] + fd_src_E[ctr_1] + fd_src_W[ctr_1])/4 + (omega*cast_func(-1, double) + 1.0)*fd_src_C[ctr_1]
%% Cell type:markdown id: tags:
It is possible to examine the AST further.
%% Cell type:code id: tags:
``` python
to_dot(ast)
```
%% Output
<graphviz.files.Source at 0x7f2d14f276a0>
%% Cell type:markdown id: tags:
With transformed AST it is now possible to generate and compile the AST into LLVM. Notice that unlike in C++ version, no files are writen to the hard drive (although it is possible).
There are multiple ways how to generate and compile the AST. The most simple one is simillar to the C++ version. Using the ``compile()`` function of the generated AST
You can also manually create a python function with ``make_python_function``.
Another option is obtaining the jit itself with ``generate_and_jit``.
The function ``generate_and_jit`` first generates and the compiles the AST.
If even more controll is needed, it is possible to use the functions ``generateLLVM`` and ``compileLLVM`` to achieve the same. For further controll, instead of calling ``compileLLVM`` the jit object itself can be created and its necessary functions for the compilation have to be run manually (``parse``, (``optimize``,) ``compile``)
%% Cell type:code id: tags:
``` python
kernel = ast.compile()
#kernel = make_python_function(ast)
# Or alternativally
#jit = generate_and_jit(ast)
# Call: jit('kernel', src_arr, dst_arr)
```
%% Cell type:markdown id: tags:
The compiled function(s) can be used now. Either call the function (with arguments, if not given before) or call the jit object with the function's name and its arguments. Here, numpy arrays are automatically adjusted with ctypes.
The functions and arguments can be read as well.
**All of the information the jit object has comes from the module which was parsed. If you parse a second module and don't run the compilation step, the module and the compiled code are not the same anymore, thus leading to false information**
%% Cell type:code id: tags:
``` python
#jit.print_functions()
```
%% Cell type:code id: tags:
``` python
for i in range(100):
kernel(src=src_arr, dst=dst_arr, omega=2/3)
src_arr, dst_arr = dst_arr, src_arr
```
%% Cell type:markdown id: tags:
The output is drawn with matplotlib.
%% Cell type:code id: tags:
``` python
import matplotlib.pyplot as plt
from matplotlib import cm
fig = plt.figure()
ax = fig.add_subplot(111)
ax.imshow(dst_arr, cmap=cm.jet)
plt.show()
```
%% Output
%% Cell type:code id: tags:
``` python
```
import numpy as np
import sympy as sp
import pystencils as ps
from pystencils.astnodes import Block, Conditional
from pystencils.cpu.vectorization import vec_all, vec_any
def test_vec_any():
data_arr = np.zeros((15, 15))
data_arr[3:9, 2:7] = 1.0
data = ps.fields("data: double[2D]", data=data_arr)
c = [
ps.Assignment(sp.Symbol("t1"), vec_any(data.center() > 0.0)),
Conditional(vec_any(data.center() > 0.0), Block([
ps.Assignment(data.center(), 2.0)
]))
]
ast = ps.create_kernel(c, target='cpu',
cpu_vectorize_info={'instruction_set': 'avx'})
kernel = ast.compile()
kernel(data=data_arr)
np.testing.assert_equal(data_arr[3:9, 0:8], 2.0)
def test_vec_all():
data_arr = np.zeros((15, 15))
data_arr[3:9, 2:7] = 1.0
data = ps.fields("data: double[2D]", data=data_arr)
c = [
Conditional(vec_all(data.center() > 0.0), Block([
ps.Assignment(data.center(), 2.0)
]))
]
ast = ps.create_kernel(c, target='cpu',
cpu_vectorize_info={'instruction_set': 'avx'})
kernel = ast.compile()
before = data_arr.copy()
kernel(data=data_arr)
np.testing.assert_equal(data_arr, before)
def test_boolean_before_loop():
t1, t2 = sp.symbols('t1, t2')
f_arr = np.ones((10, 10))
g_arr = np.zeros_like(f_arr)
f, g = ps.fields("f, g : double[2D]", f=f_arr, g=g_arr)
a = [
ps.Assignment(t1, t2 > 0),
ps.Assignment(g[0, 0],
sp.Piecewise((f[0, 0], t1), (42, True)))
]
ast = ps.create_kernel(a, cpu_vectorize_info={'instruction_set': 'avx'})
kernel = ast.compile()
kernel(f=f_arr, g=g_arr, t2=1.0)
print(g)
np.testing.assert_array_equal(g_arr, 1.0)
kernel(f=f_arr, g=g_arr, t2=-1.0)
np.testing.assert_array_equal(g_arr, 42.0)
import sympy
import pystencils
from pystencils.astnodes import get_dummy_symbol
from pystencils.backends.cuda_backend import CudaSympyPrinter
from pystencils.data_types import address_of
def test_cuda_known_functions():
printer = CudaSympyPrinter()
print(printer.known_functions)
x, y = pystencils.fields('x,y: float32 [2d]')
assignments = pystencils.AssignmentCollection({
get_dummy_symbol(): sympy.Function('atomicAdd')(address_of(y.center()), 2),
y.center(): sympy.Function('rsqrtf')(x[0, 0])
})
ast = pystencils.create_kernel(assignments, 'gpu')
print(pystencils.show_code(ast))
kernel = ast.compile()
assert(kernel is not None)
def test_cuda_but_not_c():
x, y = pystencils.fields('x,y: float32 [2d]')
assignments = pystencils.AssignmentCollection({
get_dummy_symbol(): sympy.Function('atomicAdd')(address_of(y.center()), 2),
y.center(): sympy.Function('rsqrtf')(x[0, 0])
})
ast = pystencils.create_kernel(assignments, 'cpu')
code = str(pystencils.show_code(ast))
assert "Not supported" in code
def test_cuda_unknown():
x, y = pystencils.fields('x,y: float32 [2d]')
assignments = pystencils.AssignmentCollection({
get_dummy_symbol(): sympy.Function('wtf')(address_of(y.center()), 2),
})
ast = pystencils.create_kernel(assignments, 'gpu')
code = str(pystencils.show_code(ast))
print(code)
assert "Not supported in CUDA" in code
import numpy as np
import waLBerla as wlb
from pystencils.datahandling.parallel_datahandling import ParallelDataHandling
from pystencils_tests.test_datahandling import (
access_and_gather, kernel_execution_jacobi, reduction, synchronization, vtk_output)
def test_access_and_gather():
block_size = (4, 7, 1)
num_blocks = (3, 2, 1)
cells = tuple(a * b for a, b in zip(block_size, num_blocks))
blocks = wlb.createUniformBlockGrid(blocks=num_blocks, cellsPerBlock=block_size, oneBlockPerProcess=False,
periodic=(1, 1, 1))
dh = ParallelDataHandling(blocks, default_ghost_layers=2)
access_and_gather(dh, cells)
synchronization(dh, test_gpu=False)
if hasattr(wlb, 'cuda'):
synchronization(dh, test_gpu=True)
def test_gpu():
if not hasattr(wlb, 'cuda'):
print("Skip GPU tests because walberla was built without CUDA")
return
block_size = (4, 7, 1)
num_blocks = (3, 2, 1)
blocks = wlb.createUniformBlockGrid(blocks=num_blocks, cellsPerBlock=block_size, oneBlockPerProcess=False)
dh = ParallelDataHandling(blocks, default_ghost_layers=2)
dh.add_array('v', values_per_cell=3, dtype=np.int64, ghost_layers=2, gpu=True)
for b in dh.iterate():
b['v'].fill(42)
dh.all_to_gpu()
for b in dh.iterate():
b['v'].fill(0)
dh.to_cpu('v')
for b in dh.iterate():
np.testing.assert_equal(b['v'], 42)
def test_kernel():
for gpu in (True, False):
if gpu and not hasattr(wlb, 'cuda'):
print("Skipping CUDA tests because walberla was built without GPU support")
continue
# 3D
blocks = wlb.createUniformBlockGrid(blocks=(3, 2, 4), cellsPerBlock=(3, 2, 5), oneBlockPerProcess=False)
dh = ParallelDataHandling(blocks)
kernel_execution_jacobi(dh, test_gpu=gpu)
reduction(dh)
# 2D
blocks = wlb.createUniformBlockGrid(blocks=(3, 2, 1), cellsPerBlock=(3, 2, 1), oneBlockPerProcess=False)
dh = ParallelDataHandling(blocks, dim=2)
kernel_execution_jacobi(dh, test_gpu=gpu)
reduction(dh)
def test_vtk_output():
blocks = wlb.createUniformBlockGrid(blocks=(3, 2, 4), cellsPerBlock=(3, 2, 5), oneBlockPerProcess=False)
dh = ParallelDataHandling(blocks)
vtk_output(dh)
%% Cell type:code id: tags:
``` python
from pystencils.session import *
from pystencils.fd.derivation import *
```
%% Cell type:markdown id: tags:
# 2D standard stencils
%% Cell type:code id: tags:
``` python
stencil = [(-1, 0), (1, 0), (0, -1), (0, 1), (0, 0)]
standard_2d_00 = FiniteDifferenceStencilDerivation((0,0), stencil)
f = ps.fields("f: [2D]")
standard_2d_00_res = standard_2d_00.get_stencil()
res = standard_2d_00_res.apply(f.center)
expected = f[-1, 0] - 2 * f[0, 0] + f[1, 0]
assert res == expected
```
%% Cell type:code id: tags:
``` python
assert standard_2d_00_res.accuracy == 2
assert not standard_2d_00_res.is_isotropic
standard_2d_00_res
```
%% Output
Finite difference stencil of accuracy 2, isotropic error: False
%% Cell type:code id: tags:
``` python
standard_2d_00.get_stencil().as_matrix()
```
%% Output
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-4-ea41cd8e50a0> in <module>
----> 1 standard_2d_00.get_stencil().as_matrix()
~/pystencils/pystencils/pystencils/fd/derivation.py in as_matrix(self)
185 for direction, weight in zip(self.stencil, self.weights):
186 result[max_offset - direction[1], max_offset + direction[0]] = weight
--> 187 result.tomatrix().tomatrix()
188 print("test")
189 if dim == 3:
~/anaconda3/envs/pystencils/lib/python3.7/site-packages/sympy/matrices/matrices.py in __getattr__(self, attr)
2139 else:
2140 raise AttributeError(
-> 2141 "%s has no attribute %s." % (self.__class__.__name__, attr))
2142
2143 def __len__(self):
AttributeError: MutableDenseMatrix has no attribute tomatrix.
%% Cell type:markdown id: tags:
# 2D isotropic stencils
## second x-derivative
%% Cell type:code id: tags:
``` python
stencil = [(i, j) for i in (-1, 0, 1) for j in (-1, 0, 1)]
isotropic_2d_00 = FiniteDifferenceStencilDerivation((0,0), stencil)
isotropic_2d_00_res = isotropic_2d_00.get_stencil(isotropic=True)
assert isotropic_2d_00_res.is_isotropic
assert isotropic_2d_00_res.accuracy == 2
isotropic_2d_00_res
```
%% Cell type:code id: tags:
``` python
isotropic_2d_00_res.as_matrix()
```
%% Cell type:code id: tags:
``` python
plt.figure(figsize=(2,2))
isotropic_2d_00_res.visualize()
```
%% Cell type:code id: tags:
``` python
expected_result = sp.Matrix([[1, -2, 1], [10, -20, 10], [1, -2, 1]]) / 12
assert expected_result == isotropic_2d_00_res.as_matrix()
```
%% Cell type:code id: tags:
``` python
type(isotropic_2d_00_res.as_matrix())
```
%% Cell type:code id: tags:
``` python
type(expected_result)
```
%% Cell type:markdown id: tags:
## Isotropic laplacian
%% Cell type:code id: tags:
``` python
isotropic_2d_11 = FiniteDifferenceStencilDerivation((1,1), stencil)
isotropic_2d_11_res = isotropic_2d_11.get_stencil(isotropic=True)
iso_laplacian = isotropic_2d_00_res.as_matrix() + isotropic_2d_11_res.as_matrix()
iso_laplacian
```
%% Cell type:code id: tags:
``` python
expected_result = sp.Matrix([[1, 4, 1], [4, -20, 4], [1, 4, 1]]) / 6
assert iso_laplacian == expected_result
```
import numpy as np
import pytest
import sympy as sp
import pystencils as ps
from pystencils.field import Field, FieldType
from pystencils.field import layout_string_to_tuple
def test_field_basic():
f = Field.create_generic('f', spatial_dimensions=2)
assert FieldType.is_generic(f)
assert f['E'] == f[1, 0]
assert f['N'] == f[0, 1]
assert '_' in f.center._latex('dummy')
f = Field.create_fixed_size('f', (10, 10), strides=(80, 8), dtype=np.float64)
assert f.spatial_strides == (10, 1)
assert f.index_strides == ()
assert f.center_vector == sp.Matrix([f.center])
f = Field.create_fixed_size('f', (8, 8, 2, 2), index_dimensions=2)
assert f.center_vector == sp.Matrix([[f(0, 0), f(0, 1)],
[f(1, 0), f(1, 1)]])
field_access = f[1, 1]
assert field_access.nr_of_coordinates == 2
assert field_access.offset_name == 'NE'
neighbor = field_access.neighbor(coord_id=0, offset=-2)
assert neighbor.offsets == (-1, 1)
assert '_' in neighbor._latex('dummy')
f = Field.create_generic('f', spatial_dimensions=5, index_dimensions=2)
field_access = f[1, -1, 2, -3, 0](1, 0)
assert field_access.offsets == (1, -1, 2, -3, 0)
assert field_access.index == (1, 0)
def test_error_handling():
struct_dtype = np.dtype([('a', np.int32), ('b', np.float64), ('c', np.uint32)])
Field.create_generic('f', spatial_dimensions=2, index_dimensions=0, dtype=struct_dtype)
with pytest.raises(ValueError) as e:
Field.create_generic('f', spatial_dimensions=2, index_dimensions=1, dtype=struct_dtype)
assert 'index dimension' in str(e.value)
arr = np.array([[1, 2.0, 3], [1, 2.0, 3]], dtype=struct_dtype)
Field.create_from_numpy_array('f', arr, index_dimensions=0)
with pytest.raises(ValueError) as e:
Field.create_from_numpy_array('f', arr, index_dimensions=1)
assert 'Structured arrays' in str(e.value)
arr = np.zeros([3, 3, 3])
Field.create_from_numpy_array('f', arr, index_dimensions=2)
with pytest.raises(ValueError) as e:
Field.create_from_numpy_array('f', arr, index_dimensions=3)
assert 'Too many' in str(e.value)
Field.create_fixed_size('f', (3, 2, 4), index_dimensions=0, dtype=struct_dtype, layout='reverse_numpy')
with pytest.raises(ValueError) as e:
Field.create_fixed_size('f', (3, 2, 4), index_dimensions=1, dtype=struct_dtype, layout='reverse_numpy')
assert 'Structured arrays' in str(e.value)
f = Field.create_fixed_size('f', (10, 10))
with pytest.raises(ValueError) as e:
f[1]
assert 'Wrong number of spatial indices' in str(e.value)
f = Field.create_generic('f', spatial_dimensions=2, index_shape=(3,))
with pytest.raises(ValueError) as e:
f(3)
assert 'out of bounds' in str(e.value)
f = Field.create_fixed_size('f', (10, 10, 3, 4), index_dimensions=2)
with pytest.raises(ValueError) as e:
f(3, 0)
assert 'out of bounds' in str(e.value)
with pytest.raises(ValueError) as e:
f(1, 0)(1, 0)
assert 'Indexing an already indexed' in str(e.value)
with pytest.raises(ValueError) as e:
f(1)
assert 'Wrong number of indices' in str(e.value)
with pytest.raises(ValueError) as e:
Field.create_generic('f', spatial_dimensions=2, layout='wrong')
assert 'Unknown layout descriptor' in str(e.value)
assert layout_string_to_tuple('fzyx', dim=4) == (3, 2, 1, 0)
with pytest.raises(ValueError) as e:
layout_string_to_tuple('wrong', dim=4)
assert 'Unknown layout descriptor' in str(e.value)
def test_decorator_scoping():
dst = ps.fields('dst : double[2D]')
def f1():
a = sp.Symbol("a")
def f2():
b = sp.Symbol("b")
@ps.kernel
def decorated_func():
dst[0, 0] @= a + b
return decorated_func
return f2
assert f1()(), ps.Assignment(dst[0, 0], sp.Symbol("a") + sp.Symbol("b"))
def test_string_creation():
x, y, z = ps.fields(' x(4), y(3,5) z : double[ 3, 47]')
assert x.index_shape == (4,)
assert y.index_shape == (3, 5)
assert z.spatial_shape == (3, 47)
# -*- coding: utf-8 -*-
#
# Copyright © 2019 Stephan Seitz <stephan.seitz@fau.de>
#
# Distributed under terms of the GPLv3 license.
"""
"""
from os.path import dirname, join
import numpy as np
import sympy
import pystencils
from pystencils.interpolation_astnodes import LinearInterpolator
try:
import pyconrad.autoinit
except Exception:
import unittest.mock
pyconrad = unittest.mock.MagicMock()
LENNA_FILE = join(dirname(__file__), 'test_data', 'lenna.png')
try:
import skimage.io
lenna = skimage.io.imread(LENNA_FILE, as_gray=True).astype(np.float32)
except Exception:
lenna = np.random.rand(20, 30)
def test_rotate_center():
x, y = pystencils.fields('x, y: float32[2d]')
# Rotate around center when setting coordindates origins to field centers
x.set_coordinate_origin_to_field_center()
y.set_coordinate_origin_to_field_center()
rotation_angle = sympy.pi / 5
transform_matrix = sympy.rot_axis3(rotation_angle)[:2, :2]
# Generic matrix transform works like that (for rotation it would be more clever to use transform_matrix.T)
inverse_matrix = transform_matrix.inv()
input_coordinate = x.physical_to_index(inverse_matrix @ y.physical_coordinates)
assignments = pystencils.AssignmentCollection({
y.center(): LinearInterpolator(x).at(input_coordinate)
})
kernel = pystencils.create_kernel(assignments).compile()
rotated = np.zeros_like(lenna)
kernel(x=lenna, y=rotated)
pyconrad.imshow(lenna, "lenna")
pyconrad.imshow(rotated, "rotated")
# If distance in input field is twice as close we will see a smaller image
x.coordinate_transform /= 2
input_coordinate = x.physical_to_index(inverse_matrix @ y.physical_coordinates)
assignments = pystencils.AssignmentCollection({
y.center(): LinearInterpolator(x).at(input_coordinate)
})
kernel = pystencils.create_kernel(assignments).compile()
rotated = np.zeros_like(lenna)
kernel(x=lenna, y=rotated)
pyconrad.imshow(rotated, "rotated smaller")
# Conversely, if output field has samples 3 times closer we will see a bigger image
y.coordinate_transform /= 3
input_coordinate = x.physical_to_index(inverse_matrix @ y.physical_coordinates)
assignments = pystencils.AssignmentCollection({
y.center(): LinearInterpolator(x).at(input_coordinate)
})
kernel = pystencils.create_kernel(assignments).compile()
rotated = np.zeros_like(lenna)
kernel(x=lenna, y=rotated)
pyconrad.imshow(rotated, "rotated bigger")
# coordinate_transform can be any matrix, also with symbols as entries
def main():
test_rotate_center()
if __name__ == '__main__':
main()
import numpy as np
from pystencils import Assignment, Field
from pystencils.cpu import create_indexed_kernel, make_python_function
def test_indexed_kernel():
arr = np.zeros((3, 4))
dtype = np.dtype([('x', int), ('y', int), ('value', arr.dtype)])
index_arr = np.zeros((3,), dtype=dtype)
index_arr[0] = (0, 2, 3.0)
index_arr[1] = (1, 3, 42.0)
index_arr[2] = (2, 1, 5.0)
indexed_field = Field.create_from_numpy_array('index', index_arr)
normal_field = Field.create_from_numpy_array('f', arr)
update_rule = Assignment(normal_field[0, 0], indexed_field('value'))
ast = create_indexed_kernel([update_rule], [indexed_field])
kernel = make_python_function(ast)
kernel(f=arr, index=index_arr)
for i in range(index_arr.shape[0]):
np.testing.assert_allclose(arr[index_arr[i]['x'], index_arr[i]['y']], index_arr[i]['value'], atol=1e-13)
def test_indexed_cuda_kernel():
try:
import pycuda
except ImportError:
pycuda = None
if pycuda:
from pystencils.gpucuda import make_python_function
import pycuda.gpuarray as gpuarray
from pystencils.gpucuda.kernelcreation import created_indexed_cuda_kernel
arr = np.zeros((3, 4))
dtype = np.dtype([('x', int), ('y', int), ('value', arr.dtype)])
index_arr = np.zeros((3,), dtype=dtype)
index_arr[0] = (0, 2, 3.0)
index_arr[1] = (1, 3, 42.0)
index_arr[2] = (2, 1, 5.0)
indexed_field = Field.create_from_numpy_array('index', index_arr)
normal_field = Field.create_from_numpy_array('f', arr)
update_rule = Assignment(normal_field[0, 0], indexed_field('value'))
ast = created_indexed_cuda_kernel([update_rule], [indexed_field])
kernel = make_python_function(ast)
gpu_arr = gpuarray.to_gpu(arr)
gpu_index_arr = gpuarray.to_gpu(index_arr)
kernel(f=gpu_arr, index=gpu_index_arr)
gpu_arr.get(arr)
for i in range(index_arr.shape[0]):
np.testing.assert_allclose(arr[index_arr[i]['x'], index_arr[i]['y']], index_arr[i]['value'], atol=1e-13)
else:
print("Did not run test on GPU since no pycuda is available")